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CHAPTER 1

Introduction

Advances in sensing and actuation have led to increased capabilities in design, mon-

itoring and manipulation of complex physical systems. These advances offer enormous

opportunities for applications in every scientific discipline. Embedded sensors and actua-

tors can be found in all walks of our lives, in our houses, transportation, communication,

entertainment, and manufacturing. Embedded systems such as sensors, actuators, and con-

trollers interact with the physical world to perform specific functions. Most modern engi-

neering systems contain embedded sensors and actuators, and it is expected that reliance

of large number of such devices working together in future applications will be enormous.

With growing number of applications, there is a need to network a number of embedded

sensors and actuators to perform complex tasks. One application that has increasingly used

embedded systems is the automotive industry. Modern automobiles contain a network of

embedded sensors and actuators to provide a safe, comfortable driving experience.

A sensor network is a passive system capable of monitoring the state of the environment

or a physical system, but it is unable to change it. Actuatorscan change the behavior of the

underlying physical system or environment based on information from sensor networks.

Although there are situations where only sensor networks are needed, for example secu-

rity monitoring, surveillance, etc., there are a number of physical engineering applications

where network of actuators must be used in conjunction with sensors.

Recent advances in sensor and actuator technology have provided us with cheap, cus-

tomizable, and embedded sensor and actuator systems which are capable of wireless com-
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munication with each other. Existing physical systems are using SANs to operate efficiently

and improve performance. For example, modern aircraft control systems extensively use

SANs and make autonomous decisions without intervention from the human operators.

There are a number of emerging applications areas which wereconceived with SANs as a

primary backbone. For example, formation of low cost unmanned aerial vehicles (UAVs)

that are being conceived to perform surveillance and reconnaissance operations will require

extensive use and development of SANs.

Research activities in SANs is growing at a tremendous pace due to their importance

in growing number of applications. In particular there has been a surge in research activity

in wireless sensor networks due to their enormous advantages; deploying and maintain-

ing a wired communication network of a large number of nodes is impractical. A recent

compilation of results dealing with a number of issues in wireless sensor networks can be

found in [1]. Discussions, existing results, and future challenges on a number of key issues

in wireless sensor networks is given by researchers in the field. Issues such as network

protocols, data storage and manipulation, security, energy efficiency, localization and man-

agement. The book also discusses two useful applications ofsensor networks, surveillance

and habitat monitoring.

Some key issues arising from the use of sensor networks in control applications are

discussed in [2]. It discusses how the classical control theory is insufficient when model-

ing distributed control problems that involve issues such as communication delay and time

synchronization between components. It presents a model for the distributed system com-

posed of continuous time-trigger components at the low level and discrete event-triggered

components at the high level. Opportunities and challengesrelated to mobile SANs with

micro sensing and actuation are discussed in [3]; existing and emerging technologies are

discussed giving future directions.

Recent advances in wireless technology has fueled the growthof wireless sensor net-
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works which has attracted considerable research attention. Low-cost sensors equipped with

wireless network interfaces have paved the way for their usein large-scale sensor networks

consisting of hundreds to thousands of sensor nodes. Growing applications of such large

sensor networks are arising in many areas such as military, industry, and homes. Protection

of military establishments, security of nuclear installations, power plants, border surveil-

lance are conceived as some critical areas where sensor networks can provide significant

benefits. A general model of a real-time system consisting ofa number of sensors and

actuators is shown in Fig. 1.1.

SENSOR SENSOR SENSOR SENSOR SENSOR

ACTUATOR ACTUATOR ACTUATOR

REAL-TIME CONTROL SYSTEM

Figure 1.1: Real-time system model

Sensing and actuation are prevalent in nature. Sensors detect the environment, whereas

actuators affect the environment. Combined together, a network of sensors and actuators

can mutually complement the capabilities of sensors and actuators which can be used in-
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telligently used in a number of applications. Sensors do nothave the ability to change the

environment. Actuators can enhance the sensing capabilityby opening valves to transport

fluid at a prescribed rate, pointing cameras, aiming antennae at correct locations, and in

some cases repositioning of sensors to enhance sensing in a particular direction. As a re-

sult, the idea of a network of sensors and actuators to perform certain key functions have

captured the imagination of a lot of researchers. Contributions from a number of fields are

necessary to build efficient and reliable sensor and actuator networks.

Sensors and actuators play an essential part in almost all engineering systems. Man-

ufacturing plants, chemical plants, air traffic control systems, transportation vehicles such

as airplanes, ships, automobiles, and many more have sensorand actuators embedded in

them. Feedback is an integral part of many of these engineering systems and involves the

use of sensors and actuators. Feedback is responsible for normal operation of a process

even in the event of a number of variations such as poor model of the process, disturbances

acting on the process, etc. The sensor senses the output of a process or a plant and the

actuators provide adequate correction to keep a required output variable at a constant value

or vary it in a prescribed way. Therefore, all feedback control systems involve sensors and

actuators in their loop. For example, a modern aircraft consists of a large number of sensors

and actuators and as a result a substantial number of feedback control loops which render

modern aircraft to take-off, fly, and land with minimal humanintervention.

Although there is a potential for substantial use of real-time sensor and actuator net-

works in a large number of applications, our ability to make these networks reliable, ro-

bust, and perform in a satisfactory and safe manner pose significant challenges. Some of

the challenges include power consumption, data storage andmanipulation, network proto-

cols, security, timeliness of obtaining data, scheduling tasks in real-time without missing

deadlines, communication, and configuration. Substantialresearch activity is being carried

out in these areas to design and develop efficient sensor and actuator networks.
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The focus of research in this study is on real-time scheduling of sensor and actuator net-

works. These networks can improve their performance by increasing the sampling and ac-

tuation rates in the feedback control systems. In sensor andactuator networks, and in many

other real-time applications, tasks need to be accomplished before their deadlines within

the available amount of resources. There is definitely a trade-off between the schedulabil-

ity of a given set of task and task rates with that of the available resources; if we have a

large amount of resources, we can schedule any task set at higher rates without any prob-

lem. Therefore, the problem in real-time scheduling is how do we optimally assign task

rates with higher resource efficiency without missing the task deadlines. Assigning tasks

based on worst case scenarios is computationally feasible when resources are available but

is highly inefficient. Dynamically assigning task rates as well as resources can generally

achieve higher resource efficiency and good performance.

Real-time scheduling of tasks to achieve higher sampling rates has been studied in the

recent past. Some key contributions include computation ofoptimal task frequencies by

minimizing a performance index. Typically, worst case execution times were used in the

analysis and scheduling of tasks. This leads to inefficient use of resources when the worst

case task execution times is seldom encountered. In this research, use of a execution times

that are below the worst case times but above the best case execution times is investigated. It

is shown that higher frequencies can be achieved while minimizing the performance index.

One problem that arises when considering execution times smaller than worst case is that

when the worst case execution of a task arises, then such a task overrun must be handled

and deadlines must be guaranteed. We investigate several overrun handling strategies and

show that the proposed approach leads to higher frequenciesand more efficient usage of

resources.

The remainder of the thesis is organized as follows. In Chapter 2, background descrip-

tion of three key areas, real-time systems, feedback control systems, and real-time schedul-
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ing, is given. Real-time task scheduling of sensor and actuator networks in feedback control

systems is given in Chapter 3. Real-time control system performance is described in terms

of minimization of a performance index. Real-time scheduling and how the task execution

times affect the performance index as well as optimal frequencies is described. Efficient

overrun handling approaches are discussed and analyzed; these allow scheduling of tasks

with average execution times and efficiently handling overruns while guaranteeing hard

deadlines for the tasks. A summary of the work accomplished and some potential future

work in this area is given in Chapter 4.
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CHAPTER 2

Background

In the following, we give a description of three key areas: Real-time systems, feedback

control systems, and scheduling. Section 2.1 discusses keyaspects of real-time systems,

such as its definition, various components, and its importance in many practical applica-

tions. Section 2.2 gives a brief review of real-time feedback control systems including a

summary of key components that are involved in the design andimplementation of a feed-

back control system. Section 2.3 gives a brief description of the scheduling theory with

most commonly available algorithms, their characteristics, and advances made in schedul-

ing theory over the last thirty years.

2.1 Real-Time Systems

Real-time systems are defined as those systems in which the correctness of computa-

tion depends not only on the logical result of the computation, but also on its timeliness [4].

Real-time systems vary from a small micro-controller and a limited software situated within

products such as a microwave oven to a number of microprocessors working in parallel to

control a large factory automation floor where a variety of time-critical tasks are sched-

uled. The main difference between real-time systems and theother computer systems is

the importance of correct timing behavior in addition to providing correct logical results.

Conventional real-time systems have been designed for applications such as process con-

trol, command and control, automation, etc. Real-time systems are becoming increasingly

more complicated with increasing demand for higher productivity and improved perfor-
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mance from physical engineering systems.

The two main components that characterize real-time systems are time and reliability.

Time is a very important resource to manage in real-time systems. The assignment and

scheduling of the tasks must be done before their deadlines.Messages must be sent and

received in a timely manner between the interacting real-time tasks. Reliability is an im-

portant component of any real-time system since a failure ofexecuting a task may lead to

adverse situations such as extreme economical disaster andloss of human life.

Many engineering applications involve a controlling and a controlled system. The con-

trolled system is typically a physical engineering system where a process or a product is

being made. The controlling system is a real-time system that provides inputs to the process

based on available sensor signals. The controlling system interacts with its environment us-

ing information about the environment available from various sensors. Timely processing

of sensed information and decisions made based on this information is critical for the en-

vironment to behave in the required manner. The most common constraints [5, 13] for

real-time computer tasks can be classified according to their relative importance, which is

the priority level, and further according to how they are timed, that is, periodic, aperiodic,

or sporadic. The damage that can occur when timing constraints are not met depends on the

application; it can be disastrous for a real-time system that is controlling a nuclear power

plant.

The main focus areas in which research is being actively pursued in real-time systems

can be categorized into the following [13]: (1) Scheduling,(2) Fault tolerance, (3) Real-

time computer architectures, (4) Real-time operating systems, and (5) Real-time commu-

nication. The scheduling and task assignment problem in real-time systems involves the

process of determining when (time) and where (processor) each task will be executed given

a set of real-time tasks and the resources in the system. A real-time system is said to be

fault tolerant if it delivers the expected service, i.e., the execution of tasks in a timely and
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reliable manner, even in the presence of faults in its hardware and/or software. Predictable

timing behavior even in the presence of sensors and/or actuator faults is sought of fault

tolerant real-time systems.

Real-time architectures must provide the speed and predictability in executing tasks in

a timely manner, handling interrupts, and monitoring and sensing the physical process it

is controlling. Dedicated real-time architectures can differ significantly from architectures

used in other computing environments. For example, real-time systems try to avoid the use

of caches because of uncertainty of cache hit/miss causes unpredictable memory access

delays and thus delays in execution of timed tasks.

A real-time operating system differs from the general purpose operating system in that

many of the issues of general purpose operating systems may not be relevant to real-time

systems. For example, issues such as file system support, virtual memory, and security are

not very important for real-time systems. However, it is crucial to have reliable handling

of interrupts, and scheduling with timing constraints. Time constrained communication is

essential for all real-time communications. For example, in a physical process an actu-

ator input is generated in a periodic manner based on signalsfrom different sensors; so

communication between sensors and the processor, processing of sensor signals, commu-

nicating the processed input to the actuators must all be performed within a given time

period. Hence, communication rate and its reliability is crucial in all real-time tasks.

2.2 Feedback Control Systems

In most physical systems, the dynamics of the underlying process is continuous; for

example, aircraft systems, automobile systems, robots, manufacturing processes, chemical

processes, etc. Although the dynamics is continuous, the control algorithm implementa-

tion, to achieve the desired behavior for the physical systems, almost always is digital due to

widespread use of digital computers. For large-scale control systems consisting of SANs,
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where a number of small systems are being controlled, such ascontrol of an aeroplane,

there are a number of tasks that need to be performed by the controller, i.e., the digital

computer that is controlling the physical system. These tasks generally have different pri-

ority of implementation and for some it is critical to maintain exact timing. Issues such

as acquisition of sensor data, processing of the data, design of the control algorithm, com-

putation of the control algorithm, and task scheduling affect the system performance. The

critical part of all real-time control systems is task scheduling based on their priorities. An

approach that would enhance the system performance requires consideration of the control

algorithm, sensor and actuator networking issues, task scheduling in conjunction with the

available computing resources.

2.2.1 Components of Real-Time Control Systems

A typical real-time control system is shown in Figure 2.1. The function of each com-

S/H 
and
A/D

Digital

Computer D/A Hold Actuator Plant

Transducer
   or sensorFilter

Clock

Digital Computer

Feedforward
   controller

Input Output

Disturbance or noise

Noise

Figure 2.1: Block diagram of a real-time control system

ponent of the real-time control system shown in Figure 2.1 are explained briefly in the

following:
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• Sample and Hold Circuits (S/H): Most of the physical systems are analog systems

and the variables associated with the system are continuousin nature and as such

cannot be fed directly to the digital computer for processing. The analog signal must

be converted into a form suitable to the digital computer.Sampleandhold operations

are the first operations in the process of conversion. A sampler in a digital system

converts an analog signal into a series of pulses. And the hold circuit holds the value

of the sampled pulse over a specified period of time.

• Analog to Digital Converter (A/D) : An analog-to-digital converter, also called an

encoder, is a device that converts an analog signal into a digital signal, usually a

numerically coded signal. The analog signal can (theoretically) take values with

infinite precision whereas the digital signal can take a value from a finite set ( as

decided by the “word” capacity of the processor used). So, the process of converting

an analog signal into a digital signal is an approximation. This approximation process

is calledquantization. Sample and hold circuit mentioned earlier is often an integral

part of commercially available A/D converters.

• Digital Computer : Digital computer or microprocessor shown in performs all the

functions such as processing of data, computation of the control algorithm, and

scheduling of all the tasks in a timely manner. Often, the reference signal that the

output of the plant is supposed to follow is also generated inthe digital computer or

microprocessor. The digital computer issues a control signal to the actuator through

the necessary D/A conversion in a timely sequenced fashion.Such systems are also

called computer-controlled systems.

• Digital to Analog Converter (D/A) : The Digital-to-Analog Converter is an inter-

face between digital computer and the actuator, which is an analog device in many

applications.
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• Hold Operation: Sampling operation mentioned earlier produces a series ofpulses

which are instantaneous values of the signal being sampled.The function of the

hold circuit is to reconstruct the analog signal that has been sampled and fill the

spaces between the sampling periods. The hold circuit extrapolates the output signal

between the successive points according to some prescribedmanner. When the signal

is held constant between samples, the hold circuit is calleda zero order hold, which

is generally used in control systems. First order and higherorder hold circuits are

also available.

• Clock: The clock shown in the figure serves to streamline the operation of the dig-

ital computer and the A/D and D/A operations. The idea is thatone operation is

performed for each clock-tick. All the time periods are evaluated in terms of clock-

ticks.

• Actuator : Actuator is an element that manipulates one or more of the variables of the

plant being controlled in such a way that the required outputis achieved. Actuator

receives a signal proportional to the difference between the reference input and the

output.

• Plant or Process: A plant is any physical object to be controlled. The objective is

to maintain one or more of the variables associated with the plant at their desired

values. These variables could be temperature, pressure, flow rate, position, velocity,

etc. For example, a furnace (temperature is the controlled variable), chemical reactor

(concentration and amount of the reactants could be controlled variables), aircraft

dynamics, automobile dynamics, etc.

• Transducer or Sensor: A transducer/sensor is a device that converts an input signal

in one form into an output signal of possibly another form. Sensors are required in

control systems to measure the output.
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• Filter : The feedback signal coming from the sensor of a controlled variable contains

useful information related to disturbances (external disturbances and variations in

hardware parameters). It may often include high frequency noise introduced in the

process of measurements of the output taken using sensors. Such noise signals could

be too fast for the control system to correct. Therefore,low-pass filteringis often

needed to allow good control performance.

• Feedforward controller: When a disturbance enters the process, the controlled vari-

able deviates from its desired value and, on sensing the error, the feedback controller

manipulates the process input in such a way favoring the reduction of error. The main

limitation of a feedback control system is that in order for it to compensate for dis-

turbances, the controlled variable must first deviate from its desired value. Feedback

control acts upon an error between the set-point and the controlled variable. This

means that once a disturbance enters a process, it must propagate through the pro-

cess and force the controlled variable to deviate from the set-point before corrective

action can be taken. Feed-forward control compensates for disturbances before they

affect the controlled variable. In this scheme, the disturbances are measured before

they enter the process and required value of the manipulatedvariable to maintain the

controlled variable at its desired value is calculated; implementation of such a scheme

often results in undisturbed controlled variable. Successof disturbance feed-forward

control schemedepends on the ability to:

– measure the disturbance; and

– estimate the effect of the disturbance on the controlled variable, so that it can

be compensated.

In many real-time control systems, the feed-forward control scheme also resides in

the computer controlling the process.
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2.3 Scheduling

Scheduling theory addresses the problem of meeting the specified timing requirements.

To satisfy these timing requirements of real-time systems,the scheduling algorithms should

be considered with the timing behavior of the system. Early fundamental contributions to

scheduling was made in [12]; both the Rate Monotonic Algorithm (RMA) and the Earliest

Deadline First (EDF) algorithm were introduced in this paper for the first time. A number

of extensions of the two algorithms have been proposed sincethen [14]. A recent article

[15] gives a historical perspective and a comprehensive survey of most of the existing

real-time scheduling algorithms. Recent research activityincludes scheduling on multiple

processors [18]. The power of high performance computing isincreasingly being used in

real-time signal processing applications, such as in factory automation, radar and sonar [8].

2.3.1 Classification of real-time systems for scheduling

In most operations research scheduling problems [4], thereis a fixed system hav-

ing completely specified and static characteristics. The characteristics of real-time tasks

that affect the scheduling algorithm are periodic or aperiodic tasks, preemptible and non-

preemptible tasks and independence, resource and placement constraints and the deadlines

(hard or firm deadlines). A classification of real-time systems for scheduling is shown in

Figure 3.1 [16].

If the result of not meeting a deadline is catastrophic, thenthe real-time tasks are said

to behard otherwise they aresoft. If the scheduler makes the scheduling decisions at run

time, then the scheduler is calleddynamic, and if the scheduler makes decisions during

the compile time, then it is calledstatic. Scheduling is said to bepreemptivescheduling if

the current task can be interrupted for the execution of another higher priority task. If the

current task cannot be interrupted, it is said to benonpreemptivescheduling.

A real-time application is usually comprised of a set of cooperating tasks. A task is said

14



Real-Time Scheduling

Soft Hard

Dynamic Static

Preemptive Nonpreemtive Preemptive Nonpreemtive

Figure 2.2: Classification of Real-Time Systems for Scheduling

to bePeriodic if the system cannot function without completing the tasks in time, i.e., it is

time-critical. Deadlines of critical tasks should be met inthe system for periodic tasks. The

tasks that are activated when some event is triggered are said to beAperiodictasks. When

the task is time-critical, then the aperiodic task will havea deadline and if the task is not

time-critical, it will not have any deadline by which it mustcomplete its execution.

2.3.2 Scheduling algorithms

A dynamic scheduler decides which task is to be scheduled at run time. In dynamic

scheduling the scheduler may schedule independent or dependent tasks. The focus in this

study will be on scheduling of independent and periodic tasks. The two scheduling algo-

rithms that fall into this cateogory are the Rate Monotonic Assignment (RMA) and Earliest

Deadline First (EDF) algorithms. In RMA, the assignment of priorities to the tasks is made

with respect to their request rates without depending on therun time; in particular, tasks

with higher request rates will have higher priorities. The RMA algorithm is a static algo-

rithm, i.e., it assigns static task priorities. Tasks with urgent request will be assigned higher

priority in rate monotonic priority assignment. It turns out that the RMA algorithm is op-
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timum in the sense that if the task cannot be scheduled by RMA, no other fixed priority

assignment can schedule the task. In RMA all the tasks must meet their deadlines. The

EDF algorithm is an optimal dynamic preemptive algorithm that is based on dynamic pri-

orities. In EDF, priorities are assigned to tasks accordingto the deadlines of their current

requests. If the deadline of a particular request is the nearest, then it will be assigned the

highest priority, and the task with the furthest deadline isassigned the lowest priority. As

opposed to the RMA in which priorities do not change one, the priorities of tasks in EDF

changes with time, and hence, it is a dynamic scheduling algorithm. It turns out that when

EDF algorithm is used to schedule a set of tasks there is no processor idle time prior to an

overflow.

Based on the seminal work of [12], extensive progress was madeto modify and improve

based on specific applications or conditions [15]. The real-time system model of [12]

started with the following assumptions:

1. all tasks are periodic,

2. all tasks are released at the beginning of period and have adeadline equal to their

period,

3. all tasks are independent, i.e., tasks have no resource orprecedence relationships,

4. all tasks have fixed computation time, which is less than orequal to their period,

5. no task may voluntarily suspend itself,

6. all tasks are fully preemptible,

7. all overheads are assumed to be 0,

8. there is just one processor.
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The model assumes that a periodic task is time triggered, andthe length of time between

releases of successive jobs of taskτi is a constantTi, which is called the period of the task.

Each job also has a deadlineDi after release. A task is said to have a hard deadline if every

job of the task must meet its deadline.

The schedulable bound of a task set is defined as the maximum CPUutilization for

which the set of tasks can be guaranteed to meet their deadlines. One disadvantage of the

RMA is that the schedulable bound is less than 100%. The CPU utilization of the task

τi is defined as the ratio of the worst case computing timeCi to the periodTi. The total

utilization forn tasks is given by

U =
n

∑
i=1

Ci

Ti
(2.1)

In [12], it was shown that for RMA the least upper bound to processor utilization is given

by

Un = n(21/n−1) (2.2)

All the tasks will meet their deadlines if processor resources equal or greater than the upper

bound given in (2.2) are available. From (2.2), we obtainU1 = 100%,U2 = 83%, and

U3 = 78%. It was shown that in the limitU∞ = 69%. Therefore, a set of tasks, irrespective

of the number of tasks, whose total CPU utilization is less than 69% will always meet all

the deadlines.

The advantage of the EDF algorithm over RMA is that the schedulable bound is 100%

for all tasks. The problem with the EDF algorithm, as given in[12], is that there is no

way to guarantee which tasks will fail in a overload situation. In RMA, it is clear that the

low priority tasks are always the first to fail. However, the EDF algorithm does not have

any such priority assignment. Hence, it is possible using the classical EDF algorithm that

critical tasks will fail at the expense of a lower priority task. One can also conceive of a

mixed algorithm that is a combination of the two discussed algorithms. Discussions and

detailed explanations of these algorithms can be found in [7, 12, 14, 15]. Developments in
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the past thirty years can be summarized into the following key aspects:

• Feasibility analysis: necessary and sufficient conditionshave been developed to show

that higher utilization levels can be achieved, and overrunsensitivity analysis has

been extensively studied.

• Analysis of task interaction: priority inheritance protocols have been developed to

analyze task interaction and blocking.

• Inclusion of aperiodic tasks.

• Overload management: techniques were developed to handle variations in task exe-

cution times, which led to relaxation of worst case execution times and still ensure

that the deadlines of critical tasks are guaranteed.

• Implementation simplifications.

• Multiprocessors and distributed systems: analysis tools were developed for applica-

tions involving multiple processors.

18



CHAPTER 3

Real-Time Task Scheduling of Sensor and Actuator Networks

The main focus of this chapter is to present a real-time scheduling algorithm that can

efficiently and systematically handle overruns, achieve optimum frequencies of task execu-

tion with given resources, and guarantee the hard deadlinesassociated with the tasks. The

proposed real-time scheduling algorithm is based on the earliest deadline first algorithm,

that is, tasks with the earliest deadlines are executed first. Optimal frequencies are com-

puted by minimizing a performance index under resource constraints. It is shown that by

assuming execution times lower than worst case execution times significant reduction in

performance loss index can be achieved. Further, since average case execution times are

considered, overrun handling must be done in the event task execution take longer. Two

approaches are given to handle overruns. Simulations on a number of examples are given

to illustrate and validate the approach.

The chapter is organized as follows. First, real-time control system performance in

terms of minimization of a performance index is described inSection 3.1. Computation of

optimal frequencies based on different execution times arediscussed in Section 3.2. Sec-

tion 3.3 gives handling of overruns when execution times less than the worst case times are

used. Section 3.4 gives simulations on a number of tasks to illustrate the advantages of con-

sidering task execution times less than the worst case timesfor computing the frequencies

of execution of tasks.
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3.1 Real-Time Control System Performance

A typical control system consists of development of a continuous-time control algo-

rithm which optimizes a certain performance index. For example, in a radar system the ob-

jective is to track a target and the performance index is generally a function of the tracking

error, i.e., the difference in the position of the target andthe desired value of the position.

For this example, a control algorithm that minimizes the performance index is sought. It

may be possible in other situations where the performance index may have to be maximized

and the objective may be to develop control algorithm that maximizes the performance in-

dex. The continuous-time control algorithm is discretizedfor implementation. To get a

good match between the continuous-time control algorithm and the discretized version, the

time period used in this process must be as small as possible.Thus, the sampling frequency,

defined as the reciprocal of the time period, must be as high aspossible. But computing

resources place a limitation on how high one can choose the sampling frequency for a

particular task.

The problem of optimizing a performance index for a control system is generally stated

as follows.

min
u∈Ω

J(u) = S(x(t f ), t f )+
∫ t f

0
L(x(t),u(t), t)dt (3.1)

subject to : ˙x(t) = Ax(t)+Bu(t) (3.2)

whereJ(u) is the system performance index,t f is the final time,S(x(t f ), t f ) andL(x(t),u(t), t)

are cost functions that depend on the control input, states and final time. Eqn. (2) is the

model of the plant or the physical system that is being controlled. Now, suppose the above

minimization problem results in an optimal controlu∗(t) and the corresponding optimal

performance index given byJ∗. The continuous-time optimal control input,u∗(t), is now

discretized for digital implementation. The discretized equivalent of the optimal perfor-
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mance indexJ∗ is

J∗D( f ) = S(x∗(t f ), t f )+
n−1

∑
k=0

∫ (k+1)T

kT
L(x∗(t),u∗(kT), t)dt (3.3)

whereT is the period of discretization, i.e.,f = 1/T is the frequency at which the continuous-

time is sampled, andu∗(kT) is the discrete-version of the optimal control input. In the

block diagram of the real-time control system shown in Figure 2.1, all of the tasks such as

measurement of output by the sensor, conversions, computation of the control algorithm,

communication of the control input to the actuators must be achieved within one sampling

period. Notice thatJ∗D( f ) is a function of the sampling frequencyf . The higher the sam-

pling frequency, the more accurate the discretization willbe. As the sampling frequency

is increased, the discrete time optimal control that is actually implemented will converge

to the continuous-time optimal control. But the sampling frequency is directly related to

the computing resources used in the digital implementationof the control algorithm. The

difference∆J∗( f ) = J∗D( f )− J∗ called the performance loss index (PLI) must be as small

as possible. It is clear that asf → ∞ the magnitude of this difference converges to zero

whereas asf → 0 the magnitude of the difference converges to infinity.

The frequencyf cannot be arbitrarily increased and is limited by the amountof avail-

able computing resources. The main goal of task scheduler for real-time control systems is

to maximize this frequency within the constraints of the process capacity and utilization of

the available computer.

Noting that the PLI,∆J∗( f ) exponentially decreases with frequency, for each control

task, it was approximated in [17] by

∆Ji( fi) = αie
−βi fi (3.4)

whereαi is the magnitude coefficient,βi is the decay rate, andi represents the index of the

physical system in SANs.
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Figure 3.1: Performance loss index with varyingβ

The performance loss index of the overall large-scale network is defined as

∆J( f1, . . . , fn) = ∑
i

wi∆Ji( fi) (3.5)

wherewi is the i-th design parameter which weighs the influence of the PLI of the i-th

system on the overall performance index; equal weighting ofall tasks would meanwi = 1

for all i.

3.2 Real-Time Scheduling

The problem now reduces to the efficient scheduling of the tasks within the given com-

puting constraints and control system constraints while minimizing the performance loss
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index. Based on the given minimum frequencyfmi and the worst case execution timeCi for

eachi-th task, an algorithm to compute the optimal frequenciesf opt
i , which minimizes the

overall PLI of the system and guarantees the schedulabilityconstraints, was given in [17].

The following optimization problem was posed for minimization of the overall PLI with

respect to the task frequencies:

min
f1,..., fn

∆J =
n

∑
i=1

wiαie
−βi fi (3.6)

subject to:
n

∑
i=1

Ci fi ≤ A, 0 < A≤ 1

fi ≥ fmi, i = 1, . . . ,n (3.7)

whereCi, i = 1, . . . ,n are the task execution times,fmi lower bound on thei-th frequency

fi , andA is the processor utilization factor. The following proposition gives the solution to

the above problem.

Proposition 1: [17] Given the objective function (3.6) and the constraints(3.7), there exists

a unique optimal solution given by

fi = fmi, i = 1, . . . , p (3.8)

f j =
1
β j

(lnΓ j −Q), j = p+1, . . . ,n,

where fk’s are ordered asfmk which are arranged according to the following inequality

Γ1e−β1 fm1 ≤ Γ2e−β2 fm2 ≤ ·· · ≤ Γne−βn fmn (3.9)

andp is the smallest integer such that
p

∑
l=1

Cl fml +
n

∑
l=p+1

Cl

βl

(

βp fmp+ ln
Γl

Γp

)

≥ A, (3.10)

and

Γ j =
w jα jβ j

Cj

Q =
1

∑n
l=p+1

Cl

βl

(

p

∑
l=1

Cl fml +
n

∑
l=p+1

Cl

βl
lnΓl −A

)

23



Proposition 1 gives a result with an implicit assumption that there is flexibility in choosing

the sampling frequency of real-time control systems provided it is chosen above a certain

minimum bound. This method gives computation of the optimalsampling frequencies

within the given levels of processor utilization while guaranteeing schedulability of all

tasks. Both the EDF and RMA algorithms are used for scheduling.

The optimal frequencies in [17] were determined based on theworst case execution

times. If there are large variations between the worst case execution times (WCETs) and

the best case execution times (BCETs), then the optimal frequencies computed in [17] will

be substantially less than achievable frequencies for manyinstances. So, a strategy that

can adaptively determine optimal frequencies based on the best case execution times and

the worst case execution times is desirable. In real-time systems, BCETs and WCETs are

generally available. The real-time control system as shownin Figure 2.1 has a number of

components which will provide the constraints to determineBCETs and WCETs. There

are four key factors that will determine BCETs and WCETs:

1. Actuator Constraints: The response of the actuator plays an important role in the

choice of the sampling period. In many engineering systems the actuators are typi-

cally dynamic devices such as electromechanical systems which have their own re-

sponse time. This should be taken into account while implementing a real-time con-

trol system and computation of the sampling period used for digital implementation

of the controller.

2. Sensor Constraints:The sensors and its associated hardware/software play a criti-

cal role in all real-time feedback control systems. They notonly acquire output data

but convert it into a form that can be input to the controller/computer. In some ap-

plications, to measure a signal with desired accuracy, multiple sensors are used to

measure the output and some sort of averaging is done to get the actual output. In ap-

plications such as triangulation of an object in the workspace, several sensors need to
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be used to pinpoint the actual position of the object, and thus, data from each sensor

must be processed to get the object position before transmitting it to the controller.

All these functions of the sensor take time to accomplish, and must be included in

the calculation of BCETs and WCETs. Further, in some cases, data from the sensors

need to be filtered before it can be used by the controller to generate the control in-

put. Processing of data must be done in real-time, so, it mustbe accounted for in the

sampling period.

3. Conversion and Sample/Hold Operations:There are time constraints associated

in converting analog data to digital data, and vice-versa. Further, sample/hold opera-

tions take-up a portion of the sampling period in which they are performed.

4. Control Computation: This will include execution of the relevant real-time program

code to generate the control input. The code is generally modular and several sections

are triggered based on the difference between the output andinput (error) and other

logical events. In some cases, only a small section of the code is triggered and the

control input is generated based on running that code in real-time; this will generally

give the best case time associated with control computation. And in some cases all

of the real-time code needs to be implemented, which will give the worst case time

for implementing the code.

The above factors can be used to get the BCETs and WCETs for all the systems/tasks.

Now, the key question is how does one schedule tasks so that processor utilization is at a

maximum while satisfying the constraints. One way is to adjust the frequencies to optimize

the performance index and meet the scheduling constraints,that is, one has to ensure that

the performance index is minimized and when the tasks require worst case execution times

or close to it, then they do not miss the deadlines. Two issuesthat must be considered in

developing a scheduling algorithm based on BCETs and WCETs: (1) What is the initial
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frequency assignment for the tasks, and how does one adjust it? (2) What is the strategy

to handle overruns? One strategy is to use the optimal frequencies generated using BCETs

as the initial assignment, and stretch it as overruns happen. Though one can expect strong

performance improvement using this strategy, it has the potential to generate too many

overruns. Another strategy is to consider an average of BCET and WCET for each task

and use that to compute the initial optimal frequency assignments for the tasks, and then

devise a strategy to handle overruns. Denote such an execution time as Average Case

Execution Time (ACETs). It is expected that the use of ACETs forinitial optimal frequency

computation will result in considerably less overruns thanusing BCETs. Further, another

strategy is to use a line joining the BCETs and WCETs such as

Cci = (1− γi)Cwi + γiCbi (3.11)

whereCwi and Cbi are the WCET and BCET, respectively, of thei-th task,Cci is the

weighted combination of BCET and WCET, andγi is the weight. Notice thatCbi ≤Cci ≤

Cwi. Also, notice that the average execution time is obtained bysettingγi = 0.5. The weight

γi for each task can be assigned based on some type of confidence level on the task being

able to perform either close to the worst case or best case. Further,γi can also be chosen

based on the weights assigned (wi) to each task in the performance index, that is, choosing

γi closer to one (execution time closer to the best case) for a heavily weighted task in the

performance index.

Denote the optimal frequencies obtained from the BCETs and WCETsas fbi and fwi,

respectively, and the ones obtained usingCci as in (3.11) asfci. Since the execution times

are interlaced, that is,Cbi ≤ Cci ≤ Cwi, we can also show that the number of optimal fre-

quencies assigned using these three cases are also interlaced. Let pw, pc and pb be the

number of optimal frequencies that take the minimum frequency bounds for the execution

times,Cwi,Cci andCci, respectively. Then,pw ≥ pc ≥ pb. That is, when BCETs are used

to compute the optimal frequencies, fewer number of optimalfrequencies,fbi’s, will take
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the values of minimum frequency bounds,fmi’s. We can show this using the condition for

setting the number of optimal frequencies as minimum frequencies, which is given by the

following for the three execution time cases:

pw

∑
j=1

Cw j fm j +
n

∑
j=pw+1

Cw j

β j

(

βpw fmpw + ln
Γw j

Γpw

)

≥ A (3.12)

pc

∑
j=1

Cc j fm j +
n

∑
j=pc+1

Cc j

β j

(

βpc fmpc + ln
Γc j

Γpc

)

≥ A (3.13)

pb

∑
j=1

Cb j fm j +
n

∑
j=pb+1

Cb j

β j

(

βpb fmpb + ln
Γb j

Γpb

)

≥ A (3.14)

whereΓw j,Γc j,Γw j are given by the following:

Γq j =
w jα jβ j

Cq j
, q = w,c,b (3.15)

Notice thatΓb j ≥ Γc j ≥ Γw j. Further, we can also see that the optimal frequencies them-

selves are interlaced, that is,fbi ≥ fci ≥ fwi ≥ fmi for i = 1, . . . ,n.

Proposition 2: The number of optimal frequencies obtained from using BCETs, WCETs,

and ACETs, that take the minimum frequency bounds as their values, satisfy the following:

pw ≥ pc ≥ pb. (3.16)

Further, the optimal frequencies obtained from these threecases are also interlaced, that is,

fbi ≥ fci ≥ fwi. (3.17)

3.3 Overrun Handling

In this section, we address the issue of how to schedule overruns for the execution

time cases discussed above. One can handle overruns in two ways: (1) By reserving a

part of the processor utilization locally for each task based on the optimal frequencies

obtained using BCETs or ACETs; that is, overruns are handled foran individual task by

decreasing its optimal frequency so that the processor bandwidth assigned to that task is
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not exceeded and the deadline is met. (2) By handling overrunsin a global sense, that is,

the bandwidth for the overrun task is created by decreasing the frequencies of all the tasks

in an adaptive manner. In either case, it is expected that theinterlacing property of the

optimal frequencies as well as the number of minimum frequencies assigned will aid in the

development of an algorithm to decrease the frequencies locally or globally across all tasks

to meet the deadlines as well as maximize processor utilization. It is assumed that the task

set is scheduled by the EDF algorithm, which assigns higher priorities to tasks with earlier

deadlines.

Overrun’s need to be handled in a systematic way such that hard deadlines are not

missed. The following example [23] shows that the result of increasing the frequencies

without properly considering overruns is a missed deadline. The example consists of

scheduling two tasks whose WCET’s (Cwi), normal executing times and minimum fre-

quency bounds are given in Table 3.3. Assume that the two tasks are executing normally.

Task WCET:Cwi (ms) Normal Execution Time:ci (ms) fmi (Hz)

τ1 25 20 9.9

τ2 25 20 20

Also, assume thatτ2 is executing at frequencyf2 = 40 Hz andτ1 is executing at its min-

imal frequency f1 = 9.9 Hz. The CPU utilization factors areU1 = c1 f1 = 0.198 and

U2 = c2 f2 = 0.8 (approx. 20% and 80% of the available CPU power). Let’s assume in

an adhoc way that if the worst case arises, taskτ2 could slow down from 40 Hz to 20 Hz to

release bandwidth. This adhoc approach would not work as illustrated in Fig. 3.2. Notice

that att = 100 ms any overrun of taskτ1 of more than 1 ms will result in missing the hard

deadline for taskτ1.
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Figure 3.2: Example: Overrun handling using adhoc approach– results in missing hard

deadlines

3.3.1 Local Approach

First, some key terms are defined to simplify the understanding of the approach taken

in the subsequent material. Each periodic task is describedby

τi(Cbi,Cwi, fmi,∆Ji( fi)). (3.18)

Further, each task consists of a sequence of jobsτi, j , which are characterized by the release

time r i, j , an execution timeci, j , and a dynamic deadlinedi, j . Note that the execution time

lies anywhere between the best case and the worst case, that is, ci, j ∈ [Cbi,Cwi]. It is also

required that the dynamic deadlinedi, j must be less than or equal to the hard deadlineDhd
i ,

that is,di, j ≤ Dhd
i . The hard deadline is related to the minimum frequency as

Dhd
i = 1/ fmi. (3.19)
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Now, the task scheduling goal is to determine the optimal frequenciesf opt
i which min-

imize the overall PLI while guaranteeing that the dynamic deadline of each task (di, j )

never exceeds the hard deadline, thus assuring that the minimum frequency for each task

is achieved. To achieve this goal, a local approach was suggested by [23] using the nor-

mal execution timescn
i ; this approach of overrun handling is described first, followed by a

modification of the approach which will give higher frequencies while efficiently handling

overruns. The advantage of the local approach is that execution overrun of a jobτi, j is

handled locally, that is, whenci, j > cn
i , its execution is systematically delayed so that other

tasks are not affected. Now, suppose thatdlast
i, j is the last deadline used by the server, after

handling all the overruns, to schedule jobτi, j , the next jobτi, j+1 of taskτi will be released

at timer i, j+1 = dlast
i, j . As a result each job has a variable time periodTi, j = r i, j+1− r i, j . By

ensuring that the variable time periodTi, j satisfiesTi, j ≤ 1/ fmi, for all j, the hard deadline

Dhd
i of each taskτi is guaranteed.

The idea is to reserve a portion of the entire processor bandwidth to each task using a

bandwidth server. It is assumed that the optimal frequencyf opt
i for each taskτi is calculated

using the SLSS algorithm given by Proposition 1 based on the normal execution timecn
i .

Using the computed optimal frequencies each taskτi is reserved a bandwidth given by

Ui = f opt
i cn

i . (3.20)

The deadline assignment rule of the bandwidth server sets the initial deadline,d0
i, j , of the

job τi, j assuming normal execution timecn
i as

d0
i, j = r i, j +

cn
i

Ui
(3.21)

If the job τi, j overruns, that is, if the actual execution timeci, j is greater than the normal

timecn
i , then the deadline is extended to

dlast
i, j = r i, j +

Cwi

Ui
= d0

i, j +
Cwi −cn

i

Ui
(3.22)
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This results in the job using the worst case execution time ifthere is an overrun. Since

bandwidthUi is reserved for the taskτi, it is not exceeded. The guaranteeing of the deadline

depends on the reliability of the bandwidth server in assigning the bandwidthUi correctly to

taskτi . It is noted that any overrun is treated as the maximum overrun, that is, the new job

deadline will take the worst case execution time in the eventof any amount of overrun. This

approach is very conservative and leads to task frequenciesclose to minimum frequencies

whenever an overrun occurs. In [23], it is shown that the following necessary and sufficient

condition on the reserved bandwidthUi of taskτi for everyi:

Ui ≥ fmiCwi (3.23)

will ensure that all tasks are schedulable with a frequencyfi ≥ fmi, that is, hard deadlines

will be met even when worst case execution times are required. Though the proof of the

above condition is given in [23], it is intuitively clear that when the reserved bandwidth is

greater than or equal to the worst case bandwidth obtained using minimum frequency and

worst case execution time will result in at least assigning the minimum frequency to the

task if an overrun occurs.

To incorporate the constraint during the optimization stage, notice that the constraint

given by (3.23) must be satisfied by each task. SinceUi = f opt
i cn

i , the constraint (3.23) for

every taskτi becomes

f opt
i ≥

Cwi

cn
i

fmi (3.24)

Notice that the original optimization problem given by Proposition 1 already has the con-

straint that the optimal frequencies must be greater than orequal to the minimum frequen-

cies, that is,

f opt
i ≥ fmi. (3.25)

The constraint given by (3.24) will be the same as in the original optimization problem

if the minimum frequencies,fmi, for each taskτi in the original optimization problem are
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replaced by new lower bounds̃fmi, which are given by

f̃mi =
Cwi

cn
i

fmi (3.26)

Therefore, overruns can be taken into account in this local approach by computing the opti-

mal frequencies from the optimization problem given by the SLSS algorithm (Proposition

1) using normal execution timescn
i and modified minimum frequencies bounds given by

(3.26).

The local approach described above is conservative becausewhenever an overrun oc-

curs for a particular task, it will be considered as a worst case overrun, that is, the deadline

is postponed by an amount equal to the difference between theworst case execution time

(Cwi) and the normal execution time (cn
i ). Although this strategy meets the hard deadlines,

it is conservative and results in poor usage of resources. Inthe following, a local method is

suggested which considers extension of deadlines when overruns occur in a less conserva-

tive manner and thus results in higher efficiency in terms of usage of resources and has the

potential of achieving higher frequencies when tasks overrun their normal execution time.

Instead of the normal execution time as considered in the above approach, it is assumed

that the best case (Cbi) and worst case (Cwi) execution times are available and the user has

the freedom to choose a linear combination of the two times based on the confidence level

on a particular task being able to execute either closer to the best case time or worst case

time. The average or normal execution time for each task is taken as

Cci = (1− γi)Cwi + γiCbi (3.27)

The optimal frequencyf opt
i for each taskτi is computed using the execution timeCci. For

each taskτi, the following bandwidth is reserved:

Ui = f opt
i Cci (3.28)

The initial deadline for jobτi, j of taskτi is set to be

d0
i, j = r i, j +

Cci

Ui
(3.29)
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When an overrun occurs, i.e., the jobτi, j takes longer time to execute thanCci, then the

deadline is extended in the following manner:

d1
i, j = d0

i, j +
1
2

(Cwi −Cci)

Ui
(3.30)

Notice that, at the first instance of the overrun of jobτi, j , the job deadline is extended by

a bisection of the difference between the worst case execution time (Cwi) and the normal

execution time (Cci). Suppose in the event that this first extension of the deadline is not

adequate to complete the job, then the deadline of the jobτi, j is further extended for the

second time as

d2
i, j = d1

i, j +
1
22

(Cwi −Cci)

Ui
(3.31)

Therefore, when the second overrun occurs, the deadline is extended by a bisection of the

remaining time to the worst case execution time. If there arem such overruns before the

job τi, j is executed, then the last deadline for the jobτi, j is given by

dm
i, j = dm−1

i, j +
1

2m

(Cwi −Cci)

Ui
(3.32)

The deadlinedm
i, j can be simplified to the following:

dm
i, j = d0

i, j +

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui

= r i, j +
Cci

Ui
+

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui
(3.33)

Notice that for this approach to work we still have to show that the hard deadline is met

irrespective of the number of overruns. Recall that the hard deadline for each taskτi is

given by

Dhd
i =

1
fmi

(3.34)

where fmi is the minimum frequency of the taskτi. Hence, we have to show that the

following is true:

Cci

Ui
+

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui
≤ Dhd

i (3.35)
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By noticing that
m

∑
j=0

1
2 j =

1− 1
2m

1− 1
2

= 2−
1

2m−1 ,

we can write
(

1
2

+
1
22 + · · ·+

1
2m

)

= 1−
1

2m−1 (3.36)

The left-side of (3.35) can be written as

Cci

Ui
+

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui
=

Cci

Ui
+

(

1−
1

2m−1

)

(Cwi −Cci)

Ui

=
Cwi

Ui
−

(

1
2m−1

)

(Cwi −Cci)

Ui
(3.37)

SinceUi = f opt
i Cci,

Cci

Ui
+

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui
=

1

f opt
i Cci

(

Cwi −
(Cwi −Cci)

2m−1

)

(3.38)

If the reserved bandwidth for each taskτi is such that

Ui ≥ fmiCwi, (3.39)

then by usingUi = f opt
i Cci, we obtain

f opt
i ≥

fmiCwi

Cci
(3.40)

Since

(

Cwi −
(Cwi −Cci)

2m−1

)

> 0 for all m≥ 1, using (3.40) in (3.38), we obtain

Cci

Ui
+

(

1
2

+
1
22 + · · ·+

1
2m

)

(Cwi −Cci)

Ui
≤

1
fmiCwi

(

Cwi −
(Cwi −Cci)

2m−1

)

(3.41)

Notice that for allm,
1
fmi

−

(

1
2m−1

)

(Cwi −Cci)

fmiCwi
≤

1
fmi

(3.42)

Therefore, (3.35) is true for allm, and hence, for each taskτi, the hard deadlineDhd
i is

always met using this strategy. Notice that worst case situation occurs whenm→ ∞, that

is,

lim
m→∞

(

1
2m−1

)

(Cwi −Cci)

fmiCwi
= 0 (3.43)
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The following proposition summarizes the results of the proposed approach:

Proposition 3: Given a set ofn periodic tasksτi(Cwi,Cbi, fmi,∆Ji( fi)) with total bandwidth

∑n
i=1Ui = A and reserved bandwidthUi = f opt

i Cci with Ui ≥ fmiCwi, each taskτi is schedu-

lable meeting its hard deadlineDhd
i = 1/ fmi when the following bisection strategy is used

to extend the deadlines of them-th overrun of the jobτi, j :

dm
i, j = dm−1

i, j +
1

2m

(Cwi −Cci)

Ui
(3.44)

where the initial deadline is given by

d0
i, j = r i, j +

Cci

Ui
(3.45)

Remark 3.3.1 Notice that instead of using(3.44), one can use the following:

d0
i, j = r i, j +

Cci

Ui

dm
i, j = dm−1

i, j + εm
i

(Cwi −Cci)

Ui
(3.46)

where0 < εi ≤ 0.5 for all i = 1 : n. As a result, the left-side of(3.35)satisfies

Cci

Ui
+

(

εi + ε2
i + · · ·+ εm

i

) (Cwi −Cci)

Ui
=

Cci

Ui
+

(

1− εm
i

1− εi
−1

)

(Cwi −Cci)

Ui

=
Cci

Ui
+

(

εi − εm
i

1− εi

)

(Cwi −Cci)

Ui

=
Cwi

Ui
+

(

εi − εm
i

1− εi
−1

)

(Cwi −Cci)

Ui

=
Cwi

Ui
−

(

1+ εm
i −2εi

1− εi

)

(Cwi −Cci)

Ui

Therefore, using the same arguments as before andεi ≤ 0.5, we obtain

Cci

Ui
+

(

εi + ε2
i + · · ·+ εm

i

) (Cwi −Cci)

Ui
≤

1
fmi

−

(

1+ εm
i −2εi

1− εi

)

(Cwi −Cci)

fmiCwi
≤

1
fmi

(3.47)

Remark 3.3.2 Implementation considerations dictate that if too many overruns occur (i.e.,

large m) for a jobτi, j , then one has to assume that the worst case overrun has taken place

at a fixed value of m and the deadline must be extended to consider the worst case execution

time.
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3.3.2 Example

Consider an example task set consisting of two periodic tasks, τ1 andτ2, with minimum

frequenciesfm1 = 1/20 andfm2 = 1/16, worst case execution timesCw1 = 5 andCw2 = 8,

best case execution timesCb1 = 1 andCb2 = 1, respectively. To compare with the algorithm

given in [23], let us suppose that the normal execution time (cn
i ) and the linear combination

execution time (Cci = (1− γi)Cwi + γiCbi) are the same and are given byCc1 = cn
1 = 3

andCc2 = cn
2 = 2. Suppose that the optimal frequencies computed by Proposition 1 are

f opt
1 = 1/6 and f opt

2 = 1/4. Therefore, each task is assigned a bandwidthU1 = U2 = 0.5.

We consider the following cases to highlight the two local approaches discussed above, i.e.,

local approach which assumes every overrun as a worst case overrun and the local approach

which uses a bisection method to compute the new deadlines.

• No overruns: Figure 3.3 shows a sketch of the two tasks running at or below their

normal execution times, i.e., without any overruns.

 6 12 18 24

0 4 16 20 24

τ1

2τ

8

0

12

Figure 3.3: Normal execution times: No overruns
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• Deadlines and task execution using the worst-case overrun (Job τ2,2 has an over-

run of 3 time units): Figure 3.4 shows a sketch of this case. Now, suppose that the

job τ2,2 has an overrun at timet = 7. Notice that the initial deadline ist = 8. As-

suming the overrun is a worst-case overrun, using the local worst case algorithm

described before, the job deadline is postponed to

dlast
2,2 = r2,2 +

Cw2

U2
= d0

2,2 +
Cw2−Cc2

U2
= 20.

 6 12 18 24

0 4 20 24

τ1

2τ

8

0

0
d2,2

last
d2,2

Figure 3.4: Worst case method: Jobτ2,2 overrun = 3

• Deadlines and task execution using bisection method (Jobτ2,2 has an overrun

of 3 time units): Figure 3.5 shows a sketch of the execution of tasks as a result

of overrun handling using the local bisection algorithm. Using the proposed local

bisection approach, the job deadline is postponed to

d1
2,2 = d0

2,2 +
1
2

(Cw2−Cc2)

U2
= 14.

Notice that for the same length of overrun, 3 time units, using the bisection approach,

as shown in the sketch in Figure 3.5, the jobτ2,2 is completed before the deadline,
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and the normal execution cycle continues after that. Noticethat the time length for

job τ2,2 including the overrun using the bisection approach is 10 units and for the

worst case overrun scenario shown in Figure 3.4 is 16 units.

 6 12 18 24

0 4 14 18 22 26

τ1

2τ

8

0

0
d2,2

1
d2,2

Figure 3.5: Bisection method: Jobτ2,2 overrun = 3

• Deadlines and task execution using the bisection method (Job τ2,2 has an over-

run of 5 time units): Figure 3.6 shows a sketch of the execution of tasks as a result

of an overrun of 5 time units for jobτ2,2. Notice that the bisection algorithm is in-

voked twice before the task execution is completed, i.e.,d2
2,2 is the last deadline of

the job.

• Deadlines and task execution using the bisection method (Job τ2,2 has an over-

run of 2 time units and τ2,2 has an overrun of 3 time units): Figure 3.7 shows a

sketch of the task execution for this case. Notice from the figure that for jobτ1,2 the

last deadline isd2
1,2 = 15 and for jobτ2,2 the last deadline isd1

2,2 = 14.

• Deadlines and task execution using the bisection method (Job τ2,2 has an over-

run of 2 time units and τ2,2 has an overrun of 5 time units):A sketch of task exe-
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 6 12 18 24

0 4 14 25

τ1

2τ

17 21

0

8

0
d2,2

1
d2,2

2
d2,2

Figure 3.6: Bisection method: Jobτ2,2 overrun = 5

 6 12 21 27

0 4 14 18 22 26

τ1

2τ

8

0 14 15

0
d2,2

1
d2,2

0
d1,2

1
d1,2

2
d1,2

Figure 3.7: Bisection method: Jobτ1,2 overrun = 2 and jobτ2,2 overrun = 3

cution for this case is shown in Figure 3.7. The last deadlinefor job τ2,2 is d3
1,2 = 16

and for jobτ2,2 the last deadline isd2
2,2 = 17.
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 6 12 22 28

0 4 14 17 21 25

τ1

2τ

8

0 14 1516

0
d2,2

1
d2,2

2
d2,2

0
d1,2

1
d1,2

2
d1,2 3

d1,2

Figure 3.8: Bisection method: Jobτ1,2 overrun = 2 and jobτ2,2 overrun = 5

3.3.3 Global Approach

In the local approach, overruns and deadlines were restricted to individual tasks, that

is, when a jobτi, j has an overrun, the job deadline was extended so that the job could be

executed within the bandwidth reserved for the taskτi. In the global approach, when an

overrun occurs, one can decrease the frequencies of all tasks to handle the overrun. One

must decrease the frequencies so as to meet all the hard deadlines in the available total

bandwidth. We consider two methods for handling overruns using the global approach. In

the first method, whenever an overrun occurs, decrease all the frequencies to their minimal

values for one period, i.e., until the overrun is handled. Asevident, this method turns out

to be conservative, and results in poor usage of resources. In the second method, extend

the deadline of the job which overruns by a certain amount andextend the deadlines of all

other jobs by the same amount; ensure that hard deadline is met by taking the worst case

in the event that the amount of extension results in not meeting the minimum period. For

example, when an overrun occurs for the jobτk, j , decrease the frequencies of the task by a
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small amount which is achieved by a smaller choice ofεk, that is, extend the deadline by

an amount equal to

d1
k, j = rk, j +

Cck

Uk
+ εk

(Cwk−Cck)

Uk
(3.48)

where, for example,εk ≤ 1/4. Further, decrease the frequencies of all other jobs by the

same amount as for the taskτk, that is,

d1
i, j = r i, j +

Cci

Ui
+ εk

(Cwk−Cck)

Uk
(3.49)

for all i 6= k.

The same example as in the local approach is taken to evaluatethe global approach.

The following cases highlight the approach.

• Jobτ2,2 has an overrun of 3 time units: Figure 3.9 shows a sketch of thetask execu-

tion and deadlines in the event of an overrun of jobτ2,2 of 3 units.

 6 12 21 27

0 4 15 23

τ1

2τ

19

0

8 11

15

27

0
d2,2

1
d2,2

0
d1,2

1
d1,2

Figure 3.9: Bisection method: Jobτ2,2 overrun = 3

• Jobτ2,2 has an overrun of 5 time units: Figure 3.10 shows a sketch of the task execu-

tion and deadlines.
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0 4 13 21

τ1
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8 11

15
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0
d2,2

1
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2
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0
d1,2

1
d1,2

2
d1,2

Figure 3.10: Bisection method: Jobτ2,2 overrun = 5

• Jobτ1,2 has an overrun of 2 time units and jobτ2,2 has an overrun of 5 time units:

Figure 3.11 shows a sketch of the task execution and deadlines.
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Figure 3.11: Bisection method: Jobτ1,2 overrun = 2 and jobτ2,2 overrun = 3
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3.4 Simulations

We verify the results using simulations on a number of examples with variations in

number of tasks, execution times, and minimum frequencies,etc.

The data for a real-time system with five tasks is given in Table 3.1. Figure 3.12 shows

the minimum frequencies and the optimal frequencies obtained using BCETs, WCETs, and

ACETs. Notice that the optimal frequencies are interlaced asdiscussed previously.

βi Cbi (ms) Cwi (ms) fmi (Hz) wi

Task 1 0.4 2 5 20 1

Task 2 0.5 5 8 12 2

Task 3 0.6 8 11 10 3

Task 4 0.7 11 14 6 4

Task 5 0.8 14 17 4 5

Table 3.1: Example 1: Data for a real-time system with five tasks

Figure 3.13 shows the optimal frequencies for two additional execution times obtained

by usingγ = 0.25 andγ = 0.75 in Equation (3.11). Notice that the optimal frequencies

are interlaced as per the execution times. Figure 3.14 showsthe performance loss indices

corresponding to the frequencies shown in Figure 3.13. It can be observed that the perfor-

mance loss index decreases as the optimal frequencies are increased (execution times are

decreased) as expected. Further, one can observe that thereis a considerable variation of

the PLI for the WCET and the one with the execution time given by Equation (3.11) with

γ = 0.25. This reinforces our approach to handle overruns using the bisection method as

opposed to the method that characterizes any task overrun asa worst case overrun.

We have tested real-time examples with different number of tasks. Table 3.2 shows

a seven-task example. The optimal frequencies are shown in Figure 3.15; notice that the
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first four optimal frequencies computed for the worst case take the minimum frequency

bounds. For the example considered in Table 3.3, the optimalfrequencies are shown in

Figure 3.16; it is observed that the first three optimal frequencies obtained for the average

case take the values of the minimum frequency bounds. A nine task example is given in

Table 3.4; the optimal frequencies for this example are shown in Figure 3.17; notice that

the first seven worst case frequencies take the values of the minimum frequency bounds.

In all the cases tested the optimal frequencies are interlaced as per the execution times as

given in Proposition 2.

βi Cbi (ms) Cwi (ms) fmi (Hz) wi

Task 1 0.3 4 5 20 1

Task 2 0.4 6.5 7.5 17 2

Task 3 0.5 9 10 14 3

Task 4 0.6 11.5 12.5 12 4

Task 5 0.7 14 15 9 5

Task 6 0.8 16.5 17.5 6 6

Task 7 0.9 19 20 4 7

Table 3.2: Example 2: Real-time system with seven tasks
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βi Cbi (ms) Cwi (ms) fmi (Hz) wi

Task 1 0.1 6 9 15 1

Task 2 0.2 8 11 13 2

Task 3 0.3 10 13 10 3

Task 4 0.4 12 15 9 4

Task 5 0.5 14 17 6 5

Task 6 0.6 16 19 4 6

Task 7 0.7 18 21 2 7

Table 3.3: Example 3: Real-time system with seven tasks

βi Cbi (ms) Cwi (ms) fmi (Hz) wi

Task 1 0.1 6 9 15 1

Task 2 0.2 8 11 12 2

Task 3 0.3 10 13 9 3

Task 4 0.4 12 15 8 4

Task 5 0.5 14 17 7 5

Task 6 0.6 16 19 6 6

Task 7 0.7 18 21 5 7

Task 8 0.8 20 23 3 8

Task 9 0.9 22 25 2 9

Table 3.4: Example 4: Real-time system with nine tasks
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Figure 3.12: Frequencies for example 1
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Figure 3.13: Frequencies for example 1 with two more execution times (γ = 0.25 and

γ = 0.75)
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Figure 3.14: Performance loss indices for example 1
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Figure 3.15: Frequencies for example 2
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Figure 3.16: Frequencies for example 3
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Figure 3.17: Frequencies for example 4
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CHAPTER 4

Summary and Future Work

In this work, we have investigated scheduling of real-time sensor and actuator networks.

Efficient scheduling of real-time sensor and actuator networks can enable their use in a large

number of applications. The goal is to achieve higher task execution rates and maximization

of the use of resources while maintaining hard deadlines of all tasks, which was the focus

of this study. A summary of the work accomplished in this thesis is given in the following:

• An extensive background review was conducted to bring the key areas that influence

real-time scheduling of sensor and actuator networks. The key areas are real-time

systems and their applicability to sensor and actuator networks, feedback control

systems and their components, and real-time scheduling algorithms.

• Performance of real-time control systems in terms of minimizing a performance in-

dex was studied.

• Real-time task scheduling while minimizing a performance loss index function sub-

ject to resource and task rate constraints was investigated. The effect of the task

execution times on the optimal task frequencies and performance loss index was in-

vestigated. It is shown that higher task frequencies and lower performance loss index

can be achieved if task execution times lower than worst caseexecution times are

used in the computation of optimal frequencies. A discussion of key factors that de-

termine the best case execution times and worst case execution times for tasks was

given.
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• Since execution times lower than worst case are used in the computation of optimal

frequencies, methods that allow for overruns while maintaining hard deadlines were

investigated. Two approaches were investigated, namely, local and global. In the

local approach, a task overrun is restricted to that particular task, i.e., its frequency is

adaptively changed to execute the task within the given bandwidth while meeting the

hard deadline, and other task frequencies are unaffected. Two methods using the local

approach were investigated. One is an existing approach that treats every overrun as

a worst case overrun, where as the second is the proposed bisection method. The

bisection method handles overruns by extending the deadlines by an amount equal to

the bisection of the normal execution time and the worst caseexecution time. It was

shown that all deadlines will be met by the bisection method.In the global approach,

when an overrun occurs for a particular task, then the frequencies of all the tasks are

reduced to release bandwidth for the overrun task.

• Examples are given throughout to illustrate the proposed strategies.

In this work, it was assumed that the available resources do not change over time. It is con-

ceivable that in wireless sensor and actuator networks, theamount of available resources

on all the devices may be varying. Re-configuration and re-allocation of dynamic resources

is necessary in a changing network environment where devices are added and/or removed.

Resource allocation and task scheduling in this environmentwill be a good and challeng-

ing future topic in this area. In particular, applicabilityof the bisection algorithm in a

dynamically changing resource environment may form a good topic of research.
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APPENDIX A

MATLAB Program

%

N=5; % number of tasks

alpha=2/3;

b(1)=0.3; cw(1)=10*0.001; cb(1)=8*0.001;; w(1)=1;

ca(1)=(cw(1)+cb(1))/2;

fm(1)=20; fm(2)=12.5; fm(3)=10; fm(4)=6; fm(5)=4;

sum_cwfm=fm(1)*cw(1);

sum_cbfm=fm(1)*cb(1);

sum_cafm=fm(1)*ca(1);

Gw(1)=w(1)*alpha*b(1)/cw(1);

Gb(1)=w(1)*alpha*b(1)/cb(1);

Ga(1)=w(1)*alpha*b(1)/ca(1);

%

for i=2:N,

b(i)=b(i-1)+0.1;

cw(i)=cw(i-1)+5*0.001;

cb(i)=cw(i)-2*0.001;

ca(i)=(cw(i)+cb(i))/2;

w(i)=w(i-1)+1;

Gw(i)=w(i)*alpha*b(i)/cw(i);
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Gb(i)=w(i)*alpha*b(i)/cb(i);

Ga(i)=w(i)*alpha*b(i)/ca(i);

sum_cwfm=sum_cwfm+fm(i)*cw(i);

sum_cbfm=sum_cbfm+fm(i)*cb(i);

sum_cafm=sum_cafm+fm(i)*ca(i);

end

%

% computing p in the SLSS proposition 3.1

U=1; % utilization factor

% Computing pw such that (11) is satisfied

fpw=sum_cwfm;

pw=N;i=0;

while fpw<U,

fpw1=0; fpw2=0;

pw=pw-1;

for j=1:pw,

fpw1=fpw1+cw(j)*fm(j);

end

for j=(pw+1):N,

fpw2=fpw2+(cw(j)/b(j))*(b(pw)*fm(pw)+log(Gw(j)/Gw(pw)));

end

fpw=fpw1+fpw2;

end

%

%Computing frequencies using worst case

Qw_num1=0; Qw_num2=0; Qw_den=0;
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for j=1:pw,

Qw_num1=Qw_num1+cw(j)*fm(j);

end

for j=(pw+1):N,

Qw_num2=Qw_num2+cw(j)*log(Gw(j))/b(j);

Qw_den=Qw_den+cw(j)/b(j);

end

Qw=(Qw_num1+Qw_num2-U)/Qw_den;

for j=1:pw,

fw(j)=fm(j);

end

for j=(pw+1):N,

fw(j)=(log(Gw(j))-Qw)/b(j);

end

% performance loss index (worst case)

pliw=0;

for i=1:N,

pliw=pliw+w(i)*alpha*exp(-b(i)*fw(i));

end

% Computing pb such that (11) is satisfied

fpb=sum_cbfm;

pb=N;i=0;

while fpb<U,
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fpb1=0; fpb2=0;

pb=pb-1;

for j=1:pb,

fpb1=fpb1+cb(j)*fm(j);

end

for j=(pb+1):N,

fpb2=fpb2+(cb(j)/b(j))*(b(pb)*fm(pb)+log(Gb(j)/Gb(pb)));

end

fpb=fpb1+fpb2;

end

%

%Computing frequencies using best case

Qb_num1=0; Qb_num2=0; Qb_den=0;

for j=1:pb,

Qb_num1=Qb_num1+cb(j)*fm(j);

end

for j=(pb+1):N,

Qb_num2=Qb_num2+cb(j)*log(Gb(j))/b(j);

Qb_den=Qb_den+cb(j)/b(j);

end

Qb=(Qb_num1+Qb_num2-U)/Qb_den;

for j=1:pb,

fb(j)=fm(j);

end

for j=(pb+1):N,
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fb(j)=(log(Gb(j))-Qb)/b(j);

end

% performance loss index (best case)

plib=0;

for i=1:N,

plib=plib+w(i)*alpha*exp(-b(i)*fb(i));

end

% Computing pa (average case) such that (11) is satisfied

fpa=sum_cafm;

pa=N;i=0;

while fpa<U,

fpa1=0; fpa2=0;

pa=pa-1;

for j=1:pa,

fpa1=fpa1+ca(j)*fm(j);

end

for j=(pa+1):N,

fpa2=fpa2+(ca(j)/b(j))*(b(pa)*fm(pa)+log(Ga(j)/Ga(pa)));

end

fpa=fpa1+fpa2;

end

%

%Computing frequencies using best case

Qa_num1=0; Qa_num2=0; Qa_den=0;
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for j=1:pa,

Qa_num1=Qa_num1+ca(j)*fm(j);

end

for j=(pa+1):N,

Qa_num2=Qa_num2+ca(j)*log(Ga(j))/b(j);

Qa_den=Qa_den+ca(j)/b(j);

end

Qa=(Qa_num1+Qa_num2-U)/Qa_den;

for j=1:pa,

fa(j)=fm(j);

end

for j=(pa+1):N,

fa(j)=(log(Ga(j))-Qa)/b(j);

end

% performance loss index (best case)

plia=0;

for i=1:N,

plia=plia+w(i)*alpha*exp(-b(i)*fa(i));

end

i=1:N;

%plot(i,fw,’o’,i,fa,’+’,i,fb,’*’)

plot(i,fw,i,fa,i,fb)

legend(’worst’,’average’,’best’)
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