
 iGEMS – RESOURCE-ORIENTED SYSTEM

 FOR TELEROBOTICS TESTBEDS

 By

 NHAT D. NGUYEN

 Bachelor of Science in Computer Science

 Oklahoma State University

 Stillwater, Oklahoma

 2009

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2011

ii

 iGEMS – RESOURCE-ORIENTED SYSTEM

 FOR TELEROBOTICS TESTBEDS

 Thesis Approved:

 Dr. Johnson Thomas

 Thesis Adviser

 Dr. Subhash Kak

 Dr. David Cline

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Motivations ..1

 1.2 Proposed Solution ..2

 1.3 Research Objective ..3

 1.4 Research Contributions ..4

 1.5 Outline of the Thesis ..4

II. REVIEW OF LITERATURE..5

 2.1 Introduction to Robotics and Telerobotics ...5

 2.1.1 Robotics ..5

 2.1.2 Telerobotics...7

 2.2 Applications of Telerobotics ..9

 2.2.1 Educational Applications ..9

 2.2.2 Space Exploration Applications ..9

 2.2.3 Under-marine Exploration Applications ...10

 2.2.4 Surgery Applications ..11

 2.2.5 Hazardous Environment Applications ..11

 2.2.6 Military Applications ..11

2.3 Some Fundamental Web Concepts ..12

2.3.1 HTTP...12

2.3.2 SOAP ..13

2.3.3 URI ..13

2.3.4 XML-RPC ...14

2.3.5 Programmable Web ..14

2.4 Introduction to REST and Resource-Oriented Architecture15

 2.4.1 REST ...15

 2.4.2 Resource-Oriented Architecture ...16

2.4.2.1 Addressability ..16

2.4.2.2 Statelessness ...16

2.4.2.3 Connectedness..17

2.4.2.4 Uniform Interface ...17

 2.5 Analysis on some Typical Telerobotics Systems...18

 2.5.1 Non-web-based Telerobotics Systems ..18

 2.5.2 User-web-interface-based Telerobotics Systems20

iv

Chapter Page

III. ARCHITECTURE AND DESIGN ..23

 3.1 Architecture..23

 3.1.1 Public Interface ...24

 3.1.2 Internal Libraries ...24

 3.1.3 Framework and other libraries ..24

 3.2 Overall Design ...25

 3.2.1 User Web Interfaces ..26

 3.2.2 Web Services ..27

3.2.3 Core ...28

3.2.4 Robot Controllers ..28

3.2.5 Data Adaptor and Databases ...29

IV. IMPLEMENTATION..30

 4.1 RESTful Web Services ..30

 4.1.1 Data Set ...30

 4.1.2 Split the Data Set into Resources ..31

 4.1.3 Name the resources with URIs ...32

4.1.4 Expose a Subset of the Uniform Interface ..34

4.1.5 Design the Representation Accepted from the Client34

4.1.6 Design the Representation Served to the Client34

4.1.7 Consider Error Conditions ..36

 4.2 User Web Interfaces ...36

 4.3 Robot Controllers ...39

4.4 Core ..41

4.5 Data Adaptor and Databases ..42

4.6 Video Streaming Services ..43

V. FINDINGS ..45

 5.1 Current State of Implementation ..45

 5.2 Potential factors of RESTful URIs for Large-Scale Experiments45

 5.3 Friendliness and Intuition of RESTful URIs ...46

VI. CONCLUSION..48

REFERENCES ..49

v

LIST OF TABLES

Table Page

 1 Comparison between SOAP and REST ...16

 2 HTTP Methods, Their Functions and Properties ...18

 3 Comparison between Non-web-based, Web-user-interface based and iGEMS21

 4 iRobot Create Data Set...30

 5 OWI007 Robotic Arm Data Set ...31

 6 iRobot Create Resources and URIs..32

 7 OWI007 Robotic Arm Resources and URIs ..32

vi

LIST OF FIGURES

Figure Page

 1 OWI007 Robotic Arm with remote control ...6

 2 A mobile robot chained from 2 iRobot Creates and 1 VEX robot...........................7

 3 Typical teleoperation scenario in telerobotics system ...8

 4 A NASA space robotic arm ...10

 5 Zeppelin robot Blimp – A typical UAV with camera system12

 6 iGEMS’ Architecture ...24

 7 iGEMS’ Overall Design ...25

 8 iGEMS’ Web Services ...27

 9 iGEMS’ Database Structure ...29

 10 iGEMS’ Register Page ...37

 11 iGEMS’ Log On Page ..37

 12 iGEMS’ Home Page ..38

 13 iGEMS’ Start a New Experiment Page ..38

 14 iGEMS’ Robots Page ...39

 15 OWI007 Robotic Arm Control Program..40

 16 Database Polling Model for Robotic Control Programs41

 17 Controllers and Actions ...42

 18 Mapping between Data Entity Objects and Database Tables43

 19 Video Streaming Process from a Live Source ...43

 20 Microsoft Expression Encoder with Live Source from a Webcam44

vii

Figure Page

NOMENCLATURE

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

ROA Resource-Oriented Architecture

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

XML Extensible Markup Language

1

CHAPTER I

INTRODUCTION

1.1 Motivations

Currently, robotics is a very popular and interesting research area. Many scientists and

researchers are spending much time and effort in this field and the field is rapidly evolving.

Robotics and its sub area Telerobotics both are not new but they have great potential and

promising applications. Applications of robots are presently everywhere, from home to outer

space.

Although the future appears to be bright, there exist two big problems which may limit further

developments in this field. Firstly, the cost of robotic experiments remains very high. Although

there are many kinds of robots in the market today, the cheaper ones are usually not sophisticated

enough for research purposes. It is difficult for educational institutions to conduct large-scale

robotic experiments which require many robots and other facilities as the total cost is huge. For

example, experiments for swarm intelligence usually require hundreds or even thousands of

robots which make the cost prohibitive. Similarly, advanced intelligent humanoid robotic

experiments conducted with some fifteen thousand dollar robots are out of the range of

affordability for most educational institutions

2

In addition to the excessive costs, technology differences are another disadvantage. In the world

of robotics, there exist many differences among robotic development platforms, interfaces,

programming languages, controllers and other related technologies. A researcher does not have

enough time to learn all of the different technologies to take advantage of all the advanced robotic

options and features that are available for his experiments. He needs a lot of time to understand

these robots at a low level or sometimes has to do reverse engineering to reveal their

communication interfaces. A researcher faces additional challenges in the field of robotics as he

is not well versed in hardware issues.

These two above serious problems of finance and technology will limit the application of robotics

in the future; as more different varieties of robots are produced, the more confusion they cause to

robotic scientists. Though, there are some efforts to standardize both in the software and hardware

domains, they only partly solve the problems. For example, Microsoft Inc. presents Microsoft

Robotics Developer Studio as a solution to provide a common environment for many kinds of

robots through a common platform and programming language. However, it is still difficult to use

and lacks strong support from the robotic industry. Currently, there are only standards for

industrial robots, while standards in other robotic areas are not defined transparently. Because of

this, in next section, we propose a solution to solve the two above critical problems to create a

better environment to do research for robotics scientists, both from a financial and technology

perspective.

1.2 Proposed Solution

In this thesis, we propose a Resource-Oriented System for Telerobotics Testbeds to address the

above problems of cost and technology. This system creates a layer of abstraction for all robotic

and other devices connected to it as resources. When validated by the system, these facilities can

be exposed to users as a set of resources adapting to a model called REST (Resourced-Oriented

3

Architecture and REST as will be defined and explained in detailed in Chapters 2 and 3). An

abstract layer is created as a set of secure and responsive web services which when consumed by

client programs can provide many benefits. Different kinds of development platforms,

development environments, and programming languages can seamlessly use these resources

regardless of the kind of final applications created. There is no difference in delay time or

communication protocols between web applications, web services, mobile applications or

traditional desktop applications. The proposed framework enables scientists to conduct

experiments without having to own real robots or spend much time to learn about robotic

interfaces. All they have to do is to log in to the system, schedule their time, connect their

programs to the resources, and start conducting their experiments. This system also opens

collaborative opportunities for robotic scientists to combine their local robotic facilities with

remote testbeds or to use remote testbeds.

1.3 Research Objective

The objective of this thesis is to design, implement, and test the telerobotics System with the

RESTful Model. We propose to conduct some interesting demonstrations of the system on real

testbeds to prove its convenience and efficiency. The research objectives are as follows:

 Review existing similar systems and identify their deficiencies.

 Compare and show the benefits of the proposed Resource-Oriented Architecture and RESTful

Model over other architectures and models.

 Present the significant steps of RESTful web services design.

 Analyze the architecture and design of the system.

 Deploy the system on real servers.

 Demonstrate some typical scenarios on the system.

 Prove the convenience and efficiency of the system on real testbeds.

4

1.4 Research Contributions

The proposed pure Resource-Oriented Restful model is a new and convenient solution for a

Telerobotics system. This system creates a convenient and efficient environment for scientists to

do their experiments within their available financial resources and limited understanding of

technology. The system will provide scientists at small institutions an opportunity to access more

advanced robotic facilities at other universities using a logical schedule. This will decrease the

cost and build a friendly collaborative environment to take advantage of robotic testbeds from

different institutions in a harmonic and effective way. Moreover, the system can assure secured

communication channels to protect research results.

1.5 Outline of the Thesis

This thesis is organized as follows: Chapter two reviews past and current similar Telerobotics

systems and their applications in many areas. Chapter two also analyzes and identifies the

disadvantages of current Telerobotics systems compared to our system in two specific aspects,

convenience and efficiency; Chapter three presents the detailed software engineering process for

our overall system. This chapter is strongly focused on the construction phase. Chapter four

describes the installation of the system on servers and deployment of robotic testbeds. Chapter

five validates the convenience and efficiency of the system with some typical scenarios on real

robotic testbeds. Chapter six explores some findings during development and the testing phase of

the system. Chapter seven concludes the thesis with some potential future work.

5

CHAPTER II

REVIEW OF LITERATURE

2.1 Introduction to Robotics and Telerobotics

2.1.1 Robotics

The word robotics and robot are originated from the word robota in Czech which means labor.

This word is coined by Czech writer Karel Capek (1890-1938) in 1921 in his play Rossum’s

Universal Robots (“Who did,” 2011). In the modern world, “Robotics is the branch of technology

that deals with the design, construction, operation, structural disposition, manufacture and

application of robots.” (“Robotics,” Oxford, 2011) “Robotics is also a technology dealing with

the design, construction, and operation of robots in automation.” (“Robotics,” Webster, 2011) So

the very premise concept of the robot is fiction, not scientific. Writers are the first people who

took the fundamental steps for this research area. The most important robotic rules are Issac

Asimov’s Three Laws of Robotics which are stated in his famous science fiction novel,

Runaround. These rules can be compared to Issac Newton’s Three Laws of Motion in physics.

(“Three Laws,” 2011).

 “A robot may not injure a human being or, through inaction, allow a human being to come to

harm.

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Robot

6

 A robot must obey any orders given to it by human beings, except where such orders would

conflict with the First Law.

 A robot must protect its own existence as long as such protection does not conflict with the

First or Second Law.” (“Three Laws,” 2011)

The above three laws show that a robot should not be harmful to itself and anything else around

it, and the robot must not disobey its creators and owners, human beings. In this meaning, robots

are still machines; they should not be highly intelligent (at least not more than human beings).

Today, robots are divided into two groups, mobile robots and industrial robots. Mobile robots are

ones which can move themselves by using wheels (2, 3 or 4 wheels are most popular), tracks,

propellers, fins, jet engines, etc. Mobile robots (Figure 2) are automatic machines that are capable

of movement in a given environment. They have the capability to move around in their

environment and are not fixed to one physical location. Meanwhile, industrial robots mostly are

jointed robotic arms which are attached to fixed surfaces. These robotic arms (Figure 1) usually

serve specific tasks such as grinding, welding, painting, etc. In this thesis, both kinds of robots are

implemented on the system with some different scenarios. (“Mobile Robot,” 2011)

Figure 1: OWI007 Robotic Arm with remote control

7

Figure 2: A mobile robot chained from 2 iRobot Creates and 1 VEX robot

2.1.2 Telerobotics

Originally, “Tele” is a Greek prefix meaning “distant”. Telerobotics is the area of robotics

concerned with the control of robots from a distance, chiefly using wireless connections.

Telerobotics is a vague concept because it is not clear how far a distance has to be to be defined

as “Tele” and whether appearance of real robots in sight of human operators is optional. Actually,

in telerobotics, distance is not required to be long to called tele. This concept becomes relative

because in some area like Tele-micro-surgery, this distance can be very small. As a matter of fact,

telerobotics is a combination of two major subfields, teleoperation and telepresence; so to

comprehend telerobotics, we should explain these two sub-concepts. (“Telerobotics,” 2011)

http://en.wikipedia.org/wiki/Robotics

8

Teleoperation is similar to remote control, in that, a teleoperator controls a teledevice remotely.

“If such a device has the ability to perform autonomous work, it is called a telerobot. If the device

is completely autonomous, it is called a robot.” (“Telerobotics,” 2011) These devices can be

connected to their controllers tethered or wirelessly. The most significant problem with

teleoperation is latency due to long distance communication. This leads to difficulties in real-time

tracking of devices. The controller should have a visual tracking system to give visual response of

devices when it is in motion. The delay in visual representation is not only because of

communication distance but also because of encoding and decoding video signals. This problem

will be analyzed in Chapters 4 and 5 of this thesis.

Figure 3: Typical teleoperation scenario in telerobotics system

Another major concept of telerobotics is tele-presence. Telepresence means “feeling like you are

somewhere else” (“Telerobotics,” 2011). “Telepresence refers to a set of technologies which

allow a person to feel as if they were present, to give the appearance of being present, or to have

an effect, via telerobotics, at a place other than their true location.” (“Telepresence,” 2011)

Telepresence is more advanced than traditional video conferencing systems, webcam chatting,

http://en.wikipedia.org/wiki/Telerobot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Technologies
http://en.wikipedia.org/wiki/Telerobotics

9

office and home security system, and webcam daycare. Advanced video conferencing systems or

robotic avatar systems are examples of applications of telepresence. They offer the capability of

simulated presence of users at distant locations. The real users can feel as if they are actually at

those places via sophisticated sensing mechanisms. In this thesis, we try to concentrate on a video

tracking system to show some aspects of telepresence in a telerobotics system.

2.2 Applications of Telerobotics

2.2.1 Educational Applications

There has been much effort to create telerobotics systems for educational purposes over the last

several years. In fact, there are many systems for remote education via telerobotics technology for

the classroom or lab environment. Most of these recent systems are web-based to take advantage

of the Internet as the main communication medium. Some of the very first ones were built as

peer-to-peer systems; though these systems are more efficient than web-based ones, they are

much less convenient. Web-based telerobotics systems similar to our system are the current trend

because with the rapid evolution of high-speed Internet, this kind of system is much more

convenient than others while not nearly as efficient. Educational telerobotics systems usually aim

to serve some specific robotic experiments, platforms or interfaces which are limited when

compared to our system.

2.2.2 Space Exploration Applications

Applications of telerobotics in space exploration are at a very early stage. In fact, all post-Apollo

space programs use telerobotics and current satellite controls are mainly via telerobotics and

similar technologies. Most popular telerobotics applications in space are related to outer-space

robotic arms. These arms have redundant degrees of freedom which are required to conduct

sophisticated motions and controls in space such as grasp, launch and recall of some kinds of

satellites, space telescopes or other space modules. Without gravity, some kinematics rules

10

applied to these arms have to be computed in different ways. Practice with these arms on the

ground requires complex supporting mechanisms to simulate a zero-gravity environment. In

addition, due to long distances in space and other interference factors, communication with these

arms can have a significant time delay leading to many control difficulties.

Figure 4: A NASA space robotic arm

2.2.3 Under-marine Exploration Applications

“Underwater robotics constitutes one of the most representative application fields of telerobotics.

Over the last few decades, Remotely Operated Vehicles (ROVs) have played a very important

role in undersea exploration/intervention, reducing the need of manned submersibles. In the

future, Autonomous Underwater Vehicles (AUVs) equipped with acoustic modems and modern

telerobotics technologies will do the job.” (Ridao & Carreras, 2007) In reality, this is the most

difficult area for telerobotics applications due to the limitations imposed by an under-marine

environment. Communication, motion and detection are not like in air or outer-space because

water does not allow communication means like electromagnetic signals or lasers to go through.

The only possible medium is based on acoustic technologies which reveal many disadvantages.

11

Though these technologies already exist and have been around for a long time, this area still

poses many challenges.

2.2.4 Surgery Applications

Telerobotics surgery or telesurgery is “surgery performed at a distance from the patient, which is

enabled by advanced robotics, computer technology and, when distances from the surgeon to the

patient are great, robust formats for data transmission.” (“Telesurgery,” 2011) Telesurgery will be

popular in the future when surgical robots become more precise and affordable for most medical

institutions; when this occurs, hospitals in rural areas will be able to afford sophisticated

operations with telesurgery provided by remote high-skill professionals from other big medical

centers. Telesurgery does not have to be from a long distance; sometimes it can apply to micro-

surgery in which doctors use some special devices to do operations without really touching

patients’ internal organs.

2.2.5 Hazardous Environment Applications

Telerobotics technology is extensively used in hazardous environments such as nuclear plants,

toxic chemical plants or areas, weaponry plants, or in extremely high or low temperature

environments. These robots can operate some specific daily tasks such as picking or moving

some toxic, radiated or hot materials with some direct control from human beings. Some robots

work as rescuers when crises happen, like going to a place of fire to find and rescuing people or

detecting survivors under collapsed structures after earthquakes or tsunamis.

2.2.6 Military Applications

These days, the military uses many kinds of robots and most of them are teleoperated. These

robots can be very big and expensive such as the Unmanned Aerial Vehicles (UAVs) to do

surveillance and launch missiles, or small ones to clear roadside bombs or a mine field.

12

Applications of telerobots and telerobotics in wartime save human lives and money for the army.

These robots are gradually becoming more intelligent and in the future it is very possible that they

may replace human soldiers to fight battles.

Figure 5: Zeppelin robot Blimp – A typical UAV with camera system

2.3 Some fundamental web concepts

Our system is RESTful (Representational State Transfer), and is based on the World Wide Web

architectural style. Hence we review some basic web concepts to enforce the core ideas of REST.

2.3.1 HTTP

“Hypertext Transfer Protocol (HTTP) is a networking protocol for distributed, collaborative,

hypermedia information systems. HTTP is the foundation of data communication for the World

Wide Web.” (“Hypertext Transfer,” 2011) Web and programmable web use HTTP in many

different ways. Pre-REST web and programmable web do not usually take advantage of all HTTP

methods or use them in the right way. Especially, RPC-style tends to ignore HTTP methods or

use HTTP as a formal envelope to contain other labeled envelopes inside. (Richardson & Ruby,

2007) HTTP is a request-response protocol adapting to the client-server model, in which clients

can be browsers for human-readable web and other kinds of applications for programmable web,

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web

13

while servers are usually server-side web applications or web services. Hypertext seems to be

obsolete as nowadays there are many kinds of media on the web, so hypermedia should be the

right name for this protocol. However, because this is the base for the World Wide Web, any

changes to it is difficult; only updates are acceptable and the current update specification of

HTTP 1.1 is on July 11, 2011 (Lafon, 2011).

2.3.2 SOAP

“SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for

exchanging structured information in the implementation of Web Services in computer

networks.” (“SOAP,” 2011). It is an envelope-style protocol similar to HTTP but is based on

XML; not only is it similar to HTTP but SOAP is dependent on HTTP because an XML-based

SOAP envelope has to be put inside an HTTP unlabeled envelop to address. (Richardson & Ruby,

2007) This seems to be complicated but this is the architecture of RPC-style web services. HTTP

envelops only the role of a container while SOAP envelop is a presentation of the inner resource.

SOAP is very important to web services and is still very popular though there is a newer and

better RESTful model. In the next chapter, we will show a comparison between traditional

SOAP-based web services and RESTful web services.

2.3.3 URI

Uniform Resource Identifier (URI) or sometimes called Uniform Resource Locator (URL)

defines the scope of the web. Though URL is more popular, URI seems to be more precise and

natural to web essence. “A Uniform Resource Identifier (URI) is a string of characters used to

identify a name of a resource on the Internet. Such identification enables interaction with

representations of the resource over a network (typically the World Wide Web) using specific

protocols. Schemes specifying a concrete syntax and associated protocols define each URI.”

(“Uniform Resource,” 2011) In the pre-REST era, URIs were not friendly and optimal but REST

http://en.wikipedia.org/wiki/Protocol_%28computing%29
http://en.wikipedia.org/wiki/Web_Service
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Character_string_%28computer_science%29
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Resource_%28Web%29
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Protocol_%28computing%29
http://en.wikipedia.org/wiki/Syntax

14

has changed the way the programmable web uses URIs. Planning, defining and optimizing URIs

are important tasks in RESTful web services. One purpose of REST is to make these URIs

friendly and uniform. The way web services use URIs is also different than the normal web. “A

RESTful, resource-oriented service exposes a URI for every piece of data the client might want to

operate on.” (Richardson & Ruby, 2007) We will show step by step how to define resources and

do those tasks with URIs in the next chapter.

2.3.4 XML-RPC

“It's a specification and a set of implementations that allow software running on disparate

operating systems, running in different environments to make procedure calls over the Internet.”

(“What is,” 2011) XML-RPC is based on XML for encoding messages which are then put in

HTTP envelops for transportation. (“XML-RPC,” 2011) This is the oldest web services styles and

though it has many disadvantages, it still exists in many legacy web services. XML-RPC defines

signatures for functions calls and follows the RPC style.

2.3.5 Programmable web

When users enter URLs on browsers, requests are sends to servers. Servers process these requests

and appropriately return responses as web pages. The users surf these pages and find resources as

they need. These responses are in a human-readable web form because they are rendered on the

browsers’ screens with logical layout and user friendly design which follow web standards. In

contrast, the programmable web is different; a response from the programmable web is not for

normal users to read. “The programmable web usually serves stark, brutal XML documents.”

(Richardson & Ruby, 2007) In fact, the programmable web can return other formats such as

binary data or JSON though XML is more popular now. Except for return data format, other

mechanisms of the programmable web are similar to the human-readable web.

http://www.xmlrpc.com/spec

15

The programmable web concept includes many kinds of web services and similar things, such as

web crawlers, web bots, etc. Web services are the most typical applications in the world of

programmable web right now while other similar ones are back behind the scenes. Web services

can be classified based on their technologies, designs or architectures. Currently, technology is

the most popular criterion to group web services because it is easy to identify it from the

appearances of the web services. (Richardson & Ruby, 2007) Programmable web and web

services are mainly for web programmers and web developers; they cannot read these services but

they can consume them and use them in their applications.

2.4 Introduction to REST and Resource-Oriented Architecture

2.4.1 REST

REST stands for Representational State Transfer, which is a set of design criteria based on the

architectural style of the World Wide Web (Richardson & Ruby, 2007, Flanders, 2009). The term

REST was coined by Roy T. Fielding at the University of California Irvine in 2000 in his

Doctoral Thesis, “Architectural Styles and the Design of Network-based Software Architecture”,

in which, REST is described as a series of architectural constraints that exemplify how the web’s

design emerged (Richardson & Ruby, 2007). REST mainly adapts to the client-server model of

World Wide Web with core protocol HTTP. In this model, clients send requests, and servers

process and respond to them accordingly. These messages in request-response communication are

a transfer of representations of resources. Resources in this context are something useful,

meaningful and relevant to the needs of the clients and available on the servers. Representations

of resources at some phases reflect current states or future states of those resources. Changes in

representations of resources are transferred from some states to other states which is the essential

concept of REST. REST is not firmly attached to HTTP but can be applied to other protocols.

However, in this thesis, we only focus on REST on HTTP and HTTPS.

16

Anything that conforms to REST constraints is referred to as being “RESTful”

(“Representational,” 2011). These architectural constraints are not standard rules but they are

unofficial instructions so web services usually use them partly. As a matter of fact, it is rare for

web services to strictly follow all constraints defined by REST. The reason for this can be

explained by the comparison between REST and SOAP in the following table.

TABLE 1

COMPARISON BETWEEN SOAP AND REST

SOAP REST

Protocol-independence Best support for HTTP

A Specification A set of constraints

Standardized by W3C Unofficial use as “guidelines”

Not an architectural style An architectural style

Based on service vocabulary Based on resources

Use one URI for each server Use many uniform URIs

Concern with verbs (actions) Concern with nouns (resources)

Complicated interfaces Simple and well-defined interfaces

2.4.2 Resource-Oriented Architecture

Resource-Oriented Architecture (ROA) was first defined by Leonard Richardson and Sam Ruby

in their book RESTful Web Services in 2007. Resource-Oriented Architecture is built upon REST

and they cannot be separated because currently there is no model better than REST for ROA.

Actually, “the ROA is a way of turning a problem into a RESTful web service: an arrangement of

URIs, HTTP, and XML that works like the rest of the Web, and the programmers will enjoy

using.” (Richardson & Ruby, 2007) REST can be used for other architectures because it is a set of

17

general design criteria; however, it is most appropriate for web services and ROA. REST itself is

not architectural but ROA is. Though REST can be applied in general, possibly for other

architectures or upon many other protocols, there is only one REST defined clearly by Roby

Fielding in 2000. To understand ROA we have to mention its four key characteristics:

addressability, statelessness, connectedness, and the uniform interface which will be explained

below. (Richardson & Ruby, 2007)

2.4.2.1 Addressability. Web services provide resources to clients and if they can do it through

URIs from parts of its data set in an interesting, appropriate and useful way, they are addressable.

Web services can have an unlimited number of URIs which correspond to their resources. During

the time of using web services, clients are concerned about addressability of web services the

most. Therefore addressability is vital to web services and it should be considered first when

designing web services. Addressability is the most flexible part of web services as it allows users

to consume and use services in creative ways. Addressability is the nature of web services which

are RESTful.

2.4.2.2 Statelessness. Statelessness is the next key feature of ROA. In reality, statelessness is not

only an important feature of the ROA but it is the nature of the Web. Statelessness means a

request-response process is absolutely completed in its own domain. The response is only for its

closest previous request, it does not reply to any other requests before. Theoretically, there is no

information left on servers after each request-response process. All information needed for the

server to process and return a response is already included inside the request. There are neither

connections between requests nor orders among them. Each request is an independent entity and

all concepts of transactions or sessions are only simulations or “pseudo”.

2.4.2.3 Connectedness. Connectedness is a sliding concept when it mentions about client-sides

sessions and states but not “cookies”. In this meaning, it builds contexts in which users create

18

sessions on their own and maintain their states by following the flow of their needs. The web with

its hyperlinks and hypermedia arranged in logical ways will help users to do this harmoniously

while still adapted to the statelessness rule. Hyperlinks become engines of application state and in

the case of web services resources should link to each other in their representations. (Richardson

& Ruby, 2007)

2.4.2.4 Uniform Interface. Most of non-RESTful web services do not have uniform interfaces

though all use Uniform Resource Identifiers. Uniform interface means using HTTP methods in

the same way and the right way. In each web service, one HTTP method should be used in the

same way for any requests and on any resources. The following table shows the six most popular

and important HTTP methods, their functions and properties.

TABLE 2

HTTP METHODS, THEIR FUNCTIONS AND PROPERTIES

Method Function Safe? Idempotent? Cacheable?

GET Retrieve a resource Yes Yes Yes

POST Create a new resource No No No

PUT Update an existing resource No Yes No

DELETE Remove an existing resource No Yes No

HEAD Retrieve a metadata-only representation of a

resource

Yes Yes Yes

OPTIONS Check allowable options of a resource Yes Yes No

(Richardson & Ruby, 2007, Flanders, 2009, Allamaraju, 2010)

2.5 Analysis on some Typical Telerobotics Systems

2.5.1 Non-web-based Telerobotics Systems

19

Non-web-based Telerobotics systems use two popular models - Peer-to-peer and Client-server.

“Peer-to-peer (P2P) computing or networking is a distributed application architecture that

partitions tasks or workloads among peers. Peers are equally privileged, equipotent participants in

the application. They are said to form a Peer-to-Peer network of nodes.” (“Peer-to-peer,” 2011)

The “client–server model of computing is a distributed application that partitions tasks or

workloads between the providers of a resource or service, called servers, and service requesters,

called clients.” (“Client-server,” 2011) Peer-to-peer and client-server are natural for distributed

systems via UDP or TCP. In Peer-to-peer, there is no server or the server plays a very minor role

and it is never a service provider. In contrast, client-server strongly concentrates on server

systems because these are resource and service providers and are very loaded, when usually

serving multiple client requests simultaneously. Non-web-based distributed telerobotics systems

on Peer-to-peer or Client-server were very popular in the early days of the Internet due to the

narrow bandwidth and limits of web technologies. (Graves, Ciscon, & Wise, 1994) designed and

created a distributed telerobotics system in a project supported by NASA to connect robotics

testbeds among four university campuses; this system can be deployed and run over many

processors via a wide area network; it follows an object oriented and data driven architecture

which actually adapts to the peer-to-peer model. (Bottazzi, Caselli, & Amoretti, 2002) developed

a telerobotics framework based on Real-Time COBRA which took advantage of Asynchronous

Method Invocation and exploited the Client-server model; this system presented the concepts of

Robot server, Robot client and distributed sensor data. (Park & Park, 2003) propose a solution to

Internet random time delays for non-web-based telerobotics systems built on a Client-server

architecture using Event-based teleoperation. (Munasinghe, 2002) set up a telerobotics

experimental environment for an industrial telemaipulator on a Peer-to-peer model.

Non-web-based telerobotics systems were good choices when Mega and Giga-bit Internet were

not available though they have many disadvantages and inconveniences. These systems are still

http://en.wikipedia.org/wiki/Distributed_application
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Client_(computing)

20

useful if they are very specific to some narrow research areas or applications. Usually they

required installation of client programs on workstations and a handshaking phase between peers

or between clients and servers. The interface of these systems is often complicated and it takes a

long time for scientists to masters their API.

2.5.2 User-web-interface-based Telerobotics Systems

Web-based systems include web-user-interface-based and programmable-web-based systems.

Our system belongs to the latter category. Web-user-interface-based systems are based on the

normal web or a human-readable web which is loaded using web browsers and is easily

understood by everybody, whilst the programmable-web is to be consumed by machines and

client programs and not directly by human eyes. This kind of web popularly appears as web

services and other things like web bots, web spiders, etc. In this part we will discuss about User-

web-interface telerobotics systems and compare them to our system and non-web-based ones.

User-web-interface-based teleorobotics systems are the current trend and becoming more popular.

These systems have many advantages over non-web-based ones and exploit all benefits of

modern web technologies and high-bandwidth Internet. Web-based telerobotics are especially

useful on large-scale distributed systems which have to satisfy diversity of clients and

homogeneous environment. Most scientists currently are forsaking the classic non-web-based

design because it has many limitations. (Yu, Tsui, Zhou, & Hu, 2001) built a web-based

telerobotics system on standard networking protocols and an interactive human-machine

interface; users can remotely control and program mobile robots on their web browsers via a user

web interface; besides, users are able to track their experiments with visual feedback and a

perceptual map. (Doulgeri, 2006) created a web telerobotics system for teaching robotics based

on real industrial robotic tasks; his system provided a high degree of real time interaction using an

intuitive interface to guarantee operability and safety. (Terbuc, Uran, Rojko, & Jezernik, 2004)

21

introduced an effective methodology to teach students robotics and mechatronics by using 3D

web-based virtual robotics lab for remotely control robots. (Safaric, Debevc, Parkin, & Uran,

1999) presented a way to train people working on expensive robotic facilities; this system has 2

phases, the first one uses off-line Virtual Environment planning and the latter one exports them to

real remote robots to remotely execute via the Internet; this approach improved possibilities of

education and training with low cost.

Our Telerobotics system is called iGEMS and is built on ROA. iGEMS is basically a web-based

system but is not based on a user-web-interface. Our system is strongly focused on web services.

Table 3 shows the comparison between other non-web-based, user-web-interface-based and our

system iGEMS.

TABLE 3

COMPARISON BETWEEN NON-WEB-BASED, USER-WEB-INTERFACE-BASED AND

IGEMS

Non-web-based User-web-interface-based iGEMS

Advantages

 Appropriate for slow

Internet

 Easily to use and develop

 Feasible to popularize

 Feasible to popularize

 Very flexible for

development environments

and platforms

 Natural to telerobotics and

testbeds with resource-

oriented

 Relieved from browser

compatibilities

 Relieved from generation

programming

Disadvantages

22

 Required to install client

programs

 Difficult to popularize

 Complicated in

programming interface

and API

 Inflexible for development

environments and

platforms

 Limited in control

interface

 Inflexible for

development

environments and

platforms

 Unreliable on browser

compatibilities

 Required intermediate or

professional level to

consume and code

23

CHAPTER III

ARCHITECTURE AND DESIGN

3.1 Architecture

iGEMS is built on a Resource-Oriented Architecture. The reason we choose this architecture is

because it matches the purposes of our telerobotics system:

 ROA is based on REST which can be adapted by both web-user-interfaces and web services.

 ROA is ideal for a system to provide resources as services.

 ROA is supported by many web technologies and patterns such as Microsoft WCF, Microsoft

MVC, etc.

 ROA suggests natural and friendly service interface to clients.

 Systems built on ROA can be easily maintained and extended.

iGEMS is simple with 3 layers including 5 key modules; the highest layer consists of 2 interface

modules, Web User Interfaces and Web Services; the middle layer is composed of 3 modules,

Core, Controllers and Data Adaptor; the lowest layer is the Microsoft .NET Framework and

related Microsoft libraries. The middle layer is the most important with the most sophisticated

and critical modules of the system. These layers will be explained in detail next and the 5 key

modules will be discussed in the next part of the system design.

24

Figure 6: iGEMS’ Architecture

3.1.1 Public Interfaces

This highest layer has two modules, Web User Interfaces and Web Services. These two modules

combined reveal the interfaces of the system to users, client programs, and controllers. The

difference between these two modules is the former provides public interfaces for users in

human-readable format while the latter is only consumed by client programs or machines. Except

for this layer, all other lower layers are system internals. Some features on these layers can

directly reference the lowest layer of the Architecture without going through the middle layer.

However, most of the time, modules on this layer will heavily access and use modules on the

middle layer.

3.1.2 Internal Libraries

The middle layer includes the typical and important modules of the system. Core is the most

important one because it is a set of controller classes (this will be explained in next chapter)

which define resources and create a resource management mechanism. Controllers are set of

libraries and programs which support connections to robots such as iRobot Create, OWI007 Arm,

etc. Data Adaptor is based on the Microsoft Entity Framework to access databases and create

relational data models in memory. The modules on these layers will take advantage of features

provided by the lowest layer of the Architecture.

3.1.3 Framework and other libraries

25

This layer contains Microsoft .NET Framework and other libraries such as Microsoft DSSP &

CCR. This layer, in some aspects, can be considered to be external to our system because these

framework and libraries are not built by us . We will return to this topic in the next part of system

design. Microsoft Decentralized Software Services Protocol (DSSP) & Concurrency and

Coordination Runtime (CCR) are libraries that belong to Microsoft Robotics Developer Studio

and we use these in our controllers to control robots like iRobot Creates. DSSP & CCR are very

good for providing loosely coupled robotic services for many kinds of robots. In this thesis, we

use these services mostly to talk to iRobot Create to implement the mobile robots testbed.

3.2 Overall Design

Based on the 3-layer architecture, our system has 5 main modules: User-Web-Interfaces, Web

Services, Core, Controllers, and Data Adaptor.

Figure 7: iGEMS’ Overall Design

26

Our Overall Design includes 3 tiers, which means each tier can be deployed on different

machines. The layers on the architecture are logical when tiers on the design are physical. The

former one shows how code is organized and how close it is to end-users and clients. The latter

presents deployment of code on real machines and how it is distributed. In addition, the database

can be considered the fourth tier because it is possible to place the database on a separate server.

On the Overall Design diagram (Figure 7), the end-users are computer scientists, who usually use

a User-Web-Interface to access the system via web browsers to conduct trivial actions such as

logon, log-off, schedule experiments, check experiment results, start experiments at some specific

times, etc., whist, clients are programs which are created by computer scientists and will consume

web services to connect to the system’s resources. Most of the time, one experiment sessions will

involve both User-Web-Interfaces and Web Services because each provide different features and

complement each other. End-users and client programs do not have to care about internal

modules or .NET Framework, they only need to learn, get used to, and master User-Web-

Interfaces and Web Services to use our system.

3.2.1 User Web Interfaces

The User Web Interfaces support the following functions for an end-user:

 Register for new user account: a user can register for a new account on our system by

providing user-name, password, and appropriate CAPTCHA phrase.

 Log on the system: a registered user can log on our system to start using functions and

connecting their programs to our external web services.

 Check and update account information: a registered and authenticated user can change their

password.

27

 Start a new experiment: a registered and authenticated user can start a new experiment based

on current available resources. The system currently does not support scheduling experiments

in advance.

 Review and download previous experiments’ results: a registered and authenticated user can

review his previous experiments and download results.

 Log off the system: a registered and authenticated user can log off our system and stop all

current connections and experiments.

3.2.2 Web Services

Figure 8: iGEMS’ Web Services

There are 2 main web services in our system, robot web services and camera web services. All

are RESTful web services and expose these resources as RESTful API. The robot web services

allow client programs to connect to and control robots, while receiving feedback from robots’

sensors. The feedback from robots’ sensors is not enough for experimental tracking so camera

28

web services help with visual tracking channels from many perspectives. These web services are

the main aspects of our system that are based on ROA and REST. Through these web services

design and resource selections, the efficiency and convenience of REST constraints are

manipulated and proved.

3.2.3 Core

The Core is a set of logics and filters to define most of the main features of our system:

 Define User Web Interface with filters for input and output data via Data Adaptor

 Create Web Service with filters for input and output data via input arguments and Data

Adaptor

 Authorize users to use the User Web Interfaces and connect to External Web Services

 Specify special users representing attached external resources to the system

 Check input actions and redirect them if necessary

3.2.4 Robot Controllers

Currently, our system integrates controllers for iRobot Create and the OWI007 Robotic Arm.

Controllers are developed and deployed on local workstations and connect to corresponding

robots. These controllers are desktop programs to connect to robots via cables or wireless. These

controllers have to be programmed specifically for each kind of robot because usually these kinds

of robots support very different communication interfaces. Each robot will be controlled by one

control program and these robots are differentiated from each other by their Ids.

Each controller is written as a desktop program with user interface. We choose to do this because

this provides an emergency control pad to steer or stop the robot in urgent or emergency cases.

Many things can happen to the robots in testbeds and there do not exist 100% autonomous robots.

The Controller for iRobot Creates is created using Microsoft Robotics Developer Studio. This

29

controller allows steering this two wheeled robot forward, backward, to the left, to the right, and

stopping the robot. The Controller for the OWI007 robotic arm uses an external library provided

by the OWI007 manufacturer with a very simple interface to open/close the gripper, turn left/right

the wrist, move up/down the elbow, move up/down the shoulder, and turn left/right the base.

3.2.5 Data Adaptor and Databases

The Data Adaptor is a module to map between persistent data in the database to corresponding

objects in our system. The Data Adaptor is a middle layer between the database and the rest of the

system. This module plays an important role in making the data abstract to the system. For any

system, data is the most important thing and it should be carefully manipulated. The Data

Adaptor currently only supports Microsoft SQL Server and Microsoft SQL Server Express. This

module connects two databases; the first one contains data about user accounts and roles; this

database is automatically created by Microsoft with a default database structure and table

definitions; the second database is defined by us to store data about experiments and resources of

the system.

Figure 9: iGEMS’ Database Structure

30

CHAPTER IV

IMPLEMENTATION

4.1 RESTful Web Services

We use web services in our system to communicate mostly with robots. Hence we follow some

RESTful design instructions suggested by (Richardson & Ruby, 2007) to create a skeleton of real

Resource-Oriented web services for iGEMS. We want to focus on RESTful web services for

robots only so other features such as user account registration, and experiment management will

be served by User-Web-Interfaces.

4.1.1 Data Set

We have 5 iRobot Creates attached to the system so the data set related to these robots are named

as follows: iRobotCreate1, iRobotCreate2, iRobotCreate3, iRobotCreate4, and iRobotCreate5.

For each iRobot Create, its data set consists of status, current speed, motion type, motion period,

motion angle, and status of bumper; motion type includes moving forward, moving backward,

turning left and turning right; motion period is an integer number greater than zero which

represents the number of milliseconds the robot will move; motion angle is between 1 and 360.

iGEMS is attached to two OWI007 robotic arms so the data sets related to these arms are named

as OWI007_1 and OWI007_2. Each robotic arm has five joints and its data set is consisted of

status, joint, motion type, and motion period.

TABLE 4

IROBOT CREATE DATA SET

31

Data Item Value

Status N/A, available

Speed Double value between 0.0 and 1.0

Motion Type Move forward, move backward, turn left turn right

Motion Period Integer value greater than zero

Motion Angle Integer value between 0 and 360

Bumper Touched and untouched

TABLE 5

OWI007 ROBOTIC ARM DATA SET

Data Item Value

Status N/A, available

Joint Gripper, wrist, elbow, shoulder, base

Motion Period Integer value greater than zero

Gripper Open, close

Wrist Turn clockwise, turn counterclockwise

Elbow Life up, move down

Shoulder Life up, move down

Base Turn clockwise, turn counterclockwise

4.1.2 Split the Data Set into Resources

In this step we will decide which data set will be exposed as resources. Based on the dataset that

we defined in the last step, we want all the data items in these data sets to be able to serve as

resources for the system.

32

4.1.3 Name the Resources with URIs

We have the data sets and decision on which data set to expose as described above. We now

proceed to name these resources logically to serve clients the best. To simplify the URIs, we

encode them hierarchically as following:

TABLE 6

IROBOT CREATES RESOURCE URIS

Resource URI

List of iRobot Create http://server:port/iRobotCreate

Status of iRobot Create X http://server:port/iRobotCreate/X

Get Current Speed http://server:port/iRobotCreate/X/Speed/

Set Current Speed http://server:port/iRobotCreate/X/Speed/Value

Move Forward http://server:port/iRobotCreate/X/Forward

Move Forward in a period of time http://server:port/iRobotCreate/X/Forward/Time

Move Backward http://server:port/iRobotCreate/X/Backward

Move Backward in a period of time http://server:port/iRobotCreate/X/Backward/Time

Turn Left http://server:port/iRobotCreate/X/LeftTurn

Turn Left in a period of time http://server:port/iRobotCreate/X/LeftTurn/Time

Turn Right http://server:port/iRobotCreate/X/RightTurn

Turn Right in a period of time http://server:port/iRobotCreate/X/RightTurn/Time

Bumper http://server:port/iRobotCreate/X/Bumper

TABLE 7

OWI007 ROBOTIC ARM RESOURCE URIS

Resource URI

http://server:port/iRobotCreateX
http://server:port/iRobotCreate/X/Forward
http://server:port/iRobotCreate/X/Forward/
http://server:port/iRobotCreate/X/Backward
http://server:port/iRobotCreate/X/Backward/
http://server:port/iRobotCreate/X/TurnLeft
http://server:port/iRobotCreate/X/Left/

33

List of OWI007 Robotic Arm http://server:port/OWI007

Status of OWI007 X http://server:port/OWI007/X

Gripper current Position http://server:port/OWI007/X/Gripper

Gripper Open indefinitely http://server:port/OWI007/X/GripperOpen

Gripper Open in period of time http://server:port/OWI007/X/GripperOpen/Time

Gripper Close indefinitely http://server:port/OWI007/X/GripperClose

Gripper Close in a period of time http://server:port/OWI007/X/GripperClose/Time

Wrist current Position http://server:port/OWI007/X/Wrist

Wrist Turn Clockwise

indefinitely

http://server:port/OWI007/X/WristLeft

Wrist Turn Clockwise in a period

of time

http://server:port/OWI007/X/WristLeft/Time

Wrist Turn Counterclockwise

indefinitely

http://server:port/OWI007/X/WristRight

Wrist Turn Counterclockwise in a

period of time

http://server:port/OWI007/X/WristRight/Time

Elbow current Position http://server:port/OWI007/X/Elbow

Elbow Lift Up indefinitely http://server:port/OWI007/X/ElbowUp

Elbow Lift Up in a period of time http://server:port/OWI007/X/ElbowUp/Time

Elbow Move Down indefinitely http://server:port/OWI007/X/ElbowDown

Elbow Move Down in a period of

time

http://server:port/OWI007/X/ElbowDown/Time

Shoulder current Position http://server:port/OWI007/X/Shoulder

Shoulder Lift Up indefinitely http://server:port/OWI007/X/ShoulderUp

Shoulder Lift Up in a period of

time

http://server:port/OWI007/X/ShoulderUp/Time

Shoulder Move Down

indefinitely

http://server:port/OWI007/X/ShoulderDown

Shoulder Move Down in a period

of time

http://server:port/OWI007/X/ShoulderDown/Time

Base current Position http://server:port/OWI007/X/Base

Base Turn Clockwise indefinitely http://server:port/OWI007/X/BaseLeft

http://server:port/OWI007
http://server:port/OWI007/X
http://server:port/OWI007/X/Gripper
http://server:port/OWI007/X/Gripper/Open/Time
http://server:port/OWI007/X/Wrist
http://server:port/OWI007/X/Elbow
http://server:port/OWI007/X/Elbow/Down
http://server:port/OWI007/X/Shoulder/Down

34

Base Turn Clockwise in a period

of time

http://server:port/OWI007/X/BaseLeft/Time

Base Turn Counterclockwise

indefinitely

http://server:port/OWI007/X/BaseRight

Base Turn Counterclockwise in a

period of time

http://server:port/OWI007/X/BaseRight/Time

4.1.4 Expose a Subset of the Uniform Interface

The decision in this step is simple because we have defined the same static resources in our

system like robot names, robot motion types, etc. Clients can only change parameters such as

periods of times, speed, motion angle. The URIs are already uniform and clients are not able to

create any new URIs.

4.1.5 Design the Representation Accepted from the Client

As the URIs in 4.2.3, the presentations, in this case are URIs, to accept data from clients are

simple. They adapt to the hierarchical rule and intuitively figure out how to use and follow these

URIs. The convenience and efficiency of this design will be discussed in the next chapter.

4.1.6 Design the Representation Served to the Client

The representation accepted from the client is already stated on the URIs of the above two tables.

We now discuss the representation served to the client from web services. This representation is

the data format which is returned by the web services. There are many kinds of data formats but

we choose to only return JSON because this format is more popular and is easily consumed by

clients.

“JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy for

humans to read and write. It is easy for machines to parse and generate. It is based on a subset of

the JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999.

http://server:port/OWI007/X/Base/Counterclockwise
http://javascript.crockford.com/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

35

JSON is a text format that is completely language independent but uses conventions that are

familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript,

Perl, Python, and many others. These properties make JSON an ideal data-interchange language.”

(“JSON”, 2011). In our system, we use JSON as the main format to return data from web

services. For example, following is the list of iRobot Creates and their status return from the

system in JSON format:

[{“ResourceName”:“ iRobot Create 1”, “ResourceStatus”: “N/A”},

{“ResourceName”:“ iRobot Create 2”, “ResourceStatus”: “Available”},

{“ResourceName”:“ iRobot Create 3”, “ResourceStatus”: “N/A”},

{“ResourceName”:“ iRobot Create 4”, “ResourceStatus”: “Available”},

{“ResourceName”:“ iRobot Create 5”, “ResourceStatus”: “Available”}]

JSON format is based on three structures:

 JSON overall data structure is an ordered list of objects. A list is bounded in a pair of square

brackets, one for opening and one for closing.

 JSON object data structure is an unordered set of name/value pairs. An object is placed in a

pair of curved brackets, one for opening and one for closing. Name/value pairs are separated

from each other by commas.

 JSON name/value pair is structure of two parts which is separated by a colon. Name is a

string and value can be Boolean, integer, float, or string.

In each programming language, the above structures become concrete data structures with

different names and can be implemented in very different ways. Currently, most modern

programming language support I/O in JSON format naturally, especially as JavaScript and

JQuery dominate the world of web today.

We use Microsoft ASP.NET MVC 3 to create the web services. The reason we choose this

technology and model because it is very natural to REST and it has very good routing module to

36

support generating many URI patterns. According to (Freeman & Anderson, 2011), URIs patterns

in Microsoft ASP.NET MVC 3 have two key behaviors:

 “URL patterns are conservative, and will match only URLs that have the same number of

segments as the pattern. This can be seen in the fourth and fifth examples in the table.

 URL patterns are liberal. If a URL does have the correct number of segments, the pattern will

extract the value for the segment variable, whatever it might be.”

The model for routing and general URIs in Microsoft ASP.NET MVC 3 is very flexible and

logical. We can take advantage of this to generalize any URI pattern we want. In this project, we

exploit this to create a set of URIs for our web services to expose our resources as we already

defined in step 3.

4.1.7 Error Conditions

The following are some error conditions which can happen when clients request for our web

services:

 The entered URIs are in wrong format, they can be too long, too short or have mistaken typo.

The response is 400 (Bad Request)

 The entered URIs do not exist on the system. The response is 400 (Bad Request)

 The entered values are invalid, e.g. clients provide negative speed, negative time values, etc.

The response is 400 (Bad Request)

 The resources which clients request are busy or not available at that time. The response is 503

(Service Unavailable)

 The server is down. The response is code 500 (Internal Server Error)

4.2 User Web Interfaces

37

In addition to Web Services, our system also supports User Web Interfaces. The main purpose of

the User Web Interfaces is to support features like registering for a new account, logging on and

logging off the system, starting a new experiment and reviewing previous ones. These functions

are not the main features of our system and so we decided not to provide them as web services.

We also use Microsoft ASP.NET to create Web User Web Interfaces because this provides many

new features and models to create good User Web Interfaces.

Figure 10: iGEMS Register Page

Figure 11: iGEMS Log On Page

38

After authentication and authorization, a user has his Home Page with two functions to proceed:

 Start a New Experiment: a user can start a new experiment by providing its name and

description and selecting resources from the available ones.

 Review Previous Experiments: a user is able to review his previous experiments and can

decide to download their results if possible.

Figure 12: iGEMS Home Page

Figure 13: iGEMS Start a New Experiment Page

The Robot Page shows the current list of resources attached to our system and their status. A user

can review this page to decide whether he is interested in these resources to start his new

39

experiment. This list is updated in almost real time to reflect the current resource repository of the

system.

Figure 14: iGEMS Robots Page

4.3 Robot Controllers

We build two control programs; one for iRobot Create and one for OWI007 Robotic Arm. iRobot

Create controller is created based on Microsoft Robotics Developer Studio and Microsoft

Windows Form. This controller allows steering a iRobot Create, changing its speed and provides

feedback about its bumper status. This program takes advantage of Microsoft robotic services to

talk to iRobot Create via Bluetooth connection. We attach 5 iRobot Creates to our system. The

server connection point is a Bluetooth dongle while each robot connection point is a Bluetooth

Adaptor Module (BAM). Each robot communicates with the server on a different COM port and

there is no conflict or interference in communication channels.

40

The control program of OWI007 Robotic Arm is developed on Microsoft Windows Form and

OWI007 USB 076 Interface. This interface allows the controllers to set the robotic arm joints

servos (robotic motors) in three states: left, right and teisi. Left state makes these motors shaft

turn In addition to the excessive costs, technology is another disadvantage. In the world of

robotics, left, right state makes them turn right and teisi means they are stopped.

Figure 15: OWI007 Robotic Arm Control Program

These control programs are constantly polling the database to check and obtain input commands

and arguments to proceed with actions. Commands are differentiated from each other by unique

tickets generated by the system.

41

Figure 16: Database Polling Model for Robotic Control Programs

4.4 Core

The Core module of our system is implemented by Controllers in Microsoft ASP.NET MVC 3.

These Controllers are different from the Controllers or Control Program in the previous section.

These Controllers are the ones that will directly receive requests from and send responses to

clients. Controllers together create a layer of logics which define I/O rules for the overall system.

Controllers are enforced when equipped with filters. Filters are I/O rules which are applied to

each Controller or each Action of a Controller. These filters help controllers validating inputs and

selecting appropriate actions.

The big difference between the traditional web framework and Microsoft ASP.NET MVC is each

URI in ASP.NET MVC corresponds to one Action in one Controller, not to a web page like the

traditional case. An Action is similar to a handler function to process proper requests which are

sent to it by clients and reply with an appropriate response.

42

Figure 17: Controllers and Actions

4.5 Data Adaptor and Databases

We use Microsoft Entity Framework to map to the database that we already outlined in the last

chapter. Entity Framework is simple when creating a data object model in memory to access

anytime. This data model maps to tables (or relations) in iGEMS’ database. We have 3 data

objects:

 Experiment: this entity maps to the Experiments table in the database to access data about

experiments such as name, description, start time, end time.

 Resource: this entity maps to Resources table in the database to access data about resources

of the system such as name, type, description, status.

 Command: this entity maps to Commands table in the database to access data about

commands sent to robots such as action, arguments’ values.

43

Figure 18: Mapping between Data Entity Objects and Database Tables

Besides, the database that we designed and created for iGEMS, we also take advantage of a built-

in database by Microsoft for authentication and authorization of users. This database is generated

automatically when we first create our project by Microsoft Visual Studio and access the account

feature of a Microsoft ASP.NET MVC 3 application.

4.6 Video Streaming Services

We built video streaming services based on Windows Media Services and Microsoft Expression

Encoder. Each web cam will be attached and encoded and streamed by Microsoft Expression

Encoder to pre-defined publishing points. The web services will provide these publishing points

to clients to connect to and obtain the streaming. The streaming process will suffer lags due to

delays of encoding and decoding process and latency of the network.

Figure 19: Video Streaming Process from a Live Source

44

Figure 20: Microsoft Expression Encoder with Live Source from a Webcam

Below are the typical parties participating in a video streaming process, which starts at a webcam

live source and ends at the user who will receive video frames on his player. Our webcam Web

Services will return the publishing points to clients so they can connect to and with their

appropriate decoders, they can receive their video frames from our webcams.

45

CHAPTER V

FINDINGS

5.1 Current State of Implementation

We have implemented iGEMS using the development tools listed in the previous chapter.

Currently, iGEMS includes all 5 key modules, namely, User Web Interfaces, Web Services, Core,

Robot Controllers and Data Adaptor. We also tested this system on real robots including iRobot

Create and OWI007 Robotic Arm and the overall system performs as expected; the robots receive

commands almost instantly and the video feeding delay time is acceptable (20 ms – 40 ms). The

last thing that we have to do is to integrate iGEMS into OKGems and the Geni project with a

common resource management and security mechanism.

5.2 Potential factors of RESTful Web Services for Large-Scale Experiments

This system is aimed at lending the robotics resources to users as Web Services. These Web

Services we built are RESTful and the overall system is Resource-Oriented. Robotic resources are

provided via Web Services in a concrete manner as URIs. These URIs follow defined patterns

which have two parts:

46

 Required part: this part is the static resources of the system such as a name of a robot, a

sensor of a robot, a joint of a robotic arm, a name of camera, etc.

 Optional part: this part is parameters to be assigned to some resources defined in the required

part of the URI, like speed of a robot, period of time in motion of a joint of a robotic arm, etc.

This is the general format of an URI: http://server:port/(required part)/[optional part]. We show

some examples:

 http://server:port/(OWI007/1/ElbowUp)/[Time]

 http://server:port/(OWI007/2/BaseLeft)/[Time]

The required part is not absolutely strict because it describes a general set of resources where

each resource can be referenced by its Id. This system of Ids are very powerful when applied to a

huge set of resources and even when there are new resources attached to the system, the general

interfaces for these Web Services do not have to be changed.

The above characteristics of RESTful Web Services are very good for large-scale experiments

because we do not have to re-write Controllers and Action or re-define the URIs when

implementing to testbeds with a few resources or with one with a large number of resources. If

users want to attach new resources, the system only sets new Ids for them; if users desire to

provide more parameters for resources, they can define them in the optional part of URIs.

5.3 Friendliness and Intuition of RESTful URIs

The patterns of URIs are uniform because its resources belong to one category; they will reveal

the same URIs with the only difference being in Ids. If users know how to connect and consume

one resource then they can easily figure out to do the same with other resources in the same

category. Even if the resource is in a different category, the pattern of its URIs is very similar.

http://server:port/(required

47

Besides, the hierarchical patterns of URIs are intuitive for users to understand the meanings of

each level and their roles in the current referenced resource. For example:

http://server:port/OWI007/1: this URIs refers to the OWI007 Robotic Arm with Id = 1; the user

can learn this pattern and refer to other OWI007 Robotic Arms in the system by only changing

the Id on URIs.

http://server:port/OWI007/2/Gripper: this refers to a joint called Gripper of an OWI007 Robotic

Arm and this level will refer to each joint of an arm.

The RESTful Web Services URIs are a combination of friendly and intuitive factors to serve best

patterns to clients so users can save time when from learning the interfaces, compared to non-

RESTful Web Services which have a very complicated vocabulary of remote functions.

http://server:port/OWI007/1
http://server:port/OWI007/2/Gripper

48

CHAPTER V

CONCLUSION

iGEMS is the first of a new kind of Resource-Oriented systems for Telerobotics Testbeds which

exploit REST to provide a convenient, friendly and efficient environment to do robotics research.

When some robotic resources are out of reach for some small educational institutions, our system

provides a framework to create bridges and collaboration between robotics scientists in the

computer science area. The reason to choose Web Services as the means to expose remote robotic

resources is because our system aims at a large amount of users have very different backgrounds

and use different tools to work with robots. The two significant problems of finance and

technology in the world of robotics are solved in our system. Though iGEMS is the first of its

kind, it can be extended and improved in the future to overcome its current limitations; in fact, the

autonomy of the system is not perfect, it still requires human interference to help robots when

they get stuck and humans need to check their mechanical parts’ conditions; it would be much

better if we can significantly reduce the latency for video streaming to simulate real-time

experiments

49

REFERENCES

1. Who did actually invent the word “robot” and what does it mean? (1933, Dec 24)

Retrieved August 25, 2011 from Dominik Zunt Web site:

http://capek.misto.cz/english/robot.html, (Date of access: August 25, 2011)

2. Robotics. (n.d.). In Oxford online dictionary. Retrieved August 22, 2011, from

http://oxforddictionaries.com, (Date of access: August 22, 2011)

3. Robotics. (n.d.). In Webster online dictionary and thesaurus. Retrieved August 22, 2011

from http://merriam-webster.com, (Data of access: August 22, 2011)

4. Three Laws of Robotics. (n.d.). In. Retrieved August 25, 2011, from The Free Online

Encyclopedia Wikipedia: http://en.wikipedia.org/wiki/Three_Laws_of_Robotics, (Date of

access: August 25, 2011)

5. Mobile Robot. (n.d.). Retrieved August 25, 2011, from The Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/Mobile_robot, (Date of access: August 25, 2011)

6. Telerobotics. (n.d.). Retrieved August 25, 2011, from The Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/Telerobotics (Date of access: August 25, 2011)

7. Telepresence. (n.d.). Retrieved August 25, 2011, from The Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/Telepresence, (Date of access: August 25, 2011)

8. Ridao P., Carreras M., Hernandez E., & Palomeras H. (2007). Underwater Telerobotics for

Collaborative Research. Springer Tracts in Advanced Robotics, 31, 347-359. Retrieved

from http://www.springerlink.com/content/0123282405663604/, (Date of access:

September 27, 2011)

9. Telesurgery. In the online Free Dictionary. Retrieved August 25, 2011, from

http://medical-dictionary.thefreedictionary.com/Telerobotic+Surgery, (Date of access:

September 27, 2011)

http://capek.misto.cz/english/robot.html
http://oxforddictionaries.com/
http://merriam-webster.com/
http://en.wikipedia.org/wiki/Three_Laws_of_Robotics
http://en.wikipedia.org/wiki/Mobile_robot
http://en.wikipedia.org/wiki/Telerobotics
http://en.wikipedia.org/wiki/Telepresence
http://www.springerlink.com/content/0123282405663604/
http://medical-dictionary.thefreedictionary.com/Telerobotic+Surgery

50

10. Richardson L., & Ruby S. (2007). RESTful Web Services. Sebastopol, CA: O’reilly.

11. Allamaraju S. (2010). RESTful Web Services Cookbook. Sebastopol, CA: O’reilly.

12. Flanders J. (2009). RESTful .NET: Build and Consume RESTful Web Services with .NET

3.5. Sebastopol, CA: O’reilly.

13. Representational State Transfer. (n.d). Retrieved August 26, 2011, from The Free

Encyclopedia Wikipedia: http://en.wikipedia.org/wiki/Representational_state_transfer,

(Date of access: August 26, 2011)

14. Lafon, Y. (n.d.). HTTP – Hypertext Transfer Protocol. Retrieved August 28, 2011, from

http://www.w3.org/Protocols/, (Date of access: August 28, 2011)

15. Hypertext Transfer Protocol. (n.d.). Retrieved August 28, 2011, from The Free

Encyclopedia Wikipedia: http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol, (Date

of access: August 28, 2011)

16. SOAP. (n.d.). Retrieved August 28, 2011, from the Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/SOAP, (Date of access: August 28, 2011)

17. Uniform Resource Identifier. (n.d.). Retrieved August 29, 2011, from the Free

Encyclopedia Wikipedia: http://en.wikipedia.org/wiki/Uniform_Resource_Identifier, (Date

of access: August 29, 2011)

18. Unknown. (n.d.). What is XML-RPC? Retrieved August 29, 2011, from

http://ww.xmlrpc.com, (Date of access: August 29, 2011)

19. XML-RPC. (n.d.). Retrieved August 29, 2011, from the Free Encyclopedia

Wikipedia:http://en.wikipedia.org/wiki/XML-RPC, (Date of access: August 29, 2011)

20. Peer-to-peer. (n.d.). Retrieved September 7, 2011, from The Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/Peer-to-peer, (Date of access: August 29, 2011)

21. Client-server. (n.d.). Retrieved September 7, 2011, from The Free Encyclopedia Wikipedia:

http://en.wikipedia.org/wiki/ Client%E2%80%93server_model, (Date of access: September

7, 2011)

22. Graves S., Ciscon L., & Wise J.D. (1992, May 12-14). A Modular Software System for

Distributed Telerobotics. Proceedings IEEE International Conference on Robotics and

Automation, Nice, France. doi: 10.1109/ROBOT.1992.220013

23. Bottazzi S., Caselli S., Reggiani, & Amoretti M. (2002). A Software Framework based

on Real-Time COBRA for Telerobotics Systems. Proceedings IEEE/RSJ International

Conference on Intelligent Robots and Systems. doi: 10.1109/IRDS.2002.1041730

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.w3.org/Protocols/
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://ww.xmlrpc.com/
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/Peer-to-peer
http://dx.doi.org/10.1109/ROBOT.1992.220013
http://dx.doi.org/10.1109/IRDS.2002.1041730

51

24. Park J.H., & Park J. (2003, Oct 27-31). Real Time Bilateral Control for Internet based

Telerobotic System. Proceedings IEEE/RSJ International Conference on Intelligent Robots

and Systems. doi: 10.1109/IROS.2003.1248792

25. Munasinghe S. R. (2002, Nov). Design and Implementation of an Experimental Test Bed

for Telerobotics Research Between Saga University and Kurume National College of

Technology. Retrieved from www.ent.mrt.ac.lk/~rohan/career/projects/telegolf/telerob.pdf,

(Date of access: October 10, 2011)

26. Yu, L., Tsui P. W., Zhou Q., & Hu H. (2001). A Web-based Telerobotics System for

Research and Education at Essex. Proceedings IEEE/ASME International Conference on

Advanced Intelligent Mechatronics. doi: 10.1109/AIM.2001.936427

27. Doulgeri, Z. (2006, May). A Web Telerobotic System to Teach Industrial Robot Path

Planning and Control. Journal of IEEE Transactions on Education, 49(2), 263-270. doi:

10.1109/TE.2006.873975

28. Terbuc M., Uran S., Rojko A., & Jezernik K. (2004). Web-based Education of Robotics and

Mechatronics at the University of Maribor. Retrieved from www.ro.feri.uni-

mb.si/~martin/predst/caita.pdf, (Date of access: October 22, 2011)

29. Safaric R., Debevc M., Parkin R. M., & Uran S. (1999) Telerobotics Experiments via

Internet. Journal of IEEE Industrial Electronics, 48(2), 424-431. doi:

10.1109/ISIE.1999.801802

30. Masse M. (2011). REST API Design Rulebook. Sebastopol, CA: O’reilly.

31. Fowler M., & Robinson I. (2011). Service Design Patterns Fundamental Design Solutions

for SOAP/WSDL and RESTful Web Services. Sebastopol, CA: O’reilly.

32. JSON. (n.d.). Introducing JSON. Retrieved Oct 12, 2011, from http://json.org, (Date of

access: November 3, 2011)

33. Freeman A., & Sanderson S. (2011). Pro ASP.NET MVC 3 Framework. New York City:

Apress.

http://dx.doi.org/10.1109/IROS.2003.1248792
http://www.ent.mrt.ac.lk/~rohan/career/projects/telegolf/telerob.pdf
http://dx.doi.org/10.1109/AIM.2001.936427
http://dx.doi.org/10.1109/TE.2006.873975
http://www.ro.feri.uni-mb.si/~martin/predst/caita.pdf
http://www.ro.feri.uni-mb.si/~martin/predst/caita.pdf
http://dx.doi.org/10.1109/ISIE.1999.801802
http://json.org/

VITA

Nhat Dong Nguyen

Candidate for the Degree of

Master of Science

Thesis: IGEMS - RESOURCE-ORIENTED SYSTEM FOR TELEROBOTICS

TESTBEDS

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December, 2011.

Completed the requirements for the Bachelor of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in 2009.

ADVISER’S APPROVAL: DR. JOHNSON THOMAS

Name: Nhat Dong Nguyen Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: IGEMS - RESOURCE-ORIENTED SYSTEM FOR TELEROBOTICS

TESTBEDS

Pages in Study: 51 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: system design with empirical methodology.

Findings and Conclusions:

Although robotics is currently a very popular and interesting research area, there still

exist two main problems of finance and technology that create barriers for roboticists and

computer scientists to have access to sufficient robotic resources to conduct their

experiments. In this thesis, we design and create a Resource-Oriented System for

Telerobotics Testbeds which allow scientists to connect and use remote robotic resources

from other institutions where they may be available. This will help solve the financial

problem for small education institutions with a small budget. Besides, the system

provides the attached resources as Web Services which can be connected and consumed

by diverse technologies and platforms. This overcomes the second big problem of the

technology barrier. Our system is implemented on a real server. Our Web Services

followed by URIs patterns are very friendly and intuitive to users. The design of URIs

enables our framework to be applied for large-scale experiments with a huge amount of

attached resources.

