
DYNAMIC PROTOCOL SELECTION FOR

COMMUNICATION SYSTEMS

By

RAJASEKARAN KANDASWAMI

Bachelor of Engineering in Computer Science

Annamalai University

Chidambaram, India

2001

Submitted to the faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

May 2006

 ii

DYNAMIC PROTOCOL SELECTION FOR

COMMUNICATION SYSTEMS

 Thesis Approved:

Dr. JOHNSON P THOMAS

Thesis Advisor

Dr. DEBAO CHEN

Dr. VENKATESH SARANGAN

Dr. GORDON EMSLIE

 Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my advisor, Dr. Johnson Thomas,

whose directions, and guidance helped in completion of this thesis. I respectfully thank

Dr. Debao Chen and Dr. Venkatesh Sarangan for being in my thesis committee and for

their suggestions. Also I would like to extend my gratitude to Dr. George Hedrick and all

other computer science department faculty & staff for providing the facilities needed for

the research.

 Also warmest thanks must go to my parents, Kandaswami and Sakunthala,

and members of my family whose love, support, and encouragement allowed me to write

this thesis.

 iv

TABLE OF CONTENTS

 Chapter Page

I INTRODUCTION………….……….……………………………………...1

 II LITERATURE REVIEW…………………………………..………………4

2.1 Definitions………………………………………………………………..4

 2.1.1 Transport Layer……………………………………………….…...4

 2.2 Previous Research………………………………………………………..6

 2.2.1 Da CaPo Project……………………………………………………6

 2.2.2 Universal Transport System………………………………………..8

 2.2.3 ADAPTIVE…………………………….......................……………9

III METHODOLOGY………………………………………………………...11

3.1 Approach…………… ………….…………………………..……….….11

 3.2 Construction of the framework…….…….…………………..…………12

 3.2.1 Flexibility…………………….……….………………..…………12

 3.2.2. System Compatibility………..………….……………..…………13

 3.2.3. Adaptation…………………..…………………………..………. 13

 3.3 Transport Layer protocols in the stack….…….……………..……….…13

 3.3.1 TCP……………………………………………………………….13

 3.3.2 UDP……………………………..………..…………………….....14

 3.3.3 SCTP………………………….…….......................………….…..14

 3.4 Added Security…………..…………………………………………..….15

 3.5 Measuring QoS parameters and getting user preference………………..16

 3.6 Analytical Hierarchy Process…………………………...........................16

IV IMPLEMENTATION..21

4.1 Operating System……………………………………………………….21

 4.2 Measurement of Bandwidth, Jitter and Delay…………....……………..21

 4.3 Security using DES……………………………………............…..…....22

 4.4 Adaptation using Saaty’s Analytical Hierarchy Process…………..........23

 4.4.1 AHP and Feedback from the network………….…………………24

 4.4.2 Selection of protocol………………………………..…………….30

 4.5 System Architecture……………………………………………….……31

 v

V RESULTS………………..34

5.1 File Transfer in Fixed Network Conditions…………………………..... 34

5.2 Packet Loss………………….…………………………………..………40

 5.3 File Transfer in Random Network Conditions……………….....………42

 5.4 Overhead in using the system ………………………...…………..…….45

 5.5 Overhead caused by Iperf tool…………………….. .…..……………....47

VI CONCLUSION……………………….…….…………..…………………48

 REFERENCES...49

 vi

LIST OF FIGURES

Figure Page

1. Approach………………………………………………….…………………..12

2. Analytical Hierarchy Process ………………………………………..……….17

3. System Architecture…………………………………………………………...31

4. Throughput Comparison for Text File……………………………….………. 36

5. Throughput Comparison for Audio File………………………………..……. 37

6. Audio File Transfer – High Jitter…………………………………………..….38

7. Throughput Comparison for Video File………………………………………39

8. Video File Transfer – High Jitter……………………….....………….……….40

9. Packet Loss-Video File Transfer……………………………………………...41

10. Packet Loss-Audio File Transfer…………………..………………….……....42

11. Random n/w Conditions- Text File Transfer…………………..……………...43

12. Random n/w Conditions- Audio File Transfer…………………..…………....44

13. Random n/w Conditions- Video File Transfer…………………….……….....45

14. Security overhead…………………………………………..………………....46

15. Overhead Graph for running Iperf………………………….……….………...47

 vii

LIST OF TABLES

 Table Page

1. TCP/IP protocol suite …………………………………………………..05

2. Setting up the Hierarchy…………………………………………………19

3. Rating Vs Importance Level …………………….……………………...23

4. High, Medium, and Low Values for measured QoS ……………...……24

5. Possible Network Conditions…………………………………………...34

 1

CHAPTER I

INTRODUCTION

Due to the rapid growth and development of distributed network applications,

efficiency in data communication between communicating systems is important for

determining the performance of the distributed applications (client/server). The three

levels of end to end QoS service for a particular network application considering the

delay, loss, and bandwidth are Best Effort Service, Differentiated Service and Guaranteed

Service.

 Traditional internet offers “best effort” delivery model which is an end to

end delivery service. This model sees that data is delivered to the end system as quickly

as possible without considering the Quality of Service (QoS) parameters such as

bandwidth, jitter, and latency. Quality of Service (QoS) refers to the capability of a

network to provide better experience a user or application may receive on selected

network traffic over various technologies and techniques.

 Quality of Service (QoS) requirements of distributed applications depends

on three aspects [1] :(1)application class like isochronous, burst, low delay, (2) type of

media like text, audio, video and (3) application and user specific requirements. For

network applications to function efficiently it requires minimum amount of QoS from the

under lying network in terms of throughput, delay, packet loss and jitter. Protocols such

 2

as TCP which provide reliable data delivery can be used for applications such as FTP and

Telnet, but are not ideal for application requiring timeliness. An application using UDP

transport protocol keeps sending packets when congestion is encountered in the network

(no congestion control in UDP). This can starve of the allocated bandwidth of an

application using TCP transport protocol in the network. Guarantees in packet delivery

helps only when you don’t have enough bandwidth. Mechanisms such as resource

reservation and scheduling are proposed to solve this problem, but they have their own

drawbacks. One such drawback is that reservation of resources is made with the initial

availability when the connection is made and it doesn’t take into consideration the

changes in resource availability during the course of data transmission. Generally in

many network applications, when data transmission is sustained for a long duration, this

can cause undesired results due to changing network conditions.

 To solve this problem we propose a flexible mechanism by

constructing multiple protocol stacks by which the application can select end system

protocols taking into consideration the user preference and the QoS parameters provided

by the underlying network. The protocol stack comprises of different transport layer

protocols with differing characteristics. The appropriate protocol for the given current

conditions is selected from the stack based on user preference and QoS provided by the

network during data communication. The QoS parameters that can be measured and

monitored from the underlying network are bandwidth, delay, jitter, loss. The proposed

approach for protocol adaptation is based on the Analytic Hierarchical Approach.

 3

 In chapter II we consider the different methods used by previous

researchers. An overview of our system and the proposed approach used is given in

chapter III. The implementation of the approach and the system architecture is explained

in chapter IV. Chapter V discusses results obtained.

 4

CHAPTER II

LITERATURE REVIEW

2.1 DEFINITIONS

2.1.1. TRANSPORT LAYER

 The fourth layer of the seven layer OSI model is the transport layer which

makes client/server applications a reality. Using the service provided by the network

layer, the transport layer provides quality of service to the session entity. Transport

protocols in this layer such as Transmission Control Protocol/ Internet Protocol (TCP/IP),

Open Systems Interconnection (OSI), Novell’s IPX/SPX provide mechanisms for moving

packets between the client/server. This layer not only ensures data transfer between end

users but also responds to service requests from the session layer and issues service

requests to the network layer. The type of service provided by this layer is determined

during the connection establishment. Message delivery is a type of service which can be

in the order by which it is sent or with no guarantee about the order in which it is

delivered. The data is divided into smaller packets and dispatched by the transport layer.

At the receiving end it also makes sure that the pieces arrive correctly and are

reassembled according to the sequence number.

IP addressing is used by the client and the server since the protocols used in our

dynamic stack run over the IP protocol. Since it is a source to destination layer it uses the

message headers and control messages to communicate between the host machine and its

 5

peers. The transport header is used to differentiate between which message belongs to

which connection as multiple connections arrive and exit the host. Along with the IP

header the TCP/IP protocol suite requires the transport protocol to be listed in the header

along with the source and the destination address. Port numbers help in the identification

of the application to the TCP/IP protocol.

 Numbers in the range of 1 to1023 are called as well known port numbers,

which is used by FTP,HTTP,SMTP,TELNET etc., . Ephemeral port numbers in the

range 1024 to 5000 is used by the client instead of well known ports for making a

connection with the server.IP address, port number, transport protocol are the three

components that form the socket in the TCP/IP suite. Client-Server protocols such as

Sockets, Advanced Program-to-Program Communication (APCC), Transport Level

Interface (TLI), Sequenced Packet Exchange (SPX), RPC and NetBIOS provides

mechanisms by which client request information and services from the server and the

server responds to that request.

Table 1: TCP/IP protocol suite

Protocols Layer

FTP, HTTP, HTTPS, IMAP, IRC, NTP,

POP3, SIP, SMTP, SNMP, SSH,

Telnet, Bit Torrent, Websphere MQ, ...

Application

DCCP, SCTP, TCP, RTP, UDP, IL,

RUDP, ...

Transport

IPv4, IPv6, ... Network

Ethernet, Wi-Fi, Token ring, FDDI,

PPP, ...

Data link

RS-232, EIA-422, RS-449, EIA-485,

10BASE2, 10BASE-T, ...

Physical

 6

2.2 PREVIOUS RESEARCH

 Various works have been carried in the development of configurable protocols

by identifying and combining functionalities of different communication protocols that

are tailored to the needs of the application.

2.2.1 Da CaPo PROJECT

 The Da CaPo (Dynamic Configuration of Protocols) project [2, 3] is aimed

at overcoming communication system bottlenecks by configuring light weight protocols.

The Da CaPo system is based on a three layer model that splits communication systems

into the layers Application layer (A), Communication Layer (C), and Transport Layer

(T). Developing protocols in Da CaPo is done through hybrid methods. Based on the

available transport layer service and application requirement a configuration process

selects the most appropriate functionality for the communication service. Layer C is

composed of protocol functions instead of sub layers. Protocol tasks like error detection,

acknowledgment, flow control, decryption and encryption are embedded in each of the

protocol function. Here different protocol configurations support different Quality of

Service requirements. Network applications give their service requirements within a

service request which is then passed on to the C layer. Based on the underlying network

services and amount of available resources Da CaPo configures on the fly communication

layer protocols. These protocols are optimally configured to adapt according to the

application requirements. In the communication layer, four active dependent entities are

performing their respective tasks such as:

 7

• QoS negotiation and appropriate protocol configuration is identified using a

search based heuristic, Configuration and Resource Allocation (CoRA). Finding

appropriate configurations under real time constraints is important. This is

achieved by dividing the modules accordingly and having a measure for the

resource usage. The modules and resource usage are combined in a structured

search enabling CoRA.

• Assuring end-end systems use the same protocol for communication layer

connection, negotiating with end system for common configuration, handling

errors. Coordinating reconfiguration of protocols if application requirements are

not satisfied is carried out by the connection manager.

• Linking and module initialization, packet forwarding, synchronization, avoiding

unnecessary copy operation, reducing the context switches to low level are done

by the runtime environment.

• The monitoring component, based on the application requirement triggers the

connection manager to aid in protocol reconfiguration. It also ensures the

availability of resources.

The Da CaPo project does not make assumptions about underlying hardware and

also does not assume that the transport layer (T layer) maps directly to the network

layer. The T layer software such as Ethernet, protocol stacks such as IP provides

services which helps in the configuration of the C layer. Thus, decreasing protocol

complexity by configuring appropriate protocols distinctly increases protocol

performance.

 8

2.2.2 UNIVERSAL TRANSPORT SYSTEM

 The Universal Transport System (UTS) [4] demonstrates the merits of using

adaptable protocol for high speed, multimedia, mobile networks where the QoS and

application requirement varies and the less overhead produced by its implementation.

Here the end-to-end protocols are fragmented into smaller protocol functions. By

combining these smaller protocol functions complex protocols are developed. A set of

protocol functions is developed by mapping various application classes. The adaptability

in terms of selecting various protocol functions during the data transfer is imparted

changing TCP, which uses dynamic linking (DLD) to make the protocol very flexible.

 A generic adaptive framework which supports protocol implementation concepts

such as Integrated Level Planning (ILP) and Application Level Framing (ALF) is given

that uses the atomic functions to implement general purpose protocol. ALF is a

mechanism for improving protocol functionality which allows packets that are out of

order to be processed. Hence this makes data transfer meaningful to the application.

During the connection initialization/establishing time and operation an application

specifies its requirements to a functionality decider. A profile, namely a set of appropriate

protocols is developed from this requirement specification. Based on the profile needed,

functions are pulled from the library. A run time protocol is developed by the synthesis

engine while also maintaining the optimizations such as ILP. Connection establishment is

a mode defined for the synthesis engine through which a connection is established using

protocol functions familiar to the end systems. Later it switches to the adaptive mode, by

which protocol adaptation is done based on user requirements, end system and Quality of

Service provided by the network.

 9

 The functionalities provided by the UTS protocol server are

TCP/UDP/IP with the BSD socket interface, ARP. The application communicates with

the protocol server with the IPC BSD interface. The main aim of UTS is to show how the

transport layer protocols can be tailored to the user needs and make them to adapt

according to the changing application requirement and network conditions.

2.2.3. ADAPTIVE

 A Dynamically Assembled protocol Transformation, Integration, and Validation

Environment (ADAPTIVE) [5], is developed to support multimedia applications running

on high performance networks. For prototyping, experimentation, and diversity a flexible

transport system design is essential. It has mechanism and policies based on the object

oriented design concepts to automatically specify and synthesize a more flexible,

lightweight, and adaptive transport protocol configuration. ADAPTIVE responds to the

feedback changes in application requirements by supporting run-time adaptive

reconfiguration. The four areas this project aims to solve are [5]

 1. Designing a very simple application interface.

2. Giving a high available throughput to the application.

3. Compatible with a wide variety of underlying networks.

4. Compatible with all the functionality requirements of the multimedia applications.

 10

The design of ADAPTIVE includes three main subsystems that are [5]

1. MANTTS (Map Application and Networks To Transport Systems), helps in

selecting appropriate set of policies and mechanisms in order to meet an

application’s quality-of-service (QoS) requirements and it also communicates with

the end systems for considering the dynamically changing network environment.

2. TKO (Transport Kernel Objects), helps in developing a customized lightweight

transport system session configuration. The session is composed of reusable objects

protocol mechanism library

3. UNITES (UNIform Transport Evaluation Subsystems) helps network traffic

monitoring, metric selection/collection/analysis/presentation, and performance

measurement. The UNITES delivers feedback to the MANTTS and TKO that

assists in evaluation/determining the right time to dynamically change particular

mechanisms in a session.

 The communication requirements of both the application and high-performance

networks are met by tailoring the services of transport systems to meet the requirements

of next generation multimedia applications.

 11

CHAPTER III

METHODOLOGY

3.1 APPROACH

 This thesis presents the construction and implementation of a framework

for adaptable communication systems. The framework contains different transport layer

protocols with differing characteristics in a protocol stack. The appropriate transport

protocol is selected dynamically according to the changes in the application’s QoS

requirements and underlying network conditions during the data communication. This

selection of suitable protocols helps improve performance compared to end-end fixed

protocols.

 12

Figure 1: Approach

3.2 CONSTRUCTION OF THE FRAMEWORK

The framework addresses the following

3.2.1 FLEXIBILITY

The protocol stack consists of different transport layer protocols each with

different characteristics that are needed for the applications. The protocol stack

offers flexibility for expanding/reducing transport layer protocols as needed from

the stack since they are managed at the application level.

 AHP
Recommended

Protocol

Server/

Reconfiguration

Mechanism

Client
 Network

User

preference

Security No Security

 Protocol Stack

 TCP UDP SCTP

QoS

Feedback

 13

3.2.2. SYSTEM COMPATIBILITY

For inter process communication (IPC), industry standard BSD socket library with bi-

directional data stream is used. This gives the compatibility to port the application code

to UNIX/LINUX operating systems. The transport layer protocols involved in the stack

are TCP, UDP, and SCTP. If security is needed a security layer is added above these

protocols. The management of protocols is done at the user level, whereas they exist at

the kernel level including the SCTP kernel patch. Before starting the framework SCTP

library (lksctp) is added as a kernel module kernel.

3.2.3. ADAPTATION

Based on the user preferences and measured network QoS parameters, the best transport

layer protocol is selected using the Analytical Hierarchy Process. The application need

not involve itself directly in the adaptation issues.

3.3 TRANSPORT LAYER PROTOCOLS IN THE STACK

3.3.1 TCP

Transmission Control Protocol (TCP) is a connection-oriented, reliable-delivery

byte-stream transport layer communication protocol. The unreliable packets provided by

the Internet Protocol are made reliable by using streams between applications in TCP.

The three phases in TCP connections are connection establishment, data transfer and

connection termination. A 3-way handshake and 4-way handshake is used for

establishing a connection and terminating a connection respectively. The ordered delivery

of data is made possible due to the initialization of sequence numbers during connection

establishment. TCP is not suitable for certain applications because it waits for the lost

 14

packet to be retransmitted before getting the previously send packets. For some real-time

applications like streaming multimedia, it is important to receive more data in a timely

fashion rather than get all the data in sequence.

3.3.2 UDP

User Datagram Protocol (UDP) provides a minimal transport service with no

guarantee of message delivery, no connection establishment, no connection state, small

segment header overhead, and unregulated send rate. When the level of service offered

by TCP is not required by the communicating application or when the application uses

the service that is not in TCP (multicast or broadcast delivery) UDP is preferred. As UDP

lacks in reliability, the application using UDP should be able to accept the errors, loss, or

duplication. Here there is no handshaking like TCP between sending and receiving

transport layer entities before sending a segment of data.

3.3.3 SCTP

 Stream Control Transmission Protocol is another IP protocol which

provides reliable stream oriented, in sequence transport of message services with

congestion control. This protocol can be used in application scenarios where reliability

and near real time aspects are important. TCP is byte oriented, where as SCTP deals with

framed messages.

Advantages of SCTP are:

• Multi-homing: In this support either in one or both ends of the association,

multiple IP address is provided. The association is done by one endpoint

providing multiple IP addresses with the combination of SCTP port numbers to

the other endpoint. These addresses are used in sending and receiving SCTP

 15

packets. This will help in recovering from network level failure between hosts or

network cards. In case of TCP only a single point of association exists.

• Head-of-the-line blocking: This happens when retransmission of lost data affects

the timely delivery of other data in unrelated sequences as in the case of TCP byte

stream delivery. In case of SCTP the delivery of data is done within independent

streams in chunks, which takes care of the Head-of-the-line blocking problem.

• Path selection: One IP address from the list is selected as the primary path for

sending the data chunks, whereas during the retransmission of the data another

active path is selected from the pool if available. The SCTP users are notified

about the change in the path and will be asked to use the new path.

• Gives protection against flooding attacks, notifies about lost data chunks or

duplication in date.

3.4 ADDED SECURITY

 In addition to the above protocols in the stack, we added a security layer

above TCP, UDP, and SCTP protocols. This gives a wide option in selecting protocols

based on QoS requirements. Security is provided by means of encrypting at the server

side and decrypting the data at the client side. The Data Encryption Standard (DES) [10]

is used as the security algorithm. Adding security via encryption and decryption during

data transfer is an overhead in terms of processing power.

Data Encryption Standard (DES):

 One of the widely used encryption algorithm in the world is DES. This

algorithm takes fixed length blocks of plain text bits and transforms it into a cipher text of

the same fixed length blocks after some operations. The fixed length block is 64-bit long

 16

and it also uses a 64-bit key. This key is used to perform transformation of plain text to

cipher text and vice versa. In order to do the decryption at the client side, the client

should know the particular key that was used to encrypt in the server side. Though the

key is 64 bits long only 56 bits are used effectively and the remaining 8 bits are used for

checking parity [10].

3.5 MEASURING QoS PARAMETERS AND GETTING USER PREFERENCE

 The underlying network is constantly monitored and measured to check

the changes in the QoS parameters such as bandwidth, jitter, and delay. The level of

reliability (based on file type) and security needed for that particular application is given

by the user. Low reliability, medium reliability, and high reliability is given for file types

video, audio, and text respectively. Based on the file type given by the user, the reliability

factor is decided. The underlying network conditions and user preferred QoS parameters

are given as feedback to the protocol decision making model. Here the Analytical

Hierarchy Process (AHP) is used as our decision making model. Based on the feedback,

the decision making model selects appropriate protocols from the protocol stack.

3.6 ANALYTICAL HIERARCHY PROCESS

 Developed by Thomas Saaty, the Analytic Hierarchy Process (AHP) [6] is a

proven and effective complex decision making process that aids people make best

decision and set priorities among alternatives, when quantitative and qualitative aspects

of a decision needs to considered. The AHP [7] concept has been successfully applied in

finding a solution for real time problems in the field of medicine, sports, computer

science. The decision making can be multiple criteria or multi-attribute decision making.

The alternatives are ranked by developing numerical value to each alternative based on

 17

how good each alternative satisfies the criteria. Let’s assume that n items are taken into

account with the aim of providing judgments. These judgments are made by comparing

each item with respect to all other items based on the relative weight like priority, size,

and importance.

 The steps involved are,

• Design phase:

 This is the first step where setting up the problem as a hierarchy takes place.

The hierarchy consists of goal, criteria, and alternative as layers. The root node is set

as the overall objective of the decision. The branches to the root comprises of the

criteria used in deriving the decision. The lowermost layer in the hierarchy is

alternatives from which the choices are to be made. (n items that is to be compared).

Layer 1

Layer 2:

Criteria

Layer3:

Alternatives

 Figure 2: Analytical Hierarchy Process.

Cr1 Cr2 Cr3

GOAL

Ar1 Ar2 Ar3 Ar4

 18

• Evaluation Phase:

 In the second step on a given hierarchy level, pair-wise comparisons are

made among each of the two items. Comparison between items is done with respect to

their contribution towards the factor from the level immediately on top of them. The pair-

wise comparison is graded using table 1 by raising the questions such as which is more

important for the given factor. The rated number point out the importance of the item and

it helps to differentiate between them. This pair-wise comparison leads to a reciprocal n

X n matrix A, where aii=1 indicates elements are equal and aji =1/a ij indicates it is

reciprocal. The matrix A is completed with relative weights by making comparison and

transitivity of the relative importance between elements. Multiplying the matrix obtained

with the criteria matrix weight w (user preference and network conditions) we get:

 Aw=

11 12 1 1

21 22 2 2

1 2

...

...

. . . .

...

n

n

n n nn n

a a a w

a a a w

a a a w

   
  
  
  
  

   

=

1 / 1 1 / 2 1 / 1

2 / 1 2 / 2 2 / 2

/ 1 / 2 /

...

...

. . . .

...

n

n

n n n n n

w w w w w w w

w w w w w w w

w w w w w w w

   
  
  
  
  

   

=n

1

2

.

n

w

w

w

 
 
 
 
 
 

 so, we have

 Aw=nw, or (A-nI) =0.

 19

Table 2: Rating Vs Importance Level

• Construction of Matrix

 With the M number of alternatives and N number of criteria, a M x N

matrix is constructed in the final step. The element aij in the M x N matrix represents the

relative weight of the i
th

alternative in terms of j
th
 criterion. From the pair-wise

comparison mentioned in the second step, the vector Vi = (a i1, ai2, ... , aiN) is the

eigenvector of the N x N reciprocal matrix [8] for the i
th
 alternative (i =1,2,3…,M).

When the elements in the each vector are added up it comes to one. The AHP can be used

in single- and multidimensional decision making, since they use relative values instead of

actual ones.

RATING LEVEL OF IMPORTANCE

1
Equally Important

2
Equally to moderately more Important

3
Moderately more important

4
Moderately to strongly more important

5
Strongly more important

6
Strongly to very strongly more important

7
Very strongly more important

8
Very strongly to extremely more important

9
Extremely more important

 20

The best alternative, A*, in AHP is calculated using the following expression [8]

1
1

*
N

AHP ij j
M i

i

A max a W=
≥ ≥

=
∑

 The best alternative in our approach is the best transport layer protocol. This

protocol preference is given to the protocol stack and corresponding protocol is selected

for data communication.

 21

CHAPTER IV

IMPLEMENTATION

4.1 OPERATING SYSTEM

 Fedora core 3 (LINUX environment), with a 2.6.9 version of the kernel is used to

develop and implement the code. C language and GNU complier gcc is being used in the

development. We installed the LKSCTP library and the kernel patch for Stream Control

Transfer Protocol (SCTP), whereas for the TCP and UDP protocols the header files

comes bundled in the user libraries. SCTP kernel module is loaded each time after

rebooting using the modprobe SCTP command. The security layer consists of transport

layer protocols with encryption and decryption algorithms over it.

4.2 MEASUREMENT OF BANDWIDTH, JITTER AND DELAY

 Network measurement tools are classified into active tools and passive

tools. The passive tools create very little additional bandwidth to the network, whereas

the active tools measure maximum performance in the network by introducing congestion

[9]. Some active tools are netpref, iperf, ping. In our implementation we used ipref to

determine the maximum bandwidth and jitter available between the end systems. To

measure the bandwidth and jitter, ipref should be run in server mode and client mode

separately on two different machines. The volumes of data sent through the iperf to the

network can be managed by the user. The data flows can be a UDP flow or TCP/IP flow.

In our implementation TCP/IP flows are used to send data for the iperf client. The

 22

 command for running a simple iperf server is: iperf -s -i 2. This is done at the command

prompt after installing iperf. Here s stands for server and i for reporting the result status

every 2 seconds. By default iperf runs for 10 seconds. An increase in the running time of

iperf to 20 seconds can be done by including the option -t in the command: iperf -s i 2 -t

20. The command for running iperf on the client side is: iperf -c ip-address-of-server -i 2

-t 20. The results displayed on the console by running the iperf are transferred to a text

file at the server side. A function checks the bandwidth text file and jitter text file at

regular intervals for changes in the available bandwidth and jitter respectively. In order to

measure the network delay iperf is made to run for extended periods of time (950

seconds) and ping requests are made to the client from the server side.

 A Ping request gives the delay between the end systems. If it is

initiated constantly it will be considered as an active tool. The outputs from the ping

request are directed to a delay text file. A function is used to read the bandwidth text file

and delay text file as feedback from the network. A network protocol analyzer named

Ethereal is used to examine the kind of packets (TCP, UDP, and SCTP packets) in the

network. It is made to run in promiscuous mode, which allows the adapter to intercept

and read all packets rather than just packets addressed to it.

4.3 SECURITY USING DES

 To implement the DES we use function encrypt, which takes two parameters,

buffer and flag. It modifies the passed buffer into fixed length bits (plain text or cipher

text). If the flag is set to 1 it modifies the buffer to cipher text and if the flag is set 0 it

modifies the buffer to plain text. Since this function encrypts and decrypts 64 bit

messages, the data that is send and received is converted in to 64 bit by passing 8

 23

characters at a time to another function encode. The key parameter is also stored in an

array of 64 bytes as 0’s and 1’s by passing the key to the encode function. This 64 bytes

of 0’s and 1’s are passed to the setkey function which is in turn by the encrypt function.

The crypt.h header gives the required prototypes for the setkey() and encrypt() functions.

When compiling it required linking with –lcrypt.

4.4 ADAPTATION USING SAATY’S ANALYTICAL HIERARCHY PROCESS

 The Analytical Hierarchy Process (AHP) is used for dynamically selecting

the appropriate transport layer protocol based on the feedback from the network and user

preference. The monitored QoS parameters (bandwidth, jitter, and delay) from the

network and user preference are passed on to the AHP as feedback, which comes up with

an appropriate protocol. The protocol preference is then passed on to the protocol stack

where the corresponding transport layer protocol is selected for communication. The first

step in AHP is to define the goal, criteria, and alternatives. The hierarchy of our approach

is given in the below table,

 Table 3: Setting up the Hierarchy.

 By applying Saaty’s AHP, we will be getting 5 matrices of which four

matrices give the relative importance of the alternatives with respect to the criteria. The

last matrix gives relative importance among the criteria. The relative importance among

GOAL Selecting best transport layer protocol

CRITERIA Bandwidth, Delay, Reliability, Jitter

ALTERNATIVES
TCP, UDP, SCTP; TCP/ UDP/ SCTP

with Security.

 24

them is found using pair-wise comparisons. The last matrix i.e. the criteria matrix is the

one where the pair-wise comparison importance dynamically changes due to the feedback

from the network.

4.4.1 AHP AND FEEDBACK FROM THE NETWORK

 By opening three text files, one for bandwidth, one for jitter, and one for

delay the feedback from the network are written to files. The bandwidth, delay, and jitter

values based on network conditions are read by a function. The various possible network

conditions are given in Table 5. Consider a case where the available bandwidth is high

and delay, jitter between the host machines is very low. Since it is mentioned above that

the criteria matrix is the only matrix that changes according to the network conditions, we

give high importance to the bandwidth row and very low importance to the delay row in

the criteria matrix. Based on the file type given by the user, the reliability factor is

decided. Reliability of high importance, medium importance, and low importance is

given to the file type text, audio, and video respectively in the reliability row. If the user

preferred security for the file transfer, a layer of security is provided using DES. Based

on jitter value, the importance level for the fourth row is decided. Hence the importance

level of the criteria matrix is determined. The bandwidth, delay, and jitter are the varying

values in the criteria matrix, whereas the reliability is a constant factor.

Bandwidth (Kbps) Delay (ms) Jitter (ms)

High Medium Low High Medium Low High Medium Low

>60 25-60 <25 >15 5-10 <5 >1.5 0.5-1.5 <0.5

 Table 4: High, Medium, and Low Values for measured QoS

 25

Steps involved for calculating criteria matrix priority:

1. Entering pair-wise response into the matrix and the reciprocal values are

calculated.

 I .Pair-wise response for Criteria:

 Here Bandwidth is given more importance compared to delay,

reliability, and jitter.

II. Reciprocal values:

 2. Column values are added together.

3. Normalization is done by dividing the column sums.

Criteria BW Delay Reliability Jitter

BW 1 6 3 3

Delay 1/6 1 ½ ½

Reliability 1/3 2 1 1

Jitter 1/3 2 1 1

Criteria BW Delay Reliability Jitter

BW 1 6 3 3

Delay 0.1667 1 0.5 0.5

Reliability 0.3333 2 1 1

Jitter 0.3333 2 1 1

Criteria BW Delay Reliability Jitter

BW 1 6 3 3

Delay 0.1667 1 0.5 0.5

Reliability 0.3333 2 1 1

Jitter 0.3333 2 1 1

 1.8333 11 5.5 5.5

Criteria BW Delay Reliability Jitter

BW 0.5455 0.5454 0.5454 0.5454

Delay 0.0909 0.0909 0.0909 0.0909

Reliability 0.1818 0.1818 0.1818 0.1818

Jitter 0.1818 0.1818 0.1818 0.1818

 1 1 1 1

 26

 4. Normalized row values are added.

Priorities for the overall goal are calculated by taking the average:

Criteria Priority

BW 0.5454

Delay 0.0909

Reliability 0.1818

Jitter 0.1818

 The same steps are followed in determining the matrix for the

alternatives. The pair-wise comparison is developed by comparing the alternatives in

terms of each criterion.

Criteria BW Delay Reliability Jitter

BW 0.5455 0.5454 0.5454 0.5454 2.1817

Delay 0.0909 0.0909 0.0909 0.0909 0.3636

Reliability 0.1818 0.1818 0.1818 0.1818 0.7272

Jitter 0.1818 0.1818 0.1818 0.1818 0.7272

 1 1 1 1

 27

1. Delay: Pair-wise comparison:

 Priority

TCP 0.254133

UDP 0.153683

SCTP 0.41265

STCP 0.054333

SUDP 0.0336

SSCTP 0.090167

 The head-of-the-line blocking property of SCTP helps it to

perform better in the case of high delay. Hence SCTP is given more importance

compared to other protocols in pair-wise comparison matrix. Following the pair-wise

comparison steps mentioned for criteria matrix, SCTP gets high priority.

2. Bandwidth: Pair-wise comparison

Bandwidth

 STCP SUDP SSCTP TCP UDP SCTP

STCP 1 1/7 1/3 1/2 1/9 1/4

SUDP 7 1 3 5 1/2 2

SSCTP 3 1/3 1 2 1/5 1/2

TCP 2 1/5 1/2 1 1/7 1/3

UDP 9 2 5 7 1 3

SCTP 4 1/2 2 3 1/3 1

Delay

 TCP UDP SCTP STCP SUDP SSCTP

TCP 1 2 1/2 5 7 3

UDP 1/2 1 1/3 3 5 2

SCTP 2 3 1 7 9 5

STCP 1/5 1/3 1/7 1 2 1/2

SUDP 1/7 1/5 1/9 1/2 1 1/3

SSCTP 1/3 1/2 1/5 2 3 1

 Priority

TCP 0.0551

UDP 0.4244

SCTP 0.1385

STCP 0.0352

SUDP 0.2555

SSCTP 0.0909

 28

 UDP performs better when the available bandwidth is high. Hence UDP is

given more importance compared to other protocols in pair-wise comparison matrix.

Following the pair-wise comparison steps mentioned for criteria matrix, UDP gets high

priority.

2. Jitter: Pair-wise Comparison.

Jitter

 TCP UDP SCTP STCP SUDP SSCTP

TCP 1 1/9 1/3 2 1/7 1/3

UDP 9 1 7 9 2 9

SCTP 3 1/7 1 3 1/5 3

STCP 1/2 1/9 1/3 1 1/5 1/3

SUDP 7 1/2 5 5 1 5

SSCTP 3 1/9 1/3 3 1/5 1

 UDP is given more importance in pair-wise comparison matrix, when the

jitter is high. High jitter will be caused when the protocols TCP and SCTP are used for

real-time streaming, due to retransmission of lost packets. Hence using UDP in these

cases will avoid the jitter in real-time streaming. Following the pair-wise comparison

steps mentioned for criteria matrix, UDP gets high priority.

Jitter Priority

TCP 0.0443

UDP 0.4661

SCTP 0.1027

STCP 0.036

SUDP 0.2767

SSCTP 0.0743

 29

4. Reliability: Pair-wise Comparison

Reliability

 TCP UDP SCTP STCP SUDP SSCTP

TCP 2 7 1 5 9 3

UDP 1/5 1 1/7 1/2 2 1/3

SCTP 1 5 1/2 3 7 2

TCP 1/2 3 1/3 2 5 1

SUDP 1/7 1/2 1/9 1/3 1 1/5

SSCTP 1/3 2 1/5 1 3 1/2

 Priority

TCP 0.4126

UDP 0.0544

SCTP 0.2541

STCP 0.1539

SUDP 0.0332

SSCTP 0.0905

 Since TCP is more reliable compared to UDP and SCTP, it is

given more importance. Following the pair-wise comparison steps mentioned for criteria

matrix, TCP gets high priority.

 30

4.4.2 SELECTION OF PROTOCOL:

 Criteria

Alternative

1
1

*
N

AHP ij j
M i

i

A max a W=
≥ ≥

=
∑ (1)

 aMN represents the above 6x4 matrix, where M and N represents the

alternatives criteria respectively. W represents the criteria priority in 4x1 matrixes. By

using equation (1) the best transport layer protocol is selected. The calculation is given

below,

Overall Priority TCP:

(0.5454*0.0551)+(0.0909*0.2541)+(0.1818*0.4126)+(0.1818*0.0443)= 0.1362

Overall Priority UDP:

(0.5454*0.4244)+(0.0909*0.1536)+(0.1818*0.0544)+(0.1818*0.4661)= 0.3400

Overall Priority SCTP:

(0.5454*0.1385)+(0.0909*0.4126)+(0.1818*0.2541)+(0.1818*0.1027)= 0.1779

Overall Priority STCP:

(0.5454*0.0352)+(0.0909*0.0543)+(0.1818*0.1539)+(0.1818*0.036)= 0.0586

Overall Priority SUDP:

(0.5454*0.2555)+(0.0909*0.0336)+(0.1818*0.0332)+(0.1818*0.2767)= 0.1987

Overall Priority SSCTP:

(0.5454*0.0909)+(0.09090*0.0901)+(0.1818*0.0905)+(0.1818*0.0743)= 0.0877

Based on the given conditions, UDP gets high priority and it is selected as the best

transport layer protocol by the AHP.

 BW Delay Reliability Jitter

TCP 0.0551 0.2541 0.4126 0.0443

UDP 0.4244 0.1537 0.0544 0.4661

SCTP 0.1385 0.4127 0.2541 0.1027

STCP 0.0352 0.0543 0.1539 0.036

SUDP 0.2555 0.0336 0.0332 0.2767

SSCTP 0.0909 0.0902 0.0905 0.0743

Criteria Priority

BW 0.5454

Delay 0.0909

Reliability 0.1818

Jitter 0.1818

 31

4.5 SYSTEM ARCHITECTURE

User Space

Kernel Space

 Figure 3: System Architecture

 Sockets have different properties such as connection-oriented or connectionless.

In the case of connection-oriented sockets the data is allowed to go to and fro as needed,

whereas in the case of connectionless there will no open connection and only one

message is allowed to pass through at a time. AF_NET and AF_UNIX is the most

common socket families used. The AF_NET is used for internet connections and

AF_UNIX is used for UNIX inter-process communication [11]. If the socket is

unconnected then send(), read() cannot be used to send and receive data, since there

won’t be any destination address. The socket can be made connected just by calling

connect().There are three types of sockets which we have used in this thesis: UDP, TCP

and SCTP. These sockets are created and are kept open till the end of the program and

switching is done by using one of these sockets. The sockets are created in the main

module and passed as parameters between various functions that use them. The port

number associated with one of the sockets is taken from the user; both on the client and

Application Code: Network monitoring

functions, AHP functions, Synchronization b/n

client and server, Security Module, etc.

System call Interface

Kernel Functions: Sockets, Packet send /

receive functions, etc.

 32

server side. The other two sockets are associated with port numbers one higher than the

previous port number. The three parameters for the socket function are address family

(AF_NET/AF_UNIX/ AF_NS), semantics of communication (SOCK_STREAM,

SOCK_DGRAM, SOCK_RAW), protocol to use. The SOCK_DGRAM provides

datagram sockets with unreliable, not sequenced, and duplicated bidirectional data flow.

The SOCK_STREAM provides stream sockets with bidirectional, sequenced,

unduplicated data flow. In case of SCTP socket creation IPPROTO_SCTP is used as the

third parameter [11]. The socket function upon successful creation returns an integer.

 The sockets created are of the AF_INET family and the client binds the server

address taken as an input at the start of the program. The sockets are closed when the

client/user issues a quit message to the server indicating request for a proper close of all

connections. Errors arising during creation of sockets and their binding are checked at

both client and server sides. UDP sockets sometimes appear to have opened without an

error, even if the remote host is not reachable. The error becomes apparent when we try

to read/write data from/to the socket. The reason for this is because UDP is a

connectionless protocol, which means that the operating system does not establish a link

for the socket with the other end until it actually needs to send or receive data. This error

is taken care of by having a timeout variable set for the UDP connection on the client side

and using a select command on the UDP socket. The select () system call takes four

arguments: three 'lists' of sockets, and a timeout. The three socket lists indicate interest in

read, write, and exception events for the socket. The function will return whenever the

indicated socket fires one of these events and if there is no event of read or write within

the timeout period, the function simply returns. When the user space calls the socket ()

 33

system call it gets trapped in the kernel through an interrupt. The control is then

transferred to the kernel space. The kernel in addition to error checking, saves the register

contents, finds a file descriptor and passes an integer value back to the user space.

The user space contains the Analytical Hierarchy Process module, network monitoring

functions which gets the feedback from the network, security module, and module for

synchronization between client and server. The user space module executes system command

such as, socket(), listen() or sendto(). The sys_socketcall() function located in the

/usr/src/linux/net/socket.c file helps in passing system command to the kernel side. The

kernel side equivalent function which the user requested is called by this function. When

socket () function is called by the user to create a new socket, the sys_socketcall() will

pass control to the kernel side, which in turn selects the kernel side equivalent function

sys_socket () .

 34

CHAPTER V

RESULTS

Based on the measured bandwidth and the delay the network conditions are

classified into different possible types. The table below indicates the preference for each

condition from 1 to 9. Value of 1 in the preference column means that network condition

is excellent for data transfer, whereas preference of 9 if not ideal for data transfer.

Table 5: Possible Network Conditions

5.1 FILE TRANSFER IN FIXED NETWORK CONDITIONS

 Here file transfer is done using different transport layer protocols including

the proposed dynamic protocols under three different conditions. The conditions are

excellent (Delay Low, Bandwidth Low), moderate (Delay Medium, Bandwidth Medium),

Possible Network Conditions Preference

Delay Low, Bandwidth High 1

Delay Low, Bandwidth Medium 2

Delay Low, Bandwidth Low 3

Delay Medium, Bandwidth High 4

Delay Medium, Bandwidth Medium 5

Delay Medium, Bandwidth Low 6

Delay High, Bandwidth High 7

Delay High, Bandwidth Medium 8

Delay High, Bandwidth Low 9

 35

and bad (Delay High, Bandwidth Low).At the client side the throughput for the transfer

of a 5MB file is measured. TCP, UDP, SCTP are used in transferring the 5MB file under

different network conditions and their throughput values are recorded. According to the

user preference about the type of the file (text, audio, and video) and level of jitter, the

dynamic protocol is used in transferring the file under the three network conditions. The

network conditions are changed during the file transfer. The achieved throughput and

protocol used for transfer is recorded.

Case 1: Text File Transfer.

 The graph below shows the throughput achieved using TCP, SCTP, and

Dynamic protocols under excellent, moderate, and bad network conditions. Since a text

file is being transferred, the comparison of Dynamic protocol is between TCP and SCTP.

From the graph, SCTP has better throughput compared to TCP under all network

conditions. Dynamic protocol transfers the text file using TCP protocol in excellent

condition, as the network conditions changes to moderate from excellent condition the

protocol switches to SCTP and remains in SCTP for the bad condition also.

 36

Dynamic Vs TCP Vs SCTP (Text File)

120

130

140

150

160

170

180

190

200

210

Excellent Moderate Bad

Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

TCP

Dynamic

SCTP

Figure 4: Throughput Comparison for Text File

Case 2: Audio File Transfer.

 The graph below shows the throughput achieved using UDP, SCTP, and

Dynamic protocols under excellent, moderate, and bad network conditions. As it is an

audio file us being transferred, the comparison of Dynamic protocol is drawn between

UDP and SCTP. From the graph, UDP has better throughput for the excellent and

moderate conditions, and as the condition degrades, SCTP has better throughput

compared to UDP. The Dynamic protocol transfers the audio file using the UDP protocol

under excellent conditions as packet loss will be minimal. When the network conditions

change to moderate, UDP experiences more packet loss. As it is an audio file the system

provides reliability by switching to SCTP under moderate and bad network conditions,

thus minimizing packet loss.

 37

Dynamic Vs UDP Vs SCTP (Audio File)

120

140

160

180

200

220

Excellent Moderate Bad

Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

UDP

Dynamic

SCTP

 Figure 5: Throughput Comparison for Audio File

Selecting UDP instead of SCTP (worst network condition and high jitter):

Since SCTP uses congestion control; high levels of delay will be introduced when packet

loss occurs. Retransmission of lost packets will cause high jitter and using UDP in these

cases will avoid the jitter in real-time streaming. In real-time streaming we need

continuous flow of data, whereas retransmission of lost packets is not needed as it will

cause unnecessary disturbance in the audio. In such a scenario the quality of perception

decreases. So when we are experiencing high jitter in the worst case scenario, switching

to UDP from SCTP is the best option.

 38

Dynamic Vs UDP Vs SCTP (Audio File)

120

140

160

180

200

220

Excellent Moderate Bad

Network Conditions - High Jitter

T
h
o
ru
g
h
p
u
t
(K
B
p
s
)

UDP

Dynamic

SCTP

Figure 6: Audio File Transfer – High Jitter

Case 3: Video File Transfer.

 The graph below shows the throughput achieved using UDP, SCTP,

and Dynamic protocols under excellent, moderate, and bad network conditions. Since a

video file is being transferred, the comparison of the Dynamic protocol is between UDP

and SCTP. From the graph, UDP has better throughput for excellent and moderate

conditions. As the condition degrades the SCTP has better throughput compared to UDP.

Since it is a video file, the dynamic protocol transfers the video file using UDP protocol

under excellent and moderate network conditions, as reliability is given least importance.

When the network conditions changes from moderate to worse, UDP experiences higher

packet loss and to minimize that we switch to SCTP.

 39

Dynamic Vs UDP Vs SCTP (Video File)

120

130

140

150

160

170

180

190

200

210

220

Excellent Moderate Bad

Network Conditions

 T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

UDP

Dynamic

SCTP

Figure 7: Throughput Comparison for Video File

Selecting UDP instead of SCTP (worst network condition and high jitter):

 Since SCTP uses congestion control; high levels of delay will be introduced

when packet loss occurs. Retransmission of lost packets will cause high jitter and using

UDP in these cases will avoid the jitter in real-time streaming. In real-time streaming we

need continuous flow of data, whereas retransmission of lost packets is not needed as it

will cause unnecessary disturbance in the video. In such a scenario the quality of

perception decreases. So when we are experiencing high jitter in the worst case scenario,

switching to UDP from SCTP is the best option.

 40

Dynamic Vs UDP Vs SCTP (Video File)

120

130

140

150

160

170

180

190

200

210

220

Excellent Moderate Bad

 Network Conditions - High Jitter

T
h
o
ru
g
h
p
u
t
(K
B
p
s
)

UDP

Dynamic

SCTP

Figure 8: Video File Transfer – High Jitter

5.2 PACKET LOSS

Case 1: Video File Transfer

 The packet loss for dynamic and UDP is same in the excellent and

moderate network condition, as dynamic follows UDP. But since dynamic follows SCTP

in the bad condition, it makes sure every packet is received at the client side without

packet loss. For measuring the packet loss a 5MB file is used in the transfer.

 41

Packet Loss In Video File (UDP Vs

Dynamic)

0

200

400

600

800

1000

1200

Excellent Moderate Bad

Network Conditions

P
a
c
k
e
ts
 L
o
s
t

UDP

Dynamic

SCTP

Figure 9: Packet Loss-Video File Transfer

Case 2: Audio File Transfer

 The dynamic protocol follows UDP in the excellent network condition.

The packet loss is same for both of them. But since dynamic follows SCTP in moderate

and bad conditions, it makes sure every packet is received at the client side without

packet loss.

 42

Packet Loss In Audio File(UDP Vs

Dynamic)

0

200

400

600

800

1000

1200

Excellent Moderate Bad

Network Conditions

P
a
c
k
e
ts
 L
o
s
t

UDP

Dynamic

SCTP

 Figure 10: Packet Loss-Audio File Transfer

5.3 FILE TRANSFER IN RANDOM NETWORK CONDITIONS

 Here the file transfer is done using different transport layer protocols

including dynamic protocol under all the nine network conditions as mentioned in the

Table 3. The network conditions are randomly changed during the file transfer. The

achieved throughput and protocol used for transfer is recorded.

 43

Case 1: Random n/w Conditions- Text File Transfer.

 As we can see from the graph, the dynamic framework uses the TCP

protocol when conditions are better i.e. when the delay conditions are low. Whereas when

network conditions are not good, the TCP throughput drops drastically compared to

SCTP. In that case, it switches to SCTP for the file transfer. Hence it achieves better

throughput during the entire file transfer.

Text File Transfer

120

130

140

150

160

170

180

190

200

210

D
H
, B
H

D
L,
 B
H

D
H
, B
M

D
M
, B
M

D
H
, B
L

D
M
, B
H

D
L,
B
L

D
M
, B
L

D
L,
 B
M

Random Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

TCP

SCTP

Dynamic

Figure 11: Random n/w Conditions- Text File Transfer.

Case 2: Random n/w Conditions- Audio File Transfer.

 As we can see from the graph the dynamic framework uses the

UDP protocol when conditions are better i.e. when the delay conditions are low. UDP has

better throughput only in some cases, when network conditions are not good (when the

 44

delay is medium or higher). In those cases packet loss occurs in large amounts. Since

audio file transfer cannot tolerate large packet losses it switches to SCTP for audio file

transfer. Hence it achieves better throughput and minimum packet loss during the entire

file transfer.

Audio File Transfer

140

150

160

170

180

190

200

210

D
H
, B
H

D
L,
 B
H

D
H
, B
M

D
M
, B
M

D
H
, B
L

D
M
, B
H

D
L,
B
L

D
M
, B
L

D
L,
 B
M

Random Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

UDP

SCTP

Dynamic

 Figure 12: Random n/w Conditions- Audio File Transfer.

Case 3: Random n/w Conditions- Video File Transfer.

 As we can see from the graph, the dynamic framework uses the

UDP protocol when conditions are better and medium i.e. when the delay conditions are

low. The UDP has low throughput and high packet loss when network conditions are not

favorable (when the delay is higher). It switches to SCTP only when conditions are not

favorable.

 45

 Video File Transfer

140

150

160

170

180

190

200

210

D
H
, B
H

D
L,
 B
H

D
H
, B
M

D
M
, B
M

D
H
, B
L

D
M
, B
H

D
L,
B
L

D
M
, B
L

D
L,
 B
M

Random Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

UDP

SCTP

Dynamic

Figure 13: Random n/w Conditions- Video File Transfer.

5.4 OVERHEAD IN USING THE SYSTEM

 There is an overhead of 8.1 seconds for 5MB file for message encryption and

decryption. Machines used for the file transfer had the following hardware

characteristics: Processor - AMD Athlon XP 2000+ with speed of 1666.6 MHz,

Processor Cache size- 256 KB, and with 1GB of RAM. While exclusively giving security

for the entire file transfer, the throughput considerably reduces. Another overhead in the

system is the file reading. The framework at regular intervals opens the two text files to

check for the changes in the bandwidth and delay values. This overhead is negligible.

 46

Security

100

110

120

130

140

150

160

D
H
, B
H

D
L,
 B
H

D
H
, B
M

D
M
, B
M

D
H
, B
L

D
M
, B
H

D
L,
B
L

D
M
, B
L

D
L,
 B
M

Random Network Conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

UDP

SCTP

TCP

D: VIDEO

D: AUDIO

D:TEXT

Figure 14: Security overhead

 47

5.5 OVERHEAD CAUSED BY Iperf TOOL

 To estimate the overhead caused by running Iperf tool in the background to

measure network bandwidth we have taken an average of 30 runs for the transfer of a

1.2MB file with and without running an instance if iperf tool.

Iperf Overhead (Avg of 30 runs)

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

No Iperf One Iperf

Instances of Iperf

A
v
g
.
T
im
e
 (
s
)
fo
r
1
.2
 M
B
 F
il
e

Figure 15: Overhead Graph for running Iperf

The overhead caused was in the range of 0.4 seconds on a machine running the iperf

client, with the following hardware characteristics: Processor - AMD Athlon XP 2000+

with speed of 1666.6 MHz, Processor Cache size- 256 KB, and with 1GB of RAM.

 48

CHAPTER VI

Conclusion

 This thesis has successfully shown that using the Analytical Hierarchy process

as decision making model, transport layer protocols can be switched according to the

underlying network conditions and the QoS preferred by the user. The AHP employed

here make the decision process very transparent and easy. The result shows that better

bandwidth utilization and less packet loss is achieved, using the dynamic framework in

transferring a file. As we have seen there are two overheads, adaptability and security.

The adaptability overhead does not make an impact on the throughput, whereas the

security overhead affects the throughput value by bigger margin. The message encryption

acts as an advantage to the application in spite of the overhead.

 Future work will focus on increasing the number of QoS

parameters monitored from the network and giving feedback to Analytical Hierarchy

Process. This will give a wider range of criteria for the AHP and therefore provide a more

accurate prediction. Adding new functionalities including other layers such as the

network and data link layer to the protocol stack in addition to the existing ones, will also

ensures better communication under different network conditions.

 49

REFERENCES

1. 1. Plagemann, T., Saethre, K. A., Goebel, V.: "Application Requirements and

QoS Negotiation in Multimedia Systems", in: Proceedings of Second Workshop

on Protocols for Multimedia Systems, Salzburg Austria, October 1995

2. B. Stiller, An application framework for the DaCaPo++ project, Proc. 5th

Openwork-shop for High Speed Networks, Paris, pp 4-24, March 1996.

3. B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner, M. Vogt and M.

Waldvogel, DaCaPo++: Communication Support for Distributed Applications,

Technical report, Computer Engineering and Networks Laboratory (TIK), ETH

Zrich.

4. A. Richards, The Universal Transport System: An end to end protocol analysis

and design, PhD. Thesis, The University of Technology Sydney, 1996.

5. Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda, A Flexible and Adaptive

Transport System Architecture to Support Lightweight Protocols for Multimedia

Applications on High-Performance Networks.

6. Saaty TL, 1980, The Analytic Hierarchy Process, NY, McGraw Hill.

7. Saaty, T.L., A scaling method for priorities in hierarchical structures, Journal of

Mathematical Psychology 15 (1977).

 50

8. Evangelos Triantaphyllou and Chi-Tun Lin, Development and Evaluation of Five

Fuzzy Multiattribute Decision-Making Methods, International Journal of

Approximate Reasoning, Volume 14, Issue 4, May 1996.

9. T. Charles Yun and Internet2, End to End Performance Tools and Instructions- A

Primer, Version: 0.2.12, 04 November 2002.

(http://pcp05306333pcs.wanarb01.mi.comcast.net/rev4/sections/reference/primers

/e2e%20primer-012.pdf)

10. Data Encryption Standard (DES). Federal Information Processing Standards

Publication, Reaffirmed 1999 October.

(http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf)

11. W. Richard Stevens, UNIX Network Programming, Volume 1 Second Edition:

Networking APIs: Sockets and XTI, Prentice Hall, 1998.

VITA

Rajasekaran Kandaswami

Candidate for the Degree of

Master of Science

Thesis: DYNAMIC PROTOCOL SELECTION FOR COMMUNICATION SYSTEMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Namakkal, TamilNadu, India, on July 4, 1979, the son of

Mr. E. Kandaswami and Mrs. Sakunthala Kandaswami.

Education: Obtained Senior High School Diploma from Malco Vidyalaya, India

in May 1997. Received Bachelor of Engineering in Computer Science &

Engineering from Annamalai University, Chidambaram, India in October 2001.

Completed the requirements for the Master of Science Degree at Oklahoma State

University in May 2006.

Experience: May 2005 – December 2005: ColdFusion developer, Dr. Donald

French, Zoology Department, Oklahoma State University, Stillwater.

Name: Rajasekaran Kandaswami Date of Degree: May 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: Dynamic Protocol Selection for Communication Systems

Pages in Study: 50 Candidate for the Degree of Master of Science

Major Field: Computer Science

Abstract:

 Advances in networking are leading towards intelligent communication

protocols, particularly with respect to Quality of Service. Traditional communication

protocols are static which results in lower performance in the network. Such protocols

concentrate on reliability related Quality of Service aspects and ignore aspects such as

synchronization, security, and negotiation of Quality of Service. In this thesis we propose

dynamically changing communication protocols based on the user requirements and best

available Quality of Service provided by the underlying network.

 The dynamically changing protocol system is built with differing transport

characteristics. These include connection oriented, connectionless, error-free, limited

error reduction, delivery of messages in the order in which they were sent or messages

with no guarantee about the order of delivery, security, no security compared to the

traditional fixed end-system protocols. This will meet fast changing user requirements

such as request-response, bulk transfer, security, and real-time data transfers. The

dynamically changing communication protocol proposed here begins the communication

with the best available protocol and then changes if needed to the best protocol based on

measured network Quality of Service parameters such as bandwidth, jitter, and delay.

Hence optimal performance is achieved in data communication when loss, errors or

congestion is encountered in the network. The Analytical Hierarchy Process, a powerful

and flexible decision making process is used for selecting the appropriate communication

protocol from the protocol stack based on Quality of Service parameters. Results

demonstrate that the proposed dynamically changing protocol achieves better throughput

and less packets loss compared to traditional systems under changing network conditions.

 Advisor’s Approval: Dr. Johnson P Thomas

