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CHAPTER |

INTRODUCTION

The term “Spline” comes from the field of mechanics, where a physicagspli
the flexible spring steel strip used by draftsmen to go over a set ofipeespoints [1].
Weights are attached to that strip at those given data points, so thatattes $hg and

straightens out as much as it can. This results in minimizing the stored gdatantigy
(P.E.) of the bending.P.E.=C fj;o K?(1)dl whereC is a constant that describes the

stiffness of the spring steel strip and the curvakiiee y /|1 + (y')?|3/2. A trace along

the spline results in the required physical spline [2]. The shape formed by thigspline
natural without any stress between the points. The mathematical modelpifytisal

spline helps us in mechanizing the process, resulting in spline functions. Out of these
polynomial spline functions, those functions that have a fixed degree of three are
obviously termed as cubic splines. The background of splines along with the cubic
equation of the spline between two nodes or knots is discussed in detail at the beginning

of Chapter 2.



1.1 Motivation

Every cubic spline has unique boundary conditions, which is explained further in
the next chapter. Based on these conditions, it is classified into one of thendiffges
of cubic splines. Currently, cubic spline interpolation is performed independgntly b
using the existing routines in different programming languages. With the&anbns
growing needs of cubic splines in various fields, users would like to interploéatelata
and compare the resulting splines based on the different types of cubic splineveiiowe
there is no known software that interpolates all the different types of cubiesfiir a
given set of data. This difficulty led me to the development of a unified software

package for cubic spline interpolation.

1.2 Cubic Spline Terminology

As mentioned earlier, cubic splines are classified into different typese of
them being discussed inclublatural cubic spline, Complete cubic spline, Clamped
cubic spline, Not-a-knot cubic spline, andShape-preserving cubic spline. Based on the
specifiedend conditions, they are mostly categorized into one of these types. In order to
interpolate a cubic spline, some data is necessary consisting of points and thiein func

values, commonly known a®des or knots.

The initial process of cubic spline interpolation is to calculateab#i cients of
the cubic spline which include all the coefficients of the linear, quadradicabic terms
of the cubic equation. This is achieved after eventually solvingliagonal system,
which is explained in detail in the next chapter. Evaluating the first and second

2



derivatives of the cubic spline is also necessary, depending on the requiremehés and t
type of the cubic spline being interpolated. The final step is to evaluate the \&lie

at any specified point within the range of nodes, by using the spline coetffici

calculated in the previous step. Obviously, at any given node, the spline value is equal to

the actual function value specified in the data set.

1.3 Thesis Outline

A detailed literature review along with the background of cubic splines is
discussed in Chapter 2. It also covers the various types of cubic splines, and their
classification based on the various end conditions. The description of the problem being
solved and the development of the code to perform cubic spline interpolation are
explained in Chapter 3. The whole process of interpolating the cubic spline incliding
the necessary steps along with their respective Java routines follows thregdesssl
The various different tests performed along with the results obtained conhgrise

majority of Chapter 4. The various graphs of cubic spline curves obtained for some

1
(1+x2)

common functions such am x, cos x, e* and are explained by comparing the

different types of the cubic splines. Finally, the conclusions of the thesis asabie

for future work are laid out in Chapter 5.



CHAPTER Il

LITERATURE REVIEW

2.1 Background of Splines

If we represent the spline witt{x), then the second derivatigé(x) of the
spline approximates the curvature ahdapproximates the differential arc length [3].
Thus the stored potential energy of su¢mearized spline is proportional to
[ s"(x)? dx. When the knotéx,, v;), (X3, ¥2),- .., (xn, V) are given, the linearized
interpolating spline(x) is such thas(x;) = y; (i = 1, 2,...,n) and such that

f;"(s”(x))z dx is minimized. Additionallys(x) is a cubic polynomial between each

adjacent pair of knots, and adjacent polynomials join continuously with continuous first
and second derivatives of the spline at the knots. Hence, the cubic spline equation

between two knots is defined as
s(x) =y + bi(x —x) +ci(x —x)* + di(x — %)%, x; < x < X344 [3]

whereb;, ¢c;, andd;, i = 1,2,...,n — 1 are the coefficients that are calculated and stored

for the evaluation of the spline values later on.



As the end conditions determine the type of a cubic spline, the scope for having
different end conditions can be explained with the help of the parameters of a cubic
spline curve. There will be — 1 intervals between the nodes and so there will be
n — 1 cubic equations with 4 parameters each, making the total number of parameters
that need to be determined4as— 4 [3]. As stated earlier, since the spline has
continuous first and second derivatives at each of the interior nodes, every; has
3(n — 2) conditions ors. Ass(x;) = y; for each of thex nodes, adding that many
conditions makes #n — 6 parameters. Hence, all we need is two more conditions to

completely determine the cubic spline, and these are obviously knasnd eanditions.

2.2 Natural cubic spline

The two end conditions that define the natural cubic spling’dpg) = 0 and
s"(x,,) = 0[3]. It gotits name because of its similarity to the physical spline used by
draftsmen in the mechanical field. The physical spline straightens outchsasiit can at
the last points. In a similar manner, the natural cubic spline also beconesgla §he

at the end nodes because its second derivatives are zero [4].

Shampine and Allen [2] have stated the following theorem to describe the

smoothness of the spline by considering the natural cubic spline.

Theorem: Letf be twice continuously differentiable ¢, b] and lets(x) be the natural

cubic spline interpolating(x) ata = x, < x; <...x, = b. If we define

h= max (x;j.; —x;
Osisn—l( i+l i),



then

b 1/2
gl f 00 = sl < k¥ { | [f”(t)]zdt} ,

a

1/2

b
max [f'(x) — s’ ()| < /2 { f [f”(t)]zdt}

This theorem tells us that with the increase in the number of nddasjls converge
uniformly to f" andf respectively, for alk € [a, b]. Because is so smooth, the natural

cubic spline is very useful for interpolation and numerical differentiation.

2.3 Complete and clamped cubic splines

The complete cubic spline is defined by the end condittiag) ~ f'(x;) and
s'(x,) = f'(x,). But, instead of requesting the valyééx;) andf’(x,), the four data
points nearest each end are interpolated with the cubics and their slopes are used in

solving the required tridiagonal system [4].

Clamped cubic spline uses the same end conditions as the complete cubic spline
which ares’(x;) = f'(x;) ands’(x,,) = f'(x,). However, the clamped cubic spline
requests thosg'(x;) andf’(x,) values from the user, instead of using the

approximations of the complete cubic spline.

Even though both of these cubic splines are dependent on the set of end

conditions, their interpolated spline curves are distinct in their own respectss tihis



to the fact that, in a clamped cubic spline the end conditions are the first desidtilie

actual function, which is not the case for the complete cubic spline.

2.4 Not-a-knot cubic spline

The not-a-knot cubic spline utilizes the condition that the third derivative of the
spline is continuous at, andx,_; [5]. By the name itself, it indicates that nothing is
specified at the traditional end points other than the fact that this spline intespgblka

data at the end points.

Behforooz [6] presented an idea to extend the concept of not-a-knot spline to all
the interior knots and to obtain a piecewise interpolatory cubic polynomial. Iss&s\se
shortcut by eliminating the necessity of solving the tridiagonal sysdiemvever, for

more general purposes, the conventional not-a knot cubic spline is implemented here.



CHAPTER Il

DEVELOPMENT OF THE SOFTWARE PACKAGE

3.1 Problem of distinct and independent routines

In order to interpolate a cubic spline for given data, users have to use one of the
existing routines for different types of splines written in various diffdesrguages. This
procedure is obviously very tedious and difficult. First of all, the users need to modify
their data in order to match the input parameters of those routines. Even after
interpolating the spline, the results will be outputted in different forms. So, the

comparison of those obtained results will be another major task.

Shampine and Allen [2] have presented subroutines in the FORTRAN language to
evaluate the natural cubic spline. One of the input parameters for them is “Wvitiek”
has the order of nodes in increasing order. However, Shampine, Allen and Pruess [4]
have provided the subroutines in C language to evaluate the complete cubic spline. They
have a parameter called “Flag”, which reports the status of the order of modibe a
invalid number of nodes. Bradie [7] provided the archives of source code for clamped

and not-a-knot cubic splines. But it has all the interpolation routines, both useful and



ignorable types under one header file. All these instances provide a cteex pfahe

problem being faced and project light into the need for a unified software package.

3.2 Softwar e package development

The unified software package for the cubic spline interpolation in various types is
developed using the Java language. The entire source code present in the package,
including the main driver routine is listed in Appendix A. In general, the process of
interpolating a cubic spline is mainly divided into two major steps. The first one is
calculating the coefficients of the cubic spline, whereas the second evausating the

spline at the required point using those coefficients.

3.2.1 Calculation of spline coefficients

The routinecubicSplineCoeffs calculates the various coefficients required for the
cubic spline interpolation. It is called only once for each set of data. Ititakesdata
consisting of the number of nodes, the interpolating points and their respective function
values, along with the type of cubic spline. For the clamped cubic spline, itswill a
utilize the two input parameters which are the first derivatives of thel fighechion at
the end points. The routine then computes the tridiagonal system, if required, and then
eventually calculates the coefficients of the linear, quadratic and theteubi of the

cubic spline.



Depending upon the type of the cubic spline, this routine calls one of the
respective subroutines and deals with the parameter requirements for tbetmgbe
The main advantage of having one routine for all the types of cubic splines is to avoid the
difficulties in dealing with various parameters. In order to calculate, #renegds to

supply the necessary parameters and call this routine only once.

3.2.2 Evaluation of the spline

The routine that evaluates the value of the spline for a give point is
cubicSplineValue. This routine is called several times, once for each point where the
spline is to be interpolated. It receives the nodes, the spline coefficientqdha thie
cubic spline, and the point of spline evaluation as inputs. Using all of these, it calculate

the value of the cubic spline.

Depending upon the number of nodes and the distance between them, a user can
either call this routine less or more frequently. For example, if the number & iscake
low as 5 along with a small range for these nodes, then the user might likutiestize
spline nearly 20 times between a pair of consecutive nodes, in order to obtain a smooth
cubic spline. However, it might be redundant to call this routine that many number of
times if the number of nodes itself is a relatively large number such as i7at tase,
evaluating the spline nearly 5 times between a pair of consecutive nodes rigggLsti

in a smooth spline.

10



3.3 Approach

Initially, all the existing subroutines for the various different types of cubic
splines are collected. They are then converted into Java, without the loss of
methodology. The top level routinegbi cSplineCoeffs andcubicSplineValue are written,
incorporating the different individual subroutines into them. The parameters fer thes
two routines are laid down in such a way that, they work for any type of the four

implemented types of cubic splines.

The main routine or the driver for this application is constructed with the

objective of interpolating the cubic splines for the four functiasiax, cos x, e* and

T These four functions with specific ranges of nodes provide us with a better

understanding of cubic spline interpolation. The comparison between the four
implemented types of cubic splines, using these four functions is carried outilimdeta

the next chapter.

11



CHAPTER IV

TESTS AND RESULTS

4.1 Testing the softwar e package

The software package for cubic spline interpolation, that is developed using Java,

is tested for the following four basic functios# x, cos x, e* andﬁ. The sine and

cosine functions are considered as the two fundamental functions when interpolating

cubic splines. The fourth functi(%ilqjx—z) is a famous problem used by Carl Runge [8] to

demonstrate that interpolation of a functjf@) by polynomials of increasing degree on
a set of uniformly spacetd does not necessarily converge uniformly to the function
being interpolated. A spline, being of fixed degree, does not suffer from this “Runge’s
phenomenon” [8]. So, some points for all these functions are given as the input data
points for the software. The software can be modified with minimal effonthadie

more functions or more data points. For a better understanding, the rahge sf

taken from[0, ], cos x from [0, ], e* from [0, 1], and

1
775 rom [=5,5]. In the tests

performed for each function, the number of nodes is taken &' #71), which

represents the typical number of data points for a typical problem of splingoilaten.

12



4.2 Reaults

The results of the software with different types of splines and various functions
are explained with the help of graphs. These graphs help us in the comparison of the
cubic splines in a convenient way. For each case, two graphs are displayed, one for the
cubic spline and the other one for the error between the spline value and the actual

function value.

In all the graphs, the curve of the actual function and the curve of the cubic spline
almost overlap. The difference between those curves is only visible in the sequmsl gra
plotted. In these difference graphs, the difference value on Y axigesneky low, when
compared to the spline values on Y axis in the actual spline graphs. The following
sections contain all the various graphs plotted for a typical input of 17 nodes. But,
various tests were also performed for different numbers of input nodes, which wefe not

much importance at this point.

4.3 Sin x function inter polation with 17 nodes

The next four sub sections explain the interpolation of the four different ¢ypes
splines for thesin x function, when 17 node values of the function are given as input to
the software. Each sub section has two graphs, one for the spline values and functi
values and the other one showing the difference between these two values. From the
second graphs, we can say that natural cubic spline and clamped cubic spline look

similar, whereas complete cubic spline and not-a-knot cubic spline look closer.

13



4.3.1 Natural cubic splinefor sin x function
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Figure4.1: Natural cubic spline for sin x with 17 nodes between [0, 7]
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4.3.2 Complete cubic splinefor sin x function
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Figure 4.3: Complete cubic spline for sin x with 17 nodes between [0, 7]
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4.3.3 Clamped cubic splinefor sin x function
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Figure 4.5: Clamped cubic spline for sin x with 17 nodes between [0, 7]
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4.3.4 Not-a-knot cubic splinefor sin x function
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Forsin x function, out of the 4 splines, both the natural cubic spline and the
clamped cubic spline are the closest to the actual function. The maximurardiéféhey

achieves is less than0 x 107°, as we can see from Figures 4.2 and 4.6 above.

4.4 Cos x function interpolation with 17 nodes

These next four sub sections explain the four types of splines fosshve
function, when 17 node values of the function are given as input to the software. The
complete spline and the not-a-knot spline are similar in this case. The natucal cubi
spline is different at the ends when compared to those two splines. However, the

clamped cubic spline is quite different to all the above three splines.

18



4.4.1 Natural cubic splinefor cos x function
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Figure 4.9: Natural cubic spline for cos x with 17 nodes between [0, 7]
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4.4.2 Complete cubic splinefor cosx function
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Figure 4.11: Complete cubic spline for cos x with 17 nodes between [0, 7]
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Figure 4.12: Difference between complete spline value and cos x for Figure 4.11
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4.4.3 Clamped cubic splinefor cos x function
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Figure 4.13: Clamped cubic spline for cos x with 17 nodes between [0, 7]
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Figure 4.14: Difference between clamped spline value and cos x for Figure 4.13
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4.4.4 Not-a-knot cubic splinefor cos x function
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Figure 4.15: Not-a-knot cubic spline for cos x with 17 nodes between [0, 7]
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Figure 4.16: Difference between not-a-knot spline value and cos x for Figure 4.15
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Out of the 4 splines, the clamped cubic spline is the closest to the actual function.
Its maximum difference is less tha® x 10~¢, as we can see from Figure 4.14 above.
The natural cubic spline differs greatly at the edges differing byuab ms2.0 x 1073,
This can be due to the fact that the second derivatives at the edges are eshsider

zero, which is the opposite of the actual values.

4.5 eMx function interpolation with 17 nodes

The next four sub sections explain the four types of splines fe*thenction,
when 17 node values of the function are given as input to the software. Surprisingly, the
clamped cubic spline is different from the rest of the three types of splinis also

more close to the function except at the ends.
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4.5.1 Natural cubic splinefor e*x function
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Figure 4.17: Natural cubic spline for &x with 17 nodes between [0, 1]
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Figure 4.18: Difference between natural spline value and e*x for Figure 4.17
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4.5.2 Complete cubic splinefor e*x function
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Figure 4.19: Complete cubic spline for ex with 17 nodes between [0, 1]
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Figure 4.20: Difference between complete spline value and e*x for Figure 4.19
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4.5.3 Clamped cubic splinefor e*x function

3.00

2.50 /

2.00

1.50 /

0.50

0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20

=o—Exp(x) Data Points ——Clamped Spline

Figure 4.21: Clamped cubic spline for e with 17 nodes between [0, 1]
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Figure 4.22: Difference between clamped spline value and e for Figure 4.20
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45.4 Not-a-knot cub

ic splinefor e*x function
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Figure 4.23: Not-a-knot cubic spline for & with 17 nodes between [0, 1]
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Figure 4.24: Difference between not-a-knot spline and e*x for Figure 4.23
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In this case, out of the 4 splines, the clamped cubic spline is the one which is
different than the other types of splines. But, it is the one which is the closest ¢tutile a
function. The maximum difference it achieves is nealyx 1077, as we can see from

Figure 4.22 above.

4.6 1/(1+x"2) function interpolation with 17 nodes

The next four sub sections explain the four types of splines f?ﬁtl;l?g function,

when 17 node values of the function are given as input to the software. From the graphs,
we can deduce that the natural spline, the complete spline and the not-a-knot spline
interpolate similarly, when compared to the clamped cubic spline. Another thirggathat
said from the earlier discussion about “Runge’s phenomenon” is that spline interpolati

is usually superior to high degree polynomial interpolation on uniformly spaasia

spline, being of fixed degree, does not suffer from this phenomenon [8].
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4.6.1 Natural cubic splinefor 1/(1+x"2) function

1.20

1.00

0.80

/\

0.60

0.40

0.20

o>

0.00

~—e

-6.00 -4.00

-2.00 0.00

2.00

4.00

=—1/(1+x"2) Data Points =——Natural Spline

6.0

Figure 4.25: Natural cubic spline for 1/(1+x"2) with 17 nodes between [-5, 5]
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Figure 4.26: Difference between natural spline and 1/(1+x"2) for Figure 4.25
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4.6.2 Complete cubic splinefor 1/(1+x"2) function
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Figure 4.27: Complete cubic spline for 1/(1+x"2) with 17 nodes between [-5, 5]
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Figure 4.28: Difference between complete spline and 1/(1+x"2) for Figure 4.27
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4.6.3 Clamped cubic splinefor 1/(1+x"2) function
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Figure 4.29: Clamped cubic spline for 1/(1+x"2) with 17 nodes between [-5, 5]
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Figure 4.30: Difference between clamped spline and 1/(1+x"2) for Figure 4.29
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4.6.4 Not-a-knot cubic splinefor 1/(1+x"2) function
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Figure 4.31: Not-a-knot cubic spline for 1/(1+x"2) with 17 nodes between [-5, 5]
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Figure 4.32: Difference between not-a-knot spline and 1/(1+x"2) for Figure 4.31

32




Out of the 4 splines, the clamped cubic spline is the one which is different than
the other types of splines, as mentioned before. But, strangely enough, all the four
splines differ from the original function alike. The maximum differencehabe 4
splines achieve is relatively higher when compared to the previous trigonometric
functions and the exponential function. It is nedtlyx 1073, as we can see from the

Figures 4.26, 4.28, 4.30, and 4.32 above. This can be attributed to the complexity of the

. 1
functlonm.
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CHAPTER V

CONCLUSION

5.1 Summary

The unified software package puts away the trouble of interpolating the cubic
splines independently for a given set of data. With its help, we can interdbthte a

various types of splines quickly and later compare them with ease.

After interpolating the various splines for various functions, some interesting
results are obtained. In all the cases, the clamped cubic spline turned out to be the one
interpolating the data closer to the function. This can be true as the user prhoeifiess t
derivatives of the function at the end points. However, possessing this data is not so
typical of the many cases. One other conclusion that is derived from the graphsris tha

many cases the complete cubic spline is similar to the not-a-knot cubic spline
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5.2 FutureWork

The current software package consists of 4 types of cubic splines. Other cubic
splines can be incorporated into this software without much difficulty. With thecaddi
of more splines, this software package becomes more unified and its reach wilhbe f
extended. One immediate suggestion can be the shape-preserving cuhic spline
mentioned in the bookundamentals of Numerical Computing [4]. There doesn’t seem
to be any published algorithm worked out for this shape-preserving cubic spline. If the

specifics of that cubic spline can be figured out, it acts a good addition to tlagpack
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APPPENDICES

APPENDIX A: THE SOURCE CODE FOR THE SOFTWARE PACKAGE
WRITTEN IN JAVA LANGUAGE

A.1 A smplemain driver program to interpolate sin x using natural cubic splinefor

an input of 17 nodes

public static void main(String[] args)

final int MAX_NODES = 20;
final int SPL_PTS = 6;

final double LOWEST_VALUE = 0.00000001;

/I The starting and ending points of X for the Sine function

/Il Sin(X) Range
final double SIN_BEG = 0.0;
final double SIN_END = Math.PI;

double[]
xn = new double[MAX_NODES], // X values at the nodes
yn = new double[MAX_NODES], // F(X) values at the nodes
b = new double[MAX_NODES], // Linear term Coefficients
¢ = new double[MAX_NODES], // Quadratic term Coefficients
d = new double[MAX_NODES], // Cubic term Coefficients
sprpr = new double[MAX_NODES], // Second derivatives
splineValues = new double[3]; // Spline values, first derivatives
/l and the second derivatives of the
// spline at one point

int
n, // Number of nodes

k, /I 2 power k + 1 nodes
i,

)
iFunction, // The choice of function
iMethod; // The choice of Cubic Spline
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double
X,
t,
dvarl,
dvar2,
width; /I Width between nodes

System.out.printin("Cubic Spline Interpolation\n");

/I Initializations
width = 0.0;
dvarl =0.0;
dvar2 = 0.0;

/I Assigning the number of nodes as 17

k =4;

n = (int)Math.pow(2, k) + 1;
System.out.printin("Number of nodes =" + n);

/I Assigning the interpolating function as Sine
iFunction = 1;
System.out.printin("Function being interpolated = Sine\n");

width = (SIN_END - SIN_BEG) / (n - 1);
for(i=0;i<n;i++)

xn[i] = SIN_BEG + (width *i);
yn[i] = Math.sin(xn[i]);
if(yn[i] < LOWEST_VALUE) vyn[i] =0.0;

// Displaying the actual function nodes
for(i=0;i<n;i++)

System.out.printin("X =" + xn[i] + " Y =" + yn[i]);
System.out.printin();

/I Selecting the type of cubic spline as Natural cubic spline
iMethod = 1;

/I Cubic Spline Coefficients' Calculation
cubicSplineCoeffs(n, xn, yn, iMethod, dVarl, dvar2, b, c, d, sprpr);

/I Cubic Spline Values' Calculation
fori=0;i<n-1;i++)

for(j = 0; j < SPL_PTS; j++)

t =xn[i] +j/ (double)SPL_PTS * (xn[i+1] - xn[i]);
cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,
splineValues);
System.out.printin("T =" +t+ " Sp =" + splineValues[0]);
}
}
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t = xn[i];

cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,
splineValues);

System.out.printin("T ="+t +" Sp =" + splineValues[0]);

// End public static void main

A.2 Interactive main driver program along with theroutines comprising thetotal

softwar e package for 17 input nodes

/I Splineinterp.java November 2010

/I Praveen Motapotu, MS in Computer Science
/I Oklahoma State University

import java.util.*; // Contains Random, StringTokenizer, Scanner, Locale
import java.text.*; // Contains DecimalFormat, NumberFormat
import java.lang.*; // Contains Math functions, constants

public class Splinelnterp

{

public static void main(String[] args)
{

final int MAX_NODES = 101;

final int K_MIN = 2;

final int K_MAX = 6;

final int SPL_PTS = 6;

final double LOWEST_VALUE = 0.00000001;

/I The starting and ending points of X for the 4 functions

I/l Sin(X) Range

final double SIN_BEG = 0.0;
final double SIN_END = Math.PI;
/I Cos(X) Range

final double COS_BEG = 0.0;
final double COS_END = Math.PI;
/l e"X Range

final double EPX_BEG = 0.0;
final double EPX_END = 1.0;

Il 1/(1+X"2) Range

final double XSQ_BEG = -5.0;
final double XSQ_END = 5.0;

double[]
xn = new double[MAX_NODES], // X values at the nodes
yn = new double[MAX_NODES], // F(X) values at the nodes
b = new double[MAX_NODES], // Linear term Coefficients
¢ = new double[MAX_NODES], // Quadratic term Coefficients
d = new double[MAX_NODES], // Cubic term Coefficients
sprpr = new double[MAX_NODES],// Second Derivatives
splineValues = new double[3]; // Spline values, first derivatives
/l and the second derivatives of the
I/ spline at one point
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int
n, // Number of nodes
k, /I 2 power k + 1 nodes
i,

)
iFunction, // The choice of function
iMethod; // The choice of Cubic Spline

double
X,
t,
dvarl,
dvar2,
width; /I Width between nodes

Scanner sc = new Scanner(System.in);

System.out.printin("Cubic Spline Interpolation\n");

/l Requesting number of nodes

System.out.print("Enter k, where the number of nodes is 2"k+1: ");
k = sc.nextInt();

if(k < K_MIN || k > K_MAX)

{

System.out.printin("Accepted k values are between 2 & 6, included.");
System.exit(0);
}

n = (int)Math.pow(2, k) + 1;
System.out.printin("Number of nodes =" + n);

/I Initializations
width = 0.0;
dvarl =0.0;
dvar2 = 0.0;

/I Requesting the interpolating function
System.out.printin("Enter the function to be interpolated: );
System.out.printin("1. Sin 2. Cos 3. e"x 4. 1/(1+x"2)");
iFunction = sc.nextInt();

if(iIFunction == 1) // Sine function

width = (SIN_END - SIN_BEG) / (n - 1);
for(i = 0;i < n;i++)

xn[i] = SIN_BEG + (width * i);
yn[i] = Math.sin(xn[i]);
if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE)
yn[i] = 0.0;
else if(iIFunction == 2) // Cosine function
width = (COS_END - COS_BEG) / (n - 1);

for(i=0;i<n;i++)
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xn[i] = COS_BEG + (width *i);
yn[i] = Math.cos(xn[i]);
if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE)
yn[i] = 0.0;
}

else if(iFunction == 3) // e”x function

width = (EPX_END - EPX_BEG) / (n - 1);
for(i=0;i<n;i++)

xn[i] = EPX_BEG + (width * i);
yn[i] = Math.pow(Math.E, xn[i]);
if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE)
yn[i] = 0.0;
}

else if(iFunction == 4) // 1/1+x"2 function

width = (XSQ_END - XSQ_BEG) / (n - 1);
for(i=0;i<n;i++)
{
xn[i] = XSQ_BEG + (width * i);
yn[i] = 1/ (1 + Math.pow(xn[i], 2));
if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE)
yn[i] = 0.0;
}
}
else

System.out.printin("Only 4 choices of functions available!");
System.exit(0);

/Il Displaying the actual function nodes
for(i=0;i<n;i++)
System.out.printin("X ="+ xn[i] + " Y =" + yn[i]);

/l Requesting the type of cubic spline

System.out.printin("Enter the type of cubic spline: ");
System.out.printin("1. Natural 2. Complete 3. Clamped 4. Not-a-knot");
iMethod = sc.nextInt();

/l Requesting the first derivatives for Clamped Spline
if(iMethod == 3)

System.out.printin("Please enter the two end conditions for clamped
spline:");

dVarl = sc.nextDouble();

dVar2 = sc.nextDouble();

}
if(iMethod < 1 || iMethod > 4)
{
System.out.printin("Only 4 types of cubic splines available!);

System.exit(0);
}
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/I Cubic Spline Coefficients' Calculation
cubicSplineCoeffs(n, xn, yn, iMethod, dVarl, dvar2, b, c, d, sprpr);

/I Cubic Spline Values' Calculation
for(i=0;i<n-1;i++)

for(j = 0; j < SPL_PTS; j++)
{
t =xn[i] +j/ (double)SPL_PTS * (xn[i+1] - xn[i]);
cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,
splineValues);
System.out.printin("T =" +t+ " Sp =" + splineValues[0]);
}
}
t = xn[i];
cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,
splineValues);
System.out.printin("T ="+t +" Sp =" + splineValues[0]);

// End public static void main

//**************************************

//**************************************

public static void cubicSplineCoeffs(int n, double[] xn, double[] yn,
int iSpline, double dVarl, double dVar2, double[] b, double[] c,
double[] d, double[] sprpr)
{
/*
PURPOSE:
Calculate the coefficients for any type of the cubic spline
for a given set of data

CALLING SEQUENCE:
cubicSplineCoeffs(n, xn, yn, iSpline, dVarl, dVar2);

INPUTS:
n number of interpolating points or nodes
XN array containing interpolating points
yn array containing function values to be interpolated;
yn[i] is the function value corresponding to xnJi]
iSpline
the number representing the type of cubic spline
dvarl
the first derivative at x=a used by clamped spline
dvar2
the first derivative at x=b used by clamped spline
b array of size at least n;
c array of size at least n;
d array of size at least n;
sprpr
array of size at least n;
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OUTPUTS:
b coefficients of linear terms in cubic spline
¢ coefficients of quadratic terms in cubic spline
d coefficients of cubic terms in cubic spline
sprpr
second derivatives of the cubic spline
*/

if(iSpline == 1)
natSplCoeffs(n, xn, yn, sprpr);

else if(iSpline == 2)
cmplSplCoeffs(n, xn, yn, b, ¢, d);

else if(iSpline == 3)
clmpSplCoeffs(n, xn, yn, b, ¢, d, dvarl, dvar2);

else if(iSpline == 4)
nakSplCoeffs(n, xn, yn, b, c, d);

else

{
System.out.printin("Only 4 types of cubic splines available!);
System.exit(0);

}

/I End public static void cubicSplineCoeffs

//**************************************

//**************************************

public static void cubicSplineValue(int n, double[] xn, double[] yn,
int iSpline, double[] b, double[] ¢, double[] d, double[] sprpr,
double t, int index, double[] splVals)
{
/*
PURPOSE:
Calculate the actual value for any type of the cubic spline
by providing it's coefficients at a single point within the
nodes
Also calculate the values of the first and second
derivatives of the spline at that point

CALLING SEQUENCE:
cubicSplineValue(n, xn, yn, iSpline, b, c, d, sprpr, t, index,
fds, sds);

INPUTS:

n number of interpolating points or nodes

Xn array containing interpolating points

yn array containing function values to be interpolated;
yn[i] is the function value corresponding to xn[i]

iSpline
the number representing the type of cubic spline

b coefficients of linear terms in cubic spline

¢ coefficients of quadratic terms in cubic spline

d coefficients of cubic terms in cubic spline
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sprpr
second derivatives of the cubic spline
t point where the cubic spline is to be evaluated
index
index of the closest node less than or equal to 't'
splvals
array of size 3;

OUTPUTS:
splVals
array containing the value of the cubic spline at [0]
the value of the first derivative of the spline at [1]
the value of the second derivative of the spline at [2]
*/

if(iSpline == 1)
natSplValue(n, xn, yn, sprpr, t, index+1, splVvals);

else if(iSpline == 2 || iSpline == 3 || iSpline == 4)
normSplValue(n, xn, yn, b, c, d, t, splVals);

else

{

System.out.printin("Only 4 types of cubic splines available!);
System.exit(0);

// End public static void cubicSplineValue

//**************************************

//**************************************

public static void natSplCoeffs(int n, double[] xn, double[] yn, double[] s)
{

/I Natural cubic spline interpolation
/I "Numerical Computing: An Introduction"
/I L. F.Shampine and R. C. Allen, Jr.,
/I ' W. B. Saunders Co., 1973
/I natSplCoeffs calculates the array s[] of second derivatives needed to
define
/I the spline.
double[]
rho = new double[n],
tau = new double[n];
double him1, hi, temp, d;
/I Compute the elements of the arrays rho[] and tauf].

rho[1] = 0.0;
tau[1] = 0.0;

for(inti=1;i<n-1;i++)
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him1 = xn[i] - xn[i-1];
hi = xn[i+1] - xn[i];

temp = (him1 / hi) * (rholi] + 2.0) + 2.0;
rho[i+1] =-1.0 / temp;
d =6.0* ((yn[i+1] - yn[i]) / hi - (yn[i] - yn[i-1]) / him1) / hi;
tau[i+1] = (d - him1 * tau[i] / hi) / temp;
}

/I Compute the array of second derivatives s[] for the natural spline.

s[0] = 0.0;
s[n-1] = 0.0;
for(inti=(n-2);i>0;i-)

s[i] = rho[i+1] * s[i+1] + tau[i+1];

}
/' End public static void natSplCoeffs

//**************************************

//**************************************

public static void cmplSplCoeffs(int n, double[] x, double[] f, double[] b,
double[] ¢, doublef] d)

{

/*

FUNCTION:  Functions for setting up and evaluating a cubic
interpolatory spline.

AUTHORS: Lawrence Shampine, Richard Allen, Steven Pruess for
the text Fundamentals of Numerical Computing

DATE: August 25, 1995

LAST CHANGE: April 3, 1998

PURPOSE:
Calculate coefficients defining a complete cubic interpolatory spline.

INPUTS:
n number of data points
x vector of values of the independent variable ordered
so that x[i] < x[i+1] for all i
f vector of values of the dependent variable

OUTPUTS:

b vector of S'(x[i]) values

¢ vector of S"(x[i])/2 values

d vector of S™(x[i]+)/6 values
*/

int
i,
k;
double
fp1,

fpn,
h=0.0,
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/I Calculate coefficients for the tri-diagonal system:
/I store sub-diagonal in b, diagonal in d, difference quotient in c.

b[0] = x[1]-x[0];
c[0] = (f[1] - f[O]) / b[C];
if(n == 2)
{
b[0] = c[Q];
c[0] = 0.0;
d[0] = 0.0;
b[1] = b[O];
c[1] = 0.0;

return;

}

d[o] = 2.0 * b[0];

for(i = 1; i < n-1; i++)
bli] = X[i+1]-X[il;
c[i] = (ffi+1] - f[i]) / bi];

d[i] = 2.0 * (b[i] + b[i-1]);
}

d[n-1] = 2.0 * b[n-2];
/I Calculate estimates for the end slopes.
/I Use polynomials interpolating data nearest the end.
fp1 = c[0] - b[0] * (c[1] - c[0]) / (b[O] + b[1]);
if (n > 3)
fpl =fpl + b[0] * ((b[0] + b[1]) * (c[2] - c[1]) /
(b[1] + b[2]) - c[1] + ¢[0]) / (x[3] - X[O]);
fpn = c[n-2] + b[n-2] * (c[n-2] - c[n-3]) / (b[n-3] + b[n-2]);
if (n>3)
fpn = fpn + b[n-2] * (c[n-2] - ¢[n-3] - (b[n-3] + b[n-2]) *
(c[n-3] - c[n-4]) / (b[n-3] + b[n-4])) /
(X[n-1] - x[n-4]);
/I Calculate the right-hand-side and store it in c.

c[n-1] = 3.0 * (fpn - c[n-2]);

for (i=n-2;i>0;i-)
cfi] = 3.0 * (cfi] - c[i-1]);

c[0] = 3.0 * (c[0] - fpl);

/I Solve the tridiagonal system.

for (k =1; k < n; k++)
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p = blk-1] / d[k-1];

d[k] = d[K] - p * b[k-1];

clk] = c[k] - p * c[k-1];
}

c[n-1] = c[n-1] / d[n-1];

for (k = n-2; k >= 0; k--)
c[k] = (c[K] - b[K] * c[k+1]) / d[K];

/I Calculate the coefficients defining the spline.
for (i=0;i<n-1;i++)

h = x[i+1] - X[i];
d[i] = (c[i+1] - c[i]) / (3.0 * h);
b[i] = (fli+1] - f{if) / h - h > (c[i] + h*d[i]);

b[n-1] = b[n-2] + h * (2.0 * ¢[n-2] + h * 3.0 * d[n-2]);

return;

}
/I End public static int cmplSplCoeffs

//**************************************

//**************************************

public static void cimpSplCoeffs(int n, double[] x, double[] f, double[] b,
double[] ¢, double[] d, double fpa, double fpb)

/*
PURPOSE:
determine the coefficients for the clamped
cubic spline for a given set of data

CALLING SEQUENCE:
clmpSplCoeffs(n, x, f, b, ¢, d, fpa, fpb);

INPUTS:

n number of interpolating points

X array containing interpolating points

f array containing function values to
be interpolated; f[i] is the function
value corresponding to X][i]

b array of size at least n;

c array of size at least n;

d array of size at least n;

fpa derivative of function at x=a

fpb derivative of function at x=b

OUTPUTS:
b coefficients of linear terms in cubic spline
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¢ coefficients of quadratic terms in cubic spline
d coefficients of cubic terms in cubic spline
*/

double[]
h = new double[n],
dl = new double[n],
dd = new double[n],
du = new double[n];

inti;
for(i=0;i<n-1; i++)

hi] = x[i+1] - x[i];
difi] = duli] = h[il;

dd[0] = 2.0 * h[0];

dd[n-1] = 2.0 * h[n-2];

c[0] = (3.0 / h[0]) * (f[1] - f[0]) - 3.0 * fpa;

c[n-1] = 3.0 * fpb - (3.0 / h[n-2]) * (f[n-1] - f[n-2]);
for(i=0;i < n-2;i++)

dd[i+1] = 2.0 * (h[i] + h[i+1]);
ci+1] = (3.0 / h[i+1]) * (f[i+2] - fi+1]) - (3.0 / h[i]) * (f[i+1] -
fli);
}

tridiagonal(n, dl, dd, du, c);
for(i=0;i<n-1; i++)

d[i] = (c[i+1] - c[i]) / (3.0 * hi]):
b[i] = (ffi+1] - [i]) / h[i] - h[i] * (c[i+1] + 2.0 * c[i]) / 3.0;
}

}
/I End public static void cImpSplCoeffs

//**************************************

//**************************************

public static void nakSplCoeffs(int n, double[] x, double[] f, double[] b,
double[] c, double[] d)
{
/*
PURPOSE:
determine the coefficients for the 'not-a-knot'
cubic spline for a given set of data

CALLING SEQUENCE:
nakSplCoeffs(n, x, f, b, c, d);

INPUTS:
n number of interpolating points
X array containing interpolating points
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f array containing function values to
be interpolated; f[i] is the function
value corresponding to x[i]

b array of size at least n;

c array of size at least n;

d array of size at least n;

OUTPUTS:
b coefficients of linear terms in cubic spline
¢ coefficients of quadratic terms in cubic spline
d coefficients of cubic terms in cubic spline
*/

double[]
h = new double[n],
dl = new double[n],
dd = new double[n],
du = new double[n];
inti;

for(i=0;i<n-1; i++)
h[i] = x[i+1] - x[i];

for(i=0; i< n-3; i++)
dl[i] = du[i] = h[i+1];

for(i= 0; i < n-2; i++)

dd[i] = 2.0 * (h[i] + h[i+1]);
cli] = (3.0 / h[i+1]) * (f[i+2] - f[i+1]) -
(3.0 / h[i]) * (f[i+1] - f[il):

}

dd[0] += (h[O] + h[O]*h[0] / h[L]);

dd[n-3] += (h[n-2] + h[n-2]*h[n-2] / h[n-3]);
du[0] -= (h[0]*h[O] / h[1]);

di[n-4] -= (h[n-2]*h[n-2] / h[n-3]);

tridiagonal(n-2, dl, dd, du, c);

for(i=n-3;i>=0; i--)
cfi+1] = cfi;
c[0] = (1.0 + h[0] / h[1]) * c[1] - h[O] / h[1] * c[2];
c[n-1] = (1.0 + h[n-2] / h[n-3]) * c[n-2] - h[n-2] / h[n-3] * ¢[n-3];
for(i=0;i < n-1; i++)

d[i] = (c[i+1] - c[i]) / (3.0 * hi]):
bli] = (f[i+1] - f[il) / h[i] - h{i] * (c[i+1] + 2.0%c[i]) / 3.0;
}

}
/I End public static void nakSplCoeffs

//**************************************

//**************************************

public static void natSplValue(int n, double[] xn, double[] yn, double[] s,
double x, int i, double[] splVals)

{
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/*
PURPOSE:
Evaluate a cubic spline at a single value of
the independent variable given the coefficients of
the cubic spline interpolant

TYPE:
It works for Natural cubic spline only

CALLING SEQUENCE:
y = natSplValue(n, xn, yn, s, X, i);

INPUTS:

n number of interpolating points or nodes

Xn array containing interpolating points

yn array containing the constant terms from
the cubic spline

s array containing the second derivatives
of the cubic spline

x value of independent variable at which
the interpolating polynomial is to be
evaluated

i index value of the nodes

splVals
array of size 3;

OUTPUTS:
splvals
array containing the value of the cubic spline at [0]
the value of the first derivative of the spline at [1]
the value of the second derivative of the spline at [2]
*/
double

a,

b,

hL;

if(i == n)

splVvals[0] = yn[i-1];
splvals[1] =
splVals[2] = 0.0;

}

else
{
a =xn[i] - x;
b = x - xn[i-1];
hL = xn[i] - xn[i-1];

/I Spline value

splVals[0] =a* s[i-1] * (a*a/hL - hL)/6.0 +
b*s[ij*(b*b/hL-hL)/6.0+
(a*yn[i-1] + b * yn[i]) / hL;

/I First derivative
splVals[1l] = (b * b * s[i] - a * a * s[i-1])/(2.0 * hL) +
hL * (s[i-1] - s[i])/6.0 + (yn[i] - yn[i-1])/hL;

/I Second derivative
splVvals[2] = (a * s[i-1] + b * s[i])/hL;
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}
/I End public static void natSplValue

//**************************************

//**************************************

public static void normSplValue(int n, double[] x, double[] f, double[] b,
double[] ¢, double[] d, double t, double[] splVals)

/*
PURPOSE:
Evaluate a cubic spline at a single value of
the independent variable given the coefficients of
the cubic spline interpolant

Also evaluates the first and second derivatives of
the spline at this single value

TYPE:
It works for Complete, Clamped & Not-a-knot cubic
splines

CALLING SEQUENCE:
y = normSplValue(n, x, f, b, c, d, t, fds, sds);

INPUTS:

n number of interpolating points

X array containing interpolating points

f array containing the constant terms from
the cubic spline

b array containing the coefficients of the
linear terms from the cubic spline

¢ array containing the coefficients of the
guadratic terms from the cubic spline

d array containing the coefficients of the
cubic terms from the cubic spline

t value of independent variable at which
the interpolating polynomial is to be
evaluated

splVals
array of size 3;

OUTPUTS:
splVals
array containing the value of the cubic spline at [0]
the value of the first derivative of the spline at [1]
the value of the second derivative of the spline at [2]
*/
int
i,
found;

double
dt;

i=1;
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found = 0;
while ( (found ==0) && (i<n-1))
{
if (t<x[i])
found = 1;
else
i++;
}
dt=t- x[i-1];

/I Calculating the spline value
splVals[0] = f[i-1] + dt * (b[i-1] + dt * (c[i-1] + dt * d[i-1]));

/I Calculating the first derivative
splVals[1] = b[i-1] + dt * (2.0 * c[i-1] + dt * 3.0 * d[i-1]);

/I Calculating the second derivative

splVals[2] = 2.0 * c[i-1] + dt * 6.0 * d[i-1];

/I End public static void nhormSplValue

//**************************************

//**************************************

public static void tridiagonal(int n, double[] ¢, double[] a, double[] b,
double[] r)

inti;
for(i=0;i<n-1;i++)
b[i] /= a[il;
afi+1] -= c[i]*b[i];
r[0] /= a[0];

for(i=1;i<n;i++)

rfi] = (r{i] - c[i-1] * r{i-1] ) / a[i];

for(i=n-2;i>=0;i-)
r{i] -= r[i+1] * bfi];

// End public static void tridiagonal

//**************************************

//**************************************

}
/I End public class Splinelnterp
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