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CHAPTER 1

INTRODUCTION

The process of segmenting an image into homogeneous regions either for partitioning

the regions from one another or to partition the regions from background is called

image segmentation. An image and its sample segmentation is shown in figure 1.1.

Image segmentation has been an area of research interest for at least 35 years [18].

It has evolved significantly since then for two major reasons. First, knowledge base

for segmenting images has grown as researchers have invested time and energy over

decades. Second, tremendous gain in computing power provides researchers opportu-

nities to implement algorithms which would have been impractical only two decades

earlier.

Figure 1.1: An Image from the Berkeley Segmentation Dataset and its Corresponding

‘Ground Truth’ Segmentation

Various surveys of segmentation algorithms have been done in the past. Some of

the examples are [7], [15], [17], [20], and [22]. These surveys classify and summarize

segmentation algorithms but do not offer evaluation techniques to determine their
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performance. On the other hand, there are handful of papers that offer insights into

how to evaluate segmentation algorithms such as [11], [13], [16], [23], [26]. However,

evaluating algorithms is not an easy task; there is a need to precisely define a metric

to gauge the performance of these algorithms. Given the latitude of image variety,

one also needs to bear on mind that segmentation algorithms that do well on a set of

images may not perform as well on another set.

Being well aware that evaluation is a context sensitive term, this thesis makes

an attempt to carry out evaluation for three simple segmentation algorithms with a

varying mixture of extracted features. This thesis work makes no claim about the

generality of this evaluation. It merely attempts to evaluate segmentation results with

human perception and based on the accuracy of content based image retrieval with-

out any assumption that correlation may or may not exist between the two. Hence

evaluation is performed on two grounds – comparison with ground truth segmentation

and retrieval accuracy in content based image retrieval. The first approach taken in

this thesis is to compare the algorithmic segmentation with human-based segmenta-

tion. The Berkeley image segmentation database 1 will be used for this purpose. The

second approach is to implement a content-based image retrieval system making use

of the segmented images produced by one of the the segmentation algorithms to be

evaluated. Evaluation is based on the retrieval accuracy. University of Washington

database 2 will be used for image retrievals.

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
2http://www.cs.washington.edu/research/imagedatabase/grouindtruth
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CHAPTER 2

LITERATURE REVIEW

Literature is aplenty with segmentation algorithms, their surveys, and evaluation

techniques for segmentation algorithms. In this chapter, there will be an overview of

some of the selected works relating to the materials that will be used later for car-

rying out experiments. This chapter has been organized into survey of segmentation

algorithms, evaluation techniques for segmentation algorithms, implemented segmen-

tation algorithms, implemented feature extraction schemes, and content based image

retrieval.

2.1 Survey of segmentation algorithms

As mentioned in chapter 1, various surveys of segmentation algorithms exist in the

literature [7], [15], [17], [20], and [22].

The 1981 paper [7] defines image segmentation as “the division of an image

into different regions, each having certain properties.” and categorizes segmentation

algorithms or techniques into (1) characteristic feature thresholding or clustering, (2)

edge detection, and (3) region extraction.

Thresholding is mathematically described in [7] in the following way:

S(x, y) = k (2.1)

if Tk−1 ≤ f(x, y) < Tk, k = 0, 1, 2, ..., m where, (x, y) is the x and y co-ordinate of

a pixel; S(x, y), f(x, y) are the segmented and the characteristic feature functions of

(x,y) respectively; T0,...,Tm are the threshold values with T0 equal to the minimum
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and Tm the maximum; m is the number of distinct labels assigned to the segmented

image; T can be viewed as a test...function. Clustering is simply considered to be the

“multidimensional extension of the concept of thresholding.” The survey next sum-

marizes algorithms classified in the category of edge detection, which itself is defined

to be “a picture segmentation technique based on the detection of discontinuity.”

Edge detection is further classified into parallel and sequential techniques depending

upon whether or not the edge detection at a pixel is based upon edge detections at

previously computed pixels. The third category of segmentation algorithms discussed

in this paper is region extraction or “[dividing] the image into regions.” It is further

classified into region merging, region dividing, and region merging and dividing.

[15] is a much recent work in contrast to [7] and it shifts its survey focus to the

segmentation algorithms for colored images since the use of color images was prevalent

by then. They propose three major classes to cover the segmentation algorithms

under consideration. Since the focus is on colored images, the survey starts out by

summarizing the color spaces most widely used for segmentation purposes, which it

claims are RGB, HSI or HSV, and the CIE L∗u∗v∗ or the CIE L∗a∗b∗ color spaces.

RGB makes use of red, green and blue color components in orthogonal Cartesian space

and is based upon the tristimulus theory of color. HSI is derived from RGB space

into a cylindrical co-ordinate system where, H = arctan(
√

3(G−B), (2R−G−B)),

S = 1 − min(R, G, B), and I = R+G+B
3

. HSV space is similar except that V =

max(R, G, B) is used in place of I. The CIE L ∗ u ∗ v∗ and L ∗ a ∗ b∗ spaces are

designed to be in uniform color spaces and are good metrics for assessing perceptual

differences among colors using Euclidean distance. Then Lucchese and Mitra go on

to classify their three major classes of segmentation algorithms as follows:

1. Feature space based

They put all the segmentation algorithms that work in a feature space either

a color space or a space induced by color attrributes by generally not taking
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into account the spatial relationship between the pixels in this category. This is

further classified into (1) Clustering, (2) Adaptive k-means clustering, and (3)

Histogram thresholding.

2. Image-domain based

Segmentation techniques that try to satisfy both feature-space homogeneity and

spatial compactness are categorized as image-domain based techniques. It is

further classified into (1) Split-and-merge techniques, (2) Region growing tech-

niques, (3) Edge Based, and (4) Neural network based classification techniques.

3. Physics based

Algorithms based on the models of the physical interaction of how light interact

with colored materials are appropriately named as physics based techniques.

Various models such as dichromatic reflection model proposed by Shafer [21],

unichromatic reflection model proposed by Healey [12] exist in the literature.

Similarly other surveys propose classification not too different from these two

discussed earlier. [22] categorizes segmentation algorithms in great detail in the

following way:

1. Pixel based segmentation

(a) Thresholding histograms

(b) Clustering in color space

(c) Fuzzy clustering in color space

2. Area based segmentation

(a) Splitting versus merging

(b) Region growing

(c) Split and merge
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3. Edge based segmentation

(a) Local techniques

(b) Global techniques

4. Physics based segmentation

(a) Inhomogenous dielectrics

(b) General approaches

2.2 Evaluation techniques for segmentation algorithms

A good amount of work has been done in the area of evaluation techniques for segmen-

tation algorithms as well. Some examples as mentioned already in chapter 1 are [11],

[13], [16], [23], [26]. [23] proposes a framework for evaluating image segmentation

algorithms, even though it does not compare any particular segmentation algorithms.

Segmentation algorithms should be evaluated based on three factors - assessment of

precision (reproducibility), assessment of accuracy (agreement with truth), and as-

sessment of efficiency (time taken) for both object recognition and dilineation. They

stress the importance of specifying the application domain before starting to evaluate

the algorithms; they illustrate an example from medical imaging and specify domain

as < A, B, P > where A is an application or task of volume estimation of tumors, B

is a body region, brain, and P is an imaging protocol, example FLAIR MR1 imaging

with a particular set of parameters. They define each of the three factors mentioned

earlier mathematically and prescribe an exact step by step method to collect the

measures and do a paired t-test and analysis of variance to compare two segmenta-

tion algorithms under a given domain < A, B, P >. [26] selects four segmentation

algorithms to represent all classes based on the classification by [7] and [17]. They

1fluid-attenuated inversion recovery magnetic resonance imaging
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compare these four algorithms primarily based on RUMAf or the relative ultimate

measurement accuracy, which is defined as –

RUMAf =
(|Rf − Sf |)

Rf

× 100% (2.2)

where, Rf is the feature value obtained from a reference image and Sf is the feature

value measured from the segmented image.

The literature of particular interest for this thesis is the work by Martin et. al.

[16]. They have created “a database containing ‘ground truth’ segmentations pro-

duced by humans for images of a wide variety of natural scenes.” Some of the experi-

ments in this thesis makes use of their database which contains 200 training and 100

test images and 5 to 10 human segmentations each for all 300 images. [16] describes in

detail the procedure followed and the constraints imposed while collecting the human

segmentations. They convincingly argue and present their thesis that “segmentations

can also be evaluated purely as segmentations by comparing them to those produced

by multiple human observers and that there is considerable consistency among dif-

ferent human segmentations of the same image so as to make such a comparison

reliable.” They propose “a measure that provides an empirical comparison between

two segmentations of an image.” Then they go on to argue such a measure can be

useful in proving the consistency of segmentations done by different subjects and af-

ter having done that the measure can be used to evaluate segmentation algorithms.

Keeping the granularity of segmentation in mind and with a plan not to penalize a

situation where one segmentation is just a refinement of the other, global consistency

error (GCE) and local consistency error (LCE) are proposed as segmentation error

measures that take “two segmentations S1 and S2 as input, and produces a real valued

output in the range [0...1] where zero signifies no error.” GCE and LCE are defined

in terms of local refinement error E(S1, S2, pi) where pixel pi belongs to segment S1

in the first segmentation and to segment S2 in the second segmentation of the same
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image. The local refinement error itself is defined by the following equation–

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|
|R(S1, p)| (2.3)

Global consistency error and local consistency error are then defined in [16] as follows:

GCE(S1, S2) =
1

N
min{

∑

pεP

E(S1, S2, p),
∑

pεP

E(S2, S1, p)} (2.4)

LCE(S1, S2) =
1

N

∑

pεP

min{E(S1, S2, p), E(S2, S1, p)} (2.5)

Notations in Eq. (2.3), (2.4), and (2.5) are summarized below:

\ set difference

|x| cardinality of x

R(S, p) set of pixels corresponding to the connected component

in segmentation S that contains pixel p

n number of pixels in the image

2.3 Implemented segmentation algorithms

Three algorithms are implemented for carrying out experiments – CMeer clustering,

mean shift algorithm, and k-means clustering.

[22] lists various clustering techniques in color space. Similar approach will be

used in this work with the major difference being feature space instead of only the

color space. The feature space may include only the color space or a combination

of both color space and texture space. The algorithm being implemented is derived

from the segmentation technique described in [4] for the mean shift procedure and

has thus been named CMeer from Comanciu and Meer.

The second algorithm is the mean shift algorithm described in [4]. This algorithm

is based on the mean shift procedure discussed in [8]. The basic idea of the mean

shift algorithm is to cluster together the points traversed while computing the ‘peak’.

This algorithm has been analyzed by scientists time and again as evident from the
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1995 paper [2] and 2005 paper [6]. Mean shift algorithm is summarized in [4] as

the following:

“Let xi and zi, i = 1, ..., n, be the d -dimensional input and filtered image pixels

in the joint spatial-range domain and Li the label of the ith pixel in the segmented

image.

1. Run the mean shift filtering procedure for the image and store all the informa-

tion about the d -dimensional convergence point in zi, i.e., zi = yi,c.

2. Delineate in the joint domain the clusters {Cp}p=1...m by grouping together all

zi which are closer than hs in the spatial domain and hr in the range domain, i.e.,

concatenate the basins of attraction of the corresponding convergence points.

3. For each i = 1, ..., n, assign Li = {p|ziεCp}.”

The details of this algorithm lies in the filtering process and is concisely described in

[24] as the following:

“Associate a mean shift point M(xi) with every pixel xi, and initialize it to coincide

with that point. Repeat for each M(xi)

• Determine the neighbors, xj, of M(xi).

• Calculate the mean shift vector summing the derivative of the Epanechnikov

color kernel over the neighbors:

Mv(xi) =

∑n
j=1(xj −M(xi))||

M(xr
i
)−xr

j

hr ||2
∑n

j=1 ||
M(xr

i
)−xr

j

hr ||2
(2.6)

• Update the mean shift point:

M(xi)←M(xi) + Mv(xi) (2.7)

until Mv(xi) is less than a specified epsilon.”

where,
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xi, xj pixels located in the feature space

xr
i the pixel location in the color space

M(xi) the mean shift point associated with xi

Mv(xi) the mean shift vector associated with M(xi)

hr the color bandwidth, i.e., the distance in color space considered nearby

This summary has been taken as the principal guideline for its implementation here.

The third algorithm being implemented is the k-means clustering which is origi-

nally proposed by John Hartigan in [10] and a refined version came out later in 1979

in [9]. The algorithm operates on a space of n dimensions containing m number of

feature points to produce a specified k number of clusters. Euclidean distance metric

is used in the feature space to compare the proximity of points. The method section

of the paper clearly states that “the general procedure is to search for a K-partition

with locally optimal within-cluster sum of squares by moving points from one cluster

to another.” The algorithm is stated in detail in the same paper and is available for

use as part of the Fortran90 library and Matlab statistics toolbox among others. The

work here adapts this k-means clustering algorithm according to the needs of the

experiment. For better variations in the result, the largest segment is split into two

once the size of the smallest segment is below a given number of pixels.

2.4 Implemented texture extraction scheme

Texture can be roughly defined as a collection of primitive structure that presents

itself in a recurring manner. A couple of sample texture images are shown in figure

2.1. Extraction of two kinds of texture features is planned. The first texture feature

is based on Gabor filters, which has been used time and again for feature extraction

as evident from studies conducted in [5], [14], [3] and others. The second is being

referred to as blobworld texture in this work and is based on the texture descriptors

explained in [1].
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Figure 2.1: Uniform texture on left and non uniform texture on right [25]

Gabor function 2 can be written as

g(x, y) = s(x, y)wr(x, y) (2.8)

where s(x, y) is a complex sinusoidal, known as the carrier, and wr(x, y) is a 2-D

Gaussian-shaped function, known as the envelop. Carrier is defined as:

s(x, y) = e(j(2π(u0x+v0y)+P )) (2.9)

where (u0, v0) defines the spatial frequency of the sinusoidal in Cartesian coordinates

and P defines the phase of the sinusoidal. (u0, v0) has an equivalent polar coordinates

given by magnitude F0 and direction ω0. The magnitude and the direction are defined

2Partly based on tutorial at http://mplab.ucsd.edu/wordpress/tutorials/gabor.pdf
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as:

F0 =
√

u2
0 + v2

0 (2.10)

ω0 = tan−1(
v0

u0
) (2.11)

And the Gaussian envelop is defined as:

wr(x, y) = Ke(−π(a2(x−x0)2r+b2(y−y0)2r)) (2.12)

where (x0, y0) is the peak of the function, a and b are scaling parameters of the

Gaussian, and the r subscript denotes a rotation operation defined by–

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ (2.13)

(y − y0)r = −(x− x0) sin θ + (y − y0) cos θ (2.14)

The second texture being used for the experiments in this work is taken from

the literature [1] as mentioned earlier. The second set of experiments in the thesis

plans on using content based image retrieval for evaluation purposes and consequently

making use of this texture feature designed for image querying is appropriate. [1]

proposes the use of texture descriptors that arise from the windowed second moment

matrix. The three texture features to be used are polarity at a selected scale, p = pσ∗ ,

anisotropy defined as a = 1 − λ2/λ1, and the normalized texture contrast, defined

as c = 2
√

λ1 + λ2. To understand these texture descriptors, let’s summarize some

definitions from [1]. Define ∆I as the first difference of L∗ in L ∗ u ∗ v∗ color space

and define Gσ(x, y) to be a Gaussian kernel with variance σ2. Then, the matrix

computed about each pixel in the image is a 2 × 2 symmetric positive semidefinite

matrix, which can be approximated with –

Mσ(x, y) = Gσ(x, y) ∗ (∆I)(∆I)T (2.15)

Eigenvalues ( λ1 ≥ λ2) and the dominant eigenvector ( φ) are computed for the matrix

Mσ(x, y). Local image property called polarity is defined as

pσ =
|E+ − E−|
E+ + E−

(2.16)
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given that E+ and E− are rectified positive and negative parts of their arguments.

Define n̂ to be the unit normal vector orthogonal to φ and then the earlier E terms

can be defined as follows:

E+ =
∑

x,y

Gσ(x, y)[∆I · n̂]+ (2.17)

E− =
∑

x,y

Gσ(x, y)[∆I · n̂]− (2.18)

Now that the polarity is defined, it is computed at every pixel in the image for

σk = k/2, k = 0, 1, ..., 7. All the polarity images are convolved with the Gaussian of

2σk standard deviation. The scale σ∗(x, y) is selected for each pixel for the first value

of σk(x, y) for which the difference between values of polarity is less than 2 percent.

Uniform regions with mean contrast less than 0.1 are set to have a zero scale. Selected

scale at each pixel will give three corresponding texture features– polarity, anisotropy,

and normalized texture contrast.

2.5 Content based image retrieval

Content based image retrieval (CBIR) is also known as Query by image content

(QBIC). The idea of CBIR is to make use of the content of a given image(s) such as

color and texture information to search for a particular or a set of similar image(s)

in a large database. For the purpose of this thesis, Earth mover’s distance has been

used as a metric to make image retrievals as suggested by the work in [19]. Earth

mover’s distance has been defined as the following:

EMD(P, Q) =

∑m
i=1

∑n
j=1 dijfij

∑m
i=1

∑n
j=1 fij

, (2.19)

where fij is the optimal flow between clusters pi and qj and dij is the ground distance

between clusters. The ground truth content based image retrieval database of 675

images from the University of Washington 3 has been used to make image retrievals.

3http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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Retrieval precision is then recorded for evaluation purposes, where precision is defined

as follows:

precision =
number of relevant images retrieved

number of images retrieved
(2.20)

14



CHAPTER 3

PROBLEM STATEMENT

Different segmentation algorithms perform differently under different conditions. It

is important to evaluate them based on some criteria to be able to decide which one

to use for a given application domain. The problem being addressed in this thesis

is the evaluation of mean shift segmentation algorithm as compared to two other

simpler segmentation algorithms and in conjunction with three color features and

two texture extraction schemes using two different evaluation procedures. The first

evaluation method is to make use of human segmented images available in the Berkeley

Segmentation Dataset. Using the error measure described in [16], the segmentation

results can be compared against the human segmented images and consequently can

be used to rank the segmentation techniques. The second evaluation method is to

make use of a content based image retrieval system using the Earth Mover’s distance

as a metric from [19] in conjunction with the implemented segmentation techniques.

Each experiment, an algorithm with a specified list of features, will then be evaluated

based on the precision of image retrieval. Once these two kinds of evaluation are

done on the experiments designed using three algorithms, three color spaces, and two

texture extraction schemes, possible correlation between the performance of these

experiments under the two previously mentioned evaluation mechanisms is worth

looking into.

The experiment design is listed in table B.1. Every experiment is carried out for

the set of parameters listed in table A.1. The comparison can then be made between

all the experiments listed in table B.1 and depending upon the statistical tests and
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results, various insights can be offered.

3.1 Hypothesis

The following three hypotheses are proposed in this thesis:

1. Hypothesis 1

Based on the comparison to human segmented images using LCE and GCE

measure described in section 2.2, none of the experiments in table B.1 are

statistically better than the rest.

2. Hypothesis 2

Based on the precision of content-based image retrieval as described in section

2.5, none of the experiments in table B.1 are statistically better than the rest.

3. Hypothesis 3

There is no correlation between the experiments that do significantly better in

hypothesis 1 and hypothesis 2 if any.
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CHAPTER 4

METHODS, RESULTS AND DISCUSSION

Two evaluation mechanisms will be used to study the selected segmentation algo-

rithms, more specifically experiments based on three algorithms, three color spaces

and, two texture features. The focus of this thesis is primarily on the performance

of an algorithm and feature space combination under two different evaluation mech-

anisms. Implementation of the chosen algorithms and extraction of texture features

are equally important. Their performance against human segmentation and for image

retrieval remains the interest of this study. Next, methodology of this study is sum-

marized in three groups and in a step-by-step manner along with the corresponding

results and discussion.

4.1 Methodology for hypothesis 1

1. Implement the algorithms described in section 2.3. Choice of programming

language is C++/GNU compiler and open source library called OpenCV 1 is to

be used for the ease of handling image files.

2. Sample random images from the training set and fine tune the parameters.

3. Segment 200 training images available in the database mentioned in [16] with

each of the experiments designed in table B.1.

4. Collect GCE and LCE measure described in section 2.2 for all the experiments

in table B.1 over 200 training images thereby adjusting any parameters and

1Made available by Intel. URL: http://www.intel.com/technology/computing/opencv/
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then collect the error measure for the 100 test images using parameters set

earlier during training.

5. Calculate the LCE and GCE errors for all images against all ground truth

segmentations and pick the minimum error to offer the best possible match

between the algorithmic and human segmentations.

6. Test hypothesis 1 using two separate one-way ANOVA tests, first with GCE

error summary and second with LCE error summary.

7. Perform paired t-squared tests between experiments of interests to draw con-

clusion on whether or not the difference between mean errors is statistically

significant.

4.2 Results for hypothesis 1: Comparison with human segmentation

Various combinations of color space and texture features for three algorithms dis-

cussed earlier in chapter 2 make up the 21 experiments listed in table B.1. The

object here is to compare the performance of segmentation algorithms in different

color spaces and with two different texture features against the ground truth seg-

mentations produced by humans. Two error measures called Local Consistency Error

(LCE) and Global Consistency Error (GCE) discussed in section 2.2 are used to

gauge the relative performace of each of the experiment. The boxplot summary of

experiments for GCE is given in figure C.1 in the appendix and for LCE is given in

figure D.1.

4.2.1 ANOVA on 21 experiments

The first question that comes to mind after looking at the boxplot summary of errors

in C.1 and D.1 is whether any of the experiment is better. The first hypothesis

makes a claim that none of the experiments is significantly better than the rest. At
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Table 4.1: ANOVA on GCE of all 21 experiments

Source of Variation SS df MS F P-value F critical

Between Groups 10.91 20 0.55 27.35 1.06× 10−90 1.58

Within Groups 41.47 2079 0.02

Total 52.38 2099

Table 4.2: ANOVA on LCE of all 21 experiments

Source of Variation SS df MS F P-value F critical

Between Groups 12.62 20 0.63 38.65 6.4× 10−127 1.58

Within Groups 33.94 2079 0.02

Total 46.56 2099

this point, one-way ANOVA test seems appropriate to test the null hypothesis that

all the group means are equal. Assuming α = 0.05, the summary tables for ANOVA

are presented in table 4.1 and 4.2. In tables 4.1, 4.2 and other similar tables later,

SS stands for sum of squares, df stands for degrees of freedom, MS is mean squared,

and F is the F-value. The p-value of 1.0 × 10−90 rejects the null hypothesis and it

can be claimed that there exists at least one pair of experiments with statistically

significant difference in group mean GCE. Similarly, the p-value in case of LCE is

6.4× 10−127 and it also suggests the same.

4.2.2 Best Experiment Versus the Worst

ANOVA only makes a statement about whether or not there exists a pair of exper-

iments with statistically significant difference in mean errors. More information is

needed in order to figure what algorithm, color space and texture features should

be paid more attention to. ANOVA and paired t-test will never tell us how the ex-

ploited algorithms, color spaces, and textures are contributing to the performace of
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each experiment, but the paired t-test will at least determine what if any experiment

should be preferred over another given the kinds of data set that was used for these

experiments. The box plots in the appendix summarizes GCE and LCE for all the

experiments listed in table B.1. Any pair that is of interest in this summary should

be looked into using a paired t-test. This will determine whether or not the error is

significantly different, and consequently whether a given experiment is statistically

better and should be preferred over another can be established. The maximum error

difference observable is between the mean shift algorithm in Luv color space and the

k-means algorithm in Luv color space and with blob texture feature, which has been

separately plotted in figure 4.1 for comparison and descriptive statistics is given in

table 4.3. The difference in mean errors is obvious, 0.16 and 0.41 for GCE and 0.19

and 0.46 for LCE, but attention must be paid to standard deviation as well. Carry-

ing out a paired t-test between experiment 3 and experiment 15 produces the result

shown in table 4.4. The test makes it possible to reject the null hypthesis that the

error means are equal and that the chance alone could cause the observed difference.

It is possible to accept the alternative hypothesis that experiment 3 has a smaller

mean error than experiment 15 and consequently has done a better job at segmenting

the test images.

4.2.3 Best Experiment Versus the Second Best

Earlier paired t-test established that experiment 3 is significantly better than experi-

ment 15 in the test set of images provided by Berkeley Segmentation database. That

was the comparison between the experiments with the least mean GCE and LCE er-

rors and with the greatest mean GCE and LCE errors. This confirms the statement

of ANOVA test that there exists at least one pair of experiments with significantly

different mean errors.

Another pair of experiments that is of interest are the ones with most similar error
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Figure 4.1: GCE and LCE for the experiment with the best and the worst LCE and

GCE mean errors; Meanshift|Luv Vs KM|Luv+Blob

Table 4.3: Descriptive Statistics for GCE and LCE of Meanshift|Luv (Exp3) and

KM|Luv+Blob (Exp15)

Exp3: GCE Exp3: LCE Exp15: GCE Exp 15: LCE

Mean 0.19 0.16 0.46 0.41

Median 0.19 0.16 0.51 0.44

σ 0.09 0.08 0.19 0.17

Minimum 0.03 0.02 0.02 0.02

Maximum 0.41 0.38 0.73 0.67

Count 100 100 100 100
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Table 4.4: Paired t-test between GCE errors and between LCE errors of

Meanshift|Luv (Exp3) and KM|Luv+Blob (Exp15)

GCE LCE

Exp3 Exp15 Exp3 Exp15

Mean 0.1908 0.4636 0.1559 0.4084

Variance 0.0085 0.03467 0.0062 0.0287

Observations 100 100 100 100

Hypothesized Mean Difference 0 0

Observed Mean Difference -0.2729 -0.2524

Variance of the Differences 0.0249 0.0223

df 99 99

t Stat -17.29 -16.90

P (T ≤ t) two-tail 1.13× 10−31 6.15× 10−31

t Critical two-tail 1.9842 1.9842

Figure 4.2: Correlation of GCE errors of Experiment 3 and Experiment 5
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Figure 4.3: GCE and LCE for CMeer with no color space and only Blob texture

measures. Going back to the boxplot summary in figures C.1 and D.1, the best

performing experiment is 3 and experiment 5, which is again the meanshift algorithm

in Luv color space but with added blob texture feature, is the second best. Paired

t-test between these two experiments can be an option but checking for correlation

in errors makes sense since these experiments use the same algorithm and the same

color space. The second one has an additional texture information and is surprisingly

performing slightly worse. The correlation between the errors is shown in figure 4.2.

The correlation is obviously due to the use of common algorithm and shared color

space. However, texture is hindering rather than helping. One of the reasons could

be that images in the database are separable in color spaces but lack much texture.

Figure 4.3 shows the error in segmentation while only blob texture feature and no

color space is used. The higher error rate in comparison to color space speaks of

the lack of separability of the images in the database based on texture. Even more

likely is that the interaction between the color space and texture is not helping to

produce better segmentation. The combined feature space is doing worse than the
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Figure 4.4: Overall GCE measure for the three Algorithms

color space and almost similar to blob texture space on its own. This will help explain

the increased error of experiment 5 in comparison to experiment 3.

4.2.4 Comparison between Algorithms

There are three algorithms and each of them have been used in seven experiments.

Using the error measure for all seven experiments, it might be possible to do an

ANOVA test to see if any of the algorithms is significantly better than the rest. A

tougher measure of the two, GCE, is used for this test. Figure 4.4 summarizes the

GCE error for the three algorithms used in this work over 7 experiments. It can be

inferred from the table 4.5 that there exists a pair with significantly different error

means. Paired t-test between the algorithms with the largest difference in error means

and between the smallest difference in error means are shown in table 4.6. It can be

concluded that for the given set of test images, Mean Shift algorithm is significantly

better than the K-means but not significantly better than CMeer algorithm. However,

it is necessary to be cautious before generalizing the result. Data set is limited, images

have not been well separated based on texture, and there is no definite knowing how

color space and texture interact.
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Table 4.5: ANOVA for Comparison of Algorithms using GCE

Source of Variation SS df MS F P-value F critical

Between Groups 9.45 2 4.75 237.64 9.4× 10−94 3.00

Within Groups 41.89 2097 0.02

Total 51.39 2099

Table 4.6: Paired t-test between Mean Shift Algorithm and K-means and Mean Shift

and CMeer based on GCE

K-Means Mean Shift CMeer

Mean 0.3882 0.2364 0.2371

Variance 0.0325 0.0134 0.01404

Observations 700 700 700

Hypothesized Mean Difference 0 0

Observed Mean Difference 0.1518 0.000633

Variance of the Differences 0.0005 0.005239

df 699 699

t Stat 26.57 0.2315

P (T ≤ t) two-tail 4.69× 10−108 0.82

t Critical two-tail 1.96 1.96
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Table 4.7: Objects being retrieved and their count in the database of 675 images

Objects elk flowers bush grass sidewalk car rocks ducks mountains ocean

Count 7 71 22 142 76 30 37 9 9 22

4.3 Methodology for hypothesis 2

1. Produce the segmentation results for all 675 images in the database for all 21

experiments.

2. Do content based image retrieval based on metric discussed in section 2.3 to

make retrievals of 20 images at a time with a sample tagged image.

3. Using the provided class labels in the database, record precision values for

retrievals with 10 separate sets of query images for all 21 experiments. Compute

average retrieval precision for each set or query object.

4. Compute median normalized error, where error is defined as error = 1 −

precision and normalized error is defined as norm error = error
best error

.

5. Provide a summary of boxplots of normalized retrieval errors for all experiments

and offer insights on segmentation performance of various experiments.

4.4 Results for hypothesis 2: Content based image retrieval evaluation

A summary of boxplots of normalized retrieval error can be seen in figure E.1. First

retrieval error needs to be defined. Ten objects listed in table 4.7 are retrieved using

segmentations produced by all 21 experiments in table B.1 for all 675 images in the

database. A retrieval of 20 images is done at a time for all query images and precision

values are recorded. Precision is calculated after leaving out the query image itself.
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Table 4.8: Paired t-test between retrieval precision of Meanshift|Luv (Exp3) and

KM|Luv+Blob (Exp15)

Exp15 Exp3

Mean 0.3967 0.3873

Variance 0.0758 0.06695

Observations 425 425

Hypothesized Mean Difference 0

Observed Mean Difference 0.009412

Variance of the Differences 0.012317

df 424

t Stat 1.74

P (T ≤ t) two-tail 0.08

t Critical two-tail 1.96

Precision values over all queries are averaged to produce a precision for a given query

object. This is done for 10 objects and all 21 experiments. Error is simply calculated

as error = 1 − precision and it is normalized by the minimum error value. This

minimum is the minimum error value out of 21 experiments for a given query object.

This means the normalized retrieval error will be greater than 1. The rationale is

that the availability of a given object in the database varies tremendously as shown

in table 4.7.

As can be seen in table 4.9, the mean error of normalized retrieval errors for all

the experiments range from 1.019302 to 1.110453. The range is small, they have large

standard deviation values, and the size of retrieval dataset is only 675. Unfortunately,

these limitations restrict us from drawing any definite conclusions. Neither any ob-

servable difference in performance can be seen in this table and in the summary in
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figure E.1. Paired t-test can be carried out between experiments of interests with

retrieval precision values recorded during image retrieval using all the images in the

database as a query image. Table 4.8 shows paired t-test between experiment 3,

Mean shift in Luv color space and experiment 15, k-means in Luv color space and

with blob texture. It can be concluded that there is no statistically significant dif-

ference in retrieval errors between these two designed experiments. Similarly, all the

mean error values listed in table 4.9 are quite close together and other similar results

are expected. Null hypothesis that there is no significant difference in retrieval errors

can be accepted.

4.5 Methodology for hypothesis 3

1. Make a scatterplot of global consistency errors and normalized retrieval error

for all the experiments.

2. Offer insights on the error results of the experiements while comparing errors

against human segmentation with retrieval errors from content based image

retrieval.

4.6 Results for hypothesis 3: Correlation analysis

A scatterplot of correlation between the global consistency error defined in section

2.2 and the normalized retrieval errors defined earlier can be seen in figure 4.5.

Unfortunately, there is little variation in retrieval errors to draw any conclusions.

A slightly negative correlation is observed but there are only 21 data points and

the difference in median retrieval errors is very small. Since a positive correlation

trend has not been observed, it may be possible that better segmentation based

on ground truth human segmentation do not necessarily correspond with a better

retrieval precision.
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Table 4.9: Retrieval Error Vs Normalized GCE

ExpID Mean Retrieval Error Mean Normalized GCE

1 1.051546 1.206044

2 1.054054 1.315747

3 1.076282 1

4 1.08541 1.380215

4.2 1.083418 1.325878

4.3 1.09248 1.367502

5 1.117302 1.079965

6 1.072058 1.272396

7 1.053196 1.332964

8 1.072182 1.300323

9 1.080345 1.436630

9.2 1.092545 1.386006

9.3 1.110453 1.378901

10 1.097411 1.829784

11 1.037475 1.897876

12 1.031786 1.964769

13 1.04679 1.913009

14 1.019302 2.115410

14.2 1.059316 1.951500

14.3 1.052586 1.973739

15 1.058196 2.430452
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Figure 4.5: Correlation between global consistency error and normalized retrieval

error

4.7 Summary

The first evaluation technique made use of the “Berkeley Segmentation Dataset and

Benchmark” to compare algorithms among each other using human segmentation.

The training set consists of 200 color images and the test set consists of 100 color im-

ages from the Berkeley Image Dataset. The results produced by different experiments

are used to calculate global consistency error or GCE and local consistency error or

LCE. The second technique did content based image retrieval using Earth Mover’s

Distance metric coupled with each of the segmentation experiments and evaluated

segmentations based on the precision of image retrieval. Retrieval error is defined as

1− precision and is normalized by the minimum error while querying a given object.

The correlation between the errors of 21 experiments against human segmentations

and while doing content based image retrieval is also observed. The database of 675

images provided by the University of Washington is used for CBIR purpose.
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CHAPTER 5

CONCLUSIONS

Segmentation cannot be evaluated in a single universal scale. Given a domain to

work with, segmentation for a particular purpose can be improved by choosing an

appropriate algorithm, applicable feature space, and optimized parameter set. The

experiments carried out to test the first hypothesis in this work performed better than

the random segmentation presented in [16] and worse than the human segmentations.

It follows then that the algorithm and feature space used were productive in the

segmentation process. However, the lack of applicability of extracted texture features

was quite surprising. The possibility of fine tuning the texture extraction is endless

and an exhaustive search was not done. There may still exist a better parameter

set. On grounds of error calculation of segmentation based on texture alone, it can

be claimed that the database under consideration was not particularly well suited for

the extracted texture features. The fact that there was not a precise control over

the number of segmentations produced by two of the algorithms and that the error

calculation would vary depending on the number of segmentations in given two images

made it more difficult to compare and draw concrete conclusions. ANOVA and paired

t-test helped in making some comparisons but there is a need to be cautious while

interpreting the results. Nevertheless, it is clear that various low level features play

different roles in different kinds of images and finding the right set of combination is

a responsibility of the researcher for a given database. It can be inferred from this

work that it may not be necessarily better to be using more features but finding the

appropriate ones is quite important. Not only appropriate features are important but
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using a good segmentation algorithm is critical.

Based on the experiments in this work, no difference in retrieval precision has been

found between all of the designed experiments. The range of normalized retrieval

error is quite small. The computation time spent on mean shift algorithm is several

times more than the k-means algorithm, without any gain in retrieval precision. It is

recommended that k-means be used in a good feature space.

Any relationship in the performance of experiments under the two evaluation

mechanisms is uncertain. A slight negative correlation is observed but no certain

claims can be made.
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APPENDIX A

PARAMETER SET TABLE

Table A.1: Parameter set table

Algorithm Parameter Set

Mean shift ε = 0.05, hs = 8, hr = 8, minPX = 900

CMeer hs = 8, hr = 8, minPX = 900

K-means K = 8

The notations are explained in section 2.3. minPX is the minimum number of

pixels a segment must have in order for it not to be merged with a larger segment.
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APPENDIX B

EXPERIMENT TABLE

The number of rows in table B.1 is the number of experiments carried out in this

thesis. Each tick mark signifies the feature selected within that category to create the

feature space for the experiment. Not all combinations are exhausted and it is not

necessary to carry out all possible experiments. Each of the experiments is carried

out for the selected parameter set mentioned in table A.1. Abbreviations d8s1 stands

for Gabor filter in 8 directions and with 1 scale of window 5x5 for a total of 8 texture

dimensions, d4s2 stands for 4 directions and 2 scales of window 5x5 and 7x7 for a

total of 8 texture dimensions, and d4s3 stands for 4 directions and 3 scales of window

5x5, 7x7, and 9x9 for a total of 12 texture dimensions.

38



Table B.1: Summary of Experiments

Algorithms Colorspace Texture Exp ID

RGB HSV Luv None Gabor Blob

Mean shift

√ √
Exp1

√ √
Exp2

√ √
Exp3

√
d8s1 Exp4

√
d4s2 Exp4.2

√
d4s3 Exp4.3

√ √
Exp5

CMeer

√ √
Exp6

√ √
Exp7

√ √
Exp8

√
d8s1 Exp9

√
d4s2 Exp9.2

√
d4s3 Exp9.3

√ √
Exp10

K-means

√ √
Exp11

√ √
Exp12

√ √
Exp13

√
d8s1 Exp14

√
d4s2 Exp14.2

√
d4s3 Exp14.3

√ √
Exp15
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APPENDIX C

GCE ERROR SUMMARY

Figure C.1: Summary of Global Consistency Error (GCE) measure for all the exper-

iments in B.1
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APPENDIX D

LCE ERROR SUMMARY

Figure D.1: Summary of Local Consistency Error (LCE) measure for all the experi-

ments in B.1
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APPENDIX E

IMAGE RETRIEVAL ERROR SUMMARY

Figure E.1: Summary of Normalized image retrieval error for all the experiments in

B.1
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