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CHAPTER I 
 
 

INTRODUCTION 

 
Modern distributed computing demands not only scalability, as witnessed by  

 
the Internet, but also an unprecedented degree of adaptability to dynamic conditions.  
 
Mobile computing is evidence of this trend. The mobility of network nodes undermines  
 
many of the traditional assumptions of distributed systems. Topology becomes fluid as  
 
hosts move and yet retain the ability to communicate wirelessly. Communication occurs  
 
over a shared media that is not only unreliable, but also largely unpredictable as it  
 
strongly depends on the characteristics of the local environment hosts. Therefore,  
 
applications frequently experience disconnection, which is no longer just a network  
 
accident, but rather, often induced deliberately for long periods of time to save power.  
 
Other modern distributed scenarios raise similar issues in terms of dynamicity: peer- 
 
to-peer networks and sensor networks come to mind. 
 
 

Coping with these demands is a challenging task. In recent years, the publish- 
 
subscribe paradigm has emerged as a promising and effective way to tackle many of  
 
these issues. The implicit and asynchronous communication paradigm that characterizes  
 
publish-subscribe supports a high degree of de-coupling among the components of a  
 
distributed application. In principle, it is possible to add or remove one component  
 
without affecting the others—only the dispatcher, the element in charge of collecting  
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subscriptions and routing messages, needs to be aware of the change. Clearly, this form  
 
of decoupling is desirable in a scenario where the set of available components  
 
undergoes continuous change as in mobile ad hoc networks.  
 
 
  A Mobile Ad Hoc Network (MANET) is a dynamic collection of wireless mobile  
 
devices that is able to communicate and move at the same time through dynamic  
 
wireless links. Neither preexisting infrastructures nor centralized administration  
 
functions; are required thus self-organization and adaptiveness are important properties.  
 
MANETs represent a concrete example of support for pervasive computing.  
 

 

One of the main issues in MANETs is how to provide the application layer with 

suitable communication abstractions for the very dynamic nature of the underlying 

communication network. Content-based publish-subscribe (cb-ps) is a very appealing 

candidate for such dynamic contexts since it offers a flexible many-to-many 

communication pattern that decouples components of a distributed application in time, 

space, and flow. 

 

Content-based publish-subscribe routing is a routing service where by the flow of 

messages from senders to receivers is driven by content of the messages, rather than by 

explicit addresses assigned by senders and attached to the messages. Using a content-

based routing service, receivers declare their interest by means of selection predicates, 
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while senders simply publish messages. The dispatcher service consists of delivering to 

any and all receivers each message that matches the selection predicates declared by 

those receivers. In the content-based routing model message content is structured as a set 

of attribute/value pairs, and a selection predicate is a logical disjunction of conjunction of 

elementary constraints over the values of individual attributes. For example a message 

might have the following content 

[class="E-mail alert". severity=9. device-type="server" alert-type='software failure"]  
 
which would match a selection predicate such as this:  
 
[aIert-type="intrusion" ^ severity>4 v cIass="E-mail alert" ^device-type=” server”] 
 
 

Content based ad Hoc networks can only exists if the nodes demonstrate a 
 

cooperative behavior. However, this is always not true, and there may always exist  
 
malicious nodes that aim to eavesdrop on, corrupt, or disrupt the network traffic. As  
 
routing protocols play a major role in the communication set-up, it is vital that the  
 
protocols have a consistent and accurate performance. A number of such protocols were  
 
thereby developed to secure the routing process. (A comparison of these protocols was  
 
carried out by Pirzada and McDonald [1] and it revealed that all the secure routing  
 
protocols were dependent on a central trust authority for implementing traditional  
 
cryptographic algorithms. All the protocols just gave the assurance of either the presence  
 
of 100% security or its absence. None of these had an intermediate level of security  
 
protection. As authentication is one of the initial requirements of a secure channel, the  
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nodes were required to be in possession of preshared keys or digital certificates. This  
 
requirement of a central trust authority and preconfiguration is neither practical nor  
 
feasible in an ad-hoc network. To distinguish this environment the term “managed ad-hoc  
 
networks” was introduced in which the nodes could be initially configured before the  
 
network was established. This is in contrast to the actual aim of ad-hoc networks, which  
 
targets to establish an improvised network.) We call such a network a “Pure ad-hoc  
 
network”, which has no assumed infrastructure and is created on the fly. We also  
 
introduce the notion of trust in ad-hoc networks rather than inclusion of regular  
 
cryptographic schemes. By computing trust levels from the inherent knowledge present in  
 
the network, the trustworthiness of routes can be computed. The routes computed through  
 
this mechanism may not be secure but certainly have an accurate measure of their  
 
reliability. 
 

 
This thesis is focused on introducing a trust model suitable for Content Based Ad- 

 
hoc networks. Trust Model is developed by listening to incoming and outgoing  
 
messages. Knowledge of how these messages are modified is used to develop trust  
 
tables. For message forwarding these trust tables are used to decide which messages need  
 
to be ignored or forwarded depending on threshold trust levels in the tables, thus  
 
developing a trust mechanism.   
 
 
 
In chapter 2, a literature review describes the background of the thesis area and a detailed  
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description of previous models is given. In chapter 3, a more detailed view of the  
 
proposed architecture, the details about its operation and the security features   
 
implemented are provided. In chapter 4 we validate our approach using simulation and  
 
present the results of simulation. The thesis concludes in chapter 5. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 
 

2.1 Publish-Subscribe Routing Strategies An Overview 
 
 

Distributed applications exploiting publish-subscribe middleware are organized as a  
 
collection of autonomous components, the clients, which interact by publishing messages  
 
and by subscribing to the classes of messages they are interested in. The core component  
 
of the middleware, the dispatcher, is responsible for collecting subscriptions and  
 
forwarding messages from publishers to sub-scribers. This scheme results in a high  
 
degree of decoupling among the communicating parties. These ideas have been recently  
 
popularized by a wealth of systems, each interpreting the publish-subscribe paradigm in  
 
a different way. 
 
 

The first point of differentiation is expressiveness of the subscription language  
 

drawing a line between subject-based and content-based systems. In the first case,  
 
subscriptions contain only the name of a class of messages—usually called subject,  
 
channel, or topic—chosen among a set of predefined classes. Instead, in content-based  
 
systems the selection of a message is determined entirely by the client, which uses  
 
expressions (often called Predicates) that allow sophisticated matching on the message  
 
content 
 

The second point of differentiation is the architecture of the dispatcher, which 
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can be either centralized or distributed. In this middleware, a set of brokers  
 
(see Figure 1) are interconnected in an overlay network and cooperatively route  
 
subscriptions and messages sent by clients connected to them, therefore increasing the  
 
scalability of the system. 
 
 
There are several tree based routing strategies available in the literature. 
 
 

 
 

(a) Message forwarding 
 

 
 
 (b) Subscription forwarding 
 
Figure 1:Public-subscribe routing strategies 
 
 

 The simplest approach is message forwarding in which a published message is  
 
forwarded by a broker to all the others along the dispatching tree fig1a. However,  
 
subscriptions are never propagated beyond the broker receiving them. This broker stores  
 
these subscriptions in a subscription table that is used to determine which clients, if 
 
any, should receive incoming messages. Message forwarding generates high overhead 
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since messages are sent to all brokers regardless of the interests of the clients attached to  
 
them. 
 
 

An alternative strategy, called subscription forwarding fig1b, limits this overhead  
 

by spreading knowledge about subscriptions throughout the system. When a broker  
 
receives a subscription from one of its clients, not only does it store the associated 
 
filter in its subscription table as in message forwarding, but it also forwards it 
 
to all the neighboring brokers. During this propagation, each dispatcher be- 
 
haves as a subscriber with respect to its neighbors. Consequently, each of them 
 
records the predicate (filter) associated with the subscription in its own subscription  
 
table and reforwards it to all its neighboring dispatchers except the one that sent it to. 
 
This process effectively sets up routes for messages through the reverse path 
 
followed by subscriptions. 
 
 

Hierarchical forwarding strikes a balance between the two fore mentioned 
  

strategies by assuming a rooted tree topology. Subscriptions are forwarded towards the  
 
root to establish the routes that published messages follow downstream towards  
 
subscribers. Messages, in fact, are always propagated upstream up to the root, and flow  
 
downstream along the tree only if a matching subscription has been received from the  
 
corresponding sub-tree. 
 
 

In Fig.1 the above strategies are compared by showing the same setting,  
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characterized by a distributed dispatcher composed of 16 brokers. Two of them, namely  
 
S1and S2, have components connected to them (not shown to avoid cluttering the figure)  
 
that subscribed to the same predicate, represented as a black color, while broker S3  
 
received a “gray” subscription. Finally, P broker received a message matching the black  
 
predicate but not the gray one. The path followed by this message is shown through thick,  
 
directed lines, while black and gray arrows represent the content of subscription tables.  
 
More specifically, each broker has a colored arrow oriented towards another broker if it  
 
received the corresponding subscription from that broker. Figure 1(a) shows how  
 
message forwarding incurs in the highest overhead at publishing time, while it does not  
 
require subscriptions to be propagated. Subscription forwarding (Fig. 1(b)) fills the  
 
subscription tables of each broker but offers the best performance at publishing time.  
 
 

Apart from the three strategies above, which are the most common especially in 
  

the presence of content-based subscription languages, other, more complex strategies are  
 
possible, in which brokers are connected in a more complete graph (a complete graph is  
 
a graph in which each pair of graph vertices is connected by an edge) to improve routing  
 
efficiency and increase system availability and fault tolerance. 
 
 
 
2.2. Proximity-Driven Routing: An Overview 
 
 

Message routing based on a distributed set of brokers interconnected in an overlay  
 
dispatching network is hard to implement efficiently in a MANET due to the cost  
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required to cope with the frequent changes in the topology of the physical network.  
 
To succeed in a MANET, and particularly in those including fast moving nodes, a cb-ps  
 
protocol should not require any pre-defined network-wide structure. Starting from this  
 
observation [2]developed a diffusion protocol, dubbed proximity-Driven Routing, whose  
 
general concepts are described in this section. Details are given in the next section 
 
 
2.2.1 Assumptions 
 
 

In our description we assume that the MANET is composed of N mobile nodes,  
 
each running a broker. When necessary, to stress the difference between nodes and  
 
brokers, we will use the notation ni to indicate the i-th mobile node of the network, and bi  
 
to refer to the broker running on that node. 
 

Each broker bi acts as an entry point to the cb-ps dispatching service for every 
 
application running on node ni. When a component running on a node ni wants to receive  
 
some message, it subscribes to bi, which then stores the predicate associated with the  
 
subscription into its subscription table. Similarly, to publish a message, a component  
 
running on a node ni sends it to the broker bi. The protocol does not rely on any network  
 
layer protocol; rather it only assumes the availability of a local broadcast communication  
 
primitive, which allows a node to unreliably send a message to all its one-hop neighbors  
 
via a single transmission. Finally, it assumes that the interests of all the application  
 
components connected with a broker bi can be condensed into a single predicate, which  
 
reflects the content of bi’s subscription table. 

 10



2.2.2 The Protocol 
 

Let now consider how the basic message  forwarding scheme works. Each broker 
  

bi periodically broadcasts a beacon message containing the predicate that summarizes its  
 
own subscription table. A broker bj, which is adjacent with bi, receives this message and  
 
stores the predicate together with the time it received the beacon into its proximity table.  
 
This mechanism allows each broker to determine the time elapsed since it lost contact  
 
with any other broker. This value, which is infinite if the two brokers never came in  
 
contact and zero if they are still adjacent, is the basis to calculate the proximity value(or  
 
simply “proximity”) pji of bj with respect to bi.  
 
 

Each message m carries a destination list: the (estimated) list of brokers interested 
 
in receiving the message, each coupled with the lowest proximity computed by the  
 
brokers that forwarded the message so far. As an example, the destination list of a  
 
message m includes a couple <i, p> if broker bi is known to be interested in receiving the  
 
message (i.e. m matches a subscription issued by some subscriber attached to bi) and p is  
 
the lowest proximity from bi calculated by all the brokers that forwarded m. The message  
 
has also a unique network-wide identifier provided by the source broker, it will be  
 
referred to, with the notation m.id.  

 
 

Suppose now that at time t the broker bi receives a message m for the first time. It 
 
 will resend the message if (i) it is aware of some new broker not mentioned in the  
 
destination list carried by m or (ii) its proximity table holds for some broker bk a  
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proximity lower than that associated to the same broker bk into m’s destination list.  
 
 

Such a condition is in general not sufficient to trigger the actual transmission of 
  

the message. The broker bi, in fact, schedules the transmission of the message after a  
 
delay proportional to Pik (the lowest value is considered if such a condition holds for  
 
more than one broker, see later). If during such a time interval it doesn’t hear the same  
 
message (i.e. a message with the same identifier) again, then the transmission will take  
 
place. Otherwise bi silently drops the message. The rational behind this decision is to  
 
avoid that two adjacent brokers will forward the same message and also to let brokers  
 
closest to some destination to “suppress” transmission of adjacent brokers less close. 

 
 

To clarify this basic mechanism, let us consider Fig. 2, which shows a set of  
 

nodes (the black circles) together with their transmission ranges (the gray circles  
 
surrounding the node). Imagine broker bo publishes a message matching broker b4’s  
 
subscriptions. The message is sent via broadcast and received both by b1 and b2. Assume  
 
that bo and b4 have never came in contact so that the destination table carried by m is  
 
initially empty. Assume that b2 missed p24=5 beacons from b4. The broker b2 schedules  
 
the transmission with some delay proportional to 5. However, b1 is adjacent to b4(i.e.,  
 
P14=0) and immediately sends the message. Broker b2, on receiving the message from b1  
 
aborts the scheduled transmission and silently drops m. Moreover, since the proximity  
 
carried by the message sent by b1 is zero, the broker b3 ignores the message (by  
 
definition zero is the lowest possible proximity). 
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Fig. 2. The basic coordination mechanism. 

 
2.2.3   Protocol Details  
 
Each broker maintains the following data structures: 
 

• A subscription table that holds information about the subscriptions issued by  
 

application components running on the same node. This table is organized as an  
 
array st of pairs <pred, id>, where pred is the predicate carried by a subscription  
 
and id is the identifier of the component that issued the subscription.  

 
• A proximity table organized as an array  pt of triples <id, pred, time>, where id is  
 

the identifier of a broker, pred is the predicate received from that broker, which  
 
summarizes its subscription table, and time is the time when the predicate was  
 
received.  
 

 
Every t seconds each broker bi beacons a summary of the predicates stored into its  Δ

 
subscription table using a broadcast packet. A broker bj that is within the transmission  
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range of bi receives such a beacon and updates its proximity table. If the same predicate  
 
was already received from the same broker, then the entry is refreshed, i.e. the time  
 
associated to the entry is set to the current time. Otherwise a new element is appended to  
 
the table. After a timeout, experimentally set to 10Δ T seconds, entries are deleted from  
 
the table (procedure cleanup in Fig. 3). In other words, information about brokers for  
 
which more than 10 beacons have been missed, are dropped. This reflects the general  
 
intuition, also confirmed by the model provided in the next section, that too large  
 
proximity values are not correlated with the effective distance between brokers.  
 
 

The information stored in the proximity table, together with the fact that the  
 

beacon interval T is known globally, allows each broker bΔ i to calculate the proximity 
 
value pij at time t with respect to any other broker bj as follows: pij is infinite if bj is not  
 
present in bi’s proximity table; otherwise it is a value in the range [0..1] calculated as  
 
the number of bj’s beacons missed by bi divided by 10.  

 
 

Remembering from the previous section that each message carries a unique 
  

identifier and a destination list composed of couples <id, proximity>, we can describe  
 
how message forwarding proceeds. On receiving a message m a broker checks if the  
 
same message, i.e., a message with the same identifier has been received before. If  this is  
 
the case, the message is removed from the list of messages scheduled for trasmission (if  
 
present) and it is dropped without any further processing. If m was never received before  
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then the broker checks if it matches some predicate in its subscription table. If it does,  
 
the broker delivers m to the corresponding subscriber and set the proximity for itself into  
 
m’s destination list to 0. This step will avoid triggering further transmissions aiming at  
 
hitting the broker, as clarified next. Further, the broker determines if it has to re- 
 
forward the message. This happens when m matches at least a predicate advised by a  
 
broker bi such that: (1) bi doesn’t belong to the destination list of the message or (2) the  
 
proximity value for bi computed by the receiving broker according to its proximity table  
 
is strictly 
 
 

 
 
Fig. 3.  An example of message routing 
 
lower than the one carried in the message. 
  
 

In both cases the retransmission of the message m is scheduled after a delay  
 

proportional to the proximity for bi owned by the receiving broker. When more than one 
 
broker exits that satisfies the conditions above, the delay is determined by the lowest  
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proximity.  

 
If none of the above cases hold, the message should be dropped, but to increase 

 
delivery at the price of some more traffic, a new chance is given to the message for being  
 
forwarded. To this end, a message also carries an integer value, called the credit of the  
 
message, which represents the number of times a broker can force the retransmission of  
 
the message despite the fact that the conditions stated above about proximity do not hold.  
 
If such a case occurs, the message is scheduled for transmission with the delay associated  
 
to the maximum possible proximity value, i.e. one. This way, forwarding due to credit,  
 
tends to be cancelled by forwarding due to proximity.  
 
 

Figure 4 portraits an example of message forwarding. The proximity table of a 
 
node is reported close to the node, while messages show the destination list they carry.  
 
For the sake of simplicity instead of storing the absolute time when the node received a  
 
beacon message, the last column of the proximity table stores the proximity value  
 
computed as explained above.  
 
 

Suppose broker S generates a message matching subscriptions on brokers D, F, 
 
and G. S is only aware of the subscriptions at D, for which it holds a proximity of 0.9. It  
 
then sends the message with destination list D : 0.9.On receiving the message, broker A  
 
decides to forward it. Indeed, it knows another broker, broker G, which is interested in  
 
the message. Moreover, the proximity for D calculated by A is lower than 0.9. Brokers B  
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and C both receive the message sent by A. Broker B re-forwards the message since it  
 
calculates a proximity 0.0 for D. Similarly, broker C re-forwards the message because it  
 
is aware of  new broker F and also has a proximity for G (0.4) lower than that included  
 
into the destination list of the message (0.6). Finally, broker E re-forwards the message  
 
since it calculates two proximity values for F and G lower than those included in the  
 
message against 0.5 and 0.4, respectively.   
 

The execution and survival of content based ad-hoc networks is solely dependent 
  

upon the cooperation and trusting nature of its nodes. However, this naive dependency on  
 
intermediate nodes makes Content based ad-hoc network vulnerable to passive and  
 
active attacks by malicious nodes. We next look at security in secure ad-hoc networks . 
 
 
2.3  Trust and Security 
 

Trust and security are two tightly interdependent concepts that cannot be  
 

desegregated. Trust establishment in ad-hoc wireless networks is still an open and  
 
challenging field. Ad-hoc networks are based on naive “trust-your-neighbour”  
 
relationships. These relationships originate, develop and expire on the fly and have  
 
usually short life spans. As the overall environment in such a network is cooperative by  
 
default, these trust relationships are extremely susceptible to attacks. For a number of  
 
reasons, including better service, selfishness, monetary benefits or malicious intent, some  
 
nodes can easily mould these relationships to extract desired goals. To overcome these  
 
problems, trust has been established in ad-hoc networks using a number of assumptions  
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including pre-configuration of nodes with secret keys, or presence of an omnipresent  
 
central trust authority. In our opinion, these assumptions are against the very nature of ad- 
 
hoc networks, which are supposed to be improvised and spontaneous. We categorize  
 
these networks into “managed ad-hoc networks” and  “pure ad-hoc networks”.  
 

According to Mayer, Davis and Schoorman [10] trust is defined as “the 
 
willingness of a party to be vulnerable to the actions of another party based on the  
 
expectation that the other party will perform a particular action important to the trustor,  
 
irrespective of the ability to monitor or control the party”. Jøsang [11] defines trust in  
 
a passionate entity (human) as the belief that it will behave without malicious intent and  
 
trust in a rational entity (system) as the belief that it will resist malicious manipulation.  
 
Trust in entities is based on the fact that the trusted entity will not act maliciously in a  
 
particular situation. As no one can ever be absolutely sure of this fact, trust is solely  
 
dependent on the belief  of the trustor. The derivation of trust may be due to direct trust  
 
based on previous similar experiences with the same party, or in-direct trust based on  
 
recommendations from other trusted parties. Trust is also time dependent, it grows and  
 
decays over a period of time. A pure ad-hoc network closely resembles this human  
 
behavior model, where a number of  people/nodes that have never met each other, are  
 
able to communicate with each other based on mutual trust levels developed over a  
 
period of time. Trust cannot be treated as a property of trusted systems but rather it is an  
 
assessment based on experience that is shared through networks of people (Denning[12]).  
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As in real life, trust levels are determined by the particular actions that the trusted 

 
party can perform for the trustee. Similarly trust levels can be computed based on the  
 
effort that one node is willing to expend for another node. This effort can be in terms of  
 
battery consumption, packets forwarded or dropped or any other such parameter that  
 
helps to establish a mutual trust level. A trust model that is based on experience alone  
 
may not be secluded from attacks in an ad-hoc network but it can identify routes with a  
 
certain measure of confidence 
 
 
2.3.1 Specific Ad hoc Network attacks 
 
2.3.1.1 Attacks on Wireless Networks 
 
 

Two kinds of attacks can be launched against ad-hoc networks  [13], passive and  
 
active. In passive attacks the attacker does not disturb the routing protocol. It only  
 
eavesdrops on the routing traffic and endeavors to extract valuable information like node  
 
hierarchy and network topology . In active attacks, the aggressor node has to expend  
 
some of its energy in order to carry out the attack. Nodes that perform active attacks with  
 
the aim of disrupting other nodes are considered to be malicious, In active attacks,  
 
malicious nodes can disrupt the correct functioning of a routing protocol by modifying  
 
routing information, by fabricating false routing information or by impersonating nodes. 
 
 
2.3.1.2 Attacks Using Modification 
 
 

Attacks using modification are generally targeted against the integrity of routing  
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computations. By modifying routing information an attacker can cause network traffic to  
 
be dropped, redirected to a different destination, or take a longer route to the destination  
 
increasing communication delays. An example is for an attacker to send fake routing  
 
packets to generate a routing loop, causing packets to pass through nodes in a cycle  
 
without getting to their actual destinations, consuming energy and bandwidth. Similarly,  
 
by sending forged routing packets to other nodes, all traffic can be diverted to the attacker  
 
or to some other node. The idea is to create a black hole by routing all packets to the  
 
attacker and then discarding it. As an extension to the black hole, an attacker could build  
 
a grey hole, in which it intentionally drops some packets but not others, for example,  
 
forwarding routing packets but not data packets 
 
 
2.3.1.3 Attacks Using Fabrication  
 
 

Fabrication attacks are performed by generating false routing messages. These  
 
attacks are difficult to identify as they are received as legitimate routing packets. The  
 
rushing attack  is a typical example of malicious attacks using fabrication. This attack is  
 
carried out against on-demand routing protocols that hold back duplicate packets at every  
 
node. An attacker rapidly spreads routing messages all through the network, suppressing  
 
legitimate routing messages when nodes discard them as duplicate copies. 
 
 
2.3.1.4 Attacks Using Impersonation  

 
A malicious node can initiate many attacks in a network by masquerading as  
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another node (spoofing). Spoofing occurs when a malicious node misrepresents its  
 
identity by altering its MAC or IP address in order to alter the vision of the network  
 
topology that a benign node can gather. 
 
2.3.2  Trust Model 
 
 

Our trust model is an adaptation of the trust model by Marsh [9] configured            
 

for use in pure ad-hoc networks. Marsh’s model computes situational trust in agents  
 
based upon the general trust in the trustor and on the importance and utility of the  
 
situation in which an agent finds itself. General trust is basically the trust that one entity  
 
assigns another entity based upon all previous transactions in all situations. Utility is  
 
considered similar to knowledge so that an agent can weigh up the costs and benefits that  
 
a particular situation holds. Importance caters for the significance of a particular situation  
 
to the trustor based upon time. In order to reduce the number of variables in our model,  
 
they merge the utility and importance of a situation into a single variable called weight,  
 
which in turn increases or decreases with time. In their model they make use of trust  
 
agents that reside on network nodes. Each agent operates independently and maintains its  
 
individual perspective of the trust hierarchy. An agent gathers data from events in all  
 
states, filters it, assigns weights to each event and computes different trust levels based  
 
upon them. Each trust agent basically performs the following three functions: Trust  
 
Derivation, Quantification, and Computation. 
 
 

 21



 

2.3.3.1   Trust Derivation  

  
Trust is computed based upon the information that one node can 

 
gather about the other nodes in passive mode i.e. without requiring any special  
 
interrogation packets. Vital information regarding other nodes can be gathered by  
 
analyzing the received, forwarded and overheard packets. Possible events that can be  
 
recorded in passive mode are the measure and accuracy of:  
 

• Frames received  
 
• Data packets forwarded 

 
• Control packets forwarded  

 
• Data packets received  

 
• Control packets received  

 
• Streams established  

 
• Data forwarded  
 
• Data received 
 

the information from these events is classified into one or more trust categories. Trust  
 
categories signify the specific aspect of trust that is relevant to a particular relationship  
 
and are used to compute trust in other nodes in specific situations. For example, they  
 
might trust a particular node for the category “data forwarding” but not for the category  
 
of  “accurate routes”. 
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2.3.3.2 Trust Quantification  

 
Discrete representation of trust is not sufficient to clearly represent trust that  

 
normally has a continuous trend. Secure routing protocols represent trust levels by either  
 
the presence of security or its absence. Trust in ad-hoc networks is always in a fluid state  
 
and is continuously changing due to the mobility of the nodes. As the period of   
 
interaction with any node may be brief, it is imperative that the trust be represented as a  
 
continual range to differentiate between nodes with comparable trust levels. In our trust  
 
model we represent trust from –1 to +1 signifying a continuous range from complete  
 
distrust to complete trust. 
 
 
2.3.3.3 Trust Computation  
 
 

Trust computation involves an assignment of weights (utility/importance factor)  
 

to the events that were monitored and quantified. The assignment is totally dependent on  
 
the type of application demanding the trust level and varies with state and time. All nodes  
 
dynamically assign these weights based upon their own criteria and circumstances. These  
 
weights have a continuous range from 0 to +1 representing the significance of a particular  

 
event from unimportant to most important. The trust values for all the events from a node  
 
can then be combined using individual weights to determine the aggregate trust level for  
 
another node. Marsh [9] defines this trust T, in node y, by node x, as Tx(y) and is  
 
given by the following equation:  
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Where Wx(i) is the weight of the i

th 
trust category to x and Tx(i) is the situational trust of x 

 
 in the i

th 
trust category. The total number of trust categories n is dependent on the  

 
protocol and scenario to which the trust model is being applied.  
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CHAPTER III 
 
 

PROPOSED APPROACH 
 

Security problems in content–based routing 
 

The security of secure Content-based routing has not been investigated by anyone  
 
 as far as we are aware. Content based routing is susceptible to a number of malicious  
 
attacks. In this thesis we identify a number of these attacks.  
 
• Predicate modification on message from subscriber: Any node may subscribe to the  
 

message defined by a particular predicate. The predicate is forwarded to neighboring  
 
brokers which in turn forward the predicate to other brokers in the network. Finally  
 
it reaches the subscriber which takes it and changes the predicate, so that other   
 
subscribing nodes down the path never get the original message to which it has  
 
subscribed. 
 

• Predicate modification on message from Intermediate broker: Any node may  
 
subscribe to the message defined by a particular predicate. The predicate is forwarded  
 
to neighboring brokers which in turn forward the predicate to other brokers in the  
 
network. We can assume a simple setup where there is a broker at each node. An  
 
intermediate broker on node may alter the predicate so that the subscribing node  
 
never gets the original subscribing message. 
 

• Proximity modification on the message from subscriber: A subscriber who gets  
 

a message changes the proximity values of destination nodes. This results in  
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messages being diverted to a different path i.e. taking a longer route. 
 
 

• Proximity modification on the message from intermediate node: An intermediate  
 

node may change the proximity value of destination nodes in the message. This  
 
results in messages being diverted to a different path. 
 

 
• Proximity modification on the message from publisher: A node may add a proximity  
 

value to itself in the destination list, so that it creates a loop and overhead in the  
 

system. 
 
 

3.1 Trust derivation 
 

We assume a node is able to overhear the communications of the nodes within its  
 
signal range. From this information it can derive if the nodes it overhears are behaving as  
 
expected. In figure 4 below, node N1 forwards the message which is received by N3  
 
and all its neighboring nodes. When N3  re forwards the message to all the neighboring  
 
nodes, N1 if still in neighborhood picks it up. It can therefore compare the outgoing  
 
messages and incoming messages. For example, if the predicate on the outgoing message  
 
is different from that on the incoming message from N3, then N3 is not behaving as  
 
expected. 
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N1 

N2 

N3 

N4 

 
Fig. 4. The basic trust mechanism 
 
Node N1 maintains tables for each node it has interacted with 
 
For example N1 maintains the following table about N3, N2, N4
 
Predicate modification MS from subscribers 
 
Nodes     No of times modified No of times not modified 
  N2               MS-T    MS-NT 
  N3          MS-T     MS-NT 
 N4          MS-T    MS-NT 

 

 
 
Predicate modification MI from Intermediate broker 
 
Nodes     No of times modified No of times not modified 
  N2               MI-T    MI-NT 
  N3          MI-T    MI-NT 
  N4          MI-T    MI-NT 
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Proximity modification MPP from publisher 
 
Nodes     No of times modified No of times not modified 
  N2               MPP-T    MPP-NT 
 N3          MPP-T    MPP-NT 
 N4          MPP-T    MPP-NT 

 

 
Proximity modification MPS  from subscriber 
 
Nodes     No of times modified No of times not modified 
   N2               MPS-T    MPS-NT 
  N3           MPS-T    MPS-NT 
  N4          MPS-T    MPS-NT 

 

 
Proximity modification MPI from Intermediate node 
 
Nodes     No of times modified No of times not modified 
  N2               MPI-T    MPI-NT 
  N3          MPI-T    MPI-NT 
  N4          MPI-T    MPI-NT 

 
 
 

3.2 Trust Quantification 
 
 
Trust Category Ms 
  

 
TSNTS

TSNTS
S MM

MMM
−−

−−

+
−

=   for  MS-T + MS-NT ≠ 0 else  M = 0 

 
T3 (MS) = W (MS) * MS
 

Trust Category MI 

 

 
TINTI

TINTI
I

MM
MMM

−−

−−

+
−

=   for  MI-T + MI-NT  != 0 else M = 0 
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 T3 (MI) = W (MI) * MI  
 
Trust Category MPP 

 

 MPP =  
TPPNTPP

TPPNTPP

MM
MM

−−

−−

+
−     for MPP-T  + MPP-NT  != 0 else M = 0 

  
 T3 (MPP) = W (MPP) * MPP
 
Trust Category MPS
  

MPS =  
TPSNTPS

TPSNTPS

MM
MM

−−

−−

+
−   for MPS-T  + MPS-NT  != 0 else M = 0  

 
 T3 (MPS) = W (MPS) * MPS
 
Trust Category MPI  

 

MPI = 
TPINTPI

TPINTPI

MM
MM

−−

−−

+
−

 for MPI-T  + MPI-NT  != 0 else M = 0 

 
 T3 (MPI) = W (MPI) * MPI
 
 
          
3.3 Trust Computation 
 
 
The situational trust values from all trust categories (MS, MP, MI, MPS, MPP, MPI) are  
 
then combined according to assigned weights, to determine an aggregate trust level for a  
 
particular node. Trust T in node N3 by node N1 is represented as TN1 (N3) and given by  
 
the following equation: 
 
TN1 (N3) = T3 (MS) + T3 (MI)  + T3 (MPS) +T3 (MPP) + T3 (MPI)  

  
 
The aggregate trust table is shown in Table 6.4. 
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Node        Pred(S)     Pred(I)      Prox(PP) Prox(PS)     Prox(PI)        
  

N3     T3 (MS)      T3 (MI)     T3 (MPP)       T3 (MPS)     T3 (MPI)        
 
 
Table 6.4 : Aggregate Trust Table 
 
 
3.4 Accusation messages 
 

 
Node N1 is able to form a trust value on N3 only when it is within communication   

 
range of N3. Assume N1 finds N3 to be untrustworthy. Other nodes besides N1 may have  
 
also had experience of N3 and found it to be untrustworthy as well. Node N1 is not aware  
 
of the experiences of the other nodes regarding N3 and similarly these other nodes are not  
 
aware of the experiences of node N1 regarding N3. Therefore, there is a need for nodes to  
 
exchange information about their experiences about other nodes. However, if there is a  
 
continuous exchange of such information regularly, the overheads in the network will be  
 
substantial. We therefore create 2 levels of trust. 
 
• Node is behaving in a trustworthy manner. There is no exchange of trust information  
 

with other nodes 
 
• Node is determined to be untrustworthy. An accusation message is flooded in the  
 

network and no further communications take place with the accused node. 
 
 
 
3.5 Routing  
 
 

Once a node has been accused, it should no longer be in the path. In other words,  
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the proximity measure should be only between nodes that are trustworthy. Each node  
 
keeps track of the nodes that have been accused. It therefore determines to route only  
 
between nodes that are trustworthy.  
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CHAPTER IV 
 
 

IMPLEMENTATION 
 

4.1 Secure Content Based Routing Protocol 
 
We now develop the proposed trust mechanism with a basic message forwarding schema 

in content based routing. Suppose at time t broker bi receives a message. It will resend the 

message 

i. if  the forwarding node has trust values below a threshold level in the trust 

table and node is not in malicious node list. 

ii. if deemed trustable, the broker bi then checks if the forwarding node is the 

publisher and if it has modified proximity.  

iii. if deemed trustable, broker bi checks if forwarding node is either subscriber or 

intermediate node and has modified predicate or has increased proximities.  

If condition (i) is false it would not resend any messages from that forwarding node. 

If conditions (ii) or (iii) are true the broker bi does trust calculations and updates its 

trust table and malicious node list identifying it as malicious and does not forward the 

message. If conditions (ii) and (iii) are false, broker bi updates its trust table, goes into 

regular content based routing and before re forwarding messages it puts the message 

into the trust queue along with the proximity table at that instance. 
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  When ever node N1 is checks for predicate and proximity modifications by 

subscriber and intermediate nodes, node N1 sees if it is the same message that it had 

previously sent that it is now receiving back. This is done by checking the trust queue for 

matching message ids and for matching forwarding node id in the proximity table of trust 

queue. If a node N1 is malicious every message it receives is modified randomly and re 

forwarded.  

 

4.1.1 Computation Secure Content Based Routing Protocol Algorithm 
 
Message Received 
{ 
     // Malicious node randomly modified predicate or proximity 
     if ( Node type = malicious ) 
     { 
          if ( nodetype = predicate modifier ) 
         { 
      if ( random modification ) 
       { 
        predicate = changed predicate; 
               reforward; 
       } 
       else 

      { 
     reforward 
       } 

          } 
         if ( nodetype = proximity modifier ) 
         { 

if ( random modification ) 
{ 
   // This 0.1 is some number  that we picked to increase the proximity value  

              message.dest list.proximity = message.destlist[2].proximity + 0.1; 
                reforward; 
          } 
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 else 
            { 
      reforward; 

} 
 
      

if ( forwarding_node_id ∈ trust table ) and (forwarding_node_id .trust values <                              
threshold trust value) and ( forwarding node id ∈ malicious list) 

      return 
        else 
   {  //Proximity modification on message from publisher  
      if  forwarding nodeid . type = publisher 
     { 

        If  ( message . destList . id = forwarding nodeid )  and                           
(message . destlist . id . proximity > 0) 

        { 
            Trustable.Update ( modified )  
             Calculate Final Trustable() 
      Malicious list .Update 
                break 
         } 
        else 
         { 
               Trustable . Update ( not modified ); 
         } 
        } 
 
               if  (message . mid = trust queue . mid) and ( forwarding nodeid  ∈ trust queue .    

proximity table) 
       {    
                            //Predicate modification by subscriber and intermediate node 
               if (message . pred  == trust queue message.pred) 
                { 
          if ( forwarding nodeid = subscriber ) 
              { 
                  Trust table . Update (not modified) 
              }              
              if ( forwarding nodeid = intermediate ) 
             { 
                  Trust table . Update (not modified) 
              }   
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        else 
          { 
             if ( forwarding nodeid = subscriber ) 
             { 
                 Trust table . Update ( modified ) 
                  Calculate Final Trustable () 
                   Malicious List . Update 
                  return 
             }              
              if ( forwarding nodeid = intermediate ) 
             { 
                   Trust table . Update ( modified ) 
                  Calculate Final Trustable () 
                  Malicious List . Update 
                  return 
              }   
         } 
          // Proximity modification by subscriber and intermediate node 
            if( message.dest list .proximities <= trust queue destlist.proximities) 
            { 
               if (forwarding node id = subscriber) 
               { 
                  Trust table . Update ( not modified ) 
  
               }              
               if ( forwarding nodeid = intermediate ) 
               { 
                      Trust table .Update (not modified)  
                }   
             else 
             { 
                if ( forwarding nodeid = subscriber ) 
               { 
       Trust table . Update (modified) 
                  Calculate Final Trustable () 
                  Malicious List .Update 
                  break 
                }              
                if ( forwarding nodeid = intermediate ) 
               { 
                   Trust table . Update (modified) 
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                   Calculate Final Trustable () 
                   Malicious List .Update 
                   break 
               }   
     } 
     } 
else 
{ 
    Content based message forwarding 
    If( message queue . add (message)) 
    { 
         trust queue . add (message) 
         trust queue . add (proximity table) 
    } 
} 
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4.2 Simulations results 
 
The simulation has the simulation parameters 
 
No of Nodes           - 50 
Field Area                   - 900 * 200       
Maximum speed         - 1 
Minimum Speed         - 20 
No of publishers         - 2 
Publishing rate            - 10ms 
No of subscribers       - 5  
ΔT                              - 1000ms  
Message Credits          - 0 
Threshold                    - 1.0 
 
Mobility model 
 
All nodes are assigned random x and y coordinates and random value with increment or  
 
decrement is chosen at the start of the simulation. Once a node hits an end coordinate,  
 
which are 0, 200, or 900, the node will move in opposite direction in which it is moving .  
 
Depending on which coordinate hits end coordinate x or y is either incremented or  
 
decremented at different speeds thus making the nodes move.  
 
 
Mobility model Algorithm 
 
nodeinfo.x += nodeinfo.xMove; //move the x node by random value(value could be + or-) 
nodeinfo.y += nodeinfo.yMove; //move the y node by random value(value could be + or-)  
 
if(nodeinfo.x < 0.0D || nodeinfo.x > worldXSize) check to see if the x boundaries are 
touched 
{ 
      nodeinfo.xMove = nodeinfo.xMove * -1D;  //node will move in the opposite direction          
      in which it is moving                                                                                                           
      nodeinfo.x += nodeinfo.xMove;  //increase the node value by some move factor 
      nodeinfo.x += nodeinfo.xMove;  // increase it again to so that we get some angle of              
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      movement 
 } 
 if (nodeinfo.y < 0.0D || nodeinfo.y > worldYSize) //similarly do this for the y cordintes 
as well 
{  
       nodeinfo.yMove = nodeinfo.yMove * -1D; //node will move in the opposite  
       direction in which it was moving         
       nodeinfo.y += nodeinfo.yMove;  //increase the node value by some move factor 
       nodeinfo.y += nodeinfo.yMove; //increase it again to so that we get some angle of  
       movement 
   } 
 
 
All graphs are an average of 6 simulations 
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          Figure 5: 10% of nodes malicious all attacks 
 
We included the following types of attacks in our simulations: 
 
• Predicate modification – in our simulation  this was achieved by modifying the  
  
      predicate of  publisher, subscriber and intermediate node 
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• Proximity modification – in our simulation this was achieved by modifying proximity  

 
       value of  subscriber and intermediate node. 
 
 
In the graphs below the no of messages is the total number of communication messages  
 
excluding beacon signals. These communication messages are signals passed from node  
 
to node to forward the message. 
  
From figure 5 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All the malicious nodes are detected within 1200   
 
messages. Our approach therefore is very effective as it detects all the malicious nodes  
 
over time, but the proposed approach also has a high number of false positives. This is an  
 
area that needs future research. However once all malicious nodes are detected there are  
 
no more false accusations. Nodes 1,2,4,5,8 are true malicious nodes. The others are  
 
assumed to be good nodes, although detected to be bad. 
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 Figure 6: 4% of nodes malicious all attacks 
 
We included the following types of attacks in our simulations: 
 
• Predicate modification – in our simulation  this was achieved by modifying the  
  
      predicate of  publisher, subscriber and intermediate node 
 
• Proximity modification – in our simulation this was achieved by modifying proximity  

 
       value of  subscriber and intermediate node. 
 
  
From figure  6 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All the malicious nodes are detected within 900 messages.  
 
It is interesting to note that all malicious nodes were detected in equal intervals. This may  
 
be because malicious nodes were farther apart. However we do have false positives. This  
 
is are that needs future research. Our approach therefore is very effective as it detects all  
 
the malicious nodes over time. However once all malicious nodes are detected there are  
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no more false accusations. Nodes 1,3 are true malicious nodes. The others are assumed to  
 
be good nodes, although detected to be bad. 
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       Figure 7: 4% of malicious nodes detected with publisher modification 
 
 
Publisher modification attack are implemented by introducing malicious publishers into  
 
the simulation.  
 
From figure 7 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All malicious publishers are detected with in 200 messages.  
 
We do not have false positives in this case because there is no need for messages to go  
 
out and be returned to identify; the message being transmitted is enough to identify  
 
a malicious publisher. This is therefore quick and efficient. Here the graph is constant,  
 
because once a malicious publisher comes into contact with any node it is immediately  
 
identified.  
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 Figure 8: 10% of malicious nodes detected with publisher modification  
 
 
Publisher modification attack are implemented by introducing malicious publishers into  
 
the Simulation.  
 
From figure 8 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All malicious publishers are detected with in 200 messages.  
 
We do not have false positives in this case because there is no need for messages to go    
 
out and be returned from to identify, just going out is enough to identify malicious  
 
publisher. This is therefore quick and efficient. Here graph is constant because once  
 
malicious publisher comes in contact with any node it is immediately identified.  
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 Figure 9: 4% of malicious nodes detected with all predicate modification 
 

 
Predicate modification attack are implemented by introducing malicious subscribers and  
 
intermediate nodes, which modify predicate into the Simulation.  

 
From figure  9 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All the malicious nodes are detected with-in 700  
 
messages. It is interesting to note that there is a sudden increase in the rate of malicious  
 
node detection at 200 to 300 and 600 to 700 messages range. This may be because  
 
a publisher is in the vicinity of many malicious and non malicious nodes, and there may  
 
be therefore be more false accusations during that time. However the number of false  
 
positives is surprisingly large. This issue is addressed later in this chapter. Although our  
 
approach is very effective as it detects all the malicious nodes over time, it also has a high  
 
number of  false positives for predicate modifications. This is an area that needs future  
 
research. 
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 Figure 10: 10% of malicious nodes detected with all predicate modification 

 
 
Predicate modification attack are implemented by introducing malicious subscribers and  
 
intermediate nodes, which modify predicate into the Simulation.  
 
From figure 10. 1f we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All the malicious nodes are detected with in 1400  
 
messages. It is interesting to note that all nodes are detected in about equal intervals. This  
 
may be because malicious and non-malicious nodes are evenly distributed in the field ,  
 
However the number of false positives is surprisingly large. This issue is addressed later  
 
in this chapter. Although our approach is very effective as it detects all the malicious  
 
nodes over time, it also has a high number of  false positives for specifically predicate  
 
modifications. This is an area that needs future research 
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Figure 11: 4% of malicious nodes detected with proximity modification      
 

 
Proximity modification attack are implemented by introducing malicious subscribers and  
 
intermediate nodes, which modify proximity into the Simulation.  
 
From figure 11 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. All the malicious nodes are detected within 700 messages.  
 
It is interesting to note that unlike other graphs nodes are identified in equal intervals.  
 
This may be because a publisher was in the vicinity of the first malicious node around  
 
300 messages and took some time for it to travel and get the to vicinity of another  
 
malicious node. However, we rarely have false positives in proximity modifications. This  
 
issue is addressed later in this chapter. Our approach therefore is very effective as it  
 
detects all the malicious nodes over time. Moreover, but the proposed approach is  
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efficient because once all malicious nodes are detected, there are no more false  
 
accusations.   
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Figure 12: 10% of malicious nodes detected with proximity modification 
 

 
Proximity modification attack are implemented by introducing malicious subscribers and  
 
intermediate nodes, which modify proximity into the Simulation.  

 
From figure 12 we can see that as the number of messages increase over time, more  
 
malicious nodes are detected. Most of the malicious nodes are detected within 400  
 
messages. It is interesting to note that all malicious nodes were detected with in a span of  
 
very few messages. This may be because a publisher was in the vicinity of malicious  
 
nodes publishing a lot of messages and lot of message exchanges took place. However  
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we rarely have false positives in proximity modifications. This issue is addressed later in  
 
this chapter. Our approach therefore is very effective as it detects all the malicious nodes  
 
over time, Moreover, the proposed approach is efficient because once all malicious nodes  
 
are detected and there are no more false accusations .  
 
 
4.2 Trust Calculations 
 
In this section final trust table is built by calculations based on simulation results. 
 

Predicate modification MS from subscribers  

Nodes          No of times modified  No of times not modified 

  N2                    1   9 

  N3          0    20 

  N4                  1   0 

  

MI = M S-NT – M S-T / M S-NT + M S-T for M S-T + M S-NT = 0   

else  M = 0 

 T2 (MS) = 1 *9-1/9+1 = 0.8 

 T3 (MS) = 1 *20-0 / 20+0 = 1.0 

 T4 (MS) = 1 * 0-1 / 0+1 = -1.0 

 

Proximity modification MPS from subscribers  

Nodes       No of times modified    No of times not modified 
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  N2                       0     20 

  N3                  1       9 

  N4                   0      1 

 MPS= M PS-NT – M PS-T / M PS-NT + M PS-T for M PS-T + M PS-NT = 0 

else  M = 0 

T2 (MPS) = 1 *20-0 / 20+0 = 1.0 

T3 (MPS) = 1 *9-1 / 9+1 = 0.8 

T4 (MPS) = 1 *1-0 / 1+0 = 1.0 

 

Predicate modification MI from Intermediate Node  

Nodes      No of times modified     No of times not modified 

  N5                   1     8 

  N6            0      20 

  N7                     1     0 

 

 MI = M I-NT – M I-T / M I-NT+ M I-T  for M I-T + M I-NT = 0 else  M = 0 

T5 (MI) = 1 * 8-1/8+1 = 0.77 

T6 (MI) = 1 * 20-0/20+0 =1.0 

T7 (MI) = 1 * 0-1/0+1 = -1.0 
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Proximity Modification MPI from Intermediate Node 

Nodes      No of times modified  No of times not modified 

  N5                    0     20 

  N6           1    9 

  N7                     0    1 

 

MPI = M PI-NT  - M PI-T / M PI-NT + M PI-T  for M PI-T  + M PI-NT  != 0 else M =0 T5 (MPI) = 1 

* 20-0/20+0 = 1 

T6 (MPI) = 1 * 9-1/9+1 = 0.8 

T6 (MPI) = 1 * 1-0/1+0 = 1 

 

Proximity Modification MPP from Publisher 

     Nodes      No of times modified          No of times not modified 

       N8                  1    5 

       N9             0    9 

       N10            4    0 

MPP =  M PP-NT - M PP-T / M PP-NT + M PP-T  for M PP-T + M PP-NT != 0 else M=0 

T8 (MPP) = 1 * 5-1 / 5+1  =  0.66 

T9 (MPP) = 1 * 9-0 / 9+0  =  1.0 

T10 (MPP) = 1 * 0-4 / 0+ 4  =  -1.0 
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TRUST CALCULATIONS 

N2 =  (0.8 +1) / 2 = 0.9 

N3 =  (1 +0.8) / 2 = 0.9 

N4 =  (-1 +1) = 0 

N5 =  (0.77 +1) / 2 = 0.88 

N6 =  (1 +0.8) / 2 = 0.9 

N7 =  (-1 +1) = 0.0 

N8 =  0.6  

N9  =  1 

N10 =  -1 

FINAL TRUST TABLE 

Nodes        No of times modified  

  N2                     0.9     

  N3                 0.9     

  N4                 0.0 

  N5                     0.88     

  N6                 0.9     

  N7                 0.0  

  N8                     0.6     

  N9                 1.0   

  N10                -1.0 
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4.4 Reason For False Accusations: 

Predicate and Proximity modification  

• Node A was in the proximity of Node B. Node B is a fast moving node and therefore, 

within 10 beacon signals it picks up a modified predicate message from some 

malicious node and gives it to node A. Node A has sent the same message to all its 

neighbors and thought that B also got it, modified it and sent it back to it, hence it 

thinks Node B is malicious even though it is not. 

• Node A was in proximity of Node B. Node B is fast moving node so with in 10 becon 

signals it goes and picks up a modified proximity message from some malicious node 

and gives it to node A. which apparently sent the same message to all its neighbors 

with at least one node having lower proximity and thought that B also got it, modified 

it and sent it back to it, so thinks Node B is malicious even though it is not. 
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CHAPTER V 
 
 

CONCLUSION 

 

We presented in this thesis an approach for establishing and managing trust in ad-

hoc networks. This is not another type of hard-security cryptographic or certification 

mechanism. Instead it aims at building confidence measures regarding trustworthiness of 

nodes that are dynamically computed and modified. In ad-hoc networks where doubt and 

uncertainty are inherent, our trust model creates and maintains trust levels based on 

incoming and outgoing message mechanism. Cryptographic techniques may be applied 

on top of our approach to improve the security of the system. However, encrypting each 

message is computationally expensive and can drain the energy of a node On the other 

hand, the proposed approach uses simple computations and the overhead is therefore 

minimal. The proposed approach establishes relative levels of trustworthiness within 

nodes. We believe that our model will be most suited to pure ad-hoc networks where 

there is no trust infrastructure and the trust relationships are less formal, temporary or 

short-term. The main findings of our work are all nodes, which are malicious, are 

identified over time; however there are a high number of false positives for predicate 

modifications. 
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The proposed approach needs to be extended to reduce the number of false positives. The 

approach can also be extended to detect other potential modifications that can be done by 

a malicious node 
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