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Preface

This thesis presents reliable geometric QCA cell structures for designing single clock-
controlled majority gates with a tolerance to radius of effect-induced faults as a
basic building component for carry lookahead adder. Realizable quantum computing
is still far in the future due to the complexity of quantum mechanics that govern
them. In this regard, QCA-based system design is a challenging task since each
cell’s state must interact with all the cells that are in its energy-effective range with
respect to its corresponding clocking zone, referred to as its radius of effect. The
proposed geometric design approach for majority gates in this thesis is to overcome
the constraints imposed by the radius of effect of each cell with respect to clock
controls. We will show majority gate structures that will operate with multiple
radius of effect-induced faults under a single clock control. The design approach to
a single clock controlled majority gate will ultimately facilitate more efficient and
flexible clocking schemes for complex QCA designs. The focus will be on molecular
scale designs, as these are the future of QCA structures that will operate at room
temperature. It will be shown that these single clock zone majority gates can be used
to create a reduced clock cycle carry-look-ahead full-adder that is more flexible with
respect to clocking zone size and placement as well as radius of effect faults. The
effectiveness of the designs will be show through results simulated under projected
system environment properties.

iii



TABLE OF CONTENTS

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic QCA Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Clocking of QCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 QCA Carry-Look-Ahead Full-Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Radius of Effect-Induced Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Radius of Effect-Induced Fault-Tolerant Majority Gate(s) . . . . . . 14

7 Molecular QCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Fault-Tolerant Carry-Look-Ahead Full-Adder . . . . . . . . . . . . . . . . . . .18

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



LIST OF TABLES

Table Page

1 Basic majority gate inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . .4

2 Full-adder inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Radius of effect testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

v



LIST OF FIGURES

Figure Page

1 Basic QCA cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

2 QCA wire operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Basic majority gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Basic QCA inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Basic QCA wire crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Clock phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Schematic clocking model representation . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Single carry-look-ahead full-adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9 Radius of effect distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Standard left to right majority gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

11 Single clock controlled majority gate 1 . . . . . . . . . . . . . . . . . . . . . . . . . 15

12 Single clock controlled majority gate 2 . . . . . . . . . . . . . . . . . . . . . . . . . 15

13 Single clock controlled molecular scale majority gate . . . . . . . . . . . 16

14 Fault-tolerant carry-look-ahead full-adder . . . . . . . . . . . . . . . . . . . . . . 18

15 Figure 10 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

16 Figure 11 and 12 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



17 Figure 13 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

18 Figure 14 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

vii



1 Introduction

One of the major hurdles that needs to be overcome in quantum computing is defect-
and fault-tolerance. Quantum-dot cellular automata (QCA) are no different in this
respect. QCA are composed of a number of cells each of which contains four dots
where electrons may lie. The small structures are subject to manufacturing defects as
well as other faults. A QCA cell may interact with too many of its neighboring cells
and cause erroneous operation of the most basic functions. This proposal introduces
designs that can tolerate radius of effect-induced faults by redesigning some of the
basic structures, namely the majority gate.

In section 2, we will discuss QCA cells and basic structures that are used to
create complex arrays for computation. Section 3 will cover the clocking scheme
that is used to control large arrays of cells. Section 4 shows a carry-look-ahead
full-adder. Section 5 will discuss the faults that can occur due to an increase or a
decrease within the radius of effect of each cell. Section 6 introduces structures that
can tolerate various radius of effect-induced faults while under only a single clock
control to perform a majority-gate operation. Simulation results for the structures
will be shown. Section 7 shows the structures which will be used for molecular level
QCA majority gates and also shows simulation results for the majority gates. Section
8 places the modified majority gates into a large array (namely an adder) to show
that they funtion correctly when used in more complex designs. The conclusion
will review the work done and its possible impact on the future of QCA design and
fault-tolerance.
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2 Basic QCA Structures

Each of the computing elements is composed of a number of quantum dot cells, the
building blocks of QCA. Each quantum dot cell can represent a binary one or zero,
or a superposition of the two states. The next structure is a simple wire composed
of a number of quantum dot cells; a QCA quantum wire that can transmit binary
information without current. The two most basic computing elements in a QCA are
the majority gate and the inverter (the NOT gate). These can be used to realize
AND, OR, NOT, and NAND gates when combined. Also, wire crossings are essential
to the implementation of a complex two-dimensional array and will also be discussed.

(b)(a)
Figure 1: The darkened dots represent the location of the electron in a given cell.
The two cell states are represented here, (a) shows polarity P=-1 (binary 0) and (b)
with polarity P=+1 (binary 1)

The composition and states of individual quantum dot cells are presented as
follows. In Figure 1 cells in binary state 0 (a) and binary state 1 (b) are shown. The
darkened quantum dots of the cells in Figure 1 represent the location of two extra
mobile electrons in the cell. As can be seen in Figure 1, the mobile electrons migrate
to antipodal sites of the cell by their natural electrostatic repulsion to represent
their respective binary states [3, 11, 12]. The dot configuration of the cell can also
be rotated 45 degrees to represent a rotated cell [11] where the electrons also occupy
antipodal sites within the cell. The rotated cell is important for use in wire crossings
and inverter wires. We assume that the potential barriers between cells is at a level
such that the electrons will not migrate, or tunnel, to neighboring cells. Cells will,
however, react with one another through the Coulombic repulsion between their
electrons. With these cells we can construct the components of a QCA, the first of
which is a binary wire.

In Figure 2 (a) we show a basic QCA binary wire with the input cell on the left
and the output cell on the right. We show left to right operations since this is the
most typically seen flow of an array of cells, though the direction will not matter
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(b)

(a)
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Figure 2: A binary wire in steady state (a), with input P=+1 (b) and after polarity
has propagated down the wire (c)

(b)

(a)

 

output

(c)

Figure 3: A majority gate with inputs (a), (b) and (c) at polarity P=-1

for simple structures. In (a) the wire is at a stable state with input and output
as binary 0. In Figure 2 (b) we change the polarization of the first (input) cell to
P=+1 to create an unsteady state in the wire. Figure 2 (c) shows the result of this
polarization change as the state of the input cell is propagated down the line of cells
via the Coulombic interaction of the cells. That is, when the input cell is forced into
polarization state P=+1 (and held in that state) the electrons in the quantum dots
are redistributed to the opposite antipodal configuration of the cell. As the input is
held at its new polarity its neighboring cell reacts by also changing to polarization
state P=+1. This reaction takes place down the line until reaching the output cell,
thus transmitting a binary value 1 down the wire without using a current, but instead
using the Coulombic repulsion between the cells and their electrons. Note that this
process does not happen instantaneously. Instead, there is a certain amount of delay
and dissipation which occurs with each cell that must be switched from an unstable
state (relative to adjacent cells).

Majority gates are a pivotal part of QCA designs since they can come to represent
an OR gate or an AND gate. The majority gate consists of three inputs and a single
output. The bit value represented by the majority of the inputs is propagated to
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Table 1: Majority gate inputs and resulting outputs

a b c output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

input output

 

   

    

 

  

input

  
 

 
  

output

 

Figure 4: Two inverters with inputs at polarity P=-1 (binary 0) and output polarity
P=+1 (binary 1)

the output. The structure of a majority gate is shown in Figure 3. Figure 3 shows
a majority gate at steady state with all inputs (a), (b) and (c) at polarity P=-1
(binary 0). The Coulombic repulsion of the three input cells forces the middle cell,
or the device cell, to polarity P=-1, which in turn forces the output cell to P=-
1 [3, 11, 12, 14]. In Table 1 the behavior of the majority gate function can be seen
with all possible input configurations.

As is implied by Table 1, one can create an AND or an OR gate by simply locking
one of the inputs in the P=-1 state or P=+1 state, respectively. In Table 1 it can be
seen that by setting input (a) to 0, one can create an AND gate for inputs (b) and
(c). Conversely, by setting input (a) to 1, one can create an OR gate for inputs (b)
and (c). The next major component that is needed is an inverter, or a NOT gate.

The function of the inverter is to take as an input either a binary 0 or 1 and output
1 or 0, respectively. Figure 4 shows two inverters. In the first, the input branches
into two wires and on the other end the cells are offset so that when they interact
with the output wire to reverse its polarity (with respect to the input) [3, 11, 12].
The second inverter simply uses two offset and rotated cells to reverse the signal
traversing the wire. The value of an input can also be inverted by correctly pulling
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the value off an inverter wire.

A

B B Out

A1

A2

Figure 5: A wire crossing with input A, outputs A1 and A2 and wire B.

Wire crossings and inverter wires structures are shown in Figure 5. The input
cell A will determine the polarity of the vertical inverter wire. Output A1 will reflect
the inverted value of input A by pulling the value off of the wire an odd number of
cell widths from the driving wire. That is, the distance between the top of line A
and the bottom of line A1 is 5w + 6s, where w is the width (height) of a cell and s

is the uniform cell spacing distance. Output A2 will be the same as the input since
it is an even number of cell widths from the input wire, a distance of 8w + 9s from
the top of line A to the bottom of line A2. The wire B will be unaffected by the
vertical wire since no matter what state the inverter wire is in it will have a perfectly
balanced effect on wire B. Pushing values onto, pulling values off of, and crossing a
vertical wire are all pivotal in creating a full adder or any other significantly complex
2-D QCA structure.
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3 Clocking of QCA

With the simple structures discussed above, it has been shown that one can create
wires, logic gates, shift-registers, memories and even a simple microprocessor [12].
For these large circuits we need to be able to clock-control the movement of bits from
cell to cell.

The clocking of cells is achieved by electrostatically switching the cell between
three different states. The first state is the null state, in which the cell holds no
binary data. The second state is the switching state, in which the cell takes on the
value of its neighboring cell through Coulombic interaction between the two. The
third state is the locked state. In the locked state the cell cannot be affected by
neighboring cells and is therefore retained in its current state [9, 21].

Figure 6: The voltage of four adjacent wires, each offset π/2 from its neighboring
wire. [21]

The clocking scheme is four-phased, consisting of a switching phase, locked phase,
switching phase, and null phase, respectively. These four phases are achieved by
submitting regions of the QCA array to electric fields. The electric fields are produced
by wires running under the QCA array. Each wire has a four-phase signal which
corresponds to each of the four clocking phases. The clocking phases can be seen in
Figure 6 for four adjacent wires buried under the QCA cells. The signals in adjacent
wires have a π/2 phase shift from neighboring wires so that every fourth wire has
the same signal. These wires run under the QCA array as shown in Figure 7.

In the simulator, these clocking zones are manually selected. The selection of
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Figure 7: A schematic representation of a clocking model. [21]

zones is mainly by device. For example, each majority gate in an adder must be
in a zone isolated from its inputs and outputs for proper operation. The clocking
zone discussed above, though, will not have that flexability. We must determine a
clocking zone that runs vertically (or horizontally) under the QCA array. The width
of these zones will be determined by the wires used, the grounded conductor above
the arrary and the power of the current in the wire.

Figure 7 is a schematic representation of a clocking model as proposed by Hennesy
and Lent in [21]. The clocking wires located just below the QCA array alternate
electric fields. The QCA array lies on the xz plane while the wires run parallel to the
z axis (perpendicular to the page). The grounded conductor above the array is used
to draw the the electrical fields upward in order to consume each clocking region.

The four phases of a clocking zone (i.e., a clocking zone refers to a set of cells
under a common clock control) is starting in the null phase, that is, the wire em-
bedded beneath is at low amplitude. The null phase causes each individual cell to
be null. At this time null values are at steady state due to the electromagnetic field
surrounding the region. As the wire’s amplitude slowly changes from low to high,
which is sufficiently long to facilitate electron tunneling, the clocking zone is in the
switching phase. While this zone is in the switching phase, its predecessor will be
locked. Thus it is the case that the current zone will react with the previous zone
to obtain its values with out affecting other zones. Since the next clocking zone is in
the null state, it will neither affect or be affected by the zone in the switching state.
After reaching a certain high enough amplitude the wire’s electromagnetic field locks
the current zone to its steady state with respect to the previous zone. The next
zone will begin as the current zone did in this example, moving from null state to
switching state, and propagate the data through the array.

One major advantage of this clocking scheme is that it facilitates power gain in
the QCA array as shown in [4,9]. In each cell interaction there is energy dissipation.
The driver cell must push the other cells into their stable states and, thus, energy
is lost. The energy that is dissipated must be restored at each stage to prohibit the
loss of the data that is carried within the cells. Clocking the cells does just that by
driving the electrons into their appropriate stable states and holding them there.
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4 QCA Carry-Look-Ahead Full-Adder

A QCA-based implementation of a single carry-look-ahead full-adder is a target
design in which the proposed single clock-controlled majority-gate is employed as a
basic component. In order to construct the proposed single carry-look-ahead full-
adder under reduced clock zones, the proposed majority gates are to be integrated
along with proper clocking, wire crossings and inverter wires. In order to create a
functional full adder, three inputs are needed: a, b, and Cin. A design of the single
carry-look-ahead full-adder is shown in Figure 8 as created using QCADesigner, a
design, layout and simulation tool for QCA [1,2]. As derived in [6] the formulae used
in the creation of the adder are as follows:

Cout = M(A,B,Cin) (1)

Sum = M(Cout, Cin,M(a, b, Cin)) (2)

Where M defines the three input majority function as previously discussed. This
adder, as constructied in [7], uses five clocking zones and can be seen in figure 8.
This adder construction obviously does not have uniform clocking zones. The clock
zone placement, which is dependent on the majority gates present in the design, is
not physically realizable with the previously discussed clocking scheme. This is one
of the major problems that we will address in the next few sections, beginning with
RoE induced faults in majority gates.

8



A B Cin

Sum

Cout

Figure 8: A single carry-look-ahead full-adder. Output of this adder can be seen in
table 2

Table 2: Full-adder inputs and resulting outputs

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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5 Radius of Effect-Induced Faults

The radius of effect of each cell can and will affect the operation of certain structures
in a QCA array. In this section we will simulate and analyze a simple majority gate
under a single clock control and using different areas within the radius of effect. The
radius of effect-induced faults will become apparent through a few simple simulations.

The radius of effect of a cell is the radius at which it will interact with other cells.
In the simulator specifications of the radius of effect is from the center of one cell to
the center of another. So two inline cells will interact if

d = dN = w + s (3)

where d is the radius of effect, w is the width (and height) of the (square) cell, and s

is the distance of separation of the cell. Now we will specify the distances that will
be used in testing. We will test the majority gate at different areas within the radius
of effect. We will assume that the cells are evenly spaced and of uniform width and
height. The cells that are being used in these simulations are 20nm x 20nm with
5nm dots. The cells are spaced 5nm apart.

Equation 3 is the distance for nearest neighbor which we will denote as dN . The
radius of effect for next to nearest neighbor will simply be

dNN = 2(dN) = 2w + 2s (4)

Using the pythagorean theorem we can find some of the other important dis-
tances that need to be considered in testing the area within the radius of effect. For
the diagonal cell distances (see Figure 9), which we will call first diagonal, second
diagonal, and third diagonal, respectively, we have the three equations

d1 =
√

2((s + w)2) (5)

d2 =
√

(s + w)2 + (2s + 2w)2 (6)

d3 =
√

2((2s + 2w)2) (7)

10



Figure 9: Area of effect distances which require consideration.

We limit the area of effect distances to d3 due to the rapid decay of kink energy
between cells as their distance of separation increases. As is stated in reference [1],
it decreases inversly with the fifth power of the distance of cell separation.

Now that we have the distances of note defined, we can analyze their impact on
a majority gate. We will use the coherence-vector simulation to test. We choose
the coherence-vector simulation due to the fact that it is the most precise simulation
available and takes into account the dissipative effects of the system. The ith cell
simulated in the coherence-vector simulation is a two-state cell and is defined by the
Hamiltonian [1]

Hi =
∑

jεS

(

−1

2
PjE

k
i,j −γi

−γi +1

2
PjE

k
i,j

)

. (8)

The energy needed to tunnel between polarization states is γ. The jth cells indicate
those cells that are in the effective radius of the ith cell; S is the effective neighborhood
of cell i. Ek

i,j is the kink energy between the ith and jth cells and Pj is the polarity
of the jth cell. The kink energy (the cost of two cells having opposite polarities) Ek

i,j

can be found by calculating from the electrostatic interaction of all the charges. For
each dot in i we compute its electrostatic interaction with each dot in j by using the
equation [1]

Ek
i,j =

1

4πε0εr

qiqj

|rirj|
(9)

where ε0 is the relative permittivity of free space and εr is the relative permittivity
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Table 3: Radius of Effect Testing Results

Radius of Effect 5 Cell M-Gate 9 Cell M-Gate 13 Cell M-Gate

dN ≤ d < d1 fault − free fault − free fault − free

d1 ≤ d < dNN fault − free fault − free A

dNN ≤ d < d2 fault − free B M(A,B,C)

d2 ≤ d < d3 fault − free B B

d = d3 fault − free B B

of the system [1]. For clarity we will expand the equation for kink energy between
two cells. The expanded form is

Ek
i,j =

1

4πε0εr

3
∑

i=0

3
∑

j=0

q1

i q
2

j − q1

i q
1

j

|ri − rj|
(10)

for q1

i = −0.8e − 19 for even i and = 0.8e − 19 for odd i; q2

i = 0.8e − 19 for even i

and = −0.8e − 19 for odd i. The constant 0.8e − 19 is one half of one electron volt
(eV), a half charge. The term |ri − rj| is simply the distance between dot i in cell 1
and dot j in cell 2.

The results of the testing can be seen in Table 3.
In table 3, the five cell majority gate is the basic gate that can be seen in 3, and the

nine cell configuration is like that in Figure 9, with inputs from top, left, and bottom,
and output to the right. The thirteen cell majority gate is expanded in the same
way. The table gives the resulting outputs from the given configurations. Fault −
free indicates that the gate functioned properly and the output was M(A,B,C).
Erroneous outputs are indicated by the differing output calulated by the simulator.

Looking at the Table we can see how the radius of effect-induced fault disrupts
the larger majority gates. The distance that works in all three instances is the nearest
neighbor (dN). This is obvious since the cells will only be interacting with at most
four cells (the middle cell of the majority gate is within dN of one cell above, below,
to its left and to its right). For all disances the 5-cell configuration works, since this
is the ‘classic’ setup for a majority gate the results are as expected.

The 9-cell gate obviously has more potential for more complex interaction and,
therefore, more potential for erroneous interaction. As can be seen in Table 3, there
are only two distances that work. When setting the distance to dNN or d2, the output
for the gate is equal to the left input value. The results are therefore erroneous. There
is a rather serious problem here which we will now address.

Simple wire crossings require that there be at least next to nearest neighbor
interaction (see Figure 5 for an illustration). Without a radius of effect greater or
equal to dNN a wire crossing simply is not possible.
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Figure 10: Left to right majority gate as used in an adder constructed of 20nm x
20nm cells with 5nm dots, spaced 5nm apart.

Now we can look back at Figure 8 to further illustrate the radius of effect prob-
lem. In the adder we see that the majority gates needed for the computation are
constructed as shown in Figure 10, which will be referred to as a left to right majority

gate. The results of a coherence-vector simulation of this configuration with a radius
of effect of dNN can be seen in Figure 15 as erroneous. The resulting output is as if
the top input, input A were flipped; M(A,B,C). This type of majority gate is used
four times in the single carry-look-ahead adder. The adder works, however, due to
its clocking zones. However, we will not be able to have clocking zones that are on
such a small scale in a desirable design.

The radius of effect-induced faults have now been identified and characterized
through simulation. In the next section the new left to right majority gates that are
tolerant to such radius of effect-induced faults will be proposed.

13



6 Radius of Effect-Induced Fault-Tolerant Major-

ity Gate(s)

The projected width of a QCA cell for room temperature operation is somewhere in
the 5nm realm. For cells of this size it is not likely that we will be able to have small
enough clocking zones (three cell width in our adder, which will be approximately
20nm, at most) to have working majority gates. Also, in previously proposed adders
the clocking zones are non-uniform in that they do not follow the constriants of
the proposed clocking scheme. They do not have uniform, parallel, vertical clocking
zones that are required by the use of wires running under the array. They are also
very inflexible in that if clocking zones are offset by one or more cells the array will
not properly function. These problems can be solved by creating a majority gate
that will operate in a single clocking zone regardless of the radius of effect of the
cells.

Therefore, we now have motivation to construct a majority gate that will operate
correctly under a single clock control within multiple radius of effect distances. The
construction is not complex, in fact it mearly involves adding (or subtracting) a
number of cells to the gate in order to even out the three inputs’ interactions with
the device cell(s). First discussed will be the majority gate that will be used to
handle a radius of effect of up to dNN .

The modified majority gate can be seen in Figure 11, which is a left to right
majority gate as is needed in an adder. From the simulation results in Figure 16,
it can be seen that the output for a radius of effect of dNN results is a correct
output for the gate and also works for d1, both with a single clock. This tolerance
is facilitated by the addition of only two cells. However, this configuration does not
operate correctly with a radius of effect of d2.

For radius of effect of d2 we need to add more cells to the configuration. The
modified majority gate can be seen in Figure 12. Once again, the addition of one
cell to the design creates a structure that will operate correctly with radius of effects
dNN and d2. The simulation results for this configuration are exactly like those
seen in Figure 16. Though this modified majority gate cannot handle radius of
effect distances of d3, majority gates that can accept greater distances can be further
engineered. This section has dealt with the operation of larger cells, cells greater than
5nm width and height. Creating fault-tolerant molecular scale left-to-right majority

14



gates has a more simple solution, which we will now discuss.

Figure 11: Modified majority gate for radius of effect-induced fault-tolerance under
a single clock control for d = d1 and dNN .

Figure 12: Modified majority gate for radius of effect-induced fault-tolerance under
a single clock control for d1, d = dNN and d2.

15



7 Molecular QCA

Creating QCA structures that will operate at room temperature will require reducing
the scale of cells to the molecular level, giving cells sizes of around 2nm [24]. Molec-
ular cells are constructed by connecting redox sites, which can hold a charge, by
ligands that allow tunneling between the sites. A simple example of such a molecule
is shown in [25] (1,4-diallyl butane radical cation) and has two allyl groups which are
connected by a butyl bridge which facilitates the tunneling of electrons and, there-
fore, the switching of the molecule between basis states. The size of this molecule
is 7Å in length (0.7nm). Placing two of these molecules side by side creates a cell
with a total of four allyl groups. These four allyl groups act a the dots which contain
charges. The two-molecule cell is approximately 1nm by 1nm and has the two basis
states (“0” and “1”) that we need for a typical QCA cell. Cells of this size also have
erroneous output in simulation when configured into a left-to-right majority gate.

Figure 13: Functioning left-to-right majority gate for cells of size 1, 2, or 4nm.

Cells of width 1, 2 and 4nm were tested in left-to-right majority gates. The
results for these configurations were the same for all three cell sizes and radius of
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effects d1 to d3. All tests resulted in an output equal to the middle input cell. This
indicates that the middle input cell overpowers the other inputs at the device cell,
switching the device cell to the middle input value at all times. This is not unlike
the errors that occur in configurations with larger cells. To overcome this erroneous
functioning we have constructed a majority gate that uses one less cell that functions
correctly for all three cell sizes and for radius of effect greater than or equal to dNN .
The configuration is shown in figure 13.

For these simulations we used the coherence-vector simulation as with testing of
larger cells. The simulations show that this configuration works only for radii of
effect greater than or equal to dNN . This fact is obvious since the middle input will
only be able to interact with the device cell if it can interact with cells that are dNN

away, due to the missing cell in the middle input wire. Through simulation, we have
found that this configuration will work for all radii of effect of concern, and beyond.

More accurate simulations were done for molecular implementations of quantum-
dot cellular automata. The coherence-vector simulation was used to simulate the
previously discussed molecular construction using 1,4-diallyl butane. It is stated
in [8] that molecular implementations will have a kink energy (Ek) greater than 500
meV. With this in mind a kink energy of Ek = 629.45 (relative permittivity of 0.3)
was chosen as an apporximate value for the molecule in question. The value was
calculated using equation 10. The simulations were performed at approximate room
temperature (300 K). The cell height and width was 1 nm with dot diameter and
uniform cell spacing of 0.25 nm.

The simulations show that, under one clock zone, the construction shown in
figure 10 is erroneous, resulting in output equal to the middle input for radii of effect
greater than dNN . When the majority gate shown in figure 13 is used under the
same constraints, it functions for radii of effect from dNN to d3 and beyond. The
results of the simulation can be seen in figure 17. This shows that the radius of
effect fault-tolerant majority gate can operate at room temperature for molecular
implementations of QCA.
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8 Fault-Tolerant Carry-Look-Ahead Full-Adder

We have seen that the fault-tolerant left-to-right majority gates correctly function in
the simulator. The last simulated molecular scale majority gate is the most exact to
physical reality, so we will be using it to create a larger array to show that the gates
will function within a complex QCA structure, namely a carry-look-ahead full-adder.
The adder to be constructed will be a direct mapping of the one seen in figure 8.
The modified adder can be seen in figure 14.

Figure 14: Functioning fault-tolerant carry-look-ahead full-adder with reduced clock-
ing zones. Clocking zones shown by shading.

The fault-tolerant adder uses only three clocking zones to complete operation. In
addition to using less clock zones, the adder has uniform, vertical zones that coincide
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with the clocking scheme that was presented previously. The adder was tested under
the strict guidlines presented at the end of the previous section and the simulation
results can be found in figure 18. The simulation results show that the adder funcions
correctly.

The improved adder functions for all radii of effect of concern, with physically
realistic constraints, as well as with the proposed clocking scheme. It can also be
easily adjusted for multiple clocking zone sizes, but is show with a clock zone width
of approximately 11nm.
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9 Conclusion

It has been shown that radius of effect faults occur in the simplest of structures in
quantum-dot cellular automata. Under one clock cycle majority gates will provide
erroneous results and, therefore, will limit the clocking scheme when placed in larger
arrays.

To counter these faults we have made minor adjustments to the majority gate.
It has been shown that these changes, which are made according to the radius of
effect of each individual cell, result in functioning majority gates. It has also been
shown that, under simulation, the radius of effect fault-tolerance majority gates will
operate for molecular implementations of QCA, which is important due to the fact
that a molecular level cell will be needed to create arrays that will function at room
temperature. The use of the modified gates in larger arrays of cells was also shown
to be successful and benificial to the larger array. These gates will allow for fault-
tolerant designs with respect to radius of effect as we all facilitate more flexable
clocking zone placement and sizing. This research will aid in the creation of large
QCA designs that are more physically implimentable than ever before.

Figure 15: Simulation results for majority gate in figure 10 under one clock cycle
from the simulator. Erroneous outputs are highlighted.
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Figure 16: Simulation results for the modified majority gates in figure 11 and figure 12
from the simulator. The results show that the majority gates function properly.

Figure 17: Simulation results for molecular QCA fault-tolerant majority gate.
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Figure 18: Simulation results for the fault-tolerant adder in figure 14.
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