
A TASK RESOURCE PROBABILISTIC

SCHEDULING ALGORITHM

 By

 SRAVYA NUTALAPATI

 Bachelor of Technology in Information Technology

 Acharya Nagarjuna University

 Guntur, AP, India

 2009

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2011

ii

 A TASK RESOURCE PROBABILISTIC

SCHEDULING ALGORITHM

 Thesis Approved:

 Dr. Johnson P Thomas

 Thesis Adviser

Dr. Subhash Kak

Dr. Michel Toulouse

Dr. Sheryl A. Tucker

Dean of the Graduate College

.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Biomedical sensors ..2

 1.2 Cloud computing ..3

 1.3 Proposed approach ...4

II. LITERATURE REVIEW ..5

 2.1 Cloud computing services ..5

 2.1.1 Infrastructure as a service ..5

 2.1.2 Platform as a service ..5

 2.1.3 Software as a service ..6

 2.2 Sensor based health care ..8

 2.3 Scheduling ...10

III. SYSTEM ARCHITECTURE ..13

 3.1 Problem Description ..15

iv

Chapter Page

IV. DESIGN AND IMPLEMENTATION ..16

 4.1 Introduction ..16

 4.2 Probabilistic based scheduling ...18

 4.3 Proposed probabilistic scheduling algorithm ...21

V. SIMULATION AND RESULTS ...25

 5.1 Introduction ..25

 5.2 CloudSim simulation tool ..26

 5.3 Simulation model ...29

 5.4 Percentage of cloudlets that meet deadline at both local and non-local filters 33

 5.4.1 Simulation parameters ..33

 5.4.2 Results ...33

 5.5. Impact of increasing deadline on fixed number of cloudlets34

 5.5.1 Simulation parameters ..34

 5.5.2 Results ...34

 5.6 Non-emergency cloudlets scheduling probability ...35

 5.6.1 Simulation parameters ..35

 5.6.2 Results ...35

VI. CONCLUSION..37

REFERENCES ..39

v

LIST OF FIGURES

Figure Page

1. Wireless sensor network ..1

2. Layered cloud computing architecture ...7

3. Wireless health monitoring in a smart environment ..9

4. Real-Time and mobile health care architecture ...13

5. Simplified architecture ...15

6. Proposed model ..21

7. Layered CloudSim architecture ...26

8. CloudSim class diagram ..28

9. a Simulation model ..30

9. b Scheduling the cloudlets ...31

10 Relationship between number of cloudlets and percentage that meet deadline ..33

11 Comparison between fixed number of cloudlets with increasing deadline ……34

12 Comparison between different number of cloudlets whose deadlines are …...35

1

CHAPTER I

INTRODUCTION

A sensor detects some physical phenomenon. A Wireless sensor network (WSN)

is a network of spatially distributed sensors to monitor physical events.

Figure 1: Wireless sensor network

There are many applications of wireless sensor network. Some of these include air

pollution monitoring, forest fires detection, greenhouse monitoring and health

monitoring.

.

2

1.1 Biomedical Sensors

In this thesis we concentrate on health monitoring using biomedical sensors. The

condition of a patient is derived by measuring parameters such as temperature, blood

pressure, heart beat etc using biomedical sensors attached to the patient’s body. This

information is then analyzed to determine for monitoring, diagnostic, treatment and other

reasons. In this thesis we assume a patient who may not be at the hospital, but may be at

home or carrying on with his normal activities. In order to monitor a patient remotely a

set of biomedical sensors are attached to his body. The data from the sensors may have

to be analyzed and processed in real-time such as in an emergency situation, whereas in

other cases, time is of less importance. The signals from the sensors are sent to a cell

phone. Once the cell phone receives the signal from a sensor it forwards the signal to a

filter, which is located between a set of patients and cloud. A filter will take the input

data such as temperature, blood pressure, heart beat etc and analyze them and process

them if a real-time response is required. The response is sent to a hospital management

system, for example, in the case of a patient’s emergency condition. The parameters

which do not require a real-time response are sent over to the cloud. The Cloud provides

software to measure the parameters and provides secure storage for large amount of

patient records as well as processing power.

Many tasks from different patients may arrive at the same time to a filter. Hence

we need a scheduling algorithm to schedule the tasks based on the resources (memory,

CPU etc) available. The scheduling algorithm will ensure that all time constrained tasks

get scheduled and later executed within the required deadlines. If we are not able to

schedule a task on one filter we need to schedule the task on other filters.

3

1.2 Cloud computing

Computing based on the internet using shared resources is called cloud

computing. Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort. The underlying concept of cloud computing is the separation

of applications from the operating systems and the hardware on which they run.

Cloud computing deliver applications via the internet, which are accessible

from web browsers and desktop and mobile apps, while the software and data are stored

on servers at a remote location.

In the past, many of us worried about losing our documents, photos and files if

something bad happened to our computers, like a virus or a hardware malfunction.

Today, our data is migrating beyond the boundaries of our personal computers and all our

data would still safely reside on the web, accessible from any Internet-connected

computer, anywhere in the world because of cloud computing.

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Web_browsers
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Server_(computing)

4

1.3 Proposed Approach

In this thesis, we assume biomedical sensors are attached to the patient’s body.

The signals from the sensors are sent to a cell phone. Once the cell phone receives a

signal from the sensors it forwards them to a filter, which is located between set of

patients in a geographical area and the cloud. A filter is installed for the geographical

group of patients in a network. The filter will measure, analyze and process health related

parameters such as temperature, blood pressure, heart beat, etc. The sensor data may

indicate that the patient needs a timely response. In such cases the data is sent to the

hospital management system for appropriate action and a copy of the data will be stored

in the cloud. The parameters which do not require a real-time response are sent directly to

the cloud only for inclusion in the patient’s medical record. If a medical professional

wants to access the record of a particular patient he can access it from the cloud.

 In this thesis we propose a scheduling mechanism that runs on the filters to meet

the real-time requirements of patient sensor data. The scheduling algorithm schedules the

sensor data based on the resources available in the cloud. The scheduling algorithm

ensures that the time constrained parameters, get scheduled and executed before the

deadline. If a parameter cannot be scheduled on one filter we need to look for other

filters. The parameters which do not require a real-time response are scheduled on any

one of the filters based on a probabilistic function.

Chapter II gives the literature review. The system architecture is described in

Chapter III. Chapter IV gives more details about design and implementation of the

algorithm. The simulation work and results are explained in Chapter V.

5

CHAPTER II

 LITERATURE REVIEW

2.1 Cloud computing services

Delivering the computing resources such as operating system, hardware, software

as a service rather than a product is called a cloud computing service. Cloud computing

contains many different services which are mentioned below.

2.1.1 Infrastructure-as-a-service (IaaS)

In this service, the service provider shares infrastructure resources to support

operations done by the end-user. The examples for infrastructure are CPU, memory,

network, server etc.

2.1.2 Platform-as-a-service (PaaS)

This service is used to complete the life cycle of building and delivering web

applications which are available over the internet. The developers of this service are

concerned only with web-based development and do not care about the operating system.

Anyone who has the internet can do this and deploy over the internet. Some examples of

PaaS model are eBay, Google, iTunes, YouTube. Basically platform-as-a-service

provides support for user interface by using HTML, JavaScript, and some rich internet

applications. This service is used to make software for customers. We can make

combinations of web services using this service.

6

2.1.3 Software-as-a-service (SaaS)

 In the past we used to buy software and install that software in our local

computer, but by using SaaS service, a service provider can made software available to

end-users over the internet. In this type of service end-users pay for what they use. Many

types of software will suit to this service model. For example the types of software that

suits this model are email software, video conferencing etc. The prices of the SaaS

applications are based on the number of users using that software over the internet.

Wei-Tek, et al. [1] presented an overview survey of current cloud computing

architectures, discussed issues that current cloud computing implementations have, and

proposed a Service-Oriented Cloud Computing Architecture (SOCCA) so that clouds can

interoperate with each other.

Meiko, et al. [2] provided an overview on technical security issues of cloud

computing environments. Starting with real-world examples of attacks performed on

cloud computing systems (e.g. Amazon EC2 service), Meiko, et al. [2] gave an overview

of existing and upcoming threats to cloud computing security. Along with that, Meiko, et

al. [2] also briefly discussed appropriate countermeasures to threats.

7

Cong, et al. [3] proposed an effective and flexible distributed scheme with explicit

dynamic data support to ensure the correctness of users’ data in the cloud. They rely on

erasure-correcting code in the file distribution preparation to provide redundancies and

guarantee the data dependability. This construction drastically reduced the

communication and storage overhead as compared to the traditional replication-based file

distribution techniques.

The below figure [15] shows the layered architecture of IaaS, PaaS, SaaS, and

applications.

 Figure 2: Layered cloud computing architecture

8

2.2 Sensor-based healthcare

Zhou et al. [4] present a pervasive medical supervision system in a three layer

network structure. Different wearable wireless bio-sensor nodes forming the first network

layer sample the physiological conditions. Any of those nodes could be set up using a

self-organizing or manual configuration as a gateway node for routing sensing data from

other nodes. Nodes in the second layer are responsible for reliable data transmission as

backbone sensor nodes using mobile phones/PDA depending on two kinds of

transmission modes, home mode and nomadic mode. The hospital medical data center

acts as the third layer supporting personal services and aggregates patient health data

from the other layers. Kang et al. [5] proposed a wearable context aware system for

ubiquitous healthcare, composing of two types of wearable sensor systems: a watch type

sensor system and a chest belt type sensor system. The context aware system in

distributed networks is configured around wearable sensors, wearable computers (e.g.

PDA), and internet-based healthcare services.

Fei et al. [6] designed a practical hardware/software platform supporting a

telecardiology sensor network (TSN) under a typical healthcare community with many

elderly patients. The TSN network performs real-time healthcare data collection and

supports medical privacy to secure ECG data transmission in wireless channels. This

network adopted the Skipjack-based symmetric crypto for one-hop secure ECG data

transmission with low energy and low overhead to preserve the patients’ medical privacy.

For multiple patient cases, the network acted in a cluster structure to reduce the patient-

to-doctor routing overhead and key management with few one-hop hash key chains.

9

S. Dagtas, et al. [7] designed a wireless health monitoring system in a smart

environment, which consists of different sets of sensors; one set of sensors attached to a

patient’s body (body sensors are used to sense vital sign data such as ECG for performing

real-time health monitoring of mobile patients) and another set of sensors are placed over

a zigbee network. Each patient has a personal wireless hub to collect sensor signals from

patient’s body and store them in local server via Zigbee network. Zigbee network name

comes from the zigzagging path which is shown in figure 3. The local server analyses the

signals from PWH and transmits the data to central server. A doctor can access the

information from the central server.

Figure 3: Wireless health monitoring in a smart environment

Sensors fixed over the network have their own limitations, such as installation

costs and lack of mobility. Moreover, the central server does not have the needed

capacity to store more data from the patients.

10

In place of sensors we are proposing today’s ubiquitous and pervasive mobile

phones to play the role of sensors. Instead of having a central server, we are going for

cloud storage because the cloud can store more data.

2.3 Scheduling

Scheduling means how tasks are assigned to run on the available resources. It is a

key concept in multi-tasking and real-time implementations. There are different

scheduling algorithms available. For example, First-in-First-out, Shortest-job-first,

Priority-based scheduling etc.

F. Dong, et al. [8] discussed various grid scheduling algorithms from different

points of view. In static scheduling [8], information regarding all resources, as well as all

the tasks in an application are assumed to be available by the time the application is

scheduled. In the static mode, every task comprising the job is assigned once to a

resource. After assigning a job to a resource, an estimate of the cost of the computation

can be made in advance of the actual execution. Cost estimates based on static

information is not adaptive to situations such as when one of the nodes selected to

perform a computation fails, becomes isolated from the system due to network failure, or

is so heavily loaded with jobs that its response time becomes longer than expected.

Unfortunately, these situations are quite possible and beyond the capability of a

traditional scheduler running static scheduling policies.

Dynamic scheduling [8] is useful when it is impossible to determine the execution

time, direction of branches, and number of iterations in a loop, as well as in the case

where jobs arrive in a real-time mode.

11

The advantage of dynamic load balancing over static scheduling is that the system

need not be aware of the run-time behavior of the application before execution. It is

particularly useful in a system where the primary performance goal is maximizing

resource utilization, rather than minimizing runtime for individual jobs. If a resource is

assigned to too many tasks, it may invoke a balancing policy to decide whether to transfer

some tasks to other resources and which tasks to transfer.

Scheduling decisions change dynamically according to the previous, current,

and/or future resource status in Adaptive scheduling [8].

There are three kinds of adaptive scheduling:

Resource Adaptation: In this available resources are grouped first into disjoint subsets

according to the network delays between the subsets. Then, inside each subset, resources

are ranked according to their memory size and computational power. Finally, an

appropriately-sized resource group is selected from the sorted lists.

Dynamic Performance Adaptation: Dynamic performance adaptation means changing

scheduling policies, finding proper number of resources, and work-load distribution.

Application Adaptation: In application adaptation, each scheduler is application specific,

and they can communicate through interfaces. In most realistic scheduling situations, the

information available to execute a process is uncertain. Factors such as time to execute a

task, the time resources are available are all uncertain. Hence a probabilistic scheduling

algorithm is required.

12

W. Zaho, et al. [9] describes a heuristic approach to dynamically schedule tasks in

a real-time system where tasks have deadlines and resource requirements. The basic

approach assumes that each node of the system contains a local scheduler, a bidder and a

dispatcher. Simulation studies of W. Zaho, et al. [9] paper show that the algorithm is

close to optimal.

There is another algorithm based on heuristics to schedule tasks (that have

deadline) which was developed by K. Ramamritham, et al. [10]. This algorithm mainly

focused on focused addressing and bidding algorithms to schedule tasks which are not

locally scheduled. The results of this algorithm show it is very efficient in hard real-time

environment.

I. Rao, et al [11] developed a probabilistic scheduling algorithm in a Grid system

where the scheduling of a task depends on current resource utilization and number of jobs

in the queue which is dynamic information. This algorithm consists of independent and

indivisible jobs.

However, the algorithms mentioned by W. Zaho, et al. [9], . Ramamritham, et al.

[10] , I. Rao, et al [11] are not tested in the cloud environment which are going to be

tested in this thesis using CloudSim simulation tool kit.

13

CHAPTER III

SYSTEM ARCHITECTURE

In this work we concentrate on remote healthcare monitoring which makes use of

emerging technologies to fundamentally change the relationship between health care

providers and patients. The proposed architecture has the potential for improving mobile

health care system with minimal investment and can meet real-time requirements.

Figure 4: Real-Time and mobile health care architecture

14

In the above architecture a set of biomedical sensors are attached to the patient’s

body. As described earlier, some responses to the sensed environment require a real-time

response whereas in other cases, the sensed data does not call for a real-time response.

The signals from the sensors are sent to a cell phone. Once the cell phone receives a

signal from the sensors it forwards them to a filter, which is located between a set of

patients in a geographical area and the cloud. A filter is installed for a group of patients in

a network. The filter will measure, analyze and process parameters such as temperature,

blood pressure, heart beat, etc. The response is sent to the hospital management about the

patient’s emergency condition and a copy of the response will be stored in the cloud. The

parameters which do not require a real-time response are analyzed on any one of the

filters and the medical record will be sent over to the cloud. If a doctor wants to access

the record of a particular patient he can access it from the cloud.

The outline of the proposed model is shown in figure 5. From the filter the signals

will go to the hospital management system and to the cloud. If there is an emergency

situation the signal will go to the hospital management and a copy of the patient

information will be stored in the cloud. If the situation is normal, a copy of the patient

information will be stored in the cloud for later access.

15

Figure 5: Simplified architecture

3.1 Problem Description

Many tasks from different patients arrive at the same time to the filters. A

scheduling algorithm schedules the tasks based on the resources (memory, CPU etc)

available. The scheduling algorithm ensures that the time constrained tasks get scheduled

and executed before the deadline. If a task cannot be scheduled on one filter we need to

look for other filters. The tasks which are not time constrained are scheduled on any one

of the filters based on a probabilistic function.

Cloud

 Filter

Cell phone Hospital management

16

CHAPTER IV

DESIGN AND IMPLEMENTATION

4.1 Introduction

The objective of our “task resource probabilistic scheduling algorithm” (which

runs on the filters) is to find the target filter for every task coming from a cell phone

based on the criticality of the patient, so that for critical patients, the timing deadlines are

met. Sensor data (set of tasks) from a cell phone reach the filter (called Broker in

CloudSim). The filter tries to schedule tasks based on the resources available. Resources

(e.g. memory, CPU) are available at the cloud datacenter. A Datacenter is a class which

will carry all infrastructure level resources (e.g. CPUs). Through the filters at each

location, the virtual machines will be created on the datacenters.

The tasks (called cloudlets in CloudSim) arriving from cell phones will be

scheduled on virtual machines of the datacenters through the filters. Globalfilter is a

class, which is placed in a geographical area between all local filters and the cloud or it

can be on a local filter, will be connected to all the local filters. If a cloudlet cannot be

scheduled on a local filter due to lack of resources, in order to schedule that cloudlet, the

information about the cloudlet will be sent over to the Globalfilter from the local filter.

17

The Globalfilter will send bids to all local filters. A bid is a policy to select a local

filter, which can meet the cloudlet’s deadline. Each filter responds to the bid. A local

filter with the lowest bid value is selected by Globalfilter to schedule the cloudlet. The

tasks which do not have any deadline can be scheduled on any of the local filters.

Although the filters do the scheduling, the tasks are executed on the cloud. The selection

process is explained detail later in this chapter.

18

4.2 Probabilistic based scheduling

Abbreviations and definitions:

ST(ti) = Starting time of cloudlet ti - Time at which the cloudlet ti should start execution

tia = Arrival time of cloudlet ti

E(ti) = Execution time of cloudlet ti

D(ti) = Deadline time of cloudlet ti

EAT = Earliest available time of CPU (initially it is equal to the time when the simulation

gets started, as there only one CPU per datacenter).

NewEAT (ti) = this will replace the current EAT if a current cloudlet ti is scheduled.

DRDR(ti) = Dynamic Resource Demand Ratio, indicates the likelihood of the cloudlet ti

to be scheduled on the local virtual machine.

H(ti) = The objective of this heuristic function H(ti) is to select a cloudlet ti to schedule

next on the virtual machine, among a set of cloudlets.If we have a set of cloudlets, the

cloudlet ti, to be scheduled first will be the one with the minimum H(ti).

info(ti) – cloudlet information for cloudlet ti. Each cloudlet has cloudlet ID, arrival time,

deadline time, execution time.

VIM(ti) – virtual machine assigned to cloudlet ti (if a local filter cannot schedule a

cloudlet ti, we need to select another virtual machine through other filters to schedule).

PX(ti) = probability that starting time of cloudlet ti does not conflict with previously

scheduled cloudlet ti-1’s execution time.

PY(ti) = probability that no previously scheduled cloudlet ti has starting time that

conflicts with newly arrived cloudlet ti+1’s starting time.

19

F(vk) = A virtual machine vk having minimum F(vk) is selected as a target node for

scheduling cloudlet ti. F(vk) is a function to select which virtual machine can schedule the

cloudlet ti to meet the deadline.

Bidvalue(vk) = A virtual machine vk having minimum Bidvalue(vk) is selected as a target

node for scheduling. Bidvalue(vk) indicates the likelihood, that the cloudlet can be

guaranteed to meet the deadline on the virtual machine. It is calculated using EAT of CPU

in a virtual machine and execution time of a cloudlet ti.

When cloudlets {t1, t2, …, tn} arrive at each filter, calculate the starting time of

each cloudlet ti using ST(ti) = EAT. The job of the filter is to schedule the cloudlets on the

virtual machine. Initially the schedule s1, s2, …, sm is empty, where each si is a

scheduled cloudlet. The scheduling is done based on the resources (CPU) available at

each virtual machine. A filter calculates the likelihood of the cloudlets to be scheduled on

the local virtual machine, using

DRDR(ti) = E(ti) / (D(ti) – EAT)

If DRDR(ti) is less than or equal to one, then the algorithm schedules the cloudlet on the

local virtual machine. If we have a set of cloudlets, the cloudlet ti, to be scheduled first

will be the one with the minimum H(ti) and be selected using

H(ti) = DRDR(ti) + [D(ti) – (ST(ti)+E(ti))] + E(ti) = DRDR(ti) + D(ti) – ST(ti).

Weights can be associated with each term to form w1DRDR(ti) + w2D(ti) – w3(ST(ti)).

In our case w1 = w2 = w3 = 1. This equation selects cloudlet ti to schedule next on the

virtual machine, among a set of cloudlets. This equation selects the cloudlet with the

earliest deadline. If other factors such as the cloudlet with the least computation time is to

be selected, the weights need to be modified.

20

If DRDR(ti) is greater than one, the information of cloudlet ti, is passed to the

GlobalFilter. The GlobalFilter send bids to all local filters, to determine which virtual

machine can schedule the cloudlet ti to meet its deadline. The Bidvalue(vk) for all virtual

machines is calculated using Bidvalue(vk) =EAT / E(ti). The virtual machine having the

minimum Bidvalue(vk) is selected as a target machine for the cloudlet ti.

If a cloudlet ti does not have any deadline, it can be scheduled on any of the

filters. Here we use probability based scheduling unlike deterministic scheduling for

cloudlets with deadlines, because deterministic scheduling is more time consuming. The

probabiliy based scheduling gives only the estimation of the appropriate target filter and

cloudlets without deadlines get scheduled on estimated target filter. The selection of a

target filter depends on two factors, one is probability PX(ti), where PX(ti) = (EAT) / tia ,

which is the probability that the starting time of one cloudlet does not conflict with a

previously scheduled cloudlet execution time. The second one is probability PY(ti), where

PY(ti) = (1 – E(ti)) / EAT, which is the probability that no previously scheduled cloudlet

has a starting time that conflicts with a newly arrived cloudlet starting time. For each

cloudlet, the product F(vk) = PX(ti)* PY(ti) is obtained at each filter. The cloudlet is

scheduled for execution on the filter that gives the minimum product value F(vk).

21

The figure below shows our proposed model:

Figure 6: Proposed model

4.3 Proposed probabilistic scheduling algorithm

if (cloudlet ti has a deadline D(ti))

goto part 1;

if (cloudlet ti does not have any deadline, that is, D(ti) =)

goto part 3;

22

Part 1:

When cloudlets arrive at each filter, the job of the filter is to schedule the cloudlets on the

virtual machine. The scheduling is done based on the resources available at each virtual

machine. A filter calculates the likelihood of the cloudlets to be scheduled on the local

virtual machine, using DRDR(ti). If DRDR(ti) is less than or equal to one, then the

algorithm schedules the cloudlet (if we have a set of cloudlets, the cloudlet ti, which

needs to be scheduled first will be selected using H(ti)) on the local virtual machine. If

DRDR(ti) is greater than one, the information of cloudlet ti is passed to the GlobalFilter.

schedule = s1, s2, …, sm = //schedule is empty

cloudlet-set = {t1, t2, …, tn} where ti is cloudlet i

while cloudlet-set ≠ {} do

begin

ST(ti) = EAT //calculate starting time for each cloudlet in cloudlet-set//

DRDR(ti) = E(ti) / (D(ti) – EAT) // Calculate DRDR for each

cloudlet//

if (DRDR(ti) > 1) then // cloudlet cannot be scheduled locally//

begin

info(ti) GlobalFilter // Send cloudlet information to

GlobalFilter//

goto part2.

end

else begin

for i = 1 to n do //for all the cloudlets in cloudlet-set//

 NewEAT (ti) = ST(ti)+E(ti)

 //NewEAT is the earliest time when the CPU will be

available//

 H(ti) = DRDR(ti) + [D(ti) – (ST(ti)+E(ti))]+ E(ti)

end forloop
select ti such that ti = min(H(t1), H(t2), …, H(tn)) //schedule cloudlet

with min(H(ti)) //

begin
cloudlet-set = {t1, t2, …, tn} – {ti} // remove cloudlet ti from the

cloudlet-set //

schedule = schedule | ti // | stands for the operation of

appending//

EAT =NewEAT (ti)

end

 end

 end

23

Part2:

Note: Accessing virtual machines can be done only through respective filters

If the cloudlet ti cannot be scheduled locally, GlobalFilter send bids to all local filters, to

see which virtual machine is most feasible to schedule the cloudlet ti. The Bidvalue(vk) for

all virtual machines is calculated using EAT of CPU in every virtual machine, and

execution time of cloudlet ti. The virtual machine having the minimum Bidvalue(vk) is

selected as a target machine for the cloudlet ti.

begin

for k = 1 to n do //for all the virtual machines in GlobalFilter //

Bidvalue(vk) =EAT / E(ti)

end forloop
select vk such that vk = min(Bidvalue(v1), Bidvalue(v2), …, Bidvalue(vn)) //select virtual

machine with min(Bidvalue(vk) //

begin
VIM(ti) = vk // assign selected virtual machine vk to cloudlet ti

cloudlet-set = {t1, t2, …, tn} – {ti} // remove cloudlet ti from the cloudlet-set //

schedule = schedule | ti // | stands for the operation of appending//

EAT = ST(ti)+E(ti)

end

end

24

Part3:

After a local filter receives a cloudlet ti which does not have any deadline, it can be

scheduled on any of the filters. The selection of a target filter depends on two factors, one

is probability PX(t), which is the probability that the starting time of one cloudlet does

not conflict with a previously scheduled cloudlet execution time. The second one is

probability PY(t), which is the probability that no previously scheduled cloudlet has

starting time that conflicts with newly arrived cloudlet starting time.

For each cloudlet, the product PX(t)* PY(t) is obtained at each filter. The cloudlet

is scheduled for execution on the filter that gives the minimum product value F(vk).

begin

for k = 1 to n do //for all the virtual machines in Globalfilter

F(vk) = PX(ti) * PY(ti)

PX(ti) = (EAT) / tia
PY(ti) = (1 – E(ti)) / EAT

end forloop
select vk such that vk = min{ F(v1), F(v2), …, F(vn) } //select virtual

machine with min(F(vk)) //

begin
VIM(ti) = vk // assign selected virtual machine vk to cloudlet ti

cloudlet-set = {t1, t2, …, tn} – {ti} // remove cloudlet ti from the cloudlet-set //

schedule = schedule | ti // | stands for the operation of appending//

EAT = ST(ti)+E(ti)

end

end

25

CHAPTER V

SIMULATION AND RESULTS

5.1. Introduction

The objective of the simulation is to determine the performance of the proposed

probabilistic scheduling approach for both emergency and non-emergency tasks in a

mobile health care system in a cloud environment. Simulation is done on a system having

six Filters (Brokers) at six different locations. The CloudSim simulation tool [15] is used

for the simulation, which is a tool kit for modeling and simulation of cloud computing

environments. It supports behavior modeling of cloud system components, such as data

centers, virtual machines, and resource provisioning policies. CloudSim is being used to

investigate Cloud resource provisioning and energy efficient management of data center

resources [15].

The reason behind choosing CloudSim is that, it allows cloud providers to test

their services in a repeatable and controlled environment free of cost and to tune the

performance bottlenecks before deploying on real Clouds. On the simulation side, the

simulation environment allows different kinds of resource allocation under different load

distributions. CloudSim provides a good simulation framework for emerging cloud

computing applications, so that researchers can investigate different design issues without

getting concerned about low level details.

26

5.2 CloudSim simulation tool

The layered architecture of CloudSim is shown below

Figure 7: Layered CloudSim architecture

Novel features of CloudSim are:

1) Providing simulation for cloud computing environments like datacenters,

virtual machines, etc.

2) Providing platform allocation policies, on resources.

3) Providing simulation for network connections.

Unique features of the CloudSim are:

1) Managing independent, co-hosted virtualized services on a data center

node.

2) Easy to change between space-shared and time-shared allocation of tasks

on resources.

27

 In CloudSim the fundamental classes which are building blocks of the simulation

in this thesis are BwProvisioner, CloudCoordinator, Cloudlet, CloudletSchedular,

Datacenter, DatacenterBroker, etc.

Cloudlet: Cloudlet is a task arriving from outside to be scheduled or to be executed.

Datacenter: This class models the core infrastructure level services.

DatacenterBroker: This class negotiates between cloud providers and resources. This

broker negotiates on behalf of the providers to select which resource is most suitable for

the providers.

Vm: This class models a VM, which is managed and hosted by a Cloud host component.

Vmschedular: This is an abstract class implemented by a Host component that models the

policies (space-shared, time-shared) required for allocating processor cores to VMs. The

functionalities of this class can easily be overridden to accommodate application-specific

processor sharing policies. Figure 8 show the overall class diagram of CloudSim.

28

Figure 8: CloudSim class diagram

CloudSim: This is the main class, which is responsible for managing event queues and

controlling sequential execution of simulation events. Every event that is generated by

the CloudSim entity at run-time is stored in the queue called future events. The events

which are scheduled are removed from the future events queue and transferred to the

deferred event queue.

SimEntity: This is an abstract class, which represents a simulation entity that is able to

send messages to other entities and process received massages as well as fire and handle

events.

29

5.3 Simulation model

 Our simulation consists of a system having six Filters (Brokers) at six different

locations. Every filter gets access to one virtual machine (a virtual machine is created on

a datacenter). The first step of the simulation is creating six datacenters at six different

locations. Each datacenter has a name. After the creation of datacenters, we create filters

at each location. All these filters are maintained by a GlobalFilter.

 Through the filters, we create a virtual machine on a datacenter at each one of the

locations. In CloudSim, there are two ways to create virtual machines (VMs) on a

datacenter; we can create types of VMs in advance and use VMallocation policy to

allocate VMs to a datacenter, or a VM can be statically allocated to a desired datacenter.

In this thesis we chose to statically create a VM on a particular datacenter. For example,

VM1 is created in Datacenter1 through Filter1 in figure 9(a). Likewise the remaining five

datacenters, filters, and VMs are created. Note that every VM creation on a datacenter is

done through the particular filters at that location

30

The simulation model is shown in figure.9(a)

 Figure. 9(a): Simulation model

 The simulation model shown above reflects our proposed architecture. Cloudlets

will arrive in a random fashion at each filter. The job of the Filter is to schedule the

Cloudlets on a deadline basis.

31

The scheduling of the cloudets is shown in figure. 9(b)

Figure. 9(b): Scheduling the cloudlets

If Cloudlets arrive at different filters we need to calculate the starting time of each

Cloudlet using function ST(T) = EAT

32

After calculating the starting time we need to make sure the Dynamic Resource

Demand Ratio (DRDR) must be less than or equal to 1. This DRDR will guide in

scheduling the jobs without any overlap.

If that ratio is less than or equal to 1, then calculate the New Earliest Available

Time (NewEAT) (addition of initial earliest available and execution time of the particular

Cloudlet) for each Cloudlet. This will replace the current Earliest Available Time (EAT)

if that Cloudlet is scheduled. The next step is to calculate the heuristic function for every

Cloudlet which will identify a Cloudlet which needs to be scheduled first. The Cloudlet

with the minimum heuristic function value will be scheduled and the process will

continue if there are more Cloudlets in the Cloudlet set.

If a local filter cannot schedule the Cloudlet, then information of that Cloudlet

will be sent over to the GlobalFilter. Then GlobalFilter will send the Cloudlet details to

all local filters. The Cloudlets with no deadline are probabilistically scheduled using

probability function (PX(ti)*PX(ti)).

33

5. 4 Percentage of cloudlets that meet deadline at both local and non-local filters

5.4.1 Simulation parameters

For every five seconds, 2 cloudlets arrive at each filter. The execution time for

each cloudlet is fixed (30 seconds). The deadline time is 50 seconds initially and the

deadline time for each cloudlet increases by 20 for every other cloudlet that come in.

5.4.2 Results

If we repeat the iteration for 50 iterations, from the below figure we can see that if

the average number of cloudlets at each filter increases then the percentage that will meet

the deadline decreases in a six node system. If the average number of cloudlets at each

filter are 80 then the percentage that meet the deadline are only 2.5% of 80 cloudlets, at

both local and non-local filters. On the other hand, if there are only 5 cloudlets at a time

at each filter, 60% of them meet their deadlines.

Figure 10: Relationship between number of cloudlets and percentage that meet deadline

34

5.5 Impact of increasing deadline on fixed number of cloudlets

5.5.1 Simulation parameters

In this simulation there are a fixed number of cloudlets at each filter with a fixed

deadline and a fixed execution time .The execution time is fixed for all (10 seconds). The

cloudlets all arrive at the same time to each filter.

5.5.2 Results

In the below figure we can see there is a linear relationship between the deadline

and the percentage of cloudlets that will meet the deadline. As the number of cloudlets at

each filter increase, the percentage of cloudlets that will satisfy the deadline decrease.

Increasing the deadline for a fixed number of cloudlets also increases the percentage of

cloudlets that will meet the deadline

Figure 11: Comparison between fixed number of cloudlets with increasing deadline

35

5.6 Non-emergency cloudlets scheduling probability

5.6.1 Simulation parameters

We next consider a fixed number of non-emergency (i.e. deadline=) cloudlets in

a group of tasks. In this case also, the cloudlets arrive at the same time to each filter. We

simulated total number of tasks 30, 40 and 50 with 10, 20 and 30 tasks in each of these

cases to be tasks with no deadlines. Hence, at one extreme case scenario, 100% of the

tasks had no deadlines and at the other extreme only 20% of tasks had no deadlines. The

execution time for these tasks were fixed with 30 seconds

5.6.2 Results

In the below figure, the y-axis show only the tasks that do not have a deadline that

will be scheduled at the local filter. If the number of cloudlets with deadline= are 10

out of a total of 30 cloudlets then only 60% of tasks will be scheduled on the local filter.

On the other hand if all the 30 cloudlets have a deadline= then 100% of the tasks will

be scheduled on the local filter.

 Figure 12: Comparison between different number of cloudlets whose deadlines are

infinity

36

Simulation results of the scheduling algorithm show that each filter can handle

multiple tasks at a time and with an increase in the average number of tasks at a filter, the

percentage of tasks that will meet the deadline decrease. Furthermore, with an increase in

the deadline of tasks, the percentage of tasks that will meet the deadline also increases.

As non-emergency tasks do not have a time constraint, they will always find a filter to

execute.

37

CHAPTER VI

CONCLUSION

In this thesis we have proposed a filter-based architecture for scheduling real-time

tasks in a cloud system. We propose a probabilistic scheduling algorithm for real-time

tasks in a mobile health care system, using the CloudSim simulation tool kit. Our

simulations were done on a 6 node filter system. The proposed algorithm deals with both

emergency tasks and non-emergency tasks. Emergency tasks have deadlines, so they

should execute before the deadline and hence they should find a filter to be scheduled

before reaching the deadline. Non-emergency tasks do not have any deadline; they can be

scheduled on any of the filters.

Simulation results of the scheduling algorithm show that with an increase in the

average number of tasks at a filter, the percentage of tasks that will meet the deadline

decrease. Furthermore, with an increase in the deadline of tasks, the percentage of tasks

that will meet the deadline also increases. As non-emergency tasks do not have a time

constraint, they will always find a filter to execute.

38

The future of mobile health monitoring with the combination of cloud computing

is expected to see lot of technological advances. The focus on mobile health monitoring

in a cloud environment will diminish the need of the physical presence of a patient and

provide emergency healthcare. The CloudSim toolkit can only simulate the services and

algorithms in a repeatable and controlled environment. Future work may include real

time implementations. This includes determining the optimized location of filters and the

number of filters in such a system. One big research area is the security of such systems

as it deals with patient information. Improved scheduling algorithms are also needed. The

division of tasks between the filters and virtual machines in the cloud is another topic for

further research.

39

REFERENCES

[1] Wei-Tek Tsai, Xin Sun and Janaka Balasooriya. “Service-Oriented Cloud Computing

Architecture”. Seventh International Conference on Information Technology, pp. 684-

689, 2010.

[2] Meiko Jensen, J¨org Schwenk, Nils Gruschka, et al. “On Technical Security Issues in

Cloud Computing”. IEEE International Conference on Cloud Computing, pp. 109-116,

2009.

[3] Cong Wang, Qian Wang, and Kui Ren, et al. “Ensuring Data Storage Security in

Cloud Computing”. Quality of Service, 2009. IWQoS. 17th International Workshop, pp.

1-9, 2009.

[4] B. Zhou, C. Hu, M. Q. H. Meng, et al. “A wireless sensor network for pervasive

medical supervision” in Proc. ICIT ’07 IEEE Int. Conf. Integration Technology, pp. 740-

744, 2007.

[5] D. O. Kang, H. J. Lee, E. J. Ko, et al. “A wearable context aware system for

ubiquitous healthcare,” in Proc. 28th IEEE EMBS Annual Int. Conf, pp. 5192-5195,

2006.

[6] F. Hu, M. Jiang, M. Wagner, et al. “Privacy-preserving telecardiology sensor

networks: toward a low-cost portable wireless hardware/software codesign” IEEE Trans.

Inform. Technol. Biomed., vol. 11, pp. 619-627, 2007.

40

[7] S. Dagtas, G. Pekhteryev, Z. Sahinoglu, et al. “Real_time and secure Wireless Health

Monitoring”. International Journal of Telemedicine and Applications, pp. 1-10, 2008.

[8] Fangpeng Dong and Selim G. Akl. “Scheduling Algorithms for Grid Computing:

State of the Art and Open Problems”. Microsoft Technical Report 2006-504, pp. 1-55,

2006.

[9] W. Zhao, K. Ramamritham and J. A. Stankovic. “Scheduling Tasks with Resource

Requirements in Hard Real-Time Systems”. IEEE Transactions on Software

Engineering., Vol. 5, pp. 564-577, 1987.

[10] K. Ramamritham and J. A. Stankovic. “Distributed scheduling of Tasks with

Deadlines and Resource Requirements”. IEEE Transactions on Computers., Vol. 38, pp.

1110-1123, 1989.

[11] Imran Rao and Eui-Nam Huh. “A probabilistic and adaptive scheduling algorithm

using system-generated predictions for inter-grid resource sharing”. J Supercomput, Vol.

45, pp 185–204, 2008.

[12] R. Buyya and M. Murshed. “GridSim: A Toolkit for the Modeling and Simulation of

Distributed Resource Management and Scheduling for Grid Computing”. Concurrency

and Computation: Practice and Experience, Vol. 14, pp. 13-15, 2002.

[13] A. Legrand, L. Marchal, and H. Casanova. “Scheduling distributed applications: the

SimGrid simulation framework”. Proceedings of the 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid, pp. 138-145, 2003.

[14] C. L. Dumitrescu and I. Foster. “GangSim: a simulator for grid scheduling studies”.

Proceedings of the IEEE International Symposium on Cluster Computing and the Grid,

Vol. 2, pp. 1151-1158, 2005.

41

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, et al. “CloudSim: A Toolkit for

Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource

Provisioning Algorithms”. Cloud Computing and Distributed Systems (CLOUDS)

Laboratory Department of Computer Science and Software Engineering The University

of Melbourne, Australia.

[16] CodeBlue project, http://www.eecs.harvard.edu/ mdw/proj/codeblue/. (Date last

accessed May 6
th

, 2011).

[17] CloudSim, http://www.cloudbus.org/cloudsim/. (Date last accessed October 18
th

,

2011)

http://www.cloudbus.org/cloudsim/

VITA

Sravya Nutalapati

Candidate for the Degree of

Master of Science

Thesis: A TASK RESOURCE PROBABILISTIC SCHEDULING ALGORITHM

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December 2011.

Completed the requirements for the Bachelor of Technology in Information

Technology at Acharya Nagarjuna University, Guntur, AP, India in 2009.

Experience:

Graduate Research Assistant in the Department of Computer Science,

Oklahoma State University, Stillwater, OK October’11 – December’11

Graduate Research Assistant in Oklahoma Animal Disease Diagnostic Lab,

Oklahoma State University, Stillwater, OK August’10 - September’11

System Analyst in the Department of Entomology and Plant Pathology,

Oklahoma State University, Stillwater, OK January’10 - July’10

Web Developer in the Department of Zoology, Oklahoma State University,

Stillwater, OK January’10 - July’10

ADVISER’S APPROVAL: JOHNSON P THOMAS

Name: Sravya Nutalapati Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A TASK RESOURCE PROBABILISTIC SCHEDULING ALGORITHM

Pages in Study: 41 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

The future of mobile health monitoring combined with cloud computing is expected to

see a lot of technological advances. In this thesis we assume that to remotely monitor a

patient, biomedical sensors are attached to the patient’s body. The signals from the

sensors of different patients are sent over to a six filter system through the patient’s cell

phone. The filter is located between a geographical group of patients and the cloud. The

filter will measure, analyze and process the sensor data such as temperature, blood

pressure, heart beat, etc. If timely action is required, the data is sent to the hospital

management system and a copy of the data will be stored in the cloud. The parameters

which do not require a real-time response are sent over to the cloud.

Findings and Conclusions:

The proposed scheduling algorithm is validated using CloudSim, which is a tool kit for

modeling and simulation of cloud computing environments. The scheduling algorithm,

which runs on the filters, schedules the tasks arriving from different patients, based on the

resources available in the cloud. The scheduling algorithm ensures that time constrained

tasks get scheduled and executed before the deadline. The tasks which are not time

constrained are scheduled on any one of the filters based on a probabilistic function.

Simulation results of the scheduling algorithm show that with an increase in the average

number of tasks at a filter, the percentage of tasks that will meet the deadline decrease.

Furthermore, with an increase in the deadline of tasks, the percentage of tasks that will

meet the deadline also increases. As non-emergency tasks do not have a time constraint,

they will always find a filter to execute. Future work will seek to improve on the above

approach in order to effectively schedule emergency situations and also identify

approaches to place the filters in appropriate locations to optimize performance.

