
 SIMULATED ANNEALING BASED HIERARCHICAL

Q-ROUTING: A DYNAMIC ROUTING PROTOCOL

 By

 ANTONIO MIRA LOPEZ

 Bachelor of Science in Computer Science

 University of Science and Arts of Oklahoma

 Chickasha, Oklahoma

 2000

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2007

 ii

SIMULATED ANNEALING BASED HIERARCHICAL

Q-ROUTING: A DYNAMIC ROUTING PROTOCOL

 Thesis Approved:

 Dr. Douglas K. Heisterkamp

 Thesis Adviser

 Dr. John P. Chandler

 Dr. Nohpill Park

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1

2. REINFORCEMENT LEARNING...4

 2.1 Components of Reinforcement Learning...5

 2.2 Exploration vs. Exploitation ..7

3. TEMPORAL DIFFERENCING ..8

 3.1 On-Policy vs. Off-Policy ...9

 3.2 Q-Learning...10

4. ROUTING ALGORITHMS ..13

 4.1 Shortest Path Routing ..14

 4.2 Q-Routing ..16

 4.2.1 Q-Routing Results..18

 4.2.2 Recent Advances in Q-Routing ...22

 4.3 NQOSP – N Q-Routing Optimal Shortest Path ...22

5. Q-LEARNING BASED ON SIMULATED ANNEALING PRINCIPLE WITH

SHORTEST PATH INITIALIZATION..26

6. SAHQ-ROUTING: SIMULATED ANNEALING BASED HIERARCHICAL Q-

ROUTING..28

 6.1 Overview of the Proposed Method ..28

 6.2 Network Space Segmentation ..30

 6.3 Hierarchical Network Model ...32

 6.4 Simulated Annealing based Q-Routing ...35

 6.5 Algorithm Pseudo Code...37

7. EXPERIMENT METHODOLOGY AND RESULTS ..44

 7.1 Experiment Results in the 6x6 Grid Network Topology45

 7.1.1 Medium and Low Network Loads ...45

 7.1.2 Dynamic Adaptation of Changing Loads ..46

 iv

 7.1.2.1 Increasing Network Load...46

 7.1.2.2 Variable Network Load..47

 7.2 Experiment Results in the Extended 6x6 Grid Network Topology51

 7.2.1 Variable Network Load..52

8. FUTURE WORK...56

9. CONCLUSION..58

REFERENCES ..61

APPENDIX A..65

 v

LIST OF FIGURES

Figure Page

 1 Diagram of Reinforcement Learning Setting...5

 2 TD(γ) Algorithm ..9

 3 On and Off Policies..10

 4 Q-Learning Algorithm ...11

 5 Q-Learning Example..11

 6 Shortest Path Problem..15

 7 Q-Routing Algorithm...16

 8 Computation of the Immediate Cost ..17

 9 6x6 Irregular Grid ..19

 10 High Network Load ...20

 11 Low Network Load ..21

 12 Updating of the Reinforcement Signal ..23

 13 Network with Continuous High Load..24

 14 Network with a Peak of High Load ...25

 15 Simulated Annealing Algorithm..27

 16 Network Segmentation...31

 17 Hierarchical Model of the Network ...32

 18 Proposed Method Flowchart ..33

 19 QoS Traffic Management ..36

 vi

 20 Simulated Annealing Decision Making ...36

 21 Implementation of Simulated Annealing in the proposed method37

 22 Inter-area Decision Process..38

 23 Congestion Advertisement...40

 24 Congestion Update Process..40

 25 Congestion Advertisement Illustration ..41

 26 Inter-area Border Selection Processing..42

 27 Low-Medium Network Load ...45

 28 High Constant Network Load ..47

 29 Variable Network Load..48

 30 SAHQ-Routing Load Balancing ..49

 31 Q-Routing (Shortest Path Initialization) Load Balancing....................................50

 32 Active Network Packet Count ...51

 33 6x6 Network Topology Favoring Load Balance ...52

 34 Packet Delivery Time in Extended 6x6 Grid Topology53

 35 Routing Load Balancing in Extended 6x6 Grid Topology54

 36 Active Network Packet Count ...55

 37 Redundant Network Topology...65

 38 Average Packet Delivery Time..67

 39 Active Network Packet Count ...68

 1

CHAPTER 1

INTRODUCTION

Internet is expanding at an incredible rate year after year. More efficient

technologies need to evolve to keep up with the rapidly number of users that share the

networks. With the increase in the number of users and the different application protocols

such as ftp or http, the common problems in the communication among nodes will

become more and more problematic. Some of these problems such as congestion create a

huge impact in how fast packets can be delivered from one node to another node. Routers

are the devices that manage how packets are delivered from a source to a destination. The

internal algorithm that decides how the packet travels though routers is called a routing

protocol. Routing protocols are critical when we think about how fast a packet makes it

from source to destination. Their main purpose is to find an algorithm that provides the

most optimal path from source to destination. Since networking is becoming larger and

larger, this has become a really important research topic. There are some very well

known internal routing protocols such as RIP, IGRP, OSPF that are commonly used in

networks today. There is a lot of research being done in this area.

In 1992, two researchers named Littman M.L and Boyan J.A [5] worked in creating a

routing algorithm that would combine the concept of routing with reinforcement learning.

 2

A router must be able to realize when there has been a change in the topology or

when a link in the network has failed. In these situations the router must be able to adapt

quickly to the new topology by changing the way it is distributing packets to places that

were in the path of that particular link. It must also do so when the network gets

congested. The router must be able to efficiently and quickly change and routes packets

in an efficient manner. There is a specific area in reinforcement learning that fits very

well in the concept of routing. The concept is called Q-learning and this is the concept

that Littman and Boyan used in their experiment to create Q-routing.

Throughout this paper the concept of Q-learning will be analyzed in detail. The

different experiments and their results will be analyzed closely and they will be compared

to the ones obtained in the experiments that will be conducted in the approach provided

in this thesis. The objective of this thesis is to modify the already existing Q-routing

algorithm so that it becomes more efficient. A new routing algorithm will be created and

tested in the same environment as the one created for Q-routing. A recently developed

algorithm that has improved the q-routing algorithm will also be described and compared

against the proposed algorithm. The main problem that Q-routing has is that it does not

perform exploration. In the proposed algorithm an exploration method will be explained

and implemented. The results will be compared to those of Q-routing under different

network loads.

The layout of this thesis will be done in the following manner: First an

introduction of the important topics of this thesis such as Reinforcement Learning, Q-

learning, Sarsa, Q-routing, and routing algorithms will be provided to the reader. Next, a

more detail description of the experiments provided in Q-routing will be given. Then a

 3

detailed description of the most advanced approaches done in the area will be given.

Lastly, the provided approach will be described in detailed along with all the

documentation needed to prove the difference in performance of the proposed approach

vs. Q-routing [5] and the N Q-Routing Optimal Shortest Path [1] approach.

 4

CHAPTER 2

REINFORCEMENT LEARNING

People earn most of their living experiences by trial and error. This means that in

order to know whether an action is going to be worth it or not, they must try it first and

see if it will yield a successful result. Reinforcement learning is very much based on this

concept. It does not follow a specific set of actions in order to learn. It is not supervised.

Other techniques such as Neural Networks use supervised actions to approximate more

and more to an expected result. They are told what to do in order to achieve this based on

previously known knowledge of the environment.

 5

2.1 Components of Reinforcement Learning

Figure 1 [11]: Diagram of Reinforcement Learning Setting

In Figure1 [11], we can see the different components that form Reinforcement

learning. These components are the reward function, a policy, a value function, an agent

and the environment itself.

The policy is the component that decides which action must be taken at a specific

time in a specific state. “A policy defines the learning agent's way of behaving at a given

time” [7]. The policy could be based on different things such as history of a list of actions

to be taken given a specific situation.

The agent is the component that makes the decisions based on this policy. Once a

state is reached the agent will make a decision based on the policy previously determined.

The reward function simply returns a positive or a negative value after performing

an action. This is similar to the real life situation of trial and error and it is how we

 6

humans learn to interact with new environments. If after taking an action we find it

positive we will probably chose to execute it if we run into it again. If the result is

negative we will most likely discard it unless we do not have any other option. In the

concept of reinforcement leaning, the reward function returns a real number. It provides

feedback to a state after a specific action has been taken. The goal is not to obtain a good

positive value at each time step, but to maximize the sum of all the rewards at the final

step [7].

The value of a state is the accumulated reward given to that state after following a

specific policy and getting to a terminal state. An optimal policy would be one where

starting from a random state we obtain the maximum possible reward when arriving to a

terminal state.

The value function is the mapping of states to states values and it is found using a

function approximator such as a neural network or a simple look-up table.

V
π

(S) = Eπ {Rt | st = s} = Eπ {∑k=0 γ
k
 rt+k+1|st=s}

In the previous formula, Eπ stands for the expected value when an agent follows a

specific policy π. “We call the function V
π
 the state-value function for policy π” [7]. In

the formula we can see that Rt is equal to ∑k=0 γ
k
 rt+k+1, which represents the amount of

weight given to future rewards. This concept is known as discounting. The agent will

select actions in order to maximize the end result. In the formula the variable γ is a

parameter in the range 0 <= γ <= 1 called the discount rate. This parameter represents the

present value of future rewards. As the value approaches 0, more weight is given to the

recent rewards. When the value is closer to 1, more weight is given to the overall

collected rewards [7].

 7

2.2 Exploration vs. Exploitation

 A very important issue in reinforcement learning is the concept of exploration

and exploitation. Exploitation means that the agent will keep performing ways that it

already knows that yield a valid solution but not necessarily the best one. Exploration is

important since to a certain degree we must explore different paths in the environment to

search for new paths that could yield better results that the once already known. Thus it is

very important to achieve a balance between exploration and exploitation to achieve

better results in experiments. “The agent has to exploit what it already knows in order to

obtain reward, but it also has to explore in order to make better action selections in the

future” [7]. It is very important for the agent not to get stuck in a local optimal solution. It

must explore other solutions in order to find the global optimal solution. In the routing

problem the environment is constantly changing very rapidly. In this type of environment

we must adapt quickly to the new changing stages. Better paths may appear and without

exploration the agent may not be able to find these quickly. Without exploration these

paths may never be found and the system can deteriorate over time [20].

 8

CHAPTER 3

TEMPORAL-DIFFERENCE LEARNING

Temporal Difference learning is based on two other techniques called dynamic

programming and Monte Carlo methods. It combines features from both to create a more

robust technique. Monte Carlo methods used experience to solve the problem. They do

not require total knowledge of the environment in order to solve the problem. However

we must wait for a number of transitions before we get a reward. The reward is based on

episodes. The main idea is that we can make a prediction about a terminal state based on

a current state and then update that prediction based on what happens in the states along

the path. The simplest form of temporal difference is called TD(0). TD(0) can be written

as V(St) ← V(St) + α [r t +1 + γV(St +1) - V(St)] [7]. In TD(0), the update is evaluated using

α [r t +1 + γV(St +1) - V(St)] [7]. The learning factor is given by α. The value of γ in this

case is 0 since we are analyzing the simplest case of TD(γ) .This means that we will not

be taking into consideration the weight of the previous states and we are paying total

attention to what happens in the current states. Figure 2 shows the TD(γ) algorithm.

 9

Figure 2 [7]: TD(γ) Algorithm

The figure shows how the updates are based on other updates. The variable γ will

tell us how much weight will be given to the V(s’) value or the state-value from the next

state. The values for each state will be updated in this manner. If the value of γ is small

the agent will be given more strength to the immediate reward and if the value is high the

agent will give more strength to the overall collected reward. Temporal Difference uses

the bootstrap that Dynamic Programming uses and the episodic update used in Monte

Carlo methods. It is clear that by combining these features of these two methods, TD is

more robust an efficient approach towards solving the reinforcement learning problem

[7].

3.1 On-policy vs. Off-policy Methods

 On-policy and Off-policy methods are used to make sure that an optimal greedy

policy is used to make decisions. In order to achieve optimal policies we need to have a

mixture of exploration and exploitation. As explained earlier, exploration simply means

that we not always have to follow the greedy path in order to achieve optimality.

Sometimes by exploring new paths we may actually encounter a more optimal solution.

Exploitation on the other hand is based on always following the greedy solution which

always guarantees to have an optimal solution, but not necessarily the most optimal one.

 10

Figure 3 [23]: On and Off Policies

Figure 3 shows the difference between On and Off policies. When an update takes

place in an on-line environment, the next move from one state to another is affected by

the move itself. When we deal with an off-policy, the evaluation of the move made in a

state will affect the policy from the current move but the move itself is independent of the

policy update and therefore we can use a different policy to make the move. On-line

policies depend a lot on exploration in order for the action values to be accurate [23].

Whereas On-line policies are based on a combination of exploration and control, Off-line

policies separate the two of them. In the next section, two different algorithms will be

presented. The first one is called Q-learning and it based in an off-policy environment.

The second one is called Sarsa and it is based on an on-line policy environment.

3.2 Q-Learning

Q-Learning is an example of an Off-Policy Method. The method follows the

follows the algorithm presented in figure 4 [16] to perform the update. In the algorithm

the variables s and s’ represent the states and the variables a and a’ represent the actions.

Q represents the state-action value and α and γ represent the learning rate and the

discount factor:

 11

Figure 4 [16]: Q-Learning Algorithm

In Q-learning, the model of the system is learned in terms of Q-values. Each value

is of the form Q(s, a) which represents the expected reward of taking an action a in state

s. In state s, if Q-values are learned to model the system accurately, the best action is the

one with the highest Q-value in the vector Q (s, x), where x represents the set of actions,

a, that can be chosen from state s. Thus Q-learning first learns a representation of the

state of the environment in terms of Q-values and these values are the ones that will be

used to make the control decisions.

Figure 5: Q-learning example

The example in figure 5 illustrates a basic step in the Q-learning algorithm. In the

example the learning variable α has the value 0.7. The discount factor variable, γ, has the

 12

value 0.5. The variable d represents the destination node. Node 1 must choose a neighbor

node such that its value is the maximum according to the policy. Node 4 has the highest

Q value and therefore is chosen. Node 4 will then send the reward value back to node 1.

Once node 1 obtains the reply from node 4 it updates its new Q estimate Q(d, 4). The new

state would now be node 4. Node 4 must process the same computations that node 1

executed. This process will repeat until the destination node is reached. At this point a

new episode will take place. As more episodes are executed the Q values will

approximate more and more to the desired Q values.

 13

CHAPTER 4

ROUTING ALGORITHMS

Routing is the process of deciding which path is more suitable and efficient to

send a packet from a source to a destination and traveling through an unknown number of

routers to achieve it. Packets carry a field in their header called destination field which

carries the IP address of the destination device. A router must look at this field and decide

which of the next available hop will be picked to efficiently deliver the packet to its final

destination. In order to do this, a router must look at its router table. The main problem

with routers takes place in dynamically changing networks where a link failure can affect

the performance of the entire network. Static shortest path first would be considered a

static routing, where an administrator has to configure the network routing and change it

manually in case a failure or any other negative event takes place in the network. On the

other hand, Q-Routing is considered dynamic routing, specifically a type of distance

vector routing, since it looks at its local neighbors in other to make a routing decision.

Dynamic Shortest path is also a routing algorithm that uses Dijsktra’s algorithm to figure

out the most optimal path to send a packet from source to destination.

There are some important concepts about routing that are important to mention since they

are important parameters used in the experiments. The first one is Packet Delivery Time

 14

(TD) [15]. Packet delivery time stands for the total time that a packet spends since

it is first introduce in the network at the source node until it is consumed at the

destination node. This will be the main metric that will be used in the experimentation.

The second one is the waiting time at intermediate queues (TW). This refers to the time

that a packet may be waiting at the intermediate node’s queues before being consumed at

the destination node. Transmission delay over links (TX) is the time it takes for a packet

to travel through the transmission link from one node to another. Thus we have that:

TD = TW + TX

This formula will be used later since it is important to take these parameters into account

when updating the Q-values in the environment [15].

4.1 Shortest Path Routing

 Shortest Path is one of the simplest routing algorithms. It simply delivers packets

from source to destination using a metric to figure out the most optimal path. The way it

is done is by using a metric (weight) between the links connecting the nodes and using

the one that yields the minimum collected weight sum of the links.

 The Shortest Path Routing algorithm works by performing Dijsktra’s algorithm

using routers which represent the edges in a graph. The shortest path is then executed

using a metric such as the smallest number of hops from the source to the destination or

the bandwidth of the links connecting the routers. The algorithm can be performed using

any other metric. The algorithm tries to find the most optimal path using that metric from

the source node to the destination node.

 This creates an important problem when the network experiences congestion. In

figure 6 we can see that the shortest path to Router 8 from Routers 1, 2 and 3 is going

 15

through link Router 4. If the link gets congested these routers will not make any changes

since they will always compute the shortest path based on the hop count from source to

destination. The queue in router 4 will quickly get full and packets will begin to be

dropped. These packets will be retransmitted using the same path and the network load

will increase very rapidly. Router 4 will create a bottleneck in the router and the only way

to solve the problem will be by manually changing the routing paths in the network.

 Although the Shortest path algorithm is very easy to implement, it becomes very

inefficient as the network load increases and the queue of the links get full [17].

Figure 6: Shortest Path Problem

 The optimal solution to this problem would be some type of learning algorithm

that would tell the Routers what link to use under different network environments. This is

what the Q-Routing algorithm accomplishes. It makes use of reinforcement learning so

that each node learns partially about the environment and is able to make smart decisions

under different network environments.

 16

4.2 Q-Routing

Q-routing [5] was developed by Littman and it is the first one to make use of

reinforcement learning. Q-routing is based on the concept of Q-learning. Q-learning

makes use of Q-values to perform updates. Similarly, Q-routing uses Q-values which

estimate how long it will take to send a packet to any particular destination through each

one of the node’s neighbors. The state s in the optimization problem of network routing is

represented by these Q-values in the entire network [5].

In Q-routing, each node contains a packet-routing module. The module performs

actions such as routing messages arriving at a node to a neighbor with the smallest total

delivery time. When a packet arrives, it sends an estimate of the remaining delivery time

back to the node that sent it. When receiving a reply from a neighbor, it updates the

estimate for that neighbor.

The Q-routing algorithm can be stated as followed:

Figure 7[6]: Q-Routing Algorithm

 A packet arrives at a router and it is then processed. In the algorithm, this router

would find itself in state s. The agent must select a neighbor y’ such that y’ has minimal

Q(z’, d) from all neighbors y’ of x and return the reward back to s. The Q-value for the

chosen neighbor is then updated. The update rule used in the Q-routing algorithm is very

similar to that used in the Q-learning algorithm. In the update rule, t represents the

 17

transmission delay, the time it takes for a packet to travel over the media to the next node.

The variable q represents the time the packet spends waiting in the queue. As mentioned

earlier, these variables are needed since in reality these two factors increase the time of

the packet making it to destination. In the update equation, Qy’(z’, d) + t + q represent the

new estimate and Q(y’, d) represents the old estimate. As mentioned in the previous

algorithms, the variable α represents the learning factor. In many reinforcement learning

problems this factor gets reduced as the optimal policy is reached and the environment is

finally learned and stabled. Research in this specific problem has proved that this is not

the case. The variable α must always maintain a high value since the network is

constantly changing and therefore constant learning must be taking place. In the work

conducted by Littman and Boyan, a value between 0.5 and 0.7 was used in all of their

research experiments [5].

Figure 8 [10]: Computation of the immediate cost

 18

In Figure 8 we can see the steps that a packet goes through to travel from node to

node. First it waits in a waiting queue. When it is ready, it is transmitted and propagated

through the media link.

The previously mentioned algorithm is purely greedy. It completely exploits the

environment to search for the most optimal paths. For this type of scenario, where the

environment is constantly changing we need to perform some sort of exploration to avoid

getting stuck in a local maxima. In following sections, new approaches to the Q-routing

algorithm will be described. These approaches will make use of exploration and other

techniques in order to overcome the main problems found in Q-routing.

4.2.1 Q-Routing Results

 The Q-Routing experiments were conducted under an irregular 6x6 grid

topology. A discrete event simulator was used to model the motion of packets through a

LAN [7]. The experimentation was executed after learning had been done for the Q-

routing method. Then, packets were tested from sources to other destinations under

different loads using both, Shortest Path and Q-routing and the results were compared. A

router simulator developed by J. Boyan and M. L. Littman was developed in a C compiler

to conduct the experiments. The compiler works under the WISH shell using the Solaris

operating System.

 19

Figure 9 [24]: 6x6 irregular grid

As we can see the irregular grid is divided into two areas. The left area is

composed of nodes 1 to 18. The right area is composed of nodes 19 – 36. The two areas

are only able to communicate with each other using either the link that goes from node 18

to 19 or the link that goes from 12 to 25. We will refer to link 12 to 25 as R1 and link 18

– 19 as link R2. Communication between the two areas takes place mainly through link

R1. In the experiment when this link becomes a bottleneck because of increasing loads, it

is important for the adaptive algorithm to be able to switch to link R2 [24].

In their experiments, Load level represents the probability of a node generating a

packet at any simulation time step. “Time is interpreted as simulation time which is

represented by discrete time steps synchronized for all nodes in the network” [15]. These

packets are introduced in the network periodically in a random node. The average number

of packets in the network at any simulation time step is n x Load level, where n is the

number of nodes in the network [15].

 Littman and Boyan compared their Q-routing results with the Shortest path

algorithm. In their experiment results they showed that Q-routing performed much better

 20

under high load conditions than the Shortest Path algorithm. As mentioned earlier the Q-

routing algorithm used total delivery time from source to destination as its metric.

Figure 10 [6]: High Network Load

In Figure 10 the x axis represent the simulator time and the y axis represent the average

delivery time of packets. The figure shows that at the beginning of the simulation Q-

routing takes some time to learn the environment and therefore performs worse than

Shortest paths. As soon as Q-learning updates its Q-values and has more knowledge of

the environment, the average delivery time becomes rapidly lower than that of Shortest

paths. Q-routing finally converges to an optimal environment. It does not take much time

for Q-routing to perform better than shortest path under these network conditions.

 When the network has a low load the situation differs. Shortest path performs

optimally under this situation. Since the path that is taken is optimal and there is no

 21

congestion in the network, the packets never wait in the queues to be delivered and

delivering packets to their destination takes place very rapidly.

Figure 11 [6]: Low Network Load

 Figure 11 shows that the shortest path algorithm performs optimally the entire

simulation time. Q-routing on the other hand needs some time to learn and it does not

perform efficiently during this time. Eventually it learns the environment and converges

to an optimal stage.

Thus we can see that the main problem that Q-routing has is that under low

network loads, the learning phase makes it very inefficient since packets travel for a

while through the network in a very inefficient manner. The other issue that has been

under a lot of research is making the learning process more efficient. There have been

new studies that have introduced new ideas and factors into the Q-Routing algorithm that

have made it a lot more efficient and robust.

 22

4.2.2 Recent Advances in Q-routing

 Since Q-Routing was first introduced by Littman and Boyan in 1994, a lot of

research has been done in the area. There have been a lot of new approaches that have

made changes or introduced new ideas into the Q-Routing to overcome its main problems

and to make it more efficient and robust. Some of the most significant advances to Q-

Routing were done by algorithms such as Confidence based Dual Reinforcement Q-

Routing [8] and N Q Routing Optimal Shortest Path (NQOSP) [1]. This thesis will focus

mainly in the NQOSP algorithm since it is more efficient and has recently been

developed. Confidence based Dual Reinforcement Q-Routing was developed by Shailesh

Kumar and Risto Miikkulainen in 1997.

4.3 NQOSP – N Q-Routing Optimal Shortest Path

 The N Q-Routing Optimal Shortest Path algorithm [1] was created by

Abdelhamid Mellouk, Said Hoceini, and Samia Larynouna in 2006. This approach

requires that the routers maintain a link state database that contains information about the

topology of the network. A routing protocol such as OSPF continuously sends these types

of packets between routers to exchange information about the network. In this case, the

algorithm only exchanges these messages when there is a change in the network such as

congestion. Once the routers have the updated information about the topology of the

network, the N-Optimal optimal paths algorithm is computed and the router determines

the most optimal path.

 The way the N-Optimal Paths is constructed is by using Dijkstra’s algorithm. It is

basically a modified version of the Shortest Path algorithm. A modification of the

algorithm is made to avoid loop paths in the network.

 23

 The algorithm also makes use of the Q-Routing approach. They make some

modifications such as not taking into account the transmission time from one router to

another since they consider that this factor does not really have a big effect in the routing

process. The reinforcement signal T, following the Q-routing algorithm, is described as:

T = min yЄneighbor of x {qy + Q(y, x, d)} [1],

where Q(y, x, d) indicate the estimated delivery time for a packet to go from router x

through router y to the router destination d. Once that packet reaches router y, the router

will determine the optimal path to send the packet. Once this decision is made, router y

puts the packet in its queue and send the reward value, T, back to router x. Router x then

updates its information in the following way:

∆Q(x, y, d) = η (α + T – Q(x, y, d)) [1]

Thus the new estimation Q’(x, y, d) would look like this:

Q’(x, y, d) = Q(x, y, d) (1 – η) + η(T + α) [1]

Figure 12 [1]: Updating of the Reinforcement Signal

 The algorithm N Q-routing Optimal Shortest path was compared to the standard

Q-Routing under different load conditions. In their experiments, the authors compared

NQOPS to other routing protocols such as Shortest Path, RIP and Q-routing. In my

experiments I am interested in comparing Q-routing performance as well as the

 24

performance of the NQOSP, thus the results obtained in the RIP routing algorithm will

not be analyzed.

Figure 13 [1]: Network with continuous high load

 As we can see in Figure 13, under high network loads, NQOSP, converges faster

to an optimal environment than Q-routing does. The mean of the delivery time in NQOSP

is reduced by 25% in comparison to that of standard Q-routing [1]. The picture represents

a networking scenario where the network load is constantly increasing and therefore the

average delivery time converges to infinity. In reality, the network usually suffers peaks

of congestion. A more realistic scenario would be more like the one shown in figure 15.

 25

Figure 14 [1]: Network with a peak of high load

 In figure 14 we see that in an environment where the network is at a low level and

all of a sudden we have a peak of high load. After the peak of high load, the network load

starts decreasing. NQOSP adapts much quicker to the change in the environment than

standard Q-routing. Besides the fact that NQOSP learns quicker than Q-routing, NQOSP

has the capability of avoiding loops and Q-routing does not.

 26

CHAPTER 5

Q-LEARNING BASED ON SIMULATED ANNEALING

As mentioned earlier, the balance between exploration and exploitation plays a

crucial role in all reinforcement learning problems. In 2004, Maozu Guo, Yang Liu, and

Jacek Malec, created a new approached called the Q-learning Algorithm based on the

Metropolis Criterion. The main objective of this approach is to improve the already

exiting ε-greedy method by reducing e during the learning process. This is done though

the use of the simulated annealing (SA) algorithm, in which a ‘‘local change of a solution

to a combinatorial optimization problem is based on the Metropolis Criterion’’ [3]. In this

algorithm there exists a transition probability P(i (j) of the metropolis criterion which

indicates whether or not the transition from state i to j will take place. P(i (j)) can be

defined for a maximization problem as follows:

 P(i � j) = 1, if f(j) >= f(i) [3]

 P(i � j) = exp((f(j) – f(i)) / t), otherwise [3]

Where f(i) and f(j) are the values of the cost functions of the optimization problem.

The pseudo code for the proposed SA-Q-learning approach is as follows:

 27

Figure 15 [3] : Simulated Annealing Algorithm

 The temperature-dropping criterion can be computed arbitrarily. One of the most

common ways is to compute it using the geometric scaling factor criterion, i.e., tk+1 = λ tk,

where k = 0,1,2,… and λ Є (0.5, 1). The closer the λ value is to 1, the slower the decay

will be in the algorithm [3].

 28

CHAPTER 6

PROPOSED APPROACH: SIMULATED ANNEALING BASED HIERARCHICAL

Q-ROUTING

6.1 Overview of the Proposed Method

The proposed algorithm is a hybrid approach from several research approaches

that I have read and with the purpose of overcoming the problems that Q-routing

presented. The main problem that Q-routing had when it was not initialized to shortest

path was that it took some time to learn the environment so the algorithm performed very

poorly at initialization. In the proposed algorithm this information will only be obtained

at the initialization of a router. The router will obtain a map of the network at the time

that it is initialized. This way the Q values will be initialized to choose the neighbor that

provides the shortest path to the destination according to the bandwidth metric and with a

loop free environment. At initialization an algorithm will be performed in the network to

segment the space. This is mainly done so that some agents can efficiently manage local

spaces of the network and others will be able to have a more global view of the network

to make better decisions.

 After initialization a router will follow the Q-routing algorithm in order to transfer

packets across the network. When a packet is inserted in the network, the global agent in

the router will look at the destination packet. It the packet is in the local area, the packet

will be passed to the local agent who basically will perform basic Q-routing policy to

 29

transfer the packet to the destination. If the destination packet happens to be in an

external area, then the global agent will choose a border router in the area as the local

destination. This is done by encapsulation. Once the packet arrives to the border router,

the local destination will be discarded and the border router will then have to see if the

destination is in an adjacent area or in a non adjacent area. If the destination is going to

an adjacent area, the border router will have information about adjacent areas and

therefore will be able to efficiently send the packet to its final destination. If the

destination is in a non adjacent area, the border router will once again choose the border

router belonging to an adjacent area that yields the minimum transmission time to the

destination area. This process will be executed repeatedly until the packet arrives at its

final destination.

 The main idea is that we subdivide the task of transporting packets in areas. This

way the information within areas will be updated very often and the Q-values will be kept

updated. The global agent will also be able to have a better global view of the network

and therefore it will be able to explore in a more efficient way whenever is needed.

Exploration will be done by using Simulated Annealing. This term has been explained in

chapter 4. For Simulated Annealing to work efficiently, a global value must be used that

will help us keep the network stabilized. This is important especially at environment

changing times. Each router knows how many packets are at any specific time in its

queue and this value basically tells the router the rate at which it is being congested. A

threshold can be then used to trigger a router to send a congestion message to border

routers in adjacent areas so that some of these routers start sending packets through other

border routers in order to avoid more congestion. The trigger takes place according to

 30

congestion levels. Every time a packet arrives at a router its waiting queue utilization is

computed. The congestion level changes every time a determined percentage in

utilization change is reached. When the change takes place, this value is then sent to all

other routers in the area and they will update their Router Congestion Table accordingly.

This is the value that will be used to perform exploration. This percentage is the one

being used as the temperature. All routers maintain a table about the congestion values of

all other routers in the area. This value is initialized to 0 and will only be updated when

another router reaches a specific change in its queue utilization. In order to be able to

send these packets quickly these routers will use quality of service to provide higher

priority to these packets used for congestion management purposes.

 In the following sections the proposed method will be explained in a lot more

detail. How segmentation is applied to the problem will be explained first. Secondly a

detailed description will be given about how decisions are based on the hierarchical

model of the network. Following that, there will be an explanation about how simulated

annealing is used to avoid the congestion problem. The application of quality of service

in the routers to speed up transfer of congestion messages in an area will also be

presented in this section. Lastly the results of the proposed method will be presented

along with a performance comparison with the Q-Routing algorithm under different

network loads.

6.2 Network Space Segmentation

 Network Space Segmentation is the mapping of routers to areas in the topology.

The main idea is that in large graphs is very difficult to maintain global information

without having to exchange local information to every node in the network. To avoid this

 31

we could select areas and within these areas we could select border nodes to collect

information about other adjacent areas and partial information about further areas in the

network. This way a node will have enough information to make a better decision to

transfer a packet to its final destination. It will also be able to perform exploration at

times when the network may be very congested in order to avoid more congestion.

Figure 16: Network Segmentation

 The key to efficient segmentation has to do with finding links that could

potentially create bottlenecks in the network and making these the boundaries of the

areas. The ideal scenario would be that an efficient algorithm would be able to

dynamically find these boundaries and assign and modify areas dynamically as the

network topology changes. This section is included as future work later in this thesis. The

way this step has been implemented in the proposed method is manually. The

administrator of the network is the one responsible for segmenting the network at this

point.

 32

 Segmenting the Network Space has multiple advantages. The main problem with

Q-Routing is scalability of large networks. As the network size increases, the needed Q

table storage for each router becomes impossible to maintain. By segmenting the

Network Space we assign roles to different routers. The local routers only need to have

Q-values about those routers in their local area. The border routers are the ones that will

have more Q-values. These routers will have the Q-values for routers in their area and

routers in adjacent areas. Border routers will also maintain Q-values for external areas but

they do not need to store information about every router in those areas, just the area itself.

 Segmenting the network space also adds security since now we can create areas

that belong to different entities with different roles and create security to access them

through the border routers. Network security has not been contemplated in this paper but

it could definitely be added in future work.

6.3 Hierarchical Network Model

 Once the Network space has been segmented, areas can be used to make local and

global decisions. Within an area a local agent will perform Q-Routing to send a packet

from any source to destination.

Figure 17: Hierarchical Model of the Network

 33

 Figure 17 shows the different levels in the network. The network is segmented in

areas that contain border routers connecting them.

 The global agent is the one that will make the first decision at the router. This

agent will look at the area of the destination node. If the area is the same as the source

node, then the packet is handled by the local agent. However, if the destination node

belongs to an external area, it is the duty of the global agent to decide which border router

in the local area the packet should be sent to. There will be two global Q-values that will

be stored in each router in order to make these global decisions. The first one is used if

the destination belongs to the local area. In this case the packet uses the regular Q value

used in Q-Routing.

 Figure 18 shows a flowchart of the routing decision process. The local decision

has already been explained. The inter-area routing processing will be explained next.

Figure 18: Proposed Method Flowchart

 The second case takes place when a destination packet belongs to an area that is

not adjacent to any of the border routers in the network. In this case each router will

maintain a inter-area Q-value that has the following format:

 34

Q_intearea[(source, destination area), border router]

 Once this decision is made, the packet is encapsulated with a local destination that

belongs to this border router. Once the packet reaches the border router, the border router

discards the encapsulated destination and looks at the original destination. The border

now must decide what border router belonging to the adjacent area is more efficient in

order to deliver the packet to the destination area rapidly.

 The main goal is to send the packet as quickly as possible to the destination area

until it reaches an area that is adjacent to the destination area. At this point the adjacent

area will be able to make a good decision to deliver the packet to the destination the most

efficient way.

 Adding a hierarchical management to deliver packets has numerous advantages.

Q-Routing works well with smaller networks. The reason is that as the network topology

grows larger it will take longer for values to be updated and therefore the adjustment to

changes in the environment would be very slow. There is also the problem with the

routing table. Routers in Q-Routing maintain a routing table with the best possible path

using any neighbor to all destinations in the network. When the network is very large,

every router must maintain Q-values to all destinations in the topology. This becomes

very inefficient. In the new hierarchical model the border routers belonging to a specific

area will contain the information about other areas in the topology and information will

be updated quicker and more efficient than in the Q-Routing algorithm. SAHQ-Routing

will be able to efficiently route packets in larger network topologies. This would also

allow us to reduce the number of loops taking place in the network greatly.

 35

6.4 Simulated Annealing based Q-Routing

 The main goal of the Q-Routing problem is to be able to efficiently send packets

from any source to any destination in the network. Thus it makes sense that if the

network does not have a high load of packets traveling through it that it maintains the

shortest path values since they are the optimal ones. The only way a problem would take

place is when congestion takes place. The basic Q-Routing algorithm relies in the Q-

values to adjust to the congested environment but it may not do so in the most optimal

manner. Some of those Q-values may be out to date and therefore packets may be

transmitted from further regions of the network into the congested area. In order to

overcome this problem the proposed method implements a trigger in the border routers to

advertise other routers in its area that it is starting to suffer from some congestion. The

idea is not to solve the problem of a router already being congested but to prevent the

router ahead of time of getting rapidly congested by choosing alternative paths. This is

done by using simulated annealing based Q-routing using the waiting queue utilization of

the routers as the temperature.

 In order to be able to apply this concept efficiently in the routers, they must be

able to support quality of service. A separate queue will be needed in order to manage

these packets. This information is crucial to prevent the network from creating a

bottleneck that will decrease the performance of the network at any time. Thus we will

have the regular queue where network packets travel through and the management queue

where packets are sent to rapidly adjust values in the network in order to avoid

congestion. When a router receives a congestion management packet, it will look at the

source address belonging to a border router in its area and will make the necessary

 36

changes in the Router Congestion Table. This table contains the congestion utilization

level of every border router in its area. Figure 19 shows how the queue management

works inside of each one of the routers.

 This QoS queuing method has not been implemented in the proposed algorithm.

The proposed algorithm uses the First In First Out queuing method. Implementing this

priority queuing method into the SAHQ-Routing would most likely improve the

performance of the algorithm tremendously. It will be implemented in future work.

Figure 19: QoS Traffic Management

 Border routers will start sending congestion management packets when their

queue reaches 10% utilization.

 In a previous section we looked at how simulated annealing was applied to Q-

learning. Figure 16 indicated the following:

Figure 20: Simulated Annealing Decision Making

 This states how exploration is performed. In the proposed method some changes

will be applied. Exploration will only start taking place when needed. It will happen

whenever a router starts experiencing some level of congestion. It will send the

 37

congestion value to the other routers in the area and the Router Congestion Table will be

updated in every one of these routers. This value is crucial since it represents the

temperature. The other difference is that instead of choosing an arbitrarily action to

explore, this method will explore the second best. The reason is that in an on-line

scenario we do not want to be sending packets to areas that will retain the packet

traveling through the network for long periods of time and therefore helping the

congestion issue.

 Select the second best action asec in A(s) according to the policy

 Select an action ap in A(s) according to the policy

 Generate a random number e Є (0, 1)

 If (e < exp ((Q(s, asec) – Q(s, ap)) * temperature) then a  asec

Figure 21: Implementation of Simulated Annealing in the proposed method

We want to have some level of exploration but it must be intelligent exploration if

we want the routing algorithm to perform efficiently.

6.5 Algorithm Pseudo Code

 In this section the pseudo code of the algorithm is described in detail. It is

important to notice that Q* represents the optimal Q values, which is not to be confused

with the arithmetic operation. For the routing problem Q* represents the shortest path

from any node to any specific destination.

 At initialization of the network all routers learn about the topology of the network

and initialize their Q values to the shortest path to destinations.

 There are two types of Q-values used in the computation of the proposed method.

How these values work will be described from the moment a packet is created in the

network until it reaches its final destination. The different scenarios will be explained in

detail next.

 38

 When a packet is injected in the network the source router will decide whether the

destination router is in the same area, an adjacent area or a distant area.

If the destination happens to be in the same area then the packet will be sent using

Simulated Annealing based Q-Routing. The packet is sent to destination through a

neighbor router following a policy and a reinforcement value is returned. The decision

process is as follows:

 Let x be the current node

 Let d be the destination node

 Select y’ such that y’ has minimal Qx(y’, d) from all neighbor routers y of router x

 Wait for a reply from y’

 Update Qx(y’, d) using the new estimate from router such that

 Qx(y’, d) = Qx(y, d) + α [Qy’(z’, d) + t + q – Qx(y’, d)] where z Є neighbor routers of y’

Figure 22: Local area Decision Process

 In the above representation, x represents the current node, y represents the

neighbor router or the path to take and d represents the destination router. The variable t

represents the transmission time and q represents the amount of time spent in the waiting

queue. The reason why Q-routing is performed at a local level is because the values

within the area will be updated very often and thus the Q-values will be very accurate to

the ones taking place in real time. The main problem takes place when the network

experiences a peak of high network load and goes back to low network load. Some of the

Q-values will not be updated since the algorithm is purely greedy and therefore some

values will maintain the highest Q-value even though they may not be the most optimal.

In order to avoid this we keep track of the change in Congestion from one router to

another. If the value is negative, then congestion is decreasing and therefore we must

perform some exploration to make the Q-values more accurate. Since this takes place in a

 39

local area, the packet will not take long to reach destination even if it takes the longest,

more inefficient path.

 If the destination happens to be in a different area then we will have to decide

which border router in our area will be responsible for delivering the packet to the

destination area. The main factor in this process is to figure out if there is congestion

going to the destination area through any of the border routers. If the local routers contain

this information they will be able to make an intelligent decision in order to avoid

congestion.

 If the destination happens to be in an adjacent area, then once the packet arrives to

the border area it will use local Q-Routing to deliver the packet to its destination. Border

routers contain information about areas that are directly connected to them so they can

send a packet using regular Q-Routing.

 The main purpose of the proposed method is to find an efficient way to detect

congestion and to be able to propagate this information to other areas in the network so

that exploration can be made avoiding the congested area. There are three types of

packets that will be used to manage network congestion. One packet type is used to

advertise congestion taking place in a border router of an area to the closest border router

in each adjacent area. The other packet will be used to advertise congestion to the local

border routers directly connected to the congested area by the previously mentioned

border router already been advertised. The last packet will sent to all local routers in the

area belonging to the congested router.

 The process to advertise congestion from a border router is as follows:

 40

 Let B be the set of closest border routers in adjacent areas to the congested area and

 all routers in the congested area

 qwx = waiting queue utilization at current border router x

 If (Congestion Level() != qwx)

 Send a congestion packet to B

Figure 23: Congestion Advertisement

 There are two different types of congestion packet. Congestion packet type 2 is

sent to the routers belonging to the same area as the congested router and the closest

border routers belonging to adjacent areas to the congested area. Congestion packet type

3 is sent from the border routers belonging to adjacent areas that have received a

congestion packet type 2 to other border routers in their areas. The process of receiving a

congestion packet and updating the proper information is as follows:

 Let q be the congested border router that sent the congested packet

 Let qval be the congested value to be updated

 Let x be the current node

 Let A be the set of all areas in the topology

 If (congestion packet type == 2)

 Congestionx(q) = qval

 penalty = Q_interareax(q) * qval

 For every a Є A

 Q_inteareax(q, a) = Q_interareax(q, a)* + penalty

 If (area(x) != area(q))

 Send a congestion packet type 3 to other border routers in the area

 If (congestion packet type == 3)

 Congestionx(q) = qval

 penalty = Q_interareax(q) * qval

 For every a Є A

 Q_inteareax(q, a) = Q_interareax(q, a)* + penalty

Figure 24: Congestion Update Process

 The third packet type is sent to all routers belonging to the same area as the

congested router. Local routers will have this information and will be able to change the

destination of a border router if this one is experiencing heavy congestion as opposed to

 41

the others. The updates will be done the same way as the previous one but including only

information about the local area.

 When the congestion packet arrives to the closest border router connected to the

congested area, it will update its congestion information and it will send another

congestion packet to the other local border routers that are directly connected to the

congested area. This packet will be a different type from the one sent by the congested

border router. Figure 25 illustrates the process previously explained.

Figure 25: Congestion Advertisement Illustration

 When a border router receives a regular packet, and the packet destination

happens to be in an area other than the local or adjacent area, it must perform some

computation in order to figure out whether to explore a new path or to send it though the

optimal path. Since local router also receive a congestion packet if a border router in their

area is experimenting network congestion, they will also be able to perform simulated

annealing to select a different border router. In order to do so, the border router performs

the following computations:

 42

 Let x be the current border node

 Let A be the set of border routers in adjacent areas directly connected to x

 Let d be the destination area

 Select r’ such that r’ has minimal Q_interareax(r’, d) from A

 If (Congestion Levelx (r’, d) != 0)

 Select r’’ such that r’’ has minimal Q_inteareax(r’’, d) where r’’ ≠ r’

 Let B be the set of border routers in local area of x NOT including x

 Temperature = Congestion Levelx(r’, d)

 Select a random number e where 0<= e <= 1

 If (e < EXP (Q_interareax*(r’’, d) – Q_inteareax*(r’, d)) * temperature)

 Select r’’

Figure 26: Inter-area border selection processing

 The border router will first check to see the destination packet and its type. If the

packet was sent to him and it is a congestion packet then the border router updates the

congestion value. The idea is to avoid sending all packets from the local area to any

destination that is attached to the border router that is experimenting congestion at this

point.

 The border router then checks to see its waiting queue utilization value. If it lies

within one of the congestion levels then it must inform its adjacent area border routers

about the congestion. The border router must avoid sending congestion packets every

time it receives a new packet. To avoid flooding the network with constant congestion

packets a congestion level range has been defined to update congestion values. This range

has been arbitrarily chosen and different ranges will be used in order to see the different

results.

 Once the router has updated congestion values it is time to send the next packet in

queue to its destination. The border router will check to see if the destination is adjacent

or not. If the destination happens to be adjacent and since border routers keep information

about both local and adjacent areas, it can send the packet using Q-Routing. If the

 43

destination packet is further away, then we must see what adjacent router is best to send

the packet to that area. This is when the router must check to see if that route is

congested. It looks at the congestion value to send a packet to the destination area

through a border router from an adjacent area. After the border router is chosen, the

current router must make sure that no congestion is currently taking place going to the

destination area through this adjacent area. If congestion is taking place then simulation

annealing exploration will be used to load balance the network traffic.

 44

CHAPTER 7

EXPERIMENT METHODOLOGY AND RESULTS

The proposed method has been implemented in the Java programming language. The

code written by Littman and Boyan to develop the Q-Routing algorithm was used and

translated to the Java language. Using this algorithm as a base, the necessary

modifications were made to develop the proposed algorithm.

 The experiment has been performed using the same 6x6 used in the original Q-

Routing algorithm. This way the graphs will be able to show if the proposed method is

able to perform better under the same environment.

 The second experiment has been performed by slightly changing the 6x6 network

topology. A new link was added to show better network traffic delivery by load balancing

the traffic among different links.

 The third experiment has been performed under a larger environment. This

environment is also quite different since it offers redundancy between all areas in the

topology. This last experiment will be included in Appendix A.

 In the experiments that were conducted the following fixed ranges were used to

represent the network loads:

 Low Load: less than 1.5 (packets/time step)

 Medium Load: 1.5 – 2.5 (packets/time step)

 High Load: more than 2.5 (packets/time step)

 45

The values in the ranges described above represent the average number of packets

entering the network at a time step. It basically represents the rate at which the packets

are being injected into the network.

7.1 Experiment Results in the 6x6 Network Topology

7.1.1 Medium and Low Network Loads

 Medium network load ranges between 1.5 and 2.5 packets injected in the network

at a time step. Both algorithms should perform very efficiently once the topology of the

network has been learned.

0

50

100

150

200

250

300

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Simulation Time (Discrete Steps)

A
v
e
ra

g
e
 P

a
c
k
e
t

D
e
li

v
e
ry

 T
im

e

SAH-Routing

Q-Routing

Figure 27: Low-Medium Network Load

 SAHQ-Routing is able to load balance quick enough to maintain an efficient flow

of traffic through the network. Q-Routing takes about 1700 time steps to converge and

route packets efficiently across the network. Q-Routing is able to learn quicker about its

 46

topology in medium load networks since there is more traffic flow and therefore is able to

update its Q values quicker.

7.1.2 Dynamic Adaptation of Changing Loads

 The main goal of any routing algorithm is to be able to adjust to the changing

environment as quickly and as efficient as possible. In this section the proposed algorithm

will be tested in changing network loads in the environment. As previously explained in

previous chapters, Q-Routing is able to adjust to changing environments though the use

of Q-learning. In this section Q-Routing and SAHQ-Routing will be compared in order to

see which algorithm is able to adapt quicker to the changing environment.

7.1.2.1 Increasing network load

 The first experiment that will be conducted under changing environments will be

an increasing network load. In real life networks there are specific times of the day when

most people utilize the network simultaneously creating large amounts of traffic flowing

through the network.

 47

 Figure 28: High Constant Network Load

 Figure 28 shows the result of the experiment. It can be seen that under a rapid

increase of network load SAHQ-Routing is able to balance the network faster than the Q-

Routing algorithm. Q-Routing network breaks at time 7000. SAHQ-Routing is able to run

until time 8000. Through the use of a more hierarchical network design and the use of

simulated annealing the traffic is balanced quicker across the network. As the network

load increases the difference in performance becomes more apparent.

7.1.2.2 Variable Network Load

 This experiment is the one that represents a more realistic scenario in any

network. There is usually a time in the day when people connect more to the network to

check for emails, surf the internet, etc. There is a high increase of network load during

these times and eventually the network load decreases.

 48

 The experiment starts with an average load of 0.5 (packets/time step). It then

increases 1.0 every 1000 simulation steps. At time 5000 the network load falls back to 1.0

(packets/time step).

Figure 29: Variable Network Load

 Figure 29 shows the results of the experiment. They show that not only SAHQ-

Routing is able to route packets more efficiently under increasing network loads, but it is

also able to recover from congestion faster. The reason why this happens is that Q-

Routing relies on its Q-values to route packets efficiently. It learns a complete new set of

values as Congestion increases. The problem is that by the time congestion ends, the Q-

values are not optimized to work under low network loads and therefore it must start

learning in order to adjust these values. During this time period the network already had

many packets still being routed and since the Q-values are no longer adjusted to the new

environment, packet will be routed in a non-efficient manner. Loops will be very frequent

 49

during these time period. On the other hand, SAHQ-Routing works in a more hierarchical

manner. It uses real time information to make decisions based on current network load.

The simulated annealing congestion variable representing the temperature allows us to

adjust inter-area traffic values rapidly to switch back from high to low congestion.

 Congestion ends at simulation step 5000. SAHQ-Routing is able to realize this

and make changes quickly to continue routing packets efficiently. Q-Routing must learn

and updates its Q-values for some time until is able to route packets in an efficient

manner. SAHQ-Routing is able to recover 600 simulation steps faster than Q-Routing. In

a real case scenario this becomes very important since a routing protocol must be able to

route packets efficiently under any circumstances.

0

100

200

300

400

500

600

700

800

900

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Simulation Time (Discrete Steps)

Q
u

e
u

e
 P

a
c
k
e
t

C
o

u
n

t

Link 20-21

Link 32-33

Figure 30: SAHQ-Routing Load Balancing

 50

0

100

200

300

400

500

600

700

800

900

1000

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Simulation Time (Discrete Steps)

Q
u

e
u

e
 P

a
c
k
e
t

C
o

u
n

t

Link 21-20

Link 32-33

Figure 31: Q-Routing (Shortest Path Initialization) Load Balancing

 Figure 30 and Figure 31 shows the load balance taking place in the network under

the different routing algorithms. The data is taken from a single run just to show how

traffic is being adjusted for load balancing across the network. The topology being used

for this experiment is composed of two clusters connected by two links. Link 20-21 is the

link that will yield the shortest path between most nodes from one cluster to the other. As

the network increases the algorithm should notice this and start exploring alternative

paths. In this case it should start utilizing Link 32-33 to alleviate congestion in Link 20-

21. As we can see in the previous figure SAHQ-Routing succeeds at maintaining a

balanced network load across these two links. Figure 31 shows how Q-Routing performs

load balancing in the network through the use of its Q-values. SAHQ-Routing is able to

keep the network load more balanced than Q-Routing does.

 51

0

500

1000

1500

2000

2500

0

8
0
0

1
6
0
0

2
4
0
0

3
2
0
0

4
0
0
0

4
8
0
0

5
6
0
0

6
4
0
0

7
2
0
0

8
0
0
0

8
8
0
0

9
6
0
0

Simulation Time (Discrete Steps)

A
c
ti

v
e
 N

e
tw

o
rk

 P
a
c
k
e
t

C
o

u
n

t

SAHQ-Routing

Q-Routing (Shortest Path

Initialization)

Figure 32: Active Network Packet Count

 Figure 32 represents the number of active packets in the network at any given

time. The results are also based on a single run. Since SAHQ-Routing is able to route

packets more efficiently it is able to keep the network less congested than Q-Routing.

Congestion ends at time step 5000. SAHQ-Routing adapts quickly to the changed

environment and is able to route packets efficiently. We can see in the picture that

packets are being routed quickly shortly after congestion ended. Since Q-Routing must

learn about the changed environment it goes though a period of time after congestion

ends where packets are not being routed efficiently and therefore the number of packets

being routed in the network increases significantly.

7.2 Experiment Results in the Extended 6x6 Network Topology

 In the previous experiment the network topology had two potential bottleneck

links. The first link was the one connecting nodes 20 and 21. The second one was the link

 52

connecting nodes 32 and 33. In a good network design, the designer must avoid having

potential bottlenecks to avoid congestion. I have modified the previous 6X6 network by

including a link connecting nodes 2 and 3.

Figure 33: 6x6 Network Topology favoring load balancing

 The new network topology favors load balancing for the proposed algorithm. The

network has now three different paths connecting the east and west side of the network.

There are three links available to distribute traffic evenly among these two areas. The

next section will provide the results of the experiments conducted under this topology.

The average packet delivery time should be lower in high congested network loads than

those obtained in the previous network topology.

7.2.1 Variable Network Load

 The following experiment has been conducted using the same parameters used in

the previous 6x6 network topology under variable load networks. This environment

scenario has been chosen since it is the most realistic one in real life networks and it

allows us to see the behavior of the proposed algorithm under different network loads

compared to that of the Q-Routing algorithm.

 53

Figure 34: Packet Delivery Time in Extended 6x6 Grid Topology

 In this experiment it can be noticed that the average delivery time is much lower

than that of the previous experiment. Link 2-3 has been introduced to add a new path

between the two main clusters. Load balancing is now active between three links instead

of just two.

 54

0

50

100

150

200

250

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

Simulation Time (Discrete Time)

Q
u

e
u

e
 P

a
c
k
e
t

C
o

u
n

t

Link 21-20

Link 32-33

Link 2-3

Figure 35: SAHQ-Routing Load Balancing in Extended 6x6 Grid Topology

 Figure 35 shows how the packet traffic is balanced between the three links.

During Congestion the three links are utilized in order to improve the routing. When one

link starts experiencing a high peak, it can be notice that immediately other links start

being utilized in order to balance the network load.

 55

0

100

200

300

400

500

600

700

800

0

6
0
0

1
2
0
0

1
8
0
0

2
4
0
0

3
0
0
0

3
6
0
0

4
2
0
0

4
8
0
0

5
4
0
0

6
0
0
0

6
6
0
0

7
2
0
0

7
8
0
0

8
4
0
0

9
0
0
0

9
6
0
0

Simulation Time (Discrete Steps)

A
c
ti

v
e
 N

e
tw

o
rk

 P
a
c
k
e
t

C
o

u
n

t

SAHQ-Routing

Q-Routing (Shortest Path

Initialization)

Figure 36: Active Network Packet Count

 Figure 36 shows that at the highest peak of network load the number of packets in

the network is higher when running SAHQ-Routing. The reason is that when congestion

starts, SAHQ-Routing floods the local network with congestion packets to advertise their

local nodes about the current congestion. The important fact is that with the help of these

packets, routing is much more efficient and therefore the total routing time is much lower

than that of Q-Routing. As shown in each experiment, Q-Routing must learn once the

network falls out of congestion. Even though Q-Routing has fewer packets in the

network, these are not being routed efficiently during this period of time.

 56

CHAPTER 8

FUTURE WORK

The experiments conducted show that SAHQ-Routing is able to route packets

more efficiently than Q-Routing in low, medium and high constant network loads. They

also show that it performs better under variable network loads where it is able to adjust

more rapidly than Q-Routing to congestion as well as recovering back to a low network

load environment. For SAHQ-Routing to run efficiently is very important the way the

areas are selected. We must be able to localize the possible links that could create

potentially bottlenecks in the network and be able to apply areas accordingly to distribute

the traffic between these links in times of congestion. At this point the areas are selected

manually after analyzing the network topology. A great improvement of the algorithm is

that each router would run a discovery mechanism at initialization and areas would be

recomputed in order to assign areas to routers efficiently.

 In order to make a more precise evaluation of the algorithm the simulator must be

modified in order to use threading to represent each router. Instead of using time

simulation as time steps, the experiment will have to run on real time. The distribution in

which packets are introduced in the network will have to be stochastic.

 Another important feature that is necessary for this algorithm to run efficiently is

to apply priority queue management in the routers. For this experiment I had used First In

First Out. It is evident that the algorithm must distinguish between normal traffic and the

 57

traffic purely utilized for management purposes. This enhancement in the routers should

make a noticeable difference in the performance of the algorithm in the network.

 58

CHAPTER 9

CONCLUSION

The internet is increasing at a very rapidly rate. There is a need for routing optimization

in order to speed up the way packets are delivered from hosts to destinations. There exist

routing algorithms such as OSPF that use Shortest Path routing algorithm to perform the

delivery of packets. These routing algorithms are efficient when the network load is not

very high in the network but can become very inefficient when the network load

increases. If the network load increases, the network becomes congested and bottlenecks

begin to take place. The network then becomes inefficient. Littman and Boyan created

the Q-Routing algorithm in 1994 so that the routers would be able to adjust to new

changing environments dynamically. The Q-routing algorithm uses reinforcement

learning to achieve this but still has some problems when adjusting to these new

environments such as recovering from Congestion. A new method, Simulated Annealing

based Hierarchical Q-Routing, is proposed in this thesis to overcome and improve the

already existing Q-Routing algorithm.

 The experiments conducted show that SAHQ-Routing is able to route packets

more efficiently than Q-Routing in low, medium and high constant network loads. The

reason is that Q-Routing must learn about the network before it is able to make efficient

 59

routing. SAHQ-Routing is initialized to shortest path so that its values are optimal at

initialization.

 The most important part of the experiment was to see the difference in

performance between SAHQ-Routing and Q-Routing under changing network loads.

Two different topologies were used to see how both algorithms are able to adjust to

changes in the environment. The first topology is the 6x6 grid used in the original Q-

Routing simulations done by Boyan and Littman. The results of the simulation showed

that SAHQ-Routing was able to maintain a more balanced traffic flow under changing

environments and therefore the average queue routing time was lower than that of Q-

Routing. Q-Routing is able to adjust to increasing network load by updating its Q-values.

The problem with Q-Routing is that if the network rapidly suffers a change in the

network load, Q-Routing takes some time to update its Q-values to the new environment

and packets are not routed efficiently for a period of time. SAHQ-Routing uses a

hierarchical model of the network to be able to advertise congestion to other areas so that

congestion can be avoided. With a hierarchical model there more of a global view and we

can exchange information between the highest layer of the network in order to avoid

congestion. This way information can be propagated across the network much quicker

and decision can be made using values very closed to the real ones.

 New features can be added to the algorithm to enhance its performance. The

addition of a discovery algorithm at each router’s initialization would make this process

dynamic without having to change information manually each time. The addition of

priority queuing would definitely speed up propagation of management information

across the network. In the current algorithm management packets are treated the same

 60

way as regular traffic. This means that in times of congestion these packets may take

some time to arrive to their destination and by that time something else may have

changed in the network.

 61

REFERENCES

[1] A. Mellouk, S. Hoceïni, S. Larynouna. “Flow based Routing for Irregular Traffic

using Reinforcement Learning Approach in Dynamic Networks” In Proceedings of the

11
th

 IEEE Symposium on Computers and Communications (ISCC’06), 2006.

[2] A. Mellouk, S. Hoceïni, S. Larynouna, “Adaptive Probabilistic Routing Schemes for

Real Time Traffic in High Speed Dynamic Networks”, in IJCSNS International Journal

of Computer Science and Network Security, Vol. 6 No 5B, pages 36-42, May 2006.

[3] M. Guo, Y. Liu, and J. Malec, “A new Q-Learning Algorithm Based on the

Metropolis Criterion”, In IEEE transactions on Systems, man, and Cybernetics-Part B:

Cybernetics, Vol. 34, No. 5, Pages 2140-2143, October 2004.

[4] S. Whiteson, and P. Stone, “Towards Autonomic Computing: Adaptive Network

Routing and Scheduling”, In Proceedings of the International Conference on Autonomic

Computing (ICAC’04), 2004.

[5] J. Boyan and M. L. Littman, “Packet Routing in Dynamically Changing Networks: A

Reinforcement Learning Approach.” In Cowan, Tesauro and Alspector .(eds), Advances

in Neural Information Processing Systems 6, 1994.

[6] J. Boyan and M. Littman, “A Distributed Reinforcement Learning Scheme for

Network Routing.”, Technical report, Department of Computer Science, Carnegie Mellon

University, 1993.

 62

[7] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction.” MIT Press,

Cambridge, MA, 1998.

[8] S. Kumar and R. Miikkualainen, “Confidence-based Q-routing: an on-queue adaptive

routing algorithm” In Proceedings of Neural Networks in Engineering, 1998.

[9] M.Abramson, and H. Wechler, “Tabu Search Exploration for On-Policy

Reinforcement Learning”, Proceedings of the International Joint Conference on Neural

Networks, Vol. 4, Pages 2910 – 2915, 2003.

[10] A. Nowe, K. Steenhaut, M. Fakir, and K. Verbeeck. “Q-learning for Adaptive, Load

Based Routing”, 1998 IEEE International Conference on Systems, Man, and Cybernetics,

Vol. 4, Pages 3965 – 3970, 1998.

[11] C. Yang. “Reinforcement Learning in a Car Simulator”, Technical report.

Department of Computer Science, University of British Colombia, 2003.

[12] L.C. Baird, “Reinforcement Learning in continuous time: advantage updating”,

IEEE World Congress on Computational Intelligence, volume 4, pages 2448 – 2453,

1994.

[13] M. Ricordeau, “Q-Concept-Learning: Generalization with Concept Lattice

Representation in Reinforcement Learning”, In Proceedings of the 15
th

 IEEE

International Conference on Tools with Artificial Intellicence (ICTAI’03), 2003.

[14] S. Choi, and D. Yeung, “Predictive Q-Routing: A memory-based Reinforcement

Learning approach to Adaptive Traffic Control.” Department of Computer Science, Hong

Kong university of Science and Technology, 1996.

[15] Shailesh, Kumar, “Confidence based Dual Reinforcement Q-Routing: an On-line

Adaptive Network Algorithm”. Master Thesis. The University of Texas at Austin, 1998.

 63

[16] Coggan, Melanie, “Exploration and Exploitation in Reinforcement Learning”.

Technical report. CRA-W DMP Project at McGill University, 2004.

[17] A. Nowe, K. Steenhaut, M. Fakir, and k. Verbeeck, “Q-learning for adaptive load

based routing”, In IEEE transactions on Systems, Man, and Cybernetics, Vol. 4, Pages

3965-3970, October 1998.

[18] X. Jing, C. Liu, and X. Sun, “Artificial Cognitive BP-CT Ant Routing Algorithm”,

in Proceedings of International Joint Conference on Neural Networks, Montreal, Canada,

July 31 – August 4, 2005.

[19] P.R.J Tillotson, Q. H. Wu, and P.M Hughes, “Multi-Agent Learning for Control of

Internet Traffic Routing”, Appears in Learning Systems for Control, IEE Seminar, 2000.

[20] Y. Achbany, F Fouss, L. Yen, A. Pirotte, and M. Saerens, “Managing the

Exploration/Exploitation Trade Off in Reinforcement Learning”, Technical Paper,

Information Systems Research Unit (ISYS), IAG, Université Catholique de Louvain,

June, 2005.

[21] B. Srinivasan, “Robot Navigation in Partially Observable Domains using

Hierarchical Memory-Based Reinforcement Learning”, In the 2
nd

 International

Conference on Ubiquitous Robots and Ambient Intelligence, 2005.

[22] N. Lilith, and K. Doğançay,”Distributed Reduced-State SARSA Algorithm for

Dynamic Channel Allocation in Cellular Networks Featuring Traffic Mobility.” In IEEE

International Conference on Communications, Vol. 2, 2005.

[23] M. Abramson, P. Pachowicz, and H. Wechsler, “Competitive reinforcement learning

in continuous control tasks”, In Proceedings of the International Joint Conference on

Neural Networks, Vol. 3, 2003.

 64

[24] S. Khodayari, and M.J. Yazdanpanah, “Network Routing Based on Reinforcement

Learning In Dynamically Changing Networks”, In Proceedings of the 17
th

 IEEE

International Conference on Tools with Artificial Intelligence (ICTAI ’05), 2005.

 65

APPENDIX A

 The topology used in this experiment is the most logical when analyzing network

topologies. Each area of the topology can get to any other area in the topology though

various paths. This way if a link goes down or is congested the traffic can use another

path to send the packet to its destination. Figure 37 shows the network topology that will

be used in this experiment. Each square with a different color represents an area in the

topology.

Figure 37: Redundant Network Topology

 66

It is expected that both algorithms should work efficiently under this type of topology.

However the proposed algorithm, simulated annealing based hierarchical Q-Routing,

should adjust faster than the original Q-Routing due to the hierarchical packet delivery

management.

 This experiment is performed under variable network loads. In the previous

experiments two clusters were connected by two and three links. As the network load

increased, new paths less congested had to be found to balance the traffic of the network.

In this experiment, due to the redundant design of the topology the traffic across the

network should stay balanced at higher network loads than the previous experiments.

 SAHQ-Routing should perform much better than Q-Routing with larger

topologies. The reason is because of the hierarchical management to deliver packets.

There is a global view of the topology and therefore SAHQ-Routing is able to adjust

quicker and is able to make better routing decisions at all times. Q-Routing takes longer

to learn about larger topologies. Q-Routing decreases in routing performance as the

network topology becomes larger. Q-Routing uses Q-values that are maintained in the

routers to make routing decisions. These estimates take longer to be updated and

therefore routing becomes inefficient.

 The type of topology used in this experiment also makes SAHQ-Routing perform

much more efficiently than Q-Routing does. This is once again because of the

hierarchical management of delivering packets. There is a lot of redundancy in the

network and therefore there are multiple paths to avoid congestion. The sooner routers

realize, the sooner congestion will be able to be avoided. As mentioned earlier, Q-

Routing loses efficiency as network topologies grow larger. SAHQ-Routing due its

 67

hierarchical functionality is able to adjust much quicker under changing network

environments. Figure 38 shows the results of the experiment under various network

loads. The difference in performance is overwhelming. Q-Routing has a difficult time

adjusting to the changing network load and reaches a high peak of over 2000 average

packet delivery time. SAHQ-Routing due to its preventive nature to avoid congestion is

able to maintain a stable network flow and reaches a high peak of less than 500 average

packet delivery time.

Figure 38: Average Packet Delivery Time

 Figure 39 shows the active network packet count. SAH-Q-Routing reaches a

maximum packet network count of about 2000. Q-Routing reaches a maximum network

count of over 8000 packets. This shows how much more efficient SAHQ-Routing

performs under this type of scenario. As the networks grow larger SAHQ-Routing is still

 68

able to perform efficiently. Q-Routing decreases its functionality greatly as network

topologies grow larger.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
70

0

14
00

21
00

28
00

35
00

42
00

49
00

56
00

63
00

70
00

77
00

84
00

91
00

98
00

10
50

0

Simulation Time (Discrete Steps)

A
c
ti

v
e
 N

e
tw

o
rk

 P
a
c
k
e
t

C
o

u
n

t

SAHQ-Routing

Q-Routing (Shortest Path

Initialization)

Figure 39: Active Network Packet Count

VITA

Antonio Mira Lopez

Candidate for the Degree of

Master of Science

Thesis: SIMULATED ANNEALING BASED HIERARCHICAL Q-ROUTING: A

DYNAMIC ROUTING PROTOCOL

Major Field: Computer Science

Biographical:

Education:

• Completed the requirements for the Master of Science in Computer

Science at Oklahoma State University, Stillwater, Oklahoma in

December, 2007.

• Bachelor of Science in Computer Science at the University of Science and

Arts of Oklahoma, Chickasha, Oklahoma in May, 2000.

Experience:

• Gestion Tributaria Territorial. Database and Web Programmer. Alicante,

Spain. October 2000 – April 2003

• Oklahoma State University. Department of Electrical Engineering.

Research assistant. Stillwater, OK February 2004 – February 2005

• Oklahoma State University. IT Telecommunications. Network Operations

Center Technician. Stillwater, OK. May 2005 – Present

ADVISER’S APPROVAL: Dr. Douglas K. Heisterkamp

Name: Antonio Mira Lopez Date of Degree: December, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SIMULATED ANNEALING BASED HIERARCHICAL Q-ROUTING:

A DYNAMIC ROUTING PROTOCOL

Pages in Study: 68 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

 The area of the research is artificial intelligence and networking. The method of

study has been implementation and simulation of the proposed routing algorithm using

the programing language Java.

Findings and Conclusions:

The focus of this paper is to provide an efficient solution to the routing problem

by making use of reinforcement learning and other heuristics. The thesis describes a

routing algorithm called Q-Routing based on the Q-learning algorithm that will be used

as the base for the proposed Simulated Annealing based Hierarchical Q-Routing

approach. The proposed approach adds functionality layers to provide a more hierarchical

view of the network. Providing hierarchy by defining network areas and roles to routers

within these areas allows us to have more updated global information and therefore much

better decision making when routing packets across the network. The addition of

simulated annealing as an exploration method also plays an important role in the

improvement of the original Q-Routing approach. The results from every experiment that

was performed show SAHQ-Routing to be a much more robust and efficient routing

algorithm than Q-Routing.

