

AN ATTACKER INTENTION DISCOVERY

LAYER FOR INTRUSION DETECTION

SYSTEMS USING HIDDEN

MARKOV MODELS

By

 JORDAN KIPROP KOSKEI

 Bachelor of Technology

 Moi University

 Eldoret, Kenya

 2008

 Submitted to the Faculty of the

Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 July, 2011

ii

AN ATTACKER INTENTION DISCOVERY

LAYER FOR INTRUSION DETECTION

SYSTEMS USING HIDDEN

MARKOV MODELS

Thesis Approved:

Dr. Johnson Thomas

Thesis Adviser

Dr. Subhash Kak

Dr. Michel Toulouse

Dr. Mark E. Payton

Dean of the Graduate College

iii

AKNOWLEDGEMENTS

 I would like to express my gratitude to my advisor Dr. Thomas for his valuable guidance

and contributions during the entire research work. I am also extremely grateful to Dr. Toulouse

and Dr. Kak for serving on my committee and giving invaluable advice especially at the

proposal stage. I would also like to express my sincere appreciation to my brothers Titus, Leo

and Brian, and parents, Apton and Elizabeth Goren for their unending love and support,

financial or otherwise, without which it would be impossible to come this far.

iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 Scope of the thesis ... 2

1.2 Thesis organization .. 2

2. LITERATURE REVIEW .. 4

2.1 Computer networks and security ... 4

2.2 Intrusions ... 6

2.3 Intrusion detection ... 7

2.3.1 Misuse/Signature based intrusion detection .. 7

2.3.2 Anomaly based intrusion detection ... 8

2.4 Intention discovery .. 10

2.5 Motivation and uniqueness of our approach ... 13

3. INTRUSION PLAN DISCOVERY .. 15

3.1 The architecture ... 15

3.2 The Hidden Markov Model ... 17

3.3 Training ... 21

3.4 The decoding problem ... 22

4. EXPERIMENTAL SETUP AND SIMULATION ... 25

4.1 Tools .. 26

4.2 The Intrusion data .. 28

v

4.2.1 The scenario .. 29

4.2.2 The intruder’s intentions ... 30

4.3 The alerts ... 32

4.3.1 Generation of the alerts ... 32

4.3.2 Description of the alerts. ... 34

4.3.3 The alert sequence ... 35

4.4 The Hidden Markov Model ... 36

4.5 Validation and analysis of the results .. 39

4.5.1 Performance characteristics... 41

5. CONCLUSIONS ... 45

5.1 Future work ... 46

APPENDICES ... 51

APPENDIX A: ALERTS AS DISPLAYED BY BASE ... 52

APPENDIX B: ALERTS AT THE DMZ FOR HOST “MILL” 53

APPENDIX C: ALERTS AT THE INSIDE OF NETWORK FOR “PASCAL” 56

APPENDIX D: OUTPUT SCREENSHOT FROM THE VITERBI DECODER 58

vi

LIST OF FIGURES

Fig 2.1: Threats that software, hardware and data resources face 5

Fig 2.2: Components of a misuse IDS ... 8

Fig 2.3: Components of an anomaly IDS .. 9

Fig 3.1: Architecture of network with IDS and intent discovery mechanism 15

Fig 3.2: Application of information from the intention discovery engine 16

Fig 3.3: Example of HMM .. 18

Fig 3.4: State representation of an intruder’s plan .. 20

Fig 3.5: HMM Model of an attack .. 21

Fig 3.6: Viterbi solution to the decoding problem .. 24

Fig 4.1: Screenshot of the Snort command line .. 26

Fig 4.2: Screenshot of the BASE application dashboard .. 27

Fig 4.3: Graphical illustration of the progression of the attack 30

Fig 4.4: Details of Simulated IDS sensor at the DMZ .. 32

Fig 4.5: Alerts from IDS on the network DMZ ... 33

Fig 4.6: Details of Simulated IDS on the inside network .. 33

Fig 4.7: Alerts from the IDS on the inside network .. 34

Fig 4.8: Description of the alerts ... 35

Fig 4.9: Sequence of Snort alerts for host "mill" ... 36

Fig 4.10: List of intention states .. 37

Fig 4.11: Intention states transition probability for A ... 38

Fig 4.12: Emission probability for B ... 39

Fig 4.13: Trellis diagram of the Viterbi path for HMM_mill ... 40

Fig 4.14: Summary of results for experiment 1 and 2 ... 42

vii

Fig 4.15: Graph of intention discovery probability vs alert sequence size 43

1

Chapter 1

Introduction

1. INTRODUCTION

 Computer and network security are built on 3 pillars [1]: - Data confidentiality, Integrity

and availability. In computer security, networks intrusion is the act of users accessing the

network without authorization or authorized users with legitimate access abusing their

privileges. Generally, intrusions cause loss of integrity, loss of confidentiality and denial of

services (loss of availability) [2].

Intrusion detection is defined as the problem of identifying the intruders as defined

above. The most widely deployed intrusion detection systems (IDS) such as Snort [3] can only

detect intrusions. However every intruder always has an intention in mind. Intentions in this

context are the high level goals of the intruder. While Intrusion detection deals with the problem

of identifying intruders, intention discovery is the ability to uncover the intruder’s high level

goals. Attacker intention discovery provides critical benefits both when the attack is underway

and in the post attack phase. When the attack is underway, discovering the attackers current and

future intentions aids in deploying more effective counter measures mechanisms such as

blocking off some ports on a server. This is important to minimize damage and possibly fend

off the attacker. During the post attack period, discovering the full set of the attacker’s

intentions can ensure more precise disaster recovery efforts and in the hardening of the security

systems among others.

In this thesis, we present a novel solution to the problem of discovering a network

attacker’s intention. We model a known attack scenario as a Hidden Markov Model (HMM)

2

with variables being among others output from existing IDS such as Snort. As a statistical tool

widely used in temporal pattern recognition, the HMM, upon receiving initial training input, can

be used to dynamically discover an intruder’s current set of intentions and the future intention

based on the alerts from the IDS. As explained later, the HMM has a number of advantages over

other approaches, but our key motivation in using it is the fact that prior knowledge can be

incorporated into the model at design time.

To validate and evaluate the performance characteristics of our method we ran Snort, the

most widely used IDS against raw packet data previously collected from a simulated attack

scenario. The results indicate that our method can discover an attacker’s intention. Further, the

results from our experiments provided us with important performance characteristics

information.

1.1 Scope of the thesis

In this thesis, we explain the need for attacker intention discovery system and

demonstrate how we can implement such systems using our method which involves modeling

using HMM and decoding using the Viterbi algorithm, an algorithm which has also been widely

applied in other fields such as bio-sequencing, voice recognition and image recognition. We

undertake experimentation to validate our method and evaluate performance.

1.2 Thesis organization

Chapter 2 provides the literature review. Here, we review work in intrusion detection systems

and focus on the work done on the subject of this thesis, intention discovery in IDS, and the

advantages of our approach. Various related concepts are introduced and discussed. Chapter 3

on “Intrusion intention discovery” describes in detail our network intruder plan discovery

3

system. We illustrate how we can model attacks using HMM. We further discuss its

integration into a typical intrusion detection system. In chapter 4, “Experimental setup and

simulation”, we validate our work. We model our system using the 2000 DARPA Intrusion

Detection Scenario-Specific data set to show its effectiveness. Chapter 5 gives a summary of the

findings of this work and provides suggestions for future work.

4

Chapter 2

Literature Review

2. LITERATURE REVIEW

This chapter goes into depth describing previous work related to network security,

intrusion detection in general and more specifically intruder intent discovery. The similarities

and differences between these papers and the work of this thesis are explained. The purpose of

this analysis is to better establish the specific problem that is being addressed by this thesis, how

others have solved it and our approach.

2.1 Computer networks and security

 Computer networks have become a reality of modern living. One of the largest physical

networks is the internet which serves as a platform for millions of networks running on it such

as banking networks, social networks, online TV etc. At the heart of any computer

infrastructure is security which Pfleeger [4] defines as the protection of the system against

threats to confidentiality, integrity and availability. By confidentiality, we mean that network

resources can only be accessed by authorized parties. By integrity we mean that network

resources can only be modified by authorized parties where modification includes creation,

deletion and changing among other operations. By availability we mean that the network

resources are accessible to authorized entities in the right format at appropriate times. A

resource as described here refers to the main categories of system resources including hardware,

software and data. Each of these resources face different types of threats as illustrated in Fig 2.1.

5

With the rapid growth of the internet and internet based services, security has become a

serious concern on the internet. Elliot and Fowell [5] point out the fact that actual and perceived

security concerns, in particular, are large barriers preventing a more rapid uptake of internet

based services.

Pfleeger and Pfleeger [4] further points out 3 fundamental characteristics of computer

networks that make them inherently insecure:-

(i) Lack of physical proximity among users.

(ii) Use of insecure shared media.

(iii) Anonymity of users.

The sum effect of these 3 characteristics is that intruders feel very safe while

undertaking their activities. Skilled cyber criminals may not leave any footprint behind and

hence make their identification near impossible.

Software

Fabrication

interruption

Interception

modification
Hardware

Interception

Fabrication

Substitution

DOS

Data

Interruption Fabrication

Interception

Modification

1Fig 2.1: Threats that software, hardware and data resources face

6

2.2 Intrusions

Heady et al [30] describes an intrusion as any set of actions that attempt to compromise

the integrity, confidentiality and availability of resources. The problem of intrusion is

significant since it leads to loss of confidentiality and/or integrity and/or availability of network

resources.

Sundaram [29] classifies intrusions into 6 main types:-

(1) Attempted break-ins, which are detected by typical behavior profiles or violations of

security constraints.

(2) Masquerade attacks, which are detected by atypical behavior profiles or violations of

security constraints.

(3) Penetration of the security control system, which are detected by monitoring for specific

patterns of activity.

(4) Leakage, which is detected by atypical use of system resources.

(5) Denial of service, which is detected by atypical use of system resources.

(6) Malicious use, which is detected by atypical behavior profiles, violations of security

constraints, or use of special privileges.

 Anderson [6] classified intruders into two types, the external intruders who are

unauthorized users of the machines they attack, and internal intruders, who have permission to

access the system, but not some portions of it. He further divides internal intruders into

intruders who masquerade as another user, those with legitimate access to sensitive data, and the

most dangerous type, the clandestine intruders who have the power to turn off their own audit

control.

7

 2.3 Intrusion detection

Intrusion detection is the monitoring of a network for the purpose of identifying

malicious or suspicious events. Intrusion detection is implemented in intrusion detection devices

which are essentially sensors that raise an alarm when something specific happen. There are two

types of intrusion detection, misuse-based detection and anomaly-based detection.

2.3.1 Misuse/Signature based intrusion detection

A misuse-based detection system is equipped with a database that contains a number of

signatures about known attacks [6]. The audit data collected by the IDS is compared with the

content of the database and, if a match is found, an alert is generated. Events that do not match

any of the attack models are considered as a part of legitimate activities.

James P. Anderson [6] published a study outlining ways to improve computer security

auditing and surveillance at customer sites. The original idea behind automated IDS is often

credited to him for his paper on “How to use accounting audit files to detect unauthorized

access”. This IDS study paved the way for misuse detection for mainframe systems and later for

general computing. In his design, the first task was to define what threats existed. Before

designing a IDS, it was necessary to understand the types of threats and attacks that could be

mounted against computers systems and how to recognized them in an audit data. Fig 2.2shows

the typical components of a misuse IDS as proposed by Anderson.

8

2Fig 2.2: Components of a misuse IDS

The main advantage of misuse-based systems is that they usually produce very few false

positives. The main disadvantage with misuse based intrusion detection system is that there is a

lag between the new threat discovery and the new Signature being applied in IDS for detecting

the threat. During this lag time the IDS will be unable to identify the threat.

2.3.2 Anomaly based intrusion detection

Anomaly-based detection is a behavior-based detection method [7]. It is based on the

assumption that all anomalous activities are malicious and all the attacks are subset of anomaly

activities. By building a model of the normal behavior of the system, then it looks for

anomalous activities that do not conform to the established model.

Dorothy Denning [7] developed the first model of real anomaly based IDS. It was

named Intrusion Detection Expert System (IDES). It was initially a rule based expert system

trained to detect known malicious activity. The core idea behind this is that intrusion behaviors

involve abnormal usage of the system. In this approach, models of normal behavior are

developed and verified against the current usage and significant deviation from normal usage is

Start

Audit data

System profile

Rule
Attack state

TRUE

9

flagged as abnormal usage. Fig. 2.3 below illustrates the typical components of the IDS

proposed by Denning. It is also commonly known as the anomaly based IDS.

3Fig 2.3: Components of an anomaly IDS

One of the key advantages of anomaly based IDS is that it has the capacity to detect

previously unknown attacks. The main drawback is the fact that it generally has a high false

alarm rate since detecting a deviation may not necessarily imply a false alarm.

Forrest et al. [10] developed IDS with similar behavior to the natural immune systems

of living things. They provided a simple and practical way to detect anomalous behavior by

analyzing short sequences of system calls which may generate a stable signature for some

normal system behaviors. In other words, an abnormal activity could be detected from the

system call sequences when an attack occurs. This approach incorporated two phases. The first

phase involved collecting traces of normal behaviors and building a database to characterize

normal patterns from the observed system calls. In the second phase, newly observed system

call sequences were matched against the normal pattern of the system behaviors.

Start

Normal behavior

System profile

Statistically
Attack state

TRUEU

E

10

Lane and Brodley [11] developed an approach to distinguish the behavior of normal

users and masquerading or illegal users by comparing a current behavioral sequence to

historical users’ profiles.

2.4 Intention discovery

Conceived by Schmidt et al [12], intention discovery is the process of identifying an

entity’s plans or overall intentions. By observing actions of the entity, the observing agent

assimilates the entities actions as progressive phases of a plan and translates these actions into

some kind of understanding of an entities plan. While there may be multiple ways to attack a

typical system, it usually requires tools and actions to be applied in a specific logical order to

launch the sequence of effective attacks to achieve the particular goal. This logical partial order

is what reveals the short and long term intentions of the attacking entity. For example IP address

spoofing is a common attack where IP packets with forged addresses are created with the

purpose of concealing the identity of the true sender or impersonating another computer system.

It typically involves the following steps:-

(1) <Selecting a target host (the victim)>

(2) <Identify a host that the target “trust”>

(3) <Disable the trusted host, sampled the target’s TCP sequence>

(4) <The trusted host is impersonated and the ISN forged.>

(5) <Connection attempt to a service that only requires address-based authentication.>

(6) <If successfully connected, executes a simple command to leave a backdoor.>

From the standpoint of IDS such as Snort, all that we can see are a sequence of alerts

which don’t necessarily give us information about what the intruder is attempting to achieve.

For example Snort IDS returns the alert “WEB-IIS BDIR.HTR ACCESS” when an attempt is

11

made to access the “bdir.htr” file in the Windows Internet Information Server (IIS) system.

Although we know that this attack has the potential of disclosing the directory structure of a

vulnerable IIS we cannot know what the attacker is trying to achieve. However, from overall

past experience, it is possible to know the series of alerts that typically lead to a certain type of

attack. For example when there is the “WEB-IIS BDIR.HTR ACCESS” alert, there is a

probability that the intruder’s intention is to execute remotely a previously installed malicious

script to perform a distributed denial of service attack (DDOS). However, this depends also on

the previous intruder activities and previous alerts since this may be part of a long chain of

attacks activities aimed at achieving an overall plan.

Cohen et al [13] distinguish between two kinds of intent discovery, keyhole and

intended intent discovery. In keyhole discovery, the recognizer system is simply watching

normal actions of an agent. The agent does not care or is not aware that their actions are being

observed. They are simply engaging in the task. In intended discovery, the agent is cooperative;

its actions are done with the intent that they be understood. This may result in the agent

performing the action in a particular or stylized way in an effort to assist the recognizer in the

task. Intended plan discovery arises, for example, in cooperative problem-solving and in

understanding indirect speech acts. In these scenarios, discovering the intentions of the agent

may allow us to provide assistance or respond appropriately

While intent discovery has applications in a wide array of fields including military

simulations [14], human-robot interaction systems [15], intelligent prosthetic devices [16] .Geib

and Goldman [17] first introduced it into the field of intrusion detection.

 Geib and Goldman [17] argued that intent discovery must be a central component of

future intrusion detection systems since with the current approaches, the role of the IDS has

12

been reduced to that of the post mortem analysis. They further give general approaches towards

intent discovery.

While most of the work has been centered on building IDS, very little has been done in

intruder intention discovery. Feng et al [18] developed intrusion plan recognition method for

predicting the anomaly events and the intentions of possible intruders to a computer system

based on the observation of system call sequences. In their implementation, the system calls

served as the source of alerts. First, the goals of different sequences of system calls were

classified into two states normal and anomalous. With the clearly defined normal (e.g. issuing

normal commands) or abnormal goals (e.g. launching local or remote buffer overflow to get

higher privileges), they built a dynamic Bayesian network whose structure changed with time as

new nodes are added with new incoming calls.

Wu et al [19] proposed an approach to recognizing intentions based on attack path

analysis using Bayesian rules and a path generation algorithm. In their approach they use a path

generation algorithm to build a graph of the network configurations. In a specific network, an

attacker’s intentions could then be given at first according to the host vulnerabilities and

network topology or the protective focuses. Through their algorithms, all probabilities of an

attacker’s intentions can be listed, and then more attention is paid to intentions with higher

probabilities. Qin and Lee [19] developed an approach of using causal networks in the

recognition of an attackers plan. In their approach they apply graph techniques to correlate

isolated attack scenarios and identify their relationship. Based on the high-level correlation

results, they further apply probabilistic reasoning techniques to recognize the attack plans,

evaluate the likelihood of potential attack steps and predict upcoming attacks. Cuppens et al

[21] suggest a model to discover intrusion scenarios and malicious plans in a network. The

model does not follow previous proposals that require to explicitly specification of a library of

13

intrusion scenarios. Instead, their approach is based on specification of elementary attacks and

intrusion objectives. They then show how to derive correlation relations between two attacks or

between an attack and an intrusion plan.

2.5 Motivation and uniqueness of our approach

Our work is also inspired by the current reality that IDS such as Snort, which is the most

widely used IDS only emit raw alerts and cannot decipher the intruders’ high level intentions

for recovery and pre-emptive counter measures. In current implementations, Snort and other

popular IDS allows rules to be set so that when a certain alert is sounded, certain counter

measures may be deployed. This approach is disadvantageous in that the counter-action is based

on very limited information since the counter action if a function of the current alert. With our

approach, the counteraction is a function of a big alert stream and is thus more effective. Our

goal is that in the future, developers can build an intelligent intention discovery layer over IDSs

using approaches such as the one that we describe here.

While our approach is unique since no one has approached the problem using Hidden

markov models, we could make some comparisons to other related works by others. Unlike the

system by Feng et al [19] which is host based and whose system depended on input data from

operating system calls (meaning that it may not recognize attacks against other hosts in a

network), in our approach, input for the intent recognition engine is obtained directly from the

network IDS. This has the advantage of being easy to integrate and a large network can be

protected from one point by a single intention discovery engine. Further, their approach

categorized intentions into “normal” and “abnormal”. As it is in our proposed system, it is more

useful to classify intentions more definitively to ensure more precise counter actions. While the

system by Wu et al [19] may have some similarities in approach since they apply a related

14

algorithm, the Bayesian algorithm, their approach depends on an attacker not backtracking in

his action. Our approach is very flexible and will handle any attacker’s behavior. Further, unlike

Wu et al’s [19] approach whose dependence on the network configurations can result in

scalability issues our approach is very scalable since all that is required is the training of the

HMM engine. Further, approaches using Bayesian networks such as those by Qin and Lee [20]

and Cuppens et al [21] once implemented may be susceptible to Bayes poisoning and exploit

best associated with email spam filters based on the Bayesian theorem.

In our approach, we chose to use HMM for a number of reasons. Unlike other possible

approaches such as using data mining tools and techniques to achieve the same, our algorithms

would entail minimal computational overheads and ease of implementation .This is due to the

fact that a data mining approach would entail use of complex relational databases while in using

HMM and Viterbi, all that is required is an implementation and simple data storage with no

need for complex data management. Another advantage of HMM is the fact that it allows a

modeler to easily incorporate prior knowledge about the network in order to constrain the

training process using algorithms such as Baum-welch. Unlike approaches involving

Bayesian/Causal networks where reliability is dependent on the probability values of one point,

the root node, due to its cause-effect nature, in HMM overall reliability is not dependent on the

reliability at a single point As such, a HMM based system would be more resistant to excessive

shift in its performance characteristic due to shift of an input variable at one point. The

graphical nature of HMM and the Viterbi algorithms clearly displays the links between different

components in the architecture. This ensures that the design can be studied and shared with

ease.

15

Chapter 3

Intrusion Intention Discovery

3. INTRUSION PLAN DISCOVERY

In this chapter, we begin by describing the architecture that incorporates our proposition.

We then explain the model of our intrusion plan discovery engine. In particular, we explain how

we incorporate the HMM in the ordinary IDS and then use a decoding algorithm to help

discover an intruders plans for a given set of alerts logged by the resident IDS.

3.1 The architecture

Fig 3.1 is a block diagram illustrating how our intruder plan discovery mechanism would

fit into an existing network equipped with an IDS.

4Fig 3.1: Architecture of network with IDS and intent discovery mechanism

IDS
External

network

HMM

intrusion

intent

discovery

engine

Recovery

Subsystem

Internal

network

Counter

measures

Subsyste

m

16

The HMM intruder plan discovery engine essentially consists of a HMM model built

based on data of previous intruder activities for a given set of alerts and a decoding algorithm.

Alerts are pulled from the IDS in batches. An alert is an alarm sounded by the IDS that indicates

that some form of malicious operation has been detected just in the same way as an anti-virus

program may alert a user that a file contains a virus or a worm. Using a decoding algorithm such

as Viterbi, the HMM intruder plan discovery engine outputs the intruders plans for the set of

alerts. Further, there is an output of the most probable future intention of the intruder. These two

sets of outputs are used for recovery and attack preemption respectively. Refer to fig 3.2

5Fig 3.2: Application of information from the intention discovery engine

 As illustrated in Fig 3.2, at any present time t, the set of alerts generated between t-n and

t would generate the intention sequence output. Since this represents intruders actions that have

already happened, the information about his sequence of intentions can best be used in the

recovery of the system. Hence the intention sequence output is fed to the recovery subsystem.

t Attack progress

Intention sequence output

F
u
tu

re
 i

n
te

n
ti

o
n
 o

u
tp

u
t

t-n t+n

Counter measures

/preemptive subsystems
Recovery subsystems

17

The recovery subsystem is a broad term that refers to any system or tools that help restore the

system state or provide intelligence to the administrators to help mitigate the attack. Obviously,

some of the effects of the attack will at this stage be visible. For example, a process may be

found to be running or files will have been deleted. Having more precise information about the

attackers sequence of intentions would aid in better recovery effort.

 The time t+n in Fig 3.2 represent the future. The next intruder plan is inferred from the

output of the last intention at time t since the current intention and the next intention are related

through probabilities in our HMM. This intelligence about the future intention provides the

system with preemptive capacity. Based on this future expected intention, proper counter-

measures can be adopted such as closing a port or killing certain vulnerable processes.

3.2 The Hidden Markov Model

 In this thesis, we use the hidden markov model to model the relationship between the

intruder states representing the sequence of intentions and the sequence of alerts from the IDS.

We then use a related algorithm, the Viterbi algorithm to reconstruct the sequence of intentions

of an intruder based on the sequence of alerts. Hidden Markov Models are an extension of the

theory of discrete Markov chains. Rabiner [8] presents a tutorial on HMMs with applications to

speech recognition.

Formally, the hidden markov model is composed of:-

(a) Set of states: S = {S1,S2….Sn}

(b) A process moves from one state to another generating a sequence of states: {Si1, Si2,…..,Sik..}

(c) Markov chain property: probability of each subsequent state depends only on the previous

state: P (Sik|Sil,Si2,….,Sik-1)=P(Sik|Sik-1)

18

(d) States are not visible, but each state randomly generates one of M observations (or visible

states) V={V1,V3….Vm}}

(e) Further, the following probabilities have to be specified: matrix of transition probabilities

A=[aij], aij= P[si | sj], matrix of observation/emission probabilities B=[bi [vm]], bi[vm] = P[vm

| si] and a vector of initial probabilities =[i], i = P[si].

To better illustrate the concept, Fig 3.3 depicts a typical HMM clearly showing the various

transition probabilities and states.

6Fig 3.3: Example of HMM

In the HMM in Fig 3.3:-

(a) 1, 2 and 3 are the hidden states of the system.

(b) Z1 and Z2 are the observations.

(c) W1, W2, W3 and W4 are the transition probabilities i.e P[1|2]=W3, P[2|1]=W1 etc

(d) Y1 through Y6 are output probabilities also called observation probabilities i.e

P[Z1|1]=Y1,P[Z2|3]=Y6 etc

(e) An initial probabilities may be P[1]=0.4,P[2]=0.3 and P[3]=0.3.

1 2 3

Z1 Z2

Y2

W1 W2

W3 W4

Y1
Y3

Y4

Y5

Y6

19

There are three canonical problems associated with HMMs. Solutions to these problems are what

makes HMMs useful. The problems are:-

(1) The Evaluation problem.

Given the HMM M= [A, B, ] and the observation sequence V=v1 v2 ... vK , calculate the

probability that model M has generated sequence V .

(2) The Decoding problem.

Given the HMM M= [A, B,] and the observation sequence V=(v1 v2 ... vK) calculate the

most likely sequence of hidden states Si that produced this observation sequence V. In this

thesis, we use the Viterbi algorithm [9] solve this problem. The outputs of the decoding

process are the actual user intentions for the set of alerts.

(3) Learning problem.

Given some training observation sequences V=v1 v2 ... vK and general structure of HMM

(numbers of hidden and visible states), determine HMM parameters M= [A, B, ] that best

fit training data. In this thesis, this is the first problem that we tackle in modeling our IDS to

discover users plans.

Consider a scenario where to undertake some attack, the intruder must do the following:

(a) Sweep the IP’s

(b) Do a Sadmind Ping

(c) Issue commands that exploit Sadmind

(d) Install DDOS software

(e) Launch a Distributed denial of service attack (DDOS).

20

7 Fig 3.4: State representation of an intruder’s plan

Fig 3.4 illustrates the intruder’s plans as a state diagram. The arcs at each state represent

the probability of a users plan changing from the current one to the next one, previous one or

current one.For example, when the intruder is <<Sadmind Pinging>> his next action may be

to <<Sadmind exploit>>. However, there is a possibility that he may also decide to <<IP

Sweeping>>. This may be necessitated by an array of factors including, procedural

requirements, a target restarting or to confuse a potential target. The characteristic of this attack

progression profile is a good candidate for a hidden markov model. The intruders sequence of

intention over time may be viewed as being a chain of states .These states represent the hidden

state of the HMM. The states are hidden since we cannot tell what the intruder is trying to do

unless we look at the sequence of alerts as raised by the IDS. The alerts represent the observable

sequences of the HMM.

IP Sweep

Sadmind

pinging

Sadmind

exploitation

DDOS script

installation

Launch of

DDOS

21

At each stage of an attack, certain alerts will sound that indicate that an intruder is

intending to accomplish something. As such there is a probabilistic relationship between the

alerts and the intruder’s intentions. With the intruder’s intentions comprising the sequence of

hidden states and the alerts being the observables, the probabilistic relationship between the

intruder’s intentions and the alerts comprise the emission probability. Fig 3.4 is reproduced in fig

3.5 with alerts included. The dashed arrows represent the emission probabilities.

8Fig 3.5: HMM Model of an attack

3.3 Training

Training is the task of estimating the parameters such as emission and transition

probabilities in a way that best accounts for the data and the scenario being modeled. For

example if fig. 3.5 above, training would replace all the arcs with probabilities. The required

input for the task of training any HMM is a database of sample behavior. Training is critical as it

IP Sweeping

Sadmind

pinging

Sadmind

exploitation

DDOS

Software

Installation

ICMP Echo RPC Port map

Sadmind

DDOS

Software

Installation

22

determines the accuracy and performance of the model.

 In practice, for small datasets, training can be done manually by estimating the various

parameters based on past experience. The Baum-Welch algorithm [22] may also be used for the

training. It can compute maximum likelihood estimates and posterior mode estimates for the

parameters (transition and emission probabilities) of an HMM, when given only emissions as

training data. To train the model, the inputs to the training algorithm will be the hidden states

(possible intentions of the intruder), the sequence of observables (the alerts) and the typical

network behavior if necessary.

3.4 The decoding problem

Once we have modeled the previously understood attack scenario as described in section

3.2 we can discover a sequence of intruder’s intention based only on the set of sequence of alerts.

This is the decoding problem.

In this thesis, we solve the decoding problem using the Viterbi algorithm. Viterbi [9]

proposed the Viterbi algorithm as a method of decoding convolutional codes. Since that time, it

has been recognized as an attractive solution to a variety of estimation problems. The algorithm

can be summarized as follows:-

Suppose we are given a HMM with states y, initial probabilities πi of being in state i and

transition probabilities ai,j of transitioning from state i to state j. Say we observe outputs

{xO……….xT}. The state sequence {y0……yt} most likely to have produced the observations is

given by the recurrence relations:

 V0,k=P(xo|k).πk

 Vt,k=P(xt|k).maxyϵY (ay,k ,Vt-1,y)

23

Here Vt,k is the probability of the most probable state sequence responsible for the first t + 1

observations (we add one because indexing started at 0) that has k as its final state. The Viterbi

path can be retrieved by saving back pointers which remember which state y was used in the

second equation. Let Ptr[k,t] be the function that returns the value of y used to compute Vt,k if t >

0, or k if t = 0. Then:

 yT=argmaxyϵY(VT,y)

 yt-1=Ptr(yt,,t)

The algorithm makes a number of assumptions.

(1) First, both the observed events and hidden events must be in a sequence. This sequence often

corresponds to time.

(2) Second, these two sequences need to be aligned, and an instance of an observed event needs

to correspond to exactly one instance of a hidden event.

(3) Third, computing the most likely hidden sequence up to a certain point t must depend only on

the observed event at point t, and the most likely sequence at point t − 1.

Upon running the Viterbi algorithm implementation we get the set of most probable set of

intruder intentions for the given set of alerts. Fig 3.6 illustrates the idea.

24

9Fig 3.6: Viterbi solution to the decoding problem

 Viterbi Algorithm
Alert sequence

HMM(π,A,B)

Type equation here.

Intention sequence

25

Chapter 4

Experimental Setup and Simulation

4. EXPERIMENTAL SETUP AND SIMULATION

In this chapter we set up a simulation experiment to validate our work.

 The general methodology to our experiment is:

(1) Run the Snort IDS to obtain the set of alerts that constitute the observable sequence.

(2) Build a HMM model based on the alerts and our background knowledge of the attackers

intentions. The model is built using data from and IDS sensor in the demilitarized zone

(DMZ) of the network since it is exposed to more traffic. The demilitarized zone is a physical

or logical sub network that contains and exposes an organization's external services to a

larger untrusted network such as the internet. While a single model is enough for

experimental purposes, in a real implementation, more than one model may be required, built

using data from different locations of the network which are exposed to different kinds of

traffic depending on the security layers protecting them. In such a case, their output may be

averaged or a voting algorithm implemented.

(3) Run the Viterbi algorithm the model and a sample sequence of alerts to discover the

intentions (Hidden state) for the given alerts sequence.

(4) Compare the output from the algorithm and the expected results for validation purposes.

(5) Repeat step 3 again with different sizes of inputs to observe its performance.

First, we will discuss the tools we used in the experiment and highlight the background of

the simulation data. We will then describe the experiment.

26

4.1 Tools

In our experiment, we used analyzed packets logged by the Tcpdump [23] , an open

source powerful command-line packet analyzer for network traffic, captured during a simulated

attack as undertaken by the MIT Lincoln lab in 2000. The logs are the raw traffic captured by

Tcpdump and do not provide us with any information of the alerts raised as the attack

progressed. However, the background information accompanying the data explains what the

intruder is trying to achieve and the phases of his attack.

By using the log files, we simulate the events around the time of the attack. We use Snort

running in IDS mode to detect the intrusions. Snort is an open source network intrusion

prevention and detection system (IDS/IPS) originally developed by Martin Roesch [3]. Snort

combines the benefits of signature and anomaly-based inspection, and is the most widely

deployed IDS/IPS technology worldwide. Snort is a command line application. Fig 4.1

illustrates a screenshot of Snort as used in the experiment.

10Fig 4.1: Screenshot of the Snort command line

For Snort to be able to detect attacks, it needs rules. Snort rules are a library of statements

that enable Snort to catch malicious traffic and sound alarms. Good rules ensure minimal false

27

alarms. The powerful nature and popularity of the Snort detection system is attributed to the rules

which are shared in public and constantly improved by Snort users and network administrators

[24]. In our experiment we downloaded the latest rules from the snort website

(http://www.snort.org) released on 23 Feb, 2011 and configured Snort to use the new rules.

Output from log is ordinarily logged to a file hence for ease of analysis, we configured

snort to save the alerts to the local MySQL [25] database server. Support for MySQL is inbuilt in

Snort.

To view the alerts from Snort we downloaded and installed the Base Analysis and

Security Engine (BASE) [26]. BASE is an open source web interface to perform analysis of

intrusions that Snort has detected on a network as logged on the MySQL database.

Fig. 4.2 illustrates a screenshot from BASE showing the various parameters and options

as captured during the experiment.

11Fig 4.2: Screenshot of the BASE application dashboard

28

We used a C# application originally written by Paulo Costa Carvalho [27] that implements the

Viterbi algorithm to solve the decoding problem. All experiments were undertaken on a

Windows based Acer Aspire 5741Z machine with a 64 bit windows 7 operating system , 4

gigabytes of RAM and a dual core 1.87GHz Intel Pentium P6000 processor.

4.2 The Intrusion data

The Information Systems Technology Group (IST) of MIT Lincoln Laboratory, under the

Defense Advanced Research Projects Agency (DARPA ITO) and Air Force Research Laboratory

(AFRL/SNHS) sponsorship collected and distributed their first standard corpora for evaluation of

computer network intrusion detection systems in 1998 through 2000. The datasets generated are

of interest to researchers working on the general problem of workstation and network intrusion

detection. According to them evaluation was designed to be simple, to focus on core technology

issues, and to encourage the widest possible participation by eliminating security and privacy

concerns, and by providing data types that were used commonly by the majority of intrusion

detection systems.

Joshi and Phoha [28] among other researchers have also used this data set successfully in

their work related to network intrusion. We will use the 2000 DARPA Intrusion Detection

Scenario-Specific LLDOS1.0 dataset. This data set consists of data logged from two different

locations in the network: - at the demilitarized zone and inside the network. The DMZ is a

physical or logical subnet that contains and exposes an organization's external services to a larger

untrusted network. The purpose of a DMZ is to add an additional layer of security to an

organization's local area network (LAN)

29

4.2.1 The scenario

The premise of the attack is that a relatively novice adversary seeks to show his/her

prowess by using a scripted attack to break into a variety of hosts around the Internet, install the

components necessary to run a Distributed Denial of Service, and then launch a DDOS at a US

government site. As a part of the attack the adversary uses the Solaris sadmind exploit, a well-

known Remote-To-Root attack to successfully gain root access to three Solaris hosts at Eyrie Air

Force Base. These attacks succeed due to the relatively poor security model applied at the AFB,

many services, including the dangerous "sunrpc" service, are proxied through the base's firewall

from outside to inside. The attacker is using the Mstream DDOS tool, one of the less

sophisticated DDOS tools. It does not make use of encryption and does not offer as wide a range

of attack options as other tools, such as TribeFloodNetwork or Trinoo. An Mstream "server", the

software that actually generates and sends the DDOS attack packets, is installed on each of the

three victim hosts, while an Mstream "master", the software that provides a user-interface and

controls the "servers" is installed on one of the victims. The attack scenario is carried out over

multiple networks and phases.

The attacker has 5 intentions:-

- IPsweep of the AFB from a remote site

- Probe of live IP's to look for the sadmind daemon running on Solaris hosts

- Breakins via the sadmind vulnerability, both successful and unsuccessful on those

hosts

- Installation of the trojan mstream DDoS software on three hosts at the AFB

- Launching the DDoS

30

The graph of fig 4.3 [31] visualizes the progression of the attack.

12Fig 4.3: Graphical illustration of the progression of the attack

In the graph of fig 4.3 the X-axis is the time of day, in hours, in Eastern Standard Time. The Y-

axis shows the TCP and UDP services on which attack traffic might flow.

4.2.2 The intruder’s intentions

To achieve his overall plan of launching the DDOS the intruder had 5 plans.

- IP Sweeping –The intruder performed scripted IPsweeps of multiple class C subnets on the

Air Force Base. The following networks were swept from address 1 to 254: 172.16.115.0/24,

172.16.114.0/24, 172.16.113.0/24, 172.16.112.0/24. The attacker sent ICMP echo-requests in

this sweep and listened for ICMP echo-replies to determine which hosts are "up".

31

- Sadmind pinging- The hosts discovered in the previous phase were probed to determine which

hosts were running the "sadmind" remote administration tool. This told the intruder which

hosts might be vulnerable to the exploit that he/she has. Each host was probed, by the script,

using the "ping" option. The ping option made a rpc request to the host in question, asked

what TCP port number to connect to for the sadmind service, and then connected to the port

number supplied to test to see if the daemon was listening.

- Sadmind exploitation: The attacker then tried to break into the hosts found to be running the

Sadmin services. The intruder attempts the Sadmind remote to root several times on each

host. With each attempt, the intruder attempted to execute one command, as root, on the

remote system. The attacker needed to also execute two commands however, one to "cat" an

entry onto the victim's /etc/passwd file and one to "cat" an entry onto the victim's /etc/shadow

file. The new root user's name was 'hacker2' and hacker2's home directory was set to be

/tmp. Thus, there were 6 exploit attempts on each potential victim host. To test whether or

not a break-in was successful, the attack script attempted a login, via telnet, as hacker2, after

each set of two break-in attempts.

- DDOS Software Installation- Entering this phase, the intruder had built a list of those hosts

on which it had successfully installed the 'hacker2' user. These were mill (172.16.115.20),

pascal (172.16.112.50), and locke (172.16.112.10). For each host on this list, the intruder

performed a telnet login, made a directory on the victim called "/tmp/.mstream/" and used rcp

to copy the server-sol binary into the new directory. This is the mstream server software. The

attacker also installed a ".rhosts" file for themselves in /tmp, so that they could rsh in to

startup the binary programs. On the first victim on the list, the intruder also installed the

"master-sol" software, which is the mstream master. After installing the software on each

32

host, the intruder used rsh to startup first the master, and then the servers. As they came up,

each server "registered" with the master that it was alive. The master wrote out a database of

live servers to a file called "/tmp/.sr".

- Launch of DDOS – Finally, the intruder launched a DDOS. This was done via a TELNET

login to the victim the “master” installed previously was running. This was done on port

6723 where the “master” was listening. The intruder supplied the command “mstream” with

an IP address as a parameter. This caused a DDOS attack of 5 seconds duration against the

supplied IP address launched by the 3 serves simultaneously. The intruder then logged out.

4.3 The alerts

In this section of the experiment, we wanted to know what kind of alerts the IDS sensor

would raise. We already know the users progressive intentions throughout the attack period as

provided in the background information that came with the Tcpdump files. Further, we match the

alerts with the intentions of the intruder.

4.3.1 Generation of the alerts

The alerts in were Fig 4.5 were obtained from IDS sensor in DMZ of the network. We

simulated this by running Snort with the source of packets being the Lincoln Lab Tcpdump file

of the DMZ. Fig 4.4 shows the details of our simulated IDS sensor.

Sensor Details Sensor Address Interface Filter

JORDAN:DMZ3 DMZ3 None

13Fig 4.4: Details of Simulated IDS sensor at the DMZ

33

Sensor Alerts

Alert name Number of alerts Protocol

ICMP Echo Reply 36(2%) ICMP

RPC portmap Solaris sadmin port query udp

request

320(13%) UDP

RPC portmap sadmind request UDP 320(13%) UDP

ICMP Destination Unreachable Port Unreachable 2(0%) ICMP

RPC sadmind query with root credentials attempt

UDP

64(3%) UDP

RSERVICES rsh root 32(1%) TCP

ICMP PING 1534(65%) ICMP

 Total: 2372(100%)

14Fig 4.5: Alerts from IDS on the network DMZ

The alerts in Fig 4.7 were obtained from the IDS sensor inside the network. As with the

previous case we simulated this by running Snort with the source of packets being the Lincoln

Lab TcpDump of the inside zone of the network. Table 4.3 shows the details of the IDS sensor.

Sensor Details Sensor

Address

Interface Filter

JORDAN:in3 in3 none

15Fig 4.6: Details of Simulated IDS on the inside network

34

Sensor Alerts

Alert name Number of alerts Protocol

ICMP PING 40(6%) ICMP

ICMP Echo Reply 40(6%) ICMP

RPC portmap sadmind

request UDP

180(27%) UDP

RPC portmap Solaris sadmin

port query udp request

180(27%) UDP

ICMP Destination

Unreachable Port

Unreachable

144(22%) ICMP

RPC sadmind query with root

credentials attempt UDP

28(4%) UDP

RPC portmap Solaris sadmin

port query udp portmapper

sadmin port query attempt

28(4%) UDP

RSERVICES rsh root 16(2%) TCP

 Total:

 656(100%)

16 Fig 4.7: Alerts from the IDS on the inside network

The higher number of alerts from the DMZ section of the network may be attributed to

the fact that the DMZ is exposed to more potentially hostile traffic compared to the internal

network. Hence, we chose to use alerts from the DMZ in our model. In total there were 8 types

of alerts in our experiments.

4.3.2 Description of the alerts.

 Each of the alerts points to the fact that the intruder has some intention. We give a brief

description of the alerts below. We have labeled each of the alerts as shown in the first column in

Fig 4.8.

35

Label Alert Brief description

1 ICMP PING The ICMP echo request is used by the ping

command to elicit an ICMP echo reply from

a listening live host.

2 RPC portmap sadmind

request UDP

Request to discover the port sadmind is

running from

3 RSERVICES rsh root Connection to the rsh daemon as root

4 RPC portmap Solaris

sadmin port query udp

portmapper sadmin

port query attempt

Query for sadmind host port

5 ICMP Echo Reply ICMP echo reply from a listening live host

elicited in response to a ICMP echo request.

6 RPC portmap Solaris

sadmin port query udp

request

Request to know if host is running Sadmind

7 RPC sadmind query

with root credentials

attempt UDP

This indicates that the RPC query for the

sadmind service has been made with the

credentials of the root user supplied

8 ICMP Destination

Unreachable Port

Unreachable

Indicates that someone or something tried to

connect to a port on a system that was not

available

17 Fig 4.8: Description of the alerts

4.3.3 The alert sequence

Section 4.2.1 provided the statistics of the different types of alert sequences and their

quantities. In this section, we list the sequence with which the alerts occurred. While 3,028 alerts

were logged by the IDS, we only needed a small portion to build our HMM model. We obtained

DMZ alerts whose target was host “mill” with IP address 172.16.115.20 .All alerts as identified

by Snort indicate the source address and the destination address (see Appendix A). For host

172.16.115.20, 61 alerts were returned by Snort for attacks directed at it at the DMZ. The first 18

alerts as they were displayed by BASE are shown in figure 4.9 ordered in descending orders with

the first alert being “ICMP PING”. (See Appendix B and C for the full sequence).

36

18Fig 4.9: Sequence of Snort alerts for host "mill"

4.4 The Hidden Markov Model

The aim of creating a model is to establish the probabilistic relationship between the

sequence of alerts (the observables) and the intention states (hidden states). The model design is

critical to the performance of the intention discovery system. In this section, we use the alerts

from section 4.3.1, and background information about the attack scenario to estimate parameters

for the HMM. We compute the parameters, A, B, and , A, and B respectively as described in

section 1.5 . As explained in section 3.2 the set of states S={S1,S2,S3,S4….Sn} correspond to the

intentions of the intruder in the 5 phases of the attack. These are:-

S={<<IP Sweep to determine which hosts are up>>,<< Probing to look for Sadmind

daemons running on target> >,<< Attempting breaking via the sadmind vulnerability> >,<<

Installing the Trojan mstream DDOS script> >,<< launching DDOS> >}

For clarity, we shall label the states as shown below with the letters corresponding to the

respective intentions as shown in Fig 4.11

#35-(28-12) [arachNIDS] [snort] RPC portmap sadmind request UDP

#36-(28-13) [snort] RPC sadmind query with root credentials attempt UDP

#37-(28-14) [snort] RPC sadmind query with root credentials attempt UDP

#38-(28-16) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port query attempt

#39-(28-15) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port query attempt

#40-(28-1) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request

#41-(28-2) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request

#42-(28-3) [arachNIDS] [snort] RPC portmap sadmind request UDP

#43-(28-4) [arachNIDS] [snort] RPC portmap sadmind request UDP

#44-(28-5) [snort] RPC sadmind query with root credentials attempt UDP

#45-(28-7) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port query attempt

#46-(28-8) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port query attempt

#47-(28-6) [snort] RPC sadmind query with root credentials attempt UDP

#48-(27-52) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request

#49-(27-50) [arachNIDS] [snort] RPC portmap sadmind request UDP

#50-(27-49) [arachNIDS] [snort] RPC portmap sadmind request UDP

#51-(27-51) [cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request

#52-(26-41) [snort] ICMP PING

#53-(26-42) [snort] ICMP PING

37

Intention state Label

IP Sweep to determine which hosts are up U

Probing to look for Sadmind daemons running

on target

V

Attempting breaking via the sadmind

vulnerability

W

Installing the Trojan mstream DDOS script X

launching DDOS Y

19Fig 4.10: List of intention states

Hence our hidden states are S= {U, V, W, X, Y}.

The observable sequences are the alerts (see Fig 4.8), hence V= {1, 2, 3, 4, 5, 6, 7, 8}.

The next step is estimating the parameters A (state transition probability), B (emission

probability) and π (initial probability) for both attacks aimed at “pascal” and “mill”

(a)Parameter estimation for attack on “mill” (172.16.115.20)

As a method to estimate parameters A, B and π we pick a sequence of the 61 DMZ IDS

alerts with destination address being host “mill” (172.16.115.20) . The labeled alert sequence

was:-

(1,1,4,4,2,2,2,4,4,7,7,6,6,2,4,4,2,2,6,6,2,2,4,7,7,6,6,6,2,4,7,7,6,6,2,4,4,7,7,4,4,2,4,7,7,6,6,2,4,4,7,

7,4,4,2,2,4,7,7,6,6,2,2,3,3,3,3,3,3,3,3) (See appendix B). The sequences are numbered as per the

labeling scheme in table 4.5.

Similarly, The labeled state transition pattern is:- {UUVVVV(W)
48

XXXXXXXX }

From the transition pattern starting at intention U we have 1 UU, 1UV, 3 VV, 1VW , 47WW

and 1 WX. This is summarized in fig 4.12

38

Intention Sequence Count Probability

Transitions from U

UU 1 1/2

UV 1 1/2

Transitions from V

VV 3 3/4

VW 1 1/4

Transitions from W

WW 47 47/48

WX 1 1/48

Transitions from X

XX 8 8/8

20 Fig 4.11: Intention states transition probability for A

Hence the estimated transition probability matrix A is:

Similarly from our alert sequence there are when in state U, we have 2 type 1 alerts. V

intention states with with 10 type 2 alerts, 0 type 4 alerts, 7 type 6 alerts and 0 type 7 alerts.

There are also 16 W intention states with 0 type 2 alerts, 8 type 4 alerts , 0 type 6 alerts and 8

type 7 alerts. This is summarised in fig 4.13

1/2 1/2 0 0

0 3/4 1/4 0 A=

0 0 47/48 1/48

0 0 0 1

39

Alert

type

Alert

count

when in

intentio

n state

U

Alert

count

when in

intentio

n state

V

Alert

count

when in

intention

state W

Alert

count

when in

intention

state X

Probab

ility of

alert

when

in

state u

Probabilit

y of alert

when in

state V

Probabilit

y of alert

when in

state w

Probability

of alert

when in

state x

1 2 0 0 0 2/2 0 0 0

2 0 2 13 0 0 2/4 13/48 0

3 0 0 0 8 0 0 0 8/8

4 0 2 13 0 2/4 13/48 0

6 0 0 11 0 0 0 11/8 0

7 0 0 11 0 0 0 11/48 0

21Fig 4.12: Emission probability for B

From Fig 4.13 the estimated emission probability matrix B

is:-

To estimate π, we assumed that the intruder can have any of the intentions (U,V,W,X) at

the start. Hence π= {0.25, 0.25, 0.25, 0.25}.

4.5 Validation and analysis of the results

In section 4.4 we developed the HMM HMM_mill= (π, A, B) and by defining the

parameters π, A, and B. Since the intruders intentions during an attack will be characterized by

the IDS alerts, the problem is to solve the decoding problem as described in section 3.3 and

obtain the corresponding intention sequence for a given sequence of alerts.

B=

2/2 0 0 0 0

0 2/4 0 0 2/4 0

0/48 13/48 0/48 13/48 11/48 11/48

0 0 8/8 0 0 0

40

In our experiment, we used our HMM_mill parameters and a sequence of alerts we seek

to decode as input to Carvalo’s C# Viterbi algorithm implementation. The outputs were the

corresponding intention states and the probabilities with which they occur.

 For the sequence of labeled alerts: <1,1, 2,2> HMM_mill returned the intention sequence

<UUVV> with a Viterbi path probability of 87.891/10^
4

. Comparing the output state sequence

<UUVV> with what we expect for the given alerts, we see that our method predicted with 100%

accuracy. The Viterbi path is a path of transitions of intention states with the greatest probability.

This path is best visualized using the trellis diagram as illustrated in Fig 4.14.

 22Fig 4.13: Trellis diagram of the Viterbi path for HMM_mill

As it can be seen in the trellis diagram in Fig 4.14, the intention sequence <UUVV> has the

highest probability path that can be generated for the for the set of alert sequence <1,1,2,2>.

Intention

states

U

V

1.25E-1

0 E-1

6.25E-2

0 E-2

0E-3

23.43E-3

0E-4

87.89E-4

4

Alert sequence

0 E-1

0 E-1

0 E-2

0 E-2

7.82E-3

0E-3

29.29E-4

1 1 3 3

W

X
0.632E-3

41

Based on our transition probability matrix A in section 4.4 the most likely future intention would

be V with a probability of 0.75. Note that the output results are labeled and both the input alert

sequences and output intention states decoded represent their respective states as per the labeling

scheme in Fig 4.8 and Fig 4.11 respectively. For example for the preceding experiment

involving alerts <1,1, 2,2>, the results implies that, if the network IDS detected the alert

sequence (<ICMP ping>, <ICMP ping>, <RPC portmap sadmind request UDP>,<RPC

portmap sadmind request UDP) the intruders sequence of intentions were (<IP Sweep to

determine which hosts are up >,<IP Sweep to determine which hosts are up >,<prob to look for

sadmind daemons running>,<prob to look for sadmind daemons running>) with a probability of

87.891/10^
4

and that the intruder is most likely planning to continue probing to looking for

sadmind daemons running. The probability of his predicted most likely future intention is 0.75

 4.5.1 Performance characteristics

In this section, we analyze the performance characteristics of our proposed system. Our

first metric is the false discovery rate. The false discovery rate is the percentage of false

discoveries for a set of decoded intention states. To do this, we decoded random sequences of

alerts derived from the alerts generated in section 4.3. We then compared the output intention

states with the actual intention states associated with those alerts as specified in the background

information of the data. The results are tabulated if Fig 4.15

42

Sequ

ence

Alerts Output

intention

sequence

Expected

Output

intention

sequence

False

discoveri

es

Viterbi path

probability

Future

predicted

intention(s)

and

probability

1 1,1 <UU> <UU> 0% 6.25x10^
-1

 (U,0.25),

(V,0.25)

2 1,1,4 <UUV> <UUV> 0% 23.44/10^
-3

(V,0.75),(W,0.

25)

3 1,1,4,4 <UUVV> <UUVV> 0% 87.891/10^
4

 (V,0.75),(W,0.

25)

4 4,4,2,2,2,4 <VVVVVV

>

<VVVVW

W>

33% 695.22x10^
-6

. (V,0.75),(W,0.

25)

5 2,7,3,3 <VWXX> <WWXX> 25% 4.712x10^
-4

. (X,1)

6 4,7,7,6,6,2,4,

4

<VWWWW

WWW>

<WWWW

WWWW>

12.5% 4.712x10^
-8

. (W,47/48),(X,

1/48)

23 Fig 4.14: Summary of results for experiment 1 and 2

In all the above cases our system was able to discover the intruder’s intentions. However,

there were some false discoveries in some of the test sequences. We found that the false

discovery rate was random and not tied to the input alert sequence size that we are decoding.

This is illustrated in Fig 4.15 where the largest false discovery rate (33% from sequence 4) was

not obtained from the largest sequence size while the smaller false discovery rates(0%-25%)

were not necessarily obtained from the smaller sequence size.

An important performance characteristic of our proposed system is how the output

intention states path probability varies with the input alert size. This is an important

characteristic since in the design of a real system, an optimum size of input alert sequence to be

decoded must be found. To test this characteristic, we analyzed and graphed the Viterbi path

probabilities as tabulated in column 6 of Fig 4.15. The results were graphed as shown on Fig

4.16.

43

Figure 24Fig 4.15: Graph of intention discovery probability vs alert sequence size

The results indicate that the bigger the input alert size we attempt to decode the lesser the

intention discovery probability. In simple terms it means that for a bigger input alert sequence,

the discovered intention sequence has a lower certainty. This is expected since the evaluation for

the intention sequence involves multiplication of probabilities at each stage. Implementers of a

real system will have a tradeoff between the input alert sequence they are attempting to decode

and the level of certainty they expect from their results.

A significant drawback of our system is that its intention discovery capability is also tied

to the accuracy of the underlying IDS. If the IDS is unable to return alerts for a given attack, or

returns false alerts, then the discovered outputs may not be accurate. In our experiment, the Snort

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

In
te

ti
o

n
 d

is
co

ve
ry

 p
ro

b
ab

ili
ty

Alert Sequence size

44

IDS did not return any alerts for the last intention of the intruder (installation and execution of

the DDOS script). Consequently, our model could not capture this stage of the attack since we

had no data to train for this stage of the attack. As such, our system cannot discover previously

unknown user intentions. This behavior is analogous to signature based IDS or antivirus

software.

45

Chapter 5

Conclusions

5. CONCLUSIONS

In this thesis, we have outlined the idea of intruder intention discovery in IDS. We have

demonstrated that using known information about an attacker’s behavior, we can create HMM

models and later decode the alerts from an IDS to discover the intruders high level intentions for

the given alerts and predict the future intention. This system constitutes the intrusion intention

discovery layer that is the subject of this thesis. Information about the intruder’s intentions can

be used both for recovery activities and for preemptive purposes in the case of the future

intention predicted.

To validate our proposition we ran a simulation of a network environment under attack

using Snort as a sensor and used the data to build a HMM model. We used a sample of the Snort

alerts as input to a Viterbi decoder. The results of the experiments indicate that:

(1) Our proposition can discover intruders set of intentions for the given alerts already

collected and from this, we can infer his future intention.

(2) For some input alerts, there may be false discoveries .We found that the occurrence of

false discoveries was random and not tied to input size.

(3) The proposed system is sensitive to variation in the input size of the alerts. With a

larger alert input size we seek to decode, the Viterbi path probability decreases. This

means that although we still get the intention states, we have lower certainty. Hence,

there is a tradeoff between the accuracy of the predicted intention states and the size

of raw alerts used to discover the intruder’s intention.

46

5.1 Future work

One of the biggest challenges that may be encountered in the implementation of this

system is the training of the HMM model. HMMs are notoriously sensitive to changes in

variables assigned to during training and since this determines the accuracy of output of the

whole system, work should be done on an optimum training algorithm.

As seen in the results of our experiments in section 4, when a larger alert sequence is

used as input to the Viterbi decoder, the output result has a lower probability. As such, work may

have to be done on ways of finding an optimum alert sequence size that probably matches other

factors such as threat.

If this system is to be deployed on a large scale, it may probably require the efforts of

network administrators involved in network security worldwide preferably in an open source

initiative. This is because the background information that is crucial in building the HMM model

is collected from the networks themselves. This is the very approach that has been adopted in

building the library of Snort signature libraries that enable the Snort IDS to function. Similarly,

an architecture to enable building and submission of HMM models to a central database by

individual network security personnel may be necessary. Any user will then be able to download

files containing these already trained models and integrate the intention discovery capability to

the network.

47

REFERENCES

[1] Rick Lehtinen, Deborah Russell, G. T. Gangemi, Computer Security Basics, 2nd edition,

O’Reilly Media, 2006.

[2] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt, “Network intrusion

detection”, IEEE Network, 8[3]:26-41, May/June 1994.

[3] Snort, http://www.snort.org, last accessed 4/1/2011.

[4] R. P. Goldman, W. Heimerdinger, and S. A. Harp, “Information modeling for intrusion

report aggregation”, DARPA Information Survivability Conference and Exposition (DISCEX

II), June 2001.

[5] S Elliot and S Fowell, “Expectations versus reality: a snapshot of consumer experiences

with Internet retailing”, International Journal of Information Management, vol. 20, pp. 323-

336, 2000.

[6] J.P Anderson, “Computer Security Threat Monitoring and Surveillance”, Technical report,

James P Anderson Co., Fort Washington, Pennsylvania, April 1980.

[7] Dorothy Denning, “An intrusion detection model”, IEEE transactions on Software

Engineering, vol. SE-13, no. 2, pp. 222-232, February 1987.

[8] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition”, Proceedings of the IEEE, vol 77, no 2, pp. 257-285, February 1989.

[9] J Viterbi, “Error bounds for convolutional codes and an asymptotically Optimum decoding

algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269, Apr. 1967.

[10] S. Forrest, S.A Hofmeyr, A. Somayaji, T.A Longstaff, “A sense of self for Unix processes”,

Proceedings of the 1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA.

IEEE Computer Society Press, pp. 120-129, 1996

48

[11] T Lane, C.E Brodley, “Temporal sequence learning and data reduction for anomaly

detection”, Proceedings of Fifth ACM Transactions on Information and System Security,

vol. 2, no. 3, August 1999.

[12] Shrijit S. Joshi , Vir V. Phoha, “Investigating hidden Markov models capabilities in

anomaly detection” , Proceedings of the 43rd annual Southeast regional conference,

Kennesaw, Georgia March 18-20, 2005.

[13] R. Cohen, F. Song, B. Spencer, and P. van Beek, “Exploiting Temporal and Novel

Information from the User in Plan Recognition”, User Modeling and User-Adapted

Interaction 1(2), 125-148, 1991.

[14] C. Heinze, S. Goss, and A. Pearce, "Plan Recognition in Military Simulation: Incorporating

Machine Learning with Intelligent Agents", Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI99) Agent Workshop on Team Behaviour and

Plan Recognition, Stockholm, pp. 53-63, 1999.

[15] A. G. Hofmann and B. C. Williams, “Intent recognition for human-robot interaction”,

Interaction Challenges for Intelligent Assistants, pp. 60–61, 2007

[16] H. Herr, A. Wilkenfeld, “User-Adaptive Control of a Magneto rheological Prosthetic Knee”,

Industrial Robot: An International Journal, Vol. 30, pp. 42-55, 2003

[17] W. Geib Christopher, Goldman Robert, “Plan recognition in intrusion detection systems”,

DARPA Information Survivability Conference and Exposition (DISCEX), Vol. 1, pp. 46-55,

2001

[18] Li Feng, Xiaohong Guan , Sangang Guo, Yan Gao, Peini Liu , “Predicting the intrusion

intentions by observing system call sequences”, Elsevier Computer and Security, Vol. 23,

pp. 241-252, 2004

49

[19] Peng Wu, Yao Shuping, Chen Junhua, "Recognizing Intrusive Intention and Assessing

Threat Based on Attack Path Analysis", Multimedia Information Networking and Security

International Conference, vol.2, no., pp. 450-453, 18-20 Nov. 2009.

[20] Xinzhou Qin , Wenke Lee, “Attack Plan Recognition and Prediction Using Causal

Networks” , Proceedings of the 20th Annual Computer Security Applications Conference,

pp.370-379, December, 2004.

[21] Cuppens, F. Autrel, A. Mi`ege, and S. Benferhat, “Recognizing malicious intention in an

intrusion detection process”, Proceeding of the Second International Conference on Hybrid

Intelligent Systems, Santiago, Chile, December 2002.

[22] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring in the

statistical analysis of probabilistic functions of Markov chains", Ann. Math. Statist. Vol. 41,

No. 1, pp. 164–171, 1970.

[23] TCPdump, http://www.tcpdump.org/, last Accessed: 4/1/2011

[24] Jaeius Lapitan , A brief introduction to snort rules , http://www.secanalyst.org/?p=98, last

Accessed: 4/1/2011.

[25] MySql Database, http://www.mysql.com, last Accessed: 4/1/2011.

[26] BASE System, http://base.secureideas.net/, last Accessed: 4/1/2011.

[27] Paulo Costa Carvalo, http://pcarvalho.com/ , last Accessed: 4/1/2011.

[28] Shrijit S. Joshi, Vir V. Phoha, “Investigating hidden Markov models capabilities in anomaly

detection”, Proceedings of the 43rd annual Southeast regional conference, 2005,

[29] A Sundaram, “An Introduction to intrusion detection”, ACM Cross Roads, Vol 2. No. 4,

April 1996.

50

[30] R. Heady, G. Luger, A. Maccabe, and M. Servilla, “The architecture of a network level

intrusion detection system”, Technical report, Computer Science Department, University of

New Mexico, August 1990.

[31] Lincoln Laboratory Scenario (DDoS) 1.0 , http://www.ll.mit.edu/mission/

 communications/ist/corpora/ideval/data/2000/LLS_DDOS_1.0.html, last Accessed:

4/1/2011.

51

APPENDICES

52

APPENDIX A: ALERTS AS DISPLAYED BY BASE

53

APPENDIX B: ALERTS AT THE DMZ FOR HOST “MILL”

 < ALERT > < TIMESTAMP

 >

 < Source Address >

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:673

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:672

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:672

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:672

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:672

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:673

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:673

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:673

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:671

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:671

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:671

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:671

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:672

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:672

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:672

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:672

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:670

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:670

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:670

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:670

54

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:671

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:671

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:671

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:671

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:670

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:670

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:670

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:670

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:669

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:668

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:668

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:668

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:668

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:669

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:669

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:667

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:33 202.77.162.213:667

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:667

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:33 202.77.162.213:667

55

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:668

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:668

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper sadmin port

query attempt

3/7/2000 9:33 202.77.162.213:668

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:33 202.77.162.213:668

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:08 202.77.162.213:646

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:08 202.77.162.213:646

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:08 202.77.162.213:646

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:08 202.77.162.213:646

[snort] ICMP PING 3/7/2000 8:51 202.77.162.213

[snort] ICMP PING 3/7/2000 8:51 202.77.162.213

56

APPENDIX C: ALERTS AT THE INSIDE OF NETWORK FOR “PASCAL”

 < Alerts > < Timestamp >

 < Source Address >

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60619

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60617

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60617

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60617

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60617

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60619

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60619

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60619

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60603

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60603

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60603

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60603

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60605

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60605

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60605

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60605

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60578

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60578

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60578

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60578

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60576

57

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60576

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60576

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60576

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60567

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:34 202.77.162.213:60567

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60567

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:34 202.77.162.213:60567

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60569

[snort] RPC sadmind query with root credentials attempt UDP 3/7/2000 9:34 202.77.162.213:60569

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60569

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp portmapper

sadmin port query attempt

3/7/2000 9:34 202.77.162.213:60569

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:15 202.77.162.213:56260

[cve] [icat] [bugtraq] [snort] RPC portmap Solaris sadmin port query udp request 3/7/2000 9:15 202.77.162.213:56260

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:15 202.77.162.213:56260

[arachNIDS] [snort] RPC portmap sadmind request UDP 3/7/2000 9:15 202.77.162.213:56260

[snort] ICMP PING 3/7/2000 8:51 202.77.162.213

[snort] ICMP PING 3/7/2000 8:51 202.77.162.213

58

APPENDIX D: OUTPUT SCREENSHOT FROM THE VITERBI DECODER

VITA

Jordan Kiprop Koskei

Candidate for the Degree of

Master of Science

Thesis: AN ATTACKER INTENTION DISCOVERY LAYER FOR INTRUSION

DETECTION SYSTEMS USING HIDDEN MARKOV MODELS.

Major Field: Computer Science

Biographical:

Education: Graduated from Sunshine Secondary School, Nairobi, Kenya in November 2001;

received a Bachelor of Technology degree in Computer Engineering from Moi

University, Eldoret, Kenya in October 2008. Completed the requirements for the

Master of Science degree with a major in Computer Science at Oklahoma State

University in July, 2011.

Experience: Lead Developer, Information Convergence Technologies, 2008; Network

Administrator and Developer, The Daily O’Collegian from 2010 to July 2011.

Name: Jordan Kiprop Koskei Date of Degree: July, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AN ATTACKER INTENTION DISCOVERY LAYER FOR INTRUSION

DETECTION SYSTEMS USING HIDDEN MARKOV MODELS.

Pages in Study: 58 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: Currently deployed intrusion detection systems (IDS) have no

capacity to discover attacker high level intentions. Understanding an intruder’s intention

greatly enhances network security as it allows deployment of more accurate pre-emptive

counter-measures and better disaster recovery. In this thesis, we propose a system where

we model a known attack scenario using Hidden Markov Models and use alerts from an

IDS later to discover an attackers set of intentions for a given set of alerts.

Findings and Conclusions: Experiments conducted shows that while the system can discover the

attacker’s intention, it is not always 100% accurate. There is an associated false error

rate. The occurrence of false discoveries is purely random and not linked to other factors

such as input size. The larger the input alert sequence size we seek to decode, the lower

probability of the output intention sequence. More work needs to be done to develop

optimum training algorithms for better models.

ADVISER’S APPROVAL: Dr. Johnson Thomas

