
DESIGN & IMPLEMENTATION OF A PDF TO

EXCEL CONVERSION TOOL (P2X)

 By

 LATOYIA DEVONNE PENNY

 Dual Bachelor of Science in

 Mathematics and Computer Science

 Langston University

 Langston, Oklahoma

 1999

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 July, 2009

DESIGN AND IMPLEMENTATION OF A PDF TO

EXCEL CONVERSION TOOL (P2X)

 Thesis Approved:

 Dr. K. M. George

 Thesis Adviser

 Dr. N. Park

 Dr. G. Hedrick

 Dr. A. Gordon Emslie

 Dean of the Graduate College

ACKNOWLEDGMENTS

 I would like to extend my sincere appreciation to my graduate advisor, Dr. K.M.

George for his constructive research guidance, intellectual advice, and support. My

appreciation also extends to my other committee members Dr. Hedrick and Dr. Park

whose assistance and guidance has been indescribable. I would like to thank Dr. George

and the staff of the Department of Computer Science at OSU, Stillwater for providing me

with this research opportunity and their generous financial support. Moreover, I wish to

thank the OC-ALC/ENET and 552 CSS/SCT and SCZ organizations at Tinker Air Force

Base, and the Information Technology Department at OSU/OKC for giving me the

opportunity to advance in my career, for the learning experiences, and for financial

support.

 I would also like to express my sincere gratitude to those who provided suggestions,

assistance, and advice while inspiring me throughout my research: Uncle Eddy and Aunt

Vi, Grandma Ruth, Aunt Leota (Deceased), Kenneth Simmons, Leander Johnson, Liz

Ruckwied, Carol Drink, Major John K. Pringle, James Harned, and my father Ollie.

 iii

 I would like to give my special appreciation and dedication to my siblings LaTonja, LaTrishia,

Justin, David, my babies Jada, Javen, and Jlonna, and my heart, Quenita, for her unbiased

suggestions, her strong encouragement in times of difficulty, and support that only she could

articulate. Thank you to my loving mother, Donna Marie, for her undying love, support,

encouragement, and for being a major influence throughout my life. True love is unconditional.

 Lastly, I would like to thank God my father in heaven from whom all blessings flow. Without

Him, none of this would have been possible.

 iv

TABLE OF CONTENTS

Chapter Page

 I. INTRODUCTION...9

 Problem Statement................................10
 Purpose of Study.................................11
 Objectives of the Study..........................11
 Scope and Limitations............................12

 II. REVIEW OF THE LITERATURE............................13

 Adobe PDF to HTML Converter......................13
 PDFtoText©.......................................14
 Manual Conversion Method.........................15
 The Influence of Herman Hollerith................16
 Commercial Software..............................16
 Convert Doc......................................18
 On-Demand PDF to HTML............................19
 XML and XFDL.....................................20

III. METHODOLOGY...22

 Overview...22
 PDF Specification................................22
 P2X Architecture.................................24
 PDF to PTF Conversion............................26
 PDFtoText© Description..........................27
 Usage Parameters and Options...................27
 PDF Document Layout Issues.....................29
 The Reformatting Process.........................31
 Table Tags.......................................33
 Graphical User Interface.........................37
 Run P2X...37
 P2X GUI Description.............................39

 IV. CONCLUSION..40

 Discussion of Conversion.........................40
 Future Work......................................41

 v

V. BIBLIOGRAPHIC REFERENCES............................43

VI. APPENDICES..46

 APPENDIX A--P2X JAVA
 PROGRAM CODE........................46

 APPENDIX B--CDTMOD1-5-04
 VB CODE.............................61

 APPENDIX C--EXCELCONVERT
 VB CODE.............................65

 APPENDIX D--P2X USER'S
 MANUAL..............................70

 vi

LIST OF FIGURES

Figure Page

 1. P2X GUI Architecture.................................24

 2. Usage Parameters Entered Using
 Derek B. Noonburg's PDFtoText©
 App to Convert PDF Docs to Text...................25

 3. P2X GUI Description..................................38

 4. P2X Process Flow Chart...............................63

 5. Parent Directories of Stored PDF Files...............65

 6. Example of Initially Stored
 Agriculture PDF Files Before Running
 P2X..65

 7. Change the Directory to the Location
 of the P2X Program.................................65

 8. Progress Bar...66

 9. User Friendly Pop-Up Screens to Reassure
 Document Progress..................................66

10. Form 1...66

LIST OF TABLES

Table Page

 I. Commonly Used Document Format
 Types and Their Organizations.....................20

II. PDFtoText Optional Entries
 and Their Descriptions............................26

 vii

Nomenclature/Definition of Terms

3PP three phase process

AAR Adobe Acrobat Reader®

AFF American Fact Finder

Batch a large amount of files

CD MS DOS change directory command

C.S. computer science

Delimiters characters inserted to delimit columns in
 tables of valid PDF documents

Java Sun Microsystems® java object-oriented
 programming language

Mod1 module 1 application

Mod2 module 2 application

MS Excel Microsoft® Excel software application

Out1 output file 1

PDF portable document format

PTF plain text file

RMA records management application

VB6 Microsoft® Visual Basic 6.0

 viii

CHAPTER I

INTRODUCTION

 The need to make major advances in the area of data

conversion processes has been expressed by various

organizations [8]. In this day and time, the use of Adobe

Acrobat's© portable document format (PDF) is a popular

choice amongst most for the distribution of significant

publications and documents. The popularity and ubiquity of

PDF, causes the ability to retain significant data quick,

relatively inexpensive, and without complexity to become

attractive commodities for organizations in reaching

greater flexibility and predicting higher standards for

data utilization [5].

 By the use of document conversion, organizations and

ordinary users alike will have the ability to capture the

PDF data and transform it to a more suitable format to

achieve their ultimate goals. While other document formats

are available, and will be discussed, converting the PDF

documents has an advantage because it allows the user to

1

modify significant data. However, this process can be

considerately tedious and time consuming when done

manually. This in-turn has an adverse effect on the amount

of money spent to complete the task.

 In the following chapter Review of Literature; we will

briefly discuss conversion programs that have previously

been done on various document formats and processes. In

Chapter III, Methodology, the problem that has been

researched is described and problems that the study

resolves are presented. Finally, the thesis concludes with

the results of the research and future works are exposed.

Problem Statement

 Currently, researchers express the need to make major

advances in methodology and applications in the area of

data conversion processes [16]. Organizations produce data

for publication and use by other government agencies,

individuals, and private sector organizations, alike. Much

of the data is then processed and used for the individuals

or organizations personal publications. Problems persist

for customers when the need for processing large amounts of

the published data into manageable formats in an effort to

2

improve records management arises. The financial cost of

solving these problems is also a known burden. And because

of the diversity of the customer, the less complex the

solution the better!

Purpose of Study

 Through program implementation, testing experiments

and examples the goal of this study is to generate an

economical, automated, user-friendly means to process,

convert, and record batches of PDF documents into tabular

format for improved document conversion. The

implementation of the new developments presented in this

study, along with an increasing knowledge of the research

topic and literature review; has yielded expectations that

many will consider to be a novel approach in the promotion

of innovative applications systems for data acquisition,

processing, conversion, and portability.

3

Objectives of the Study

The objective of this research is to develop a more

novel approach to convert documents in PDF format to

editable form.

Scope and Limitations

The scope of this study is limited to focus on an

implementation of a conversion tool (P2X); developed to

automatically convert large batches of PDF tabular data

(PDF tables) to spreadsheet format (MS Excel).

4

CHAPTER II

REVIEW OF LITERATURE

 There are several commercial and non-commercial PDF

converters available offering to extract text from PDF and

represent the output as either plain text or some other

document format such as Excel [2, 3, 9, 12, 14 and 18].

They all either lack the ability to automatically handle

large amounts of data, distort the original PDF document

layout, exhibit the incapability to process large amounts

of data in a timely manner, or they advertise functional

capability in exchange for capital gain. Timeliness and

costliness has equally been an issue in retrieving digital

portable document file data and transferring the data into

editable documents.

Adobe PDF to HTML Converter

 Adobe's PDF to HTML converter is the most popular

converter to result when queried through the Google search

engine via the internet [9]. It is a simple online text

 5

flow utility that attempts to preserve text formatting such

as font but disregards all other structural formatting of

the converted document. The output file produced by this

application does not mimic the original PDF file, and in

particular ignores page breaks. Also, this conversion tool

lacks the direct ability to convert the resulting files

into an Excel spreadsheet because it only produces the HTML

document equivalent to the original PDF file.

PDFtoText

 An exceptional conversion tool known as the PDFtoText©

was created to generate the text equivalent of the original

PDF document to be converted. PDFtoText© software program

is a command line conversion tool [12]. This tool was

incorporated as part of this research to reduce redundancy

during the initial programming phase and because it was

freeware, reducing costliness. This application is

designed to convert PDF documents into ASCII text format

with a minimal loss of formatting [12]. Unfortunately, the

term minimal used here is dependent on the actual document

being converted. While the conversion tool produces the

text form of PDF documents, the text documents made with

 5

the application does not maintain the exact layout of its

original counterpart, either. Also, the tool only

generates one output text file for each PDF document

submitted. Larger text files take more time to process.

To combat the timing problem, it was decided to reproduce

the resulting PDFtoText© text file as an MS Word document.

Numerous modifications had to be made to the generated text

file. These will be further discussed in Chapter III of

this research.

Manual Conversion Method

 The task of successfully exporting data from Portable

Document Format into Microsoft Excel spreadsheet manually

has previously been accomplished. Adobe Acrobat Reader

freeware has been used to export tables from PDF documents

into Excel [3]. They even went a step further and

published the procedures via the World Wide Web.

Unfortunately, the software application will only make

conversions page by page, the Adobe Acrobat Reader freeware

has limited editing options, and it lacks the versatility

of simultaneously converting batches of documents

automatically. The invention of high-end technological

 6

software advancements and automation has rendered the

manual way as obsolete.

The Influence of Herman Hollerith

 Automated innovations have been evident as far back as

the late 1800's when automation was first introduced into

the world of data collection, manipulation, and collation

[21]. Herman Hollerith is credited with inventing and

patenting punched cards [21]. He also notably created an

electrical counting machine, the Tabulating Machine; to

mechanically read, sort, and organize the punched cards

[21]. These cards represented accountability of data and

as a result allowed organizations the flexibility to

automate their fundamental data processes. That was over a

century ago. Currently, technology is presumed more

advanced with smaller equipment and the added convenience

of software to perform enhanced data processes, namely

document conversion.

 7

Commercial Software

 Many commercial companies exist today, offering

portable automated system (PAS) applications and analysis

tools that will capture a portable document file and export

it into MS Word, MS Excel, and RTF to name a few [2, 3, 9,

12, 14 and 18]. But they all either lack the ability to

handle large amounts of data, exhibit the incapability to

process large amounts of data in a timely manner, or they

offer various functional capabilities at unaffordable

prices. Processing speed has equally been an issue in

retrieving digital portable document file data and

transferring the data into meaningfully editable documents.

 3 Heights™ PDF Extract API is an automated extraction

component that can extract and retrieve information from

PDF documents [14]. "PDF Tools AG offers stand-alone tools

and libraries, along with extensions and consulting

services to deliver customer-specific solutions" [14]. The

3 Heights™ PDF Extract API also offers several options for

extracting data from the digital files with very little

emphasis on converting the data into other portable

formats. Although, the company that distributes the

application, PDF Tools AG, has extended its services by

 8

offering a free trial to validate some of the components'

functionalities, they require a client license of $266 to

$399, and a server license of $1330 to $1995 to use their

software development kits. Consequently, the amount of

overhead still exists. The user is left with prohibitive

developmental processing time even after purchasing the 3

Heights™ PDF Extract API products.

Convert Doc

Like PDFtoText©, Convert Doc by SoftInterface, Inc. is

a simple to use, yet sophisticated document conversion

utility. If there is a need to convert thousands of

documents with a variety of file types located in many

folders in a short period of time, this is the tool [20].

Convert Doc (CD) can be ran from the command line allowing

for use in batch files or can be launched from within other

programs. PDF, Text, RTF and HTML are among the formats

Convert Doc customers convert their files to and from. As

previously stated, Convert Doc is not only an executable

application, but also an ActiveX component. That is, the

file, ConvertDoc.EXE, can be ran as a stand alone

application, and, can be referenced as a component within a

separate development environment. Though CD possesses many

 9

useful attributes, we are interested in the generated

output results. CD output presents major loss of

formatting when converting PDF documents to text, which is

coincidentally another common factor that Convert Doc and

PDFtoText© share. P2X resolves this issue.

On-Demand PDF to HTML

Sommerer achieves significant improvements to the

quality of on-demand PDF to HTML conversion at

insignificant costs in terms of increased file size and

processing time [18]. This work was noteworthy in that

Sommerer shows a slightly more advanced HTML coding that

compensates for file size increases when including line

graphics and images. Unfortunately, the visual

representation of PDF files in HTML is usually very poor.

His study weaned away from simplicity in that it was more

focused on graphics and images and less on tabular data.

Although Sommerer introduces a section for text extraction,

the study offers more essence in the areas of HTML

optimization, web services, and search engines. The focus

of this research is PDF to editable format conversion

representations using an automated conversion tool to

 10

implement the conversion, and customer/user satisfaction

through the use of a GUI model.

XML and XFDL

 Alternatively, the option of outputting paper-based

tabular data and forms documents into other commonly used

document formats namely the extensible markup language, XML

can achieve transaction non-repudiation to formulate

electronic records to maintain the data’s structure and for

use on the Internet. Table 1 highlights some of the more

commonly used document formats, the organizations which

maintain those document’s standards, and their

source/format types.

Doc Type Organization Open Source Proprietary
XML W3 Consortium
XFDL W3 Consortium
TXT
HTML W3 Consortium
RTF Microsoft Corporation
DOC Microsoft Corporation
XLS Microsoft Corporation
PDF Adobe Systems Incorporated
PPT Microsoft Corporation
FPK Adobe/Accelio/JetForm Corporation
ZIP PKWARE Incorporated (Phil Katz)
ODF Organization for the Advancement of

Structured Information Standards (OASIS)

Table 1: Commonly used document format types and their organizations.

XML is heralded as a key enabling technology involving

the integration of structured data, having standard syntax

for creating and exchanging data structures into business-

 11

to-business transactions [4, 7, and 15]. The most common

use of the XML framework is web-based e-commerce. The

emergence of e-commerce for technological development is

known to enable transactions of structured data from

business-to-customer to business-to-business relationships,

effectively.

The Extensible Forms Description Language (XFDL) is an

application of XML that allows organizations to move their

paper-based forms systems to the Internet while maintaining

the original attributes of paper-based transaction records.

XFD relates to PDF in that they are both widely recognized

and provide an open, extensible structure for data exchange

[17]. They are also comparable in that PDF captures a

paper-based document while maintaining the documents

original format, while XFD provides similar functionality

for web-based electronic forms documents [1, 10, 11, 16, 17

and 19]. On the contrary, proprietary or prohibited

formats from a business standpoint are costly, inefficient,

and risky [6]. Many organizations have strict rules

governing the maintenance of transaction records that can

also restrict automation [1, 10, 11, 16, 17 and 19].

 12

CHAPTER III

METHODOLOGY

Overview

 In this chapter, we describe the methodology of the

research. We will begin by introducing the PDF

specification standards on table structure. Next we give a

scenario example of the problem and a description of the

conversion tool (P2X) architecture. Then, specific details

of the algorithms and applications used during the PDF to

plain text format (PTF) conversion process follows. A

brief overview of the reformatting process and a

formalization of the table tags that we identified using

regular expressions will be introduced. Lastly, a

description of the GUI, its images, and functionality will

be discussed in the User Interface section.

 13

PDF Specification

The PDF specification published by Adobe® Acrobat®,

available via web, provides a description of the PDF file

format and is intended for application developers preparing

to develop applications that create PDF files directly, as

well as read or modify PDF document content [13]. The PDF

specification states that a standard PDF document allows

for file attachment inclusion. Specifically, a table

document can be annotated into a PDF documents code as an

object and referenced with particular field types, similar

to HTML code. Basic layout modes are considered in the

specification to further annotate the ways and locations of

where the object can be displayed. Block, top to bottom,

and layout modes all references progression direction of

the object. Block progression directions is trivial while

layout mode considers the before and after edges of a

reference area inline progression direction and start to

end edges of the reference area. In retrospect, the PDF

spec also explains the standard structure types for

grouping, block level, paragraph-like, and table elements

[13]. The PDF spec also contributes a section to the

common existence of strongly structured vs. weakly

structured PDF documents [13]; implicating the possibility

 14

of lackluster portability from a documents original

destination, thru PDF, to another format. It would be

exceedingly difficult to compare with limited knowledge of

PDF structures and attributes for the varied PDF styles.

Comparing the documents code structures any further is

beyond the scope of this research. The next section will

further demonstrate extenuating measures that were

accomplished in continuation of our research.

P2X Architecture

 To illustrate the problem we include the following

scenario: The application is needed to convert PDF

documents which include data about Agriculture in the U.S.

The goal of the application is to integrate all information

in a computer program spreadsheet that will allow one to

easily capture the data for manipulation and to provide a

Java interface for ease of use.

 Refer to Figure 1. This figure formally exhibits the

P2X architecture. Using P2X, the application programmer

first locates the documents by importing a Java program

which provides validation and an OO view of the portable

document format (PDF) data. An imported generic conversion

 15

program provides a plain text format (PTF) view of the PDF

data. Using a graphical user interface, these programs are

combined and customized for this specific application,

providing a single unified conversion (A) from PDF to PTF.

The application design does not expose details of the

conversions and concentrates on their integration through

some high level representation. Then, a PTF to HTML

conversion program (B) is imported and customized in a

similar way. If the application requires a different GUI

display for any states agriculture or subtopic of

agriculture, the program can be further customized to

provide different behaviors.

 Particularly, it is assumed that the PTF data were

materialized. It is also possible for the PTF data to be

processed virtually, i.e. the conversions to the final

Excel output and from the original PDF objects are composed

to yield a one-step conversion program and the existence of

a PTF is unknown to the user. Type checking is used by the

system to verify the coherence of the conversions and in

particular, the coherence of their composition.

 16

P2X

 Directory of
PDF

Directory of
ASCIII Files

PDF Files

(A) P2X/PTF
wrapper

P2X translation
PDF PTF

 P2X translation

 PTF HTML HTML Files
(B)

 P2X Patterns

(middleware) P2X/PDF
wrapper

P2X/HTML
wrapper

Figure 1: P2X GUI Architecture.

The system, called P2X is designed to be the

"offspring" of a mediator/wrapper system. The current

version of P2X allows for materializing the pre-converted

PTF and the target data (Excel) representations. A

complimentary goal of this work would be to query the data

without fully materializing all converted steps of the

process. However, the focus of this work is on

conversions, with emphasis on implementing a more novel

approach than what is usually considered. Efficient

database storage and querying of the target Excel data

representations without fully materializing all conversion

steps and the management of updates of both source (PDF)

and target (Excel) data will be considered in future works.

 17

 Plainly, P2X relies on this data model to allow a rich

and structured representation of the significant PDF data.

PDF to PTF Conversion

 In continuing with the problems stated, details of the

PDF to text conversion will now be introduced. The

necessity to specify in depth and further explain the

problem of modifying the PDFtoText© output previously

discussed in the Related Work section of this study begins

with the explicit details of the PDF to PTF conversion

process.

PDFtoText Description

To combat the format/layout problems previously

mentioned, it was decided to reproduce the text file into

another usable format namely PTF. To illustrate this

process, Figure 2 shows the usage parameters associated

with the PDFtoText© command line entry.

 18

Usage Parameters and Options

pdftotext [options] <PDF-file> [<text-file>]

Figure 2: Usage parameters entered using Derek B. Noonburg's PDFtoText© app to convert PDF docs to text.

 Figure 2 indicates the usage parameters that appear

when the user types "pdftotext" on the command line prompt

of the directory where the PDFtoText© executable is

located. The first entry into PDFtoText© on the command

line indicates the applications executable file being

called to administer the conversion, as mentioned

previously. The [options] tag indicates what options the

user wishes to execute during the conversion process. Some

options chosen will be processed during conversion and will

indicate how the user would like the output file layout.

Other options are only related to the actual PDFtoText©

tool application data. Table 2 briefly depicts the limited

options that can be used at the command prompt in

conjunction with the application tool and its usage

parameters.

PDFtoText Usage Options

Options Description
-f <int> : first page to convert
-l <int> : last page to convert
-ascii7 : convert to 7-bit ASCII
-latin2 : convert to ISO Latin-2 character set
-latin5 : convert to ISO Latin-5 character set

 19

-eucjp : convert Japanese text to EUC-JP
-raw : keep strings in content stream order
-upw <string> : user password (for encrypted files)
-q : don't print any messages or error
-v : print copyright and version information
-h : print usage information
-help : print usage information

 Table 2: PDFtoText’ optional entries and their descriptions.

Next, the PDF file entry enclosed in the greater than

and less than symbols indicates the name of the PDF file to

be converted. And lastly, the text file indicates the name

of the output file to be produced. This name is chosen by

the programmer and is associated with the original PDF file

for identification purposes.

 As previously stated, once the PDF file is converted

using the PDFtoText© conversion tool, there is still much

work to be done to maintain the original document's layout

and produce the final PTF.

PDF Document Layout Issues

 The layout of the original PDF documents contains

tremendous amounts of information including headers and

footers, maps, borders, and other visual data that coexists

with the tabular data that is the focus of the research.

 20

For clarity purposes, the output file explained earlier

will be referred to as Out1. Out1 contains the tabular

data in text format. To help eliminate layout issues, a

java function was produced to sift through unwanted data.

In other words, the HEADER_DEPLETION and

NEW_HEADER_DEPLETION functions "trims" the PDF document

down to tabular/relevant data only, i.e. Out1. These

functions are further described in Appendix A. For the

remainder of this research, relevant data refers to all

data represented in tabular format on the original PDF

document. To illustrate the process, first P2X creates an

instance of Out1. The tool then creates a new directory

with the associated file name, in this case, Out1. This

introduces a proper naming convention and presents good

records management. Once the new directory is created, the

new instance is eliminated and the old file is moved to the

newly created directory for safe keeping.

 Consequently, when Out1 is properly stored, we

generate another application, CDTMod1, to produce a unique

copy of the Out1 file in HTML format. This application is

created in Visual Basic 6.0 programming language to import

.doc (MS Word) files and convert them to HTML. It was

convenient to include the CDTMod1 application since this

 21

application was produced by the author of this research

prior to this research; the application was amended to the

P2X to reduce production time and redundancy. Once the

HTML files are stored, the MS DOS command line function

XCOPY command is used within the JAVA runtime executable to

convert the HTML file to text. This new .txt file captures

the original PDF document's HTML source code; i.e. the PTF.

Examples of these processes are shown in the Reformatting

Process section of this research.

The Reformatting Process

 During the reformatting phase of the study, another

application had to be developed to perform in conjunction

with the PDF-to-Text conversion tool to edit "irrelevant"

data that resides in the converted text file. For the

scope of this thesis, this process will be referred to as

"trimming". For the duration of the thesis, the

"significant data" will also be referred to as the core.

This section includes a description of the trimming

process, a depiction of the "core" of the document, and a

sample illustration of the P2X process. Figures are also

included for visual aid.

 22

 By converting the initial PDF document to Unicode

first, the goal to capture core data can be achieved. This

is largely due to the merging of the Unicode values of the

html source code tags contained in each source code file

generated. Any modern Word document can be converted to

HTML by simply changing the extension of the file name from

.doc to an .html document. This automated process was

executed with the implementation of a Visual Basic macro

executable called CDTMod1. Although it may seem trivial,

by doing so, the document does not capture the format of

the original text. It does, however, produce an HTML file

for the purpose of obtaining the source code or a "tagged

snapshot" of the document so that the original data can be

extracted. Furthermore, with these HTML attributes, the

documents encompass the capability to be re-published

online. Nonetheless, online publication deviates from the

scope of the research and will be addressed for future

works.

 The notable tags recognized in this study, were the <p

class=MsoPlainText></p> tags. As mentioned earlier, core

data is data that is in tabular format. Although it can be

accomplished, we could not fully rely on the standard HTML

TABLE tags from the HTML source code to identify

 23

significant data typically because many PDF documents do

not use those tags to clearly identify tabular data; one of

the drawbacks of HTML. We could, alternatively, rely on

the data contained inside of the <p class=MsoPlainText></p>

tags to pinpoint the focal area of the core. Each table

was represented by a unique identifier (the merged Unicode

values) allowing us to focus on that as the primary key for

identifying the initialization of the core data. Each

character in a document has a corresponding Unicode value.

Once the beginning of the tabular data was identified, the

source code data was processed for its Unicode value and

based on when the particular open tags <p

class=MsoPlainText> and close tags </p> were reached, we

could capture the core data that was contained within those

tags character by character. We then had to "trim" away

the data that was immaterial leaving only the core data for

each record in the document to be dumped as the final

output. For precision, only one record was processed at a

time. This, consequently, verified that the information

processed was managed appropriately and maintained with

accuracy.

 24

Table Tags

 In addition to the reformatting process, it was

appropriate to include what major factors exist for us to

determine the possibility of capturing tabular data from

the PDF documents. Those factors we refer to as the table

tags. Once identified, these key factors make the

conversion of PDF tabular data into Excel spreadsheet

format attainable.

 There were several primary identifiers discovered

while finding the tabular data in the html source code

files once they were converted from PDF. After the

documents had become source code, we were able to establish

five distinguishing identifiers to direct us to the core

data. The combination of the five basic table tags

produces a regular expression. Regular expressions and

finite automata were used here to formally describe the

process of identifying core tabular data. As a result of

researching the patterns, terminal, and non-terminals

strings, the following regular expression evolved:

REGEX: <div class =.* | <p class=MsoPlainText>Table.*|<o:p> </o:p>.*|<p.*>|</p>|>

The list of patterns, terminal strings, and non-terminal strings:

 25

A: <
B: </
C: whitespace
D: class
E: <p
F: p>
G: =
H: >
I: MsoPlainText
J: Table
K: o:p
L:
M: div

An equivalent regex using the previous list exposes the following regex:

REGEX: AMCDCG|ECDGIHJ|AKHLBKH|EH|BF|H
 (1) (2) (3) (4) (5) (6)

The Finite Automata which corresponds to the previous regex follows:

 A M C D C G
S 1

 E C D G I H J
S 2

 A K H L B K H
S 3

 E H
S 4

 B F
S 5

 H
S 6

 26

 These are the main criteria of a valid document’s

structure that identifies the core data once the PDF

document has been converted to HTML. Exception and error

handling has been implemented and will continue to be

enforced. However, the critical issues that were initially

discovered with finding the core data have been resolved.

 The significant documents that had to be researched

thoroughly in order to find the tags were the PDF document,

source code (.txt) document, the output document after

final conversion (after trimming) but before conversion to

Excel, and the documents directory structure. The P2X

program code was re-modified to verify the tag's validity.

Random files were chosen and researched/reviewed during the

testing and analysis phases in order to come to these

conclusions.

 The random documents that were chosen for testing were

reviewed and compared, smaller documents were tested

thoroughly first, then larger files followed. Document

management was also implemented in the program code where

each document generated individual directories and each

page of a PDF document was stored as a separate text file,

 27

for storage, review, research, and modulation purposes.

There has been findings where extra data was included in

certain output files which also helped in further

identifying exceptions. Extra data included headers,

footers, and some pages that were not tabular data or core

data. These extra data helped in alleviating some of the

originally thought of identifiers during earlier stages of

the research. The non-tabular data will not properly store

into Excel spreadsheet cells, and in-turn, does not

properly store into the output documents that are used as

inputs into Excel. Although not intended as the focus,

those non-tabular data will be referenced as "ill formatted

data" throughout the span of the research.

Graphical User Interface

 The P2X graphical user interface is an advanced JAVA

application that allows user interaction to convert PDF

tabular data into MS Excel with the click of a button.

This section will include a step-by-step process to run the

P2X system. The P2X has two interactive buttons that the

user will push to maintain P2X functionality; IMPORT and

CLOSE. A visual of the GUI is included in Figure 9 of

 28

Appendix D to support the P2X system processes.

Ultimately, the P2X algebraic description is exposed for

clarity.

Run P2X

 This section lists the instructions to run P2X in a

step-by-step process. A detailed manual is included in

Appendix D.

Step 1: From the DOS command prompt, change the directory

to the location of the P2X executable file (Type: cd

c:\PennysResearch; refer to Figure 8).

Step 2: Compile the program by typing: javac

DirectorySetup.java

Step 3: Run the program by typing: java DirectorySetup

Step 3.1 - P2X Tool FORM1 Press Import (Refer to

Figure 10).

Step 3.2 - CDTMOD1-5-04 states the pathname of the

file to be processed. If the path is correct, user

selects ok (Refer to Figure 10).

 29

Step 3.3 - When the document is complete, the Form 1

box will flash and the Import button will disappear.

Select the Close button (Refer to Figure 11).

Step 4: Repeat Steps 3.1 through 3.3 for every document in

the directory tree.

Step 5: Open the PennysResearch directory to view the

Progress Log and verify the correct documents were

processed.

Step 6: Open the USCENSUSBUREAU directory to review all

processed documents.

P2X GUI Description

GUI: = STEPS 1+2+3+4 or GUI: = VL +CD+JC+RJ

Figure 3: P2X GUI Description.

 Figure 3 shows an algorithmic description of the P2X

graphical user interface. In order to achieve the P2X GUI,

the user must follow a sequence of commands:

 30

1: Validate File Storage (VL)
2: Change Directory to P2X executable location (CD)
3: Compile the P2X application - javac (JC)
4: Run the P2X application - java (RJ)

 31

CHAPTER IV

CONCLUSION

Discussion of Conversion

 In this thesis, a novel approach to improve the

process of converting PDF documents to a more editable form

has been presented and evaluated. To reduce issues of

conversion formatting, processing time, and costliness, we

have implemented a working conversion tool to show the

conversion of PDF tabular data to MS Excel spreadsheets can

be simple by use of a graphical user interface with user

interaction. This system was produced using the high-level

programming languages Java and Visual Basic 6.0. These

implementations are presented in Appendices A, B, and C. A

user's manual has been incorporated to validate the use of

the system and reduce user error. The manual is

conveniently located in Appendix D. Appendix D includes

more visuals of the P2X tool to further assist the user

with the problems presented throughout this research.

 32

Although P2X proved to be a successful conversion

approach, it was discovered at the end of the final testing

phase that the final output of the text data stored in the

Excel spreadsheet file will need minimal manual editing by

the user to dispose of unwanted non-breaking space and to

suit the individual user’s storage preferences. These

preferences are expected to vary on a case-by-case basis.

Future Work

Future works has been presented to further demonstrate

the usefulness of this thesis towards future technological

advancements in the data conversion discipline.

Documents do not have to be snapshots of a point in

time. By pulling together technologies such as XML-based

authoring and publishing tools and connecting to live data,

documents can become dynamic and interactive — alive in a

sense. Rather than creating and then updating the same

document with different versions, a document can really

begin to work by pulling live data so that it always stays

up-to-date.

 33

Structured authoring already provides the benefit of

writing once and publishing multiple times for a

deliverable like software help manuals. By combining this

with the power of live data, more complex deliverables can

be provided like standard operating procedures and complex

technical manuals for capital equipment and regulated

processes where information must be disseminated with the

context and the persistence of a document — but where the

cost of static information is unacceptably high. As

stated, these documents are subject to ongoing change, as

complex arrays of data within sources of record are

updated. So with live, interactive documents, the risk of

rework or redesign costs, launch delays, non-compliance, or

most importantly, putting inaccurate or out-of-date

information in the hands of the end user can be avoided.

As stated earlier, storing data into a relational database

such as MS Access can further enhance the P2X tool by

adding the user capability of data querying. Updating

Visual Basic 6.0 to Visual Basic.NET, database modeling and

SaaS (Software as a Service) deployment model are also

future motivations.

 34

BIBLIOGRAPHIC REFERENCES

1. Chapman, N. and Chapman, J. Digital multimedia, second
edition. John Wiley & Sons, Ltd., San Francisco, 2004.

2. Chellapilla, K., Simard, P. and Radoslav, N. Fast
optical character recognition through glyph hashing for
document conversion. in 8th International Conference on
Document Analysis and Recognition, (Seoul, S. Korea, 2005),
IEEE Computer Society, 829-834.

3. Cohene, T. and Khouri, A. How to export a table from a
PDF file into an Excel spreadsheet. Electronic Data
Resources Services, Feb 2002. Retrieved Dec 16, 2002, from
McGill University:
http://www.mcgill.ca/edrs/services/information/help-
tools/howto/pdf_to_other/.

4. Harold, E.R. XML bible, second edition. John Wiley &
Sons, Ltd., San Francisco, 2001.

5. Irwin, K. and Swenson, K. D. Workflow technology:
tradeoffs for business process reengineering. in
proceedings of the Conference on Organizational Computing
Systems (Milpitas, CA 1995), 22-29.

6. Khare, R. and Rifkin, A. Capturing the state of
distributed systems with XML. World Wide Web Journal, 2
(4). 207-217. Retrieved April 6, 2007, from O’Reilly Media,
Incorporated: http://www.xml.com/pub/a/w3j/s3.khare.html.

7. Knox, R. XML: What is it and Why Should Users Care?
Harvard School of Business Press, Boston, 2006.

8. Kobayashi, M. and Takeda K. Information retrieval on the
web. ACM Computing Surveys, 32 (2). 144-173.

9. Margulies, B. Big dots, little dots, and circled dots:
How Unicode can help (and hurt) the process of converting
documents to information. Retrieved November 21, 2006, from
Basis Technology Corporation, Cambridge, Massachusetts:

35

http://www.mcgill.ca/edrs/services/information/help-tools/howto/pdf_to_other/
http://www.mcgill.ca/edrs/services/information/help-tools/howto/pdf_to_other/
http://www.xml.com/pub/a/w3j/s3.khare.html

http://www.basistech.com/knowledge-
center/unicode/big_dots_little_dots.pdf.
10. Microsoft Corporation. Microsoft computer dictionary,
fifth edition. Microsoft Press, Redmond, 2002.

11. Microsoft Corporation. Microsoft internet & networking
dictionary. Microsoft Press, Redmond, 2003.

12. Noonburg, D.B. PDF-to-Text, Sanface, Nov 1998.
Retrieved August 4, 2003, from AimNet.com:
http://www.aimnet.com/~derekn/xpdf/.

13. PDF Reference, Sixth Edition, 1993. Retrieved November
9, 2006, from Adobe Systems Inc.:
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-
7.pdf.

14. PDF Tools AG: Company Background, 2001. from Premium
PDF Technology http://www.pdf-tools.com/asp/about-
us.asp?lang=en.

15. Phillips, L.A. Special edition using XML. Que
Publishing, Indianapolis, 2000.

16. Research Opportunities at the U.S. Census Bureau, 2007.
Retrieved January 8, 2008, from U.S. Census Bureau, The
ASA/NSF/Census Bureau Research Fellow Program:
http://www.census.gov/srd/research.pdf.

17. Sethi, I.K., Khosla, R., and Damiani, E. Intelligent
multimedia multi-agent systems: A human-centered approach.
Kluwer Academic Publishers, Norwell, 2000.

18. Sommerer, R. Presentable document format: Improved on-
demand PDF to HTML conversion, Microsoft Research Technical
Reports 2004, 2004. Retrieved March 14, 2007, from
Microsoft Research Publications:
http://research.microsoft.com/research/pubs/view.aspx?tr_id
=824.

19. Tozer, G.V. The role of metadata on the internet
metadata management for information control and business
success. Artech House Publications, Boston, 1999.

20. User’s Guide for Convert Doc vers. 3.X, 2006. Retrieved
August 13, 2006, from SoftInterface, Inc.:

36

http://www.basistech.com/knowledge-center/unicode/big_dots_little_dots.pdf
http://www.basistech.com/knowledge-center/unicode/big_dots_little_dots.pdf
http://www.aimnet.com/~derekn/xpdf/
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.pdf-tools.com/asp/about-us.asp?lang=en
http://www.pdf-tools.com/asp/about-us.asp?lang=en
http://www.census.gov/srd/research.pdf
http://research.microsoft.com/research/pubs/view.aspx?tr_id=824
http://research.microsoft.com/research/pubs/view.aspx?tr_id=824

http://www.convert-files.com/SII/Convert-
DOC/English/PDF/ConvertDoc.pdf.

21. Utley, B. The digital revolution - The impact of Herman
Hollerith, Technology Evangelist Digest, 12, Dec 2005.
Retrieved May 24, 2006:
http://www.technologyevangelist.com/2005/12/the_digital_rev
oluti.html.

37

http://www.convert-files.com/SII/Convert-DOC/English/PDF/ConvertDoc.pdf
http://www.convert-files.com/SII/Convert-DOC/English/PDF/ConvertDoc.pdf
http://www.technologyevangelist.com/2005/12/the_digital_revoluti.html
http://www.technologyevangelist.com/2005/12/the_digital_revoluti.html

CHAPTER VI

APPENDICES

Appendix A

P2X Program Code

import java.io.*;
import java.awt.*;
import javax.swing.*;
import java.lang.String;
import java.lang.Object;
import java.util.Scanner;
import java.util.Vector;
/**
 Program Author: LaToyia DeVonne Penny
 Date of Completion: June 17, 2008
 Program Description:
 This program is an application formed in conjunction with the
thesis created in partial completion of the Master of Science at the
Oklahoma State University in Stillwater, Oklahoma. The thesis is
entitled "Implementation & Analogy of the DESIGN & IMPLEMENTATION OF A
PDF TO EXCEL CONVERSION TOOL (P2X) By LaToyia DeVonne Penny. The
program produces a file management system for the United States Census
Bureau PDF files and formally converts them to Microsoft Excel
Applications in Spreadsheet format. The program was formulated in
several modules that were merged to create the P2X tool. Module 1
consists of the Directory Setup class and functions. Module 2 entails
the parsing process. This section of the program takes the PDF files
from the generated directory from Module 1 using the VBSETUP and
GetUnival classes, their functions, and the CDTMOD1 Visual Basic
application to parse the files based on specific characters in the HTML
source code of each document. These characters identify the location
of the "significant" data that is the focus of this study. The parsed
documents are then transformed into output text files that maintain the
original PDF document format. Module 3 consists of the
ExcelConvert2008 Visual Basic application the implementation process of
taking the converted documents as input into the Microsoft Excel
application to finish processing the parsed text files producing the MS
Excel final products.

Program Function List:
 main
 RUN

38

Dir_List
 PARSE_OP
 HEADER_DEPLETION
 NEW_PG_HEADER_DEPLETION
 N_CRITICAL_OR_CRITICAL

Program Class List:
 P2X
 VBSETUP
 GetUniVal

**/

class P2X extends JFrame{

 PrintWriter pro_tracker;
 PrintWriter current;
 File [] hold;
 boolean success, exists;
 String made_dir="";
 VBSETUP vbsu;
 GetUniVal guv = new GetUniVal();

/*Create a GUI with a Windows Environment look and feel*/
P2X() throws IOException {

try {

//SET THE LOOK AND FEEL OF THE FRAME TO THE SYSTEMS SETTINGS

UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");
SwingUtilities.updateComponentTreeUI(this);

} catch(Exception e) {

 System.out.println("ERROR 1****");
 System.out.println("This doesn't work due to: " +e.getMessage()+"!!");
 e.printStackTrace();

}//end try catch

}//end P2X constructor

/*Main method to call the function to initialize the P2X process*/
public static void main (String[] args) throws IOException
{
 P2X frame = new P2X();
 Process p;

 //Size the frame.
 frame.pack();

 //Centers frame onscreen
 frame.setLocationRelativeTo(null);

39

 //Show it.
 frame.setVisible(false);

 frame.RUN(); //Run the P2X program

 frame.dispose();

 try{

/**Started Excel Module June 14, 2008***Created ExcelConvert2008 VB6
App to convert final txt to Excel**********/

 /*Run VB*/
 p = Runtime.getRuntime().exec("c:\\Program Files\\Microsoft

 Visual Studio\\VB98\\VB6.exe /run
 c:\\PennysResearch\\ExcelConvert2008\\ExcelConvert2008.exe");

 p.waitFor();

 } catch (Exception e) {

 System.out.println(e.getMessage());
 e.printStackTrace();

 }//end try catch

}//end main method

/*Function to initialize a directory and file listing of the current
 system*/
public void RUN() throws IOException
{
 File dir = new File("c://PennysResearch/USCENSUSBUREAU");
 File [] dir_list = dir.listFiles();
 int num_files;

 pro_tracker = new PrintWriter(new BufferedWriter(new
 FileWriter("ProgressLog.dat")), true);

 current = new PrintWriter(new BufferedWriter(new
 FileWriter("c://PennysResearch/currentDir.dat")),
 true);

 if(dir_list == null)
 System.out.println("No Files Exist in "+ dir +"!");
 else
 {

 if(dir_list != null)
 hold = Dir_List(dir_list); //Produce a directory listing

40

 }//end if else

}//end RUN method

/*Function that stores the list of files and directories*/
/*and sends them to VBSETUP for further processing*/
public File[] Dir_List(File[] d_list) throws IOException
{
 int i=0, k; //Initialize the element identifier of the
 //directory list
 String filename="";
 String dir_index ="";

 try{

 if(d_list == null) {
 System.out.println("ERROR2****: Cannot get a list of files.");
 } else {

//Traverse through d_list's files and directories
for(i=0; i<d_list.length; i++) {

 if((d_list[i].isDirectory()))
 {
 File dir1 = new File(d_list[i].toString());
 File [] d_list_new = dir1.listFiles();
 hold = Dir_List(d_list_new);
 }
 else
 {
 if((d_list[i].isFile()) &&
 ((d_list[i].getAbsolutePath()).endsWith(".pdf")))
 {

// Initiate directory and exists variables;
//all ancestor directories must exist
made_dir = (d_list[i].getAbsolutePath()).substring(0,
((d_list[i].getAbsolutePath()).length() - 4));

exists = (new File(made_dir)).exists();

 //If the directory does not exist, then create
 //one and process it
 if (!exists)
 {
 //send absolute path name to output file
 current.println(made_dir);
 success = (new File(made_dir)).mkdir();
 vbsu = new VBSETUP(made_dir);

/**

 * GETUNIVAL.JAVA BEGINS...WILL BEGIN *
 * PROCESS TO ACQUIRE THE UNICODE *

41

 * VALUE OF EACH CHARACTER GENERATED FROM*
 * EACH HTML SOURCE CODE DOCUMENT *
 * PRODUCED BY LOADING THE DIRECTORY *
 * SETUP MODULE. THE PROGRAM WILL THEN *
 * GENERATE A TEXT FILE THAT WILL BE AN *
 * EXACT SNAPSHOT OF THE ORIGINAL *
 * PORTABLE DOCUMENT FORMAT (PDF) FILE *
 * AND CONCLUDE BY GENERATING THE EXCEL *
 * DOCUMENT OF THAT ORIGINAL PDF FILE. *

* JULY 12, 2006 by LaToyia D. Penny *
***************************************/

 k= made_dir.lastIndexOf("\\");
 filename = made_dir.substring(k+1);

 guv.PARSE_OP(made_dir, filename);

 /*****GETUNIVAL PROCESS COMPLETE*****/

 }//end if-else statement

 }//end if-else statement

 }//end if-else statement

//Process progress information to the progress log
//output file

 if(d_list[i] != null)
 pro_tracker.println(d_list[i] +" Process
 Completed...");
 else
 JOptionPane.showMessageDialog(null, d_list[i]+"
 is empty!");

 }//end for loop

 }//end else

 } catch (Exception e) {

 System.out.println("ERROR 2****");

System.out.println("This doesn't work due to: "
+e.getMessage()+"!!");

 e.printStackTrace();

 }//end try catch

 return hold; //return last visited directory

 }//end method Dir_List

}//end class P2X :)

42

/*Class to begin conversion processes and calls the Visual Basic Application
to convert files into various file formats to maintain original document
layout*/
class VBSETUP extends JFrame
{
 File file, dir;
 boolean success;
 Process p;

 /*VBSETUP constructor - utilizes the current directory from the
 directory list*/
 VBSETUP (String curr_dir) throws IOException{

 file = new File(curr_dir+".txt");
 success = file.createNewFile();

 /*Begins process to open the Visual Basic application*/
 String [] commandLine = {"pdftotext", "-layout", curr_dir+".pdf",
 curr_dir+".doc"};

 try {

 p = Runtime.getRuntime().exec(commandLine); //Run PDFTOTEXT
 p.waitFor();

 /************MS WORD DOCUMENT MANAGEMENT***********************/

 // Create an instance of the MS Word file
 file = new File(curr_dir+".doc");

 // New destination directory
 dir = new File(curr_dir);

 // Move the word file to the new directory
 success = file.renameTo(new File(dir, file.getName()));

 // Delete the old MS Word file
 success = (new File(curr_dir+".doc")).delete();

 /**/

 /*Run VB*/
 p = Runtime.getRuntime().exec("c:\\PennysResearch\\CDTMOD1-5-04.exe
 /run");
 p.waitFor();

 String [] commandLine2 = {"xcopy", curr_dir+".htm",
 curr_dir+".txt", "/y"};

 p = Runtime.getRuntime().exec(commandLine2); //Create Source File

43

 p.waitFor();

/************HTML DOCUMENT MANAGEMENT***************************/

// Create an instance of the hypertext modeling language file
file = new File(curr_dir+".htm");

// New destination directory
dir = new File(curr_dir);

// Move the HTM file to the new directory
success = file.renameTo(new File(dir, file.getName()));

// Delete the old HTM file
success = (new File(curr_dir+".htm")).delete();

/***/

/************HTML SOURCE CODE TEXT DOCUMENT MANAGEMENT**********/

// Create an instance of the TEXT file
file = new File(curr_dir+".txt");

// New destination directory
dir = new File(curr_dir);

// Move the TEXT file to the new directory
success = file.renameTo(new File(dir, file.getName()));

// Delete the old TEXT file
success = (new File(curr_dir+".txt")).delete();

/***/

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
SwingUtilities.updateComponentTreeUI(this);

} catch(Exception e) {

 System.out.println("ERROR 4****");
 System.out.println("This doesn't work due to: "
 +e.getMessage()+"!!");
 e.printStackTrace();

}//end try catch

} //end VBSETUP constructor

}//end class VBSETUP :)

44

/*Class that completes the conversion process by getting the */
/*unicode value of each character to determine "significant*/
/*data" locations and maintain original document formatting*/
class GetUniVal //extends JFrame
{

 /*Function to perform parse operations of each record of each
 document*/
 /*One record is equivalent to one row of significant data*/
 public void PARSE_OP(String curr_dir, String filename) throws
 IOException
 {

 char upperCaseChar, c;
 int i, count, dummy_int, unicodeValue, pg=1, new_page=0;
 String dummy_str="", final_record;
 String store_tag=""; /* Tag storage bin initiated */
 Integer ob_unicodeValue;

 /* Unicode storage bin initiated */
 /*Object allows anything to be stored in the list*/
 Vector<Object> v_uniVal = new Vector<Object>();

 // Create BufferedReader class instance
 BufferedReader FileInput = new BufferedReader(new
 FileReader(curr_dir+"\\"+filename+".txt"));

 BufferedReader dummy = new BufferedReader(new
 FileReader(curr_dir+"\\"+filename+".txt"));

 // Create BufferedWriter class instance
 PrintWriter output = new PrintWriter(new BufferedWriter(new
 FileWriter(curr_dir+"\\"+"o"+filename+".txt")), true);

 dummy_str = dummy.readLine();

 try {

 while((dummy_str != null) && (dummy_str.indexOf("<div class=")
 == -1))
 {
 dummy_str = dummy.readLine();
 FileInput.readLine();

 }//end while loop

 dummy_str = HEADER_DEPLETION(FileInput, dummy, dummy_str);
 unicodeValue = FileInput.read(); //Reads single character
 //from file and returns an
 //integer value
 dummy_int = dummy.read();
 c = (char) unicodeValue; //Casts the integer value

45

 //into a character
 store_tag += c;
 ob_unicodeValue = new Integer(unicodeValue);
 v_uniVal.add(ob_unicodeValue);

 count=1; /* Character Counter initialized to 1 */

 while(dummy_int != -1)
 {
 /* Scan HTML Document and extract useful data while
 generating a storage bin */
 while((unicodeValue != -1) && (!store_tag.endsWith("</p>")))
 {

 /* Decrement counter if the character read is a line feed */
 if((unicodeValue == 10) && (count == 1))
 {
 count--;
 store_tag = store_tag.substring(0, (store_tag.length()
 - 1));
 v_uniVal.remove((v_uniVal.size() - 1));

 }//end if

 unicodeValue = FileInput.read(); //Reads single
 //character from file
 //and returns an
 //integer value
 dummy_int = dummy.read();
 c = (char) unicodeValue; //Casts the integer value
 //into a character
 store_tag += c; //Character Storage

 /*Unicodevalue Object*/
 ob_unicodeValue = new Integer(unicodeValue);
 v_uniVal.add(ob_unicodeValue);

 /* Continue reading if reached the end of line (eol) but
 not the end of paragraph (eop) */
 if(unicodeValue == 13)
 {
 store_tag = store_tag.substring(0, (store_tag.length()
 - 1));
 v_uniVal.remove((v_uniVal.size() - 1));

 unicodeValue = FileInput.read();
 dummy_int = dummy.read();
 c = (char) unicodeValue;
 store_tag += c;
 ob_unicodeValue = new Integer(unicodeValue);
 v_uniVal.add(ob_unicodeValue);

 }//end if

46

 /* Increment the counter unless the unicode is a carriage
 return or line feed */
 if((unicodeValue != 13) && (unicodeValue != 10))
 count++; // Tracking Device
 else
 {
 store_tag = store_tag.substring(0, (store_tag.length()
 - 1));
 v_uniVal.remove((v_uniVal.size() - 1));

 }//end if-else statement

 }//end while

/**

 FUNCTION N_CRITICAL_OR_CRITICAL PASSES OR GRABS LOADED DATA
 **/

final_record = N_CRITICAL_OR_CRITICAL(v_uniVal, store_tag);

/* Create a new output file for each new page encountered */
if((unicodeValue != -1) && (final_record != null) &&
((final_record.indexOf("CORE") > -1) || (final_record.indexOf("COREBUSINESS")
> -1) || (final_record.indexOf("U.S. Census Bureau") > -1) ||
(final_record.indexOf("CENSUS ") > -1) || (final_record.indexOf("Census
Bureau") > -1)))
{

 pg++; //Increment the page counter

 /* Create a new instance of the output writer (Create a New Output
 File) */
 output = new PrintWriter(new BufferedWriter(new
 Filewriter(curr_dir+"\\"+"o"+pg+filename+".txt")),
 true);

 FileInput.readLine();
 dummy_str = dummy.readLine();

 if(dummy_str != null)
 {

 /* A NEW PAGE of the Document has been reached */
 NEW_PG_HEADER_DEPLETION(FileInput, dummy, dummy_str);

 final_record = ""; //Re-Inititalize the final_record
 //storage bin

 new_page = 1; //Flag: Tells the application
 //there is a new page encountered
 }//end inner if statement

47

}//end if statement

if((unicodeValue != -1) && (dummy_str != null) && (final_record != null) &&
((final_record.indexOf("CORE") == -1) ||
(final_record.indexOf("COREBUSINESS") == -1) || (final_record.indexOf("U.S.
Census Bureau") > -1) || (final_record.indexOf("CENSUS") > -1) ||
(final_record.indexOf("Census Bureau") > -1)))
{

 if(final_record.startsWith(" "))
 {

 final_record = ""; // : Non-Breaking Space
 output.println(final_record); //Print Critical Data to
 //Output File

 }
 else
 if((new_page != 1) && (!final_record.startsWith(" ")))
 output.println(final_record);

}//end if statement

new_page=0; //Reset new page flag
count=1; //Reset counter
store_tag=""; //Reset tag storage
v_uniVal.removeAllElements(); //Reset uniValue storage

unicodeValue = FileInput.read(); //Input
dummy_int = dummy.read();
c = (char) unicodeValue;
store_tag += c;
ob_unicodeValue = new Integer(unicodeValue);
v_uniVal.add(ob_unicodeValue);

}//end outer while loop

}catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();

}//end try catch statement

}//end method PARSE_OP

/*Function that removes header and footer data from the first page of
 each document*/

48

public String HEADER_DEPLETION(BufferedReader FileInput, BufferedReader
dummy, String dummy_str) throws IOException
{

 /* Cut the Header Data */
 while((dummy_str != null) && (dummy_str.indexOf("<p
 class=MsoPlainText>Table ") == -1))
 {
 dummy_str = dummy.readLine();

 if((dummy_str != null) && (dummy_str.indexOf("<p
 class=MsoPlainText>Table ") >= 0))

 break;
 else
 FileInput.readLine();

 }//end while

 FileInput.readLine();

 /* Search File until significant data found! */
 while((dummy_str != null) &&
 (dummy_str.indexOf("<o:p> </o:p>") == -1))
 {
 dummy_str = dummy.readLine();
 if((dummy_str != null) &&
 (dummy_str.indexOf("<o:p> </o:p>") >= 0))
 break;
 else
 FileInput.readLine();

 }//end while

 FileInput.readLine();

 do /* BEGINNING OF DATA */
 {
 dummy_str = dummy.readLine();

 if((dummy_str != null) && (dummy_str.startsWith("<p")))
 break;
 else
 FileInput.readLine();

 }while((dummy_str != null) && (!dummy_str.startsWith("<p")));

 FileInput.readLine(); /* MY FINAL BUG FIX!!!!!!!!! */

 return dummy_str;

}//end HEADER_DEPLETION method

/*Function that removes header and footer data from additional pages of
 each document*/

49

public void NEW_PG_HEADER_DEPLETION(BufferedReader FileInput,
 BufferedReader dummy, String
 dummy_str) throws IOException
{

 while((dummy_str != null) && (dummy_str.indexOf("page-break") == -
 1))
 {
 dummy_str = dummy.readLine();

 if((dummy_str != null) && (dummy_str.indexOf("page-break") >=
 0))
 break;
 else
 FileInput.readLine();

 }//end while loop

 FileInput.readLine();

 dummy_str = HEADER_DEPLETION(FileInput, dummy, dummy_str);

}//end NEW_PG_HEADER_DEPLETION method

/*Function Identifies critical and non-critical data*/
public String N_CRITICAL_OR_CRITICAL(Vector v_uni, String s_tag)
{

 int i=0, v_uni_intVal; //Declares and initializes variables
 String v_u="", fin_s_tag="";

 if((i <= v_uni.size()-1) && (i >= 0))
 {
 v_u = (v_uni.elementAt(i)).toString();
 v_uni_intVal = Integer.parseInt(v_u);

 while(i < v_uni.size())
 {
 switch(v_uni_intVal)
 {

 /****PASS: NON-CRITICAL DATA****/
 case 60: while((v_uni_intVal != 62) && (i < v_uni.size()))
 {
 i++;
 if(i <= v_uni.size()-1)
 {
 v_u = (v_uni.elementAt(i)).toString();
 v_uni_intVal = Integer.parseInt(v_u);

 }//end if

 }//end while loop
 break;

50

 /****GRAB: CRITICAL DATA****/
 case 62: i++;
 if(i >= v_uni.size())
 v_uni_intVal = 999999;
 else
 {
 v_u = (v_uni.elementAt(i)).toString();
 v_uni_intVal = Integer.parseInt(v_u);

 }//end else

 while((v_uni_intVal != 60) && (i < v_uni.size()))
 {
 if(i+1 < s_tag.length())
 fin_s_tag += s_tag.substring(i, i+1);

 else
 fin_s_tag += s_tag.substring(i);

 i++;

 if(i >= v_uni.size())
 v_uni_intVal = 999999;
 else
 {
 v_u = (v_uni.elementAt(i)).toString();
 v_uni_intVal = Integer.parseInt(v_u);

 }//end else

 }//end while

/******DELIMETER INSERTION - July 11, 2006 -- Revised June 16, 2008***

 if((!fin_s_tag.equals("")) && (!fin_s_tag.endsWith("|")))
 fin_s_tag = fin_s_tag + "|";

**/

 break;

 default:

 if((i >= 0) && (i < v_uni.size()))
 {
 i++;

 if(i < v_uni.size())
 {
 v_u = (v_uni.elementAt(i)).toString();
 v_uni_intVal = Integer.parseInt(v_u);

51

 }//end inner if statement

 }//end outer if statement

 break;

 }//end switch

 }//end while

 }//end outer if

 return fin_s_tag;

 }//end method N_CRITICAL_OR_CRITICAL

}//end class GetUniVal :)

52

Appendix B

CDTMOD1-5-04 (VB6.0)

Option Explicit

Dim b_Excel_Closed As Boolean

Private Sub cmd_Close_Click()

 Unload Me

Exit_cmd_Close_Click:
 Exit Sub

 Resume Exit_cmd_Close_Click

End Sub

'PROCEDURE: cmd_Import_Click()
'DESCRIPTION: This method is used as the driver for
importing Word
' files into HTML and formatting according to
requirements.
'PARAMETERS: None
'RETURNS: None
Private Sub cmd_Import_Click()
On Error GoTo Err_cmd_Import_Click

 'declare all variables
 Dim objWord
 Dim oDoc

 Dim fsoStream As TextStream
 Dim objFso
 Dim TextLine$, Filename$
 Dim FileHandle As Integer
 Dim colFiles
 Dim curFile
 Dim curFileName
 Dim folderToScan As String
 Dim folderToSave As String
 Dim folderToScanExists
 Dim folderToSaveExists

53

 Dim objFolderToScan

 ''''''''''''''''''
'Location to find the next file to convert to HTML
Filename$ = "C:\PennysResearch\currentDir.dat"

 ' Test if the file exists
 If Dir(Filename$) = "" Then Exit Sub

 FileHandle = FreeFile ' This is safer than assigning a
number

 Open Filename$ For Input As #FileHandle

 Do While Not EOF(FileHandle) ' Loop until end of
file
 Line Input #FileHandle, TextLine$ ' Read line into
variable
 Loop

 MsgBox TextLine$
 Close #FileHandle

 'set some of the variables
 folderToScanExists = False
 folderToSaveExists = False
 Const wdSaveFormat = 8 'for Filtered
HTML output

 '**
 'change the following to fit your system
 folderToScan = TextLine$
 folderToSave = TextLine$
 '**

 'Use FSO to see if the folders to read from
 'and write to both exist.
 'If they do, then set both flags to TRUE,
 'and proceed with the function
 'Otherwise, send out an error message
 Set objFso = CreateObject("Scripting.FileSystemObject")
 If objFso.FolderExists(folderToScan) Then
 folderToScanExists = True
 Else
 MsgBox "Folder to scan from does not exist!", 48, "File
System Error"
 End If

54

 If objFso.FolderExists(folderToSave) Then
 folderToSaveExists = True
 Else
 MsgBox "Folder to copy to does not exist!", 48, "File
System Error"
 End If
 If (folderToScanExists And folderToSaveExists) Then
 'get your folder to scan
 Set objFolderToScan = objFso.GetFolder(folderToScan)
 'put al the files under it in a collection
 Set colFiles = objFolderToScan.Files
 'create an instance of Word
 Set objWord = CreateObject("Word.Application")

 'Check to see if the Word file to read from exitsts
 'If it does exist and is a Word document, proceed with
the function
 'Otherwise, send out an error message

 If objWord Is Nothing Then
 MsgBox "Couldn't start Word.", 48, "Application Start
Error"
 Else
 'for each file
 For Each curFile In colFiles
 'only if the file is of type DOC
 If (objFso.GetExtensionName(curFile) = "doc") Then
 'get the filename without extension
 curFileName = curFile.Name
 curFileName = Mid(curFileName, 1,
InStrRev(curFileName, ".") - 1)
 'open the file inside Word
 objWord.Documents.Open
objFso.GetAbsolutePathName(curFile)
 'do all this in the background
 objWord.Visible = False

 'create a new document and save it as Filtered
HTML
 Set oDoc = objWord.ActiveDocument
 'oDoc.SaveAs folderToSave & curFileName & ".htm",
wdSaveFormat
 oDoc.SaveAs folderToSave & ".htm", wdSaveFormat
 oDoc.Close
 Set oDoc = Nothing
 End If
 Next

55

 End If
 'close Word
 objWord.Quit
 'set all objects and collections to nothing
 Set objWord = Nothing
 Set colFiles = Nothing
 Set objFolderToScan = Nothing
 End If

 Set objFso = Nothing

'Do the Import in the background
 cmd_Import.Visible = False
 cmd_Close.SetFocus
 Screen.MousePointer = vbDefault

Exit_cmd_Import_Click:
 Exit Sub

End Sub

56

Appendix C

ExcelConvert (VB6.0)

Option Explicit

Dim b_Excel_Closed As Boolean
Dim obj_Excel As Excel.Application
Dim xl_Workbook As Excel.Workbook

Private Sub cmd_Close_Click()

 Unload Me

Exit_cmd_Close_Click:
 Exit Sub

 Resume Exit_cmd_Close_Click

End Sub

'PROCEDURE: cmd_Import_Click()
'DESCRIPTION: This method is used as the driver for importing comma
delimited text
' files into Excel and formatting according to requirements.
'PARAMETERS: None
'RETURNS: None
Private Sub cmd_Import_Click()
On Error GoTo Err_cmd_Import_Click

' **
' EXCEL
' **
 Dim i As Integer
 Dim Y As Integer
 Dim Z As Integer
 Dim FileNames$()
 Dim s_Path As String
 Dim s_File_Name As String
 Dim List1 As ListBox

 Const OFN_ALLOWMULTISELECT = &H200& 'To allow selection of
more than one file in the Common Dialog Control
 Set obj_Excel = CreateObject("Excel.Application")
 b_Excel_Closed = False
 Set xl_Workbook = obj_Excel.Workbooks.Add
 xl_Workbook.Activate

 CommonDialog1.Filename = "" 'Clear the file name
 CommonDialog1.DefaultExt = "txt"

56

 'Limit selection to Text files
 CommonDialog1.Filter = "Text Files (*.txt)|*.txt"

 'Allow selection of more than one file
 CommonDialog1.flags = OFN_ALLOWMULTISELECT
 CommonDialog1.MaxFileSize = 2048 'Set buffer to maximum string size
 CommonDialog1.Action = 1 'Standard Open file dialog
CommonDialog1.ShowSave

 If CommonDialog1.Filename <> "" Then

 'Store the file names selected by the user in the Filename
property as one long string
 'Each file name is separated by a space (32) character
 CommonDialog1.Filename = CommonDialog1.Filename & Chr(32)

 Screen.MousePointer = vbHourglass

 'Index the individual file names into FileNames$()
 Z = 1
 For i = 1 To Len(CommonDialog1.Filename)
 i = InStr(Z, CommonDialog1.Filename, Chr(32))
 If i = 0 Then Exit For
 ReDim Preserve FileNames(Y)
 FileNames(Y) = Mid(CommonDialog1.Filename, Z, i - Z)
 Z = i + 1
 Y = Y + 1
 Next

 'If there are more than 3 files chosen by the user, we must add
more worksheets to the workbook
 If Y > 4 Then
 For i = 4 To Y - 1
 xl_Workbook.Worksheets.Add.Move
After:=Worksheets(Worksheets.Count)
 Next i
 Else
 End If

 'Extract out the Path which is only stored in FileNames(0)
 s_Path = Left$(FileNames(0), InStrRev(FileNames(0), "\"))

 'Import the file(s) and then add the file name to the list
 'If only one file is chosen, the Path is not passed to the
import method since the path exists
 'in Filenames(0)
 'If multiple files are chosen, the Path must be passed to the
import method
 If Y = 1 Then
 Import_File "", FileNames(0), xl_Workbook, Y
 List1.AddItem Mid(FileNames(0), (InStrRev(FileNames(0),
"\") + 1))
 Else

57

 For i = 1 To Y - 1
 Import_File s_Path, FileNames(i), xl_Workbook, i
'Local method
 List1.AddItem FileNames(i)
 s_File_Name = FileNames(i)
 Next
 End If
 List1.AddItem ".....Import Complete"
 Label1.Caption = "Files Imported into ExcelComplete"
 Me.Refresh

 Else
 End If

 xl_Workbook.Application.Visible = True
 xl_Workbook.Application.WindowState = xlMinimized

 'If Excel is still open, close it
 If b_Excel_Closed = False Then
 Set obj_Excel = Nothing
 Set xl_Workbook = Nothing
 b_Excel_Closed = True
 Else
 End If

 cmd_Import.Visible = False
 cmd_Close.SetFocus
 Screen.MousePointer = vbDefault

Exit_cmd_Import_Click:
 Exit Sub

Err_cmd_Import_Click:
' List1.AddItem ".....Error in Import." '
' List1.AddItem ".....See the error log C:\Text_Import_Errors.txt" '
 cmd_Import.Visible = False
 Screen.MousePointer = vbDefault
 cmd_Close.SetFocus
 If b_Excel_Closed = False Then
 obj_Excel.Quit
 Set obj_Excel = Nothing
 Set xl_Workbook = Nothing
 b_Excel_Closed = True
 Else
 End If

 Resume Exit_cmd_Import_Click

 'Set the focus on cell A1
 Range("A1").Select

End Sub
'PROCEDURE: Import_File()
'DESCRIPTION: This method imports comma delimited text files into
Excel. Each individual file

58

' is imported to an individual worksheet within the
workbook and formatted accordingly.
'PARAMETERS: 1) Path - the location of the files
' 2) FileName - The name of the file to be imported
' 3) xl_Workbook - Reference to the Excel Workbook
where the file is being imported into
' 4) SheetCount - The sheet number in the
workbook, to import the information to
'RETURNS: None
Private Sub Import_File(ByRef Path As String, ByRef Filename As String,
ByRef xl_Workbook As Workbook, ByRef SheetCount As Integer)

 Dim s_File_Name As String
 Dim s_Path As String
 Dim s_Title As String
 Dim s_Last_Row As String

 s_Path = Path
 s_File_Name = Filename

 'Select the sheet corresponding to the SheetCount
 Sheets("Sheet" & SheetCount).Select
 Sheets("Sheet" & SheetCount).Name = "Sheet" & SheetCount

 'Set sheet properties to import a comma delimited text file
 With ActiveSheet.QueryTables.Add(Connection:= _
 "TEXT;" & s_Path & s_File_Name & " ", Destination:=Range("A1"))
 .Name = s_File_Name
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .RefreshStyle = xlInsertDeleteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .TextFilePromptOnRefresh = False
 .TextFilePlatform = xlWindows
 .TextFileStartRow = 1
 .TextFileParseType = xlDelimited
 .TextFileTextQualifier = xlTextQualifierDoubleQuote
 .TextFileConsecutiveDelimiter = False
 .TextFileTabDelimiter = False
 .TextFileSemicolonDelimiter = False
 .TextFileCommaDelimiter = False
 .TextFileSpaceDelimiter = False
 .TextFileOtherDelimiter = "|"
 .TextFileColumnDataTypes = Array(2, 2, 2, 2, 2, 2)
 .Refresh BackgroundQuery:=False
 End With

 Cells.Select
 Selection.Columns.AutoFit
 With Selection
 .HorizontalAlignment = xlRight

59

 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .ShrinkToFit = False
 .MergeCells = False
 End With

 Selection.Copy

 'Rename the sheet to the file name excluding the prefix "Output_"
and the extension ".txt"
 Sheets("Sheet" & SheetCount).Select
 Sheets("Sheet" & SheetCount).Name = Mid(s_File_Name, 1,
(Len(s_File_Name) - 4))

 'Set the focus on cell A1
 Range("A1").Select

Exit_Import_File:
 Exit Sub

 Resume Exit_Import_File

End Sub

Private Sub Form_Unload(Cancel As Integer)
 'If Excel is still open, close it
 If b_Excel_Closed = False Then
 Set obj_Excel = Nothing
 b_Excel_Closed = True
 Else
 End If
End Sub

60

Appendix D

 P2X User’s Manual

1. Using the P2X Software
 1.1. Minimum Requirements
 1.2. Process Flow Chart
 1.3. Getting Started
 1.4. Portable Document Format (PDF)

2. Downloading PDF Documents
 2.1. Official Websites
 2.2. Valid Documents for P2X
 2.3. File Storage

3. Running P2X

4. Error Messages
 4.1. Error 1
 4.2. Error 2
 4.3. Error 3
 4.4. Error 4

5. Further Assistance

1. Using the P2X Tool

 P2X is an information management system that converts PDF publications into Microsoft Excel
 applications. Before using the P2X software tool, it is important to understand what it does. Reassuring
 that the user meets the minimum system requirements will help eliminate errors. While reviewing the
 system process flow chart, the user will hopefully gain a clearer understanding of how the product
 works. Also, making sure the proper documents are being used and following this manual accurately,
 will help verify that the final product meets the user's expectations. The P2X user's manual will guide
 the user on the product in a step-by-step process and consequently, minimize or eliminate the possibility
 of confusion and error.

 1.1 Minimum Requirements

 System Requirements:

• Microsoft® Windows XP, Windows 2000 SP2, Windows NT 4.0 SP6, Windows ME,
Windows 98 SE

• 500 MHz Intel® Business class computer

• 128 Megabytes RAM (256 MB or more Recommended)

• 8 Gigabyte hard disk drive or greater for file storage

• Microsoft compatible Mouse and keyboard

• Broadband Internet Connection (for PDF file access)

61

 Network Requirements:

• Windows 2000 (or above), Windows XP; Product was not tested on Windows Vista

• TCP/IP Network Protocol

 Software Requirements:

• Any text editor

• Microsoft Excel 2003 or 2007

• Derek Noonberg's PDF-to-Text Version 3.0

• Visual Basic 6.0

• LaToyia Penny's CDTMOD1-5-04 VB Application Version 3.0

• LaToyia Penny’s ExcelConvert2008 VB Application Version 1.0

• Java (freeware) - Sun Microsystems Java™ Runtime Environment (JRE) 1.5.0 or better
and Java Virtual Machine (JVM)

 1.2 Process Flow Chart

 The P2X Process Flow Chart shows a precise breakdown of the overall P2X process.

START

DIRECTORY SETUP

Does PDF
Directory
Exist?

PDF2TXT

Word Documents

HTML Documents

HTML Source
Code Text
Documents

PARSE

CDTMOD1 Format Docs EXCEL
Documents

Progress Log FINISH

PDF
Documents

P2X Process FLOW
CHART

11/27/2007 8:22 AM

NO

Y
E
S

Flow Chart Symbol Key

Begin/Terminate Process

Multiple Documents

Input/Output

Action

Single Document

Input/Output

Connector

Decision

Convert

Convert

Documentation

3 Phase Process

P
h
a
s
e

I

Phase II

Phase III

Phase Initialization

 Figure 4: P2X Process Flow Chart

62

 1.3 Getting Started

 Please check the following before using the P2X software:

• Check that all minimum requirements are met.
• Create a new folder on your c:\ drive named PennysResearch.
• Make sure the P2X executable file (P2X.exe) and all other software required are stored on

the c:\ drive in the PennysResearch folder.
• Create a new folder inside of the PennysResearch folder and name it

USCENSUSBUREAU.

 1.4 Portable Document Format (PDF)

 A Portable Document Format (PDF) file is a self-contained cross-platform document. In
 simpler terms, it is a file that will look the same on the screen and in print, regardless of what
 kind of computer or printer someone is using and regardless of what software package was
 originally used to create it, or platform independent.

 Although they contain the complete formatting of the original document, including fonts and
 images, PDF files are highly compressed, allowing complex information to be downloaded
 efficiently.

2. Downloading PDF Documents

 2.1. Official Websites

 Since PDF format allows the reliable reproduction of published material on many different
 platforms and only requires the use of free reader software accessible online at the official
 Adobe website: http://www.adobe.com, it is a way to conveniently and quickly disseminates
 the tables of "significant data" referred to throughout this research. All original testing
 publications involved in this thesis are in PDF format and they are available online at the
 official U.S. Census Bureau website: http://www.census.gov/prod/www/titles.html.

 2.2. Valid Documents for P2X

 Valid PDF documents for this research are defined as "the publications that [serve as] a
 resource guide to the programs and services of the Census Bureau." [26] More specifically,
 the documents that serve as the testing set for this research are composed from the following
 areas and their perspective sub-areas:
 1. Agriculture
 2. Business - Trade and Services
 3. Construction and Housing
 4. Foreign Trade

 Note: These test sets were chosen merely based on the diversity of their subjects. The actual
 topics themselves bare no real significance for the scope of this thesis. The focus of
 these materials were their raw data and the formats they entail. Refer to Section 2.1 of
 this document for more detail on each publication.

 2.3. File Storage

 The following figures (Figures 6 and 7) reproduce the exact locations of where valid
 documents were stored during the verification process of the quality assurance phase of
 building the P2X tool. Use these figures to verify the original PDF files are properly stored
 for easy accessibility before running P2X.

63

http://www.adobe.com/
http://www.census.gov/prod/www/titles.html

 Figure 5: Parent directories of stored PDF files.

 Figure 6: Example of initially stored Agriculture PDF files before running P2X.

3. Running P2X

 Step 1: From the DOS command prompt, change the directory to the location of the P2X
 executable file (i.e. cd c:\PennysResearch; refer to Figure 8).

 Figure 7: Change the directory to the location of the P2X program.

 Step 2: Compile the program by typing: javac DirectorySetup.java

 Step 3: Run the program by typing: java DirectorySetup

64

 Note: A progress bar will appear on the top left hand corner of the user's computer screen
 along with two user-friendly pop-up screens for verification of document
 processing (Refer to Figure 9).

 Figure 8: Progress Bar

 Figure 9: User friendly pop-up screens to assure the user of document progress.

 Step 3.1 - P2X Tool FORM1 Press Import (Refer to Figure 10).
 Step 3.2 - CDTMOD1-5-04 states the pathname of the file to be processed. If
 correct, user selects ok (Refer to Figure 10).

 Figure 10: Form 1

 Step 3.3 - When the document is complete, the Form 1 box will flash and the Import
 button will disappear. Select the close button (Refer to Figure 11).

 Note: Select the X to close the Progress Bar (Figure 9) for that document (Note:
 if the Progress Bar is not closed it will not effect the next document,
 however, the Progress Bars will accumulate for each document and will
 eventually have to be closed after the program is finished processing
 completely).

 Step 4: Repeat Steps 3.1 through 3.3 for every document in the directory tree.

 Note: Be sure that Normal.dot in the Word Templates folder exists and is not
 being used by another user! In a network environment, the file is in the
 C:\Documents and Settings\user's name\Application
 Data\Microsoft\Word directory.

65

 Step 5: Open the PennysResearch directory to view the Progress Log and verify the correct
 documents were processed.

 Step 6: Open the USCENSUSBUREAU directory to review all processed documents.

4. Arranging the Final Excel Documents

The final Excel spreadsheet files generated by P2X will require minor adjustments to the imported data to
eliminate non-breaking spaces and for each user’s personal preference. The guidelines and visual samples
below will help support the user in developing readable documents in Microsoft Excel:

Step 1: Open the final Excel document. Open the Text Import Wizard by pointing the mouse to the menu
 Toolbar and selecting Data -> Import Data. The following window will appear:

Step 2: Choose Fixed width as the Original data type. Verify all other options are selected as shown
above. Click Next >.

Step 3: Set fields widths to the user’s satisfaction. Be sure to scroll down to be sure to capture all data into
 the correct column areas. Click Next >.

66

Step 4: Click on each column and choose Text as the Column data format as shown above and below.

Click Finish.

67

The document will look similar to the one shown above.

Step 5: Select all data and choose from the menu Format -> Column -> Auto Fit Selection to fit each
 column to the length of the longest data entry.

68

The document will look similar to the one shown above.

Step 6: In reviewing the sample above, it is evident that a column of data was inexplicably placed into the
 spreadsheet during the transfer from a text file to Excel. Cut all data from B6 to B24.

69

Step 7: Paste all data from B6 to B24 into cell B7 and all data in column B will move down by one cell

The document should now look similar to the one shown above.

70

Step 8: From the File Menu, choose Print Preview.

The document will look similar to the picture shown above in Print Preview view.

71

Step 9: Zoom into the document by pushing the Zoom button with the mouse to get a better view of the
 data.

Step 10: Select the Setup button. The Page Setup window will appear as shown above.

72

Step 11: Choose Landscape Orientation leaving all other options as shown above.

Step 12: Select the Sheet tab in the Page Setup window and select as Print options Gridlines and Black and
 white. Then press OK. The figure above illustrates.

73

The document will now look similar to the picture shown above in Print Preview view.

Step 13: Select the Page Break Preview button. The view will change to the one shown above.

74

Step 14: Place your mouse pointer directly onto the blue lining at the far right and drag it over until all the
 data is enclosed into the page break view as shown above.

Step 15: Go to the toolbar and change the view back to Normal View by selecting View -> Normal. All
 empty rows may be deleted, if preferred by selecting a row by clicking on one of the numbers on
 the left side of the document. The row will be highlighted. Right click and select Delete.

75

Multiple rows may be deleted at one time by holding down the CTRL key and selecting each row then right
click over one of the numbers highlighted in blue while continuing to hold down the CTRL key then select
Delete.

The document will now look similar to the picture shown above in Normal view.

76

Step 16: For verification purposes, go to Print Preview to view how the document and data will look if
 printed.

The final Excel document in Print Preview view.

77

The original PDF document viewed with Adobe Acrobat Reader®.

Note: The user should compare the significant data captured in both formats for further conversion
 verification.

5. Error Messages

 5.1. Error 1
 System Error Message - Problem with the directory setup: Check to verify that the directory
 tree is setup correctly with the valid pathnames and PDF documents.

 5.2. Error 2
 System Error Message - Cannot get a list of files: Check to see if the directory exists.

 5.3. Error 3
 System Error Message - This error will give the specific error message pertaining to the
 problem that exists: Check to see if the document is valid and that
 there were no interruptions in processing. User may need to
 recompile and re-run P2X.

 5.4. Error 4
 Program Error Message - Problem with VBSetup in the P2X program. Program uses the
 directory list to identify which document is being processed: Check
 document formatting at time of error. Confirm that the user is using
 valid PDF documents.
6. Further Assistance

 For help or further assistance, email: mailto:lpenny_2002@yahoo.com

78

mailto:lpenny_2002@yahoo.com

VITA

LaToyia DeVonne Penny

Candidate for the Degree of

Master of Science

Thesis: DESIGN & IMPLEMENTATION OF A PDF TO EXCEL CONVERSION

TOOL (P2X)

Major Field: Computer Science

Biographical:

 Personal Data:

Born in Tulsa, Oklahoma, On August 19, 1976, the daughter of
 Donna and Ollie Penny.

 Education:

Bachelor of Science degrees in Computer Science and Mathematics
 from Langston University, Langston, Oklahoma in May 1999. Completed the

requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 2008.

 Experience:

Raised as an Air Force brat in Minnesota, Colorado, California,
 Virginia, Oklahoma City, Oklahoma, and Tulsa, Oklahoma; employed on the

production line at BAMA Pies in Tulsa, Oklahoma during summers; employed by
Langston University, Department of Mathematics and Department of Business as
an undergraduate teacher's assistant; employed by United States Department of
Energy during the summer of 1997 and 1999; employed by Oklahoma State
University, Department of Computer Science 1999 to 2004 as a graduate RA, TA,
and Instructor; employed by U.S. Department of Defense, 552 ACNS/SCOD
Tinker Air Force Base, OKC, Oklahoma since 2004 as an I.T. Specialist.

 Professional Memberships:

Delta Sigma Theta Sorority, Incorporated.

ADVISER’S APPROVAL: Dr. K. M. George

Name: LaToyia DeVonne Penny Date of Degree: July, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: DESIGN AND IMPLEMENTATION OF A PDF TO EXCEL

CONVERSION TOOL (P2X)

Pages in Study: 78 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

The scope of this study is limited to focus on an implementation of a conversion tool
(P2X); developed to automatically convert large batches of PDF tabular data (PDF tables)
to spreadsheet format (MS Excel). We begin by introducing the PDF specification
standards on table structure. A scenario example of the problem and a description of the
conversion tool (P2X) architecture. Specific details of the algorithms and applications
used during the PDF to plain text format (PTF) conversion process follows. A brief
overview of the reformatting process and a formalization of the table tags that we
identified using regular expressions will be introduced. Lastly, a description of the GUI,
its images, and functionality will be discussed in the User Interface section.

Findings and Conclusions:

We have implemented a working conversion tool to show the conversion of PDF tabular
data to MS Excel spreadsheets can be simple by use of a graphical user interface with
user interaction. This system was produced using the high-level programming languages
Java and Visual Basic 6.0. These implementations are presented. A user's manual has
been incorporated to validate the use of the system and reduce user error. More visuals
of the P2X tool to further assist the user with the problems presented throughout this
research. Although P2X proved to be a successful conversion approach, it was discovered
at the end of the final testing phase that the final output of the text data stored in the
Excel spreadsheet file will need minimal manual editing by the user to dispose of
unwanted non-breaking space and to suit the individual user’s storage preferences. These
preferences are expected to vary on a case-by-case basis.

