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CHAPTER 1 

 

 

INTRODUCTION 

 

The National Aeronautics and Space Administration (NASA) twin robot 

geologists, the Mars Exploration Rovers (MERs), were launched toward Mars in 2003 in 

search of answers about the history of water on Mars [1]. The Mars Exploration Rover 

mission is part of NASA’s Mars Exploration Program. Until recently, autonomous 

driving had not been attempted for planetary exploration [2]. Even now, the present MER 

rovers on Mars are limited by data transfer, power, and processing constraints. The MER 

rover systems, Spirit and Opportunity, principally rely on dead-reckoning. Position 

estimation is calculated from onboard sensors such as wheel encoders and Inertial 

Measurement Units (IMUs). Changes in the environment are unseen and errors in the 

traverse, for example, from slipping go undetected. A dedicated vision based autonomous 

guidance system would provide the capability to drive with a real-time response to the 

terrain and environment.  

 Planning a rover traverse involves quickly assessing many terrain properties and 

developing a command sequence that strikes a balance between vehicle safety and 

traverse efficiency [3]. Rover operators have a number of on board drive types at their 

disposal, including directed drives, guarded drives in which the rover can image terrain 

and veto a predetermined motion, and rovers can also use image-based odometry to 
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accurately measure the rover’s position while driving in high-slip environments. In an 

ideal world, the rovers would use visual odometry and hazard avoidance at all times, but 

this is impractical due to the slow processing speed of the rover’s CPU. Thus, blind 

drives are preferred when a hazard-free path can be seen in images. On level ground, the 

rover slips very little and the combination of inertial measurements and wheel odometry 

enables precise blind drives. A very steep slope or a moderate slope combined with rocks 

or significant sinkage can cause the rover to tip over. Moderate slopes can cause high slip 

depending on the underlying material, and loose material on low slopes can cause the 

wheels to sink and can block direct uphill progress.  

Correcting error in position estimation is often critical to save time in reaching a 

target destination and prevent damage to a rover or lander on hazardous terrain. High 

accuracy, thus allows selection of higher science return destinations. Image based motion 

estimation such as stereo methods [4, 5] or pose estimation [6] are under investigation for 

several autonomous robotics applications. Such algorithms depend on image information 

based on edges and corners (such as grayscale feature extractors [7]) detected in scene 

elements. Some grayscale feature extractors have also shown sensitivity to the 

identification of hazardous terrain.  

Visual Odometry, an algorithm currently in use on MER uses successive 

snapshots taken at half meter intervals for estimating the position of the rover relative to 

known obstacles. While this system has been used for obstacle avoidance [8] and 

instrument placement [9], in between these snapshots the rover still has a “blind” drive, 

and there have been incidents where a MER rover has slipped dangerously close to an 

obstacle, even using this system.  
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A neural network has the characteristics of emulating the behavior of a biological 

nervous system and draws upon the analogies of adaptive biological learning [10]. 

Because of their adaptive pattern classification paradigm, they posses the significant 

advantages of complex learning capabilities plus a very high fault tolerance. They are not 

only highly resistant to aberrations in input data, but they are also good at solving 

problems too complex for conventional technologies such as rule based and 

determinative algorithm methods.  

For visual tracking, a radial basis function neural network algorithm was used 

[11], [12]. Coupled with a feature extraction algorithm, the neural network has 

advantages for pattern recognition, including practical implementation in parallel 

hardware for real-time operation and low power requirements [14], [15]. Upon selection, 

a target feature is broken down into a set of values that represent a vector in a feature 

space. This feature space position and associated radius encompasses a neuron with the 

receptive field representing a local region of feature space around the prototype where 

generalization is possible.  The recognition task then consists of evaluating if a new input 

feature vector lies within the influence field of any neuron stored in the network.  Fast 

learning in the network model lends itself to real-time adaptation to changing target 

features when objects are viewed from varying angles and the imagery changes scale 

with distance.  

A radial basis neural network algorithm in combination with feature extractors for 

visual tracking has been looked at. An analysis of the various feature extractors along 

with tracking confidence indicators has been provided. The second section contains the 

literature review. The third section contains the problem statement followed by the 
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hypothesis. It is followed by the approach to the problem and then the results and 

discussions and finally the summary is presented.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Visual Odometry [16] 

 

 The MER Visual Odometry system has onboard software for comparing stereo 

pairs which are taken by the pointable mast-mounted 45 degree FOV Navigation Stereo 

Cameras (NAVCAMs). The system computes an update to the 6-DOF rover pose (x, y, z, 

roll, pitch, and yaw) by tracking the motion of autonomously selected interesting terrain 

features between two pairs of stereo images, in both 2D pixel coordinates and 3D world 

coordinates. In the early stages, the uncertainty in the amount of slip resulting from drives 

on high slopes or loose soils forced the operation team to spend several days driving 

towards some targets, even those that were just a few meters away. The use of Visual 

Odometry software has enabled precision drives over distances as long as 8 meters, on 

slopes greater than 20 degrees. The key idea of the Visual Odometry method is to 

determine the change in position and attitude of two or more pairs of stereo images using 

maximum likelihood estimation. The basic steps of this method are described as follows. 

1. Feature Detection: Features that can be easily matched between stereo pairs and 

tracked across a single motion step are selected. An interest operator is applied to 

one of the image pairs, and pixels with highest interest values are selected. 
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2. Feature-based Stereo Matching: Each selected feature’s 3D position is computed 

by stereo matching. The 3D positions of these selected features are determined by 

intersecting rays projected through the camera models. After the rover moves a 

certain distance, a second pair of stereo images is acquired. The features selected 

from the previous images can be projected into the second pair using the prior 

knowledge of the motion provided by the onboard wheel odometry. A correlation 

based search reestablishes the 2D positions precisely in the second image pair. 

Stereo matching is then performed on these tracked features on the second pair to 

determine their new 3D positions.  

3. Robust Motion Estimation: The motion estimation is done in two steps. First, a 

less accurate motion is estimated by Least-squares estimation. The features 

selected are then estimated using the maximum likelihood motion estimation.  

Several benefits were realized by the use of Visual Odometry. The accuracy of driving in 

new or mixed soil terrains was improved by re-pointing to the drive goal or recomputing 

the distance remaining to the goal after each step along the way. Sometimes rover safety 

was maintained by having the rover terminate a planned drive early when it realized that 

it was making insufficient progress towards its goal.  

 

2.2 Radial Basis Function Neural Network 

 

The radial basis function neural network learns 'by example' from data samples 

and corresponding categories.  A block diagram of this system is shown in 1.  Feature 

extraction methods are tailored for a specific class of targets. These feature vectors, 
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representing the target of interest, are then fed into the neural network processor.  A 

gradient feature extractor is suited for detecting the edges or texture of an object:  
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                                         where   I(x, y) is the input pixel value at (x, y).   

 

Figure 1: Block diagram of a neural network, showing simplification of a science target using feature 

extractors [5]. 

 

A distance in feature space is calculated from each neuron to the input feature: 

     D(N) = |Wn(x, y) – F(x, y)|,                   Wn (x, y) is the N
th

 neuron weight vector.  

If the input feature vector falls within the influence field of a neuron, then it is 

classified as belonging to this neuron class.  The influence field of a neuron is a multi-

dimensional hyper-spherical volume centered at the neuron.  The radial distance between 

the center and the edge of the influence field is defined by the shortest distance between 

the neuron and the counter examples of a different class or clutter.  Each neuron adjusts 

its influence fields when presented with examples of objects and clutter so that it 

Feature  
Extractors 

Input Image 

Feature ID 

RBF Neural 

- - On line learning 
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occupies a volume around the prototype example up to the position of the counter 

examples.  The influence field is defined as,   

Inf(N) = min(Dce(N)),   Dce(N) - distance between counter-examples and the N
th

 

neuron. 

 

Figure 2: Influence field of a neuron and counter examples. [22] 
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   Figure 3: An example of RBFNN in a simplified 2-D feature space.   

 

 Upon selection, a target feature is broken down into a set of values that represent 

a vector in the feature space. For example, the lightness values of all the pixels in each 

row and column could be summed to obtain a vector in feature space; let this be called as 

Neuron A. If the feature represented by Neuron A is 10 pixels wide by 8 pixels tall, then 

it describes 10+8=18 dimensional vector in feature space. During tracking, frames are 

streamed continuously and tracked features are searched in each new frame. When a new 

frame is received, the tracker looks at every 10 pixel by 8 pixel box within a set distance 

(defined by a region of search parameter) from the last known location of the feature for 

Neuron A, and breaks each of these features down into a vector in feature space. If one or 

more of these vectors is within a set distance from Neuron A in feature space, then 

Neuron A will “fire” indicating that the feature has once again been detected.  

 

 

Feature 2 

Feature 1 

Influence 
field 

N=2 
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2.3 Terrain Map Generation [9] 

 

 The inputs into the hazard detection and avoidance algorithm are two overlapping 

images of the surface and a measurement of the distance between the camera and the 

surface along the camera optical axis of the first image. The details of each stage of the 

algorithm are given below.  

A. Initial feature selection and tracking 

The first stage in the algorithm finds locations in the first image that will be good 

for tracking and then searches for their corresponding location in the second image using 

image correlation. Feature selection is done using the efficient implementation of the Shi, 

Tomasi and Kanade feature detector described in [17]. First image gradients Ir (r, c), Ic (r, 

c) are computed using finite differences over the entire first image. Next the 

autocorrelation matrix A(r, c) for a small window T around each pixel is computed. 

For efficiency, the elements of A are computed using a sliding sum; each time the 

template is shifted by a pixel, the gradients that leave the template are subtracted from the 

sum and the gradients that appear in the window are added. Pixels are better for tracking 

when A has two large Eigen values.  

Motion estimation is more likely to be well conditioned if the selected features are 

evenly spread over the image. To enforce an even distribution, the image is broken into 

blocks of pixels and the feature that meets the conditions and maximizes P over the block 

is selected as the best pixel in the block. Once features are selected they are tracked into 

the second image using a 2D correlation-based feature tracker. No knowledge of the 
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motion between frames is assumed, so the correlation window is typically square and 

large enough to handle all expected feature displacements 

Correlation is applied in a coarse to fine fashion as follows. First, block averaging 

is used to construct an image pyramid for both images. The template half-width and 

window half-width at each level are scaled depending on the level in the pyramid. 

Feature tracking starts at the coarsest level of the pyramid with a template and a 

window size scaled to match the coarse resolution. The pixel of highest correlation is 

used to seed the correlation at the next finer level [18]. After the coarse level, the 

template size increases as the pyramid level increases while window size is fixed. At the 

finest scale, the original image data is correlated, albeit with a small window size, and the 

feature track is accepted if the correlation value is higher than a threshold. Sub-pixel 

tracking is obtained by fitting a biquadratic to the correlation peak and selecting the track 

location as the peak of the biquadratic.  

B. Structure from motion 

The next stage in the algorithm is a structure from motion estimation that uses 

feature tracks to solve for the change in position and attitude of the camera between the 

images and the depth to the selected features in the first image. This stage uses a robust 

nonlinear least squares optimization [19] that minimizes the distance between feature 

pixels by projecting the features from the first image into the second image based on the 

current estimate of the scene structure and camera motion. In this approach the motion 

between two camera views is described by a rigid transformation (R, t) where the rotation 

R, represented as a unit quaternion q, encodes the rotation between views and t encodes 

the translation between views. The altimetry measurement is used to set the initial depths 
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to the features in the scene. This altimetry augmentation from motion algorithm 

eliminates the scene scale ambiguity present in structure from motion algorithms based 

solely on camera images. The output of this stage of the algorithm is the 6 DOF motion 

between images and the depth to the features selected in the first image.  

C. Dense structure recovery 

 The final stage of the algorithm uses the motion between images and the coarse 

structure provided by the depths to the feature tracks to efficiently generate a dense 

terrain map. For a pinhole camera, the projection of a pixel in the first image must lie on 

a line in the second image that is determined by the motion between images (the epipolar 

line). The depth to the pixel determines the location of the pixel along the line. To 

generate a dense set of scene depths, a grid of pixels are selected in the first image. Next, 

the epipolar segment is determined for each pixel in the grid. Next the matching location 

of pixel along the epipolar segment is determined. Once the grid of feature tracks is 

established, triangulation is applied to establish the depth to each feature. Next, the 

homogenous coordinates of each feature are scaled by the correspond depths to produce a 

cloud of 3D points in the coordinate frame of the first image. 

 

2.4 Rover-Based Visual Target Tracking [20] 

 

When no visual target tracking is used, the target positioning error after 10-m 

travel to the target is in order of 20 cm at minimum due to the stereo range error and the 

rover pose estimation error [21]. With visual target tracking, the target positioning error 

can be within a few cm. The rover moves in short steps and the designated feature is 



 13 

tracked at these discrete intervals. Due to limited computational resources available on-

board flight rovers, it is not possible to use continuous or frame rate target tracking 

techniques. The 2D image feature tracker tracks the target image at each step as the rover 

approaches the target in small steps. The various kinds of trackers are as follows: 

A. Affine Matching  

The affine tracker creates a template window image of a given size. As the rover 

moves a short distance and takes a new image from its mast-mounted camera, the tracker 

determines the new target image position in the new image using a Newton-Raphson 

style iterative method to minimize the difference between the template image and the 

new target image. The tracker supports three kinds of transforms for matching the 

template image to the subsequent image: pure translation, scale, and affine transforms. 

The pure translation matching uses two parameters, t
x 

and t
y
, that shifts the feature in x 

and y coordinates to find the matching location of the feature in the new image. The scale 

transform uses a scale parameter in addition to the two translation parameters. The scale 

parameter resizes the feature template image window for matching. The affine transform 

uses 6 parameters to match: 4 deformation parameters in addition to 2 translation 

parameters. The four deformation parameters are the elements of a 2×2 affine 

deformation matrix that allows scaling, rotation, stretch, and shearing of the 2D planar 

template image window, which assumes a planar feature. Further, matching is done by 

pyramidal feature matching. First, feature matching starts with low-resolution coarse 

matching at the highest pyramid level. Then the tracker uses lower pyramid levels to 

refine the target location, and finishes with full-resolution fine matching at pyramid level 

0. The pyramidal feature matcher uses the same template window size for all pyramid 
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levels, where increasing the pyramid level by one reduces the image size by half, 

doubling the effective window size. Two issues were observed by using the affine 

tracker. The first issue is that the affine matching had a very limited matching range. The 

second issue is that the affine tracker does iterative search.  

B. Normalized Cross-Correlation  

After the shortcomings of the affine tracker were discovered a new visual tracker 

was developed. The iterative tracker was replaced by a normalized cross-correlation 

matcher (NCC) matcher. The NCC matcher does a brute-force search, increasing the 

search range virtually to the entire image area.  

C. Tracking with Straightforward Rover Motions  

Initial results indicated that iterative scale/affine matching was still not as reliable 

as brute-force NCC, although scale/affine matching helped improve accuracy when it 

tracked. It was thus desirable to consider an alternate approach to scale/affine matching to 

take into account the target image size change as the rover gets closer to the target. The 

mast camera pointing computes the estimated target position relative to the rover after 

each rover move using point stereo triangulation and a rover pose estimator. Thus, the 

estimated target distance can be easily computed. Since the target image size in the 

template window is inversely proportional to the target distance from the camera based 

on perspective projection imaging geometry, the template image magnification can be 

made accordingly before applying NCC. So, in this configuration the template image 

magnification was preceded by NCC, while the iterative scale/affine matcher was 

removed.  
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D. Tracking with Sideways Circular Rover Motions 

The rover motion during the visual target tracking will not be always straight. It 

will sometimes be necessary to avoid obstacles by autonomous navigation with hazard 

avoidance. Therefore, it is necessary to examine the tracking performance with non-

straightforward rover motions.  

E. Tracking with Turn-in-Place Rover Motions 

Since the goal of the autonomous navigator is specified by the goal position only, 

the heading of the rover is usually not aligned with the target when the rover reaches the 

goal. Therefore, a turn-in-place rover motion is needed to face the rover towards the 

target. In order to determine the appropriate step size for the turn-in-place motion, 

tracking was performed with every 5 degree of turn-in-place motion. As the rover turns, 

the mast camera turns in the opposite direction to point to the target.  
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CHAPTER 3 

 

 

PROBLEM STATEMENT 

 

Methods have been implemented to monitor tracking error and ensure a safe, 

accurate arrival at the intended science target. The methods are situation independent 

relying only on the confidence error of the target recognition algorithm. A single 

calibrated camera has been used for position estimation.  

Targets vary in terms of texture, contrast, sharpness of edge, relative speed, and 

size. Various feature extractors exhibit tradeoffs in terms of sensitivity and processing 

requirements as related to the characteristics of candidate target classes. An analysis of 

feature extractors based on the horizontal and vertical profile has been performed and the 

best feature extractor has been selected for optimal representation in the neural network. 

The best feature extractor has been selected based on the number of frames traveled for 

the number of neurons trained.  

Feedback from the network can offer an indication of tracking confidence which 

will be useful in determining if the estimated position is correct. An attempt has been 

done to look at the various confidence factors to determine if the position estimated is 

correct. 
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A key comparison that has been made is the distance traveled computed from 

vision to the distance traveled computed from the wheel encoders. With this comparison 

an observation of slipping has been made.  

The following hypothesis has been proposed for the evaluation of the confidence 

factor indicators.  

1. The confidence of the network response is related to the number of hits (or neuron 

firings) of the feature extractor given by the network for a particular target in the 

frame.   

2. When two targets are selected, relating the camera roll with the difference in the 

vertical positions of the targets can be used to indicate regions where the target is 

lost. Rover pitch and roll was indicated by an accelerometer. 

3. Monitoring the change in the vertical position of the two tracked targets provides 

additional feedback on tracking confidence. A significant error reveals error in 

tracking and can be used to pause forward motion.  
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CHAPTER 4 

 

 

EXPERIMENTAL METHODOLOGY 

 

The data presented has been collected using an autonomous rover [23].  The four 

wheeled rover was based on an off-the-shelf platform that had been previously modified 

at JPL to allow for computerized data collection and remote driving.  The present version 

is equipped with an onboard laptop with wireless link, single forward-facing camera 

(CMOS 320 x 240 pixels), a horizontal two-axis accelerometer, wheel encoders, and 

other sensors.   

 

Figure 4: A blow-up view of the vehicle hardware in its current configuration [23].
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Figure 5: Assembled configuration with USB webcam and laptop computer [23]. 

 

For the JPL Mars yard, which is an environment designed for testing rovers in 

Mars-like conditions, the natural rocks showed sufficient contrast to be tracked 

throughout a traverse. When a rock (target) was selected, driving toward that rock was 

done by simply tracking the rock or a single point on that rock.  Optionally, multiple 

points were selected on a rock or from a group of rocks and driving can be toward a 

weighted center or other geometrically relevant location.  Another advantage of tracking 

multiple targets is the potential to identify the accuracy from information intrinsic to the 

scene. 

Here, two classifications of data have been collected using the rover. Video 

recorded while driving manually, and video recorded under autonomous control.  Manual 

driving is useful for initial tests of the visual tracking methods.  In addition, manually 
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collected video allows testing of methods for calculating tracking confidence for the 

autonomous runs.  The manually collected video is often more difficult to process since 

tracking is not done in-the-loop.  Decisions to turn or guide the rover are made by the 

driver which has external information to the rover video.  Tests of the algorithm on this 

data may not be sufficient to prove the capability for autonomous driving, but it often 

identifies areas where further improvement is possible. Furthermore, the auxiliary data 

collected from the wheel encoders, accelerometers, and other sensors provides valuable 

feedback for comparison to dead reckoning position estimation.  Autonomous driving 

differs from manual in that the steering is controlled by the result of tracking on the 

frame.  Thus the target is less likely to move out of the frame.  Autonomous driving for 

collection of this data set is described further elsewhere [23].  Test conditions included 

slipping while driving a slope and more simple approaches on rough sandy terrain.  

Target Rock

t = 0 t = 73 s t = 149 s
Figure 6: Example video from autonomous driving.  The target rock remains in the field of view throughout the 

sequence. 
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Graph 1: A typical run from automatic steering is compared to a typical pattern in similar terrain calculated from post 

processing on frames recorded during manual steering.  Automatic steering required lower magnitude corrections.  

Manual runs were generally shorter than the automatic runs as they were primarily used for testing system 

configurations.  The target position is at 0 seconds. 

 

During live tracking of one or more features, the operator may enable a 

proportional steering controller which can be used for a vision-guided approach to a 

waypoint.  It attempts to aim the vehicle towards the centroid of the tracked feature set 

using a first-order approximation for the vehicle’s angular deviation from desired course.  

The steering output angle, α, is given by the proportional relation [23]. 
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where xi,t-1 is the horizontal displacement of the i-th tracked feature from the center of the 

most current video frame; k1 is the proportional gain of the controller; k2 is the angle 

subtended by a single pixel in the video camera’s field of view.  The “true” value of k2 

deviates from the constant near the edges of the video frame, due to higher-order camera 

lens distortion that can be approximated [24].  
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One method of generating localization data from visual information is the 

tracking of two distinct features whose initial location in space relative to the vehicle is 

known [23].  The MER rovers can acquire such information from a 3-dimensional terrain 

map generated by image correlation from their stereo mast cameras [25].  Although the 

vehicle described here has no such capability, it’s operated under the premise that high-

speed visual distance estimation could be used on hardware with similar still-image 

stereo cameras to those on MER.  Thus, a method is presented for monocular distance 

estimation given that the initial location of at least two suitable features is known relative 

to the vehicle, as shown in Figure 7. 

 

             Figure 7: Graphical representation of the geometry involved in estimating D* based on Feature 1 and Feature 2 

 

For calculations, the same first-order approximation for the angle subtended by a 

single pixel is used.  Given the apparent pixel distance, (x2–x1) between the two tracked 

features, the initial angle, β, which separates them, can be found by using [23]: 

)( 122 xxk −=β  

 The waypoint of the vehicle is defined by the centroid of the two features. 

Knowing β and the initial distance, D, along a straight path to the waypoint, the linear 

distance, A, which separates them can be approximated by 

    )][tan(βDA =  
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 Finally, distance D
*
 along a straight-line path to the waypoint can be 

approximated as: 

    
)tan( *

*

β

A
D =  

For small β, tan(β) ~ β and D* becomes: 

     
12 xx

C

−
 

Where, C = A/K2 and scales with target size.  

D* will provide an adequate approximation for the linear distance remaining to 

the waypoint, with the caveat that δ << β and ε << A both must hold [23].  Given that the 

vehicle platform has a forward-facing camera with a field of view less than 30 degrees, 

and is actively steering towards the waypoint during operation, it is likely that one feature 

will be lost from the field of view and tracking will fail before this approximation breaks 

down. 

The tracking procedure begins by loading the images needed for tracking.  Then 

an existing tracker is loaded for automatic target recognition, or a new one created by 

specifying the coordinates in the image to commence training.  The tracker has three 

components:  the target, the associated neural network, and the tracking policy.  For the 

target component, the coordinates for the region of interest and the region of search were 

specified along with the distance for automatic counter examples.  For the neural network 

the configurable values have been automated such that no values must be set.  The 

tracking policy contains fields for automatic learning.  For example, the thresholds for 

hits above and below which the network will automatically learn.  The result for the 

number of hits has been discussed in the results and discussions section. Also, the user 
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specifies the reaction to a lost target such as increasing the search window, termination, 

or moving back.  After initial set-up, a target was selected for tracking.  Targets can be a 

single region associated with a coordinate, or multiple regions depending on the interest 

of search.  For off-line studies, once the target has been selected, the frames advance.  For 

real-time work, the rover was commanded to go to the target after selection.  In case of a 

traverse to a location which is over the horizon or the case of a lost target, an automatic 

feature extractor can be used to search the scene for acceptable targets. Each feature that 

is monitored by the tracker corresponds initially to a single neuron in our neural network. 

However, as the rover moves towards the selected target(s), the scales and orientations of 

the tracked features may change significantly. To cope with this, the neural network is 

capable of learning the new characteristics of its tracked features by adding new neurons. 

Once the rover is sufficiently close to the original target rock (~ one meter), the approach 

run is considered a success. 

Once tracking is complete an output file is saved containing the frame number, 

the x position, the y position, number of hits, and influence field parameters for all the 

trackers.  For example, two point tracking has coordinates such that the x difference (dX), 

y difference (dY), and average number of hits.  The difference, dX is used to calculate 

distance from the target.   
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Figure 8: A frame from the sequence tracking the target rock during approach in JPL Mars Yard. The 

difference between the two rock edges noted by the center of square gives dX. 

 

Feature extractors will be considered for the role of supplying additional 

information to the neural network tracker. The key idea behind feature extractors is 

simple. We want to store only small collections of data about an image. Homogenous 

zones contain little information, and more important, any zone from a homogenous 

region looks exactly the same as any other, giving poor localization. Many extractors 

look at places where there is a high gradient. Different kinds of feature extractors based 

on the horizontal and vertical profile have been analyzed. The vertical profile is a 

relevant feature to characterize patterns oriented vertically where as the horizontal profile 

is a relevant feature to characterize patterns oriented horizontally.   

The different kinds of feature extractors that have been analyzed are named HV, 

HVMean, and HVMeanGradient. These feature extractors are based on the horizontal (H) 

and vertical (V) profile. In the HV feature extractor the horizontal and vertical profiles 

are concatenated and stored in the same neural domain. In the HVMean feature extractor 
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the horizontal and vertical profiles are range-stretched from 0-100 and their profiles are 

concatenated and stored in the same neural domain. In the HVMeanGradient feature 

extractor the horizontal and vertical profiles are first range-stretched from 0-100, then the 

inter row gradient takes place of the horizontal profile while the inter column gradient 

takes place of the vertical profile. These horizontal and vertical profiles are then 

concatenated and stored in the same neural domain. An example of these feature 

extractors is given in the appendix. Each of the video sequence has been run using these 

feature extractors. The results and the analysis of the feature extractors on the video 

sequences have been discussed in the results.  

Determining accuracy of the tracking measurements requires truth data for the 

coordinates of the rover.  For flat hard surfaces, the wheel encoders provide reasonable 

truth.  Traverses in the lab were used for this purpose to calibrate the vision system and 

characterize the tracking confidence.  Video external to the rover was also recorded to aid 

in measuring distances traveled.   

A key comparison is the distance traveled computed from vision to the distance 

traveled computed from the wheel encoders.  With this comparison the observation of 

slipping was most pronounced.  Runs on hard surfaces were used to calibrate the 

encoders and the visual system. Comparisons of these distance measurement values from 

both the encoders and the video are given in the results. 

Feedback from the network offers an indication of tracking confidence useful in 

determining if the estimated position is correct.  Principally, the confidence of the 

network response is related to the number of hits (or neuron firings) given by the network 

for a particular target in the frame.  This value is reported in the results for comparison to 
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position error.  This parameter has been investigated for error estimation.  Lastly, 

measurements of tracking error can be taken from estimations of the rotation of an object 

with respect to the roll of the rover.  Rover pitch and roll was indicated by an 

accelerometer. 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

 The tests were conducted on four different days on the Mars Yard Runs giving a 

total of ten runs for performing the offline tests on the feature extractors. The results for 

each of these Mars Yard Runs on the feature extractors are as follows. For the first run 

traversed on the July 26
th

, there were a total of 725 frames for the run. The HV feature 

extractor was able to successfully traverse till the end of the run. In this run the target was 

lost once at frame number 111 and it required a total of 6 neurons for this run. The 

HVMean feature extractor was able to traverse till the end with one training at frame 

number 111 when the target was lost and it required a total of 3 neurons for this run. The 

HVMeanGradient lost the target three times and it required a total of 12 neurons to 

complete the run. For this run HVMean proved a better feature extractor (See table 1).  

 There were two runs traversed on the Aug 24
th

, a total of 264 frames were 

covered on this run. For the HV feature extractor the target was lost on a total of 14 

frames, the first being on 112. It required a total of 28 neurons to complete the run. The 

HVMean lost the target on 12 frames, the first being on 112 and it needed 12 neurons to 

complete the run. For the HVMeanGradient the target was lost on 13 frames the first 

being on 112 and it needed 16 neurons to complete the run. For this run HVMean proved 

a better feature extractor. The detail on the second run is given in See table 1.  
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 There were two more runs traversed on the Aug 25
th

. The first run had a total of 

440 frames covered. For the HV feature extractor the target was lost on a total of 12 

frames, the first being on 134. It required a total of 80 neurons to complete the run. The 

HVMean lost the target on only 2 frames, the first being on 166 and it needed 24 neurons 

to complete the run. For the HVMeanGradient the target was lost on 7 frames the first 

being on 153 and it needed 53 neurons to complete the run. For this run HVMean proved 

a much better feature extractor compared to the other two (See table 1).  

 For the second run on the same day, a similar kind of observation was made. The 

run had a total of 498 frames. The HV feature extractor lost the target on 24 frames and it 

needed a total of 90 neurons to complete the run. It lost the target initially on frame 111. 

The HVMean lost the target on 8 frames and it needed a total of 42 neurons to complete 

the run. It lost the target initially on frame 152. The HVMeanGradient completed the run 

by requiring 75 neurons and by losing the target on 19 frames. It lost the target initially 

on frame 126. The HVMean performed much better compared to the other two.  

There were five runs traversed on the September 27
th

. On the first run a total of 

900 frames were covered. For the HV feature extractor the target was lost on a total of 5 

frames. It required a total of 52 neurons to complete the run. The HVMean lost the target 

on 4 frames and it needed 12 neurons to complete the run. For the HVMeanGradient the 

target was lost on 7 frames and it needed 20 neurons to complete the run. The target was 

first lost on frame 241 for all the three feature extractors. The details of the rest of the 

runs are given in table 1.  
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From all the above runs it was observed that in some cases all the three feature 

extractors performed similar with HVMean having a slightly better performance than the 

other two. In other runs it was clearly observed that the HVMean performed much better 

than the other feature extractors. So it can be concluded that the HVMean feature 

extractor has a better performance compared to the other feature extractors. The summary 

of the above runs including the total number of frames covered, the number of times the 

target was lost, the number of neurons that were trained for reaching the target are 

summarized in the table given below. The chart below demonstrates the summary given 

in the table.  
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Graph: Graph demonstrating the feature extractors on various runs.  The Y axis represents the 

number of times the target was lost. The X axis indicates the day and the name of the run. It can be 

seen that the HVMean performed better than the other feature extractors. 
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Table 1: Summary of the feature extractors on Mars Yard Runs. 
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A key comparison that has been made is the distance traveled computed from 

vision to the distance traveled computed from the wheel encoders. With this comparison 

an observation of slipping can be made. The following figure shows the rover 

approaching a target on the sandy slope surface.  

 

Figure 9: Video frames of rover approaching a waypoint on a sandy surface. 

 

 

 

The following graph shows the tracking results from traversing on the 

hard surface. It can be observed that the encoders compare well with the tracking 

and there is no slipping during the run.  
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Graph 2: The Graph of tracking results from traversing a hard surface.  The encoders compare well with 

tracking. 

 

 

 The following graphs illustrate the slipping evidence on the Mars Yard Runs 

which had a sandy sloppy surface. 
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Graph 3: Comparison of distance traveled by tracking and wheel encoders on the Aug 24 Mars Yard Run 3.  The 

encoders show evidence of slipping contributing to position estimation error. 

 

Evidence of slippage 

can be clearly seen 
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Graph 4: Comparison of distance traveled by tracking and wheel encoders on the Aug 24 Mars Yard Run1.  The 

encoders show evidence of slipping contributing to position estimation error. 

 

 It can be clearly seen from the above graphs that the there is a difference in the 

distance traveled computed using the wheel encoders and the distance computed from 

tracking. So the rover can successfully traverse a target even in cases where there is a 

slope.  

Accuracy of an individual tracked point is determined by the strength of the 

response from the network.  A strong response results from multiple neurons recognizing 

the target.  A weak response results from only a few recognitions of the target.  Typically 

strong responses involve more than 10 recognitions and weak responses less than 3.  For 

the range between 3 and 10, new neurons can be automatically generated to increase the 

strength of the network response.  For example, due to the presence of another vehicle 

Evidence of slippage 

can be clearly seen 
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traversing the scene during one of the approaches, a target was temporarily modified and 

the network response dropped (less hits).  This leads to a temporary error in the position 

estimation of target. The network subsequently recovered the target and the rover was 

able to continue its traverse to the science target.  

   

Figure 10: Example of tracking a single point on a rock in the JPL Mars Yard.  This data was collected 

using manual driving.  Note how the algorithm looses and regains the target when it temporarily goes out of 

the field-of-view 
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Graph 5: Plot of an example traverse showing a drop in network response at the target from a second 

vehicle in the scene.  dX is the horizontal difference between two points tracked on the rock.  The #Hits 

variable shows the network response. 
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Graph 6: Plot of an example traverse on a hard surface showing the number of hits as the rover 

reached its target destination.  
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Graph 7: Plot of an example traverse on a Aug 24
th

 Mars Yard Run 3 showing the number of hits 

as the rover reached its target destination. In the graph one can see that the number of hits on some 

frames is very less. These points indicate the frames where the target was lost. 

 

 There have been some cases where it has been observed that the neuron strength 

was high on a frame but the target selected was changed to a different target. The 

following example shows this case in which the target has been changed during tracking.  
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Figure 11: Example of tracking a single point on successive frames on a rock in the JPL Mars Yard. The 

target changes in the second image but the number of hits still remains high. 

It can be concluded that in most of the cases the confidence of the network 

response is related to the number of hits given by the network for a particular target but 

there also exists some cases where the target has been changed but the number of hits has 

been high. So the confidence of the network response is not related to the number of hits 

(or neuron firings) given by the network for a particular target in the frame.   

When two targets are selected, for example, on each end of a target rock, their 

difference in vertical position can be used to relate it with the camera (rover) roll to 

indicate regions where the target was lost.  As shown in the graph 10, the dY value is 

proportional to the roll of the camera as measured by the accelerometer.   
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Graph 8: An example of the Y difference for a particular Mars Yard Run. 

 

 

 

Graph 9: The graph showing the Roll of the rover for the same Mars Yard Run. 
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Graph 10: An example of the difference in vertical position of the tracked points correlating with 

the roll of the rover recorded by the accelerometer.  The significant deviation highlighted by the 

circle indicates low confidence in the tracked locations.  Photo in the inset shows the assembled 

rover in the Mars yard.  The roll direction is indicated. 

 

Due to the lack of enough data on the camera roll the hypothesis stating that when 

two targets are selected, the camera roll can be related to the difference in the vertical 

positions can not be verified indicating regions where the target is lost can not be 

verified.  

 

For the rover application, monitoring the change in the vertical position of two 

tracked targets, dY, provides additional feedback on tracking confidence.  A significant 

error in dY reveals error in tracking and can be used to pause forward motion and a signal 

to stop learning to move back for reacquisition of the target. By plotting the slope of Y 

difference one can see the frames where the target was lost.  
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Graph 11: The graph showing the Y difference for a Aug24 Mars Yard Run 1.  

   

 

Graph 12: The graph showing the slope in the Y difference for the same Mars Yard Runs. The red lines 

indicate frames where the target was lost. 
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Graph 13: The graph showing the Y difference for the Aug 25 Mars Yard Run 2 

The graph below shows the graph obtained by plotting the slope in Y 

difference against the frames.  

 

Graph 14: The graph showing the slope in the Y difference for the same Mars Yard Run 

given above.  The red circles and lines indicate the frames where the target was lost. 
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 From the graphs, it can be observed that whenever there was a change in the 

target it was identified by a change in the Y difference. Hence it can be concluded that, 

monitoring the change in the vertical position of the two tracked targets can provide 

additional feedback on tracking confidence. 
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CHAPTER 6 

 

 

SUMMARY 

 

An attempt has been made to look at a radial basis neural network algorithm in 

combination with feature extractors for visual tracking. An analysis of the various feature 

extractors has been provided. It has been concluded that the HVMean feature extractor 

has a better performance compared to the other feature extractors. A comparison of the 

distance traveled computed from vision to the distance traveled computed from wheel 

encoders has been provided. With this comparison an observation of slipping has been 

made. The hypothesis stating that the confidence of the network response is related to the 

number of hits has been proved to not always be incorrect. The second hypothesis stating 

that the camera roll can be related to the difference in vertical position indicating regions 

of lost target could not be verified due to the lack of sufficient data. The final hypothesis 

which is the change in the vertical position of two tracked targets to provide an additional 

feedback on tracking confidence was proved correct.  
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CHAPTER 7 

 

FUTURE WORK 

  

 A new rover is in development that offers more stability and control. The 

algorithms should be optimized for higher frame rates.  The position estimation given by 

the vision system can be improved by replacing the current camera with a higher 

resolution camera. A further study can be done on the distance estimation accuracy by 

getting the accurate ground truth values. For this, an option would be including the GPS 

system. Automatic target and feature selection is envisioned for replacement of features 

that have gone out of the camera’s field of view.  
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APPENDIX  

 

 Example of HV 
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Example of HVMean 
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Example of HVMeanGradient 
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