
A METHOD OF ACCELERATING

K-MEANS BY DIRECTED PERTURBATION

 OF THE CODEVECTORS

By

SUMAKWEL MURALLA

Bachelor of Science in Civil Engineering

University of the Philippines

Diliman, Quezon City

Philippines

1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2006

A METHOD OF ACCELERATING

K-MEANS BY DIRECTED PERTURBATION

OF THE CODEVECTORS

Thesis Approved:

 Douglas R. Heisterkamp
Thesis Adviser

 John P. Chandler

 H. K. Dai

A. Gordon Emslie
Dean of the Graduate College

 ii

ACKNOWLEDGMENTS

 I would like to express my heartfelt appreciation to my committee members for their

guidance in the preparation of this thesis. A million thanks go to my adviser and

chairman of the committee, Dr. Douglas R. Heisterkamp. His expertise, insight and

friendship in guiding me through the whole process were invaluable. Doug, I will always

owe you a debt of gratitude for your help and concern. My appreciation goes also to my

committee members, Dr. John P. Chandler and Dr. H. K. Dai, for their comments and

time they have spent in the review of this document.

 To my friends here in Stillwater: the Lucases, especially Ed and mother Aida, the

Tongcos, the Lims, the Tubanas, Arnold, and the Filipino community here in Stillwater,

thank you for your friendship. To my church family: our pastor and his wife, our brethren

in the church, thank you all for your prayers and love.

 To Papa and Mama, my mother-in-law and father-in-law, my brother and sisters,

thank you for your love and prayers. Most of all, special thanks go to my wife Rose and

my son, Joseph. Thanks for being patient with me. You are my inspiration and comfort.

And finally, thanks to God Almighty for His blessings, patience, and infinite love.

 iii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

1.1 BACKGROUND.. 1
1.2 CLUSTERING CLASSIFICATIONS AND DEFINITIONS... 1
1.3 MOTIVATIONS FOR CLUSTERING .. 3
1.4 K-MEANS ALGORITHM .. 4
1.5 NEW K-MEANS ALGORITHM USING PERTURBED CODEVECTORS............................... 6

II. LITERATURE REVIEW .. 8

2.1 K-MEANS AS A VECTOR QUANTIZER.. 8
2.2 GENERAL METHODS OF MAKING K-MEANS EFFICIENT ... 11
2.3 USE OF K-D TREE DATA STRUCTURE ... 12
2.4 ONE ITERATION METHOD... 12
2.5 A METHOD THAT WORKS IN O(C) TIME .. 13
2.6 BETTER CODEBOOK THROUGH PERTUBATION OF THE CODEVECTORS 14

2.6.1 Method of Simulated Annealing... 14
2.6.2 Method of Stochastic Relaxation. .. 15

III. DIRECTED PERTURBATION OF THE
CODEVECTORS... 16

3.1 BACKGROUND.. 16
3.2 EXPERIMENTAL METHODOLOGY.. 20

3.2.1 Preliminaries.. 20
3.2.2 The Perturbed K-Means Program. .. 22
3.2.3 Description of Data.. 22
3.2.4 Initial Cluster Seeds... 23

IV. TESTS AND RESULTS... 24

4.1 THE EXPERIMENT... 24
4.3 DISCUSSION OF RESULTS.. 26
4.4 EQUIVALENCE OF LABELED POINTS. .. 32
4.5 PERCENT DIFFERENCE BETWEEN LABELED POINTS. .. 34

V. CONCLUSIONS AND FUTURE WORK............. 35

5.1 CONCLUSIONS. ... 35

 iv

5.2 FUTURE WORK... 36

REFERENCES.. 37

APPENDICES.. 40

GLOSSARY ... 41
FIGURE A1... 43
FIGURE A2... 44
FIGURE A3... 45
FIGURE A4... 46
FIGURE A5... 47
FIGURE B1 ... 48
FIGURE B2 ... 49
FIGURE B3 ... 50
FIGURE B4 ... 51
FIGURE B5 ... 52
FIGURE C1 ... 53
FIGURE C2 ... 54
FIGURE C3 ... 55
FIGURE C4 ... 56
FIGURE C5 ... 57
FIGURE D1... 58
FIGURE D2... 59
FIGURE D3... 60
FIGURE D4... 61
FIGURE D5... 62
FIGURE E1 ... 63
FIGURE E2 ... 64
FIGURE E3 ... 65
FIGURE E4 ... 66
FIGURE E5 ... 67
FIGURE F1.. 68
FIGURE F2.. 69
FIGURE F3.. 70
FIGURE F4.. 71
FIGURE F5.. 72
FIGURE G1... 73
FIGURE G2... 74
FIGURE G3... 75
FIGURE G4... 76
FIGURE G5... 77
FIGURE H1... 78
FIGURE H2... 79
FIGURE H3... 80
FIGURE H4... 81
FIGURE H5... 82

 v

FIGURE I1 .. 83
FIGURE I2 .. 84
FIGURE I3 .. 85
FIGURE I4 .. 86
FIGURE I5 .. 87
SOURCE CODE FOR THE PERTURBED K-MEANS. .. 88

 vi

LIST OF TABLES

Table 1. Summary of the improvements in performance of various scales and
Kcombinations. Scales in red give maximum improvement. 29

Table 2. Actual values of within-class scatters and corresponding scale and total
iterations after 1 run of the Perturbed K-Means algorithm for data set
SyntheticControl.txt (600 data points, dimension=60 and K=32). 33

LIST OF FIGURES

Figure 1. 2 -dimensional Voronoi cell after nearest neighbor computation 10
Figure 2. Various states of a codevector through its iterations... 17
Figure 3. Possible locations after codevector perturbation... 18
Figure 4. Computed centroids (circles) perturbed to new locations (squares). 19
Figure 5. Scale .. 21
Figure 6. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,

dimension=2 and K=32) after 40 runs. ... 26
Figure 7. Histograms of 2d.txt (Dimension=2, K=32) to complement the boxplots of

Fig.A1 for α = 1, 1.1, 1.2. The frequency (vertical axis) of the histogram represents
the number of occurrences of the iterations on a range of iterations (horizontal axis)
after 40 runs of the Perturbed K-Means algorithm. .. 30

Figure 8. Plot of within class scatter of Perturbed centroid against iteration for
SyntheticControl.txt (600 datapoints, dimension=60 and K=32). 33

 vii

I. Introduction

1.1 Background

Cluster analysis (data clustering) is an important research domain in data mining. It

has lots of applications in the fields of machine learning, pattern recognition, image

analysis and bioinformatics. This area of study is relevant in business, biology,

geography, medicine, and web archive, to name a few, and has become a very hot

research topic today [1, 3]. Clustering algorithms are used to discover structures or

patterns in data in order to gain new knowledge and insight from a database. Clustering

algorithms group data instances into subsets or clusters that have similar features by

using proximity according to some predefined distance measure, usually using Euclidean

metric. This, consequently, builds “concept hierarchies” [25] that are useful in gaining

new knowledge from the database.

1.2 Clustering Classifications and Definitions

 Data clustering are usually classified into two groups namely hierarchical clustering

and partitional clustering. In hierarchical clustering “the data are not partitioned into a

particular number of classes or clusters at a single step. Instead the classification consists

of a series of partitions which may run from a single cluster containing all individuals, to

n clusters each containing a single individual. Hierarchical clustering techniques may be

subdivided into agglomerative methods which proceed by a series of successive fusions

of the n individuals into groups, and divisive methods, which separate the n individuals

 1

successively into finer groupings” [19, p.55]. Hierarchical clustering usually does not

specify a priori the number of clusters. “Prototype-based partitional clustering algorithms

can be divided into two classes: crisp(or hard) clustering where each data point belongs

to only one cluster, and fuzzy clustering where every data point belongs to every cluster to

a certain degree. Fuzzy clustering algorithms can deal with overlapping cluster

boundaries. Partitional algorithms are dynamic, and points can move from one cluster to

another [24, 2].”

Clustering is usually defined as follows: Given a set of N points in a feature space

consisting of d dimensions, find subsets (or clusters) of interesting points. “Techniques of

cluster analysis seek to separate a set of data into its constituent groups or clusters. Ideal

data for such an analysis would yield clusters so obvious that they could be picked out, at

least in small scale cases, without the need for complicated mathematical techniques and

without a precise definition of the term ‘cluster’. In practice, however, things are rarely

so straightforward, so there has been a great proliferation of clustering techniques over

the last three decades or so” [19, p.10]. “The second half of the twentieth century has

seen a dramatic increase in the number of numerical classification techniques available.

This growth has largely paralleled the development of high-speed computers, such

machines being needed to undertake the large amounts of arithmetic generally involved.

As well as an increase in the variety of numerical classification methods, a similar

expansion has taken place in the areas of their applications. Nowadays such techniques

are used in fields as disparate as archaeology and psychiatry, and market research and

astronomy” [19, p.4].

 2

“A number of names have been applied to these methods depending largely on the

area of application. Numerical taxonomy is generally used in biology. In psychology the

term Q analysis is sometimes employed. In the artificial intelligence literature

unsupervised pattern recognition is common. In other areas clumping and grouping have

also been used occasionally. Nowadays however, the most common generic term is

cluster analysis…” [19, p.4]

1.3 Motivations for Clustering

 What are the motivations for clustering? MacKay [20] lists reasons for the usefulness

of clustering. First, a good clustering has useful predictive power. Man for instance

creates internal model of objects he had already encountered so that when he encounters

another object that belongs to a group he already knew he can predict more or less the

behavior of the new object based on the characteristics of the class that are already stored

in his memory. Second, clustering is a great help in communicating because it is a form

of lossy compression. We don’t have to describe all the attributes of an object, say a tree,

in order to describe it. We simply label a tree as a tree instead of saying “that twenty feet

tall thing with leaves, trunk and roots” every time we see a tree. Third, failure of cluster

model to predict will highlight objects that need our special attention. For example, when

our internal model predicts that green things (e.g. plants) don’t move and we encounter a

green thing (e.g. a snake) that moved, then things that failed our prediction should

deserve our full attention. Fourth reason for clustering is its usefulness as model of

learning in neural systems. As an example, the K-Means algorithm is a model of a type of

learning called competitive learning algorithm in neural systems.

 3

1.4 K-Means Algorithm

K-Means clustering algorithm is a simple but very powerful technique of partitioning

data sets. “The term k-means is attributed to MacQueen, whose first implementation

involved only a single pass through the data” [21]. In MacQueen’s method, as the data

sample is presented, the cluster to which the data belongs is determined and updated. This

method is also called Online K-Means [22]. In the 1980s, S.P. Lloyd introduced a variant

called Lloyd’s algorithm [7] [8], also called Batch K-Means [22]. In Lloyd’s method, the

whole data should be present from the beginning. Arrival of new data is not considered.

Originally, Lloyd’s version dealt with scalar quantities only. Later, it was expanded to

include multi-dimensional data and called the generalized Lloyd’s algorithm (GLA) [3,

10].

K-Means or Lloyd’s algorithm [23] is probably the most popular clustering method

among the algorithms that are based on minimizing a formal objective function.

Throughout this paper, whenever K-Means is mentioned, it is shorthand for the standard

K-Means or the generalized Lloyd’s algorithm.

Given a set of N data points, d-dimensional real space, Rd, and a positive integer K,

the task is to determine those K points in Rd called cluster centers (also known as

codebook vectors, codevectors or codewords) such that the mean squared distance of

each data point to its nearest center is minimized. This algorithm partitions N data points

into K disjoint subsets Sj containing Nj data points so as to minimize the sum-of-squares

criterion

 4

 J =
2

1
∑ ∑
= ∈

−
K

j jSn

jnx μ

where xn is a vector representing the nth data point and μj is the geometric centroid of the

data points in Sj.

 In general, the basic data for clustering is a matrix X, where the rows represent the

objects under investigation and the columns represent the features or descriptions of the

objects; that is,

 X = .

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

npnnn

p

p

xxxx

xxxx
xxxx

L

MM

L

L

321

2232221

1131211

The algorithm generally does not achieve a global minimum of J over the assignments. In

fact, since the algorithm uses discrete assignment rather than a set of continuous

parameters, the "minimum" it reaches cannot even be properly called a local minimum.

The solution for getting the best and the most efficient clustering using K-Means is

known to be an NP-hard problem. The number of distinct partitions of n individuals into

g non-empty groups is given by the formula [19, p.94]:

 N (n, g) =
!

1
g

()
1

0

1
−

∑
=

−
gg

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ g

i i
n

Even with our present computational capabilities the numbers involved are so astounding

that it is not practical to do complete enumeration of each of the possible partitions.

 5

Everett [19, p.93] lists some numerical examples to illustrate the magnitude of the

problem.

 N(15, 3) = 2,375,101

 N(20, 4) = 45,232,115,901

 N(25, 8) = 690,223,721,118,368,580

 N(20, 4) = 1068, where N(n, g) is the number of distinct partitions of n

data points into g non-empty clusters.

 The tendency of K-Means algorithm to easily get trapped in a local minimum is well

documented. Despite its limitations, the algorithm is used fairly frequently because it is

relatively easy to implement [4].

1.5 New K-Means Algorithm Using Perturbed Codevectors

In this study, a different way of computing the codevectors in order to optimize the

performance of K-Means is discussed. K-Means algorithm uses the previous codevectors

as the seeds for computing the next cluster centroids. These new cluster centroids, in turn,

are going to be the new codevectors that will be used as the new input for the next

iteration. In this paper, a new method is introduced in which the computed centroids will

not be used as the new seeds for computing the next cluster centroids. Instead, some

perturbations are added to the centroids and these perturbed codevectors are used as the

seeds to compute the next codevectors. This cycle continues until the codevectors do not

change their positions. The perturbations are added in the direction of the momentum of

 6

the codevectors. The direction of the momentum is approximated by the line joining the

current and previous codevectors. This is a way, it is hoped, of accelerating the

convergence of the codevectors to their final locations. An objective of this study is to

measure the optimum amounts of perturbations that are needed to get maximum

improvement in performance. This would decrease overall iterations needed to reach

convergence.

 7

II. Literature Review

2.1 K-means as a Vector Quantizer

 J. MacQueen introduced the K-Means algorithm in 1967 and it has evolved into one of

the most popular clustering algorithm used with scientific and industrial applications.

The Batched version was developed by S.P. Lloyd (originally, it dealt with scalar data

only). It was later expanded into a general form called generalized Lloyd’s algorithm

(GLA) to handle multi-dimensional data [7, 10].

 In this paper, the term K-Means refers to generalized Lloyd’s algorithm. K-means was

originally developed for vector quantization (VQ) purposes. VQ is a lossy data

compression method based on the process of mapping a large set of vectors into a smaller

set of vectors [5]. VQ is one of the Kohonen networks, developed by a Finnish

academician Prof. Teuvo Kohonen, one of the most prolific and pre-eminent researchers

in the field of neurocomputing. As a quantizer, VQ must satisfy the two necessary

criteria, namely, the nearest-neighbor condition and the centroid condition for

codevectors.

 K-Means also is closely related to the Linde-Buzo-Gray (LBG) algorithm which is

another implementation of vector quantization. Teuvo Kohonen [6] gives a good

theoretical discussion on the mathematical foundation of VQ. T. Kohonen describes VQ

as a classical signal-approximation that forms a quantized approximation to the

 8

distribution of the input vectors x ∈ Rd , by the use of so-called codebook vectors mi ∈

Rd, i = 1,2,…,k. When the “codebook” is chosen, approximating x means finding the

codebook vector mc closest to x (in the input space) by using some distance metric,

usually by Euclidean metric:

 ||x - mc|| = min{||x – mi||}, or

 c = arg min{||x – mi||}

A kind of optimal selection of the mi minimizes the mean expected square of the

quantization error, oftentimes called the distortion measure and is defined by the

following:

 E = ∫ ||x - mc||2 p(x)dx,

where the integral is evaluated throughout the metric x space, dx is a shorthand notation

for the d-dimensional volume differential of the integration space, and p(x) is the

probability density function of x. For general p(x), there is no close-form solution to mi,

hence, one must resort to iterative approximation schemes. A mathematically rigorous

discussion by Teuvo Kohonen on the derivation of the VQ algorithm is found in pages

59-62 of [6].

 K-means is an iterative implementation of VQ. Given a set of data points and initial

cluster centers (codevectors):

 9

1. Allocate data point to their nearest codevectors. Any tie-breaking mechanism

can be adopted for points located at boundaries between codevectors. This is

equivalent to forming Voronoi cells. This also satisfies the nearest neighbor

condition of a VQ (Please refer to Figure1).

The red stars in Figure 1 are the codevectors that represent the data points. These

codevectors belong to a set called the codebook that satisfy VQ optimality requirement of

nearest-neighbor condition as well as the centroid requirement.

Figure 1. 2 -dimensional Voronoi cell after nearest neighbor computation (From
http://www.data-compression.com/vq.html)

 10

2. Compute centroids of the data points in each Voronoi cell. These centroids are

going to be the new codevector. This satisfies the centroid condition for the

codevectors of a VQ.

3. Repeat 1 and 2 until there is no more change of membership among the data

points. When the process converges the codevectors of the Voronoi cells that

are generated and satisfy both the nearest neighbor condition and the centroid

condition of codevectors requirements.

The final centroids are going to be the vector quantizer for the data points. In other

words, we use these centroids to represent the distribution of the data points.

2.2 General Methods of Making K-Means Efficient

 Many ways have been proposed to make K-Means algorithm more efficient. Choosing

good initial centers (codevectors) is one important process in improving efficiency as

well as in the avoidance of potential problems during iteration of this algorithm. There

are three basic problems that may arise when the initial cluster centers are poorly chosen.

These are the problem of dead centers (these are centers with no members or data points),

local minima and center redundancy. Dead centers are usually located between two active

centers or outside the range of the data points. A way to avoid this problem is by

selecting the initial centers randomly and to set the range of the random values within the

range of the data sets. The problem of poor local minima may be avoided by using such

algorithms as simulated annealing, stochastic gradient descent, genetic algorithms, etc.

These, however, may entail more involved computation. The problem of center

redundancy arises when there is too much cluster centers so this may be addressed by

 11

making sure that there’s no overcrowding of the centers so that there is no tendency for

these centers to be very close or in the same position with each other.

2.3 Use of K-d tree Data Structure

 Pelleg and Moore [11] presented a way of improving the efficiency of K-Means by

using a data structure called kd-tree. In their paper, they propose storing the data points

information in kd-tree database for the purpose of minimizing the K-Means nearest-

neighbor query on these data points. They made use of the fact that kd-tree nodes can

store large number of points. So instead of updating the centroids point by point, they

used the concept of updating in bulk by using the information already stored in the kd-

tree nodes. Thus, using the statistics stored in the nodes they were able to reduce the

number of arithmetic operations needed to update the cluster centroids. This algorithm is

good to use in cases where databases are large. Kanungo, et al made a more detailed

analysis of this kd-tree-based algorithm and presented a data-sensitive analysis as the

separation between clusters increases. They proved that as the separation increases, the

algorithm runs more efficiently. They called their method The Filtering Algorithm [8].

2.4 One Iteration Method

 Bradley, Fayyad and Reina [12] proposed an algorithm that requires only one pass on

the entire data set. Their work is based on identifying three regions: regions that are

compressible, regions that must be maintained in memory and regions that are

discardable. Their work focuses on the problem of clustering large databases under the

confines of limited buffer memory. These databases are too large for loading in the RAM.

 12

The algorithm is based on the idea of storing only the important portions of the database

while summarizing those that are of least importance. The process works as follows:

1. Get a sample point from the database to be put in the buffer (RAM).

2. Update model based on the recent sample.

3. Then, decide if the singleton data is to be retained in the buffer (data point is

to be used all the time), be discarded or be reduced and summarized into a

more efficient representation.

4. Finally, check if stopping criteria has been satisfied. If not satisfied, go back

to step1.

Even though the algorithm requires only one pass through data set, the overhead

necessary unfortunately, makes this algorithm slower than the standard K-Means. Its real

benefit though, is its usefulness in working with large databases on a limited RAM.

Fredrik Farnstrom, et al [13] made further refinements on Bradley et al’s algorithm by

simplifying some of its process.

2.5 A Method That Works in O(c) Time

 A fast scaling-up method proposed by Hulten and Domingos [14] works not just in

linear time with respect to the total data points but in sublinear time (constant time). This

is done by limiting the quantity of data that are used at each step. This algorithm uses

sampling methods based on Hoeffding inequality and other statistical bounds. During

each iteration, sample size is increased in such a way as to maintain the loss bound from

the multi-pass K-Means [3].

 13

2.6 Better Codebook Through Pertubation of the Codevectors

2.6.1 Method of Simulated Annealing

Another problem being addressed for improving K-Means is in the design of

better codebook (codevectors). K-Means is a descent algorithm which means that its

performance (in terms of distortion error decreases) improves every time iteration is

performed. The problem with a descent algorithm is that it easily gets trapped in a local

minimum. Kirkpatrick et al. [15] introduced the concept called Simulated Annealing (SA)

to remedy the problem of local minimum. The analogy comes from the fields of

metallurgy and materials science in which a metal is slowly heated and then slowly

cooled so that the system at any time is approximately at thermodynamic equilibrium. If

cooling is done in a fast manner (quenched), the system will form defects because it

freezes out in metastable states or it is in local minimum energy state. In simulated

annealing, the energy of the system is defined by its distortion function. Since the K-

Means is a descent algorithm (i.e. its distortion function is monotonic) it can easily get

trapped in a local minimum at the end iterations. This is similar to the way a hot metal

behaves when it is quenched. During the iterations, the K-Means system is being

“quenched” or “cooled” very fast thus, trapping the distortion function in a local

minimum. Simulated annealing (SA) remedies this situation by making sure that the

system “cooling” behaves in a non-monotonic way. This is done by perturbing the state

of the system at every iteration so that the distortion function (or energy E) will not

decrease in a monotonic way [16]. In the case of the SA, the perturbation is accepted

when the perturbation results in a net decrease of energy (ΔE < 0). When the ΔE > 0,

perturbation is accepted with the probability exp(-ΔE/T), where T is the temperature or

 14

variance of the noise [17]. In SA, perturbation is introduced by corrupting the input

training data by some noise before the nearest neighbor (NN) repartitioning is done. This

is called encoder perturbation. Another perturbation is done when the codevectors are

reconstructed to satisfy centroid condition and this is called decoder perturbation. Due to

its complexity SA require more computational time when compared to K-means.

2.6.2 Method of Stochastic Relaxation

A more general form of the Simulated Annealing (SA) algorithm was proposed by

Zeger, et al [16, 17, 18] and it is called Stochastic Relaxation Scheme (SR). SR seeks to

provide improvements in terms of computation efficiency as well as in ease of

implementation. The main difference between SR and SA methods is that in the case of

SR, codevector perturbations are accepted unconditionally, unlike that of the SA where

perturbation is accepted only with probability exp(-ΔE/T) whenever ΔE > 0. Another way

of saying this is that the condition imposed by SA in accepting codevector perturbations

is “relaxed”, hence, the name Stochastic Relaxation Scheme. As in SA, since SR is the

general form, encoder (before nearest neighbor computation) and decoder (at centroid

computation) perturbations are applied to the codevectors when using SR method. SR is

an attempt to reduce the combinatorial complexity of the SA but still provide a close to

globally optimal solution.

 15

III. Directed Perturbation of the Codevectors

3.1 Background

 This paper borrows from some of the concepts of codevector perturbation (alteration

of the codevectors parameters) as espoused in Simulated Annealing (SA) and Stochastic

Relaxation (SR) techniques. A more directed way of adding perturbation to the

codevectors will be presented. Recall from 2.6.1 and 2.6.2 that in the case SA and SR,

encoder perturbations as well as decoder perturbations are done by adding random noise

on the parameters. The purpose of this noise alteration is to add energy to the system in

such a way as to avoid the monotonic descent of the codevectors as they converge so they

will not be trapped in local minima.

 Here is the summary of the SA and SR rules. For the SA algorithm, the following

rules apply:

 1. Accept proposed perturbation conditionally.

 2. Simultaneously either perturb all encoder or all decoder parameters.

 3. Do a repartitioning and centroid computation.

The SR algorithm on the other hand has the following rules:

 1. Accept proposed perturbation unconditionally.

 2. Simultaneously either perturb all encoder or all decoder parameters.

 3. Do a repartitioning and centroid computation.

 16

Rule 3 is just the usual standard or “greedy” K-Means rule. The proposed new algorithm

is a special case of the SR algorithm because it satisfies all three of its general rules. The

difference is in the way it perturbs the parameters. In the proposed method, perturbations

are added to the codevectors not in any random direction and amount but in a more

directed way towards the general direction where the codevectors are going. Just like in

case of the standard K-Means algorithm, the convergence using the new method also

proceeds in a monotonically decreasing manner. Figure 2 shows the various positions,

represented by green circles, of codevector mi
 through all of its n iterations. It starts as

an initial seed mi
0 at the start of iteration and ends as the final codevector mi

n on the nth

iteration. We connect all these codevector (circles) positions at various iterations t by a

curve C.

mi

0

mi
1

mi
2

mi
3

mi
t-1

mi
t

mi
t+1

mi
n-2

mi
n-1

mn
C=f(t)

Figure 2. Various states of a codevector through its iterations.

 17

Suppose mi
t-1 is the ith codevector location in the vector space after iteration t-1 and mi

t

is the ith codevector location after iteration t. (Please refer to Figure 3). Then C passes

through mi
t-1 and mi

t as the codevector descends monotonically towards convergence.

Figure 3. Possible locations after codevector perturbation.

Now, suppose perturbation is introduced to mi
t such that this codevector will cause to be

located somewhere on the curve C between mi
t-1 and mi

t . By doing this, it is

hypothesized that convergence of mi to its final location may be delayed because we are

decreasing its momentum thereby increasing the total number iterations needed for

convergence.

 On the other hand, if we apply perturbation such that mi moves beyond mi
t (towards

the right) on the curve C, then it is hypothesized that by applying just the right amount of

mi
t-1

mi
t

C=f(t)

perturbing mi
t to this

point will accelerate
convergence

perturbing mi
t to this

point will delay
convergence

 18

perturbation we may be accelerating the convergence of mi to its equilibrium state by

giving it just a little more energy, thereby decreasing the total number of iterations

needed to reach a stable state. We need to know where to locate mi after perturbing it on

the curve C so that we can use this perturbed value as the seed value for the next iteration

which we hope, will result in faster convergence.

. . .

. . .

mi
0

mi
1

mi
2

mi
3

mi
1p

mi
2p mi

3p

mi
t-1

mi
t

mi
t+1

mi
tp

mi
(t+1)p

mi
n-2

mi
n-1

mi
n

mi
(n-1)p

Figure 4. Computed centroids (circles) perturbed to new locations (squares).

 For simplicity, curve C can be replaced by creating a straight line passing through

codevectors mi
t-1 and mi

t . Then, locate the perturbed value of mi
t on this line and call it

mi
tp .Then, use mi

tp as the seed for the next iteration (i.e. at iteration t+1). Thus, the line

connecting the previous codevector with the current codevector value is used to

approximate the general direction of the codevector momentum as the system descends to

local minimum. It is suspected that the perturbed codevector must be located on the line

beyond the current codevector if improvement in iteration is to be realized. The task

 19

therefore is to find the right amount of perturbation that should be added to the

codevector in order to enhance performance of K-Means in terms of reduction in the total

number of iterations at the end of each run. Figure 4 shows the locations of the computed

centroids (circles) and the locations of perturbed centroids (squares) throughout all

iterations.

 The objective of SA and SR algorithms is mainly to find global minimum solutions.

Due to complex overhead in the computation of the SA and SR algorithms, these

schemes are not really able to address the problem of efficiency in terms of the speed of

iteration. Unlike in the case of SA and SR, the purpose of the new method is not to arrive

at a global minimum solution but to a local minimum only (as in standard K-Means) but

with the distinct advantage reduction of the total iterations at the end of run.

3.2 Experimental Methodology

3.2.1 Preliminaries

Let mi

t and mi
t-1 be the ith codevector locations after iterations t-1 and t, respectively

(Figure 5), furthermore, let

 D = the distance between points mi
t and mi

t-1 ,

 ΔD = the change in D after perturbing codevector mi
t ,

 mi
p = the new point after perturbing mi

t , and

 α = (D + ΔD) / D. (1)

It is clear from Figure 5 that mi
p is computed according to this equation

 mi
p = mi

t-1 + α * D. (2)

 20

When ΔD=0 (i.e., no perturbation), then α = 1.0, and it follows from equation 2 that mi
p

= mi
t-1 +D = mi

t . This reduces the algorithm to the standard K-Means at scale α = 1.0,

hence it is clear that standard K-Means is just a special case of the Perturbed K-Means.

mi
t-1

mi
t

mi
p

D

ΔD

Figure 5. Scale

 The goal in this study is to find different values of the scale α such that efficiency is

achieved in terms of reduction in total iteration for every run of the algorithm. We want

to test the following:

1. if 0 ≤ α < 1.0 , then perturbation will increase the iterations needed towards

convergence, thereby delaying it, and

2. if 1.0 < α ≤ 2.0, then the perturbation will decrease iterations needed towards

convergence, at some values of α in this range, effectively accelerating

convergence.

 21

3. Furthermore, we want to show that the final locations of the perturbed

codevectors are equivalent in quality to the final locations of the unperturbed

(standard K-Means) codevectors.

3.2.2 The Perturbed K-Means Program

A program named KM.java has been designed using the Perturbed K-Means algorithm

that will test the correctness of the hypotheses. KM.java will read its input from a file as

well as write its output on a different file. This program has the following input and

output properties:

Program Input:

1. Input File Name – This is a text file containing a set of multivariate data points

arranged in rows and columns.

2. Integer K – This is an integer representing the predetermined number of

clusters centers or classes the Perturbed algorithm will partition the data points into.

4. Output File Name – This is the file where we want our output to go to.

Program Output:

 1. Final codevectors.

2. Total number of iterations after complete run.

The source code is found on page – of the Appendices.

3.2.3 Description of Data

The data that were used as inputs to the program are combinations of real world data as

well as synthetically-generated data coming from various online data libraries. These data

contain points whose features are described by numerical descriptions only. In other

 22

words, phonetic alphabets and other non-numerical symbols are excluded in the

description of these data points. These multivariate data are arranged in rows and

columns. Columns are delimited by space. The mth row represents the mth datapoint and

the nth column of the mth row is the dimension or features of the mth point. The data were

processed “as is”. No weights were added to any of its dimension. The program was run

on data with the following ranges dimensionality:

 Dimensions: 2- 60.

3.2.4 Initial Cluster Seeds

The integer K values that were tested have these values,

 K : {2, 4, 8, 16, 32}.

We wanted our initial codebook or codevectors to be located randomly around the

datapoints so that they are more or less good representatives of the data points. This was

easily achieved by using pseudo-random number generators from standard library of our

programming language choice.

3.2.5 Scales

The values of the scale α that were tested are the following:

 α : {0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0}.

For each data set the same values of randomly generated initial cluster seeds were used to

run all the α values. This ensured uniformity of criteria when comparing the behavior of

Perturbed K-Means through various values of the scale.

 23

IV. Tests and Results

4.1 The Experiment

The program KM.java was run using the following data sets as our input namely: 2d.txt,

5Tec.txt, 14Housing.txt, 60Synt.txt. These data were taken from various free databases

that are available online. We wanted to test the consistency of the improvement in

performance across different dimensions so data that have wide range of dimensionality

were represented. In this case, data with dimensions 2, 5, 14 and 60, respectively, were

tested. For each data set and for a particular value of K, the Perturbed program KM.java

made 40 complete runs producing 40 complete iterations results. For every run it

computed K random seeds for the initial codevectors. These initial codevectors were used

to compute the total iterations for complete runs for each particular scale value α. 40 total

iterations values (not necessarily unique) were generated for each value of α. To get

better indication of the iterations’ spread and skewness, the iterations were graphed in

boxplot graphs. For each particular input data used and K value, the total iterations are

graphed against different α values. From these graphs it can easily be seen if there are

improvements in performance as the different scale values are compared. These results

are summarized in Figures A-B, pages 41-50 of the Appendices.

4.2 Other Metrics

In order to compare the quality of the perturbed points (codevectors) that we are getting

to that of the unperturbed points the within class scatter between the two, the class

 24

within-class scatter resulting from K-Means and with that resulting from Perturbed K-

means, were compared. Recall that it is the within-class scatter metrics that are being

minimized when the K-Means algorithm is run. We want to know if the result of running

the Perturbed K-Means is essentially the same as that of the Unperturbed K-Means by

comparing if the within-class metrics of the two algorithms converge to more or less the

same values at the completion of their respective runs. Suppose it is predetermined that

there are K clusters in the data set. Furthermore, let μi be the codevector for cluster i (i =

1, 2,…, K) and Ci be the number of samples within cluster i, then the within class scatter

matrix W is defined as

 W = ()() .
1 1

, ijiiji

K

i

iC

j
iji Cxxx ∈−− Τ∑∑

= =

μμ

The scatter should become progressively smaller and smaller every time K-Means goes

through the cycles of nearest-neighbor and centroid computations during iterations.

 It is also helpful to know the percentage difference between the labeled points of the

K-Means in comparison to the Perturbed K-Means algorithm as it goes through different

stages of iteration until complete convergence. If A are classes of points whose cluster

centers are the codevectors computed using standard K-Means and B are the classes of

points whose centers are computed using the Perturbed K-Means, then this percent

difference is computed as follows:

 (|(A-B) U (B-A)| / |(A U B)|) *100% .

Using this measurement will help us see how fast these two algorithm converge with each

other and when in the iteration stage the Perturbed K-Means codevectors contain

essentially identical points as that the ordinary K-Means.

 25

4.3 Discussion of Results

This study was undertaken to answer the main question: Can improvements in

performance of the K-Means algorithm be realized when the perturbed centroid points are

used instead of the standard unperturbed centroids? There is overwhelming evidence,

based on the data from experiments, that indeed, we can realize great improvements in

the performance when the Perturbed K-Means algorithm is run on data of various sizes,

dimensionality and number of K partitions using certain scale values instead of the

standard K-Means. There are substantial improvements in performance in terms of

reduced total iterations by up to 63% compared to the standard K-Means.

 At what scale values do we get these great improvements? Please refer to Figure 6.

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure 6. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=32) after 40 runs.

 26

Here we have a box plot of a 2-dimensional data containing 16,744 points with K=32. To

get the box plot values of the iterations we ran the algorithm 40 times. We wanted to

compare how the performances of the different scale values of the Perturbed K-Means

compare to the standard K-Means. A cursory look at the box plot graph clearly shows

that at scale values less than 1.0 there is dramatic decrease in performance based on the

increase in the median values of the iterations of the scales α = 0.8 and 0.6 when

compared to K-Means (α = 1.0). This is also indicated by the negative slope of the lines

connecting the median values of the iterations from scale value 0.6 to 1.0. This

deterioration in performance is repeated consistently in the rest of the data that were

tested (Figures B1-B4, C1-C4 and D1-D5). The only exception was in Figures B5 and

C5. In both of these cases, the value K is 2.0. At this low K value, the iterations are very

low anyway because the data points are divided into 2 classes only. These 2 exceptions

represent only 10 percent of the cases. In the 90 percent of the cases, total iterations

tended to increase when the scale values become less than 1. This is not unexpected since

as the scale value α at range 0 ≤ α < 1.0 we tend to perturb the codevectors backward

toward or near the original seed values. The extreme case is with α = 0, in which case we

are essentially returning the codevector to its original seed values causing the algorithm

to never converge.

 The previous scenario is contrasted with the next in which the values of the scale α are

in the range 1.0 < α ≤ 2.0. Here we got more interesting results. In the above example

(Figure 6), the medians of the iterations of the different values of α when compared to K-

Means (α = 1.0) are lower. This reduction means improvement in performance. The

 27

lowest total iterations was with the use of α = 1.6, where we improve the performance by

42.72% compared to K-Means (Table 1 summarizes improvement in performances for

various combinations of scales and K values). The only exception is when the scale α =

2.0, which in this case the median value is about the same as that obtained by using K-

Means. The box plot values of the iterations at α = 2.0 are confined to a narrow range

compared to K-Means (α = 2.0). These box plot values is in fact still better than the

standard K-Means when we compare the middle 50 percent (box) of the iterations data.

The top whiskers (maximum iterations values) of the box plot for α = 1.1 and 1.2 may

bother some because they are longer than that of the standard K-Means. This feature of

the box plot may tend to distort the actual distribution of the data. The box plots for these

scale values were supplemented by their histograms (Figure 7) so that the actual

distributions of the points (iterations) can be seen clearly. The frequency (vertical axis) of

the histogram represents the number of occurrences of the iterations on a range of

iterations (horizontal axis) after 40 runs of the Perturbed K-Means algorithm. From these

histograms it is easy to see that the outliers do not represent accurately these particular

tail values. In fact, in the outlier points (histograms B and C) represent only one

occurrence (2.5%) of the values. The vast majority of the points are still superior to K-

Means (histogram A).

 Looking at the performance for the other values of K, (K=16, 8, 4, Figures A2, A3,

and A4, respectively) the same trend as in Figure 6 (K=32) still holds true. There are

clearly improvements in performance vis-a-vis K-Means in the range of scale: 1.1 ≤ α ≤

1.8. The improvements are from 31.25% to 46.03%. The box plot for the case α = 2.0

 28

show deterioration in performance compared to the previous scales but then the

performance is not really worse off compared to that of the K-Means. The iterations for

Dataset Scales with improvements in
performance relative to 1.0

Greatest
Improvement K Figure

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 42.72% 32 A1
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 41.25% 16 A2
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 46.03% 8 A3
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 31.25% 4 A4

2d.txt
16744 points
2 dimensions

1.1 8.30% 2 A5
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 53.68% 32 B1
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 63.27% 16 B2
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 56.36% 8 B3

1.1, 1.2, 1.3, 1.4, 1.5 43.75% 4 B4

5Tec.txt
6000 points

5 dimensions

None 0% 2 B5
1.3, 1.4, 1.5, 1.8 12% 32 C1

1.2, 1.3, 1.4, 1.5, 1.6, 1.8 16.67% 16 C2
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 18.18% 8 C3

1.2, 1.3, 1.4, 1.5, 1.6 14.29% 4 C4

14Housing.txt
506 points

14 dimensions

None 0% 2 C5
1.1, 1.2, 1.3, 1.4, 1.5, 1.6 20% 32 D1

1.3, 1.4, 1.5, 1.6 10% 16 D2
1.2, 1.3, 1.4, 1.5, 1.6 11.11% 8 D3

1.3, 1.4 14.29% 4 D4

SyntheticControl.txt
600 points

60 dimensions

None 0% 2 D5

Table 1. Summary of the improvements in performance of various scales and K
combinations. Scales in red give maximum improvement.

this case are also more confined to a narrower range of values. For the case K=2, the box

plots (Figures A5) show that the iterations are confined to very narrow range for all the

scales and their performances are practically equivalent to each other.

 The performance of Perturbed algorithm when ran with the data 5Tec.txt (6000 data

points with 5 dimensions for each point) is similar to the performance using the previous

data set (2d.txt). The pronounced difference is in the rapid deterioration in

 29

Figure 7. Histograms of 2d.txt (Dimension=2, K=32) to complement the boxplots of
Fig.6 for α = 1, 1.1, 1.2. The frequency (vertical axis) of the histogram represents the
number of occurrences of the iterations on a range of iterations (horizontal axis)
after 40 runs of the Perturbed K-Means algorithm.

performance as the scale value becomes α = 2.0 (Figures B1, B2, B3 and B4). The

performance was generally good for most of the combinations of K and α values. The

highest performance was obtained using α = 1.8 at K=16 which shows 63.27%

improvement (Figure B2). Again as in the case of the previous data set, the performances

of the Perturbed algorithm using the different scales for K=2 are equivalent to each other,

in other words, there’s no improvement.

 30

 Going to the third data set, 14Housing.txt (506 datapoints with 14 dimensions per

point): for K=32 (Figure C1), we realize improvement over K-Means for the scales 1.2,

1.3, 1.4, 1.5 and slightly on 1.8 based on the median values as well as the position of

boxes (or middle 50 percent of the data). The highest performance was exhibited by the

combination α = 1.4 and K=8 which improved by 18.18%. The median for scale α = 1.1

is the same as in K-Means but there is more spread of the middle 50% of the points so it’s

hard to see if there’s net improvement here. There is deterioration in performance as we

go to the scales 1.6-2.0. For K=16 (Figure C2), based again on the median and the

position of the box (middle 50%) there is improvement in performance for the scales 1.1-

1.6, slight improvement for 1.8 and deterioration at 2.0. In the case of K=8 (Figure C3),

the scales 1.1-1.8 all manifest improvement. Deterioration occurs again at α = 2.0.

Looking at K=4 (Figure C4), scales 1.2-1.6 represent improvements at 2.0 where there is

deterioration. For K=2 (Figure C5), again as in the previous two data change in the scale

does not really confer benefit.

 For our last data set, which SyntheticControl.txt (600 datapoints with 60 dimensions),

for K=32 (Figure D1), clearly there are benefits for Perturbed K-Means in scale range

1.1-1.6. Greatest improvement was 20% at α = 1.3, 1.4 and K=32. Then, performance

declines at scales 1.8 and 2.0. For K=16 (Figure D2), the scales 1.3-1.6 are good. Then,

declines are at 1.8 and 2.0. The same is true for K=8 (Figure D3): improvements at 1.2-

1.6 and deteriorations occur at 1.8 and 2.0. At K=4 (Figure D4), basing only on the

median improvement occurs only at scales 1.3 and 1.4. On closer inspection of the boxes,

the scales 1.1, 1.2 and 1.5 are still good values because the boxes are narrower and are

generally located below that of the box for scale 1.0. Performance decreases at 2.0.

 31

Lastly, for K=2 (Figure D5), sets the Perturbed K-Means improvement over the ordinary

K-Means is zero.

4.4 Equivalence of Labeled Points

We also wanted to know if the final codevectors obtained from the Perturbed K-Means

are of the same or closer quality to those obtained by using K-Means. The measurements

of the within-class scatters of the two algorithms’ labeled points should become closer in

value to each other as they are near the end of their runs. The results were a pleasant

surprise. Figures E1-E5 and Figures F1-F5 are the graphs of the ratios of the of the

within-class scatters of the Perturbed K-Means (Wp) and the original K-Means (Wc)

plotted against the iterations from start to the end of runs of the two data sets, namely

2d.txt (16,744 data points, 2 dimensions) and SyntheticControl.txt (600 data points, 60

dimensions). It is easy to see from these graphs that as the iterations increase, the ratios

Wp/Wc slowly approach 1 and at the end of the runs these ratios were practically equal to

1 in all cases. This means that the quality of the labeled points achieved using Perturbed

K-Means was comparable to the labeled points from using the standard K-Means. Figures

G1-G5 also show the actual values of the within-class scatter of SyntheticControl.txt for

the different scale and K values and they all converge to the same value which equal that

of K-Means (α =1.0). Figure 8 below is a

 32

500000

550000

600000

650000

700000

750000

800000

850000

900000

950000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

W
p

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

Figure 8. Plot of within class scatter of Perturbed centroid against iteration for
SyntheticControl.txt (600 datapoints, dimension=60 and K=32).

Alpha 0.6 0.8 1 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2

Wp 526670 521294 521319 521095 520997 521615 513753 512648 509735 509787 517342

Total
Iterations
after 1 run 10 11 9 9 9 10 9 10 10 18 10

Table 2. Actual values of within-class scatters and corresponding scale and total
iterations after 1 run of the Perturbed K-Means algorithm for data set

SyntheticControl.txt (600 data points, dimension=60 and K=32).

 33

reproduction of Figures G1 from the Appendix. The actual values of the within-class

scatter for the graphs are found on Table 2. Here, the actual within-class scatter for the

standard K-Means (α = 1) is 521,319 at the end of its run. The actual within-class scatters

for the different scales are all very close to the value of the standard K-Means. These

differences vary from 0.06% (α = 1.3) to 2.22% (α = 1.6). This means that the Perturbed

K-Means descend to more or less the same local minimum.

4.5 Percent Difference Between Labeled Points

We also want to know at what point in the cycle of iterations the Perturbed K-Means

become identical to the standard K-Means in the sense that their particular codevectors

own practically the same clusters of data points. This comparison can be achieved by

comparing the percentage difference between the labeled points of the Perturbed K-

Means and the labeled points of the standard K-Means. Figures H1-H5 and Figures I1-I5

are the plots of these differences for the data sets 2d.txt and SyntheticControl.txt,

respectively. As we can see from these plots, initially at the beginning stages of the

iterations the difference between the labeled points are high, in some cases approaching

35% (e.g. Figure I1). But these differences quickly dissipate towards zero percent value,

sometimes during the middle stages in the iterations, and especially towards the end

stages when the differences become zero or almost zero. This zero difference happens

because as the iterations progress, the effect of the scales become less and less

pronounced and the Perturbed K-Means codevectors become identical with the standard

K-Means.

 34

V. Conclusions and Future Work

5.1 Conclusions

Based on the four data sets that we tested, it has been shown that it is certainly possible to

realize improvements on performance of the K-Means by applying some scaling

mechanism to the codevectors. This modified version of the K-Means algorithm, called

Perturbed K-Means, was able to obtain these enhanced performances without sacrificing

the quality of the final codevectors. Using the Perturbed K-Means on the four data sets

above, we were able to achieve performance on K-Means algorithm by as much 63.27%.

The labeled points that were derived by using the Perturbed algorithm were the same,

quality-wise, from the labeled points derived by using the standard K-Means. The benefit

is faster convergence because of reduced total iterations needed to reach local minimum.

 This benefit was achieved by applying perturbations to the codevectors that were

computed after a cycle of nearest-neighbor and centroid computations. These perturbed

points were used as the new cluster seeds for next cycle of the nearest-neighbor and the

centroid computations. The general locations of the perturbed codevectors were along the

lines connecting the current codevectors and the previous codevectors. These lines

become our general estimator of the directions of the momenta of the codevectors as they

lose energy during converge. Furthermore, the amounts of perturbations were scaled in

direct proportion to the length of the distance between the current unperturbed codevector

and the previous codevector.

 35

 The Perturbed K-Means algorithm was also superior in performance across varying

degrees of data dimensionality. And it was effective for different values K initial centers

that were used with the exception of K=2, at which value, the Perturbed K-Means does

not seem to exhibit much improvement over the standard K-Means. The algorithm does

not guarantee superior result every time it is used. But by picking just the right kind of

scale to use the Perturbed algorithm is on average better than the standard K-Means.

5.2 Future Work

This work is by no means an exhaustive. Much work lies ahead and there is certainly

more room for improvement. The Perturbed method needs to be tested using data sets

with different size properties in order for us to validate if the improvements we got were

consistent. It needs to be run using larger datasets. Future studies may also be done to test

its sensitivity to other parameters. For instance, how does this algorithm behave when,

instead of using the usual Euclidean metric, we use other distance measurements like the

city block, the Mahalanobis or the Canberra metrics? Future study can also be done to

test the algorithm for its sensitivity to some data set properties. For example is it sensitive

to the ratio of data size to K? Does higher ratio reduce the effectiveness of the algorithm?

Note that at K=2, which means higher ratio of data size to K, the algorithm becomes

almost useless.

 Studies can also be done to determine if the Perturbed algorithm may be combined

with other performance improvement techniques that have been proposed and have been

proved successful by other investigators in order to further fine tune this algorithm.

 36

REFERENCES

[1] Peng Yuqing, Hou Xiangdan and Liu Shang. The K-Means Clustering Algorithm
Based on Density and Ant Colony. IEEE Int. Conf. Neural Networks & Signal
Processing, pages 457-460, December 14-17, 2003, Nanjing China.

[2] Cheng-Fa Tsai, Han-Chang Wu, and Chun-Wei Tsai. A New Data Clustering
Approach for Data Mining in Large Databases. Proceedings of the International
Symposium on Parallel Architectures, pages 278-283, 2002.

[3] Anjan Goswami, Ruoming Jin and Gagan Agrawal. Fast and Exact Out-of-Core K-
Means Clustering. Proceedings of the Fourth IEEE International Conference on Data
Mining(ICDM’04), pages 83-90, 2004.

[4] Fang Yuan, Zeng-hui Meng, Hong-Xia Zhang and Chun-Ru Dong. A New Algorithm
To Get the Initial Centroids. Proceedings of the Third International Conference on
Machine Learning and Cybernetics, pages 1191-1193, Shanghai, August 26-29, 2004.

[5] Gurmeet Singh, Ashish Panda, Saurav Bhattacharyya and Thambipillai Srikanthan.
Vector Quantization Techniques for GMM Based Speaker Verification. ICASSP 2003,
pages II 65-II 68.

[6] Teuvo Kohonen. Self-Organizing Maps, third ed., pages 59-62. Germany, Springer-
Verlag Heidelberg, 2001.

[7] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, Pages 129-137, Vol. IT-28, No. 2, March 1982.

[8] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. An Efficient k-Means Clustering Algoritm: Analysis and
Implementation. IEEE Transaction on Pattern Analysis and Machine Intelligence, VOL.
24, NO. 7, pages 881-892, JULY 2002.

[9] Leonid I. Perlovsky. Neural Networks and Intellect: Using Model-Based Concepts.
New York, Oxford university Press, 2001.

[10] Lowell L. Winger. Linearly Constrained Generalized Lloyd Algorithm for Virtual
Codebook Vector Quantization, Proceedings on International Conference on Image
Processing, Volume 2, Pages 171-174, Vancouver, BC, Canada, 2000.

 37

[11] Dan Pelleg and Andrew Moore. Accelerating Exact k-means Algorithms with
Geometric Reasoning. Proceedings of the fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pages: 277 – 281, San Diego, California,
1999.

[12] Paul S. Bradley, Usama M. Fayyad and Cory A. Reyna. Scaling Clustering
Algorithms to Large Databases. Proceedings of the 4th International Conference on
Knowledge Discovery & Data Mining (KDD98), R.Agrawal, P. Stolorz and G. Piatetsky-
Shapiro (eds.), pp. 9-15. AAAI Press, Menlo Park , CA, 1998.

[13] Fredrik Farnstrom, James Lewis and Charles Elkan. Scalability for Clustering
Algorithms Revisited. ACM SIGKDD Explorations Newsletter, Volume 2, Issue 1, pages:
51- 57, June 2000.

[14] Geoff Hulten and Pedro Domingos. Mining Complex Models from Arbitrarily Large
Databases in Constant Time. Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, Pages 525-531. ACM Press July
2002.

[15] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by Simulated
Annealing. Science, Volume 220 Number 4598 Pages 671-680, 13 May 1983.

[16] Eyal Yair, Kenneth Zeger and Allen Gersho. Competitive Learning and Soft
Competition for Vector Quantizer Design. IEEE Transactions on Signal Processing, Vol.
40 No.2, Pages 294-309, February 1992.

[17] K. Zeger and A. Gersho. Stochastic Relaxation Algorithm for Improved Vector
Quantiser Design. Electronic Letters, Vol. 25 No. 14, Pages 896-898, 6th July 1989.

[18] Kenneth Zeger, Jacques Vaisey, and Allen Gersho. Globally Optimal Vector
Quantizer Design by Stochastic Relaxation. IEEE Transactions on Signal Processing,
Vol. 40 No. 2, Pages 310-322, February 1992.

[19] Brian S. Everett. Cluster Analysis, Third Edition. John Wiley & Sons Inc., 605 Third
Avenue, NewYork.

[20] David J. C. MacKay. Information Theory, Inference and Learning Algorithms, Pages
284-285. Cambridge University Press, 2003.

[21] James Theiler and Galen Gisler. A Continguity-Enhanced K-means Clustering
Algorithm for Unsupervised Multispectral Image Segmentation. Proc. SPIE 3159, Pages
108-118, 1997.

[22] H. Ando, S. Suzuki, and T. Fujita. Unsupervised Visual Learning of Three-
Dimensional Objects Using a Modular Network Architecture. Neural Networks 12, Pages
1037-1051, 1999.

 38

[23] Nargess Memarsadeghi, David M. Mount, Nathan S. Netanyahu, and Jacqueline Le
Moigne. A Fast Implementation of the ISOCLUS Algorithm. IEEE International Geoscience
and Remote Sensing Symposium (IGARSS'03), Toulouse, France, July 21-25, 2003, Vol.
III, Pages 2057-2059.

[24] Hichem Frigui and Raghu Krishnapuram. A Robust Competitive Clustering
Algorithm With Applications in Computer Vision. IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 5, Pages 450-465, May
1999.

[25] Bot, R.S., Yi-fang Brook Wu, Xin Chen and Quanzhi Li. A Hybrid Classifier
Approach for Web Retrieved Documents Classification. Proceedings of the International
Conference on Information Technology : Coding and Computing (ITCC 2004), Volume
1, Pages 326-330.

 39

http://www.cs.umd.edu/%7Enargess/Publications/igarss03-paper.pdf

APPENDICES

 40

Glossary

A priori – Proceeding from a known or assumed cause to a necessarily related effect.

Bayesian network – It is a directed graph of nodes representing variables and arcs

representing dependence relations among the variables.

Codebook – A set of codevectors

Codevector – A point in the Euclidean space Rn that represent a subset of points in Rn .

Euclidean metric – the function d : Rn x Rn → R that assigns to any two vectors in

Euclidean n-space x = (x1,…,xn) and y = (y1,…,yn) the number

and so gives the "standard" distance between any two vectors in Rn.

Global minimum – The smallest overall value of a set, function, etc., over its entire range.

Heuristic – In computer science, it is a technique designed to solve a problem that ignores

whether the solution can be proven to be correct, but which usually produces a good

solution or solves a simpler problem that contains or intersects with the solution of the

more complex problem.

Hoeffding's inequality – It is a result in probability theory that gives an upper bound on

the probability for the sum of random variables to deviate from its expected value.

K-means algorithm – An algorithm for partitioning (or clustering) N data points into K

disjoint subsets Sj containing Nj data points so as to minimize the sum-of-squares

criterion

 41

where xn is a vector representing the nth data point and μj is the geometric centroid of the

data points in Sj.

Local minimum – A local minimum, also called a relative minimum, is a minimum

within some neighborhood that need not be (but may be) a global minimum.

Perturbation – Alteration of the state of a system by addition of noise.

Simulated annealing – It is a method of searching for global minimum in a general

system in which an analogy between the way in which a metal cools and freezes into a

minimum energy crystalline structure (the annealing process) is used.

Unsupervised learning – A method of machine learning where a model is fit to

observations. It is distinguished from supervised learning by the fact that there is not a

priori output.

Vector – An element of a vector space. In the commonly encountered vector space Rn

(i.e., Euclidean n-space), a vector is given by n coordinates and can be specified as

(A1,A2,…,An).

Vector quantizer – It maps n-dimensional vectors in the vector space Rn into a finite set

of vectors Y = {yi: i = 1, 2, ..., N}.

Voronoi diagram – The partitioning of a plane with n points into convex polygons such

that each polygon contains exactly one generating point and every point in a given

polygon is closer to its generating point than to any other. A Voronoi diagram is

sometimes also known as a Dirichlet tessellation.

 42

Figure A1

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure A1. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=32) after 40 runs.

 43

Figure A2

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure A2. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=16) after 40 runs.

 44

Figure A3

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure A3. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=8) after 40 runs.

 45

Figure A4

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min
Median
Max
Q3

Figure A4. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=4) after 40 runs.

 46

Figure A5

0

50

100

150

200

250

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure A5. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints,
dimension=2 and K=2) after 40 runs.

 47

Figure B1

0

50

100

150

200

250

300

350

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure B1. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints,
dimension=5and K=32) after 40 runs.

 48

Figure B2

0

50

100

150

200

250

300

350

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure B2. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints,
dimension=5and K=16) after 40 runs.

 49

Figure B3

0

50

100

150

200

250

300

350

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure B3. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints,
dimension=5and K=8) after 40 runs.

 50

Figure B4

0

50

100

150

200

250

300

350

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure B4. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints,
dimension=5and K=4) after 40 runs.

 51

Figure B5

0

50

100

150

200

250

300

350

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure B5. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints,
dimension=5and K= 2) after 40 runs.

 52

Figure C1

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min

Median

Max

Q3

Figure C1. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints,
dimension=14 and K=32) after 40 runs.

 53

Figure C2

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure C2. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints,
dimension=14 and K=16) after 40 runs.

 54

Figure C3

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure C3. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints,
dimension=14 and K=8) after 40 runs.

 55

Figure C4

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min

Median

Max

Q3

Figure C4. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints,
dimension=14 and K=4) after 40 runs.

 56

Figure C5

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure C5. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints,
dimension=14 and K=2) after 40 runs.

 57

Figure D1

0

5

10

15

20

25

30

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1

Min

Median

Max

Q3

Figure D1. Box plot of iteration against scale alpha of SyntheticControl.txt (600
datapoints, dimension=60 and K=32) after 40 runs.

 58

Figure D2

0

5

10

15

20

25

30

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min

Median
Max

Q3

Figure D2. Box plot of iteration against scale alpha of SyntheticControl.txt (600
datapoints, dimension=60 and K=16) after 40 runs.

 59

Figure D3

0

5

10

15

20

25

30

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min
Median
Max
Q3

Figure D3. Box plot of iteration against scale alpha of SyntheticControl.txt (600
datapoints, dimension=60 and K=8) after 40 runs.

 60

Figure D4

Figure A-- Box Plot of syntheticControl.txt (600 datapoints, dimension=60 and K=4)
after 40 runs

0

5

10

Figure D4. Box plot of iteration against scale alpha of SyntheticControl.txt (600
datapoints, dimension=60 and K=4) after 40 runs.

15

20

25

30

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min
Median
Max
Q3

 61

Figure D5

0

5

10

15

20

25

30

0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2.0

Alpha

Ite
ra

tio
n

Q1
Min
Median
Max
Q3

Figure D5. Box plot of iteration against scale alpha of SyntheticControl.txt (600
datapoints, dimension=60 and K=2) after 40 runs.

 62

Figure E1

0.8

0.9

1

1.1

1.2

1.3

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744
Dimension: 2
K: 32

Figure E1. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter

of Unperturbed centroids (Wc) against iterations for 2d.txt (16744 datapoints,
dimension=2 and K=32).

 63

Figure E2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744
Dimension: 2
K: 16

Figure E2. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter

of Unperturbed centroids (Wc) against iterations for 2d.txt (16744 datapoints,
dimension=2 and K=16).

 64

Figure E3

0.9

1

1.1

1.2

1.3

1.4

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744
Dimension: 2
K: 8

Figure E3. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter

of Unperturbed centroids (Wc) against iterations for 2d.txt (16744 datapoints,
dimension=2 and K=8).

 65

Figure E4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744
Dimension: 2
K: 4

Figure E4. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter

of Unperturbed centroids (Wc) against iterations for 2d.txt (16744 datapoints,
dimension=2 and K=4).

 66

Figure E5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744
Dimension: 2
K: 2

Figure E5. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter

of Unperturbed centroids (Wc) against iterations for 2d.txt (16744 datapoints,
dimension=2 and K=2).

 67

Figure F1

Figure F1. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of

nsion: 60

K: 32

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints,
dimension=60 and K=32).

syntheticCont lro
Datapoints: 600

.txt
Dime

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

W
p/

W
c

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticContro .txt l
Datapoints: 600
Dimension: 60
K: 32

 68

Figure F2

igure F2. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

W
p/

W
c

F

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints,
dimension=60 and K=16).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 16

 69

Figure F3

. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

W
p/

W
c

Figure F3

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints,
dimension=60 and K=8).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 8

 70

Figure F4

. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

W
p/

W
c

Figure F4

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints,
dimension=60 and K=4).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 4

 71

Figure F5

igure F5- Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13

1.15

1 2 3 4 5 6 7 8 9 10

Iteration

W
p/

W
c

F

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints,
dimension=60 and K=2).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 2

 72

Figure G1

Figure G1. Plot of within class scatter of Perturbed centroid against iteration for

500000

550000

600000

650000

700000

750000

800000

850000

900000

950000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

W
p

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt (600 datapoints, dimension=60 and K=32).

 73

Figure G2

Figure G2. Plot of within class scatter of Perturbed centroid against iteration for

700000

800000

900000

1000000

1100000

1200000

1300000

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

W
p

SyntheticControl.txt (600 datapoints, dimension=60 and K=16).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600

 Dimension: 60
K: 16

 74

Figure G3

Figure G3. Plot of within class scatter of Perturbed centroid against iteration for

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

W
p

SyntheticControl.txt (600 datapoints, dimension=60 and K=8).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 8

 75

Figure G4

Figure G4. Plot of within class scatter of Perturbed centroid against iteration for

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

1 2 3 4 5 6 7 8 9 10 11

Iteration

W
p

SyntheticControl.txt (600 datapoints, dimension=60 and K=4).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 4

 76

Figure G5

Figure G5. Plot of within class scatter of Perturbed centroid against iteration for

1800000

1900000

2000000

2100000

2200000

2300000

2400000

2500000

2600000

2700000

1 2 3 4 5 6 7 8

Iteration

W
p

SyntheticControl.txt (600 datapoints, dimension=60 and K=2).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 2

 77

Figure H1

Figure H1. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Iteration

D
iff

er
en

ce

Alpha: 0.6

centroid against iteration for 2d.txt (dimension=60 and K=32).

Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
oints: 16744 Datap

Dimension: 2
K: 32

 78

Figure H2

Figure H2. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Iteration

D
iff

er
en

ce

Alpha: 0.6

centroid against iteration for 2d.txt (dimension=60 and K=16).

Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
ints: 16744 Datapo

Dimension: 2
K: 16

 79

Figure H3

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Iteration

D
iff

er
en

ce

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

Figure H3. Plot of percentage difference between Perturbed centroid and Unperturbed

2d.txt
Datapoints: 16744

sion: 2 Dimen
K: 8

centroid against iteration for 2d.txt (dimension=60 and K=8).

 80

Figure H4

Figure H4. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Iteration

D
iff

er
en

ce

centroid against iteration for 2d.txt (dimension=60 and K=4).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744

sion: 2 Dimen
K: 4

 81

Figure H5

Figure H5. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6 7 8 9 10 11

Iteration

D
iff

er
en

ce

centroid against iteration for 2d.txt (dimension=60 and K=2).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

2d.txt
Datapoints: 16744

sion: 2 Dimen
K: 2

 82

Figure I1

gure I1. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iteration

D
iff

er
en

ce

Fi
centroid for SyntheticControl.txt (data size=600, dimension=60 and K=32).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 32

 83

Figure I2

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

D
iff

er
en

ce

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

Figure I2. Plot of percentage difference between Perturbed centroid and Unperturbed
centroid for SyntheticControl.txt (data size=600, dimension=60 and K=16).

SyntheticControl.txt
Datapoints: 600
Dimension: 60

K: 16

 84

Figure I3

Figure I3. Plot of percentage difference between Perturbed centroid and Unperturbed

centroid for SyntheticControl.txt (data size=600, dimension=60 and K=8).

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6 7 8 9 10 11

Iteration

D
iff

er
en

ce

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 8

 85

Figure I4

Figure I4. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

D
iff

er
en

ce

centroid for SyntheticControl.txt (data size=600, dimension=60 and K=4).

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60
K: 4

 86

Figure I5

Figure I5. Plot of percentage difference between Perturbed centroid and Unperturbed

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

1 2 3

Iteration

D
iff

er
en

ce

Alpha: 0.6

centroid for SyntheticControl.txt (data size=600, dimension=60 and K=2).

Alpha: 0.8

Alpha: 1.0

Alpha: 1.1

Alpha: 1.2

Alpha: 1.3

Alpha: 1.4

Alpha: 1.5

Alpha: 1.6

Alpha: 1.8

Alpha: 2.0

SyntheticControl.txt
Datapoints: 600
Dimension: 60 K: 2

 87

Source Code for the Perturbed K-Means.

import java.util.*;
import java.io.*;

ector;

malFormat;

ublic static void main(String[] args) throws IOException

DecimalFormat fmt = new DecimalFormat("0.#");
igits(1);

 kSize=2;

ileWriter writer = new FileWriter("Output.txt");
 BufferedWriter bw = new BufferedWriter(writer);//works across different platform

 bw.write("Data Name: "+dataName); bw.newLine();
 "+kSize); bw.newLine();

Reader file = new FileReader(dataName);
 BufferedReader buff = new BufferedReader(file);

 pointSize = -1;

 pointSize + 1;
tring line = buff.readLine();

import java.math.*;
import java.util.V
import java.text.Deci

public class KM
{

 p
 {
 int kSize, pointSize, dim;

 fmt.setMinimumFractionD

 String dataName = "14Housing.txt";

 F

 bw.newLine();

 bw.write("K:

 File

 boolean eof = false;

 dim=0;
 while(!eof)
 {
 pointSize =
 S
 if(pointSize == 1)
 {

 88

 StringTokenizer tok = new StringTokenizer(line);
im = tok.countTokens();

(line == null)
 eof = true;

.close();
tem.out.println("dimension = "+dim);

intln("pointSize = "+pointSize);

ne();
 bw.write("Dimension: "+dim); bw.newLine();

];

 FileReader file2 = new FileReader(dataName);
 BufferedReader buff2 = new BufferedReader(file2);

 StringTokenizer tok2;
 < pointSize; i++)

zer(line);
(tok2.hasMoreTokens())

or(int n=0; n < dim; n++)
 {

Double(tok2.nextToken());
//System.out.print(" "+point[i][n]+" ");

2.close();

 d
 }

 if

 }
 buff
 Sys
 System.out.pr

 bw.write("Datapoints: "+pointSize); bw.newLi

 bw.write("-------------------------------------");

 double point [][] = new double[pointSize][dim

 eof = false;
 int kount = -1;

 String line;

 for(int i=0; i
 {
 line = buff2.readLine();

 tok2 = new StringTokeni
 while
 {

 f

 point[i][n]=Double.parse

 }
 System.out.println();
 }
 }
 buff

 89

 double

=0,dot8=0,one=0,one1=0,one2=0,one3=0,one4=0,one5=0,one6=0,one8=0,two=0;

= tRuns; run++)
 {

stem.out.println("Run..."+run);

 bw.write("Run..."+run);

oses initial centroid from datapoints

 int integ;

; i < pointSize; i++)

er(i));

 int ps = pointSize;
 int inte;

; c < kSize; c++)
 {

*ps);
nte2 = ((Integer)(indexOfPoints.remove(inte))).intValue();

0; n < dim; n++)
 {

dot6

 double tRuns=40;

 for(int run=1; run <

 Sy

 bw.newLine();

 bw.newLine();

 //Randomly cho

 double k[][] = new double[kSize][dim];

 Vector indexOfPoints = new Vector();
 for(int i=0
 {
 indexOfPoints.add(new Integ
 }

 int inte2;

 for(int c=0

 inte = (int)(Math.random()
 i

 ps=ps-1;

 for(int n=

 k[c][n]=point[inte2][n];
 }
 //System.out.println();
 }

 90

 double alpha;

 double P [] = {0.6,0.8,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.8,2.0};
th;

; p++)
 {

 new int[pointSize];

 double centroid [][] = new double[kSize][dim];

 {
)

uble prevCentroid [][] = new double[kSize][dim];

 for(int j=0; j < kSize; j++)

)

d];

uble perturbed[][] = new double[kSize][dim];

 Vector clus [] = new Vector [kSize];
 for(int j=0; j < kSize; j++)

 int sP = P.leng

 for(int p=0; p < sP

 alpha = P[p];

 int labelA [] =

 int labelB [] = new int[pointSize];

 for(int j=0; j < kSize; j++)

 for(int d=0; d < dim; d++
 {
 centroid[j][d] = k[j][d];
 }
 }

 do

 //initialize prevCentroid

 {
 for(int d=0; d < dim; d++
 {
 prevCentroid [j][d] = k[j][
 }
 }

 do

 {
 clus[j] = new Vector();
 }

 91

 double dSquared [] = new double [kSize];

 int index=0;

mp;

tation
 for(int i=0; i < pointSize; i++)

r(int j=0; j < kSize; j++)
 {

em=0;
dim; d++)

[j][d]-point[i][d]),2);

quared[j] = tem;
 }

et nearest cluster
 temp=dSquared[0];//initialize temp

 j++)

ndex=j;

lA[i] = index;//label point with winning cluster

 clus[index].add(new Integer(i));//use wrapper class

 ////--------------------------------/////
 //Start centroid computation //

 double tem, te

 //Initial N-N compu

 {

 fo

 dSquared[j]=0;
 t
 for(int d=0; d <
 {
 tem = tem + Math.pow((k
 }

 dS

 //g

 for(int j=0; j < kSize;
 {
 if(dSquared[j] <= temp)
 {
 temp=dSquared[j];
 i
 }
 }
 labe

 //add winning point to the winning cluster

 }

 92

 int iter;
 double tempr [] = new double[dim];

lse;

ChangeInMembership == false)

ter++;

fClusj = 0;//number of points in clus j

 {
();

/System.out.println("Clus "+j+" has "+sizeOfClusj+ " points.");

 {
; n++)

or(int s=0; s < sizeOfClusj; s++)

elementAt(s))).intValue()][n];

r(int n=0; n < dim; n++)
 {

sizeOfClusj;

r(int n=0; n < dim; n++)
 {

[j][n]+(alpha-1)*(centroid[j][n]-
]);

 boolean noChangeInMembership = fa

 iter=0;

 while(no
 {

 i

 int sizeO

 for(int j=0; j < kSize; j++)

 sizeOfClusj = clus[j].size
 /

 if(sizeOfClusj != 0)

 for(int n=0; n < dim
 {
 tempr[n]=0;
 f
 {
 tempr[n] = tempr[n] +
point[((Integer)(clus[j].
 }
 }

 fo

 centroid[j][n] = tempr[n]/
 }

 fo

 perturbed[j][n] = centroid
prevCentroid[j][n
 }

 }//if

 }

 93

 //clear point indexes from clusj
 for(int j=0; j < kSize; j++)

 //Nearest-neighbor

Size; i++)
 {

r(int j=0; j < kSize; j++)
 {

em=0;
dim; d++)

erturbed[j][d]-point[i][d]),2);

quared[j] = tem;
 }

et nearest cluster
 temp=dSquared[0];//initialize temp

 {

ndex=j;

elB[i] = index;//label point with winning cluster,perturbed point used

er class
 }//for

 {
 clus[j].clear();
 }

 for(int i=0; i < point

 fo

 dSquared[j]=0;
 t
 for(int d=0; d <
 {
 tem = tem + Math.pow((p
 }

 dS

 //g

 for(int j=0; j < kSize; j++)

 if(dSquared[j] <= temp)
 {
 temp=dSquared[j];
 i
 }
 }

 lab

 //add winning point to the winning cluster

 clus[index].add(new Integer(i));//use wrapp

 94

 //Compare labelA and labelB
 int count=0;

 count = count + 1;

count == pointSize)//no more change in membership
 noChangeInMembership = true;

 {

pdate value of prevCentroid
 for(int j=0; j < kSize; j++)

)

oid[j][d];

se

 }// end of while loop

 System.out.println("Alpha: "+alpha);
 System.out.println("Iteration: "+iter);

Line();
 bw.write("Iteration: "+iter); bw.newLine();

 if(alpha == 0.6)
 dot6=dot6+iter;

 for(int i=0; i < pointSize; i++)
 {
 if(labelA[i] == labelB[i])

 }

 if(

 else//update labelA, prevCentroid

 for(int i=0; i < pointSize; i++)
 {
 labelA[i] = labelB[i];
 }

 //U

 {
 for(int d=0; d < dim; d++
 {
 prevCentroid[j][d] = centr
 }
 }

 }//el

 bw.write("Alpha: "+alpha); bw.new

 else

 95

 if(alpha == 0.8)
 dot8=dot8+iter;

=one+iter;

1=one1+iter;

2=one2+iter;

3=one3+iter;

4=one4+iter;

5=one5+iter;

6=one6+iter;

8=one8+iter;

ystem.out.println();

bw.newLine();

ystem.out.println("alpha=.6 : "+dot6/tRuns);

 else
 if(alpha == 1.0)
 one
 else
 if(alpha == 1.1)
 one
 else
 if(alpha == 1.2)
 one
 else
 if(alpha == 1.3)
 one
 else
 if(alpha == 1.4)
 one
 else
 if(alpha == 1.5)
 one
 else
 if(alpha == 1.6)
 one
 else
 if(alpha == 1.8)
 one
 else
 two=two+iter;

 }//end of alpha loop

 bw.newLine();
 S

 }//end of random runs

 //System.out.println();

 //

 S

 96

 System.out.println("alpha=.8 : "+dot8/tRuns);

 bw.write("Average Iteration:"); bw.newLine();
w.write("---------------------"); bw.newLine();

e();
w.write("alpha=.8 : "+dot8/tRuns); bw.newLine();

w.close();
//method main

//class KM

 System.out.println("alpha=1.0 : "+one/tRuns);
 System.out.println("alpha=1.1 : "+one1/tRuns);
 System.out.println("alpha=1.2 : "+one2/tRuns);
 System.out.println("alpha=1.3 : "+one3/tRuns);
 System.out.println("alpha=1.4 : "+one4/tRuns);
 System.out.println("alpha=1.5 : "+one5/tRuns);
 System.out.println("alpha=1.6 : "+one6/tRuns);
 System.out.println("alpha=1.8 : "+one8/tRuns);
 System.out.println("alpha=2.0 : "+two/tRuns);

 b

 bw.write("alpha=.6 : "+dot6/tRuns); bw.newLin
 b
 bw.write("alpha=1.0 : "+one/tRuns); bw.newLine();
 bw.write("alpha=1.1 : "+one1/tRuns); bw.newLine();
 bw.write("alpha=1.2 : "+one2/tRuns); bw.newLine();
 bw.write("alpha=1.3 : "+one3/tRuns); bw.newLine();
 bw.write("alpha=1.4 : "+one4/tRuns); bw.newLine();
 bw.write("alpha=1.5 : "+one5/tRuns); bw.newLine();
 bw.write("alpha=1.6 : "+one6/tRuns); bw.newLine();
 bw.write("alpha=1.8 : "+one8/tRuns); bw.newLine();
 bw.write("alpha=2.0 : "+two/tRuns);

 b
 }

}

 97

VITA

Sumakwel Muralla

Candidate for the Degree

Master of Science

Thesis: A METHOD OF ACCELERATING K-MEANS BY DIRECTED

PERTURBATION OF THE CODEVECTORS

Major Field: Computer Science

Education: Graduated from the University of the Philippines, Diliman, Quezon City,

Manila, Philippines on April 1989; received a degree in Bachelor of Science in Civil

Engineering; completed the requirements for a Master of Science Degree in Computer

Science at Oklahoma State University in July 2006.

Experience: Worked as a practicing professional engineer from 1989-2000 in Manila.

Currently works as a programmer at the Information Systems Division, Walmart, Main

Office, Bentonville, Arkansas.

 Name: Sumakwel R. Muralla Date of Degree: July, 2006

 Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A METHOD OF ACCELERATING K-MEANS BY DIRECTED
 PERTURBATION OF THE CODEVECTORS

 Pages in Study: 97 Candidate for the Degree of Master of Science

 Major Field: Computer Science

 Scope and Method of Study: K-Means clustering algorithm is a simple and yet

very powerful technique of partitioning datasets. This study presents a
method of decreasing the total computational iterations needed to run K-
Means. This is done by adding perturbations to the cluster centroids and
using the perturbed centroids as the new seed values for computing the
next codevectors. The method was tested using synthetic and real-world
data sets.

Findings and Conclusions:Running the new method on these datasets significantly

improved the performance of K-Means by reducing the total
computational iterations needed to run K-Means. Furthermore, the quality
of the final cluster centroids was preserved under the new method. Based
on these findings, the new method is very promising and deserves further
testing by subjecting it to a variety of data sets before it is recommended
for general greater use.

ADVISOR’S APPROVAL: Douglas R. Heisterkamp

	A METHOD OF ACCELERATING
	I. Introduction
	1.1 Background
	1.2 Clustering Classifications and Definitions
	1.3 Motivations for Clustering
	1.4 K-Means Algorithm
	1.5 New K-Means Algorithm Using Perturbed Codevectors

	II. Literature Review
	2.1 K-means as a Vector Quantizer
	2.2 General Methods of Making K-Means Efficient
	2.3 Use of K-d tree Data Structure
	2.4 One Iteration Method
	2.5 A Method That Works in O(c) Time
	2.6 Better Codebook Through Pertubation of the Codevectors
	2.6.1 Method of Simulated Annealing
	2.6.2 Method of Stochastic Relaxation

	III. Directed Perturbation of the Codevectors
	3.1 Background
	3.2 Experimental Methodology
	3.2.1 Preliminaries
	3.2.2 The Perturbed K-Means Program
	3.2.3 Description of Data
	3.2.4 Initial Cluster Seeds

	IV. Tests and Results
	4.1 The Experiment
	4.3 Discussion of Results
	4.4 Equivalence of Labeled Points
	4.5 Percent Difference Between Labeled Points

	V. Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	REFERENCES
	APPENDICES
	Glossary
	Figure A1
	Figure A2
	Figure A3
	Figure A4
	Figure A5
	Figure B1
	Figure B2
	Figure B3
	Figure B4
	Figure B5
	Figure C1
	Figure C2
	Figure C3
	Figure C4
	Figure C5
	Figure D1
	Figure D2
	Figure D3
	Figure D4
	Figure D5
	Figure E1
	Figure E2
	Figure E3
	Figure E4
	Figure E5
	Figure F1
	Figure F2
	Figure F3
	Figure F4
	Figure F5
	Figure G1
	Figure G2
	Figure G3
	Figure G4
	Figure G5
	Figure H1
	Figure H2
	Figure H3
	Figure H4
	Figure H5
	Figure I1
	Figure I2
	Figure I3
	Figure I4
	Figure I5
	Source Code for the Perturbed K-Means.

