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CHAPTER I 
 

 

INTRODUCTION 

 

The term “Spline” comes from the field of mechanics, where a physical spline is 

the flexible spring steel strip used by draftsmen to go over a set of prescribed points [1].  

Weights are attached to that strip at those given data points, so that it is free to slip and 

straightens out as much as it can.  This results in minimizing the stored potential energy 

(�. �.) of the bending.  �. �. � � � ��	
��

�
��  where � is a constant that describes the 

stiffness of the spring steel strip and the curvature � � �"/|1 � 	����|�/�.  A trace along 

the spline results in the required physical spline [2].  The shape formed by this spline is 

natural without any stress between the points.  The mathematical model of this physical 

spline helps us in mechanizing the process, resulting in spline functions.  Out of these 

polynomial spline functions, those functions that have a fixed degree of three are 

obviously termed as cubic splines.  The background of splines along with the cubic 

equation of the spline between two nodes or knots is discussed in detail at the beginning 

of Chapter 2. 
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1.1 Motivation 

Every cubic spline has unique boundary conditions, which is explained further in 

the next chapter.  Based on these conditions, it is classified into one of the different types 

of cubic splines.  Currently, cubic spline interpolation is performed independently by 

using the existing routines in different programming languages.  With the constant 

growing needs of cubic splines in various fields, users would like to interpolate their data 

and compare the resulting splines based on the different types of cubic splines.  However, 

there is no known software that interpolates all the different types of cubic splines for a 

given set of data.  This difficulty led me to the development of a unified software 

package for cubic spline interpolation. 

 

1.2 Cubic Spline Terminology 

As mentioned earlier, cubic splines are classified into different types.  Some of 

them being discussed include Natural cubic spline, Complete cubic spline, Clamped 

cubic spline, Not-a-knot cubic spline, and Shape-preserving cubic spline.  Based on the 

specified end conditions, they are mostly categorized into one of these types.  In order to 

interpolate a cubic spline, some data is necessary consisting of points and their function 

values, commonly known as nodes or knots. 

The initial process of cubic spline interpolation is to calculate the coefficients of 

the cubic spline which include all the coefficients of the linear, quadratic and cubic terms 

of the cubic equation.  This is achieved after eventually solving a tridiagonal system, 

which is explained in detail in the next chapter.  Evaluating the first and second 
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derivatives of the cubic spline is also necessary, depending on the requirements and the 

type of the cubic spline being interpolated.  The final step is to evaluate the spline value 

at any specified point within the range of nodes, by using the spline coefficients 

calculated in the previous step.  Obviously, at any given node, the spline value is equal to 

the actual function value specified in the data set. 

 

1.3 Thesis Outline 

A detailed literature review along with the background of cubic splines is 

discussed in Chapter 2.  It also covers the various types of cubic splines, and their 

classification based on the various end conditions.  The description of the problem being 

solved and the development of the code to perform cubic spline interpolation are 

explained in Chapter 3.  The whole process of interpolating the cubic spline including all 

the necessary steps along with their respective Java routines follows the development.  

The various different tests performed along with the results obtained comprise the 

majority of Chapter 4.  The various graphs of cubic spline curves obtained for some 

common functions such as sin �, cos �, �� and 
 

	 
�!� are explained by comparing the 

different types of the cubic splines.  Finally, the conclusions of the thesis and the scope 

for future work are laid out in Chapter 5. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

2.1 Background of Splines 

If we represent the spline with "	��, then the second derivative "��	�� of the 

spline approximates the curvature and �� approximates the differential arc length [3].  

Thus the stored potential energy of such a linearized spline is proportional to 

� "��	��� ��.  When the knots 	� , � �, 	��, ���, . . . , 	�%, �%� are given, the linearized 

interpolating spline "	�� is such that "	�&� �  �&  	' � 1, 2, . . . , )� and such that 

� 	"��	���� ���*�+  is minimized.  Additionally, "	�� is a cubic polynomial between each 

adjacent pair of knots, and adjacent polynomials join continuously with continuous first 

and second derivatives of the spline at the knots.  Hence, the cubic spline equation 

between two knots is defined as 

"	�� � �& � ,&	� - �&� � .&	� - �&�� � �&	� - �&��,      �& / � / �&
 . [3] 

where ,&, .&, and �&, ' � 1, 2, . . . , ) - 1 are the coefficients that are calculated and stored 

for the evaluation of the spline values later on. 
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As the end conditions determine the type of a cubic spline, the scope for having 

different end conditions can be explained with the help of the parameters of a cubic 

spline curve.  There will be ) - 1 intervals between the ) nodes and so there will be 

) - 1 cubic equations with 4 parameters each, making the total number of parameters 

that need to be determined as 4) - 4 [3].  As stated earlier, since the spline has 

continuous first and second derivatives at each of the ) - 2 interior nodes, every �& has 

3	) - 2� conditions on ".  As "	�&� � �& for each of the ) nodes, adding that many 

conditions makes it 4) - 6 parameters. Hence, all we need is two more conditions to 

completely determine the cubic spline, and these are obviously known as end conditions. 

 

2.2 Natural cubic spline 

The two end conditions that define the natural cubic spline are "��	� � � 0 and 

"��	�%� � 0 [3].  It got its name because of its similarity to the physical spline used by 

draftsmen in the mechanical field. The physical spline straightens out as much as it can at 

the last points.  In a similar manner, the natural cubic spline also becomes a straight line 

at the end nodes because its second derivatives are zero [4]. 

Shampine and Allen [2] have stated the following theorem to describe the 

smoothness of the spline by considering the natural cubic spline. 

Theorem:  Let 4 be twice continuously differentiable on 56, ,7 and let "	�� be the natural 

cubic spline interpolating 4	�� at 6 � �8 9 � 9. . . �% � ,.  If we define 

: � max8>&>%� 	�&
 - �&�, 
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then 

max?>�>@|4	�� - "	��| / :� �⁄ BC 54��	D�7��D@
?

E
 �⁄

, 

max?>�>@|4�	�� - "�	��| / : �⁄ BC 54��	D�7��D@
?

E
 �⁄

. 

This theorem tells us that with the increase in the number of nodes, "� and " converge 

uniformly to 4� and 4 respectively, for all � F 56, ,7.  Because " is so smooth, the natural 

cubic spline is very useful for interpolation and numerical differentiation. 

 

2.3 Complete and clamped cubic splines 

The complete cubic spline is defined by the end conditions "�	� � G 4�	� � and 

"�	�%� G 4�	�%�.  But, instead of requesting the values 4�	� � and 4�	�%�, the four data 

points nearest each end are interpolated with the cubics and their slopes are used in 

solving the required tridiagonal system [4]. 

Clamped cubic spline uses the same end conditions as the complete cubic spline 

which are "�	� � � 4�	� � and "�	�%� � 4�	�%�.  However, the clamped cubic spline 

requests those 4�	� � and 4�	�%� values from the user, instead of using the 

approximations of the complete cubic spline. 

Even though both of these cubic splines are dependent on the set of end 

conditions, their interpolated spline curves are distinct in their own respects. This is due 
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to the fact that, in a clamped cubic spline the end conditions are the first derivatives of the 

actual function, which is not the case for the complete cubic spline. 

 

2.4 Not-a-knot cubic spline 

The not-a-knot cubic spline utilizes the condition that the third derivative of the 

spline is continuous at �� and �%�  [5].  By the name itself, it indicates that nothing is 

specified at the traditional end points other than the fact that this spline interpolates the 

data at the end points.   

Behforooz [6] presented an idea to extend the concept of not-a-knot spline to all 

the interior knots and to obtain a piecewise interpolatory cubic polynomial. It serves as a 

shortcut by eliminating the necessity of solving the tridiagonal system. However, for 

more general purposes, the conventional not-a knot cubic spline is implemented here. 
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CHAPTER III 
 

 

DEVELOPMENT OF THE SOFTWARE PACKAGE 

 

3.1 Problem of distinct and independent routines 

In order to interpolate a cubic spline for given data, users have to use one of the 

existing routines for different types of splines written in various different languages.  This 

procedure is obviously very tedious and difficult.  First of all, the users need to modify 

their data in order to match the input parameters of those routines.  Even after 

interpolating the spline, the results will be outputted in different forms.  So, the 

comparison of those obtained results will be another major task. 

Shampine and Allen [2] have presented subroutines in the FORTRAN language to 

evaluate the natural cubic spline.  One of the input parameters for them is “Index” which 

has the order of nodes in increasing order.  However, Shampine, Allen and Pruess [4] 

have provided the subroutines in C language to evaluate the complete cubic spline.  They 

have a parameter called “Flag”, which reports the status of the order of nodes and the 

invalid number of nodes.  Bradie [7] provided the archives of source code for clamped 

and not-a-knot cubic splines.  But it has all the interpolation routines, both useful and  
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ignorable types under one header file.  All these instances provide a clear picture of the 

problem being faced and project light into the need for a unified software package. 

 

3.2 Software package development 

The unified software package for the cubic spline interpolation in various types is 

developed using the Java language.  The entire source code present in the package, 

including the main driver routine is listed in Appendix A.  In general, the process of 

interpolating a cubic spline is mainly divided into two major steps.  The first one is 

calculating the coefficients of the cubic spline, whereas the second one is evaluating the 

spline at the required point using those coefficients. 

 

3.2.1 Calculation of spline coefficients 

The routine cubicSplineCoeffs calculates the various coefficients required for the 

cubic spline interpolation.  It is called only once for each set of data.  It takes in the data 

consisting of the number of nodes, the interpolating points and their respective function 

values, along with the type of cubic spline.  For the clamped cubic spline, it will also 

utilize the two input parameters which are the first derivatives of the actual function at 

the end points.  The routine then computes the tridiagonal system, if required, and then 

eventually calculates the coefficients of the linear, quadratic and the cubic terms of the 

cubic spline.   
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Depending upon the type of the cubic spline, this routine calls one of the 

respective subroutines and deals with the parameter requirements for them accordingly.  

The main advantage of having one routine for all the types of cubic splines is to avoid the 

difficulties in dealing with various parameters.  In order to calculate, the user needs to 

supply the necessary parameters and call this routine only once.   

 

3.2.2 Evaluation of the spline 

The routine that evaluates the value of the spline for a give point is 

cubicSplineValue.  This routine is called several times, once for each point where the 

spline is to be interpolated.  It receives the nodes, the spline coefficients, the type of the 

cubic spline, and the point of spline evaluation as inputs.  Using all of these, it calculates 

the value of the cubic spline. 

Depending upon the number of nodes and the distance between them, a user can 

either call this routine less or more frequently.  For example, if the number of nodes is as 

low as 5 along with a small range for these nodes, then the user might like to evaluate the 

spline nearly 20 times between a pair of consecutive nodes, in order to obtain a smooth 

cubic spline.  However, it might be redundant to call this routine that many number of 

times if the number of nodes itself is a relatively large number such as 17.  In that case, 

evaluating the spline nearly 5 times between a pair of consecutive nodes might still result 

in a smooth spline. 
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3.3 Approach 

Initially, all the existing subroutines for the various different types of cubic 

splines are collected.  They are then converted into Java, without the loss of 

methodology.  The top level routines cubicSplineCoeffs and cubicSplineValue are written, 

incorporating the different individual subroutines into them.  The parameters for these 

two routines are laid down in such a way that, they work for any type of the four 

implemented types of cubic splines. 

The main routine or the driver for this application is constructed with the 

objective of interpolating the cubic splines for the four functions:  sin �, cos �, �� and 

 
	 
�!�.  These four functions with specific ranges of nodes provide us with a better 

understanding of cubic spline interpolation.  The comparison between the four 

implemented types of cubic splines, using these four functions is carried out in detail in 

the next chapter. 
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CHAPTER IV 
 

 

TESTS AND RESULTS 

 

4.1 Testing the software package 

The software package for cubic spline interpolation, that is developed using Java, 

is tested for the following four basic functions: sin �, cos �, �� and 
 

	 
�!�.  The sine and 

cosine functions are considered as the two fundamental functions when interpolating 

cubic splines.  The fourth function 
 

	 
�!� is a famous problem used by Carl Runge [8] to 

demonstrate that interpolation of a function 4	�� by polynomials of increasing degree on 

a set of uniformly spaced �, does not necessarily converge uniformly to the function 

being interpolated.  A spline, being of fixed degree, does not suffer from this “Runge’s 

phenomenon” [8].  So, some points for all these functions are given as the input data 

points for the software.  The software can be modified with minimal efforts to include 

more functions or more data points.  For a better understanding, the range of sin � is 

taken from 50, H7, cos � from 50, H7, �� from 50, 17, and 
 

	 
�!� from 5-5, 57.  In the tests 

performed for each function, the number of nodes is taken as 17 (2J � 1), which 

represents the typical number of data points for a typical problem of spline interpolation.
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4.2 Results 

The results of the software with different types of splines and various functions 

are explained with the help of graphs.  These graphs help us in the comparison of the 

cubic splines in a convenient way.  For each case, two graphs are displayed, one for the 

cubic spline and the other one for the error between the spline value and the actual 

function value. 

In all the graphs, the curve of the actual function and the curve of the cubic spline 

almost overlap.  The difference between those curves is only visible in the second graphs 

plotted.  In these difference graphs, the difference value on Y axis is extremely low, when 

compared to the spline values on Y axis in the actual spline graphs.  The following 

sections contain all the various graphs plotted for a typical input of 17 nodes.  But, 

various tests were also performed for different numbers of input nodes, which were not of 

much importance at this point. 

 

4.3 Sin x function interpolation with 17 nodes 

The next four sub sections explain the interpolation of the four different types of 

splines for the sin � function, when 17 node values of the function are given as input to 

the software.  Each sub section has two graphs, one for the spline values and function 

values and the other one showing the difference between these two values.  From the 

second graphs, we can say that natural cubic spline and clamped cubic spline look 

similar, whereas complete cubic spline and not-a-knot cubic spline look closer. 
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4.3.1 Natural cubic spline for sin x function 

 

Figure 4.1: Natural cubic spline for sin x with 17 nodes between [0, π] 

 

Figure 4.2: Difference between natural spline value and sin x for Figure 4.1 
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4.3.2 Complete cubic spline for sin x function 

 

Figure 4.3: Complete cubic spline for sin x with 17 nodes between [0, π] 

 

Figure 4.4: Difference between complete spline value and sin x for Figure 4.3 
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4.3.3 Clamped cubic spline for sin x function 

 

Figure 4.5: Clamped cubic spline for sin x with 17 nodes between [0, π] 

 

Figure 4.6: Difference between clamped spline value and sin x for Figure 4.5 
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4.3.4 Not-a-knot cubic spline for sin x function 

 

Figure 4.7: Not-a-knot cubic spline for sin x with 17 nodes between [0, π] 

 

Figure 4.8: Difference between not-a-knot spline value and sin x for Figure 4.7 
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For sin � function, out of the 4 splines, both the natural cubic spline and the 

clamped cubic spline are the closest to the actual function.  The maximum difference they 

achieves is less than 4.0 K 10�L, as we can see from Figures 4.2 and 4.6 above. 

 

4.4 Cos x function interpolation with 17 nodes 

These next four sub sections explain the four types of splines for the cos � 

function, when 17 node values of the function are given as input to the software.  The 

complete spline and the not-a-knot spline are similar in this case.  The natural cubic 

spline is different at the ends when compared to those two splines.  However, the 

clamped cubic spline is quite different to all the above three splines. 
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4.4.1 Natural cubic spline for cos x function 

 

Figure 4.9: Natural cubic spline for cos x with 17 nodes between [0, π] 

 

Figure 4.10: Difference between natural spline value and cos x for Figure 4.9 
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4.4.2 Complete cubic spline for cos x function 

 

Figure 4.11: Complete cubic spline for cos x with 17 nodes between [0, π] 

 

Figure 4.12: Difference between complete spline value and cos x for Figure 4.11 
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4.4.3 Clamped cubic spline for cos x function 

 

Figure 4.13: Clamped cubic spline for cos x with 17 nodes between [0, π] 

 

Figure 4.14: Difference between clamped spline value and cos x for Figure 4.13 
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4.4.4 Not-a-knot cubic spline for cos x function 

 

Figure 4.15: Not-a-knot cubic spline for cos x with 17 nodes between [0, π] 

 

Figure 4.16: Difference between not-a-knot spline value and cos x for Figure 4.15 
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Out of the 4 splines, the clamped cubic spline is the closest to the actual function.  

Its maximum difference is less than 4.0 K 10�L, as we can see from Figure 4.14 above.  

The natural cubic spline differs greatly at the edges differing by as much as 2.0 K 10��.  

This can be due to the fact that the second derivatives at the edges are considered to be 

zero, which is the opposite of the actual values. 

 

4.5 e^x function interpolation with 17 nodes 

The next four sub sections explain the four types of splines for the �� function, 

when 17 node values of the function are given as input to the software.  Surprisingly, the 

clamped cubic spline is different from the rest of the three types of splines.  It is also 

more close to the function except at the ends. 
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4.5.1 Natural cubic spline for e^x function 

 

Figure 4.17: Natural cubic spline for e^x with 17 nodes between [0, 1] 

 

Figure 4.18: Difference between natural spline value and e^x for Figure 4.17 
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4.5.2 Complete cubic spline for e^x function 

 

Figure 4.19: Complete cubic spline for e^x with 17 nodes between [0, 1] 

 

Figure 4.20: Difference between complete spline value and e^x for Figure 4.19 
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4.5.3 Clamped cubic spline for e^x function 

 

Figure 4.21: Clamped cubic spline for e^x with 17 nodes between [0, 1] 

 

Figure 4.22: Difference between clamped spline value and e^x for Figure 4.20 
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4.5.4 Not-a-knot cubic spline for e^x function 

 

Figure 4.23: Not-a-knot cubic spline for e^x with 17 nodes between [0, 1] 

 

Figure 4.24: Difference between not-a-knot spline and e^x for Figure 4.23 
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In this case, out of the 4 splines, the clamped cubic spline is the one which is 

different than the other types of splines. But, it is the one which is the closest to the actual 

function.  The maximum difference it achieves is nearly 1.0 K 10�M, as we can see from 

Figure 4.22 above. 

 

4.6 1/(1+x^2) function interpolation with 17 nodes 

The next four sub sections explain the four types of splines for the 
 

	 
�!� function, 

when 17 node values of the function are given as input to the software.  From the graphs, 

we can deduce that the natural spline, the complete spline and the not-a-knot spline 

interpolate similarly, when compared to the clamped cubic spline.  Another thing that can 

said from the earlier discussion about “Runge’s phenomenon” is that spline interpolation 

is usually superior to high degree polynomial interpolation on uniformly spaced �, as a 

spline, being of fixed degree, does not suffer from this phenomenon [8]. 
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4.6.1 Natural cubic spline for 1/(1+x^2) function 

 

Figure 4.25: Natural cubic spline for 1/(1+x^2) with 17 nodes between [-5, 5] 

 

Figure 4.26: Difference between natural spline and 1/(1+x^2) for Figure 4.25 
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4.6.2 Complete cubic spline for 1/(1+x^2) function 

 

Figure 4.27: Complete cubic spline for 1/(1+x^2) with 17 nodes between [-5, 5] 

 

Figure 4.28: Difference between complete spline and 1/(1+x^2) for Figure 4.27 
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4.6.3 Clamped cubic spline for 1/(1+x^2) function 

 

Figure 4.29: Clamped cubic spline for 1/(1+x^2) with 17 nodes between [-5, 5] 

 

Figure 4.30: Difference between clamped spline and 1/(1+x^2) for Figure 4.29 
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4.6.4 Not-a-knot cubic spline for 1/(1+x^2) function 

 

Figure 4.31: Not-a-knot cubic spline for 1/(1+x^2) with 17 nodes between [-5, 5] 

 

Figure 4.32: Difference between not-a-knot spline and 1/(1+x^2) for Figure 4.31 
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Out of the 4 splines, the clamped cubic spline is the one which is different than 

the other types of splines, as mentioned before.  But, strangely enough, all the four 

splines differ from the original function alike.  The maximum difference all these 4 

splines achieve is relatively higher when compared to the previous trigonometric 

functions and the exponential function.  It is nearly 4.0 K 10��, as we can see from the 

Figures 4.26, 4.28, 4.30, and 4.32 above.  This can be attributed to the complexity of the 

function 
 

	 
�!�. 
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CHAPTER V 
 

 

CONCLUSION 

 

5.1 Summary 

The unified software package puts away the trouble of interpolating the cubic 

splines independently for a given set of data.  With its help, we can interpolate all the 

various types of splines quickly and later compare them with ease. 

After interpolating the various splines for various functions, some interesting 

results are obtained.  In all the cases, the clamped cubic spline turned out to be the one 

interpolating the data closer to the function.  This can be true as the user provides the first 

derivatives of the function at the end points.  However, possessing this data is not so 

typical of the many cases.  One other conclusion that is derived from the graphs is that, in 

many cases the complete cubic spline is similar to the not-a-knot cubic spline. 
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5.2 Future Work 

The current software package consists of 4 types of cubic splines.  Other cubic 

splines can be incorporated into this software without much difficulty.  With the addition 

of more splines, this software package becomes more unified and its reach will be further 

extended.  One immediate suggestion can be the shape-preserving cubic spline, 

mentioned in the book Fundamentals of Numerical Computing [4].  There doesn’t seem 

to be any published algorithm worked out for this shape-preserving cubic spline.  If the 

specifics of that cubic spline can be figured out, it acts a good addition to the package. 
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APPPENDICES 
 

 

APPENDIX A:  THE SOURCE CODE FOR THE SOFTWARE PACKAGE  
                           WRITTEN IN JAVA LANGUAGE 

 

A.1 A simple main driver program to interpolate NOP Q using natural cubic spline for 

an input of 17 nodes 

public static void main(String[] args) 
   { 
      final int MAX_NODES = 20; 
      final int SPL_PTS = 6; 
       
      final double LOWEST_VALUE = 0.00000001; 
       
       
      // The starting and ending points of X for the Sine function       
       
      // Sin(X) Range 
      final double SIN_BEG = 0.0; 
      final double SIN_END = Math.PI; 
       
      double[] 
         xn = new double[MAX_NODES],   // X values at the nodes 
         yn = new double[MAX_NODES],   // F(X) values at the nodes 
         b = new double[MAX_NODES],    // Linear term Coefficients 
         c = new double[MAX_NODES],    // Quadratic term Coefficients 
         d = new double[MAX_NODES],    // Cubic term Coefficients 
         sprpr = new double[MAX_NODES], // Second derivatives 
         splineValues = new double[3]; // Spline values, first derivatives 
                                       // and the second derivatives of the  
                                       // spline at one point 
                
      int  
         n,   // Number of nodes 
         k,   // 2 power k + 1 nodes 
         i, 
         j, 
         iFunction, // The choice of function 
         iMethod;   // The choice of Cubic Spline 
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      double 
         x, 
         t, 
         dVar1, 
         dVar2, 
         width;       // Width between nodes 
       
       
      System.out.println("Cubic Spline Interpolation\n"); 
         
       
      // Initializations 
      width = 0.0; 
      dVar1 = 0.0; 
      dVar2 = 0.0; 
       
                   
      // Assigning the number of nodes as 17 
      k = 4;       
      n = (int)Math.pow(2, k) + 1; 
      System.out.println("Number of nodes = " + n); 
                 
             
      // Assigning the interpolating function as Sine 
      iFunction = 1; 
      System.out.println("Function being interpolated = Sine\n"); 
       
      width = (SIN_END - SIN_BEG) / (n - 1); 
      for(i = 0; i < n; i++) 
      { 
         xn[i] = SIN_BEG + (width * i); 
         yn[i] = Math.sin(xn[i]); 
         if(yn[i] < LOWEST_VALUE)   yn[i] = 0.0; 
      } 
       
             
      // Displaying the actual function nodes  
      for(i = 0; i < n; i++) 
         System.out.println("X = " + xn[i] + " Y = " + yn[i]); 
      System.out.println(); 
             
                       
      // Selecting the type of cubic spline as Natural cubic spline 
      iMethod = 1; 
       
       
             
      // Cubic Spline Coefficients' Calculation 
      cubicSplineCoeffs(n, xn, yn, iMethod, dVar1, dVar2, b, c, d, sprpr); 
       
       
       
      // Cubic Spline Values' Calculation       
      for (i = 0; i < n - 1; i++) 
      { 
         for(j = 0; j < SPL_PTS; j++) 
         { 
            t = xn[i] + j / (double)SPL_PTS * (xn[i+1] - xn[i]); 
            cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,  
               splineValues); 
            System.out.println("T = " + t + " Sp = " + splineValues[0]); 
         } 
      } 
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      t = xn[i]; 
      cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i, 
         splineValues); 
      System.out.println("T = " + t + " Sp = " + splineValues[0]); 
          
   } 
   // End public static void main 
 

 
A.2 Interactive main driver program along with the routines comprising the total 

software package for 17 input nodes 

 
// SplineInterp.java   November 2010 
 
// Praveen Motapotu, MS in Computer Science 
// Oklahoma State University 
 
import java.util.*;   // Contains Random, StringTokenizer, Scanner, Locale 
import java.text.*;   // Contains DecimalFormat, NumberFormat 
import java.lang.*;   // Contains Math functions, constants 
 
public class SplineInterp 
{ 
   public static void main(String[] args) 
   { 
      final int MAX_NODES = 101; 
      final int K_MIN = 2; 
      final int K_MAX = 6; 
      final int SPL_PTS = 6; 
       
      final double LOWEST_VALUE = 0.00000001; 
       
       
      // The starting and ending points of X for the 4 functions 
       
      // Sin(X) Range 
      final double SIN_BEG = 0.0; 
      final double SIN_END = Math.PI; 
      // Cos(X) Range 
      final double COS_BEG = 0.0; 
      final double COS_END = Math.PI; 
      // e^X Range 
      final double EPX_BEG = 0.0; 
      final double EPX_END = 1.0; 
      // 1/(1+X^2) Range 
      final double XSQ_BEG = -5.0; 
      final double XSQ_END = 5.0; 
       
      double[] 
         xn = new double[MAX_NODES],   // X values at the nodes 
         yn = new double[MAX_NODES],   // F(X) values at the nodes 
         b = new double[MAX_NODES],    // Linear term Coefficients 
         c = new double[MAX_NODES],    // Quadratic term Coefficients 
         d = new double[MAX_NODES],    // Cubic term Coefficients 
         sprpr = new double[MAX_NODES],// Second Derivatives 
         splineValues = new double[3]; // Spline values, first derivatives 
                                       // and the second derivatives of the  
                                       // spline at one point 
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      int  
         n,   // Number of nodes 
         k,   // 2 power k + 1 nodes 
         i, 
         j, 
         iFunction, // The choice of function 
         iMethod;   // The choice of Cubic Spline 
          
      double 
         x, 
         t, 
         dVar1, 
         dVar2, 
         width;       // Width between nodes 
       
      Scanner sc = new Scanner(System.in); 
       
      System.out.println("Cubic Spline Interpolation\n"); 
       
       
             
      // Requesting number of nodes 
       
      System.out.print("Enter k, where the number of nodes is 2^k+1: "); 
      k = sc.nextInt(); 
      if(k < K_MIN || k > K_MAX) 
      {    
         System.out.println("Accepted k values are between 2 & 6, included."); 
         System.exit(0); 
      } 
       
      n = (int)Math.pow(2, k) + 1; 
      System.out.println("Number of nodes = " + n); 
       
      // Initializations 
      width = 0.0; 
      dVar1 = 0.0; 
      dVar2 = 0.0; 
       
       
             
      // Requesting the interpolating function 
       
      System.out.println("Enter the function to be interpolated: "); 
      System.out.println("1. Sin 2. Cos 3. e^x 4. 1/(1+x^2)"); 
      iFunction = sc.nextInt(); 
       
      if(iFunction == 1)   // Sine function 
      { 
         width = (SIN_END - SIN_BEG) / (n - 1); 
         for(i = 0; i < n; i++) 
         { 
            xn[i] = SIN_BEG + (width * i); 
            yn[i] = Math.sin(xn[i]); 
            if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE) 
               yn[i] = 0.0; 
         } 
      } 
      else if(iFunction == 2)   // Cosine function 
      { 
         width = (COS_END - COS_BEG) / (n - 1); 
         for(i = 0; i < n; i++) 
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         { 
            xn[i] = COS_BEG + (width * i); 
            yn[i] = Math.cos(xn[i]); 
            if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE) 
               yn[i] = 0.0; 
         } 
      } 
      else if(iFunction == 3)   // e^x function 
      { 
         width = (EPX_END - EPX_BEG) / (n - 1); 
         for(i = 0; i < n; i++) 
         { 
            xn[i] = EPX_BEG + (width * i); 
            yn[i] = Math.pow(Math.E, xn[i]); 
            if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE) 
               yn[i] = 0.0; 
         } 
      } 
      else if(iFunction == 4)   // 1/1+x^2 function 
      { 
         width = (XSQ_END - XSQ_BEG) / (n - 1); 
         for(i = 0; i < n; i++) 
         { 
            xn[i] = XSQ_BEG + (width * i); 
            yn[i] = 1 / (1 + Math.pow(xn[i], 2)); 
            if(yn[i] < LOWEST_VALUE && yn[i] > -LOWEST_VALUE) 
               yn[i] = 0.0; 
         } 
      } 
      else 
      { 
         System.out.println("Only 4 choices of functions available!"); 
         System.exit(0); 
      } 
       
      // Displaying the actual function nodes  
      for(i = 0; i < n; i++) 
         System.out.println("X = " + xn[i] + " Y = " + yn[i]); 
             
             
             
      // Requesting the type of cubic spline 
       
      System.out.println("Enter the type of cubic spline: "); 
      System.out.println("1. Natural 2. Complete 3. Clamped 4. Not-a-knot"); 
      iMethod = sc.nextInt(); 
       
      // Requesting the first derivatives for Clamped Spline 
      if(iMethod == 3) 
      { 
         System.out.println("Please enter the two end conditions for clamped 
spline:"); 
         dVar1 = sc.nextDouble(); 
         dVar2 = sc.nextDouble(); 
      } 
       
      if(iMethod < 1 || iMethod > 4) 
      { 
         System.out.println("Only 4 types of cubic splines available!"); 
         System.exit(0); 
      } 
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      // Cubic Spline Coefficients' Calculation 
      cubicSplineCoeffs(n, xn, yn, iMethod, dVar1, dVar2, b, c, d, sprpr); 
       
       
       
      // Cubic Spline Values' Calculation       
      for (i = 0; i < n - 1; i++) 
      { 
         for(j = 0; j < SPL_PTS; j++) 
         { 
            t = xn[i] + j / (double)SPL_PTS * (xn[i+1] - xn[i]); 
            cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i,  
               splineValues); 
            System.out.println("T = " + t + " Sp = " + splineValues[0]); 
         } 
      } 
      t = xn[i]; 
      cubicSplineValue(n, xn, yn, iMethod, b, c, d, sprpr, t, i, 
         splineValues); 
      System.out.println("T = " + t + " Sp = " + splineValues[0]); 
          
   } 
   // End public static void main 
      
   
   
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
    
    
    
   public static void cubicSplineCoeffs(int n, double[] xn, double[] yn, 
      int iSpline, double dVar1, double dVar2, double[] b, double[] c, 
      double[] d, double[] sprpr) 
   { 
   /* 
        PURPOSE: 
             Calculate the coefficients for any type of the cubic spline 
             for a given set of data 
 
 
        CALLING SEQUENCE: 
             cubicSplineCoeffs(n, xn, yn, iSpline, dVar1, dVar2); 
 
 
        INPUTS: 
             n   number of interpolating points or nodes 
             xn  array containing interpolating points 
             yn  array containing function values to be interpolated; 
                 yn[i] is the function value corresponding to xn[i] 
             iSpline 
                 the number representing the type of cubic spline 
             dVar1 
                 the first derivative at x=a used by clamped spline 
             dVar2 
                 the first derivative at x=b used by clamped spline 
             b   array of size at least n;  
             c   array of size at least n;  
             d   array of size at least n; 
             sprpr 
                 array of size at least n; 
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        OUTPUTS: 
             b   coefficients of linear terms in cubic spline 
             c   coefficients of quadratic terms in cubic spline 
             d   coefficients of cubic terms in cubic spline 
             sprpr 
                 second derivatives of the cubic spline 
   */ 
       
      if(iSpline == 1) 
         natSplCoeffs(n, xn, yn, sprpr); 
          
      else if(iSpline == 2) 
         cmplSplCoeffs(n, xn, yn, b, c, d); 
          
      else if(iSpline == 3) 
         clmpSplCoeffs(n, xn, yn, b, c, d, dVar1, dVar2); 
          
      else if(iSpline == 4) 
         nakSplCoeffs(n, xn, yn, b, c, d); 
          
      else 
      { 
         System.out.println("Only 4 types of cubic splines available!"); 
         System.exit(0); 
      } 
   } 
   // End public static void cubicSplineCoeffs 
          
    
     
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void cubicSplineValue(int n, double[] xn, double[] yn, 
      int iSpline, double[] b, double[] c, double[] d, double[] sprpr, 
      double t, int index, double[] splVals) 
   { 
   /* 
        PURPOSE: 
             Calculate the actual value for any type of the cubic spline 
             by providing it's coefficients at a single point within the 
             nodes 
             Also calculate the values of the first and second  
             derivatives of the spline at that point 
 
 
        CALLING SEQUENCE: 
             cubicSplineValue(n, xn, yn, iSpline, b, c, d, sprpr, t, index, 
             fds, sds); 
 
 
        INPUTS: 
             n   number of interpolating points or nodes 
             xn  array containing interpolating points 
             yn  array containing function values to be interpolated; 
                 yn[i] is the function value corresponding to xn[i] 
             iSpline 
                 the number representing the type of cubic spline 
             b   coefficients of linear terms in cubic spline 
             c   coefficients of quadratic terms in cubic spline 
             d   coefficients of cubic terms in cubic spline 
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             sprpr 
                 second derivatives of the cubic spline 
             t   point where the cubic spline is to be evaluated 
             index 
                 index of the closest node less than or equal to 't' 
             splVals 
                 array of size 3; 
              
         
        OUTPUTS: 
             splVals 
                 array containing the value of the cubic spline at [0] 
                 the value of the first derivative of the spline at [1] 
                 the value of the second derivative of the spline at [2] 
   */ 
    
      if(iSpline == 1) 
         natSplValue(n, xn, yn, sprpr, t, index+1, splVals); 
          
      else if(iSpline == 2 || iSpline == 3 || iSpline == 4) 
         normSplValue(n, xn, yn, b, c, d, t, splVals); 
          
      else 
      { 
         System.out.println("Only 4 types of cubic splines available!"); 
         System.exit(0); 
      } 
       
   } 
   // End public static void cubicSplineValue 
 
   
   
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void natSplCoeffs(int n, double[] xn, double[] yn, double[] s) 
   { 
       
//  Natural cubic spline interpolation 
 
//  "Numerical Computing: An Introduction" 
//      L. F. Shampine and R. C. Allen, Jr., 
//  W. B. Saunders Co., 1973 
 
//  natSplCoeffs calculates the array s[] of second derivatives needed to 
define 
//     the spline. 
 
      double[]  
         rho = new double[n], 
         tau = new double[n]; 
 
      double him1, hi, temp, d; 
 
//  Compute the elements of the arrays rho[] and tau[]. 
 
      rho[1] = 0.0; 
      tau[1] = 0.0; 
 
      for(int i = 1; i < n - 1; i++) 
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      { 
         him1 = xn[i] - xn[i-1]; 
         hi = xn[i+1] - xn[i]; 
 
          
         temp = (him1 / hi) * (rho[i] + 2.0) + 2.0; 
         rho[i+1] = -1.0 / temp; 
         d = 6.0 * ((yn[i+1] - yn[i]) / hi - (yn[i] - yn[i-1]) / him1) / hi; 
         tau[i+1] = (d - him1 * tau[i] / hi) / temp; 
      } 
 
//  Compute the array of second derivatives s[] for the natural spline. 
 
      s[0] = 0.0; 
      s[n-1] = 0.0; 
      for(int i = (n - 2); i > 0; i--) 
         s[i] = rho[i+1] * s[i+1] + tau[i+1]; 
 
   }      
   //  End public static void natSplCoeffs 
 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
    
   public static void cmplSplCoeffs(int n, double[] x, double[] f, double[] b,  
      double[] c, double[] d) 
   { 
   /* 
   FUNCTION:     Functions for setting up and evaluating a cubic 
                 interpolatory spline. 
   AUTHORS:      Lawrence Shampine, Richard Allen, Steven Pruess  for 
                 the text  Fundamentals of Numerical Computing 
   DATE:         August 25, 1995 
   LAST CHANGE:  April 3, 1998 
 
   PURPOSE: 
        Calculate coefficients defining a complete cubic interpolatory spline. 
 
   INPUTS: 
        n   number of data points 
        x   vector of values of the independent variable ordered 
            so that  x[i] < x[i+1]  for all i 
        f   vector of values of the dependent variable 
 
   OUTPUTS: 
        b   vector of S'(x[i]) values 
        c   vector of S"(x[i])/2 values 
        d   vector of S'''(x[i]+)/6 values 
   */ 
 
      int 
         i, 
         k; 
 
      double 
         fp1, 
         fpn, 
         h = 0.0, 
         p; 
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//  Calculate coefficients for the tri-diagonal system: 
//     store sub-diagonal in b, diagonal in d, difference quotient in c. 
 
      b[0] = x[1]-x[0]; 
 
      c[0] = (f[1] - f[0]) / b[0]; 
 
      if(n == 2) 
      { 
         b[0] = c[0]; 
         c[0] = 0.0; 
         d[0] = 0.0; 
         b[1] = b[0]; 
         c[1] = 0.0; 
 
         return; 
      } 
 
      d[0] = 2.0 * b[0]; 
 
      for(i = 1; i < n-1; i++) 
      { 
         b[i] = x[i+1]-x[i]; 
 
         c[i] = (f[i+1] - f[i]) / b[i]; 
         d[i] = 2.0 * (b[i] + b[i-1]); 
      } 
 
      d[n-1] = 2.0 * b[n-2]; 
 
 
//  Calculate estimates for the end slopes. 
//  Use polynomials interpolating data nearest the end. 
 
      fp1 = c[0] - b[0] * (c[1] - c[0]) / (b[0] + b[1]); 
 
      if (n > 3) 
         fp1 = fp1 + b[0] * ((b[0] + b[1]) * (c[2] - c[1]) / 
                     (b[1] + b[2]) - c[1] + c[0]) / (x[3] - x[0]); 
 
      fpn = c[n-2] + b[n-2] * (c[n-2] - c[n-3]) / (b[n-3] + b[n-2]); 
 
      if (n > 3) 
         fpn = fpn + b[n-2] * (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * 
                  (c[n-3] - c[n-4]) / (b[n-3] + b[n-4])) / 
                  (x[n-1] - x[n-4]); 
 
 
//  Calculate the right-hand-side and store it in c. 
 
      c[n-1] = 3.0 * (fpn - c[n-2]); 
 
      for (i = n-2; i > 0; i--) 
         c[i] = 3.0 * (c[i] - c[i-1]); 
 
      c[0] = 3.0 * (c[0] - fp1); 
 
 
//  Solve the tridiagonal system. 
 
      for (k = 1; k < n; k++) 
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      { 
         p = b[k-1] / d[k-1]; 
         d[k] = d[k] - p * b[k-1]; 
         c[k] = c[k] - p * c[k-1]; 
      } 
 
      c[n-1] = c[n-1] / d[n-1]; 
 
      for (k = n-2; k >= 0; k--) 
         c[k] = (c[k] - b[k] * c[k+1]) / d[k]; 
 
 
//  Calculate the coefficients defining the spline. 
 
      for (i = 0; i < n-1; i++) 
      { 
         h = x[i+1] - x[i]; 
         d[i] = (c[i+1] - c[i]) / (3.0 * h); 
         b[i] = (f[i+1] - f[i]) / h - h * (c[i] + h*d[i]); 
      } 
 
      b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); 
 
      return; 
 
   }      
   //  End public static int cmplSplCoeffs 
   
 
    
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void clmpSplCoeffs(int n, double[] x, double[] f, double[] b,  
      double[] c, double[] d, double fpa, double fpb) 
   { 
/* 
     PURPOSE: 
          determine the coefficients for the clamped 
          cubic spline for a given set of data 
 
 
     CALLING SEQUENCE: 
          clmpSplCoeffs(n, x, f, b, c, d, fpa, fpb); 
 
 
     INPUTS: 
          n    number of interpolating points 
          x    array containing interpolating points 
          f    array containing function values to 
               be interpolated;  f[i] is the function 
               value corresponding to x[i] 
          b    array of size at least n;  
          c    array of size at least n;  
          d    array of size at least n;  
          fpa  derivative of function at x=a 
          fpb  derivative of function at x=b 
 
 
     OUTPUTS: 
          b    coefficients of linear terms in cubic spline 
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          c    coefficients of quadratic terms in cubic spline 
          d    coefficients of cubic terms in cubic spline 
*/ 
                     
 
      double[] 
         h  = new double[n], 
         dl = new double[n], 
         dd = new double[n], 
         du = new double[n]; 
      
      int i; 
           
      for(i = 0; i < n-1; i++)  
      { 
         h[i] = x[i+1] - x[i]; 
         dl[i] = du[i] = h[i]; 
      } 
      
      dd[0] = 2.0 * h[0]; 
      dd[n-1] = 2.0 * h[n-2]; 
      c[0] = (3.0 / h[0]) * (f[1] - f[0]) - 3.0 * fpa; 
      c[n-1] = 3.0 * fpb - (3.0 / h[n-2]) * (f[n-1] - f[n-2]); 
      for(i = 0; i < n-2; i++) 
      { 
         dd[i+1] = 2.0 * (h[i] + h[i+1]); 
         c[i+1] = (3.0 / h[i+1]) * (f[i+2] - f[i+1]) - (3.0 / h[i]) * (f[i+1] - 
f[i]); 
      } 
      
      tridiagonal(n, dl, dd, du, c); 
      
      for(i = 0; i < n-1; i++) 
      { 
         d[i] = (c[i+1] - c[i]) / (3.0 * h[i]); 
         b[i] = (f[i+1] - f[i]) / h[i] - h[i] * (c[i+1] + 2.0 * c[i]) / 3.0; 
      } 
   } 
   //  End public static void clmpSplCoeffs 
 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void nakSplCoeffs(int n, double[] x, double[] f, double[] b,  
      double[] c, double[] d ) 
   { 
   /* 
        PURPOSE: 
             determine the coefficients for the 'not-a-knot' 
             cubic spline for a given set of data 
 
 
        CALLING SEQUENCE: 
             nakSplCoeffs(n, x, f, b, c, d); 
 
 
        INPUTS: 
             n   number of interpolating points 
             x   array containing interpolating points 
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             f   array containing function values to 
                 be interpolated;  f[i] is the function 
                 value corresponding to x[i] 
             b   array of size at least n; 
             c   array of size at least n; 
             d   array of size at least n; 
 
 
        OUTPUTS: 
             b   coefficients of linear terms in cubic spline 
             c   coefficients of quadratic terms in cubic spline 
             d   coefficients of cubic terms in cubic spline 
   */ 
 
        double[] 
           h  = new double[n], 
           dl = new double[n], 
           dd = new double[n], 
           du = new double[n]; 
        int i; 
 
        for(i = 0; i < n-1; i++) 
           h[i] = x[i+1] - x[i]; 
        for(i = 0; i < n-3; i++) 
           dl[i] = du[i] = h[i+1]; 
 
        for(i = 0; i < n-2; i++) 
        { 
           dd[i] = 2.0 * (h[i] + h[i+1]); 
           c[i] = (3.0 / h[i+1]) * (f[i+2] - f[i+1]) - 
                    (3.0 / h[i]) * (f[i+1] - f[i]); 
        } 
        dd[0] += (h[0] + h[0]*h[0] / h[1]); 
        dd[n-3] += (h[n-2] + h[n-2]*h[n-2] / h[n-3]); 
        du[0] -= (h[0]*h[0] / h[1]); 
        dl[n-4] -= (h[n-2]*h[n-2] / h[n-3]); 
 
 
        tridiagonal(n-2, dl, dd, du, c); 
 
 
        for(i = n-3; i >= 0; i--) 
           c[i+1] = c[i]; 
        c[0] = (1.0 + h[0] / h[1]) * c[1] - h[0] / h[1] * c[2]; 
        c[n-1] = (1.0 + h[n-2] / h[n-3]) * c[n-2] - h[n-2] / h[n-3] * c[n-3]; 
        for(i = 0; i < n-1; i++) 
        { 
           d[i] = (c[i+1] - c[i]) / (3.0 * h[i]); 
           b[i] = (f[i+1] - f[i]) / h[i] - h[i] * (c[i+1] + 2.0*c[i]) / 3.0; 
        } 
   } 
   //  End public static void nakSplCoeffs 
 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void natSplValue(int n, double[] xn, double[] yn, double[] s,  
      double x, int i, double[] splVals) 
   { 
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   /* 
        PURPOSE: 
             Evaluate a cubic spline at a single value of 
             the independent variable given the coefficients of 
             the cubic spline interpolant 
 
        TYPE: 
             It works for Natural cubic spline only 
 
        CALLING SEQUENCE: 
             y = natSplValue(n, xn, yn, s, x, i); 
 
        INPUTS: 
             n   number of interpolating points or nodes 
             xn  array containing interpolating points 
             yn  array containing the constant terms from 
                 the cubic spline 
             s   array containing the second derivatives 
                 of the cubic spline 
             x   value of independent variable at which 
                 the interpolating polynomial is to be 
                 evaluated 
             i   index value of the nodes 
             splVals 
                 array of size 3; 
              
         
        OUTPUTS: 
             splVals 
                 array containing the value of the cubic spline at [0] 
                 the value of the first derivative of the spline at [1] 
                 the value of the second derivative of the spline at [2] 
   */ 
      double  
         a,  
         b,  
         hL; 
 
      if(i == n) 
      { 
         splVals[0] = yn[i-1]; 
         splVals[1] =  
         splVals[2] = 0.0; 
      } 
       
      else 
      { 
         a = xn[i] - x; 
         b = x - xn[i-1]; 
         hL = xn[i] - xn[i-1]; 
          
         // Spline value 
         splVals[0] = a * s[i-1] * (a * a / hL - hL)/6.0 +  
                         b * s[i] * (b * b / hL - hL) / 6.0 + 
                         (a * yn[i-1] + b * yn[i]) / hL; 
                          
         // First derivative 
         splVals[1] = (b * b * s[i] - a * a * s[i-1])/(2.0 * hL) + 
                         hL * (s[i-1] - s[i])/6.0 + (yn[i] - yn[i-1])/hL; 
                          
         // Second derivative 
         splVals[2] = (a * s[i-1] + b * s[i])/hL; 
      } 
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   }      
   //  End public static void natSplValue 
 
 
   
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void normSplValue(int n, double[] x, double[] f, double[] b,  
      double[] c, double[] d, double t, double[] splVals) 
    { 
   /* 
        PURPOSE: 
             Evaluate a cubic spline at a single value of 
             the independent variable given the coefficients of 
             the cubic spline interpolant 
              
             Also evaluates the first and second derivatives of 
             the spline at this single value 
              
        TYPE: 
             It works for Complete, Clamped & Not-a-knot cubic 
             splines      
 
        CALLING SEQUENCE: 
             y = normSplValue(n, x, f, b, c, d, t, fds, sds); 
 
        INPUTS: 
             n   number of interpolating points 
             x   array containing interpolating points 
             f   array containing the constant terms from 
                 the cubic spline 
             b   array containing the coefficients of the 
                 linear terms from the cubic spline 
             c   array containing the coefficients of the 
                 quadratic terms from the cubic spline 
             d   array containing the coefficients of the 
                 cubic terms from the cubic spline 
             t   value of independent variable at which 
                 the interpolating polynomial is to be 
                 evaluated 
             splVals 
                 array of size 3; 
              
         
        OUTPUTS: 
             splVals 
                 array containing the value of the cubic spline at [0] 
                 the value of the first derivative of the spline at [1] 
                 the value of the second derivative of the spline at [2]     
   */ 
 
        int  
           i, 
           found; 
            
        double  
           dt; 
 
        i = 1; 
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        found = 0; 
         
        while ( (found == 0) && ( i < n-1 ) )  
        { 
           if ( t < x[i] ) 
              found = 1; 
           else 
              i++; 
        } 
         
        dt = t - x[i-1]; 
         
        // Calculating the spline value 
        splVals[0] = f[i-1] + dt * (b[i-1] + dt * (c[i-1] + dt * d[i-1])); 
         
        // Calculating the first derivative 
        splVals[1] = b[i-1] + dt * (2.0 * c[i-1] + dt * 3.0 * d[i-1]); 
         
        // Calculating the second derivative 
        splVals[2] = 2.0 * c[i-1] + dt * 6.0 * d[i-1]; 
         
   } 
   //  End public static void normSplValue 
    
    
    
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
   public static void tridiagonal(int n, double[] c, double[] a, double[] b,  
      double[] r) 
   { 
        int i; 
 
        for(i = 0; i < n-1; i++ ) 
        { 
            b[i] /= a[i]; 
            a[i+1] -= c[i]*b[i]; 
        } 
 
        r[0] /= a[0]; 
 
        for ( i = 1; i < n; i++ ) 
            r[i] = ( r[i] - c[i-1] * r[i-1] ) / a[i]; 
 
        for ( i = n-2; i >= 0; i-- ) 
            r[i] -= r[i+1] * b[i]; 
   } 
   // End public static void tridiagonal 
 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
 
 
 
} 
// End public class SplineInterp 
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