
A METHOD OF ACCELERATING 

K-MEANS BY DIRECTED PERTURBATION 

 OF THE CODEVECTORS 

 

 

By 

SUMAKWEL MURALLA 

Bachelor of Science in Civil Engineering 

University of the Philippines 

Diliman, Quezon City 

Philippines 

1989 

 

Submitted to the Faculty of the  
Graduate College of the  

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
July, 2006 

 
 



A METHOD OF ACCELERATING 
 

K-MEANS BY DIRECTED PERTURBATION 

OF THE CODEVECTORS 
 

 
 
 
Thesis Approved: 
 
 
 

 Douglas R. Heisterkamp 
Thesis Adviser 

 
 John P. Chandler 

 
 

 H. K. Dai 
 
 

A. Gordon Emslie 
Dean of the Graduate College 

 
 
 
 
 
 
 
 
 
 
 

 

 ii



 

 

ACKNOWLEDGMENTS 

 

      I would like to express my heartfelt appreciation to my committee members for their 

guidance in the preparation of this thesis. A million thanks go to my adviser and 

chairman of the committee, Dr. Douglas R. Heisterkamp. His expertise, insight and 

friendship in guiding me through the whole process were invaluable. Doug, I will always 

owe you a debt of gratitude for your help and concern. My appreciation goes also to my 

committee members, Dr. John P. Chandler and Dr. H. K. Dai, for their comments and 

time they have spent in the review of this document. 

     To my friends here in Stillwater: the Lucases, especially Ed and mother Aida, the 

Tongcos, the Lims, the Tubanas, Arnold, and the Filipino community here in Stillwater, 

thank you for your friendship. To my church family: our pastor and his wife, our brethren 

in the church, thank you all for your prayers and love.  

      To Papa and Mama, my mother-in-law and father-in-law, my brother and sisters, 

thank you for your love and prayers. Most of all, special thanks go to my wife Rose and 

my son, Joseph. Thanks for being patient with me. You are my inspiration and comfort. 

And finally, thanks to God Almighty for His blessings, patience, and infinite love.  

      

 
 

 

        

 iii



 

 

 

TABLE OF CONTENTS 
 

I. INTRODUCTION ................................................................................. 1 

1.1 BACKGROUND............................................................................................................ 1 
1.2 CLUSTERING CLASSIFICATIONS AND DEFINITIONS..................................................... 1 
1.3 MOTIVATIONS FOR CLUSTERING ................................................................................ 3 
1.4 K-MEANS ALGORITHM .............................................................................................. 4 
1.5 NEW K-MEANS ALGORITHM USING PERTURBED CODEVECTORS............................... 6 

II. LITERATURE REVIEW .......................................................... 8 

2.1 K-MEANS AS A VECTOR QUANTIZER.......................................................................... 8 
2.2 GENERAL METHODS OF MAKING K-MEANS EFFICIENT ........................................... 11 
2.3 USE OF K-D TREE DATA STRUCTURE ....................................................................... 12 
2.4 ONE ITERATION METHOD......................................................................................... 12 
2.5 A METHOD THAT WORKS IN O(C) TIME .................................................................. 13 
2.6 BETTER CODEBOOK THROUGH PERTUBATION OF THE CODEVECTORS ..................... 14 

2.6.1 Method of Simulated Annealing....................................................................... 14 
2.6.2 Method of Stochastic Relaxation. .................................................................... 15 

III. DIRECTED PERTURBATION OF THE 
CODEVECTORS....................................................................................... 16 

3.1 BACKGROUND.......................................................................................................... 16 
3.2 EXPERIMENTAL METHODOLOGY.............................................................................. 20 

3.2.1 Preliminaries.................................................................................................... 20 
3.2.2 The Perturbed K-Means Program. .................................................................. 22 
3.2.3 Description of Data.......................................................................................... 22 
3.2.4 Initial Cluster Seeds......................................................................................... 23 

IV. TESTS AND RESULTS........................................................... 24 

4.1 THE EXPERIMENT..................................................................................................... 24 
4.3 DISCUSSION OF RESULTS.......................................................................................... 26 
4.4 EQUIVALENCE OF LABELED POINTS. ........................................................................ 32 
4.5 PERCENT DIFFERENCE BETWEEN LABELED POINTS. ................................................ 34 

V. CONCLUSIONS AND FUTURE WORK............. 35 

5.1 CONCLUSIONS. ......................................................................................................... 35 

 iv



5.2 FUTURE WORK......................................................................................................... 36 

REFERENCES.............................................................................................. 37 

APPENDICES................................................................................................ 40 

GLOSSARY ..................................................................................................................... 41 
FIGURE A1..................................................................................................................... 43 
FIGURE A2..................................................................................................................... 44 
FIGURE A3..................................................................................................................... 45 
FIGURE A4..................................................................................................................... 46 
FIGURE A5..................................................................................................................... 47 
FIGURE B1 ..................................................................................................................... 48 
FIGURE B2 ..................................................................................................................... 49 
FIGURE B3 ..................................................................................................................... 50 
FIGURE B4 ..................................................................................................................... 51 
FIGURE B5 ..................................................................................................................... 52 
FIGURE C1 ..................................................................................................................... 53 
FIGURE C2 ..................................................................................................................... 54 
FIGURE C3 ..................................................................................................................... 55 
FIGURE C4 ..................................................................................................................... 56 
FIGURE C5 ..................................................................................................................... 57 
FIGURE D1..................................................................................................................... 58 
FIGURE D2..................................................................................................................... 59 
FIGURE D3..................................................................................................................... 60 
FIGURE D4..................................................................................................................... 61 
FIGURE D5..................................................................................................................... 62 
FIGURE E1 ..................................................................................................................... 63 
FIGURE E2 ..................................................................................................................... 64 
FIGURE E3 ..................................................................................................................... 65 
FIGURE E4 ..................................................................................................................... 66 
FIGURE E5 ..................................................................................................................... 67 
FIGURE F1...................................................................................................................... 68 
FIGURE F2...................................................................................................................... 69 
FIGURE F3...................................................................................................................... 70 
FIGURE F4...................................................................................................................... 71 
FIGURE F5...................................................................................................................... 72 
FIGURE G1..................................................................................................................... 73 
FIGURE G2..................................................................................................................... 74 
FIGURE G3..................................................................................................................... 75 
FIGURE G4..................................................................................................................... 76 
FIGURE G5..................................................................................................................... 77 
FIGURE H1..................................................................................................................... 78 
FIGURE H2..................................................................................................................... 79 
FIGURE H3..................................................................................................................... 80 
FIGURE H4..................................................................................................................... 81 
FIGURE H5..................................................................................................................... 82 

 v



FIGURE I1 ...................................................................................................................... 83 
FIGURE I2 ...................................................................................................................... 84 
FIGURE I3 ...................................................................................................................... 85 
FIGURE I4 ...................................................................................................................... 86 
FIGURE I5 ...................................................................................................................... 87 
SOURCE CODE FOR THE PERTURBED K-MEANS. ............................................................ 88 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



 
 
 
 
 
 

LIST OF TABLES 
 

Table 1. Summary of the improvements in performance of various scales and 
Kcombinations. Scales in red give maximum improvement. ................................... 29 

Table 2.  Actual values of within-class scatters and corresponding scale and total 
iterations after 1 run of the Perturbed K-Means algorithm for data set 
SyntheticControl.txt (600 data points, dimension=60 and K=32). ........................... 33 

 
 
 
 

LIST OF FIGURES 
 

Figure 1.  2 -dimensional Voronoi cell after nearest neighbor computation .................... 10 
Figure 2. Various states of a codevector through its iterations......................................... 17 
Figure 3. Possible locations after codevector perturbation............................................... 18 
Figure 4. Computed centroids (circles) perturbed to new locations (squares). ................ 19 
Figure 5. Scale .................................................................................................................. 21 
Figure 6. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 

dimension=2 and K=32) after 40 runs. ..................................................................... 26 
Figure 7. Histograms of 2d.txt (Dimension=2, K=32) to complement the boxplots of 

Fig.A1 for α = 1, 1.1, 1.2. The frequency (vertical axis) of the histogram represents 
the number of occurrences of the iterations on a range of iterations (horizontal axis) 
after 40 runs of the Perturbed K-Means algorithm. .................................................. 30 

Figure 8. Plot of within class scatter of Perturbed centroid against iteration for 
SyntheticControl.txt (600 datapoints, dimension=60 and K=32). ............................ 33 

 
 
  

 
 
 
 
 
 
 

 vii



 

I. Introduction 
 
1.1 Background 

Cluster analysis (data clustering) is an important research domain in data mining. It 

has lots of applications in the fields of machine learning, pattern recognition, image 

analysis and bioinformatics. This area of study is relevant in business, biology, 

geography, medicine, and web archive, to name a few, and has become a very hot 

research topic today [1, 3]. Clustering algorithms are used to discover structures or 

patterns in data in order to gain new knowledge and insight from a database. Clustering 

algorithms group data instances into subsets or clusters that have similar features by 

using proximity according to some predefined distance measure, usually using Euclidean 

metric.  This, consequently, builds “concept hierarchies” [25] that are useful in gaining 

new knowledge from the database.  

1.2 Clustering Classifications and Definitions 

      Data clustering are usually classified into two groups namely hierarchical clustering 

and partitional clustering. In hierarchical clustering “the data are not partitioned into a 

particular number of classes or clusters at a single step. Instead the classification consists 

of a series of partitions which may run from a single cluster containing all individuals, to 

n clusters each containing a single individual. Hierarchical clustering techniques may be 

subdivided into agglomerative methods which proceed by a series of successive fusions 

of the n individuals into groups, and divisive methods, which separate the n individuals 
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successively into finer groupings” [19, p.55]. Hierarchical clustering usually does not 

specify a priori the number of clusters. “Prototype-based partitional clustering algorithms 

can be divided into two classes: crisp(or hard) clustering where each data point belongs 

to only one cluster, and fuzzy clustering where every data point belongs to every cluster to 

a certain degree. Fuzzy clustering algorithms can deal with overlapping cluster 

boundaries. Partitional algorithms are dynamic, and points can move from one cluster to 

another [24, 2].” 

Clustering is usually defined as follows: Given a set of N points in a feature space 

consisting of d dimensions, find subsets (or clusters) of interesting points. “Techniques of 

cluster analysis seek to separate a set of data into its constituent groups or clusters. Ideal 

data for such an analysis would yield clusters so obvious that they could be picked out, at 

least in small scale cases, without the need for complicated mathematical techniques and 

without a precise definition of the term ‘cluster’. In practice, however, things are rarely 

so straightforward, so there has been a great proliferation of clustering techniques over 

the last three decades or so” [19, p.10]. “The second half of the twentieth century has 

seen a dramatic increase in the number of numerical classification techniques available. 

This growth has largely paralleled the development of high-speed computers, such 

machines being needed to undertake the large amounts of arithmetic generally involved. 

As well as an increase in the variety of numerical classification methods, a similar 

expansion has taken place in the areas of their applications. Nowadays such techniques 

are used in fields as disparate as archaeology and psychiatry, and market research and 

astronomy” [19, p.4].  

                                                                          2



“A number of names have been applied to these methods depending largely on the 

area of application. Numerical taxonomy is generally used in biology. In psychology the 

term Q analysis is sometimes employed. In the artificial intelligence literature 

unsupervised pattern recognition is common. In other areas clumping and grouping have 

also been used occasionally. Nowadays however, the most common generic term is 

cluster analysis…” [19, p.4]  

1.3 Motivations for Clustering 

      What are the motivations for clustering? MacKay [20] lists reasons for the usefulness 

of clustering. First, a good clustering has useful predictive power. Man for instance 

creates internal model of objects he had already encountered so that when he encounters 

another object that belongs to a group he already knew he can predict more or less the 

behavior of the new object based on the characteristics of the class that are already stored 

in his memory. Second, clustering is a great help in communicating because it is a form 

of lossy compression. We don’t have to describe all the attributes of an object, say a tree, 

in order to describe it. We simply label a tree as a tree instead of saying “that twenty feet 

tall thing with leaves, trunk and roots” every time we see a tree. Third, failure of cluster 

model to predict will highlight objects that need our special attention. For example, when 

our internal model predicts that green things (e.g. plants) don’t move and we encounter a 

green thing (e.g. a snake) that moved, then things that failed our prediction should 

deserve our full attention. Fourth reason for clustering is its usefulness as model of 

learning in neural systems. As an example, the K-Means algorithm is a model of a type of 

learning called competitive learning algorithm in neural systems. 
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1.4 K-Means Algorithm 

K-Means clustering algorithm is a simple but very powerful technique of partitioning 

data sets. “The term k-means is attributed to MacQueen, whose first implementation 

involved only a single pass through the data” [21].  In MacQueen’s method, as the data 

sample is presented, the cluster to which the data belongs is determined and updated. This 

method is also called Online K-Means [22]. In the 1980s, S.P. Lloyd introduced a variant 

called Lloyd’s algorithm [7] [8], also called Batch K-Means [22]. In Lloyd’s method, the 

whole data should be present from the beginning. Arrival of new data is not considered. 

Originally, Lloyd’s version dealt with scalar quantities only. Later, it was expanded to 

include multi-dimensional data and called the generalized Lloyd’s algorithm (GLA) [3, 

10].  

K-Means or  Lloyd’s algorithm [23] is probably the most popular clustering method 

among the algorithms that are based on minimizing a formal objective function. 

Throughout this paper, whenever K-Means is mentioned, it is shorthand for the standard 

K-Means or the generalized Lloyd’s algorithm.  

Given a set of N data points, d-dimensional real space, Rd, and a positive integer K, 

the task is to determine those K points in  Rd called cluster centers (also known as 

codebook vectors, codevectors or codewords) such that the mean squared distance of 

each data point to its nearest center is minimized. This algorithm partitions N data points 

into K disjoint subsets Sj containing Nj data points so as to minimize the sum-of-squares 

criterion  
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The algorithm generally does not achieve a global minimum of J over the assignments. In 

fact, since the algorithm uses discrete assignment rather than a set of continuous 

parameters, the "minimum" it reaches cannot even be properly called a local minimum. 

The solution for getting the best and the most efficient clustering using K-Means is 

known to be an NP-hard problem. The number of distinct partitions of n individuals into 

g non-empty groups is given by the formula [19, p.94]:  
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Even with our present computational capabilities the numbers involved are so astounding 

that it is not practical to do complete enumeration of each of the possible partitions. 
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Everett [19, p.93] lists some numerical examples to illustrate the magnitude of the 

problem. 

                     N(15, 3) = 2,375,101 

                     N(20, 4) = 45,232,115,901 

                     N(25, 8) = 690,223,721,118,368,580 

                     N(20, 4)  = 1068, where N(n, g)    is the number of distinct partitions of n 

data points into g non-empty clusters.                    

      The tendency of K-Means algorithm to easily get trapped in a local minimum is well 

documented. Despite its limitations, the algorithm is used fairly frequently because it is 

relatively easy to implement [4].  

1.5 New K-Means Algorithm Using Perturbed Codevectors 

In this study, a different way of computing the codevectors in order to optimize the 

performance of K-Means is discussed. K-Means algorithm uses the previous codevectors 

as the seeds for computing the next cluster centroids. These new cluster centroids, in turn, 

are going to be the new codevectors that will be used as the new input for the next 

iteration.  In this paper, a new method is introduced in which the computed centroids will 

not be used as the new seeds for computing the next cluster centroids. Instead, some 

perturbations are added to the centroids and these perturbed codevectors are used as the 

seeds to compute the next codevectors. This cycle continues until the codevectors do not 

change their positions. The perturbations are added in the direction of the momentum of 
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the codevectors. The direction of the momentum is approximated by the line joining the 

current and previous codevectors. This is a way, it is hoped, of accelerating the 

convergence of the codevectors to their final locations. An objective of this study is to 

measure the optimum amounts of perturbations that are needed to get maximum 

improvement in performance. This would decrease overall iterations needed to reach 

convergence.  
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II. Literature Review 
 
2.1 K-means as a Vector Quantizer 

 
     J. MacQueen introduced the K-Means algorithm in 1967 and it has evolved into one of 

the most popular clustering algorithm used with scientific and industrial applications.  

The Batched version was developed by S.P. Lloyd (originally, it dealt with scalar data 

only). It was later expanded into a general form called generalized Lloyd’s algorithm 

(GLA) to handle multi-dimensional data [7, 10].  

     In this paper, the term K-Means refers to generalized Lloyd’s algorithm. K-means was 

originally developed for vector quantization (VQ) purposes. VQ is a lossy data 

compression method based on the process of mapping a large set of vectors into a smaller 

set of vectors [5]. VQ is one of the Kohonen networks, developed by a Finnish 

academician Prof. Teuvo Kohonen, one of the most prolific and pre-eminent researchers 

in the field of neurocomputing. As a quantizer, VQ must satisfy the two necessary 

criteria, namely, the nearest-neighbor condition and the centroid condition for 

codevectors.  

     K-Means also is closely related to the Linde-Buzo-Gray (LBG) algorithm which is 

another implementation of vector quantization. Teuvo Kohonen [6] gives a good 

theoretical discussion on the mathematical foundation of VQ. T. Kohonen describes VQ 

as a classical signal-approximation that forms a quantized approximation to the 
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distribution of the input vectors x ∈ Rd , by the use of so-called codebook vectors mi ∈  

Rd,  i = 1,2,…,k. When the “codebook” is chosen, approximating x means finding the 

codebook vector mc closest to x (in the input space) by using some distance metric, 

usually by Euclidean metric: 

 ||x - mc|| = min{||x – mi||}, or 

 c = arg min{||x – mi||} 

A kind of optimal selection of the mi minimizes the mean expected square of the 

quantization error, oftentimes called the distortion measure and is defined by the 

following: 

 E = ∫ ||x - mc||2 p(x)dx, 

where the integral is evaluated throughout the metric x space, dx is a shorthand notation 

for the d-dimensional volume differential of the integration space, and p(x) is the 

probability density function of x. For general p(x), there is no close-form solution to mi, 

hence, one must resort to iterative approximation schemes. A mathematically rigorous 

discussion by Teuvo Kohonen on the derivation of the VQ algorithm is found in pages 

59-62 of  [6]. 

     K-means is an iterative implementation of VQ. Given a set of data points and initial 

cluster centers (codevectors): 
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1. Allocate data point to their nearest codevectors. Any tie-breaking mechanism 

can be adopted for points located at boundaries between codevectors. This is 

equivalent to forming Voronoi cells. This also satisfies the nearest neighbor 

condition of a VQ (Please refer to Figure1). 

The red stars in Figure 1 are the codevectors that represent the data points. These 

codevectors belong to a set called the codebook that satisfy VQ optimality requirement of 

nearest-neighbor condition as well as the centroid requirement.  

 

 
 

                      
 

 

Figure 1.  2 -dimensional Voronoi cell after nearest neighbor computation (From 
http://www.data-compression.com/vq.html) 
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2. Compute centroids of the data points in each Voronoi cell. These centroids are 

going to be the new codevector. This satisfies the centroid condition for the 

codevectors of a VQ. 

3. Repeat 1 and 2 until there is no more change of membership among the data 

points. When the process converges the codevectors of the Voronoi cells that 

are generated and satisfy both the nearest neighbor condition and the centroid 

condition of codevectors requirements. 

The final centroids are going to be the vector quantizer for the data points. In other 

words, we use these centroids to represent the distribution of the data points. 

2.2 General Methods of Making K-Means Efficient 

     Many ways have been proposed to make K-Means algorithm more efficient. Choosing 

good initial centers (codevectors) is one important process in improving efficiency as 

well as in the avoidance of potential problems during iteration of this algorithm. There 

are three basic problems that may arise when the initial cluster centers are poorly chosen. 

These are the problem of dead centers (these are centers with no members or data points), 

local minima and center redundancy. Dead centers are usually located between two active 

centers or outside the range of the data points. A way to avoid this problem is by 

selecting the initial centers randomly and to set the range of the random values within the 

range of the data sets. The problem of poor local minima may be avoided by using such 

algorithms as simulated annealing, stochastic gradient descent, genetic algorithms, etc. 

These, however, may entail more involved computation. The problem of center 

redundancy arises when there is too much cluster centers so this may be addressed by 
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making sure that there’s no overcrowding of the centers so that there is no tendency for 

these centers to be very close or in the same position with each other.  

2.3 Use of K-d tree Data Structure 

      Pelleg and Moore [11] presented a way of improving the efficiency of K-Means by 

using a data structure called kd-tree. In their paper, they propose storing the data points 

information in kd-tree database for the purpose of minimizing the K-Means nearest-

neighbor query on these data points. They made use of the fact that kd-tree nodes can 

store large number of points. So instead of updating the centroids point by point, they 

used the concept of updating in bulk by using the information already stored in the kd-

tree nodes. Thus, using the statistics stored in the nodes they were able to reduce the 

number of arithmetic operations needed to update the cluster centroids. This algorithm is 

good to use in cases where databases are large. Kanungo, et al made a more detailed 

analysis of this kd-tree-based algorithm and presented a data-sensitive analysis as the 

separation between clusters increases. They proved that as the separation increases, the 

algorithm runs more efficiently. They called their method The Filtering Algorithm [8]. 

2.4 One Iteration Method 

     Bradley, Fayyad and Reina [12] proposed an algorithm that requires only one pass on 

the entire data set. Their work is based on identifying three regions: regions that are 

compressible, regions that must be maintained in memory and regions that are 

discardable. Their work focuses on the problem of clustering large databases under the 

confines of limited buffer memory. These databases are too large for loading in the RAM. 

                                                                          12



The algorithm is based on the idea of storing only the important portions of the database 

while summarizing those that are of least importance.  The process works as follows:  

1. Get a sample point from the database to be put in the buffer (RAM).  

2. Update model based on the recent sample.  

3. Then, decide if the singleton data is to be retained in the buffer (data point is 

to be used all the time), be discarded or be reduced and summarized into a 

more efficient representation.  

4. Finally, check if stopping criteria has been satisfied. If not satisfied, go back 

to step1. 

Even though the algorithm requires only one pass through data set, the overhead 

necessary unfortunately, makes this algorithm slower than the standard K-Means. Its real 

benefit though, is its usefulness in working with large databases on a limited RAM.  

Fredrik Farnstrom, et al [13] made further refinements on Bradley et al’s algorithm by 

simplifying some of its process.  

2.5 A Method That Works in O(c) Time 

      A fast scaling-up method proposed by Hulten and Domingos [14] works not just in 

linear time with respect to the total data points but in sublinear time (constant time). This 

is done by limiting the quantity of data that are used at each step. This algorithm uses 

sampling methods based on Hoeffding inequality and other statistical bounds. During 

each iteration, sample size is increased in such a way as to maintain the loss bound from 

the multi-pass K-Means [3].  
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2.6 Better Codebook Through Pertubation of the Codevectors 

2.6.1 Method of Simulated Annealing 
 

Another problem being addressed for improving K-Means is in the design of 

better codebook (codevectors). K-Means is a descent algorithm which means that its 

performance (in terms of distortion error decreases) improves every time iteration is 

performed. The problem with a descent algorithm is that it easily gets trapped in a local 

minimum. Kirkpatrick et al. [15] introduced the concept called Simulated Annealing (SA) 

to remedy the problem of local minimum. The analogy comes from the fields of 

metallurgy and materials science in which a metal is slowly heated and then slowly 

cooled so that the system at any time is approximately at thermodynamic equilibrium. If 

cooling is done in a fast manner (quenched), the system will form defects because it 

freezes out in metastable states or it is in local minimum energy state. In simulated 

annealing, the energy of the system is defined by its distortion function. Since the K-

Means is a descent algorithm (i.e. its distortion function is monotonic) it can easily get 

trapped in a local minimum at the end iterations. This is similar to the way a hot metal 

behaves when it is quenched. During the iterations, the K-Means system is being 

“quenched” or “cooled” very fast thus, trapping the distortion function in a local 

minimum. Simulated annealing (SA) remedies this situation by making sure that the 

system “cooling” behaves in a non-monotonic way.  This is done by perturbing the state 

of the system at every iteration so that the distortion function (or energy E) will not 

decrease in a monotonic way [16]. In the case of the SA, the perturbation is accepted 

when the perturbation results in a net decrease of energy (ΔE < 0). When the ΔE > 0, 

perturbation is accepted with the probability exp(-ΔE/T), where T is the temperature or 
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variance of the noise [17]. In SA, perturbation is introduced by corrupting the input 

training data by some noise before the nearest neighbor (NN) repartitioning is done. This 

is called encoder perturbation. Another perturbation is done when the codevectors are 

reconstructed to satisfy centroid condition and this is called decoder perturbation. Due to 

its complexity SA require more computational time when compared to K-means. 

2.6.2 Method of Stochastic Relaxation 
 

A more general form of the Simulated Annealing (SA) algorithm was proposed by 

Zeger, et al [16, 17, 18] and it is called Stochastic Relaxation Scheme (SR). SR seeks to 

provide improvements in terms of computation efficiency as well as in ease of 

implementation. The main difference between SR and SA methods is that in the case of 

SR, codevector perturbations are accepted unconditionally, unlike that of the SA where 

perturbation is accepted only with probability exp(-ΔE/T) whenever ΔE > 0. Another way 

of saying this is that the condition imposed by SA in accepting codevector perturbations 

is “relaxed”, hence, the name Stochastic Relaxation Scheme. As in SA, since SR is the 

general form, encoder (before nearest neighbor computation) and decoder (at centroid 

computation) perturbations are applied to the codevectors when using SR method. SR is 

an attempt to reduce the combinatorial complexity of the SA but still provide a close to 

globally optimal solution.  
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III. Directed Perturbation of the Codevectors 
 
3.1 Background 

      This paper borrows from some of the concepts of codevector perturbation (alteration 

of the codevectors parameters) as espoused in Simulated Annealing (SA) and Stochastic 

Relaxation (SR) techniques. A more directed way of adding perturbation to the 

codevectors will be presented. Recall from 2.6.1 and 2.6.2 that in the case SA and SR, 

encoder perturbations as well as decoder perturbations are done by adding random noise 

on the parameters. The purpose of this noise alteration is to add energy to the system in 

such a way as to avoid the monotonic descent of the codevectors as they converge so they 

will not be trapped in local minima.  

      Here is the summary of the SA and SR rules. For the SA algorithm, the following 

rules apply: 

      1.  Accept proposed perturbation conditionally.  

      2.  Simultaneously either perturb all encoder or all decoder parameters. 

      3.  Do a repartitioning and centroid computation. 

The SR algorithm on the other hand has the following rules: 

      1.  Accept proposed perturbation unconditionally. 

      2.  Simultaneously either perturb all encoder or all decoder parameters. 

      3.  Do a repartitioning and centroid computation.  
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Rule 3 is just the usual standard or “greedy” K-Means rule. The proposed new algorithm 

is a special case of the SR algorithm because it satisfies all three of its general rules. The 

difference is in the way it perturbs the parameters. In the proposed method, perturbations 

are added to the codevectors not in any random direction and amount but in a more 

directed way towards the general direction where the codevectors are going. Just like in 

case of the standard K-Means algorithm, the convergence using the new method also 

proceeds in a monotonically decreasing manner. Figure 2 shows the various positions, 

represented by green circles, of  codevector mi 
 through all of its n iterations. It starts as 

an initial seed mi
0  at the start of iteration and ends as the final codevector  mi

n  on the nth 

iteration. We connect all these codevector  (circles) positions at various iterations t by a 

curve C.  
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Figure 2. Various states of a codevector through its iterations. 
 

                                                                          17



Suppose   mi
t-1 is the ith codevector location in the vector space after iteration t-1 and mi

t  

is the ith codevector location after iteration t. (Please refer to Figure 3). Then C passes 

through mi
t-1 and mi

t  as the codevector descends monotonically towards convergence. 

 

 

 

 

 

 

                                                                 

Figure 3. Possible locations after codevector perturbation. 

 

Now, suppose perturbation is introduced to mi
t such that this codevector will cause to be 

located somewhere on the curve C between  mi
t-1 and mi

t . By doing this, it is 

hypothesized that convergence of mi to its final location may be delayed because we are 

decreasing its momentum thereby increasing the total number iterations needed for 

convergence. 

      On the other hand, if we apply perturbation such that mi moves beyond mi
t (towards 

the right) on the curve C, then it is hypothesized that by applying just the right amount of 

mi
t-1

mi
t

C=f(t) 

perturbing mi
t to this 

point will accelerate 
convergence 

perturbing mi
t to this 

point will delay 
convergence 
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perturbation we may be accelerating the convergence of mi to its equilibrium state by 

giving it just a little more energy, thereby decreasing the total number of iterations 

needed to reach a stable state.   We need to know where to locate mi after perturbing it on 

the curve C so that we can use this perturbed value as the seed value for the next iteration 

which we hope, will result in faster convergence.   
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Figure 4. Computed centroids (circles) perturbed to new locations (squares). 

      For simplicity, curve C can be replaced by creating a straight line passing through 

codevectors mi
t-1  and mi

t . Then, locate the perturbed value of mi
t on this line and call it 

mi
tp .Then, use mi

tp as the seed for the next iteration (i.e. at iteration t+1). Thus, the line 

connecting the previous codevector with the current codevector value is used to 

approximate the general direction of the codevector momentum as the system descends to 

local minimum. It is suspected that the perturbed codevector must be located on the line 

beyond the current codevector if improvement in iteration is to be realized. The task 
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therefore is to find the right amount of perturbation that should be added to the 

codevector in order to enhance performance of K-Means in terms of reduction in the total 

number of iterations at the end of each run. Figure 4 shows the locations of the computed 

centroids (circles) and the locations of perturbed centroids (squares) throughout all 

iterations. 

      The objective of SA and SR algorithms is mainly to find global minimum solutions. 

Due to complex overhead in the computation of the SA and SR algorithms, these 

schemes are not really able to address the problem of efficiency in terms of the speed of 

iteration.  Unlike in the case of SA and SR, the purpose of the new method is not to arrive 

at a global minimum solution but to a local minimum only (as in standard K-Means) but 

with the distinct advantage reduction of the total iterations at the end of run.                                               

  
3.2 Experimental Methodology 

3.2.1 Preliminaries  
 
Let mi

t  and mi
t-1 be the ith codevector locations after iterations t-1 and t, respectively 

(Figure 5), furthermore, let 

                 D = the distance between points mi
t  and mi

t-1 , 

                ΔD = the change in D after perturbing codevector mi
t , 

                 mi
p  = the new point after perturbing mi

t  , and  

                 α = (D + ΔD) / D.                        (1) 

It is clear from Figure 5 that mi
p is computed according to this equation 

                 mi
p = mi

t-1  + α * D.                      (2) 
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When ΔD=0 (i.e., no perturbation), then α = 1.0, and it follows from equation 2 that mi
p  

= mi
t-1 +D = mi

t  . This reduces the algorithm to the standard K-Means at scale α = 1.0, 

hence it is clear that standard K-Means is just a special case of the Perturbed K-Means. 

 

 

 

 

 

 

 

 

 

mi
t-1

mi
t

mi
p

D

ΔD

Figure 5. Scale 

 The goal in this study is to find different values of the scale α such that efficiency is 

achieved in terms of reduction in total iteration for every run of the algorithm. We want 

to test the following:  

 
1. if 0 ≤ α < 1.0 , then perturbation will increase the iterations needed towards 

convergence, thereby delaying it, and 

2. if 1.0 < α ≤ 2.0, then the perturbation will decrease iterations needed towards 

convergence, at some values of α in this range, effectively accelerating 

convergence.  
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3. Furthermore, we want to show that the final locations of the perturbed 

codevectors are equivalent in quality to the final locations of the unperturbed 

(standard K-Means) codevectors.                                                          

3.2.2 The Perturbed K-Means Program 

A program named KM.java has been designed using the Perturbed K-Means algorithm 

that will test the correctness of the hypotheses. KM.java will read its input from a file as 

well as write its output on a different file. This program has the following input and 

output properties: 

Program Input:    

1.  Input File Name – This is a text file containing a set of multivariate data points 

arranged  in rows and columns.  

2.  Integer K – This is an integer representing the predetermined number of 

clusters centers or classes the Perturbed algorithm will partition the data points into. 

4. Output File Name – This is the file where we want our output to go to. 

Program Output:  

            1.   Final codevectors.  

2. Total number of iterations after complete run. 

The source code is found on page  – of the Appendices. 

 

3.2.3 Description of Data 
 
The data that were used as inputs to the program are combinations of real world data as 

well as synthetically-generated data coming from various online data libraries. These data 

contain points whose features are described by numerical descriptions only. In other 
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words, phonetic alphabets and other non-numerical symbols are excluded in the 

description of these data points. These multivariate data are arranged in rows and 

columns. Columns are delimited by space. The mth row represents the mth datapoint and 

the nth column of the mth row is the dimension or features of the mth point. The data were 

processed “as is”. No weights were added to any of its dimension. The program was run 

on data with the following ranges dimensionality: 

                   Dimensions: 2- 60. 

 

3.2.4 Initial Cluster Seeds   
 
The integer K values that were tested have these values, 

                   K : {2, 4, 8, 16, 32}. 

We wanted our initial codebook or codevectors to be located randomly around the 

datapoints so that they are more or less good representatives of the data points. This was 

easily achieved by using pseudo-random number generators from standard library of our 

programming language choice. 

 

3.2.5 Scales   

The values of the scale α that were tested are the following: 

                   α : {0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0}.  

For each data set the same values of randomly generated initial cluster seeds were used to 

run all the α values. This ensured uniformity of criteria when comparing the behavior of 

Perturbed K-Means through various values of the scale.  
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IV. Tests and Results 
 
4.1 The Experiment  

The program KM.java was run using the following data sets as our input namely: 2d.txt, 

5Tec.txt, 14Housing.txt, 60Synt.txt. These data were taken from various free databases 

that are available online.  We wanted to test the consistency of the improvement in 

performance across different dimensions so data that have wide range of dimensionality 

were represented. In this case, data with dimensions 2, 5, 14 and 60, respectively, were 

tested. For each data set and for a particular value of K, the Perturbed program KM.java 

made 40 complete runs producing 40 complete iterations results.  For every run it 

computed K random seeds for the initial codevectors. These initial codevectors were used 

to compute the total iterations for complete runs for each particular scale value α. 40 total 

iterations values (not necessarily unique) were generated for each value of α. To get 

better indication of the iterations’ spread and skewness, the iterations were graphed in 

boxplot graphs. For each particular input data used and K value, the total iterations are 

graphed against different α values. From these graphs it can easily be seen if there are 

improvements in performance as the different scale values are compared. These results 

are summarized in Figures A-B, pages 41-50 of the Appendices.  

 

4.2 Other Metrics  

In order to compare the quality of the perturbed points (codevectors) that we are getting 

to that of the unperturbed points the within class scatter between the two, the class 
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within-class scatter resulting from K-Means and with that resulting from Perturbed K-

means, were compared. Recall that it is the within-class scatter metrics that are being 

minimized when the K-Means algorithm is run. We want to know if the result of running 

the Perturbed K-Means is essentially the same as that of the Unperturbed K-Means by 

comparing if the within-class metrics of the two algorithms converge to more or less the 

same values at the completion of their respective runs. Suppose it is predetermined that 

there are K clusters in the data set. Furthermore, let μi  be the codevector for cluster i ( i = 

1, 2,…, K) and Ci be the number of samples within cluster i, then the within class scatter 

matrix W is defined as  

                     W =  ( )( ) .
1 1

, ijiiji

K

i

iC

j
iji Cxxx ∈−− Τ∑∑

= =

μμ

  
The scatter should become progressively smaller and smaller every time K-Means goes 

through the cycles of nearest-neighbor and centroid computations during iterations. 

     It is also helpful to know the percentage difference between the labeled points of the 

K-Means in comparison to the Perturbed K-Means algorithm as it goes through different 

stages of iteration until complete convergence. If A are classes of points whose cluster 

centers are the codevectors computed using standard K-Means and B are the classes of 

points whose centers are computed using the Perturbed K-Means, then this percent 

difference is computed as follows: 

                           ( |(A-B) U (B-A)|  /  |(A U B)| ) *100% . 

Using this measurement will help us see how fast these two algorithm converge with each 

other and when in the iteration stage the Perturbed K-Means codevectors contain 

essentially identical points as that the ordinary K-Means. 
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4.3 Discussion of Results  

This study was undertaken to answer the main question: Can improvements in 

performance of the K-Means algorithm be realized when the perturbed centroid points are 

used instead of the standard unperturbed centroids? There is overwhelming evidence, 

based on the data from experiments, that indeed, we can realize great improvements in 

the performance when the Perturbed K-Means algorithm is run on data of various sizes, 

dimensionality and number of K partitions using certain scale values instead of the 

standard K-Means. There are substantial improvements in performance in terms of 

reduced total iterations by up to 63% compared to the standard K-Means. 

      At what scale values do we get these great improvements? Please  refer  to  Figure 6. 
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Figure 6. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=32) after 40 runs. 
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Here we have a box plot of a 2-dimensional data containing 16,744 points with K=32. To 

get the box plot values of the iterations we ran the algorithm 40 times. We wanted to 

compare how the performances of the different scale values of the Perturbed K-Means 

compare to the standard K-Means. A cursory look at the box plot graph clearly shows 

that at scale values less than 1.0 there is dramatic decrease in performance based on the 

increase in the median values of the iterations of the scales α = 0.8 and 0.6 when 

compared to K-Means (α = 1.0). This is also indicated by the negative slope of the lines 

connecting the median values of the iterations from scale value 0.6 to 1.0. This 

deterioration in performance is repeated consistently in the rest of the data that were 

tested (Figures B1-B4, C1-C4 and D1-D5). The only exception was in Figures B5 and 

C5. In both of these cases, the value K is 2.0. At this low K value, the iterations are very 

low anyway because the data points are divided into 2 classes only. These 2 exceptions 

represent only 10 percent of the cases. In the 90 percent of the cases, total iterations 

tended to increase when the scale values become less than 1. This is not unexpected since 

as the scale value α at range 0 ≤ α < 1.0 we tend to perturb the codevectors backward 

toward or near the original seed values. The extreme case is with α = 0, in which case we 

are essentially returning the codevector to its original seed values causing the algorithm 

to never converge. 

     The previous scenario is contrasted with the next in which the values of the scale α are 

in the range 1.0 < α ≤ 2.0. Here we got more interesting results. In the above example 

(Figure 6), the medians of the iterations of the different values of α when compared to K-

Means (α = 1.0) are lower. This reduction means improvement in performance. The 
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lowest total iterations was with the use of α = 1.6, where we improve the performance by 

42.72% compared to K-Means (Table 1 summarizes improvement in performances for 

various combinations of scales and K values). The only exception is when the scale α = 

2.0, which in this case the median value is about the same as that obtained by using K-

Means. The box plot values of the iterations at α = 2.0 are confined to a narrow range 

compared to K-Means (α = 2.0). These box plot values is in fact still better than the 

standard K-Means when we compare the middle 50 percent (box) of the iterations data. 

The top whiskers (maximum iterations values) of the box plot for α = 1.1 and 1.2 may 

bother some because they are longer than that of the standard K-Means. This feature of 

the box plot may tend to distort the actual distribution of the data. The box plots for these 

scale values were supplemented by their histograms (Figure 7) so that the actual 

distributions of the points (iterations) can be seen clearly. The frequency (vertical axis) of 

the histogram represents the number of occurrences of the iterations on a range of 

iterations (horizontal axis) after 40 runs of the Perturbed K-Means algorithm. From these 

histograms it is easy to see that the outliers do not represent accurately these particular 

tail values. In fact, in the outlier points (histograms B and C) represent only one 

occurrence (2.5%) of the values. The vast majority of the points are still superior to K-

Means (histogram A). 

     Looking at the performance for the other values of K, (K=16, 8, 4, Figures A2, A3, 

and A4, respectively) the same trend as in Figure 6 (K=32) still holds true. There are 

clearly improvements in performance vis-a-vis K-Means in the range of scale: 1.1 ≤ α ≤ 

1.8.  The improvements are from 31.25% to 46.03%. The box plot for the case α = 2.0 
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show deterioration in performance compared to the previous scales but then the 

performance is not really worse off compared to that of the K-Means. The iterations for  

Dataset Scales with improvements in 
performance relative to 1.0 

Greatest 
Improvement K Figure 

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 42.72% 32  A1 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 41.25% 16  A2 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 46.03% 8  A3 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 31.25% 4  A4 

2d.txt 
16744 points 
2 dimensions 

1.1 8.30% 2  A5 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 53.68% 32  B1 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 63.27% 16  B2 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 56.36% 8  B3 

1.1, 1.2, 1.3, 1.4, 1.5 43.75% 4  B4 

5Tec.txt 
6000 points 

5 dimensions 

None 0% 2  B5 
1.3, 1.4, 1.5, 1.8 12% 32  C1 

1.2, 1.3, 1.4, 1.5, 1.6, 1.8 16.67% 16  C2 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 18.18% 8  C3 

1.2, 1.3, 1.4, 1.5, 1.6 14.29% 4  C4 

14Housing.txt 
506 points 

14 dimensions 

None 0% 2  C5 
1.1, 1.2, 1.3, 1.4, 1.5, 1.6 20% 32  D1 

1.3, 1.4, 1.5, 1.6 10% 16  D2 
1.2, 1.3, 1.4, 1.5, 1.6 11.11% 8  D3 

1.3, 1.4 14.29% 4  D4 

SyntheticControl.txt 
600 points 

 

60 dimensions 

None 0% 2  D5 

Table 1. Summary of the improvements in performance of various scales and K 
combinations. Scales in red give maximum improvement. 

 
this case are also more confined to a narrower range of values. For the case K=2, the box 

plots (Figures A5) show that the iterations are confined to very narrow range for all the 

scales and their performances are practically equivalent to each other.  

      The performance of Perturbed algorithm when ran with the data 5Tec.txt (6000 data 

points with 5 dimensions for each point) is similar to the performance using the previous 

data set (2d.txt). The pronounced difference is in the rapid deterioration in  
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Figure 7. Histograms of 2d.txt (Dimension=2, K=32) to complement the boxplots of 
Fig.6 for α = 1, 1.1, 1.2. The frequency (vertical axis) of the histogram represents the 
number of occurrences of the iterations on a range of iterations (horizontal axis) 
after 40 runs of the Perturbed K-Means algorithm. 

 

performance as the scale value becomes α = 2.0 (Figures B1, B2, B3 and B4). The 

performance was generally good for most of the combinations of K and  α  values.     The 

highest performance was obtained using α = 1.8 at K=16 which shows 63.27% 

improvement (Figure B2). Again as in the case of the previous data set, the performances 

of the Perturbed algorithm using the different scales for K=2 are equivalent to each other, 

in other words, there’s no improvement. 
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      Going to the third data set, 14Housing.txt (506 datapoints with 14 dimensions per 

point): for K=32 (Figure C1), we realize improvement over K-Means for the scales 1.2, 

1.3, 1.4, 1.5 and slightly on 1.8 based on the median values as well as the position of 

boxes (or middle 50 percent of the data). The highest performance was exhibited by the 

combination α = 1.4 and K=8 which improved by 18.18%. The median for scale α = 1.1 

is the same as in K-Means but there is more spread of the middle 50% of the points so it’s 

hard to see if there’s net improvement here. There is deterioration in performance as we 

go to the scales 1.6-2.0. For K=16 (Figure C2), based again on the median and the 

position of the box (middle 50%) there is improvement in performance for the scales 1.1-

1.6, slight improvement for 1.8 and deterioration at 2.0. In the case of K=8 (Figure C3), 

the scales 1.1-1.8 all manifest improvement. Deterioration occurs again at α = 2.0. 

Looking at K=4 (Figure C4), scales 1.2-1.6 represent improvements at 2.0 where there is 

deterioration. For K=2 (Figure C5), again as in the previous two data change in the scale 

does not really confer benefit. 

      For our last data set, which SyntheticControl.txt (600 datapoints with 60 dimensions), 

for K=32 (Figure D1), clearly there are benefits for Perturbed K-Means in scale range 

1.1-1.6. Greatest improvement was 20% at α = 1.3, 1.4 and K=32. Then, performance 

declines at scales 1.8 and 2.0. For K=16 (Figure D2), the scales 1.3-1.6 are good. Then, 

declines are at 1.8 and 2.0. The same is true for K=8 (Figure D3): improvements at 1.2-

1.6 and deteriorations occur at 1.8 and 2.0. At K=4 (Figure D4), basing only on the 

median improvement occurs only at scales 1.3 and 1.4. On closer inspection of the boxes, 

the scales 1.1, 1.2 and 1.5 are still good values because the boxes are narrower and are 

generally located below that of the box for scale 1.0. Performance decreases at 2.0. 
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Lastly, for K=2 (Figure D5),  sets the Perturbed K-Means improvement over the ordinary 

K-Means is zero. 

 

4.4 Equivalence of Labeled Points   

We also wanted to know if the final codevectors obtained from the Perturbed K-Means 

are of the same or closer quality to those obtained by using K-Means. The measurements 

of the within-class scatters of the two algorithms’ labeled points should become closer in 

value to each other as they are near the end of their runs. The results were a pleasant 

surprise. Figures E1-E5 and Figures F1-F5 are the graphs of the ratios of the of the 

within-class scatters of the Perturbed K-Means (Wp) and the original K-Means (Wc) 

plotted against the iterations from start to the end of runs of the two data sets, namely 

2d.txt (16,744 data points, 2 dimensions) and SyntheticControl.txt (600 data points, 60 

dimensions). It is easy to see from these graphs that as the iterations increase, the ratios 

Wp/Wc slowly approach 1 and at the end of the runs these ratios were practically equal to 

1 in all cases. This means that the quality of the labeled points achieved using Perturbed 

K-Means was comparable to the labeled points from using the standard K-Means. Figures 

G1-G5 also show the actual values of the within-class scatter of SyntheticControl.txt for 

the different scale and K values and they all converge to the same value which equal that 

of K-Means (α =1.0). Figure 8 below is a  
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Figure 8. Plot of within class scatter of Perturbed centroid against iteration for 
SyntheticControl.txt (600 datapoints, dimension=60 and K=32). 

 

 

 

Alpha 0.6 0.8 1 1.1 1.2 1.3 1.4 1.5 1.6 1.8 2 

Wp 526670 521294 521319 521095 520997 521615 513753 512648 509735 509787 517342

Total 
Iterations 
after 1 run 10 11 9 9 9 10 9 10 10 18 10 

 

Table 2.  Actual values of within-class scatters and corresponding scale and total 
iterations after 1 run of the Perturbed K-Means algorithm for data set 

SyntheticControl.txt (600 data points, dimension=60 and K=32). 
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reproduction of Figures G1 from the Appendix. The actual values of the within-class 

scatter for the graphs are found on Table 2. Here, the actual within-class scatter for the 

standard K-Means (α = 1) is 521,319 at the end of its run. The actual within-class scatters 

for the different scales are all very close to the value of the standard K-Means. These 

differences vary from 0.06% (α = 1.3) to 2.22% (α = 1.6). This means that the Perturbed 

K-Means descend to more or less the same local minimum.  

 
4.5 Percent Difference Between Labeled Points  

We also want to know at what point in the cycle of iterations the Perturbed K-Means 

become identical to the standard K-Means in the sense that their particular codevectors 

own practically the same clusters of data points.  This comparison can be achieved by 

comparing the percentage difference between the labeled points of the Perturbed K-

Means and the labeled points of the standard K-Means.  Figures H1-H5 and Figures I1-I5 

are the plots of these differences for the data sets 2d.txt and SyntheticControl.txt, 

respectively. As we can see from these plots, initially at the beginning stages of the 

iterations the difference between the labeled points are high, in some cases approaching 

35% (e.g. Figure I1). But these differences quickly dissipate towards zero percent value, 

sometimes during the middle stages in the iterations, and especially towards the end 

stages when the differences become zero or almost zero.  This zero difference happens 

because as the iterations progress, the effect of the scales become less and less 

pronounced and the Perturbed K-Means codevectors become identical with the standard 

K-Means. 
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V. Conclusions and Future Work 
 
5.1 Conclusions  

Based on the four data sets that we tested, it has been shown that it is certainly possible to 

realize improvements on performance of the K-Means by applying some scaling 

mechanism to the codevectors. This modified version of the K-Means algorithm, called 

Perturbed K-Means, was able to obtain these enhanced performances without sacrificing 

the quality of the final codevectors. Using the Perturbed K-Means on the four data sets 

above, we were able to achieve performance on K-Means algorithm by as much 63.27%. 

The labeled points that were derived by using the Perturbed algorithm were the same, 

quality-wise, from the labeled points derived by using the standard K-Means. The benefit 

is faster convergence because of reduced total iterations needed to reach local minimum.  

     This benefit was achieved by applying perturbations to the codevectors that were 

computed after a cycle of nearest-neighbor and centroid computations. These perturbed 

points were used as the new cluster seeds for next cycle of the nearest-neighbor and the 

centroid computations. The general locations of the perturbed codevectors were along the 

lines connecting the current codevectors and the previous codevectors. These lines 

become our general estimator of the directions of the momenta of the codevectors as they 

lose energy during converge. Furthermore, the amounts of perturbations were scaled in 

direct proportion to the length of the distance between the current unperturbed codevector 

and the previous codevector. 
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     The Perturbed K-Means algorithm was also superior in performance across varying 

degrees of data dimensionality. And it was effective for different values K initial centers 

that were used with the exception of K=2, at which value, the Perturbed K-Means does 

not seem to exhibit much improvement over the standard K-Means. The algorithm does 

not guarantee superior result every time it is used. But by picking just the right kind of 

scale to use the Perturbed algorithm is on average better than the standard K-Means.   

 
5.2 Future Work  

This work is by no means an exhaustive. Much work lies ahead and there is certainly 

more room for improvement. The Perturbed method needs to be tested using data sets 

with different size properties in order for us to validate if the improvements we got were 

consistent. It needs to be run using larger datasets. Future studies may also be done to test 

its sensitivity to other parameters. For instance, how does this algorithm behave when, 

instead of using the usual Euclidean metric, we use other distance measurements like the 

city block, the Mahalanobis or the Canberra metrics?  Future study can also be done to 

test the algorithm for its sensitivity to some data set properties. For example is it sensitive 

to the ratio of data size to K? Does higher ratio reduce the effectiveness of the algorithm?  

Note that at K=2, which means higher ratio of data size to K, the algorithm becomes 

almost useless.    

     Studies can also be done to determine if the Perturbed algorithm may be combined 

with other performance improvement techniques that have been proposed and have been 

proved successful by other investigators in order to further fine tune this algorithm. 
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Glossary 

 

A priori – Proceeding from a known or assumed cause to a necessarily related effect. 

Bayesian network – It is a directed graph of nodes representing variables and arcs 

representing dependence relations among the variables. 

Codebook – A set of codevectors 

Codevector – A point in the Euclidean space Rn that represent a subset of points in Rn . 

Euclidean metric – the function d : Rn x Rn → R that assigns to any two vectors in 

Euclidean  n-space x = (x1,…,xn) and y = (y1,…,yn) the number 

                                      

and so gives the "standard" distance between any two vectors in Rn. 

Global minimum – The smallest overall value of a set, function, etc., over its entire range. 

Heuristic – In computer science, it is a technique designed to solve a problem that ignores 

whether the solution can be proven to be correct, but which usually produces a good 

solution or solves a simpler problem that contains or intersects with the solution of the 

more complex problem. 

Hoeffding's inequality – It is a result in probability theory that gives an upper bound on 

the probability for the sum of random variables to deviate from its expected value. 

K-means algorithm – An algorithm for partitioning (or clustering) N data points into K 

disjoint subsets Sj containing Nj data points so as to minimize the sum-of-squares 

criterion  
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where xn is a vector representing the nth data point and μj is the geometric centroid of the 

data points in Sj. 

Local minimum – A local minimum, also called a relative minimum, is a minimum 

within some neighborhood that need not be (but may be) a global minimum. 

Perturbation – Alteration of the state of a system by addition of noise. 

Simulated annealing – It is a method of searching for global minimum in a general 

system in which an analogy between the way in which a metal cools and freezes into a 

minimum energy crystalline structure (the annealing process) is used. 

Unsupervised learning – A method of machine learning where a model is fit to 

observations. It is distinguished from supervised learning by the fact that there is not a 

priori output. 

Vector – An element of a vector space. In the commonly encountered vector space Rn 

(i.e., Euclidean n-space), a vector is given by n coordinates and can be specified as 

(A1,A2,…,An). 

Vector quantizer – It maps n-dimensional vectors in the vector space Rn into a finite set 

of vectors Y = {yi: i = 1, 2, ..., N}. 

Voronoi diagram – The partitioning of a plane with n points into convex polygons such 

that each polygon contains exactly one generating point and every point in a given 

polygon is closer to its generating point than to any other. A Voronoi diagram is 

sometimes also known as a Dirichlet tessellation. 
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Figure A1 
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Figure A1. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=32) after 40 runs. 
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Figure A2 
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Figure A2. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=16) after 40 runs. 
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Figure A3 
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Figure A3. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=8) after 40 runs. 
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Figure A4 
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Figure A4. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=4) after 40 runs. 
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Figure A5 
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Figure A5. Box Plot of iteration against scale alpha of 2d.txt (16744 datapoints, 
dimension=2 and K=2) after 40 runs. 
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Figure B1 
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Figure B1. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints, 
dimension=5and K=32) after 40 runs. 
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Figure B2 
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Figure B2. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints, 
dimension=5and K=16) after 40 runs. 
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Figure B3 
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Figure B3. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints, 
dimension=5and K=8) after 40 runs. 
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Figure B4 
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Figure B4. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints, 
dimension=5and K=4) after 40 runs. 
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Figure B5 
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Figure B5. Box plot of iteration against scale alpha of 5Tec.txt (6000 datapoints, 
dimension=5and K= 2) after 40 runs. 
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Figure C1 
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Figure C1. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints, 
dimension=14 and K=32) after 40 runs. 
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Figure C2 
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Figure C2. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints, 
dimension=14 and K=16) after 40 runs. 
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Figure C3 
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Figure C3. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints, 
dimension=14 and K=8) after 40 runs. 
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Figure C4 
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Figure C4. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints, 
dimension=14 and K=4) after 40 runs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                          56



 
 
 
 

Figure C5 
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Figure C5. Box plot of iteration against scale alpha of 14Housing.txt (506 datapoints, 
dimension=14 and K=2) after 40 runs. 
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Figure D1 
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Figure D1. Box plot of iteration against scale alpha of SyntheticControl.txt (600 
datapoints, dimension=60 and K=32) after 40 runs. 
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Figure D2 
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Figure D2. Box plot of iteration against scale alpha of SyntheticControl.txt (600 
datapoints, dimension=60 and K=16) after 40 runs. 
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Figure D3 
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Figure D3. Box plot of iteration against scale alpha of SyntheticControl.txt (600 
datapoints, dimension=60 and K=8) after 40 runs. 
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Figure D4 

 
 
 
 
 

 
 
 
 
 
 
 

Figure A-- Box Plot of syntheticControl.txt (600 datapoints, dimension=60 and K=4) 
after 40 runs 
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Figure D4. Box plot of iteration against scale alpha of SyntheticControl.txt (600 
datapoints, dimension=60 and K=4) after 40 runs. 
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Figure D5 
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Figure D5. Box plot of iteration against scale alpha of SyntheticControl.txt (600 
datapoints, dimension=60 and K=2) after 40 runs. 
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Figure E1 
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Figure E1. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter 

of Unperturbed centroids (Wc)  against iterations for 2d.txt (16744 datapoints, 
dimension=2 and K=32). 
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Figure E2 
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Figure E2. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter 

of Unperturbed centroids (Wc)  against iterations for 2d.txt (16744 datapoints, 
dimension=2 and K=16).  
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Figure E3 

 

0.9

1

1.1

1.2

1.3

1.4

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Iteration

W
p/

W
c

Alpha: 0.6  
Alpha: 0.8  
Alpha: 1.0  
Alpha: 1.1  
Alpha: 1.2  
Alpha: 1.3  
Alpha: 1.4  
Alpha: 1.5  
Alpha: 1.6  
Alpha: 1.8  
Alpha: 2.0  

2d.txt
Datapoints: 16744 
Dimension:  2 
K: 8

 
 
 
 
 
 
 
Figure E3. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter 

of Unperturbed centroids (Wc)  against iterations for 2d.txt (16744 datapoints, 
dimension=2 and K=8).  
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Figure E4 
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Figure E4. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter 

of Unperturbed centroids (Wc)  against iterations for 2d.txt (16744 datapoints, 
dimension=2 and K=4). 
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Figure E5 
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Figure E5. Plot of within class scatter of Perturbed centroids (Wp) / within class scatter 

of Unperturbed centroids (Wc)  against iterations for 2d.txt (16744 datapoints, 
dimension=2 and K=2).  
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Figure F1 

 
 

 

Figure F1. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of 
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Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints, 
dimension=60 and K=32). 
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Figure F2 

 

igure F2. Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of 
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F

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints, 
dimension=60 and K=16). 
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Figure F3 
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Figure F3

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints, 
dimension=60 and K=8). 
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Figure F4 
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Figure F4

Unperturbed centroid against iteration for SyntheticControl.txt (600 datapoints, 
dimension=60 and K=4). 
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Figure F5 

 

igure F5- Plot of within class scatter of Perturbed centroid (Wp) / within class scatter of 
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dimension=60 and K=2).  
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Figure G1 

 

Figure G1. Plot of within class scatter of Perturbed centroid against iteration for 
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Figure G2 

 

 

Figure G2. Plot of within class scatter of Perturbed centroid against iteration for 
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SyntheticControl.txt (600 datapoints, dimension=60 and K=16).  
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Figure G3 

 

Figure G3. Plot of within class scatter of Perturbed centroid against iteration for 

 

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

W
p

 
 
 
 
 
 

SyntheticControl.txt (600 datapoints, dimension=60 and K=8).  
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Figure G4 

 

Figure G4. Plot of within class scatter of Perturbed centroid against iteration for 
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SyntheticControl.txt (600 datapoints, dimension=60 and K=4).  
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Figure G5 

 

Figure G5. Plot of within class scatter of Perturbed centroid against iteration for 
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SyntheticControl.txt (600 datapoints, dimension=60 and K=2).  
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Figure H1 

 

Figure H1. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid against iteration for 2d.txt (dimension=60 and K=32).  
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Figure H2 

 

Figure H2. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid against iteration for 2d.txt (dimension=60 and K=16). 
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Figure H3 
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Figure H3. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid against iteration for 2d.txt (dimension=60 and K=8). 
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Figure H4 

 

Figure H4. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid against iteration for 2d.txt (dimension=60 and K=4). 
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Figure H5 

 

Figure H5. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid against iteration for 2d.txt (dimension=60 and K=2). 
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Figure I1 

 

    

gure I1. Plot of percentage difference between Perturbed centroid and Unperturbed 
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Figure I2 

 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

D
iff

er
en

ce

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

 
 

Figure I2. Plot of percentage difference between Perturbed centroid and Unperturbed 
centroid for SyntheticControl.txt (data size=600, dimension=60 and K=16). 
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Figure I3 

 

Figure I3. Plot of percentage difference between Perturbed centroid and Unperturbed 

 
 

 
 
 
 
 
 
 
 

centroid for SyntheticControl.txt (data size=600, dimension=60 and K=8). 
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Figure I4 

 

Figure I4. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid for SyntheticControl.txt (data size=600, dimension=60 and K=4). 

 
 
 
 
 
 
 
 
 
 
 
 

Alpha: 0.6
Alpha: 0.8
Alpha: 1.0
Alpha: 1.1
Alpha: 1.2
Alpha: 1.3
Alpha: 1.4
Alpha: 1.5
Alpha: 1.6
Alpha: 1.8
Alpha: 2.0

SyntheticControl.txt 
Datapoints: 600 
Dimension:  60 
K: 4

                                                                          86



 
 
 
 

Figure I5 

 

Figure I5. Plot of percentage difference between Perturbed centroid and Unperturbed 
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centroid for SyntheticControl.txt (data size=600, dimension=60 and K=2). 
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Source Code for the Perturbed K-Means. 

import java.util.*; 
import java.io.*; 

 
ector; 

malFormat; 

ublic static void main(String[] args) throws IOException 
 

DecimalFormat fmt = new DecimalFormat("0.#"); 
igits(1); 

 
    kSize=2; 

ileWriter writer = new FileWriter("Output.txt");   
    BufferedWriter bw = new BufferedWriter(writer);//works across different platform 

    bw.write("Data Name:  "+dataName); bw.newLine(); 
     "+kSize); bw.newLine(); 

Reader  file = new FileReader(dataName); 
    BufferedReader buff = new BufferedReader(file); 

    pointSize = -1; 

 pointSize + 1; 
tring line = buff.readLine(); 

import java.math.*;
import java.util.V
import java.text.Deci
  
public class KM 
{ 
  
  p
  {
      int kSize, pointSize, dim; 
      
      fmt.setMinimumFractionD
 
      String dataName = "14Housing.txt";
  
 
       
 
      F
  
 
      bw.newLine(); 
  
      bw.write("K:     
         
           
 
      File
  
 
      boolean eof = false; 
  
      dim=0; 
      while(!eof) 
      { 
         pointSize =
         S
         if(pointSize == 1) 
         { 
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            StringTokenizer tok = new StringTokenizer(line); 
im = tok.countTokens(); 

(line == null) 
        eof = true; 

.close(); 
tem.out.println("dimension = "+dim); 

intln("pointSize = "+pointSize); 

ne(); 
    bw.write("Dimension:  "+dim);  bw.newLine(); 

]; 

    FileReader  file2 = new FileReader(dataName); 
    BufferedReader buff2 = new BufferedReader(file2); 

    StringTokenizer tok2; 
 < pointSize; i++) 

zer(line); 
(tok2.hasMoreTokens()) 

or(int n=0; n < dim; n++) 
          { 

Double(tok2.nextToken()); 
//System.out.print(" "+point[i][n]+" "); 

2.close(); 

            d
         } 
     
          if
      
           
      }  
      buff
      Sys
      System.out.pr
 
      bw.write("Datapoints: "+pointSize); bw.newLi
  
      bw.write("-------------------------------------"); 
 
      double point [][] = new double[pointSize][dim
 
 
  
  
      eof = false; 
      int kount = -1; 
 
      String line; 
  
      for(int i=0; i
      {       
         line = buff2.readLine(); 
                
         tok2 = new StringTokeni
         while
         { 
 
            f
  
                point[i][n]=Double.parse
                
            } 
            System.out.println(); 
         } 
      }  
      buff
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    double 

=0,dot8=0,one=0,one1=0,one2=0,one3=0,one4=0,one5=0,one6=0,one8=0,two=0; 

= tRuns; run++)  
    {   

stem.out.println("Run..."+run); 

       bw.write("Run..."+run); 

oses initial centroid from datapoints 
     

 int integ; 

; i < pointSize; i++) 

er(i)); 

       int ps = pointSize; 
      int inte; 

; c < kSize; c++) 
 { 

*ps); 
nte2 = ((Integer)(indexOfPoints.remove(inte))).intValue(); 

0; n < dim; n++) 
  { 

        

  
dot6
 
      double tRuns=40; 
 
      for(int run=1; run <
  
 
         Sy
 
         bw.newLine(); 
  
         bw.newLine(); 
 
         //Randomly cho
  
         double k[][] = new double[kSize][dim]; 
        
         Vector indexOfPoints = new Vector(); 
         for(int i=0
         { 
            indexOfPoints.add(new Integ
         } 
 
  
  
   
         int inte2; 
       
         for(int c=0
        
            inte =  (int)(Math.random()
            i
             
            ps=ps-1; 
         
            for(int n=
          
               k[c][n]=point[inte2][n]; 
            } 
            //System.out.println();        
         } 
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       double alpha; 

  double P [] = {0.6,0.8,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.8,2.0}; 
th; 

; p++) 
   { 

 new int[pointSize]; 

  

         double centroid [][] = new double[kSize][dim]; 

          { 
) 

 

uble prevCentroid [][] = new double[kSize][dim]; 

          for(int j=0; j < kSize; j++) 

) 
 

d]; 

uble perturbed[][] = new double[kSize][dim]; 
    

      Vector clus [] = new Vector [kSize]; 
          for(int j=0; j < kSize; j++) 

  
       
         int sP = P.leng
     
         for(int p=0; p < sP
      
            alpha = P[p]; 
 
            int labelA [] =
 
            int labelB [] = new int[pointSize];  
 
  
 
   
 
            for(int j=0; j < kSize; j++) 
  
               for(int d=0; d < dim; d++
               {
                  centroid[j][d] = k[j][d]; 
               } 
            } 
 
            do
 
            //initialize prevCentroid 
  
            { 
               for(int d=0; d < dim; d++
               {
                  prevCentroid [j][d] = k[j][
               } 
            } 
 
            do
  
     
 
      
  
            { 
               clus[j] = new Vector(); 
            } 
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            double dSquared [] = new double [kSize]; 

     int index=0; 

mp; 
      

tation 
   for(int i=0; i < pointSize; i++) 

r(int j=0; j < kSize; j++) 
     { 

em=0; 
dim; d++) 

[j][d]-point[i][d]),2); 

quared[j] = tem; 
             } 

et nearest cluster  
        temp=dSquared[0];//initialize temp 

 j++) 

 

ndex=j; 

lA[i] = index;//label point with winning cluster 

          clus[index].add(new Integer(i));//use wrapper class 

          ////--------------------------------///// 
         //Start centroid computation //  

       
 
            double tem, te
  
            //Initial N-N compu
         
            {   
         
               fo
          
                  dSquared[j]=0; 
                  t
                  for(int d=0; d < 
                  {  
                     tem = tem + Math.pow((k
                  } 
 
                  dS
  
      
               //g
       
               for(int j=0; j < kSize;
               { 
                  if(dSquared[j] <= temp) 
                  {
                     temp=dSquared[j]; 
                     i
                  } 
               } 
               labe
 
            //add winning point to the winning cluster 
  
      
            } 
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            int iter; 
            double tempr [] = new double[dim]; 

lse; 

          
ChangeInMembership == false) 

 

ter++; 
   

fClusj = 0;//number of points in clus j 

             { 
(); 

/System.out.println("Clus "+j+" has "+sizeOfClusj+ " points."); 

              {        
; n++) 

or(int s=0; s < sizeOfClusj; s++) 

elementAt(s))).intValue()][n]; 

r(int n=0; n < dim; n++) 
                   { 

sizeOfClusj; 

r(int n=0; n < dim; n++) 
                   { 

[j][n]+(alpha-1)*(centroid[j][n]-
]); 

 
            boolean noChangeInMembership = fa
  
            iter=0; 
   
            while(no
            {
     
               i
      
               int sizeO
 
               for(int j=0; j < kSize; j++) 
  
                  sizeOfClusj = clus[j].size
                  /
   
                  if(sizeOfClusj != 0) 
    
                     for(int n=0; n < dim
                     { 
                        tempr[n]=0; 
                        f
                        {           
                           tempr[n] = tempr[n] + 
point[((Integer)(clus[j].
                        } 
                     } 
 
                     fo
  
                        centroid[j][n] = tempr[n]/
                     } 
 
                     fo
  
                        perturbed[j][n] = centroid
prevCentroid[j][n
                     }            
 
                  }//if 
 
               } 
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               //clear point indexes from clusj 
             for(int j=0; j < kSize; j++) 

       //Nearest-neighbor 

Size; i++) 
        {   

r(int j=0; j < kSize; j++) 
        { 

em=0; 
dim; d++) 

erturbed[j][d]-point[i][d]),2); 

quared[j] = tem; 
                } 

et nearest cluster  
           temp=dSquared[0];//initialize temp 

                { 

 

ndex=j; 

elB[i] = index;//label point with winning cluster,perturbed point used 

er class 
             }//for 

  
               { 
                  clus[j].clear(); 
               } 
       
                 
        
      
               for(int i=0; i < point
       
         
                  fo
          
                     dSquared[j]=0; 
                     t
                     for(int d=0; d < 
                     {  
                        tem = tem + Math.pow((p
                     } 
 
                     dS
  
      
                  //g
       
 
                  for(int j=0; j < kSize; j++) 
  
                     if(dSquared[j] <= temp) 
                     {
                        temp=dSquared[j]; 
                        i
                     } 
                  } 
 
                  lab
 
                  //add winning point to the winning cluster 
 
                  clus[index].add(new Integer(i));//use wrapp
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               //Compare labelA and labelB 
             int count=0; 

  count = count + 1;       

count == pointSize)//no more change in membership 
               noChangeInMembership = true; 

             { 

 

pdate value of prevCentroid  
                for(int j=0; j < kSize; j++) 

) 
 

oid[j][d]; 

se 

          }// end of while loop 

          System.out.println("Alpha:    "+alpha);  
    System.out.println("Iteration: "+iter); 

Line(); 
         bw.write("Iteration:   "+iter);  bw.newLine(); 

          if(alpha == 0.6) 
             dot6=dot6+iter; 

  
               for(int i=0; i < pointSize; i++) 
               { 
                  if(labelA[i] == labelB[i]) 
                   
               } 
  
               if(
   
 
               else//update labelA, prevCentroid 
  
                  for(int i=0; i < pointSize; i++) 
                  {
                     labelA[i] = labelB[i];      
                  } 
 
                  //U
  
                  { 
                     for(int d=0; d < dim; d++
                     {
                        prevCentroid[j][d] = centr
                     } 
                  } 
 
               }//el
 
 
  
 
       
  
        
  
            bw.write("Alpha:      "+alpha);  bw.new
   
 
 
  
  
            else 
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            if(alpha == 0.8) 
               dot8=dot8+iter; 

=one+iter; 

1=one1+iter; 

2=one2+iter; 

3=one3+iter; 

4=one4+iter; 

5=one5+iter; 

6=one6+iter; 

8=one8+iter; 

 
        

ystem.out.println(); 

     
bw.newLine(); 

ystem.out.println("alpha=.6  : "+dot6/tRuns); 

            else 
            if(alpha == 1.0) 
               one
            else 
            if(alpha == 1.1) 
               one
            else 
            if(alpha == 1.2) 
               one
            else 
            if(alpha == 1.3) 
               one
            else 
            if(alpha == 1.4) 
               one
            else 
            if(alpha == 1.5) 
               one
            else 
            if(alpha == 1.6) 
               one
            else 
            if(alpha == 1.8) 
               one
            else 
               two=two+iter; 
 
         }//end of alpha loop
  
         bw.newLine(); 
         S
       
      }//end of random runs 
 
      //System.out.println(); 
 
       
  
     // 
      
       
      
      
      S
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      System.out.println("alpha=.8  : "+dot8/tRuns); 

 
 

    bw.write("Average Iteration:");       bw.newLine(); 
w.write("---------------------");    bw.newLine(); 

e(); 
w.write("alpha=.8  : "+dot8/tRuns);  bw.newLine(); 

 

w.close();  
//method main 

//class KM 

      System.out.println("alpha=1.0 : "+one/tRuns); 
      System.out.println("alpha=1.1 : "+one1/tRuns);
      System.out.println("alpha=1.2 : "+one2/tRuns);
      System.out.println("alpha=1.3 : "+one3/tRuns); 
      System.out.println("alpha=1.4 : "+one4/tRuns); 
      System.out.println("alpha=1.5 : "+one5/tRuns); 
      System.out.println("alpha=1.6 : "+one6/tRuns); 
      System.out.println("alpha=1.8 : "+one8/tRuns); 
      System.out.println("alpha=2.0 : "+two/tRuns); 
 
       
  
      b
       
      bw.write("alpha=.6  : "+dot6/tRuns);  bw.newLin
      b
      bw.write("alpha=1.0 : "+one/tRuns);   bw.newLine(); 
      bw.write("alpha=1.1 : "+one1/tRuns);  bw.newLine();
      bw.write("alpha=1.2 : "+one2/tRuns);  bw.newLine(); 
      bw.write("alpha=1.3 : "+one3/tRuns);  bw.newLine();  
      bw.write("alpha=1.4 : "+one4/tRuns);  bw.newLine(); 
      bw.write("alpha=1.5 : "+one5/tRuns);  bw.newLine(); 
      bw.write("alpha=1.6 : "+one6/tRuns);  bw.newLine(); 
      bw.write("alpha=1.8 : "+one8/tRuns);  bw.newLine(); 
      bw.write("alpha=2.0 : "+two/tRuns);    
 
       
  
      b
  }
 
   
}
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