
EFFICIENT STORAGE OF XML – A COMPARATIVE

STUDY

By

UMA-CHINMAYEE NIRMAL

Bachelor of Science

University College of Engineering

Osmania University

Hyderabad, India

2001

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2005

EFFICIENT STORAGE OF XML – A COMPARATIVE

STUDY

Thesis Approved:

Dr. Blayne E. Mayfield

Thesis Adviser
Dr. Johnson P. Thomas

Dr. G. E. Hedrick

Dr. A. Gordon Emslie

Dean of the Graduate College

 ii

TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION..1

1.1 Problem Statement ...2
1.2 Thesis Outline ...2

II. LITERATURE REVIEW...3

2.1 XML ..3
 2.1.1 Features of XML ..4
 2.1.2 Is XML a database? ...5
2.2 Data, Documents and Databases ...7
 2.2.1 Role of Databases ..8
 2.2.2 Role of Java ..8
2.3 Storing and Retrieving Data ..9
 2.3.1 Integral Storage Systems ..9
 2.3.2 Full-text search Systems ...10
 2.3.3 Relational Databases ..10
 2.3.4 Native XML Databases ..14
2.4 Storing and Retrieving Documents ...15
 2.4.1 File Systems ...15
 2.4.2 Relational DBMS..15
 2.4.3 Native XML Databases ..16
 2.4.4 Object based data/document ..17
 2.4.5 Using Java Objects ...19

III. DESIGN AND IMPLEMENTATION ISSUES ..20

3.1 Implementation Platform and Environment ..20
3.2 Scope of Study ...20
3.3 Input Parameters ..21
 3.3.1 XML Input ..21
 3.3.2 XML Schema ...21
 3.3.3 Schema – Table Mapping ..22
3.4 Design of the Simulation ..22
 3.4.1 File Systems ...22
 3.4.2 Relational Databases ..23

 iii

 3.4.3 Native XML Databases ..29
 3.4.4 Java Objects ...32

IV. EVALUATION OF THE SIMULATION..35

4.1 Comparative Study...35
 4.1.1 Bulk Loading ..36
 4.1.2 Path Traversals ...37
 4.1.3 Casting ...39
 4.1.4 Missing Elements ...39
 4.1.5 Ordered Access ..40
 4.1.6 Joins ...41
 4.1.7 Containment and full-text search ...42
4.2 Performance ...42
 4.2.1 Execution Time ..43
 4.2.2 Document Size Complexity ..44
4.3 Performance of Queries ...46
 4.3.1 Insert Operations...46
 4.3.2 Select Operations ..47
 4.3.3 Update Operations ..48
 4.3.4 Delete Operations..49
4.4 Comparison of Features ...50
 4.4.1 Storage and retrieval in RDBMS ..50
 4.4.2 Storage and retrieval in NXD ...50
 4.4.3 Storage and retrieval using JAXB...51
4.5 Discussion..52
4.6 Conclusion ...53
 4.6.1 Strengths ...53
 4.6.2 Weak Points ..54

V. SUMMARY AND FUTURE WORK...55

5.1 Summary ..55
5.2 Future Work ...56

REFERENCES ..50

APPENDICIES..54

Appendix A - Abbreviations ...55
Appendix B - Trademark Information ..56
Appendix C - Results ..57
Appendix D - Code Listing ...58

 iv

LIST OF TABLES

TABLE PAGE

I Feature-wise performance comparison of results ...36

II Results of query processing comparison ..66

 v

LIST OF FIGURES

FIGURE PAGE

1 Data Exchange using XML...4

2 XML Document ...5

3 Example of XML Query ...13

4 Example of Stored Procedure using OPENXML ...25

5 Example of Insert using Updategram ...26

6 Retrieval using FOR XML - Example ..28

7 Example of XML Template ...29

8 XML document – example ..31

9 Java Architecture for XML Binding - overview...33

10 JAXB unmarshal process ...33

11 JAXB marshalling into XML ...34

12 Performance Graph I – Query Execution Time Complexity43

13 Performance Graph II – Document Size complexity – single document44

14 Performance Graph III – Document Size complexity – collection45

15 Performance Graph IV – Execution Time – Insert Statements46

16 Performance Graph V – Execution Time – Select Statements47

17 Performance Graph VI – Execution Time – Update Statements48

18 Performance Graph VII – Execution Time – Delete Statements49

 vi

CHAPTER I

INTRODUCTION

XML is becoming the data format of choice for a wide variety of information

systems solutions. Common applications using XML include document transmission in

Business to Business (B2B) systems, message format construction for integration of

Internet applications with legacy systems, binding of XML data to visual and non-visual

controls, data storage and retrieval and various data manipulation activities within

applications. The benefits most often associated with the utilization of XML include

platform independence, low cost of entry and the ability to seamlessly share data. XML

also can accommodate a variety of data including text, images and sound. However, the

excitement over XML does not come without challenges stemming from emerging and

conflicting standards, new skill requirements and the management issues caused by the

growing amounts of XML data to be managed [10].

A majority of both traditional business applications and Internet-based

applications depend on databases. Several different database models exist; however, the

majority of them are relational [11]. To maintain data in a database, data must be

retrieved and stored in a consistent, reliable and efficient manner. Using existing database

infrastructure to manage XML data demands seems logical. However, new XML

database products are built to handle XML data demands natively without the baggage of

converting to other database structures such as the relational structure. In addition, a

 1

variety of storage strategies, conversion processes, and levels of support for leading

database products exist [3].

1.1 Problem Statement

The use of XML has been growing at a tremendous rate in the recent years. Also

several technologies supporting the storage and usage of XML have evolved providing

their proprietary functionalities. A need therefore arises for a systematic study to

distinguish these technologies from one another, compare their features and analyze their

best usage contexts to promote an easy learning curve to neophyte developers. This study

focuses on an unbiased comparison of the current and evolving technologies that support

XML storage and processing.

1.2 Thesis Outline

This study is a survey and comparative analysis of data storage using databases to

store and retrieve XML, using Java objects representing XML. It gives a high-level

overview of how to use XML with databases or Java Objects. The study also describes

how the differences between data-centric and document-centric XML affect their usage,

when used with databases and objects and how XML is used with relational and object

oriented databases, Java Objects and the role of native XML databases (stand alone XML

databases).

 2

CHAPTER II

LITERATURE REVIEW

Chapter II is a brief review of the existing technologies, their usage, their merits

and demerits and their influence on the proposed orientation of research.

2.1 XML

Extensible Markup Language (XML) is a meta-language (a language for

describing other languages) that enables designers to create their own customized tags to

provide functionality not available with Hypertext Markup Language (HTML) [31].

XML is not a replacement for HTML. HTML is about displaying information, while

XML is about describing information. XML was created to structure, store and exchange

information. Unlike HTML, XML cannot be interpreted by an ordinary web browser. A

good description of XML is that it is a cross-platform, software and hardware

independent tool for transmitting information [32].

XML is a subset of Standard Generalised Markup Language (SGML). That is,

every XML document is a conforming SGML document.

 3

2.1.1 Features of XML

XML can be used to exchange data. As XML is stored in plain text format, which

provides a software- and hardware-independent way of sharing data, converting data to

XML can reduce greatly the complexity caused by incompatible data formats by creating

data that can be read by many different types of applications.

Figure 1 represents a context where XML is used to exchange data over the

Internet.

Internet/
Intranet/
Extranet
Server

Internet Server

User Desktop

Internet

Applications/
User Desktop Mainframe

XML Enabled Relational
Data Base System

Figure 1. Data Exchange Using XML [12]

XML can also be used to store data in files or in databases. Applications can be

written to store and retrieve information from the stored XML and generic applications

can be used to display the data. An example of an XML document is shown in Figure 2.

 4

Figure 2. XML document (abstracting from visual representation). [31]

XML can be used to create new languages, for example Wireless Markup

Language that is extensively used in handhelds and wireless applications [32].

2.1.2 Is XML a database?

An XML document is a database only in the strictest sense of the term: a database

is a collection of information managed as an asset for the benefit of a community of users

[18]. In many ways, this makes an XML file no different from any other file as all files

contain data of some sort. As a "database" format, XML has some advantages. For

example, it is self-describing (the markup describes the structure and type names of the

data, although not the semantics), it is portable (it represents data as Unicode), and it can

 5

describe data as a tree. It also has some disadvantages. For example, it is verbose and

access to the data is slow due to parsing and text conversion, as it needs to be formatted

for display or otherwise interpreted.

In order for databases to be managed for a community of users, they must exist in

a database management system (DBMS) that provides services like caching, space

management, locking, backup and restore, transactions and logging. All databases

regardless of their data model persuasion benefit from these services. A more useful

question to ask would be whether XML and its affiliated technologies constitute a

DBMS. On the positive side, XML provides many of the things found in Data Base

Management Systems: storage, schemas, query languages, programming interfaces and

so on. On the negative side, it lacks many of the things found in “real” DBMSes: efficient

storage, indices, security, transactions and data integrity, multi-user access, triggers,

queries across multiple documents and so on.

Thus, while it may be possible to use an XML document or documents as a

database in environments with small amounts of data, few users and modest performance

requirements, this will fail in most production environments, which have many users,

strict data integrity requirements, and the need for good performance [17].

XML allows defining nested entries, something that is hard to do in flat files. The

real advantage of XML when compared to storing in a traditional database is that the data

is portable and this is becoming less of an advantage than it appears, due to the

widespread availability of tools for serializing databases as XML, which makes data

exchange less formidable.

 6

2.2 Data, Documents and Databases

XML products and applications are sometimes characterized as component-

centric or data-centric, in contrast to document-centric. Several possible meanings could

be intended:

• Distributed storage in contrast to integral storage

• Component-level access as opposed to whole-document access, or

• Both of the above

Data-centric XML files are those that use XML as a data transport and are

characterized by fairly regular structure, fine-grained data (that is, the smallest

independent unit of data is at the level of a character data-only element or an attribute),

and little or no mixed content (i.e., no complex element types) [3].

Document-centric XML files (usually) are XML documents designed for human

consumption and are characterized by little or no regularity in structure, coarser-grained

data (that is, the smallest independent unit of data might be at the level of an element with

mixed content or the entire document itself), and lots of mixed content [3].

Sean McGrath proposed a more quantitive approach on the xml-dev mailing list.

He defined document-oriented XML as "XML in which corpora conforming to schema X

exhibit power law distributions of the element types in X" and data-oriented XML as

"XML in which corpora conforming to schema X exhibit uniform distributions of the

element types in X." [26]

 7

2.2.1 Role of Databases

Data-centric information usually is stored in a traditional database which may be a

relational, an object-oriented, or a hierarchical database. Data-centric XML information

can also be stored into a database by providing third-party middleware or by providing

additional capabilities to the DBMS, thus making it XML-enabled.

Document-centric XML, on the other hand, is stored in a database designed

especially for storing XML. For example, in an XML (only) database or in an application

designed to manage documents and is built on top of a native XML database, which may

be a content management system.

2.2.2 Role of Java

The rules of data-centric XML and document-centric XML are not absolute. XML

data -- especially semi-structured data, can be stored in native XML databases and XML

documents can be stored in traditional databases when few XML-specific features are

needed. Furthermore, the boundaries between traditional databases and native XML

databases are beginning to blur as traditional databases add XML capabilities and XML

databases support the storage of document fragments in external databases.

The role of Java in storage and retrieval of both data-centric and document-centric

XML is notable. As data is more often than not, managed across platforms, networks and

databases, the interface at which its transfer is managed, plays an active role in

determining its consistency, security and manageability. As such, Java is a good tool to

use, with its platform independent API [5]. When using XML and Java technologies

 8

together, there is greater interoperability formed with other applications both inside and

outside of the Enterprise [5].

The remainder of this study discusses the strategies and issues for the storage and

retrieval of data, documents, and their interoperability, using various technologies.

2.3 Storing and Retrieving Data

Storing and retrieving data is a key measure of the performance of any storage

system. As such, storage and retrieval of XML data from a text-based XML file is

inefficient as it requires a lot of overhead on the part of the application that uses XML to

handle the store, retrieve or search operations. Storage of XML documents using existing

data storage tools is discussed in this section.

2.3.1 Integral storage systems

Documents have been around far longer than databases, so there are clearly other

ways to store and retrieve them than storing in traditional databases.

One way is integral storage, which normally keeps the unparsed document intact

and stores it as a Binary Large Object (BLOB) in a database or as a file in the operating

system file store. Integral files are typically supplemented with an index database that

allows searches based on metadata, such as descriptors, creation and modification dates,

authorship, access rights, etc. But if the file store is unmanaged, users can access the files

directly and change them. As a result, it can be difficult to maintain the integrity of the

index and its consistency with the document files.

 9

There are several products that overcome this problem. They support integral

storage by providing managed access and specialized query facilities, either in OS file

store or in dedicated repositories

2.3.2 Full-text search systems

 Another approach to XML document storage and retrieval is the full-text search

system. These products focus on searching for documents based on their textual content.

Some of them are even XML aware and can take advantage of structural knowledge

gained from Document Type Definition (DTD) [2] or schema.

2.3.3 Relational databases

Relational databases have been around for so long that the need for a Relational

Data Base Management System (RDBMS) to receive and send XML is obvious; that is

the essence of using XML as an interchange representation. The most important factor in

choosing a database is whether one is using the database to store data or documents. To

transfer data between XML documents and a relational database, it is necessary to map

the XML document schema (such as DTD, XML Schemas etc.,) to the database schema.

Data transfer software is then employed. The software may use an XML query language

(such as XQuery, XPath, or proprietary language) or simply transfer data according to the

mapping (some equivalent of SQL queries of a database) in which case the structure of

the document must exactly match the structure expected by the mapping.

 10

 When this is not the case, before transferring data to the database, the document is

first transformed to the structure expected by the mapping. Similarly, after transferring

data from the database, the resulting document is transformed to the structure needed by

the application.

 Section 2.3.3.1 gives a brief overview of mapping XML schemas to database

schemas.

2.3.3.1 The mapping process Mappings between document schemas and database

schemas are performed on element types, and text. They almost always omit

physical structure such as entities, Character DATA (CDATA) sections, encoding

information, some logical structure such as processing instructions, comments,

and the order in which elements appear in their parent. This is more reasonable

than it may sound, as the database and application are concerned only with the

data in the XML document. For example, in a sales order, it does not matter if the

customer number is stored in a CDATA section, an external entity, nor does it

matter if the customer number is stored before or after the order date.

One consequence of this is that storing the data from an XML document in

a database and then reconstructing the document from that data, also called

“round-tripping”, often results in a different document. Accepting this modified

document for use depends on the application that uses this document and the

mapping software being used.

 11

2.3.3.2 Mapping types Two types of mappings are commonly used to map an

XML document schema to the database schema: table-based mappings and

object-relational mapping [3].

Table-based mappings that are used by many middleware products,

transfer data between an XML document and a relational database. They model

XML documents as a single table or a set of tables. The table-based mapping is

useful for serializing relational data, such as when transferring data between two

relational databases. Its obvious drawback is that it cannot be used for any XML

documents that do not match the format of the table.

Object-relational mappings model data in an XML document as a tree of

objects. In this model, XML element types, or mixed content are generally

modeled as classes. The model is then mapped to relational databases using

traditional object-relational mapping techniques.

2.3.3.3 Query Languages Many products transfer data directly according to the

specific data structure or model on which they are built. Because the structure of

the XML document often is different from the structure of the database, these

products often include or are used with XSLT (eXtensible Stylesheet Language

Transformations) [4]. This allows users to transform documents to the structure

dictated by the product, before transferring data to the database, as well as the

reverse.

 12

2.3.3.3.1 Template Based Query Languages The most common query languages

that return XML from relational databases are Template-based query languages.

In these languages, there is no predefined mapping between the document and the

database. Instead, SELECT statements are embedded in a template and the results

are processed by the data transfer software. Template-based query languages are

used almost exclusively to transfer data from relational databases to XML

documents. Although some products that use template-based query languages can

transfer data from XML documents to relational databases, they do not use their

full template language for this purpose. Instead, they use a table-based mapping

[3].

2.3.3.3.2 Structured Query Language based query languages Structured Query

Language (SQL) - based query languages use modified SQL statements, for

example SELECT statements, the results of which are transformed to XML. The

simplest of these uses nested statements that are transformed directly to nested

XML according to the object-relational mapping. For example, the query in

Figure 3 constructs a result set with two columns.

 SELECT Orders.SONumber,
 XMLELEMENT(NAME "Order",
 XMLATTRIBUTES(Orders.SONumber AS SONumber),
 XMLELEMENT(NAME "Date", Orders.Date),
 XMLELEMENT(NAME "Customer", Orders.Customer)) AS xmldocument
 FROM Orders

Figure 3. Example of Query [4]

2.3.3.3.3 XML Query Languages Unlike template-based query languages and

SQL-based query languages, which can only be used with relational databases,

 13

XML query languages can be used over any XML document. To use these with

relational databases, the data in the database must be viewed as XML, thereby

allowing queries over virtual XML documents. With XML query languages,

either a table-based mapping or an object-relational mapping can be used. If a

table-based mapping is used, each table is treated as a separate document and

joins between tables (documents) are specified in the query itself, as in SQL. If an

object-relational mapping is used, hierarchies of tables are treated as a single

document and joins, if any, are specified in the mapping. [3]

2.3.4 Storing data in Native XML databases

It also is possible to store XML data in a native XML database. Native XML

databases are databases designed especially to store XML documents. Like other

databases, they support features like transactions, security, multi-user access,

programmatic APIs, query languages, and so on.

There are several reasons to use a native XML database. The first of these is when

data is semi-structured. That is, it has a regular structure, but that structure varies enough

that mapping it to a relational database results either in a large number of columns with

null values resulting in space wastage or a large number of tables resulting in

inefficiency. Although semi-structured data can be stored in object-oriented and

hierarchical databases, it also can be stored in a native XML database in the form of an

XML document. [6]

 14

2.4 Storing and Retrieving Documents

There are two basic strategies to storing a collection of XML documents: store

them in the file system or as a Binary Large OBject (BLOB) in a relational database and

accept limited XML functionality, or store them in a native XML database.

2.4.1 Storing and Retrieving File Systems

If set of documents is simple, such as a small documentation set, the easiest way

to store them is in the file system. Tools such as ‘grep’ (to query) and ‘sed’ (to modify)

may be used on the document. If simple transaction control is desired, documents can be

placed in a version control system.

2.4.2 Storing in Relational DBMS

A relational DBMS must offer more than the generic services such as integral

storage and full-text searching if it is to support XML. An XML DBMS has requirements

that a typical relational DBMS does not. These stem primarily from differences in:

• data models

• applications

• update policies

• schema management

A slightly more sophisticated option is to store documents as BLOBs in a

relational database. This provides a number of the advantages found with databases:

transactional control, security, multi-user access, and so on. In addition, many relational

 15

databases have tools for searching text and can do such things as full-text searches,

proximity searches, synonym searches, and fuzzy searches [11].

2.4.3 Storing in Native XML databases

If more features are desired than are offered by one of the systems mentioned

above, a native XML database may be considered. The only difference from other

systems is that their internal model is based on XML and not something else, such as the

relational model.

Native XML databases are mostly useful for storing document-centric XML. This

is because native XML databases preserve things such as document order, processing

instructions, comments, and entity usage, while XML-enabled traditional databases do

not.

Native XML databases also are useful for storing documents whose "natural

format" is XML, regardless of what those documents contain. The native XML database

offers XML-specific capabilities, such as XML query languages, and usually will be

faster at retrieving whole messages.

In short, a native XML database can accept, store, and understand any XML

document without prior configuration.

2.4.3.1 XML Database Management Systems A content management system or

XML DBMS typically maintains XML documents in dispersed storage; that is,

the documents are parsed and their data content, attribute values, and other

components are stored in separate records and fields. They are designed for

 16

managing human-written documents such as user manuals and white papers. The

database generally is hidden from the user behind a front end that provides

features such as:

• Version and access control;

• Search engines;

• XML/SGML editors;

• Separation of content and style;

• Extensibility through scripting or programming; and

• Integration of database data.

The term “content management system”, as opposed to “document

management system”, reflects the fact that such systems generally allow breaking

documents into discrete content fragments, rather than having to manage each

document as a whole. Not only does this simplify such things as coordinating the

work of multiple writers working on the same document, but also allows

assembling entirely new documents from existing components.

2.4.4 Storing XML as Object Based Data/Document

In object-oriented approaches (or OO databases), XML documents reside on the

database in an object format. For example, each XML element becomes an object. Each

attribute in an XML element becomes an attribute in the object. Relationships between

elements - that is, their position in the hierarchy, the element sequence, etc. – are

retained.

 17

If designed properly, an object-based system retains all document content,

including white space. Object based solutions provide good processing characteristics in

both text-related and non-text related situations because they directly access the elements,

attributes and data.

2.4.4.1 Storing Data/Documents An object-based solution has the ability to treat

XML as either data or document. Object-based systems have data management

capabilities that are similar to relational systems. Object-based solutions directly

models business objects that “represent tangible entities within an application that

the users create access and manipulate while performing a transaction” [18].

Business objects within a system are typically persistent and long-lived. They

contain business data and model the business behavior. [18] The database easily

supports uniqueness and integrity using object identifiers (Object-IDs). For

example, changing the street address in a database record is as simple as updating

the street address object that defines the street address fragment.

2.4.4.2 Retrieval An object-based system meets the content retrieval

requirements. Using the object-based approach, there is the potential of three

search methods:

• Use SQL to search the database for specific documents or fragments;

• Use XPATH to search the contents within a specific XML document; or

• Use XQUERY to search XML documents and content.

 18

Since each element is a separate entity, it is fast and efficient to find all

occurrences of a specific element within a document or across documents.

2.4.5 Object based Solution – Using Java Objects

An object-based solution supports database transactions. Using an object-based

approach, a Document Object Model (DOM) implementation can map directly into the

database. A DOM is a tree of objects with interfaces for traversing the tree and writing an

XML version of it [39]. In fact, when reading an XML file, a DOM tree can be created in

memory as specific nodes that can be accessed by the application. This combined with

the capability of processing a particular fragment or node of the tree, greatly improves

performance, because most of the data stays on the database management system. This

solution simplifies resource contention, because fewer records need to be locked. With an

object-based approach, it is possible to rely upon the support of a Java Data Base

Connectivity (JDBC) API, because JDBC supports object data access as well as relational

data access. This means that Java custom mapping can be available to map from the

database to Java objects automatically.

 Having discussed about the existing technologies and their features, as above, this

study explores the strengths and weaknesses of these methods and provides an

explanation for those behaviors.

 A general program has been devised to test these technologies against one

another, the description of which along with results produced are discussed in the

subsequent chapters.

 19

CHAPTER III

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

 The simulation was implemented on the OSU Computer Science Department’s

Dell Dimension 8200, which is a cutting-edge technology-class computer that represents

the common development environment in the industry. The system has 1.0 Giga Byte of

RAM. It also has 54.5 Giga Byte of hard disk space. It runs on the Microsoft Windows

XP Professional operating system. The development platform included Sun

Microsystems Java Runtime Environment JRE 1.4.2_06, Java Software Development Kit

J2SDK 1.4.2_06, Apache Software Foundation’s Tomcat 5.5 Web Application Server,

Apache Software Foundation’s Xindice 1.1 B4 Native XML Database and Microsoft

SQL Server 2000 SP3 for Windows XP Professional along with SQLXML 3.0 SP3 for

Relational database – XML support.

3.2 Scope of Study

A careful study and comparative analysis of the existing technologies is pursued.

The ideal context for usage of each of the technologies is analyzed, which describes the

ideal data, its characteristics, environment, nature of applications and the performance

under such or other conditions, for data usage.

 20

This study is limited to establishing the relationship between the modeling and

mapping of a given set of data to its most efficient storage mechanism, thereby obtaining

its storage and retrieval speed, consistency and efficiency as a measure of performance.

This study is also limited by the functionalities provided by the current release versions

of the platform and environments used.

3.3 Input Parameters

3.3.1 XML Input

 The data input to this program is in XML format. The data has been obtained

from various sources using a common repository [38]. The data is mostly text based but

used in various applications such as image processing, web based auctions, conference

proceedings documents and financial applications used by banks.

3.3.2 XML Schema

The data obtained from the repository has been validated using a W3C XML

Schema that was generated for the XML data where DTD was available. The schema

generation from a given DTD was carried out using a conversion tool called Trang [7].

 21

3.3.3 Schema – Table Mapping

In order to use the XML data with a relational database, MS SQL Server 2000

SP3 in this project, a third party software [1] was used to map the W3C XML Schema

with tables in the database.

3.4 Design of the Simulation

 The simulation was implemented in Java 1.4.2_06, on a Dell Dimension 8200

machine running Windows XP professional operating system.

Various data sets representing extensively used and problematic data were utilized

as test data for the research. The data contained content based data (mostly text), some

non-textual data, nested data (hierarchical) and hexadecimal

A software program has been developed to utilize the available raw XML data to

measure the performance of storage and retrieval of the XML document using a relational

database, native XML database and object persistence using Java objects.

3.4.1 File Systems

Since storage and retrieval of XML using file systems requires processing on the

part of the application using the XML, file systems have not been included in this study.

If the processing is done in an environment that has support for parsing and processing

XML search, store and retrieve operations, though trivial, can be expensive.

 22

3.4.2 Relational Databases

Relational databases and XML documents are both ways to represent data, but

they do so differently. For example, in an RDBMS, the metadata is kept in proprietary

form whereas in XML it is interspersed with the data in the form of tags, and may also be

included in a DTD or a schema definition. Also, RDBMS data is stored in tables and

XML data is organized in hierarchies. Besides, the primary languages for accessing data

in these two representations – SQL and XPath – reflect these differences. Hence, a

mapping from XML to RDBMS is required if the XML document is to be decomposed

into the relational format, often called “shredding”.

In this study, a third party tool, Altova GmbH’s Map force [1] was used for the

mapping from the XML document schema to RDBMS schema.

The RDBMS used for this study was Microsoft SQL Server 2000 SP3. SQL

Server 2000 provides Transact – SQL (T-SQL) language extensions to operate bi-

directionally with relational and XML sources. It also provides two system stored

procedures, sp_XML_preparedocument and sp_XML_removedocument, that assist the

XML to Relational transformation. SQL 2000 Server’s XML access capabilities are

further enhanced with SQLXML 3.0 SP3 API, which allows XML formatting both on the

client and the server. Prior to SQLXML 3.0, XML formatting was only on the server.

3.4.2.1 Storage Storage of an XML document involves two basic strategies

mentioned earlier: integral storage with markup intact and distributed storage

across a set of tables. Integral storage preserves the unparsed text, while

distributed storage normally parses the document and discards the markup. It is

 23

also possible to store some elements as text while storing others as relational data.

MS SQL Server 2000 SP3 provides some such utilities.

The process of pulling an XML document apart and inserting the data into

tables is often referred to as shredding. OPENXML is a Transact - SQL (T-SQL)

keyword that provides a result set, which can be equated to a table or a view, over

an XML document that is retained in memory [28]. OPENXML allows access to

XML data as if it were a relational recordset by providing a tabular relational

view of the internal representation of an XML document.

Before using OPENXML, SQL Server needs to load the XML document

into memory. SQL Server provides the sp_xml_preparedocument stored

procedure for doing this. It loads the supplied XML text into an internal DOM

(using MSXML2.dll) and returns a handle that can be supplied later to the

OPENXML statement.

The handle returned by sp_xml_preparedocument is valid for the duration

of the SQL Server connection or until it is removed from memory by calling the

stored procedure sp_xml_removedocument. SQL Server stores the loaded

documents in its internal cache, but only allows MSXML to use one-eighth of the

total memory available. Hence, it is important to call sp_xml_removedocument

stored procedure when working with XML documents is finished working with

the XML documents. The stored procedure in Figure 4 illustrates this process.

 24

DECLARE @xmlDoc text
DECLARE @iDoc int
SET @xmlDoc = ‘<data> …… </data>’
 -- load XML document into memory
 EXEC sp_xml_preparedocument @iDoc OUTPUT, @xmlDoc
 -- process XML documents with OPENXML here

 OPENXML(@iDoc, RowPattern, [Flags], [WITH (SchemaDeclaration | TableName)])
 -- remove XML document from memory
 EXEC sp_xml_removedocument @iDoc

Figure 4. Example stored procedure that uses OPENXML statement

When using OPENXML, the nodes in the XML document that map to

rows in the new rowset must be identified. This is specified using an XPath

expression that identifies an XML node-set.

As MS SQL Server 2000 SP3 does not provide a utility to load XML

documents directly using their file paths into queries, a stored procedure was used

to extend the capabilities of the existing sp_xml_preparedocument stored

procedure to enable reading from a filename.

MS SQL Server 2000 in association with MS Internet Information

Services Web Application Server 5.1 also provides a useful functionality of using

XML Data Reduced Schemas (XDR) to query SQL data. XDR provides the

ability to query and retrieve data over HTTP. Storage using INSERT and

UPDATE SQL queries can be made using XML Templates. XML templates are

discussed in more detail in Section 3.4.2.2.2.

Updategrams are XML Templates with special tags. Instead of writing

SQL Statements to do INSERT, UPDATE, SELECT and DELETE operations,

updategrams provide the special tags with functionality that are used like before

and after images of the database.

The three main pieces of Updategram are <sync>, <before> and <after>.

The <before> and <after> blocks come in pairs to create a single transaction.

 25

These blocks are contained within a <sync> block that defines the transaction.

The <before> block is a before image prior to the transaction taking place. The

<after> block is the after image, post transaction having taken place. Stated

otherwise, the <before> block is the state of the existing data, the <after> block is

the state of the data after the transaction occurs. Figure 5 shows the sample code

for the INSERT updategram.

<ROOT xmlns:updg=”urn:schemas=Microsoft-com:xml-updategram”>
 <updg:sync>
 <updg:before>
 </updg:before>
 <updg:after>
 <Users FirstName=”B” LastName=”Pt” />
 </updg:after>
 </updg:sync>
 <ROOT>

Figure 5: Example Insert into MS SQL Server 2000 table using insert updategram

Updategrams have not been used in this study as there is no support to

read XML files containing the template queries in a single batch process in Java,

which was the platform used to conduct the study. However, Microsoft SQLXML

3.0 SP3 API provides support for Microsoft Visual Basic and Microsoft C#

Active Data Object (ADO) connections to load the XML processing query files

and the corresponding schema files through the SQLXMLBULKLOAD object,

that is tied to the Microsoft Win32 Virtual Machine, for generic schema and XML

template document processing.

3.4.2.2 Retrieval The retrieval of XML from MS SQL Server 2000 SP3 can be

done using one of the two methods in Section 3.4.2.2.1 or 3.4.2.2.2.

 26

3.4.2.2.1 Built-in xml generator functions MS SQL Server 2000 provides the

ability to return the results of a query in XML format. This is accomplished by

adding the FOR XML clause at the end of the SELECT statement. It is not

difficult to use, and the syntax is:

FOR XML mode [, XMLDATA] [, ELEMENTS] [, BINARY BASE 64]

• mode – this is the only required argument. It specifies how the XML will be

returned in the result set. There are 3 values that can be used:

1. AUTO – returns query results as nested XML elements.

2. EXPLICIT – you specify the format of the results.

3. RAW – each row is returned as an XML element

• XMLDATA – when specified, the schema is returned along with the results.

• ELEMENTS – this argument can only be used in conjunction when mode is

AUTO. The query results are returned as XML sub-elements.

• BINARY BASE64 – if the resultset being returned will contain binary data then

this attribute specifies what form the results will look like. The binary data is

returned as BASE 64.

 27

SELECT team.Sponsor, rider.RiderName FROM Team, Rider WHERE team.TeamID =
rider.TeamID FOR XML AUTO ELEMENTS
Results look like:
<Team>

<Sponsor>Yamaha</Sponsor>
<Rider>

<RiderName>Damon Bradshaw</RiderName>
</Rider>
<Rider>

<RiderName>Jeremy McGrath</RiderName>
</Rider>
<Rider>

<RiderName>David Vuillemin</RiderName>
</Rider>
</Team>
<Team>
<Sponsor>Honda</Sponsor>
<Rider>

<RiderName>Ricky Carmichael</RiderName>
</Rider>
<Rider>

<RiderName>Sebastien Tortelli</RiderName>
</Rider>
</Team>

Figure 6. Retrieval using FOR XML clause

3.4.2.2.2 Virtual directory and Schema based storage A virtual directory can be

created using MS Internet Information Services Web Application Server 5.1 in

association with MS SQL Server 2000. XML Data Reduced Schemas (XDR) can

then be used to query SQL data. XDR provides the ability to query and retrieve

data over HTTP using XML Templates. A template is a valid XML document that

can contain a root element, header, parameters, and query statements. Every

element within a template is optional, except for the "sql" namespace, which must

be defined. A template can have one or more Transact-SQL queries and retrieve

the data through a URL, all without exposing any of the underlying database

structure. Adding a query to a template is by simply wrapping the query statement

within an <sql:query> </sql:query> tag. An example template is provided in

Figure 7.

 28

<ROOT xmlns:sql="urn:schemas=microsoft-com:xml-sql">
 <sql:query>
 SELECT UserID, FirstName, LastName
 FROM Users
 ORDER BY LastName, FirstName
 FOR XML AUTO

 </sql:query>
</ROOT>

Figure 7. Example of an XML template

The template query can be executed by simply typing the

“http://localhost/Users/usertemplate/users.xml” URL into a web browser on a system

where IIS server is installed and the virtual directory is Users.

3.4.2.3 Indexing and Searching Database designers spend considerable effort on

indexing, in order to optimize the performance of searches. XML, because of its

different data model and mixed content, presents unique challenges in this area.

Searching in SQL Server can be done by querying the database using SELECT

statements in the regular fashion or using OPENXML statements from an XML

document.

3.4.3 Native XML Databases

Native XML databases (NXD) or XML DBM Systems are specialized for storing

XML data and store all components of the XML model intact. They have an XML

document as their fundamental unit of (logical) storage, just as a relational database has a

row in a table as its fundamental unit of (logical) storage. A NXD may not actually be a

standalone database at all.

 29

3.4.3.1 Storage Native XML DBMSes store XML documents as a unit and create

a model that is closely aligned with XML or one of XML's related technologies

like the Infoset or DOM. This model includes arbitrary levels of nesting and

complexity, as well as complete support for mixed content and semi-structured

data. The model is automatically mapped by the NXD into the underlying storage

mechanism. The mapping used will insure that the XML specific model of the

data is maintained. Once the data is stored, NXDs must be continued in use if a

useful representation of data is expected. The database abstracts away all the

details of how XML is stored and leaves the developer free to build applications

using XML technologies.

In Apache Xindice 1.1 B4, a unique resource identifier for the document is

created every time a document is added to a collection and no resource id is

specified.

A document ‘fx102.xml’ will be added to the collection

‘/db/data/products’ and will be stored under the key or resource id ‘fx102’, using

the command ‘xindice add_document -c /db/data/products -f fx102.xml’

3.4.3.2 Retrieval XPath is the current NXD query language of choice. In order to

function as a database query language, XPath is extended slightly to allow queries

across collections of documents. Unfortunately, XPath was not really designed as

a database query language and comes up short in several ways when it is used as

one.

 30

To improve the performance of queries, NXDs support the creation of

indices on the data stored in collections. These indices can be used to improve the

speed of query execution dramatically. In Apache Xindice 1.1b4, the document

identified by the key or resource id ‘fx102’ will be retrieved from the

‘/db/data/products’ collection and stored in the file ‘fx102.xml’ using the

command “xindice retrieve_document -c /db/data/products -n fx102 -f fx102.xml”

3.4.3.3 Indexing and Searching The Xindice indexing system allows

defining indices to speed performance on commonly used XPath queries. If no

indices are defined queries can still be executed but performance will suffer

because the query engine will need to scan the entire collection to create the result

node-set every time a query is made. Adding an index is done using “xindice

add_indexer -c /db/data/catalog -n idindex -p product_id”. Figure 8 shows the

XML document containing the product_id element. Adding an index for the

product_id element improves product searches based on product_id by making it

fast and efficient.

<?xml version=”1.0” ?>
<product>
 <product_id > 120320 </product_id>
 <description> Glazed Ham </description>
</product>

Figure 8. XML document example

 31

3.4.4 Java Objects

 A Java application that uses XML technologies needs to parse the data objects of

XML. The parsing can be done using various parsers that are in vogue, such as Simple

API for XML (SAX) or Document Object Model (DOM). A newer parse and bind

capable functional API released by Java called as Java Architecture for XML Binding

(JAXB) combines the best of both worlds. SAX is an event driven model, whereas JAXB

is based on binding of Java objects with XML elements. Data storage capability is higher

in JAXB compared to SAX. JAXB applications tend to be faster than DOM as JAXB is

specific to a single schema where as DOM can be managed with multiple schemas.

The fundamental concept is based on the fact that JAXB simplifies access to an

XML document from a Java program. It allows accessing and processing XML data

without having to know XML or XML processing. The JAXB compiler generates a set of

Java classes based on the valid schema of the XML file passed to it and creates a content

tree of Java objects in memory. The compiler comes with a parser that can be used to

validate the XML file based on its schema. The creation of the content tree from the

XML file is known as unmarshalling and output of XML from a content tree is known as

marshalling. Figure 9 gives a detailed level overview of JAXB.

 32

Figure 9: Java Architecture for XML Binding overview [39]

3.4.4.1 Storage Storing XML in Java objects is done by breaking the XML data

into chunks or unmarshalling it so that it can be identified by the Java program

using it. Unmarshalling an XML document means creating a tree of content

objects that represents the content and organization of the document.

The content objects are instances of the classes produced by the binding

compiler. In addition to providing a binding compiler, a JAXB implementation

must provide runtime APIs for JAXB-related operations such as unmarshalling,

marshalling or validation. The APIs are provided as part of a binding framework.

The binding framework comprises three packages. The primary package,

javax.xml.bind, contains classes and interfaces for performing operations such as

unmarshalling, marshalling, and validation. Figure 10 outlines the unmarshalling

process of JAXB.

Figure 10: JAXB unmarshal process [39]

 33

3.4.4.2 Retrieval To retrieve XML from the Java content tree objects, it needs to

be marshaled. Marshalling is the process of building XML from Java content tree

objects. Marshalling is the opposite of unmarshalling. It creates an XML

document from a content tree. To marshal a content tree, the appropriate JAXB

classes are invoked that handle the output of the objects into XML using a Java

output stream handler. Figure 11 outlines the marshalling process of JAXB.

Figure 11: JAXB marshalling into XML [39]

3.4.4.3 Indexing and searching Searching for XML in the JAXB context does not

use XPath. Unlike the other two storage mechanisms studied so far, the

application using the JAXB classes is expected to handle the search functionality,

as the search will not look in the XML document, but in the generated JAXB class

collection. As the content tree is loaded in memory, the search is usually faster

than with other applications as the application does not have to depend upon

database connections and driver communication overheads are eliminated.

 34

CHAPTER IV

EVALUATION OF THE SIMULATION

This chapter evaluates the simulation and discusses its performance in terms of

storage and retrieval times and efficiency, based on the observations discussed in Section

4.3. The behavior of results produced by various inputs is also discussed.

4.1 Comparative Study

A general performance assessment cannot scrutinize differences on a fine level of

granularity [35]. Rather, some general challenges were identified, which guided a

comprehensive and conclusive performance analysis covering all performance critical

aspects of processing of XML.

The comparison is summarized in Table 1. Each of these properties is explained

in the section 4.1.1 through to section 4.1.7.

 35

Property Relational
Databases

Native XML
Databases Java Objects

Preserve Document
Order

No (document is
shredded) Yes No (dispersed objects

)
Support for casting

Yes (database defined) Yes (only standard
conversions)

Yes (standard and
custom data type

conversions)
Path Traversal XPath for queries

(Database
Implementaion

Dependent)

XPath Application handled

Handles Missing
Elements Yes (using NULL) Yes (empty elements)

Yes (JAXB defined
standard data type

conversions)
Support for querying
over the HTTP Yes (using virtual

directory support of IIS)
Yes (using Servlets on a
web application server)

Yes (application
dependent

implementation)
Scalability or Bulk
loading Yes (platform based) Yes (collection based) Yes

Full text searches Yes (only if database
provides support &

BLOB/CLOB
representation of XML)

Yes No (document order
not preserved)

Construction of large
results Yes Yes Yes

Multiple Document
Search results

Yes (based on database
joins) Yes (collection based) Yes (application

dependent)
Well Formed XML
Parsing Supported Yes Yes Yes

Valid XML Parsing
Supported Yes No Yes

Table 1: Feature-wise performance comparison of the technologies used

4.1.1 Bulk loading.

 The importance of bulk loading data has been repeatedly emphasized when

assessing database performance in general. In XML databases, bulk loading currently

assumes an important role as no insert/update operations are available and most systems

support insert only on a document level. Due to the fact that different structures (models)

imply different levels of granularity, while shredding the document, this operation may

entail severe costs to setup and maintain indices or constraints.

 36

Bulk loading of XML was conducted using all the three storage technologies. MS

SQL Server proved to be the most suitable in terms of sheer bulk. It offered storage of

bulk loads of XML using an SQLXML 3.0 SP3 sqlxmlbulkloader object utility in

Microsoft Visual Basic and Microsoft C# environments. Extension of

sp_xml_preparedocument stored procedure to read from a file currently supports a

maximum xml document size of 14 Mega Byte.

Apache Xindice 1.1 b4 NXD does not support a single XML document larger

than 3 MB. It was designed for collections of small to medium sized documents as

opposed to a single monstrous document. A large document can be split into several

smaller documents and grouped together as a collection in order to store in the Apache

Xindice 1.1b4 NXD.

Parsing of XML into Java objects using JAXB poses little problem for the size of

the document unlike the other two technologies. The JAXB application supporting

classes are generated from the JAXB framework by validating against an XML Schema

and the processing (unmarshalling, marshalling or validating) is done on the XML

document based on the classes generated. This process does not set a limit on the XML

document size. As the content tree of objects is created in main memory, the workable

size of the document is dependent on the system configuration and available resources.

4.1.2 Path traversals

Specifying paths arguably is one of the most basic and natural operations on

structured documents. Not only are path expressions useful as a stand alone operation,

but also are furthermore ubiquitous building blocks of most complex operations. Efficient

 37

path traversals often cause a trade-off between redundancy, data volume and degree of

fragmentation.

XPath’s ability to address an XML document at any level of granularity has

interesting implications for a DBMS. Nodesets (sets of nodes examined) in XPath are by

definition unordered. Since XPath doesn't specify any particular order in which nodes are

required to be returned, languages that build on XPath often define additional semantics

of their own to take care of ordering. For example, in the case of XSLT, nodesets are

always processed in document order.

MS SQL Server 2000 SP3 provides XPath based queries in its OPENXML

syntax. The patterns used to identify the nodes to be processed as rows are expressed in

XPath syntax. The set of nodes selected by an XPath expression are the nodes remaining

after processing each step in order. Usage of XML templates also will result in the

processing of nodesets in the document order.

Apache Xindice 1.1 b4 supports XPath and XUpdate. XUpdate makes extensive

use of the expression language defined by XPath for selecting elements for updating and

for conditional processing. It is designed with references to the definition of XSLT [17].

Hence, the path traversal is in the document order or based on the index order if one is set

explicitly by adding to the NXD.

Processing XML using Java objects does not specify any particular node path,

unlike relational or XML databases. As the XML is parsed into a tree of objects the path

followed is purely based on the access mechanism (logic) of the processing application.

 38

4.1.3 Casting

XML is essentially text and as such, queries frequently demand casting to other

elementary data types like integers, floats or even user-defined types. String operations

are notoriously expensive.

If the XML document is shredded to store into the MS SQL Server 2000 SP3

database, the mapping tool that maps the XML Schema to the RDBMS schema is

responsible for the consistent casting of types across the two schemas. All operations

performed thereafter convert the data types based on the schema mapping, as and when

necessary.

Apache Xindice provides support for casting implicitly as it supports evaluations

in XPath search strings that require string to integer and floating point conversions. Other

than that, there is no necessary use of casting in Xindice as the data is stored, processed

and retrieved as XML.

The JAXB framework on the other hand provides support for Data type

conversions both implicitly and explicitly. Implicit conversions take place during the

generation of the core content tree object classes by the framework. Explicit conversions

are supported by providing external binding files that contain binding customizations,

which may also include data type conversions.

4.1.4 Missing elements.

The semi-structured nature of XML in general brings about a highly

heterogeneous structure of records that under some mappings results in many NULL

 39

values. Apart from strategies to store NULL values in a compact way, we also need

efficient methods to query for NULLs as they often represent spots of interest.

Interestingly MS SQL Server 2000 SP3, Apache Xindice 1.1-b4, and JAXB

provide support for missing elements, each in their own way. MS SQL Server 2000 SP3

and JAXB need a valid XML document validated by a W3C XML Schema of the XML

document in order to process. Hence, missing elements or empty elements are taken into

account by the table-mapping and class generation frameworks respectively.

Apache Xindice, unlike the other two does not decompose (shred) the XML

document into a non-XML form and hence does not provide an explicit NULL mapping

for an empty or missing element.

4.1.5 Ordered access.

Order is an omni-present feature when querying XML and affects all aspects of

data management. Maintaining order and preserving the implementations may become a

severe bottleneck. A sophisticated and flexible treatment of the document order should

ensure that it is well integrated into the optimization process up to the degree that it can

be ignored when it is not needed, if, specified by the user.

Order management of the documents is important to maintain and preserve a

collection of documents. As both MS SQL Server 2000 and Java Architecture for XML

Binding decompose an XML input document into their respective proprietary

implementations, the document order is not preserved intrinsically. Maintaining the

document order can be possible in a relational DBMS when XML is stored as a Character

 40

Large Object (CLOB) or a Binary Large Object (BLOB). But the problem of managing

the document size and slow searches and retrievals cannot be avoided.

Apache Xindice comes out a winner in document order preservation. That was

precisely the reason for which it was designed. It supports collections of documents and

searches and retrieves from an entire collection of documents when a query is executed.

4.1.6 Joins.

Join operations on content (or values) have been seen as a critical aspect that early

XML query languages did not possess; particularly, data-centric applications that require

a combination of data, based on values. The difficulties, bottlenecks, and challenges

posed by joins are well-known from relational database systems.

Join operations are critical for relational database systems where the data is

normalized in order to store and retrieve while achieving good performance. XML data

stored in an RDBMS in a decomposed method can utilize the join operations of the

RDBMS with which it interacts. MS SQL Server is no exception to this.

Apache Xindice on the other hand provides implicit join operations with its

indexing facility that helps join documents that are logically connected, i.e., documents

belonging to the same collection.

JAXB, unlike the other two does not provide an explicit join operation. The

framework allows binding rules to be defined by the application processing the XML

data. These binding rules may include any dependencies which can be translated into join

operations on its RDBMS counterpart.

 41

4.1.7 Containment and full-text search.

Containment and full-text search are elementary operations when querying XML.

The problem and its intrinsic difficulties are well-known from other application domains.

Containment and full-text searches are supported by RDBMSes that support full-

text searches on their data columns. For this purpose, XML data needs to be stored as a

BLOB or CLOB. However, in such cases, the cost of searches cannot be avoided.

Apache Xindice provides indexing of element and attribute values in addition to

the ability to manage and return aggregated document fragments. This helps in

performing broad queries across a set of documents and speeds up the process just as a

full-text search engine would do.

JAXB has no explicit full-text search functionality built into it. The application

using it will have to handle any such requests.

The guidelines, described above, were followed to assess the performance of the

software program. The software program for this comparative study was developed in

Java 2.0 as it prevents biasing toward specific machine architectures, operating systems

or environments.

4.2 Performance

Analysis of the time-complexity, space-complexity, complexity of interface

program code, and ease of programming were conducted. To measure performance, the

results were plotted as functions of input data (size) and complexity.

 42

Results are produced with different values for the input parameters. The

performance of the new implementation can be evaluated by the graphs produced. The

graphs are plotted using Microsoft Excel spreadsheet software by inserting the results

obtained from the simulation into a spreadsheet. The x-axis of the plot indicates the

technology used namely JAXB, NXD and RDBMS. The y-axis of the plot indicates the

time and space complexity as a single document and a collection of documents. The plot

also contains the values of all the parameters used in running the simulation.

4.2.1 Execution Time

 Figure 12 shows the average time variation with the various queries executed

using the three technologies Java Architecture for XML Binding (JAXB), Apache

Xindice Native XML Database (NXD) and Microsoft SQL Server 2000 SP3 (RDBMS).

0

1

2

3

4

5

6

7

8

9

10

Technology Used

Q
ue

ry
 T

im
e

(s
ec

)

JAXB
NXD
RDBMS

Figure 12: Query Execution Time complexity in various technologies used. Graph data based on

Table II, Appendix C.

 43

The query processing time was highest on JAXB as the content tree had to be

loaded. The results in this case are slightly deceptive. Each time a search string was

queried, a new instance of the application was run and hence the total time to execute the

query included the time to create the JAXB content tree classes by the framework. But,

by the results of Table II, Appendix C, it is clear that the shortest query time is using the

JAXB classes provided all queries are made when the objects are loaded in memory,

which is not mostly the case in enterprise applications.

The query processing time with NXD was faster than the rest of the technologies.

RDBMS had an average performance.

4.2.2 Document size complexity

Figure 13 shows the document size complexity variation in the three technologies

with for a single XML document.

0

10

20

30

40

50

60

Technology used

Si
ng

le
 F

ile
 S

iz
e

(M
B

)

JAXB
NXD
RDBMS

Figure 13: Space complexity in managing a single document. Data based on Table II, Appendix C.

 44

MS SQL Server (RDBMS) had a mean performance in storing a single large

XML document of size 14MB. This was made possible by extending the functionality of

the stored procedure that loads the xml document into memory. For further scalability

custom extension to the stored procedure is the only option.

Apache Xindice (NXD) on the other hand had a very poor capacity to store large

documents. It cannot store and manage a single document that can be treated as a set of

mini documents. It was not designed for the purpose. It performs fairly well when it

comes to managing collections of small documents as shown in Figure 14.

Java Objects are practically not affected by the size of the document either singly

or collectively as JAXB adheres to a single schema and manages memory more

efficiently than the equivalent DOM structures. Hence, the size of the files that can be

handled can vary with the available system resources.

0

10

20

30

40

50

60

70

80

90

Technology used

C
ol

le
ct

io
n

Si
ze

 (M
B)

JAXB
NXD
RDBMS

Figure 14: Space complexity of the technologies in managing a collection of documents. Graph Data based

on Table II, Appendix C.

 45

4.3 Performance of Queries

4.3.1 Insert Operations

The performance of inserts is shown in Figure 15. Calling get and set methods on

Java Objects is much easier than inserting or updating nodes in a conventional DOM

representation. As such, the performance of a single insert statement, with the content

tree objects already loaded into memory is extremely good as shown in Figure 15.

RDBMS is also a close competitor in this regard but its performance suffers

owing to the translation from XML to a relational schema for each operation.

XML Databases on the other hand are somewhat affected in their performance in

inserting physically into a document. Though most NXD’s make use of XML: DB API,

which provide support for faster queries, they cannot beat the performance of RDBMS

and Java Objects for individual inserts. Figure 15 shows the performance of the three

technologies based on the average time (logarithmic scale) for a single insert.

1

10

100

1000

Technology Used

Ti
m

e
(m

s) JAXB
NXD
RDBMS

Figure 15: Performance comparisons of JAXB, NXD and RDBMS for individual insert statements

 46

4.3.2 Select Operations

The performance of select statements is shown in Figure 16. Select or retrieval

performance is similar for all the three technologies. As discussed in section 4.3.1.,

calling get and set methods on Java Objects is much easier than inserting or updating

nodes in a conventional DOM representation. As such, the performance of select

statements, with the content tree objects already loaded into memory is extremely good as

shown in Figure 16.

RDBMS is also a close competitor in this regard but its performance suffers

owing to the translation from XML to a relational schema for each operation.

XML Databases perform well in retrievals as they provide support for indexing on

elements and attributes of the XML document to enable faster searches and retrievals.

Hence the overall performance in individual retrievals is close in all the three

technologies. Figure 16 shows the performance of the three technologies based on the

average time for a single retrieval.

0

2

4

6

8

10

12

14

16

18

Technology Used

Ti
m

e
(m

s) JAXB
NXD
RDBMS

Figure 16: Performance comparisons of JAXB, NXD and RDBMS for individual select statements

 47

4.3.3 Update Operations

The performance of updates is very similar to inserts, in that Java Objects and

RDBMS technologies have an advantage with the performance as a measure of query

execution time of an update.

Though Native XML Databases use support of third-party API (XML:DB in this

context), to process an update at a faster rate by updating the document in place, they

cannot achieve the performance of Java Objects or relational databases. This is similar to

the problem that file systems encounter.

Figure 17 shows the performance of the three technologies for individual update

queries with the average query execution time per query in ms (logarithmic scale) and the

technology used.

1

10

100

1000

Technology Used

Ti
m

e
(m

s) JAXB
NXD
RDBMS

Figure 17: Performance comparisons of JAXB, NXD and RDBMS for individual update statements

 48

4.3.4 Delete Operations

The performance of deletes is surprisingly very different from the performance of

all the above query types, especially for Native XML databases. Java Objects perform

well as with any other query. This is because of object manipulation as opposed to

storage manipulation.

RDBMS performs better in case of deletes, than the other queries. This can be

attributed to the regular delete process employed by the RDBMS. Though this requires

translation, evaluation of the delete condition more often than not, requires lesser number

of manipulations than its insert, update or select counterpart.

In the case of Native XML databases, the performance suffers heavily as the

document management system or the Native DBMS actually deletes the content fragment

from the document every time a delete operation is called. Figure 18 shows the

performance of the three technologies for individual delete queries with the average

query execution time per query in ms (logarithmic scale) and the technology used.

1

10

100

1000

10000

Technology Used

Ti
m

e
(m

s) JAXB
NXD
RDBMS

Figure 18: Performance comparisons of JAXB, NXD and RDBMS for individual delete statements

 49

4.4 Comparison of features

Section 4.3.1 shows the observations of this study. These provide a high level

overview of the advantages and disadvantages of one method over the other.

4.4.1 Storage and retrieval in RDBMS

• Transferring the data in an XML document to a relational database requires

creating an XML schema and mapping to a database schema. Schemaless

documents cannot be mapped to a relational database and the support of some

mapping tool is required in order to use an RDBMS.

• The syntax of the OPENXML and FOR XML queries is not very easily

comprehensible.

• The XML document used in queries needs to be declared as text variable in the

SQL used in the queries. There is no support currently to redirect the document

from a file.

• Generic use of XML templates over HTTP cannot be done using files.

• File redirection is supported only on proprietary languages supported by the

platform.

4.4.2 Storage and retrieval in NXD

• The Apache Xindice 1.1b4 Native XML Database does not support valid XML

documents. Hence, there is no mapping of schema required

 50

• Xindice is not standalone. It needs a Web Application Server such as Apache

Jakarta Tomcat or Jetty to provide XML DBMS services.

• Xindice stores and indexes compressed XML documents in order to provide that

data to the client application with very little server-side processing overhead.

• It cannot store and manage single monster sized documents.

• Since Xindice runs under an application server, the database configuration is

located in the Xindice sub-directory of the web application directory of the server.

• Schemaless or non-valid XML data can be stored and processed by Xindice.

4.4.3 Storage and retrieval using JAXB

• JAXB requires a well-formed and valid XML document to work with.

• XML documents without a conforming W3C Schema cannot be processed.

• The JAXB framework generates a collection of classes for every schema that is

handled.

• It generates well-formed XML output during marshalling.

• Marshalling does not validate XML. Since the XML data has to be valid in order

to unmarshall or the content tree generated from the ObjectFactory from Objects

is validated by default, the marshaller does not perform validation.

• JAXB can work with multiple schemas at a time

• Data type conversions or casts can be performed by defining binding

customizations in the binding file.

• JAXB sets no limit on the size of the XML document it can process.

 51

4.5 Discussion

XML-enabled relational databases contain extensions for transferring data

between XML documents and their own data structures. They can be used by data-centric

applications. The difference between XML-enabled and native storage is that XML-

enabled storage uses schema-specific structures that must be mapped to the XML

document at design time. Native XML storage uses generic structures that can contain

any XML document.

Native XML databases can preserve physical structure (entity usage, CDATA

sections, etc.) as well as comments, processing instructions etc. While XML-enabled

databases can do this in theory, this is generally not done in practice.

The only interface to the data in native XML databases is XML and related

technologies, such as XPath, the DOM, or an XML-specific API. XML-enabled

databases, on the other hand, offer direct access to the data, such as through ODBC.

“Wrappers” are systems that treat XML documents as a source of relational data.

(The term comes from federated database systems, where a wrapper is a component that

"wraps" a source system so its data uses the model (usually relational) of a target system.

[3]) That is, with wrappers, XML data is treated as relational data, while with XML-

enabled databases, relational data is treated as XML data. Wrappers typically implement

an SQL query engine, use an object-relational or table-based mapping, and work only

with data-centric documents.

MS SQL Server 2000 SP3 can be classified as a wrapper and also an XML-

enabled database. SQL Server can be employed in many situations. One common

situation is to use when XML document needs to be included in a heterogeneous join

 52

(where a select statement joins data from different systems [1]). Another use can be as an

XML editor. For those developers who are used to working with data in a tabular format,

SQL Server comes in handy. The documents may later be converted into XML.

JAXB or any application that converts XML into Java Objects can be used in

various situations such as:

• To access configuration values from a properties file stored in XML format

• To develop a tool that can create or modify a configuration properties file

represented in XML format.

• To validate data input by a user; for example, from a form presented in a Web

browser, where the form data is mapped to an XML document. In such cases,

JAXB provides the capability to validate the accuracy of the data using the

validation constraints of a schema that describes the data collected from the form.

• To bind an XML document into a Java representation, update the content via Java

interfaces, validate these changes against the constraints within the original

schema, and then write the updated Java representation back to an XML

document.

4.6 Conclusion

4.6.1 Strengths

RDBMS provides good scalability, performance, reliability and data access,

features that are supported by the DBMS

 53

Native XML databases can be accessed using CORBA, Java API, XML:RPC and

other API making them portable over the web. It provides collection management, and

preserves structure and order.

Java Objects provide ease of implementation, so much so that the end user is not

expected to know anything about XML. Java objects provide abstract data type support.

4.6.2 Weak points

RDBMS requires mapping of semi-structured XML data onto relational structured

data storage. Ordering of elements is required. In order to ensure correct mapping

multiple tables and multiple joins are required which lead to bad performance.

Native XML databases suffer from performance in ‘multiple queries to a single

document’ situations. There is no unique or standard implementation of the NXD. The

utilities and tools provided are proprietary contributions of the vendor.

Storage of XML in Java Objects results in document factorization. Besides, Java

Objects are tied up to a schema (which, is required for processing) thereby restricting the

processing only to well-formed XML.

 54

CHAPTER V

SUMMARY AND FUTURE WORK

This chapter gives a brief summary of this thesis and also discusses some of the

future work that can be done in this area.

5.1 Summary

 A detailed comparative study on storage of XML using Relational DBMS, Native

XML DBMS and processing into Java Objects using JAXB was conducted. The data

models such as relational, hierarchical, document-driven were used as inputs to the study.

There is no single tool that can manage all the aspects of XML data used in an

application. Each technology provides interestingly unique features.

There is a tremendous amount of research and development in progress, in the

development of tools and technologies to use XML. It can be safely predicted that all the

technologies will finally merge into one standard method of storage of XML that will

incorporate all the features such as, faster searches, full-text searches, with an ability to

maintain a collection of documents and preserve their order, ability to query and store or

retrieve over the network using protocols such as HTTP, SOAP etc., provide integral

support for casting of elements, support for processing valid and non-valid XML

 55

documents, all in a single tool and also achieve platform independence to be called a truly

portable tool for portable data.

5.2 Future work

As XML continues to evolve, its usage will grow tremendously in all facets of

application development. Future work of this study will incorporate testing across various

platforms along with other emerging technologies such as XML servers and Content

Management Systems and delve into the intricacies of XML Query Engines, their

efficiency, and XML Data Binding and perform a comparative analysis of the

technologies irrespective of their platform of test or implementation.

 56

REFERENCES

1. Altova XML Suite. Altova GmbH Corporation. http://www.altova.com. Last

accessed April 18, 2005.

2. Armstrong, Eric. XML Glossary. Working with XML. Sun Microsystems.

http://java.sun.com/xml/jaxp/dist/1.0.1/docs/tutorial/glossary.html#D Last

Updated July 13, 2000. Last accessed April 18, 2005.

3. Bourret, Ronald. XML and Databases XML Database Links.

http://www.rpbourret.com/xml/XMLAndDatabases.htm Last updated

November 2003. Last accessed April 18, 2005.

4. Champion Michael, Storing XML in Databases. Business Integration Journal,

October 2001. Last accessed April 18, 2005.

5. Cheng, Josephine and Xu, Jane. IBM DB2 XML Extender: An End to End Solution

for Storing and Retrieving XML Documents. International Conference on Data

Engineering 2000.

6. Cincom Corporate, Choosing an XML Database Solution. White Paper.

http://tiger.cincom.com/PDFs/TOTALXML_Choosing_XML_Database.pdf

Last updated January 1, 2004. Last accessed April 18, 2005.

7. Clark, James. Multi-format Schema converter based on RELAX-NG. Trang.

http://thaiopensource.com/relaxng/trang.html Last accessed April 18, 2005.

 57

8. Clark, James. DTDinst. Program for converting XML document to its DTD.

DTDInst http://www.thaiopensource.com/relaxng/dtdinst/ Last accessed April

18, 2005.

9. Connolly Thomas, Begg Carolyn. Database Systems. A Practical Approach to

Design Implementation, and Management. 3rd edition, Addison-Wesley 2002.

pp 1006 -1007.

10. Cunningham & Cunningham, Inc. Hierachical Databases. Article, January 4, 2004.

http://c2.com/cgi/wiki?HierarchicalDatabase Last updated January 2004. Last

accessed April 18, 2005.

11. Dayen, Igor. Storing XML in Relational Databases. June 2001.

http://www.xml.com/pub/a/2001/06/20/databases.html?page=1 Last updated

June 2004. Last accessed April 18, 2005.

12. Dejesus, Edmund. XML Enters the DBMS Arena. Computer World. October 2000.

http://www.computerworld.com/cwi/story/0,1199,NAV63_STO53026,00.htm

Last updated January 2001. Last accessed April 18, 2005.

13. Documentation. Apache Xindice 1.1b4. Apache Software Foundation.

http://xml.apache.org/xindice Last accessed April 18, 2005

14. DuCharme, Bob. Documents vs. Data, Schemas vs. Schemas. XML 2004

Conference Proceedings. Washington DC. November 16, 2004.

15. Emerick, Jerry. Managing XML Data Storage. ACM Crossroads 8.4, Summer

2002. http://www.acm.org/crossroads/xrds8-4/XML_RDBMS.html. Last

updated August 2002. Last accessed April 18, 2005.

 58

16. Fordin, Scott. Java Architecture for XML Binding Executive Summary. Java and

XML Technologies. Sun Microsystems. July 2003.

http://www.sun.com/software/xml/developers/jaxb/index.xml Last accessed

April 19, 2005.

17. Goldfarb, Charles F., Prescod, Paul. XML and databases. XML Handbook 4th

Edition. Prentice Hall 2002. pp. 430-488.

18. Gupta Samudra. The Mysteries of Business Objects. Article.

http://javaboutique.internet.com/tutorials/businessObject/ . Last Updated July

21, 2004. Last accessed April 18, 2005.

19. Hoque Reaz, XML for Real Programmers, Morgan Kaufmann, 2000. pp 379-442.

20. Jackson Laboratory. Glossary. Mouse Genome Informatics.

http://www.informatics.jax.org/mgihome/other/glossary.shtml#d Last Updated

2004. Last accessed April 18, 2005.

21. John, Murray Crosswell. Reading an XML file inside a Stored Procedure. Experts

Exchange.com http://www.experts-

exchange.com/Databases/Microsoft_SQL_Server/Q_20670044.html October

21, 2003. Last accessed April 18, 2005

22. Laux, Andreas., Martin, Lars. API for XML Databases. XML:DB Working Draft

2000. Last accessed April 18, 2005.

23. Layman Andrew. XML syntax recommendation for serializing graphs of data.

December 2, 1998. World Wide Web Consortium.

http://www.w3.org/TandS/QL/QL98/pp/microsoft-serializing.html. Last

accessed April 18, 2005.

 59

24. Lewis, William. Pillar of the Community. Intelligent Enterprise. August 2000

http://www.intelligententerprise.com/000818/feat1.shtml. Last updated

February 2001. Last accessed April 18, 2005.

25. Maruyama Hiroshi, Tamura Kent, Uramoto Naohiko, XML and Java, Developing

Web Applications. Addison-Wesley 1999. Pp185-228.

26. McGrath, Sean. Xml-dev posting, June 3, 2004. Available at

http://lists.xml.org/archives/xml-dev/200406/msg00022.html Last accessed

April 18, 2005.

27. McLaughlin, Brent. A survey of existing XML output options. IBM

developerWorks. March 26, 2003. http://www-

128.ibm.com/developerworks/xml/library/x-tipbigdoc.html Last accessed April

19, 2005.

28. MSDN library. IIS Virtual Directory Management for SQL Server. Microsoft

Corporation. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/sqlxml3/htm/intro_9ol4.asp Last accessed April 18, 2005.

29. Ort, Ed., Mehta, Bhakti. Java Architecture for XML Binding. Sun Microsystems.

http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html

March 2003. Last accessed April 18, 2005.

30. Policht, Marcin. XML and SQL 2000. Database Journal.com

http://www.databasejournal.com/features/mssql/article.php/10894_2235451_2

August 12, 2003. Last accessed April 18, 2005.

31. Raggett Dave. HTML 3.2 Reference Specifications. World Wide Web Consortium.

January 14, 1997. http://www.w3.org/TR/dtd Last accessed April 18, 2005.

 60

32. Refsnes Data. W3Schools. Introduction to XML

http://www.w3schools.com/xml/xml_whatis.asp Last Updated January 2004.

Last accessed April 18, 2005.

33. Schaffner, Brian. Storing large XML documents in Relational Databases. Article

September 29, 2003 http://builder.com.com/5100-31-5075709.html Last

updated January 2004. Last accessed April 18, 2005.

34. Schmidt Albrecht, Processing XML in Database Systems. Ph.D. Thesis,

Universiteit van Amsterdam, Amsterdam, The Netherlands, November 2002.

35. Schmidt Albrecht, Waas Florian, Kersten Martin, Manolescu Ioana, Carey Michael

J., Busse Ralph. The XML Benchmark Project. Technical Report INS-R0103,

CWI, Amsterdam, The Netherlands, April 2001.

36. Shanmugasundaram Jayavel, Shekita Eugene, Kiernan Jerry, Krishnamurthy

Rajasekar, Viglas Efstratios, Naughton Jefferey, Tatarinov Igor. A General

Technique for Querying XML Documents using a Relational Database System.

Department of Computer Sciences, University of Wisconsin-Madison. 2000.

37. Shapiro, Jefferey R. SQL Server and the Internet. SQL Server 2000. The Complete

Reference. Osborne/McGraw-Hill. 2001. pp. 800-810.

38. Suciu, Dan. XML Data Repository. Computer Science and Engineering

Department. University of Washington.

http://www.cs.washington.edu/research/xmldatasets/ . Last modified Nov 12,

2002. Last accessed April 18, 2005.

39. Sun Developer Network Site, Java Technology and XML-Part 3: Performance

Improvement Tips. Technical Articles and Tips in XML. June 2004.

 61

http://java.sun.com/developer/technicalArticles/xml/JavaTechandXML_part3/

Last updated June 2004. Last accessed April 18, 2005.

40. W3C Architecture Domain. The Extensible Style Sheet Language Family. World

Wide Web Consortium 2004. http://www.w3.org/Style/XSL/ Last accessed

April 18, 2005.

41. XML specification. Extensible Markup Language 1.0. W3C Recommendation

February 4, 2004. http://www.w3.org/TR/REC-xml/ Last accessed April 19,

2005.

 62

APPENDICES

 63

APPENDIX A

ABBREVIATIONS

API Application Programming Interface

DBMS Database management system

JAXB Java Architecture for XML Binding

NXD Native XML Database

XML eXtensible Markup Language

XSL eXtensible Style Language

XSLT eXtensible Style Language Transformation

 64

APPENDIX B

TRADEMARK INFORMATION

Excel A registered trademark of Microsoft Corporation.

Java Runtime

Environment 1.4.2_06

A registered trademark of Sun Microsystems Inc.

Windows XP Professional A registered trademark of Microsoft Corporation.

 65

APPENDIX C

 This appendix contains the results generated by the three separate technologies

JAXB, NXD and RDBMS.

Query Nesting level Technology Time (ms) Size (KB) Rows
Insert 2 RDBMS 10 25 10
Insert 3 RDBMS 62 120 60
Insert 4 RDBMS 113 146 40

Update 2 RDBMS 8 25 40
Update 4 RDBMS 185 146 30
Update 3 RDBMS 172 120 70
Delete 2 RDBMS 47 25 100
Delete 3 RDBMS 80 120 50
Delete 4 RDBMS 180 146 40
Select 3 RDBMS 180 130 60
Select 4 RDBMS 212 146 40
Select 3 NXD 2063 273 520
Select 4 NXD 270 240 80
Insert 3 NXD 3015 273 -
Insert 4 NXD 1213 146 -
Delete 3 NXD 766 273 -
Delete 3 NXD 198 273 40
Update 3 NXD 167 273 70
Update 4 NXD 1716 300 703
Insert 3 JAXB 10000 135 *
Insert 4 JAXB 9000 1022 *

Update 3 JAXB 8500 1022 *
Select 3 JAXB 8800 1022 *
Select 3 JAXB 9100 300 *

Table II: Results of query processing comparison

Table II shows the variation of query performance with granularity of XML

documents and the technologies studied.

- Apache XML database processes documents and collections of documents at a time as opposed to an

RDBMS row-wise query. Retrieval however returns the result set in rows.

* The XML documents were processed individually by the JAXB compiler into Java objects which cannot

be compared to rows as in an RDBMS

 66

APPENDIX D

The following are the programs generated for the three different technologies that

store and use the XML data. XML data is loaded into each of the methods using

CODE LISTING

/***
Student Name: UMA CHINMAYEE NIMRAL
Thesis Title: EFFICIENT STORAGE OF XML – A COMPARATIVE STUDY
Advisor: DR.BLAYNE E. MAYFIELD
Estimated Times: DESIGNING: 40-50 hrs
 IMPLEMENTATION: 75-80 hrs
 TESTING: 150-200 hrs
***/
// Stored Procedure u_xmlfile_preparedocument

CREATE PROCEDURE dbo.u_xmlfile_preparedocument @hdoc Integer Output, @xmlfile
varchar(1000) = NULL
AS
--
-- Description:
-- Utility procedure to invoke sp_xml_preparedocument from a file rather than text
-- Credits:
-- Joseph Gama
(http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnsqlpro03/html/sp03g8.a
sp)
-- Umachandar Jayachandran (http://www.sqlxml.org/faqs.aspx?faq=42)
-- 24-Nov-2003 Murray Crosswell
--
--
Begin

SET NOCOUNT ON

Declare @i int,
 @size int,
 @blocks int,
 @varcnt int,
 @qm char(1),
 @bperv integer,
 @cmdsrc varchar(8000),
 @cmdsrc2 varchar(8000),
 @cmdsrc3 varchar(8000),
 @CRLF Varchar(2)

Set @CRLF = Char(13) + Char(10)

create table #filedetails
(altname varchar(30),size int,createdate varchar(32),
 createtime varchar(32),lastwrittendt varchar(30),
 lastwrittentime varchar(32),lastaccessdt varchar(30),
 lastaccesstime varchar(32),attributes int)

insert into #filedetails exec master..xp_getfiledetails @xmlfile

set @size=(select size from #filedetails)
drop table #filedetails

 67

Set @qm = char(39)
Set @blocks=@size/4000+1
Set @varcnt=(@blocks-1)/@bperv+1

Set @cmdsrc = 'Declare @cmdDS varchar(8000), '
Set @cmdsrc = @cmdsrc + '@cmdES varchar(8000), '
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc = @cmdsrc + '@cmdD' + Convert(Varchar(9),@i) + ' Varchar(8000), '
 Set @cmdsrc = @cmdsrc + '@cmdR' + Convert(Varchar(9),@i) + ' Varchar(8000), '
 Set @cmdsrc = @cmdsrc + '@cmdF' + Convert(Varchar(9),@i) + ' Varchar(8000), '
 Set @cmdsrc = @cmdsrc + '@cmdE' + Convert(Varchar(9),@i) + ' Varchar(8000), '
 Set @i=@i+1
 End
Set @cmdsrc = @cmdsrc + '@cmdDF varchar(8000), '
Set @cmdsrc = @cmdsrc + '@cmdEF varchar(8000), '
Set @cmdsrc = @cmdsrc + '@i int, @blocks int'

Set @cmdsrc = @cmdsrc + ' SET @blocks=' + Convert(Varchar(9),@blocks)
Set @cmdsrc = @cmdsrc + ' SET @cmdDS='+@qm+'DECLARE @fso int, @fl int, @hr int, @qm
char(1), @vp varchar(8000), @vs varchar(8000), '+@qm

Set @cmdsrc = @cmdsrc + ' SET @cmdDF='+@qm+' Set @qm = char(39)'+@qm
Set @cmdsrc = @cmdsrc + ' SET @cmdDF=@cmdDF+'+@qm+' Set @vp = '+@qm+@qm+'DECLARE @Handle
int EXEC sp_xml_preparedocument @Handle OUT, '+@qm+@qm+'+@qm'+@qm
Set @cmdsrc = @cmdsrc + ' SET @cmdDF=@cmdDF+'+@qm+' Set @vs = @qm+'+@qm+@qm+' DECLARE
he_cur CURSOR GLOBAL FOR SELECT @Handle'+@qm+@qm+@qm
Set @cmdsrc = @cmdsrc + ' SET @cmdDF=@cmdDF+'+@qm+' EXEC @hr = sp_OACreate
'+@qm+@qm+'Scripting.FileSystemObject'+@qm+@qm+', @fso OUT '+@qm
Set @cmdsrc = @cmdsrc + ' SET @cmdDF=@cmdDF+'+@qm+'exec sp_oamethod @fso,
'+@qm+@qm+'opentextfile'+@qm+@qm+', @fl out, '+@qm+@qm+@xmlfile+@qm+@qm+', 1 '+@qm
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc = @cmdsrc + ' SET @cmdD' + Convert(Varchar(9),@i) + '='+@qm+@qm
 Set @cmdsrc = @cmdsrc + ' SET @cmdR' + Convert(Varchar(9),@i) + '='+@qm+@qm
 Set @cmdsrc = @cmdsrc + ' SET @cmdF' + Convert(Varchar(9),@i) + '='+@qm+@qm
 Set @cmdsrc = @cmdsrc + ' SET @cmdE' + Convert(Varchar(9),@i) + '='+@qm+@qm
 Set @i=@i+1
 End
Set @cmdsrc = @cmdsrc + ' SET @i=1'
Set @cmdsrc = @cmdsrc + ' WHILE @i<=@blocks'
Set @cmdsrc = @cmdsrc + ' BEGIN'
Set @cmdsrc2 = ''
Set @i=1
While @i<=@varcnt
 Begin
 If @i <> 1 Set @cmdsrc2 = @cmdsrc2 + ' ELSE'
 If @i <> @varcnt Set @cmdsrc2 = @cmdsrc2 + ' IF @i < ' +
Convert(Varchar(9),@i*@bperv+1)
 If @varcnt > 1 Set @cmdsrc2 = @cmdsrc2 + ' BEGIN'
 Set @cmdsrc2 = @cmdsrc2 + ' SET @cmdD' + Convert(Varchar(9),@i) + '=@cmdD' +
Convert(Varchar(9),@i) + '+'+@qm+'@v'+@qm+'+CONVERT(VARCHAR(9),@i)+'+@qm+' varchar(8000),
'+@qm
 Set @cmdsrc2 = @cmdsrc2 + ' SET @cmdR' + Convert(Varchar(9),@i) + '=@cmdR' +
Convert(Varchar(9),@i) + '+'+@qm+'exec @hr=sp_oamethod
@fl,'+@qm+@qm+'read'+@qm+@qm+','+@qm+'+'+@qm+'@v'+@qm+'+CONVERT(VARCHAR(9),@i)+'+@qm+'
out,4000 '+@qm
 Set @cmdsrc2 = @cmdsrc2 + ' SET @cmdF' + Convert(Varchar(9),@i) + '=@cmdF' +
Convert(Varchar(9),@i) + '+'+@qm+'Set
@v'+@qm+'+CONVERT(VARCHAR(9),@i)+'+@qm+'=Replace(@v'+@qm+'+CONVERT(VARCHAR(9),@i)+'+@qm+'
,@qm,@qm+@qm) '+@qm
 Set @cmdsrc2 = @cmdsrc2 + ' SET @cmdE' + Convert(Varchar(9),@i) + '=@cmdE' +
Convert(Varchar(9),@i) + '+'+@qm+'@v'+@qm+'+CONVERT(VARCHAR(9),@i)+'+@qm+'+'+@qm
 If @varcnt > 1 Set @cmdsrc2 = @cmdsrc2 + ' END'
 Set @i=@i+1
 End
Set @cmdsrc3 = ' SET @i=@i+1'
Set @cmdsrc3 = @cmdsrc3 + ' END'

 68

Set @cmdsrc3 = @cmdsrc3 + ' SET @cmdD' + Convert(Varchar(9),@varcnt) + '=LEFT(@cmdD' +
Convert(Varchar(9),@varcnt) + ',len(@cmdD' + Convert(Varchar(9),@varcnt) + ')-1)'

Set @cmdsrc3 = @cmdsrc3 + ' SET @cmdES='+@qm+'exec(@vp+'+@qm
Set @cmdsrc3 = @cmdsrc3 + ' SET @cmdEF='+@qm+'@vs) EXEC @hr = sp_OADestroy @fl EXEC @hr =
sp_OADestroy @fso'+@qm
Set @cmdsrc3 = @cmdsrc3 + ' exec(@cmdDS+'
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc3 = @cmdsrc3 + '@cmdD' + Convert(Varchar(9),@i) + '+'
 Set @i=@i+1
 End
Set @cmdsrc3 = @cmdsrc3 + '@cmdDF+'
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc3 = @cmdsrc3 + '@cmdR' + Convert(Varchar(9),@i) + '+'
 Set @i=@i+1
 End
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc3 = @cmdsrc3 + '@cmdF' + Convert(Varchar(9),@i) + '+'
 Set @i=@i+1
 End
Set @cmdsrc3 = @cmdsrc3 + '@cmdES+'
Set @i=1
While @i<=@varcnt
 Begin
 Set @cmdsrc3 = @cmdsrc3 + '@cmdE' + Convert(Varchar(9),@i) + '+'
 Set @i=@i+1
 End
Set @cmdsrc3 = @cmdsrc3 + '@cmdEF)'

Execute (@cmdsrc+@cmdsrc2+@cmdsrc3)

OPEN GLOBAL he_cur
FETCH he_cur INTO @hdoc
DEALLOCATE GLOBAL he_cur

IF @hdoc IS NULL
 RAISERROR('Invalid Handle!', 16, 1)

End
GO

/////////////////// END STORED PROCEDURE //////////////////////////

import java.sql.*;
import java.io.*;

public class sqlXmlJava
{
 public sqlXmlJava() throws Exception
 {
 //get connection
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// DriverManager.registerDriver(new
com.micrsoft.jdbc.sqlserver.SQLServerDriver());
 Connection connect = DriverManager.getConnection("jdbc:odbc:thdata", "sa",
"polaris");
 Statement st = connect.createStatement();

 BufferedReader stdin = new BufferedReader(new InputStreamReader(
System.in));

 69

 if(connect != null)
 {
 System.out.println();
 System.out.println("Successfully connected ");
 System.out.println();

 System.out.println(" Enter Sql query string ");
 String input = stdin.readLine();

 st.executeUpdate("Use test");

 ResultSet rs = st.executeQuery(input);

 }
 }//end try
 catch(Exception e)
 {
 System.err.println(" Exception :" + e.getMessage());
 }
 }// constructor

 public static void main(String[] args) throws Exception
 {
 sqlXmlJava test = new sqlXmlJava();

 }

}

/////////////////////
Sample SQL files used

Insert.sql

DECLARE @iDoc int

EXEC u_xmlfile_preparedocument @iDoc OUTPUT, 'C:\thesis\reed.xml'

INSERT INTO course
SELECT * FROM OPENXML (@iDoc, '/root/course', 3)
WITH course

INSERT INTO time
SELECT * FROM OPENXML (@iDoc, '/root/course/time', 3)
WITH time

INSERT INTO place
SELECT * FROM OPENXML(@iDoc, '/root/course/place', 3)
WITH place

EXEC sp_xml_removedocument @iDoc

Update.sql

DECLARE @iDoc int

EXEC u_xmlfile_preparedocument @iDoc OUTPUT, 'C:\thesis\reed.xml'

UPDATE course
SET course.crse='H'+ c.crse
FROM OPENXML(@iDoc, '/root/course[subj="HIST"]',3)
WITH course c WHERE course.subj=c.subj

EXEC sp_xml_removedocument @iDoc

 70

Delete.sql

DECLARE @iDoc int

EXEC u_xmlfile_preparedocument @iDoc OUTPUT, 'C:\thesis\reed.xml'

DELETE
FROM course
WHERE crse IN
 (SELECT crse FROM course, (SELECT reg_num FROM OPENXML(@iDoc,
'/root/course[instructor=""]',3)
 WITH course)t
 WHERE course.reg_num = t.reg_num)

EXEC sp_xml_removedocument @iDoc

TECHNOLOGY 2 – Apache Xindice 1.1b4 Native XML Database
--

// AbstractExample.java

package org.apache.xindice.examples;

import org.apache.xindice.util.XindiceException;
import org.xmldb.api.DatabaseManager;
import org.xmldb.api.base.Collection;
import org.xmldb.api.base.Database;
import org.xmldb.api.base.XMLDBException;

/**
 * Simple XML:DB API Example
 */
public abstract class AbstractExample {

 private static boolean alreadyInitialized = false;

 protected static void ensureInitialized()
 throws ClassNotFoundException, InstantiationException, IllegalAccessException,
 XMLDBException {

 if (alreadyInitialized) {
 return;
 }

 String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";
 Class driverClass = Class.forName(driver);
 Database database = (Database) driverClass.newInstance();
 DatabaseManager.registerDatabase(database);
 alreadyInitialized = true;
 }

 protected static Collection getCollection(String collectionUri)
 throws ClassNotFoundException, InstantiationException, IllegalAccessException,
 XMLDBException, XindiceException {

 ensureInitialized();
 Collection collection = DatabaseManager.getCollection(collectionUri);
 if (collection == null)
 {
 throw new XindiceException("DatabaseManager.getCollection(" + collectionUri +
") returned null.");

 71

 }

 return collection;
 }
}

/// Test1.java
package org.apache.xindice.examples;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.Resource;
import org.xmldb.api.base.ResourceIterator;
import org.xmldb.api.base.ResourceSet;
import org.xmldb.api.base.XMLDBException;
import org.xmldb.api.modules.XPathQueryService;

/**
 * Simple XML:DB API example to query the database.
 */
public class Test1 extends AbstractExample {

 public static void main(String[] args) throws Exception {
 Collection collection = null;
 try {

 collection = getCollection("xmldb:xindice:///db/addressbook");

 String xpath = "//person[fname='John']";
 XPathQueryService service = (XPathQueryService)
collection.getService("XPathQueryService", "1.0");
 ResourceSet resourceSet = service.query(xpath);
 ResourceIterator resourceIterator = resourceSet.getIterator();

 while (resourceIterator.hasMoreResources()) {
 Resource resource = resourceIterator.nextResource();
 System.out.println((String) resource.getContent());
 }
 } catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 } finally {
 if (collection != null) {
 collection.close();
 }
 }
 }
}

//List Collections.java
package org.apache.xindice.examples;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.XMLDBException;

/**
 * Simple XML:DB API example to list collections.
 */
public class ListCollections extends AbstractExample {

 public static void main(String[] args) throws Exception {
 Collection collection = null;
 try {

 collection = getCollection("xmldb:xindice://localhost:8888/db/");
 //collection = getCollection("xmldb:xindice-embed:///db/");

 String[] childCollections = collection.listChildCollections();
 System.out.println("Children of collection [" + collection.getName() + "]");
 for (int i = 0; i < childCollections.length; i++) {

 72

 System.out.println("\t" + (i + 1) + ". " + childCollections[i]);
 }
 } catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 e.printStackTrace();
 } catch (Exception e) {
 System.err.println("Exception occured " + e);
 e.printStackTrace();
 } finally {
 if (collection != null) {
 collection.close();
 }
 }
 }
}

//Retrieve Document.java
package org.apache.xindice.examples;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.XMLDBException;
import org.xmldb.api.modules.XMLResource;

/**
 * Simple XML:DB API Example to retrieve a document from the database.
 */
public class RetrieveDocument extends AbstractExample {

 public static void main(String[] args) throws Exception {
 Collection collection = null;
 try {

 collection = getCollection("xmldb:xindice:///db/addressbook");

 XMLResource xmlResource = (XMLResource) collection.getResource(args[0]);
 if (xmlResource != null) {
 System.out.println("Document " + args[0]);
 System.out.println(xmlResource.getContent());
 }
 else {
 System.out.println("Document not found");
 }
 } catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 } finally {
 if (collection != null) {
 collection.close();
 }
 }
 }
}

// Xupdate.java
package org.apache.xindice.examples;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.XMLDBException;
import org.xmldb.api.modules.XUpdateQueryService;

/**
 * Simple XML:DB API example to update the database.
 */
public class XUpdate extends AbstractExample {

 public static void main(String[] args) throws Exception {
 Collection collection = null;

 73

 try {

 collection = getCollection("xmldb:xindice:///db/addressbook");

 String xupdate =
 "<xu:modifications version=\"1.0\""
 + " xmlns:xu=\"http://www.xmldb.org/xupdate\">"
 + " <xu:remove select=\"/person/phone[@type = 'home']\"/>"
 + " <xu:update select=\"/person/phone[@type = 'work']\">"
 + " 480-300-3003"
 + " </xu:update>"
 + "</xu:modifications>";

 XUpdateQueryService service = (XUpdateQueryService)
collection.getService("XUpdateQueryService", "1.0");
 long count = service.update(xupdate);
 System.out.println(count + " entries updated.");
 } catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 } finally {
 if (collection != null) {
 collection.close();
 }
 }
 }
}

// Search for a document fragment
package org.apache.xindice.examples;

import org.apache.xindice.util.XindiceException;
import org.xmldb.api.DatabaseManager;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.Database;
import org.xmldb.api.base.XMLDBException;
import org.xmldb.api.base.Resource;
import org.xmldb.api.base.ResourceIterator;
import org.xmldb.api.base.ResourceSet;

import org.xmldb.api.modules.XPathQueryService;

import org.apache.xindice.Stopwatch;

public class searchDocumentFragment extends AbstractExample
{
 public static void main (String args[]) throws Exception
 {
 Collection collection = null;
 Collection col = null;
 String xpath = "";
 Stopwatch watch = new Stopwatch();

 //check if search string is not given
 if(args.length == 0)
 {
 System.out.println(" Illegal invocation : Usage [cmd] \"xpath
search string\" ");
 System.exit(0);
 }
 xpath = args[0];

 try
 {
 watch.start();
 collection = getCollection("xmldb:xindice://localhost:8888/db/");

 String[] childCollections = collection.listChildCollections();

 74

 System.out.println("Collection " + collection.getName() + " has " +
collection.getChildCollectionCount() +" children ");

 for (int i = 0; i < childCollections.length; i++)
 {
 System.out.println("\t" + (i + 1) + ". " +
childCollections[i]);
 try
 {
 String colstring = "xmldb:xindice:///db/" +
childCollections[i];

 col = getCollection(colstring);
 XPathQueryService service = (XPathQueryService)
col.getService("XPathQueryService", "1.0");

 System.out.println (" the query string is : "+ xpath
);

 ResourceSet resourceSet = service.query(xpath);
 ResourceIterator resourceIterator =
resourceSet.getIterator();

 while (resourceIterator.hasMoreResources())
 {
 Resource resource =
resourceIterator.nextResource();
 System.out.println((String)
resource.getContent());
 }
 }
 catch (XMLDBException e)
 {
 System.err.println("XML:DB Exception occured " +
e.errorCode + " " + e.getMessage());
 }
 finally
 {
 if (col != null)
 {
 col.close();
 }
 }
 System.out.println ();

 }//end for

 watch.stop();
 }
 catch (XMLDBException e)
 {
 System.err.println("XML:DB Exception occured " + e.errorCode + " "
+ e.getMessage());
 }
 finally
 {
 if (collection != null)
 {
 collection.close();
 }
 }

 System.out.println(" Total time elapsed : "+ watch.elapsed() + "ms");
 } //end main
}

// Delete Document
package org.apache.xindice.examples;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.Resource;

 75

import org.xmldb.api.base.XMLDBException;

import org.apache.xindice.Stopwatch;

/**
 * Simple XML:DB API Example to delete a document from the database.
 */
public class DeleteDocument extends AbstractExample
{
 public static void main(String[] args) throws Exception
 {
 Collection collection = null;
 Stopwatch watch = new Stopwatch();
 try
 {

 if(args.length < 2)
 {
 System.out.println(" Incorrect call: Usage [cmd] [resourceid]
[collection] ");
 System.exit(0);
 }
 String colstr = "xmldb:xindice:///db/" + args[1];

 watch.start();
 collection = getCollection(colstr);

 Resource document = collection.getResource(args[0]);
 collection.removeResource(document);

 watch.stop();
 System.out.println("Document " + args[0] + " removed");
 }
 catch (XMLDBException e)
 {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 }
 finally
 {
 if (collection != null)
 {
 collection.close();
 }
 }

 System.out.println ("Time elapsed to remove resource : "+ watch.elapsed() + "
ms");
 }
}

/// add document.java
package org.apache.xindice.examples;

import java.io.File;
import java.io.FileInputStream;

import org.xmldb.api.base.Collection;
import org.xmldb.api.base.XMLDBException;
import org.xmldb.api.modules.XMLResource;

import org.apache.xindice.Stopwatch;

/**
 * Simple XML:DB API Example to insert a new document into the database.
 */
public class AddDocument extends AbstractExample
{

 public static void main(String[] args) throws Exception

 76

 {
 Collection collection = null;
 Stopwatch watch = new Stopwatch();
 try
 {

 if(args.length < 3)
 {
 System.out.println(" Error: Usage [cmd] [file] [resourceid]
[collection]");
 System.exit(0);
 }

 String colstr = "xmldb:xindice:///db/" + args[2];
 collection = getCollection(colstr);

 System.out.println(args[0]+" " + args[1] + args[2]);
 String data = readFileFromDisk(args[0]);

 watch.start();
 XMLResource document = (XMLResource) collection.createResource(args[1],
"XMLResource");
 document.setContent(data);
 collection.storeResource(document);

 watch.stop();
 System.out.println("Document " + args[0] + " inserted as " +
document.getId());
 }
 catch (XMLDBException e) {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 }
 finally {
 if (collection != null) {
 collection.close();
 }
 }

 System.out.println(" Time to load this resource : "+ watch.elapsed() +" ms
");
 }

 public static String readFileFromDisk(String fileName) throws Exception {
 File file = new File(fileName);
 FileInputStream insr = new FileInputStream(file);
 byte[] fileBuffer = new byte[(int) file.length()];
 insr.read(fileBuffer);
 insr.close();
 return new String(fileBuffer);
 }
}

////// Createcollection.java //////

package org.apache.xindice.examples;

import org.apache.xindice.client.xmldb.services.CollectionManager;
import org.apache.xindice.xml.dom.DOMParser;
import org.xmldb.api.base.Collection;
import org.xmldb.api.base.XMLDBException;

import org.apache.xindice.Stopwatch;

/**
 * Simple XML:DB API example to create a collection.
 */
public class CreateCollection extends AbstractExample
 {

 77

 //private static final String COLLECTION_NAME = "mycollection";

 public static void main(String args[]) throws Exception
 {
 Collection collection = null;
 Stopwatch watch = new Stopwatch();

 if (args.length < 1)
 {
 System.out.println(" Incorrect usage: [cmd] [collection] ");
 System.exit(0);
 }
 String COLLECTION_NAME = args[0];
 try
 {

 // collection = getCollection("xmldb:xindice:///db/");
 collection = getCollection("xmldb:xindice://localhost:8888/db/");
 // collection = getCollection("xmldb:xindice-embed:///db/");

 watch.start();
 CollectionManager service = (CollectionManager)
collection.getService("CollectionManager", "1.0");

 try
 {
 service.dropCollection(COLLECTION_NAME);
 System.out.println("Dropped existing collection with name: " +
COLLECTION_NAME);
 }
 catch (Exception e)
 {
 ; // nothing, this may be the first pass.
 }

 // Build up the Collection XML configuration.
 String collectionConfig =
 "<collection compressed=\"true\" name=\"" + COLLECTION_NAME +
"\">"
 + " <filer class=\"org.apache.xindice.core.filer.BTreeFiler\"/>"
 + "</collection>";

 service.createCollection(COLLECTION_NAME,
DOMParser.toDocument(collectionConfig));

 watch.stop();
 System.out.println("Collection " + COLLECTION_NAME + " created.");
 }
 catch (XMLDBException e)
 {
 System.err.println("XML:DB Exception occured " + e.errorCode + " " +
e.getMessage());
 }
 finally
 {
 if (collection != null)
 {
 collection.close();
 }
 }

 System.out.println(" Time taken to create collection "+ COLLECTION_NAME +" : " +
watch.elapsed() + " ms");
 }
}

//

 78

TECHNOLOGY 3 – Java Architecture for XML Binding

// To unmarshal XML to java content tree

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Iterator;
import java.util.List;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

// import java content classes generated by binding compiler
import primer.po.*;

public class Main {

 // This sample application demonstrates how to unmarshal an instance
 // document into a Java content tree and access data contained within it.

 public static void main(String[] args) {
 try {
 // create a JAXBContext capable of handling classes generated into
 // the primer.po package
 JAXBContext jc = JAXBContext.newInstance("primer.po");

 // create an Unmarshaller
 Unmarshaller u = jc.createUnmarshaller();

 // unmarshal a po instance document into a tree of Java content
 // objects composed of classes from the primer.po package.
 PurchaseOrder po =
 (PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"));

 // examine some of the content in the PurchaseOrder
 System.out.println("Ship the following items to: ");

 // display the shipping address
 USAddress address = po.getShipTo();
 displayAddress(address);

 // display the items
 Items items = po.getItems();
 displayItems(items);

 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }

 public static void displayAddress(USAddress address) {
 // display the address
 System.out.println("\t" + address.getName());
 System.out.println("\t" + address.getStreet());
 System.out.println("\t" + address.getCity() +
 ", " + address.getState() +
 " " + address.getZip());
 System.out.println("\t" + address.getCountry() + "\n");
 }

 public static void displayItems(Items items) {
 // the items object contains a List of primer.po.ItemType objects
 List itemTypeList = items.getItem();

 // iterate over List

 79

 for(Iterator iter = itemTypeList.iterator(); iter.hasNext();) {
 Items.ItemType item = (Items.ItemType)iter.next();
 System.out.println("\t" + item.getQuantity() +
 " copies of \"" + item.getProductName() +
 "\"");
 }
 }
}

//// Modify marshal.java

import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;

// import java content classes generated by binding compiler
import primer.po.*;

public class Main {

 // This sample application demonstrates how to modify a java content
 // tree and marshal it back to a xml data

 public static void main(String[] args) {
 try {
 // create a JAXBContext capable of handling classes generated into
 // the primer.po package
 JAXBContext jc = JAXBContext.newInstance("primer.po");

 // create an Unmarshaller
 Unmarshaller u = jc.createUnmarshaller();

 // unmarshal a po instance document into a tree of Java content
 // objects composed of classes from the primer.po package.
 PurchaseOrder po =
 (PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"));

 // change the billto address
 USAddress address = po.getBillTo();
 address.setName("John Bob");
 address.setStreet("242 Main Street");
 address.setCity("Beverly Hills");
 address.setState("CA");
 address.setZip(new BigDecimal("90210"));

 // create a Marshaller and marshal to a file
 Marshaller m = jc.createMarshaller();
 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
 m.marshal(po, System.out);

 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

 80

VITA

Uma Chinmayee Nirmal

Candidate for the Degree of

Master of Science

Thesis: EFFICIENT STORAGE OF XML – A COMPARATIVE STUDY

Major Field: Computer Science

Biographical:

Personal Data: Born in Hyderabad, Andhra Pradesh, On October 6, 1979, the
daughter of Sreekanth and Bhairavi Nirmal.

Education: Graduated from St. Ann’s High School, Secunderabad, Andhra

Pradesh, India, in March 1995; graduated from St. Francis’ College for
Women, Secunderabad, Andhra Pradesh, India, in April 1997; received
Bachelor of Engineering degree in Civil Engineering from Osmania
University, Hyderabad, Andhra Pradesh, India in May 2001. Completed
the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in May, 2005.

Experience: Employed by Oklahoma State University, Central Dining Services,

as a student worker in 2002; employed as a Graduate Assistant, by the
Oklahoma State University, School of Education, College of Education,
as a student worker by the Oklahoma State University, Department of
Veterinary Pathobiology, College of Veterinary Medicine and as a
Graduate Lab Assistant by the Oklahoma State University, College of
Engineering, Architecture and Technology Information Technology
Services Department during the Spring, Summer and Fall semesters of
2003 respectively; employed as a Graduate Assistant by the Oklahoma
State University, Department of Physics and Oklahoma State University,
Computer Science Department, from 2004 to present.

Professional Memberships: None

Name: Uma Chinmayee Nirmal Date of Degree: May, 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: EFFICIENT STORAGE OF XML - A COMPARATIVE STUDY

Pages in Study: 80 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The purpose of this study is to predict the performance of
XML storage in various real time scenarios. This study is a survey and comparative
analysis of data storage using databases to store and retrieve XML, using Java objects
representing XML and other storage mechanisms that may have not yet been explored. It
also gives a high-level overview of how to use XML with databases or Java Objects and
describes how the differences between data-centric and document-centric XML affect
their usage, when used with databases and objects, and how XML is used with relational
and object oriented databases, Java Objects, and the role of native XML databases (stand
alone XML databases).

Findings and Conclusions: A detailed comparative study on storage of XML using
Relational DBMS, Native XML DBMS and processing into Java Objects using JAXB
was conducted. The data models such as relational, hierarchical, document-driven were
used as inputs to the study. There is no single tool that can manage all the aspects of
XML data used in an application. Each technology provides interestingly unique features.

There is a tremendous amount of research and development in progress, in the
development of tools and technologies to use XML. It can be safely predicted that all the
technologies will finally merge into one standard method of storage of XML that will
incorporate all the features such as, faster searches, full-text searches, maintaining
original document order, ability to maintain a collection of documents, ability to query
and store or retrieve over the network using protocols such as HTTP, SOAP etc., provide
integral support for casting of elements, support for processing valid and non-valid XML
documents, all in a single tool.

This study has successfully concluded that the most efficient way to store XML data lies
in the context of its usage.

ADVISER’S APPROVAL: Dr. Blayne E. Mayfield

COPYRIGHT

By

Uma Chinmayee Nirmal

(May, 2005)

