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PREFACE 
 

The general problem of ambiguity detection is unsolvable. Some context-free 

languages are inherently ambiguous. There is no algorithm that can detect the ambiguity 

of context-free grammars (CFG) in general since it is a provably unsolvable problem. The 

objective of this thesis is to study the notion of ambiguity in context-free grammars and 

grammars in general. The areas of this study include ambiguity in CFGs, ambiguity in 

other classes of grammars, and a number of algorithms for finding ambiguous strings and 

grammars. Also, an algorithm that finds ambiguous strings in a subset of context-free 

grammars is presented. This algorithm is based on the observation that ambiguity in 

strings cannot be induced by mere repetitions of applications of productions unless 

ambiguous strings can be generated without exhibiting the self-embedding property. 

 

Ambiguity in different classes of formal languages and in some programming 

languages was studied. The problem of ambiguity detection in context-free grammars 

was studied in depth. An algorithm was designed and implemented to detect ambiguous 

strings generated by a subset of context-free grammars. The algorithm works successfully 

for all grammars in the test suite of grammars which are known to be either ambiguous or 

unambiguous. It was observed that checking the sentential forms for ambiguity instead of 

checking only the sentences, and applying the productions of the proper grammar instead 

of the CNF grammar to derive the sentential forms are promising techniques to keep the 

execution time low. It was also observed that the time in which ambiguity was detected in 
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the grammars in the test suite was largely independent of factors such as the productivity 

of a grammar (the number of strings that can be generated without exhibiting the self-

embedding property), the degree of ambiguity of a string, and the lengths of strings 

generated. 
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CHAPTER I 

INTRODUCTION 

Formal grammars provide a syntactical generative way of defining languages. 

Context-free grammars, one of the four classes of grammars as defined by Noam 

Chomsky [Hopcroft et al. 01], have a wide variety of applications. Context-free 

grammars are primarily used to build compilers to verify the syntax of computer 

programs. They can also be used to generate complex graphic designs from a set of basic 

constructs [Prusinkiewicz et al. 88].   

Applications that use context-free grammars typically require a unique structure 

for each sentence the grammars generate. But unfortunately the definition of context-free 

grammars does allow for the possibility of having more than one structure for a given 

sentence. This problem, known as ambiguity, can cause serious problems and may make 

the meaning of a sentence unclear. 

 

1.1 Problem Statement 

Because of the marring nature of ambiguity in the realm of language translation 

and interpretation, unambiguous grammars are obviously preferred. To verify that a 

grammar is unambiguous, there must be a known procedure to disambiguate the grammar 

if it is demonstrated to be ambiguous. But there is no general algorithm that can 

disambiguate a given ambiguous grammar. Moreover, there are languages that are 
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inherently ambiguous, which means that the set of sentences representing the language 

cannot be generated by an unambiguous grammar. The algorithms for ambiguity 

detection that are available in literature can only determine if a given sentence is 

ambiguous with respect to a given grammar, or determine if a finite set of strings are 

ambiguous. However, the applications that are based on context-free languages involve 

potentially infinite sets of words or sentences. 

 

1.2 Thesis Outline 

The rest of this thesis report is organized as follows. In Chapter II, an introduction 

to context-free grammars is given and the concepts of parse trees and normal forms of 

context-free grammars are discussed in some detail. In Chapter III, the general concept of 

ambiguity, ambiguity removal, and inherent ambiguity are discussed. In Chapter IV, 

ambiguity in other classes of grammars and in some programming languages is 

discussed. In Chapter V, three ambiguous string detection algorithms and their respective 

scopes are discussed. A new algorithm for finding ambiguous strings in a subset of 

context-free grammars is presented in Chapter VI and the implementation details of the 

algorithm are also discussed. The summary and future work are discussed in Chapter VII. 
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CHAPTER II 

PRELIMINARIES 

 In this chapter the basics of context-free grammars, parse trees, and normal forms 

of context-free grammars are discussed. 

 

2.1 Context-Free Grammars 

 A grammar for a language is a set of rules that govern the generation of sentences 

in that language. Every language, whether it is a natural language (English, Spanish, etc.) 

or a programming language (C++, Java, etc.), has a grammar. Formally, a grammar G can 

be viewed as a 4-tuple, (V, T, P, S), where V is the set of variables, also called 

nonterminals or syntactic categories, each of which represents a set of strings, T is a finite 

set of symbols, also called terminals, that form the strings of the language being defined, 

S is the start symbol that represents the language being defined, and P is the finite set of 

productions or rules that represent the recursive definition of the language [Hopcroft et al. 

01]. 

 A production is basically a re-writing rule that consists of a head or left-hand side 

which is a string of at least one nonterminal and zero or more terminals that is being 

defined, the production symbol ‘→’, and a body or right-hand side which is a string of 

zero or more terminals and nonterminals [Hopcroft et al. 01]. The derivation of any string 

in the language starts from the start symbol. All intermediate stages of the strings 

resulting from the start symbol in the derivation process are called sentential forms. The 
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derivation of a string can also be represented in the form of a tree called a parse tree or a 

derivation tree. 

EXAMPLE: What follows is a parse tree for an English language sentence that appears at 

the leaf nodes. 

Sentence 

 

Subject Verb  Object 

 

Noun Phrase    Noun Phrase 

 

Article  Noun   Article  Noun 

 

The   cat   bit   the   dog 

  

Noam Chomsky classified grammars into four categories: regular grammars, 

context-free grammars, context-sensitive grammars, and unrestricted grammars [Hopcroft 

et al. 01]. If all productions of a grammar have a head of length one, that grammar is 

called a context-free grammar (CFG). The class of languages generated by context-free 

grammars is the class of context-free languages. Context-free languages are powerful 

enough to describe the syntax of programming languages. The LALR(1) grammars (Look 

Ahead Left to Right) are a special class of context-free grammars that have one token of 

look ahead. That means that with a single token of look ahead it should be possible to 

know how to parse from any position in a sentential form back to the start symbol. 
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 During the process of parsing a string, the symbols constituting the string are read 

left to right using the production rules of the underlying grammar in order to reduce the 

given string down to the start symbol. While parsing a string, a “shift” action is the 

process of reading the next symbol and a “reduce” action means that a group of symbols 

is replaced by another symbol or group of symbols as a result of a match with one of the 

grammar rules [Johnson et al. 78]. When a parser has a choice to perform either of these 

two actions, it is called a shift-reduce conflict. On the other hand, if there is a choice of 

performing two different reductions, it is called a reduce-reduce conflict. The following 

example illustrates these conflicts. 

 

EXAMPLE: Given the following grammar and the string w = expr – expr, 

expr → expr – expr | expr + expr 
diff → expr – expr 

 
there is a choice of performing two reductions resulting in a reduce-reduce conflict. 
 
For the same grammar and the string w = expr – expr – expr, there is a choice of 
performing a shift or a reduce after reading the second “expr” resulting in a shift-reduce 
conflict. 
 

2.2 Normal Forms for Context-Free Grammars 

 If a language is a CFL, it has grammars in some special forms called the normal 

forms for context-free grammars [Hopcroft et al. 01]. The two normal forms for context-

free grammars are Chomsky Normal Form (CNF) and Greibach Normal Form (GNF). 

These two normal forms are explained in the following two subsections. 
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2.2.1 Chomsky Normal Form 

Every context-free grammar that does not generate the empty string can be 

transformed into an equivalent one in Chomsky Normal Form. “Equivalent” here means 

that the two grammars generate the same language. A context-free grammar is in 

Chomsky Normal Form iff all its production rules are of the form: A → BC or  A → a, 

where A, B, and C are nonterminal symbols and a is a terminal symbol. 

We can call the productions whose body comprises of two nonterminals live 

productions and the ones whose body consists of just one terminal dead productions 

[Parks 03]. 

A grammar is self-embedding if for some nonterminal A it is possible that a 

sentential form containing A can be derived from A, i.e., A αAβ, where α and β are 

both non-empty strings [Nederhof 2000]. This property is illustrated in the example 

discussed below. 

Because of the especially simple form of the production rules in Chomsky Normal 

Form grammars, this normal form has both theoretical and practical implications 

[Hopcroft et al. 01]. For instance, given a context-free grammar, one can use the 

Chomsky Normal Form to construct a polynomial-time algorithm to decide whether or 

not a given string is in the language generated by that grammar. An example of such an 

algorithm is the Cocke-Younger-Kasami (CYK) algorithm [Hopcroft et al. 01]. 

For a grammar in Chomsky Normal Form, the parse tree for a given string is 

always a binary tree. Let the level of the root be zero and the level at any node be equal to 

the number of edges present in the path between the root and that node. The following 
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theorem [Parks 03] states the relation between the number of live productions and 

maximum possible length of a word that can be derived without any self-embedding. 

THEOREM: If G is a context-free grammar in Chomsky Normal Form with p live 

productions, and if w is a string in L(G) such that the length of w, represented as |w|, is 

greater than 2p, then at least one live production must have been used more than once in 

all possible derivations of w. 

PROOF: In a parse tree drawn based on a grammar in Chomsky Normal Form, all 

internal nodes (except the parents of the leaves) have two children. So, at every level in 

the parse tree, starting from the root down to the parents of the leaves, there are half as 

many nodes as in the next level. Hence if |w| > 2p, there must be at least p+1 levels in any 

parse tree for w, assuming that the level of the root is zero and the leaves have the highest 

levels. For constructing a parse tree with at least p+1 levels, at least p+1 live productions 

are necessary. But since there are only p live productions, at least one of them must have 

been used more than once in deriving w. In other words, a nonterminal on the left-hand-

side of one of the live productions will appear at least twice on the path from the root to a 

leaf. 

EXAMPLE: The above theorem states that the longest possible word that can be 

derived without exhibiting the self-embedding property is 2p provided that there are p live 

productions in the grammar. In this example, the self-embedding property is 

demonstrated for a string length of 8.  
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The productivity of a context-free grammar can be defined as the number of 

sentences generated by that grammar without exhibiting the self-embedding property. For 

example, the productivity of the grammar shown in the above example is five since b, aa, 

bba, abb, and bbbb are the only sentences that can be derived without exhibiting the self 

embedding property. 

 

2.2.2 Greibach Normal Form 

 Every CFL grammar that does not produce the empty string can be converted into 

a grammar in Greibach Normal Form (GNF) [Hopcroft et al. 01]. A grammar is in 

Greibach Normal Form iff all of its productions are of the form: A → aα, where A is a 

nonterminal, a is a terminal, and α is a string of zero or more nonterminals. Since each 

application of a production introduces exactly one terminal into a sentential form, a string 

of length n has a derivation of exactly n steps. The following example illustrates this 

property. 
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EXAMPLE: 
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CHAPTER III 

 AMBIGUITY 

 In this chapter, the notions of ambiguity, degree of ambiguity, and inherent 

ambiguity are discussed in some detail. 

 

3.1 Degree of Ambiguity 

A CFG G = (V, T, P, S) is ambiguous if there is at least one string w in L(G) for 

which there are at least two different parse trees, each with its root labeled S and yielding 

w [Hopcroft et al. 01]. Each parse tree corresponds to a left-most or a right-most 

derivation. The number of different parse trees of a string w is called the degree of 

ambiguity of w [Kuich and Salomaa 85]. If no string produced by a grammar G has a 

degree of ambiguity more than x, the degree of ambiguity of G is x. It is possible to 

classify ambiguous grammars based on their degree of ambiguity. If the number of 

distinct parse trees for each string increases with the length of strings generated by a 

grammar, it is possible that the degree of ambiguity of that grammar is infinite. 

 

EXAMPLE: Given the following ambiguous grammar, 

E→E+E 
E→E*E 
E→ (E) 
E→a 

there are two left-most derivations for a*a+a 
 
E==>E+E==>E*E+E==>a*E+E==>a*a+E==>a*a+a 
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E==>E*E==>a*E==>a*E+E==>a*a+E==>a*a+a 
Hence, the degree of ambiguity of a*a+a is two. 

 

3.2 Ambiguity Detection and Removal 

 The problem of deciding whether a given (context-free) grammar for a language 

is ambiguous is unsolvable [Hopcroft et al. 01]. In other words, there is no general 

algorithm that can tell us whether a CFG is ambiguous or not. The problem of finding a 

solution to Post’s Correspondence Problem (PCP), which is known to be undecidable, is 

reducible to the problem of detecting ambiguity in a context-free grammar. Hence, the 

problem of context-free grammar ambiguity detection is also undecidable.  

To handle the ambiguity arising from reduce-shift or reduce-reduce conflicts (see 

Section 2.1), disambiguating rules can be written [Johnson et al. 78]. Disambiguating 

rules attempt to remove specific known ambiguities. Disambiguating rules can assign 

priorities to rules (i.e., which rule to choose when a reduce-reduce conflict occurs) and to 

operations (i.e., whether to perform a shift or a reduce when a shift-reduce conflict 

occurs). However, there is no algorithm which, given an ambiguous CFG as input, can 

always produce an unambiguous context-free grammar as output that generates the same 

language [Ullian 69]. 

 

3.3 Inherent Ambiguity 

If all grammars that generate a language are ambiguous, that language is said to 

be inherently ambiguous [Hopcroft et al. 01]. An ambiguous grammar does not 

necessarily generate an ambiguous language. In other words, for a language L to be 

unambiguous, at least one of the grammars that can generate it should be unambiguous. 
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The problem of determining whether an arbitrary language is inherently ambiguous is 

recursively unsolvable [Ginsburg and Ullian 66]. 

In a language L that can be defined as the union of two other languages L1 and L2, 

all sentences in the intersection of the sets L1 and L2 have two different interpretations 

because they belong to both L1 and L2. This means that ambiguity is inherent in L, and it 

is not possible to disambiguate languages such as L. For example, the language L = 

{anbncmdm | n≥1, m≥1} U {anbmcmdn | n≥1, m≥1}, with the language {anbncndn | n≥1} as 

L1∩L2, is inherently ambiguous. 
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CHAPTER IV 

AMBIGUITY IN OTHER CLASSES OF GRAMMARS 

 In this chapter, ambiguity in different classes of formal grammars and ambiguity 

in programming languages are discussed. 

 

4.1 Ambiguity Inherent in Languages 

 Ambiguity of a grammar cannot always be attributed to the shortcomings of a 

certain class of grammars or to a badly written grammar. Many languages, including 

natural languages such as English, have ambiguity inherently. For example, the sentence 

“House flies like garbage.” in English can be interpreted in two different ways: noun-

verb-noun or noun-verb-adj-noun. Both of the interpretations are valid but only one of 

them makes sense [Frank et al. 98].  

 

4.2 Ambiguity in Programming Languages 

 Since the problems of ambiguity detection and removal are in general unsolvable, 

one can argue that all programming languages allow statements that are not free from 

ambiguity. Ambiguity arises due to the power incorporated into the language through the 

flexibility of the generation of the statements and constructs. Algol60, which can be 

considered the “mother” of many modern day programming languages, is ambiguous in 

the way it handles goto statements, for statements, parameters, and several other 
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constructs [Paulson 81]. The Pascal language has ambiguities in types, sets, and scope 

rules [Paulson 81]. 

Extensively used languages like C++ and Java are not free from ambiguity either. 

C++ supports multiple-inheritance that can potentially cause ambiguity if proper scope 

resolution is not used [Microsoft 03]. Java has problems with resolving an ambiguous 

situation arising from multiple definitions of a function in both parent and child classes 

using the specific syntax shown in the example below [Gacek 05]. 

 

EXAMPLE: Given two Java classes PAR and CHD, both defining a function cpy with 

arguments cpy(class PAR) and cpy(class CHD), the following statements result in 

ambiguity. 

CHD child = new CHD() 

cpy(child,child); // This statement is ambiguous but its syntax is legal.// 

 

4.3 Ambiguity in Two-Level Grammars 

 Two-level grammars are a class of grammars that have their productions defined 

in two levels [Cleaveland and Uzgalis 77]. W-grammars (a subclass of two-level 

grammars as defined by van Wijngaarden [Cleaveland and Uzgalis 77]) are those that 

have a context-free grammar as their first level grammar which defines the nonterminals 

of the context-free grammar in their second level grammar [Cleaveland and Uzgalis 77]. 

This two-level generation capability creates the possibility of infinite number of rules in 

the resulting context-free grammar. In W-grammars, the rules in the first level are called 

“proto” productions and the rules at the second level are called the “hyper” productions. 
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 In two-level grammars, in addition to the possibility of existence of ambiguity at 

each level independently, ambiguity can arise due to the definition of a pattern at both 

levels [Cleaveland and Uzgalis 77]. In most cases, this type of ambiguity can be avoided 

using disambiguating rules by setting priorities, resolving conflicts depending on the 

context, or by predefining the meaning of ambiguous sentences [Cleaveland and Uzgalis 

77]. 

 

4.4 Ambiguity in Omega Context-Free Grammars 

 Given an alphabet Σ, an ω-word (omega-word) can be defined as a sequence 

a1a2…an…, where ai is a symbol in Σ for all i ≥ 1. All omega words are of infinite length. 

The set of all ω-words over an alphabet Σ is denoted by Σ ω. An ω-language over Σ is a 

subset of Σ ω. If a language L belongs to the ω-Kleene closure of a context-free language, 

then L is an ω-context-free language [Finkel 03]. 

 The ω-context-free languages can be defined by their acceptance mechanism (i.e., 

pushdown automata) rather than by their generation mechanism (i.e., grammars). The ω-

context-free languages are accepted by Büchi pushdown automata (BPDA) and Muller 

pushdown automata (MPDA) [Finkel 03]. Acceptance by BPDA or MPDA is based on 

entering a final state (or states) infinitely many times during a run on an ω-word. An ω-

context-free language L is non-ambiguous if there is a unique accepting run on a BPDA 

or MPDA for all ω-words in L. In other words, an ω-context-free language L is 

ambiguous if a prefix (σ = a1a2…an) of an ω-word (a1a2...an…) in L has more than one 

accepting run on a BPDA or MPDA. Any BPDA that accepts an ambiguous ω-context-
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free language is an ambiguous BPDA. The following are a number of proven facts about 

ambiguity in ω -context-free languages [Finkel 03]. 

 The class of non-ambiguous ω-context-free languages (NA-CFLω) is closed under 

intersection with ω-regular languages. The class NA-CFLω is not closed under finite 

union, but it is closed under disjoint finite union. The class NA-CFLω is strictly included 

in the ω-Kleene closure of the class of non-ambiguous context-free languages. The class 

of inherently ambiguous ω-context-free languages is not included in the ω-Kleene closure 

of the inherently ambiguous context-free languages. It is undecidable whether or not an 

arbitrary ω -context-free language is ambiguous. 

 

4.5 Ambiguity in Context-Sensitive and Unrestricted Grammars 

A grammar that has productions of the form x → y, where |x| ≤ |y|, is called a 

context-sensitive grammar (x, y are strings of terminals and nonterminals, x has at least 

one nonterminal and |x| and |y| represent the lengths of strings x and y, respectively). 

Context-sensitive grammars (CSGs) can also be defined as grammars whose productions 

are of the form xAy → xwy, where x, y, and w are strings of terminals and nonterminals, 

and A is a nonterminal [Hopcroft et al. 01]. So, obviously, a context-sensitive grammar 

whose productions are of the form xAy → xwy, where x, y are empty strings, is a 

context-free grammar. Context-sensitive grammars can be used to define natural 

languages to an extent. They can also be used to develop applications that convert active 

voice to passive voice [Wilson 02].  

 Because of the context-sensitiveness, productions of a CSG are generally stricter 

and also more powerful than those of a context-free grammar. The productions of a CSG 
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allow for multiple definitions of a sentence and it can be argued that the potential for 

ambiguity is more in context-sensitive grammars compared to context-free grammars. 

The class of context-free languages is a subset of the class of context-sensitive languages. 

So, it is undecidable in general whether or not a CSG is ambiguous. Also, inherently 

ambiguous context-sensitive languages exist for which it is not possible to write 

unambiguous grammars. An example for an inherently ambiguous context-sensitive 

language is L = {aibicidjejfj U aibjcidjeifj} because all sentences of the form anbncndnenfn are 

ambiguous regardless of how the language L is defined by a context-sensitive grammar.  

 Unrestricted grammars are defined as grammars whose productions are of the 

form x → y, where x and y are strings of terminals and nonterminals and x has at least 

one nonterminal [Hopcroft et al. 01]. There are no restrictions on the lengths of x and y, 

and hence, the length of a derivation sequence need not be proportional to the length of a 

sentence. Unrestricted grammars are not widely used because of their extreme power 

which makes writing efficient parsers for unrestricted grammars difficult [Wilson 02].  

  



 18

CHAPTER V 

ALGORITHMS FOR FINDING AMBIGUOUS STRINGS 

 In this chapter three algorithms for finding ambiguous strings available in the 

literature and their scopes are briefly discussed. 

 

5.1 Eickel and Paul’s Algorithm 

The algorithm proposed by Eickel and Paul [Eickel and Paul 66] is one of the first 

algorithms to detect the ambiguity of a string. This algorithm first converts a given 

context-free grammar into Chomsky Normal Form. Then, starting from a given input 

string, all possible sentential forms that directly derive the given string are considered one 

at a time. After a number of iterations of the above process of considering the sentential 

forms that can potentially yield the given string in the derivation process, if identical 

sentential forms are encountered, the input string is decided to be ambiguous. The 

limitation of this algorithm is that it only determines whether a given string is ambiguous 

with respect to a grammar, but it does not determine whether the given grammar itself is 

ambiguous. 

 

5.2 Algorithm used by YACC (Yet Another Compiler Compiler) 

YACC is an LALR (1) parser generator developed at the Bell laboratories 

[Johnson et al. 78]. YACC detects ambiguity in LALR (1) grammars [Johnson et al. 78]. 

YACC indicates ambiguity when it encounters reduce-shift conflicts or reduce-reduce 
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conflicts (see Section 2.1 for a brief explanation of the two types of conflicts) [Johnson et 

al. 78]. The weakness of this algorithm is that it accepts BNF grammars which are 

equivalent to context-free grammars, but it only detects ambiguity in LALR(1) 

grammars, which are a proper subset of context-free grammars. 

 

5.3 Cheung’s Algorithm 

This algorithm attempts to search a CFG systematically for ambiguity. First a 

given CFG is converted to GNF, a process that is ambiguity preserving [Cheung 95]. 

Then it generates strings by applying each grammar rule once. Then it iteratively checks 

the strings so formed for ambiguity, and longer strings are generated by applying GNF 

rules again. The significant weakness of this algorithm is that it fails when the string 

length is not bounded. It means that the algorithm solves only cases with known 

maximum string lengths. 

 

5.4 Scope of the Algorithms 

 The algorithms available in the literature that find ambiguous strings are limited 

in their scope in that they basically check whether or not a given string of bounded length 

is ambiguous with respect to a given grammar, or check if an LALR(1) grammar is 

ambiguous. As expected, none of the algorithms stated in this chapter are powerful 

enough to determine if a given context-free grammar is ambiguous. 
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CHAPTER VI 

PROPOSED APPROACH FOR FINDING AMBIGUOUS STRINGS 

 In this chapter three variations of a new algorithm to find ambiguous strings in a 

subset of context-free grammars are presented and the details of their implementation are 

discussed. 

 

6.1 Description 

Non-trivial Grammars define non-finite languages in a recursive manner. That 

means the sentences in such a language are generated by repetitions of one or more 

defined patterns. Based on this observation, any context-free language L (or a language in 

general) can be divided into two groups of strings: those with one or more repetitions of 

one or more patterns (set A) and the rest of the strings (set B). 

For the strings in set A, the repetition of application of a live production in the 

process of derivation causes the repetition of a pattern in the resulting string. According 

to the theorem in Section 1.2.2, the length of a string, which does not have any repeated 

patterns, is at most 2p, where p is the number of live productions of a given CNF context-

free grammar. Hence, by generating the strings of L whose length is less than or equal to 

2p, the set B mentioned above can be created.  

The possibility of existence of different parse trees or interpretations for a string is 

the result of having an ambiguous grammar. Ambiguity is due to the possibility of 
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deriving a sentence in more than one way, using different sets of productions of the same 

grammar or the same set of productions of the same grammar in a different order.  

If all the strings in set B mentioned above are unambiguous, there is no possibility 

that the grammar for language L is ambiguous. That means that the problem of 

determining whether or not a context-free grammar (in CNF) for a language L is 

ambiguous comes down to the problem of determining whether or not the strings in the 

corresponding set B are ambiguous.  

 

6.2 Three Variations of an Algorithm That Finds Ambiguous Strings 

The proposed algorithm to find ambiguous strings generated by a context-free 

grammar in CNF can functionally be viewed as having two parts. The first part generates 

the set B (mentioned in Section 6.1) for a given grammar, and the second part determines 

if at least one of the strings in set B can be parsed in more than one way. In order to 

increase the efficiency of this process of finding ambiguous strings, instead of generating 

all strings of set B and then checking for ambiguity, each string is checked for ambiguity 

as soon as it is generated. This way, some of the time for generating strings in set B can 

be saved because as soon as an ambiguous string is found, the remaining strings in set B 

need not be generated. The process described above is shown as an algorithm below. 

 
// A function to convert a CFG into CNF. 
Function ToCNF(CFG G) 
Begin 
 

Remove nongenerating symbols from G 
Remove unreachable symbols from G 
Remove epsilon productions from G 
Remove unit productions from G 
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Re-write all rules so that the RHS of all productions is always a terminal 
or two nonterminals 

End 
  
 // A function to calculate the maximum length of a string that is to be checked 
 // for ambiguity. 
 Function CalcSize(CFG in CNF G’) 
 Begin 
  Integer n = 0 
  For all productions of G’ Do 
   If the length of RHS of the production is two Then 
    Increment n by 1 
   End If 
  End For 
  Integer size = 2 power n 
  Return n 
 End 

 // A function to generate strings and check for ambiguity. 
Function GenerateStrings(G’) 

 Begin 
  Array SententialFormsPending 
  Insert Start Symbol into SententialFormsPending 
  While there are more sentential forms in the Array 

Apply productions considering the next sentential form in the 
Array SententialFormsPending 

 If there is a chance of applying other productions then 
insert the sentential form in to the Array and also remember 
the productions that were applied last time so that there are 
no repetitions. Also, before inserting the sentential form 
into the array, make sure its length is less than or equal to 
CalcSize(G’) 

   End If 
   If a sentence is derived then 
    If the length is less than or equal to CalcSize(G’) then 

Check if the same string has been generated before 
using another derivation sequence. 
If so then 

Check if both derivations are left most or if 
both of them are rightmost 
If so then 
 Print “Ambiguous string found” 
 Return 
End If 

     End If 
Remember the string and its derivation sequence 
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    End If 
   End If 

Store the sentential form in the array after making sure its length is 
less than or equal to CalcSize(G’) 

End While 
Print “Not Ambiguous” 

 End 

 // The main function that reads a grammar and checks for ambiguity. 
Main() 

 Begin 
Read CFG G 
ToCNF(G) 
GenerateStrings(G’) 

End 
 

In order to improve on the time to detect ambiguous strings, sentential forms are 

checked for ambiguity instead of waiting until a sentence is generated. Only the sentential 

forms that are capable of generating sentences whose lengths are less than or equal to the 

required size are considered. This is achieved by a small change in the function 

GenerateStrings as shown below. 

 
// A function to check for ambiguity using sentential forms. 

Function GenerateStrings(G’) 
 Begin 
  Array SententialFormsPending 
  Insert Start Symbol into SententialFormsPending 
  While there are more sentential forms in the Array 

Apply productions considering the next sentential form in the 
Array SententialFormsPending 

 If there is a chance of applying other productions then 
insert the sentential Form in to the Array and also 
remember the productions that were applied last time so 
that there are no repetitions. Also before inserting the 
sentential form into the array, make sure its length is less 
than or equal to CalcSize(G’) 

   End If 
   If the length is less than or equal to CalcSize(G’) then 

Check if the same string has been generated before using 
another derivation sequence. 
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If so then 
Check if both derivations are left most or if both of 
them are rightmost 
If so then 

Print “Ambiguous” 
Return 

End If 
    Else 

Remember the sentential form and its derivation 
sequence 
Store the sentential form in SententialFormsPending 

End If 
   End If 

End While 
Print “Not Ambiguous” 

 End 

 
This modified approach is based on the fact that if a sentential form is ambiguous 

then so are the sentential forms and the sentences that are derived from it. Since the 

grammars are first converted to CNF, there are no useless symbols, which means that 

every sentential form leads to a sentence. Also, if a sentence is ambiguous, there is a 

sentential form in the derivation sequence that is ambiguous unless the ambiguity arises 

in the last step of derivation sequence. Since the variation shown above checks the 

sentences in addition to the sentential forms for ambiguity, ambiguity arising in the last 

step of a derivation sequence can also be captured. 

Another way to reduce the time taken for ambiguous string detection by the 

algorithm presented above would be to use the productions from the proper grammar 

corresponding to the given context-free grammar to generate the strings instead of using 

the productions from the corresponding CNF grammar. This is based on an observation 

that the length of a derivation sequence for a sentence using productions of a proper 

grammar is shorter than the derivation length of the same sentence using the 
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corresponding CNF productions. An algorithm for this process is the same as the 

algorithm on pages 21 through 23 except that proper grammar productions are used 

instead of the corresponding CNF grammar productions to derive strings that are checked 

for ambiguity. 

Although proper grammar productions are used to generate strings, a CFG needs 

to be converted to CNF to calculate the maximum length of a string to be considered for 

ambiguity checking. So the time taken to convert a grammar to CNF is ignored. 

 

6.3 Observations and Results 

Various context-free grammars were used to test the proposed algorithm. The test 

suite included grammars of different sizes (varying number of productions), ambiguous 

grammars, unambiguous grammars, and grammars that generate known inherently 

ambiguous languages. The test suite consisted of 50 grammars, of which 28 were known 

to be ambiguous and 22 were unambiguous. All three variations of the presented 

algorithm yielded correct results. Table 1 below shows the execution times of the 

implementations of the above three variations of the presented algorithm.  

 

Type of Grammars 
 
Variation 

Average over 28 
Ambiguous Grammars 

Average over 22 
Unambiguous Grammars 

CNF Grammar 
(Sentences) 0.527 Seconds 27.230 Seconds 

CNF  Grammar 
(Sentential Forms) 0.038 Seconds 18.944 Seconds 

Proper Grammar 
(Sentences) 0.042 Seconds   1.054 Seconds 

 
Table 1: Time Taken to Determine the Ambiguity of a Grammar 
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 The individual execution times required to determine the ambiguity of each 

grammar is the difference between two variables that hold the times before and after a 

grammar is checked for ambiguity by the program. The execution platform was the 

author’s personal computer. To ensure the stability of the outputs, the programs were 

executed three times for each grammar. 

It can be observed from Table 1 that checking the sentential forms for ambiguity 

yields results faster than checking only the sentences for ambiguity for the grammars 

(both ambiguous and unambiguous) in the test suite. This means that the execution time 

taken for the process of checking whether or not sentential forms are sentences and then 

checking sentences for ambiguity, is more than that of the process of checking all 

sentential forms for ambiguity. The lengths of sentential forms at which the ambiguity is 

caught, using these two techniques is shown in the following figure. 

 

The Lengths of Sentential Forms at which Ambiguity was Detected in the 28 
Ambiguous Grammars in the Test Suite Divided into Detection Using Sentences 

Only vs. Detection Using All Sentential Forms
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 As the results from Table 1 show, the time taken by the third algorithm (which 

uses proper grammar productions to derive sentences) to declare that an input 

unambiguous grammar is unambiguous is better than the other two approaches. But using 

proper grammar is not as good a technique (compared to the technique of detecting 

ambiguity in sentential forms) when it comes to the ambiguous grammars in the test 

suite. Detecting ambiguity at the strict sentential form stage (i.e., when the derived strings 

contain terminal as well as nonterminal symbols) appears to be better than waiting for a 

sentence to be derived. Moreover, the advantage of checking such sentential forms for 

ambiguity is that it shows exactly where the ambiguity arises. 

 It is intuitive to expect the ambiguity to show up faster if the degree of ambiguity 

of the grammar under consideration is higher. However, when the program was tested on 

a suite of 30 ambiguous grammars (10 grammars each with degrees of ambiguity 2, 3, 

and 4), the results did not show any relation between the degree of ambiguity and the 

execution time required to detect ambiguous strings. 

An effort was made to find out if the degree of ambiguity together with the 

productivity of a grammar have anything to do with how fast an ambiguous string could 

be detected. The productivity of a grammar, as used in this thesis, is the number of 

sentences a grammar can generate without repetition of application of its productions. 

Table 4 on page 39 lists the productivity of a grammar, the degree of ambiguity of the 

first encountered ambiguous sentence, and the execution time required to find ambiguous 

strings for a set of 30 ambiguous grammars. The values from the table indicate that the 

productivity of a grammar is generally independent of the execution time in the context 
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of the grammars in the test suite. Also, it is not always true that ambiguity can be 

detected faster if the ambiguous strings appear at smaller lengths. 

The results from the implementation of the proposed algorithms show that the 

algorithms yield correct results when tested on grammars which are known to be 

ambiguous or unambiguous. But for an arbitrary context-free grammar, the problem of 

detecting ambiguity is undecidable. That means that even though the proposed algorithm 

halts and gives an output of whether a given arbitrary grammar is ambiguous or not, the 

result is not provable in general.  

Attempts to fail the algorithm on an input grammar, so that the class of grammars 

for which the algorithm works can be studied, were not fruitful. In other words, the subset 

of context-free grammars for which the algorithm works is unknown. The time 

complexity of the presented algorithm is O(2n), where n is the number of productions of 

the input context-free grammar. 
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CHAPTER VII 

SUMMARY, CONCLUSION AND FUTURE WORK 

 In this chapter a brief summary of this thesis is given, a number of conclusions 

and observations are discussed, and the future work that can be done in this area is 

outlined. 

 

7.1 Summary 

The concepts of grammars and ambiguity are briefly introduced in Chapter I. 

Chapter II contains a discussion of context-free grammars and parse trees. Chomsky 

Normal Form and Greibach Normal Form are also introduced. In Chapter III, the 

concepts of ambiguity and inherent ambiguity are discussed. Ambiguity in other classes 

of grammars and in some programming languages is discussed in Chapter IV. In Chapter 

V, three algorithms from literature for finding ambiguous strings are discussed. Three 

variations of an algorithm to detect ambiguous strings are presented in Chapter VI. 

 This thesis aimed at studying the ambiguity of context-free grammars and 

ambiguity in general. Ambiguity in different classes of grammars was studied. Some 

algorithms present in the literature for finding ambiguity of sentences and bounded 

grammars were studied. An algorithm was proposed to detect ambiguous strings in a 

subclass of context-free grammars. Attempts to characterize this subclass of CFGs were 

unfruitful. The proposed algorithm is based on an observation that the source of 

ambiguity cannot be mere repetitions of applications of the productions of a context-
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free grammar. The implementation of this algorithm paves a way for studying the 

possibility of a relationship between the degree of ambiguity of ambiguous strings and 

the execution time required to find ambiguous strings generated by that grammar. 

 

7.2 Observations and Conclusions 

 There are formal languages that are inherently ambiguous. Inherently ambiguous 

languages can be found in the class of context-free, context-sensitive, and unrestricted 

languages. Natural languages such as English have inherent ambiguity stemming from 

their flexible grammatical constructs. Programming languages from Algol and Pascal to 

C++ and Java support constructs that can potentially lead to ambiguity. Degree of 

ambiguity of a grammar is an upper bound on the number of distinct parse trees for any 

sentence generated by that grammar and grammars with infinite degree of ambiguity 

exist.  

 The following observations have been made from the implementation of the 

proposed algorithm and running it on a test suite of 50 grammars. The time taken to find 

an ambiguous string generated by a grammar in CNF is independent of the degree of 

ambiguity of the first encountered ambiguous string. The time taken to find ambiguous 

strings is also independent of the productivity of the grammar. That means that the 

process of ambiguity detection, as suggested by this prototype study, does not depend on 

the rate at which a grammar produces strings. Yet another way to express the observation 

is that the rate at which a grammar produces ambiguous strings need not be proportional 

to the rate at which the grammar generates strings. Detecting ambiguity in sentential 

forms generated using productions in the CNF is the fastest way to find ambiguous 
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strings generated by an input ambiguous grammar. On the other hand, to show that an 

input unambiguous grammar is unambiguous, using the productions of a proper grammar 

to detect ambiguity in the strings yields results faster. 

 

7.3 Future Work 

 Attempts must be made to formally characterize the subclass of context-free 

grammars for which the proposed algorithm works. That should pave the way to study 

the question of ambiguity in CFGs more deeply. A formal proof or a theorem may be 

developed to prove that the proposed algorithm works correctly. Also, a large test suite of 

grammars can be gleaned to test the practicality of the proposed algorithm. The 

implementation of the algorithm might be improved and optimized. 

As the proposed algorithm suggests, if new ambiguous strings are not produced 

by mere repetitions of application of the productions of a CFG, then it can be inferred 

that the ambiguous strings that a grammar generates are predictable in pattern (and thus 

in length). An algorithm, which captures the frequency at which ambiguous strings are 

generated, may be developed in future, and, then the ambiguous strings with a desired 

length can be extrapolated from the basic ambiguous strings (that are derived without 

exhibiting the self-embedding property). Such an algorithm could be useful to context-

free grammar based application developers who maybe interested in finding out whether 

or not sentences of a certain length generated by a grammar are ambiguous. 

Also, similar techniques might prove fruitful for detecting ambiguous strings 

generated by grammars that are more powerful than CFGs. Taking another look at degree 

of ambiguity and its growth in ambiguous grammars would be interesting too. 
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APPENDIX A 

GLOSSARY 

Ambiguous A word, a phrase, or a sentence is called ambiguous if it can be 
reasonably interpreted in more than one way.  

 
CFG Context-Free Grammar, a formal grammar in which every 

production is of the form A→w, where A is a nonterminal and w is 
a string of zero or more terminals and nonterminals. 

 
CNF A CFG is in Chomsky Normal Form if all its productions are of the 

form A→BC or A→a, where A, B, and C are nonterminal symbols 
and a is a terminal symbol. 

 
Dead Production A production that has one terminal on the right hand side. 
 
GNF A grammar is in Greibach Normal Form if all its productions are of 

the form A→aα, where A is a nonterminal, a is a terminal, and α is 
a string of zero or more nonterminals. 

 
Grammar A formal set of symbols and re-writing rules or productions that 

define a language. 
 
LALR(1) Look Ahead Left to Right (LALR(1)) is a parsing technique. 

LALR(1) is also used to refer to a special class of context-free 
grammars that can accomodate one token of look ahead. 

 
Language The set of sentences or strings that can be generated by applying 

the set of productions of a grammar defined over an alphabet 
starting from a start symbol. 

 
Live Production A production that has two nonterminals on the right hand side. 
 
Nonterminal A variable (also called a syntactic category)  that can represent a 

string of zero or more terminals or nonterminals. 
 
Parse Tree Hierarchical representation of the derivation of a sentence or string 

in a language. 
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Productions Re-writing rules used for specifying how to derive valid syntactic 
constructs in formal grammars. 

 
Sentence The result of application of the set of rules or productions of a 

grammar starting from the start symbol until only terminal 
characters are present. 

 
Start Symbol A special nonterminal symbol from which the applications of the 

rules or productions starts for generation of the sentences or strings 
of a language. 

 
Terminal Symbols whose concatenations yield the strings of a language. 
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APPENDIX B 

RESULTS OF THE PROGRAMS 

This appendix contains the results of the implementation of the presented 

algorithm (Appendix C) on the test suite of grammars (Appendix D). Tables 2 and 3 

show the execution times of implementations of the three variations of the presented 

algorithm for ambiguous grammars and unambiguous grammars, respectively. Table 4 

shows how execution times vary with degree of ambiguity, productivity, and length. 

 

 Sentences-CNF Sentential Forms-CNF Sentences-Proper 
0.00 0.00 0.01 
0.00 0.01 0.00 
0.00 0.01 0.00 
0.00 0.00 0.01 
0.00 0.01 0.00 
0.00 0.00 0.01 
0.01 0.00 0.00 
0.01 0.00 0.00 
0.01 0.01 0.00 
0.01 0.00 0.00 
0.02 0.01 0.01 
0.03 0.02 0.01 
0.03 0.02 0.01 
0.03 0.01 0.00 
0.03 0.01 0.02 
0.03 0.01 0.02 
0.07 0.01 0.00 
1.11 0.27 0.48 
1.11 0.26 0.47 

         12.09 0.07 0.02 
Table 2: Execution Times (in seconds) of the three variations of 
the presented algorithm on a number of ambiguous grammars 
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Sentences-CNF Sentential Forms-CNF Sentences-Proper 
0.00 0.01 0.00 
0.01 0.01 0.00 
0.01 0.02 0.01 
0.01 0.01 0.00 
0.02 0.01 0.00 
0.02 0.05 0.00 
0.03 0.03 0.04 
0.03 0.03 0.01 
0.10 0.13 0.03 
0.22 0.18 0.06 
1.50 3.02 0.02 
3.91 4.14 3.94 

         37.68                30.93 6.88 
         47.02                35.29 0.32 
         96.66                48.30 1.62 
       411.83              294.60            10.26 

The three columns in Tables 2 and 3 represent the three variations of the 

presented algorithm. The first column “Sentences-CNF” represents the variation in which 

CNF grammar productions were used to generate sentences and only sentences were 

checked for ambiguity. The second column “Sentential Forms-CNF” represents the 

variation in which CNF productions were used to generate sentences and sentential forms 

were checked for ambiguity. The third column “Sentences-Proper” represents the 

variation in which proper grammar productions were used to generate sentences and 

sentences were checked for ambiguity. Results with zeroes in all rows were omitted from 

the tables. The execution times in Tables 2, 3, and 4 are the difference between two times 

before and after a grammar is checked for ambiguous strings. 

 

 

 

Table 3: Execution Times (in seconds) of the three variations of the 
presented algorithm on a number of unambiguous grammars 
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DOA Productivity Limit Length ETime (c4/c3)*c2 c2/c1 c6/c1 
2 58 28   6 0.063 12.43 29.00 6.21 
2   7 10   3 0.000   2.10   3.50 1.05 
2 11   3   3 0.000 11.00   5.50 5.50 
2   8   8   4 0.000   4.00   4.00 2.00 
2 11   3   3 0.000 11.00   5.50 5.50 
2 14 22 21 0.047 13.36   7.00 6.68 
2 21 12   3 0.016   5.25 10.50 2.62 
2 10   7   4 0.000   5.71   5.00 2.86 
2 16   4   4 0.016 16.00   8.00 8.00 
2 11   8   3 0.000   4.12   5.50 2.06 
3 20 36   3 0.015   1.67   6.67 0.56 
3   3   4   2 0.000   1.50   1.00 0.50 
3 11 11   4 0.000   4.00   3.67 1.33 
3 14   8   4 0.000   7.00   4.67 2.33 
3 15 16   3 0.000   2.81   5.00 0.94 
3 14   8   3 0.016   5.25   4.67 1.75 
3 21 12   3 0.000   5.25   7.00 1.75 
3 30   9   3 0.016 10.00 10.00 3.33 
3   6 19   4 0.000   1.26   2.00 0.42 
3   8 11   3 0.000   2.18   2.67 0.73 
4 19 40   4 0.047   1.90   4.75 0.48 
4   4   5   2 0.000   1.60   1.00 0.40 
4 12 15   4 0.000   3.20   3.00 0.80 
4 15 12   4 0.015   5.00   3.75 1.25 
4 16 18   3 0.016   2.67   4.00 0.67 
4 18 16   3 0.000   3.37   4.50 0.84 
4 22 16   3 0.000   4.12   5.50 1.03 
4 12 11   2 0.000   2.18   3.00 0.55 
4   7 21   4 0.000   1.33   1.75 0.33 
4   8 12   3 0.016   2.00   2.00 0.50 

 

 
 

In Table 4, DOA stands for degree of ambiguity of a sentence, productivity stands 

for the number of sentences generated without exhibiting self-embedding, limit stands for 

the maximum length of sentence to be checked for ambiguity, and length stands for the 

Table 4: Execution Times (in seconds) of the presented algorithm for ambiguous 
grammars with varied degrees of ambiguity (DOA), productivity, and length 
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length of an ambiguous string found. The terms c1, c2, c3, c4, and c6 represent columns 

1,2,3,4, and 6 in the table, and ETime represents execution time in seconds. 

It is intuitive to expect that the productivity of a grammar is directly proportional 

to the time taken to check for ambiguous strings and that the degree of ambiguity is 

indirectly proportional to the time taken for ambiguous string detection. Column 7 

contains the values of “productivity/degree of ambiguity” for the grammars under 

consideration so that these values can be examined together with the execution times to 

find possible relationships among them. Column 6 contains the values of 

“(length*productivity)/limit” so that the possibility of a relationship between execution 

time and the length of ambiguous strings, productivity, and limit (maximum length of 

strings that are checked for ambiguity) can be explored. Column 8 contains the values of 

column 6 divided by degree of ambiguity. At the time of this study, no relationship has 

been found between the execution time and the factors considered. 
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APPENDIX C 

SOURCE CODE LISTING 

Three programs that check for ambiguous strings generated by CFGs are listed in 

this appendix. Program1 checks for ambiguity using strings generated by a CNF 

grammar. Program2 checks for ambiguity using sentential forms without going all the 

way to sentences. The sentential forms are generated using a CNF grammar. Program3 

checks for ambiguity using strings generated by a proper grammar. 

Program1 

/*THIS IS A PROGRAM THAT CONVERTS A GIVEN CONTEXT-FREE GRAMMAR INTO CNF AND CHECKS FOR 
ITS AMBIGUITY. THE PROGRAM GENERATES STRING USING THE CNF AND THEN CHECKS IF THE STRING 
IS AMBIGUOUS. ALL STRINGS WITH LENGTH LESS THAN OR EQUAL TO 2^p (WHERE p IS THE NUMBER OF 
LIVE PRODUCTIONS) ARE CONSIDERED  
BEFORE DECIDING THAT A GIVEN GRAMMAR IS AMBIGUOUS.*/ 
 
#include<iostream> 
#include<fstream> 
#include<string> 
#include<vector> 
#include<time.h> 
using namespace std; 
 
/*THIS IS A STRUCTURE THAT DEFINES THE FORMAT OF A GRAMMAR RULE*/ 
typedef struct gr 
{ 
 string lhs; 
 string rhs; 
}rule; 
 
/*A STRUCTURE THAT DEFINES THE FORMAT OF A CNF GRAMMAR RULE*/ 
typedef struct CNFgramRule 
{ 
 string LHS; 
 string RHS[2]; 
}CNFrule; 
 
/*A STRUCTURE THAT CONTAINS A SENTENTIAL FORM AND ITS DERIVATION SEQUENCE*/ 
typedef struct strHis 
{ 
 string str; 
 string history; 
}strhis; 
 
 
vector<rule> grammar; 
vector<CNFrule> CNFgrammar; 
int limit,unambGram=0,ambGram=0,ambiguityFound,DOA; 
double ambTime=0,unambTime=0; 
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string startSym,amStr; 
clock_t time1; 
ofstream out,graph; 
 
 
/*THIS IS A FUNCTION THAT GENERATES STRINGS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *,strhis,int *); 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE 
HAS ALREADY BEEN CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis>,strhis,int *); 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string,int *,int *); 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int); 
 
/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string,int *); 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void); 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string,vector<string>); 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void); 
 
/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void); 
 
/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule,vector<rule>); 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
void removeUnit(void); 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION 
OR NOT*/ 
int singleProd(rule); 
 
/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
void toCNF(void); 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string,vector<rule>,int *); 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule); 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL 
FORMS*/ 
int presRemStr(string,vector<rule>,string *); 
 
/*TO CHECK IF A STRING IS A SENTENCE OR A SENTENTIAL FORM*/ 
int isTerStr(string); 
 
/*PROGRAM EXECUTION STARTS HERE*/ 
int main() 
{ 
 ifstream inp; 
 inp.open("grammar.txt"); 
 out.open("PROFILE.txt"); 
 if(!inp) 
 { 
  out<<"INPUT FILE MISSING"<<endl; 
  exit(1); 
 } 
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 graph.open("GRAPH.txt"); 
 graph<<"TIME LENGTH DOA"<<endl; 
 while(!inp.eof()) 
 { 
  string inpStr; 
  getline(inp,inpStr); 
  out<<"GRAMMAR NAME: "<<inpStr<<endl; 
  getline(inp,inpStr); 
  ambiguityFound=0; 
  DOA=1; 
  while(inpStr!="**END") 
  { 
   int pos=(int)inpStr.find("->",0); 
   rule gramProd; 
   gramProd.lhs=inpStr.substr(0,pos); 
   gramProd.rhs=inpStr.substr(pos+2,inpStr.length()-pos-1); 
   grammar.push_back(gramProd); 
   getline(inp,inpStr); 
  } 
  startSym=grammar[0].lhs; 
  if(!removeEpsilon()) 
  { 
   out<<"\t"<<"GRAMMAR DERIVES EMPTY STRING. SO NO CNF"<<endl; 
  
 out<<"*************************************************"<<endl<<endl; 
  } 
  else 
  { 
   removeUnit(); 
   removeNonGen(); 
   if(grammar[0].lhs!=startSym) 
   { 
    out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
   
 out<<"*************************************************"<<endl<<endl; 
   } 
   else 
   { 
    removeUnreachable(); 
    if((int)grammar.size()==0) 
    { 
     out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
    
 out<<"*************************************************"<<endl<<endl; 
    } 
    else 
    { 
     toCNF(); 
     vector<string> LV; 
     int indx; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
       LV.push_back(CNFgrammar[indx].LHS); 
     } 
     int LR=0,LDL=0; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
      { 
      
 if(CNFgrammar[indx].RHS[0]==CNFgrammar[indx].RHS[1]) 
       { 
       
 if(belongsTo(CNFgrammar[indx].RHS[1],LV)) 
         LDL++; 
        else 
         LR++; 
       } 
       else 
        LR++; 



 44

      } 
     } 
     limit=twoPower(LDL)*(LR+1); 
     vector<strhis> senForms; 
     strhis tem; 
     tem.str=CNFgrammar[0].LHS; 
     tem.history=""; 
     senForms.push_back(tem); 
     int numNew=0,i=1; 
     out<<"\t"<<"MAXIMUM LENGTH OF AN UNAMBIGUOUS STRING: 
"<<limit<<endl; 
     out<<"\t"<<"CHECKING FOR AMBIGUITY....."<<endl; 
     time1=clock(); 
     int j; 
     while(i<=limit) 
     { 
      for(j=0;j<(int)senForms.size();j++) 
       genStrings(&senForms,senForms[j],&i); 
      if(DOA>1) 
      { 
       i=limit+1; 
       clock_t time2=clock(); 
       out<<"\t"<<"DEGREE OF AMBIGUITY: 
"<<DOA<<endl; 
       out<<"\t"<<"DIFFERENT LEFT MOST 
DERIVATIONS ARE :"<<endl; 
       for(int 
N=0;N<(int)senForms.size();N++) 
       { 
        if(senForms[N].str==amStr) 
        
 out<<endl<<"\t"<<senForms[N].history<<senForms[N].str<<endl; 
       } 
       out<<endl<<"\t"<<"PROCESSING TIME FOR 
GRAMMAR: "<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS  (THIS TIME INCLUDES THE TIME 
TO CALCULATE DEGREE OF AMBIGUITY)"<<endl; 
       ambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
      
 graph<<(int)amStr.length()<<"\t"<<DOA<<endl; 
       ambGram++; 
      
 out<<"********************************************************"<<endl<<endl; 
       grammar.clear(); 
       CNFgrammar.clear(); 
      } 
      i++; 
     } 
     if(i!=limit+2) 
     { 
      out<<"\t"<<"NO AMBIGUOUS STRINGS FOUND AND 
HENCE UNAMBIGUOUS GRAMMAR"<<endl; 
      clock_t time2=clock(); 
      out<<"\t"<<"PROCESSING TIME FOR GRAMMAR: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      unambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
      unambGram++; 
     
 out<<"*************************************************"<<endl<<endl; 
      grammar.clear(); 
      CNFgrammar.clear(); 
     } 
    } 
   } 
  } 
 }  
 out<<"TOTAL NUMBER OF AMBIGUOUS GRAMMARS: "<<ambGram<<endl; 
 out<<"AVERAGE TIME TAKEN FOR AMBIGUOUS GRAMMARS: "<<ambTime/(double)ambGram<<" 
SECONDS"<<endl; 
 out<<"TOTAL NUMBER OF UNAMBIGUOUS GRAMMARS: "<<unambGram<<endl; 
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 out<<"AVERAGE TIME TAKEN FOR UNAMBIGUOUS GRAMMARS: 
"<<unambTime/(double)unambGram<<" SECONDS"<<endl; 
} 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ni))) 
     good=0;  
   } 
   if((good==1)&&(!belongsTo(grammar[i].lhs,Ne))) 
      Ne.push_back(grammar[i].lhs); 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string s,vector<string> v) 
{ 
 int n; 
 for(n=0;n<(int)v.size();n++) 
 { 
  if(s==v[n]) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 Ne.push_back(grammar[0].lhs); 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   if(belongsTo(grammar[i].lhs,Ni)) 
   { 



 46

    for(j=0;j<(int)grammar[i].rhs.length();) 
    {  
     string t=getNextNonter(grammar[i].rhs,&j,&k); 
     if(!belongsTo(t,Ne)) 
       Ne.push_back(t); 
    } 
   } 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(grammar[i].rhs=="") 
   Ne.push_back(grammar[i].lhs); 
 } 
 while(Ni!=Ne) 
 { 
  Ni=Ne; 
  int ll=(int)Ne.size(); 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1,len=0,changed=0; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if(t!="") 
    { 
     len++; 
     if((belongsTo(t,Ni))&&good) 
     { 
      good=1; 
      changed=1; 
     } 
     else 
      good=0; 
    }  
   } 
   int dummy=0; 
   if((len==lengthOf(grammar[i].rhs,&dummy)) && good && changed && 
(!belongsTo(grammar[i].lhs,Ne))) 
    Ne.push_back(grammar[i].lhs); 
  } 
 } 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  for(j=0;j<(int)grammar[i].rhs.length();) 
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  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(belongsTo(t,Ne))) 
   { 
    string 
newString=grammar[i].rhs.substr(0,k)+grammar[i].rhs.substr(j,(int)grammar[i].rhs.length()
-k-(int)t.length()); 
    rule newRule; 
    newRule.lhs=grammar[i].lhs; 
    newRule.rhs=newString; 
    if(!rulePresent(newRule,grammar)) 
     grammar.push_back(newRule); 
   } 
  } 
 } 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((grammar[i].lhs==startSym)&&(grammar[i].rhs=="")) 
   return 0; 
  if((grammar[i].rhs!="")&&(!rulePresent(grammar[i],tempGram))) 
   tempGram.push_back(grammar[i]); 
 } 
 grammar.clear(); 
 grammar=tempGram; 
 return 1; 
} 
 
/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule r,vector<rule> vec) 
{ 
 int z; 
 for(z=0;z<(int)vec.size();z++) 
 { 
  if((r.lhs==vec[z].lhs)&&(r.rhs==vec[z].rhs)) 
   return 1; 
 } 
 return 0; 
} 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
void removeUnit(void) 
{ 
 vector<string> nonTers; 
 int i,j,k=0,n; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(!belongsTo(grammar[i].lhs,nonTers)) 
   nonTers.push_back(grammar[i].lhs); 
  for(j=0;j<(int)grammar[i].rhs.length();) 
  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(!belongsTo(t,nonTers))) 
    nonTers.push_back(t); 
  } 
 } 
 typedef vector<string> pr; 
 vector<pr> singleProds; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  vector<string> Ni,Ne; 
  Ne.push_back(nonTers[n]); 
  while(Ni!=Ne) 
  { 
   Ni=Ne; 
   for(i=0;i<(int)grammar.size();i++) 
   { 
    if(singleProd(grammar[i])) 
    { 
     if(belongsTo(grammar[i].lhs,Ni)) 
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     { 
      if(!belongsTo(grammar[i].rhs,Ne)) 
      { 
       Ne.push_back(grammar[i].rhs);  
      } 
     } 
    } 
   } 
  } 
  singleProds.push_back(Ne); 
 } 
 vector<rule> tempGram; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  for(i=0;i<(int)grammar.size();i++) 
  { 
  
 if((belongsTo(grammar[i].lhs,singleProds[n]))&&(!singleProd(grammar[i]))) 
   { 
     rule nr; 
     nr.lhs=nonTers[n]; 
     nr.rhs=grammar[i].rhs; 
     if(!rulePresent(nr,tempGram)) 
      tempGram.push_back(nr); 
   } 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION OR NOT*/ 
int singleProd(rule r) 
{ 
 int dummy=0; 
 if((lengthOf(r.rhs,&dummy)==1)&&((int)r.rhs[0]>64)&&((int)r.rhs[0]<91)) 
  return 1; 
 else 
  return 0; 
} 
 
/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
void toCNF(void) 
{ 
 int i,count=1; 
 vector<rule> remGram,remString; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((int)grammar[i].rhs.length()==1) 
  { 
   CNFrule newCNFrule; 
   newCNFrule.LHS=grammar[i].lhs; 
   newCNFrule.RHS[0]=grammar[i].rhs; 
   newCNFrule.RHS[1]=""; 
   CNFgrammar.push_back(newCNFrule); 
  } 
  else 
  { 
   int numNonters=0,len; 
   len=lengthOf(grammar[i].rhs,&numNonters); 
   if(len==2) 
   { 
    if(numNonters==2) 
    { 
     CNFrule newCNFrule; 
     newCNFrule.LHS=grammar[i].lhs; 
     int j=0,k=0; 
    
 newCNFrule.RHS[0]=getNextNonter(grammar[i].rhs,&j,&k); 
    
 newCNFrule.RHS[1]=getNextNonter(grammar[i].rhs,&j,&k); 
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     CNFgrammar.push_back(newCNFrule); 
    } 
    else 
    { 
     if(numNonters==1) 
     { 
      CNFrule newCNFrule; 
      newCNFrule.LHS=grammar[i].lhs; 
      int j=0,k=0; 
      string ter,nonter,newNT; 
      nonter=getNextNonter(grammar[i].rhs,&j,&k); 
      if(k==0) 
      { 
       newCNFrule.RHS[0]=nonter; 
      
 ter=grammar[i].rhs.substr((int)nonter.length(),1); 
      
 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[1]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
 
      } 
      else 
      { 
       newCNFrule.RHS[1]=nonter; 
       ter=grammar[i].rhs.substr(0,1); 
      
 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[0]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
      } 
      newCNFrule.LHS=newNT; 
      newCNFrule.RHS[0]=ter; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      rule nr; 
      nr.lhs=newNT; 
      nr.rhs=ter; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
     else 
     { 
      CNFrule newCNFrule; 
      string newNT1,newNT2,ter1,ter2; 
      newCNFrule.LHS=grammar[i].lhs; 
      ter1=grammar[i].rhs.substr(0,1); 
      ter2=grammar[i].rhs.substr(1,1); 
      newNT1=makeNewNonter(ter1,remGram,&count); 
      rule nr; 
      nr.lhs=newNT1; 
      nr.rhs=ter1; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
      newNT2=makeNewNonter(ter2,remGram,&count); 
      newCNFrule.RHS[0]=newNT1; 
      newCNFrule.RHS[1]=newNT2; 
      CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT1; 
      newCNFrule.RHS[0]=ter1; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT2; 
      newCNFrule.RHS[0]=ter2; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      nr.lhs=newNT2; 
      nr.rhs=ter2; 
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      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
    } 
   } 
   else 
   { 
    rule curRule; 
    curRule=grammar[i]; 
    int dummy=0; 
    while(lengthOf(curRule.rhs,&dummy)!=2) 
    { 
     string rep=""; 
     if(presRemStr(curRule.rhs,remString,&rep)) 
      curRule.rhs=rep; 
     else 
     { 
      rule newRule,dumRule; 
      dumRule.lhs=curRule.rhs; 
      newRule.lhs=curRule.lhs; 
      string nonter,symbol,newNT; 
      int j=0,k=0; 
      newNT=makeNewNonter("dummy",remGram,&count); 
      curRule.lhs=newNT; 
      nonter=getNextNonter(curRule.rhs,&j,&k); 
      if((k==0)&&(nonter!="")) 
      { 
       newRule.rhs=nonter; 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr((int)nonter.length(),(int)curRule.rhs.length()-
(int)nonter.length()); 
      } 
      else 
      { 
       newRule.rhs=curRule.rhs.substr(0,1); 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr(1,(int)curRule.rhs.length()-1); 
      } 
      dumRule.rhs=newRule.rhs; 
      remString.push_back(dumRule); 
      grammar.push_back(newRule); 
     } 
     grammar.push_back(curRule); 
    } 
   } 
  } 
 } 
} 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string str,vector<rule> vec,int *cnt) 
{ 
 int indx; 
 for(indx=0;indx<(int)vec.size();indx++) 
 { 
  if(str==vec[indx].rhs) 
   return vec[indx].lhs; 
 } 
 char temp[10]; 
 sprintf(temp,"Z%d",(*cnt)); 
 (*cnt)++; 
 return temp; 
} 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule cr) 
{ 
 int indx; 
 for(indx=0;indx<(int)CNFgrammar.size();indx++) 
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 { 
 
 if((cr.LHS==CNFgrammar[indx].LHS)&&(cr.RHS[0]==CNFgrammar[indx].RHS[0])&&(cr.RHS[1
]==CNFgrammar[indx].RHS[1])) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL FORMS*/ 
int presRemStr(string st,vector<rule> v,string *ret) 
{ 
 int indx; 
 for(indx=0;indx<(int)v.size();indx++) 
 { 
  if(st==v[indx].lhs) 
  { 
   (*ret)=v[indx].rhs; 
   return 1; 
  } 
 } 
 return 0; 
} 
 
/*THIS IS A FUNCTION THAT GENERATES STRINGS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *vec,strhis x,int *y) 
{ 
 int prods,ps=0,p=0,amb; 
 string newString,NT; 
 NT=getNextNonter(x.str,&p,&ps); 
 for(prods=0;prods<(int)CNFgrammar.size();prods++) 
 { 
  if((CNFgrammar[prods].LHS==NT)&&(NT!="")) 
  { 
  
 newString=x.str.substr(0,ps)+CNFgrammar[prods].RHS[0]+CNFgrammar[prods].RHS[1]+x.s
tr.substr(p,(int)x.str.length()-ps-(int)NT.length()); 
   int dumy; 
   if(lengthOf(newString,&dumy)<=(*y)) 
   { 
    strhis tem; 
    tem.str=newString; 
    tem.history=x.history+x.str+"==>"; 
    amb=1; 
                if(!already((*vec),tem,&amb)) 
                        vec->push_back(tem); 
    if(amb>1) 
    { 
     if((ambiguityFound==0)&&(isTerStr(newString))) 
     { 
                        ambiguityFound=1; 
      amStr=newString; 
      clock_t time2=clock(); 
      out<<"\t"<<"AMBIGUOUS SENTENTIAL FORM 
"<<newString<<" FOUND AT LENGTH: "<<(int)newString.length()<<endl; 
      out<<"\t"<<"TIME TAKEN TO DETECT AMBIGUITY: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      graph<<(time2-
time1)/(double)CLOCKS_PER_SEC<<"\t"; 
     } 
     if((ambiguityFound==1)&&(newString==amStr)&&(amb>1)) 
      DOA++; 
    } 
   } 
  } 
 } 
} 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE HAS ALREADY BEEN 
CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis> st,strhis s,int *am) 
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{ 
 int x,retval=0; 
 for(x=0;x<(int)st.size();x++) 
 { 
  if(s.str==st[x].str) 
  {    
   if(s.history==st[x].history) 
                retval=1; 
   else 
    (*am)++; 
  } 
 } 
 return retval; 
} 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string s,int *z,int *y) 
{ 
 while(((*z)<(int)s.length())&&((int)s[(*z)]<65)||((int)s[(*z)]>90)) 
  (*z)++; 
 if((*z)==(int)s.length()) 
  return ""; 
 else 
 { 
  (*y)=(*z); 
  (*z)++; 
  while(((*z)<(int)s.length())&&((int)s[(*z)]<=57)&&((int)s[(*z)]>=48)) 
   (*z)++; 
  return(s.substr((*y),(*z)-(*y))); 
 } 
} 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int n) 
{ 
 int indx,val=1; 
 for(indx=1;indx<=n;indx++) 
  val*=2; 
 return val; 
} 
 
/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string str,int *nN) 
{ 
 int len=0,indx; 
 for(indx=0;indx<(int)str.length();indx++)  
 { 
  if((str[indx]<48)||(str[indx]>57)) 
   len++; 
  if((str[indx]>64)&&(str[indx]<91)) 
   (*nN)++; 
 } 
 return len; 
} 
 
/*TO CHECK IF A STRING IS A SENTENCE OR A SENTENTIAL FORM*/ 
int isTerStr(string str) 
{ 
 int x; 
 for(x=0;x<(int)str.length();x++) 
 { 
 
 if((((int)str[x]<91)&&((int)str[x]>64))||(((int)str[x]<58)&&((int)str[x]>47))) 
   return 0; 
 } 
 return 1; 
} 
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Program2 

/*THIS IS A PROGRAM THAT CONVERTS A GIVEN CONTEXT-FREE GRAMMAR INTO CNF AND CHECKS FOR 
ITS AMBIGUITY. THE PROGRAM GENERATES SENTENTIAL FORMS USING THE CNF AND THEN CHECKS IF 
THEY ARE AMBIGUOUS. ALL SENTENTIAL FORMS WHICH CAN PRODUCE 
A SENTENCE LESS THAN OR EQUAL TO 2^p (WHERE p IS THE NUMBER OF LIVE PRODUCTIONS) ARE 
CONSIDERED BEFORE DECIDING THAT A GIVEN GRAMMAR IS AMBIGUOUS.*/ 
#include<iostream> 
#include<fstream> 
#include<string> 
#include<vector> 
#include<time.h> 
using namespace std; 
 
/*THIS IS A STRUCTURE THAT DEFINES THE FORMAT OF A GRAMMAR RULE*/ 
typedef struct gr 
{ 
 string lhs; 
 string rhs; 
}rule; 
 
/*A STRUCTURE THAT DEFINES THE FORMAT OF A CNF GRAMMAR RULE*/ 
typedef struct CNFgramRule 
{ 
 string LHS; 
 string RHS[2]; 
}CNFrule; 
 
/*A STRUCTURE THAT CONTAINS A SENTENTIAL FORM AND ITS DERIVATION SEQUENCE*/ 
typedef struct strHis 
{ 
 string str; 
 string history; 
}strhis; 
 
 
vector<rule> grammar; 
vector<CNFrule> CNFgrammar; 
int limit,unambGram=0,ambGram=0,ambiguityFound,DOA; 
double ambTime=0,unambTime=0; 
string startSym,amStr; 
clock_t time1; 
ofstream out,graph; 
 
 
/*THIS IS A FUNCTION THAT GENERATES STRINGS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *,strhis,int *); 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE HAS ALREADY BEEN 
CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis>,strhis,int *); 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string,int *,int *); 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int); 
 
/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string,int *); 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void); 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string,vector<string>); 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void); 
 



 54

/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void); 
 
/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule,vector<rule>); 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
void removeUnit(void); 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION 
OR NOT*/ 
int singleProd(rule); 
 
/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
void toCNF(void); 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string,vector<rule>,int *); 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule); 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL 
FORMS*/ 
int presRemStr(string,vector<rule>,string *); 
 
/*THIS FUNCTION CHECKS IF A SENTENTIAL FORM GENERATES A STRING WITHIN THE LIMIT OF 2^p OR 
NOT*/ 
int strInLimit(string,int); 
 
/*PROGRAM EXECUTION STARTS HERE*/ 
int main() 
{ 
 ifstream inp; 
 inp.open("grammar.txt"); 
 out.open("PROFILE.txt"); 
 if(!inp) 
 { 
  out<<"INPUT FILE MISSING"<<endl; 
  exit(1); 
 } 
 graph.open("GRAPH.txt"); 
 graph<<"TIME LENGTH DOA"<<endl; 
 while(!inp.eof()) 
 { 
  string inpStr; 
  getline(inp,inpStr); 
  out<<"GRAMMAR NAME: "<<inpStr<<endl; 
  getline(inp,inpStr); 
  ambiguityFound=0; 
  DOA=1; 
  while(inpStr!="**END") 
  { 
   int pos=(int)inpStr.find("->",0); 
   rule gramProd; 
   gramProd.lhs=inpStr.substr(0,pos); 
   gramProd.rhs=inpStr.substr(pos+2,inpStr.length()-pos-1); 
   grammar.push_back(gramProd); 
   getline(inp,inpStr); 
  } 
  startSym=grammar[0].lhs; 
  if(!removeEpsilon()) 
  { 
   out<<"\t"<<"GRAMMAR DERIVES EMPTY STRING. SO NO CNF"<<endl; 
  
 out<<"*************************************************"<<endl<<endl; 
  } 
  else 
  { 
   removeUnit(); 
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   removeNonGen(); 
   if(grammar[0].lhs!=startSym) 
   { 
    out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
   
 out<<"*************************************************"<<endl<<endl; 
   } 
   else 
   { 
    removeUnreachable(); 
    if((int)grammar.size()==0) 
    { 
     out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
    
 out<<"*************************************************"<<endl<<endl; 
    } 
    else 
    { 
     toCNF(); 
     vector<string> LV; 
     int indx; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
       LV.push_back(CNFgrammar[indx].LHS); 
     } 
     int LR=0,LDL=0; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
      { 
      
 if(CNFgrammar[indx].RHS[0]==CNFgrammar[indx].RHS[1]) 
       { 
       
 if(belongsTo(CNFgrammar[indx].RHS[1],LV)) 
         LDL++; 
        else 
         LR++; 
       } 
       else 
        LR++; 
      } 
     } 
     limit=twoPower(LDL)*(LR+1); 
     vector<strhis> senForms; 
     strhis tem; 
     tem.str=CNFgrammar[0].LHS; 
     tem.history=""; 
     senForms.push_back(tem); 
     int numNew=0,i=1; 
     out<<"\t"<<"MAXIMUM LENGTH OF AN UNAMBIGUOUS STRING: 
"<<limit<<endl; 
     out<<"\t"<<"CHECKING FOR AMBIGUITY....."<<endl; 
     time1=clock(); 
     int j; 
     while(i<=limit) 
     { 
      for(j=0;j<(int)senForms.size();j++) 
       genStrings(&senForms,senForms[j],&i); 
      if(DOA>1) 
      { 
       i=limit+1; 
       clock_t time2=clock(); 
       out<<"\t"<<"DEGREE OF AMBIGUITY: 
"<<DOA<<endl; 
       out<<"\t"<<"DIFFERENT LEFT MOST 
DERIVATIONS ARE :"<<endl; 
       for(int 
N=0;N<(int)senForms.size();N++) 
       { 
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        if(senForms[N].str==amStr) 
        
 out<<endl<<"\t"<<senForms[N].history<<senForms[N].str<<endl; 
       } 
       out<<endl<<"\t"<<"PROCESSING TIME FOR 
GRAMMAR: "<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS  (THIS TIME INCLUDES THE TIME 
TO CALCULATE DEGREE OF AMBIGUITY)"<<endl; 
       ambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
  
 int zz=0;     
 graph<<lengthOf(amStr,&zz)<<"\t"<<DOA<<endl; 
       ambGram++; 
      
 out<<"********************************************************"<<endl<<endl; 
       grammar.clear(); 
       CNFgrammar.clear(); 
      } 
      i++; 
     } 
     if(i!=limit+2) 
     { 
      out<<"\t"<<"NO AMBIGUOUS STRINGS FOUND AND 
HENCE UNAMBIGUOUS GRAMMAR"<<endl; 
      clock_t time2=clock(); 
      out<<"\t"<<"PROCESSING TIME FOR GRAMMAR: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      unambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
      unambGram++; 
     
 out<<"*************************************************"<<endl<<endl; 
      grammar.clear(); 
      CNFgrammar.clear(); 
     } 
    } 
   } 
  } 
 }  
 out<<"TOTAL NUMBER OF AMBIGUOUS GRAMMARS: "<<ambGram<<endl; 
 out<<"AVERAGE TIME TAKEN FOR AMBIGUOUS GRAMMARS: "<<ambTime/(double)ambGram<<" 
SECONDS"<<endl; 
 out<<"TOTAL NUMBER OF UNAMBIGUOUS GRAMMARS: "<<unambGram<<endl; 
 out<<"AVERAGE TIME TAKEN FOR UNAMBIGUOUS GRAMMARS: 
"<<unambTime/(double)unambGram<<" SECONDS"<<endl; 
} 
 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ni))) 
     good=0;  
   } 
   if((good==1)&&(!belongsTo(grammar[i].lhs,Ne))) 
      Ne.push_back(grammar[i].lhs); 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
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 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string s,vector<string> v) 
{ 
 int n; 
 for(n=0;n<(int)v.size();n++) 
 { 
  if(s==v[n]) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 Ne.push_back(grammar[0].lhs); 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   if(belongsTo(grammar[i].lhs,Ni)) 
   { 
    for(j=0;j<(int)grammar[i].rhs.length();) 
    {  
     string t=getNextNonter(grammar[i].rhs,&j,&k); 
     if(!belongsTo(t,Ne)) 
       Ne.push_back(t); 
    } 
   } 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
 grammar.clear(); 
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 grammar=tempGram; 
} 
 
/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(grammar[i].rhs=="") 
   Ne.push_back(grammar[i].lhs); 
 } 
 while(Ni!=Ne) 
 { 
  Ni=Ne; 
  int ll=(int)Ne.size(); 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1,len=0,changed=0; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if(t!="") 
    { 
     len++; 
     if((belongsTo(t,Ni))&&good) 
     { 
      good=1; 
      changed=1; 
     } 
     else 
      good=0; 
    }  
   } 
   int dummy=0; 
   if((len==lengthOf(grammar[i].rhs,&dummy)) && good && changed && 
(!belongsTo(grammar[i].lhs,Ne))) 
    Ne.push_back(grammar[i].lhs); 
  } 
 } 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  for(j=0;j<(int)grammar[i].rhs.length();) 
  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(belongsTo(t,Ne))) 
   { 
    string 
newString=grammar[i].rhs.substr(0,k)+grammar[i].rhs.substr(j,(int)grammar[i].rhs.length()
-k-(int)t.length()); 
    rule newRule; 
    newRule.lhs=grammar[i].lhs; 
    newRule.rhs=newString; 
    if(!rulePresent(newRule,grammar)) 
     grammar.push_back(newRule); 
   } 
  } 
 } 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((grammar[i].lhs==startSym)&&(grammar[i].rhs=="")) 
   return 0; 
  if((grammar[i].rhs!="")&&(!rulePresent(grammar[i],tempGram))) 
   tempGram.push_back(grammar[i]); 
 } 
 grammar.clear(); 
 grammar=tempGram; 
 return 1; 
} 
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/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule r,vector<rule> vec) 
{ 
 int z; 
 for(z=0;z<(int)vec.size();z++) 
 { 
  if((r.lhs==vec[z].lhs)&&(r.rhs==vec[z].rhs)) 
   return 1; 
 } 
 return 0; 
} 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
void removeUnit(void) 
{ 
 vector<string> nonTers; 
 int i,j,k=0,n; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(!belongsTo(grammar[i].lhs,nonTers)) 
   nonTers.push_back(grammar[i].lhs); 
  for(j=0;j<(int)grammar[i].rhs.length();) 
  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(!belongsTo(t,nonTers))) 
    nonTers.push_back(t); 
  } 
 } 
 typedef vector<string> pr; 
 vector<pr> singleProds; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  vector<string> Ni,Ne; 
  Ne.push_back(nonTers[n]); 
  while(Ni!=Ne) 
  { 
   Ni=Ne; 
   for(i=0;i<(int)grammar.size();i++) 
   { 
    if(singleProd(grammar[i])) 
    { 
     if(belongsTo(grammar[i].lhs,Ni)) 
     { 
      if(!belongsTo(grammar[i].rhs,Ne)) 
      { 
       Ne.push_back(grammar[i].rhs);  
      } 
     } 
    } 
   } 
  } 
  singleProds.push_back(Ne); 
 } 
 vector<rule> tempGram; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  for(i=0;i<(int)grammar.size();i++) 
  { 
  
 if((belongsTo(grammar[i].lhs,singleProds[n]))&&(!singleProd(grammar[i]))) 
   { 
     rule nr; 
     nr.lhs=nonTers[n]; 
     nr.rhs=grammar[i].rhs; 
     if(!rulePresent(nr,tempGram)) 
      tempGram.push_back(nr); 
   } 
  } 
 } 
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 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION OR NOT*/ 
int singleProd(rule r) 
{ 
 int dummy=0; 
 if((lengthOf(r.rhs,&dummy)==1)&&((int)r.rhs[0]>64)&&((int)r.rhs[0]<91)) 
  return 1; 
 else 
  return 0; 
} 
 
/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
void toCNF(void) 
{ 
 int i,count=1; 
 vector<rule> remGram,remString; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((int)grammar[i].rhs.length()==1) 
  { 
   CNFrule newCNFrule; 
   newCNFrule.LHS=grammar[i].lhs; 
   newCNFrule.RHS[0]=grammar[i].rhs; 
   newCNFrule.RHS[1]=""; 
   CNFgrammar.push_back(newCNFrule); 
  } 
  else 
  { 
   int numNonters=0,len; 
   len=lengthOf(grammar[i].rhs,&numNonters); 
   if(len==2) 
   { 
    if(numNonters==2) 
    { 
     CNFrule newCNFrule; 
     newCNFrule.LHS=grammar[i].lhs; 
     int j=0,k=0; 
    
 newCNFrule.RHS[0]=getNextNonter(grammar[i].rhs,&j,&k); 
    
 newCNFrule.RHS[1]=getNextNonter(grammar[i].rhs,&j,&k); 
     CNFgrammar.push_back(newCNFrule); 
    } 
    else 
    { 
     if(numNonters==1) 
     { 
      CNFrule newCNFrule; 
      newCNFrule.LHS=grammar[i].lhs; 
      int j=0,k=0; 
      string ter,nonter,newNT; 
      nonter=getNextNonter(grammar[i].rhs,&j,&k); 
      if(k==0) 
      { 
       newCNFrule.RHS[0]=nonter; 
      
 ter=grammar[i].rhs.substr((int)nonter.length(),1); 
      
 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[1]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
 
      } 
      else 
      { 
       newCNFrule.RHS[1]=nonter; 
       ter=grammar[i].rhs.substr(0,1); 
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 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[0]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
      } 
      newCNFrule.LHS=newNT; 
      newCNFrule.RHS[0]=ter; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      rule nr; 
      nr.lhs=newNT; 
      nr.rhs=ter; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
     else 
     { 
      CNFrule newCNFrule; 
      string newNT1,newNT2,ter1,ter2; 
      newCNFrule.LHS=grammar[i].lhs; 
      ter1=grammar[i].rhs.substr(0,1); 
      ter2=grammar[i].rhs.substr(1,1); 
      newNT1=makeNewNonter(ter1,remGram,&count); 
      rule nr; 
      nr.lhs=newNT1; 
      nr.rhs=ter1; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
      newNT2=makeNewNonter(ter2,remGram,&count); 
      newCNFrule.RHS[0]=newNT1; 
      newCNFrule.RHS[1]=newNT2; 
      CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT1; 
      newCNFrule.RHS[0]=ter1; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT2; 
      newCNFrule.RHS[0]=ter2; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      nr.lhs=newNT2; 
      nr.rhs=ter2; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
    } 
   } 
   else 
   { 
    rule curRule; 
    curRule=grammar[i]; 
    int dummy=0; 
    while(lengthOf(curRule.rhs,&dummy)!=2) 
    { 
     string rep=""; 
     if(presRemStr(curRule.rhs,remString,&rep)) 
      curRule.rhs=rep; 
     else 
     { 
      rule newRule,dumRule; 
      dumRule.lhs=curRule.rhs; 
      newRule.lhs=curRule.lhs; 
      string nonter,symbol,newNT; 
      int j=0,k=0; 
      newNT=makeNewNonter("dummy",remGram,&count); 
      curRule.lhs=newNT; 
      nonter=getNextNonter(curRule.rhs,&j,&k); 
      if((k==0)&&(nonter!="")) 
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      { 
       newRule.rhs=nonter; 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr((int)nonter.length(),(int)curRule.rhs.length()-
(int)nonter.length()); 
      } 
      else 
      { 
       newRule.rhs=curRule.rhs.substr(0,1); 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr(1,(int)curRule.rhs.length()-1); 
      } 
      dumRule.rhs=newRule.rhs; 
      remString.push_back(dumRule); 
      grammar.push_back(newRule); 
     } 
     grammar.push_back(curRule); 
    } 
   } 
  } 
 } 
} 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string str,vector<rule> vec,int *cnt) 
{ 
 int indx; 
 for(indx=0;indx<(int)vec.size();indx++) 
 { 
  if(str==vec[indx].rhs) 
   return vec[indx].lhs; 
 } 
 char temp[10]; 
 sprintf(temp,"Z%d",(*cnt)); 
 (*cnt)++; 
 return temp; 
} 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule cr) 
{ 
 int indx; 
 for(indx=0;indx<(int)CNFgrammar.size();indx++) 
 { 
 
 if((cr.LHS==CNFgrammar[indx].LHS)&&(cr.RHS[0]==CNFgrammar[indx].RHS[0])&&(cr.RHS[1
]==CNFgrammar[indx].RHS[1])) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL FORMS*/ 
int presRemStr(string st,vector<rule> v,string *ret) 
{ 
 int indx; 
 for(indx=0;indx<(int)v.size();indx++) 
 { 
  if(st==v[indx].lhs) 
  { 
   (*ret)=v[indx].rhs; 
   return 1; 
  } 
 } 
 return 0; 
} 
 
/*THIS IS A FUNCTION THAT GENERATES SENTENTIAL FORMS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *vec,strhis x,int *y) 



 63

{ 
 int prods,ps=0,p=0,amb; 
 string newString,NT; 
 NT=getNextNonter(x.str,&p,&ps); 
 for(prods=0;prods<(int)CNFgrammar.size();prods++) 
 { 
  if((CNFgrammar[prods].LHS==NT)&&(NT!="")) 
  { 
  
 newString=x.str.substr(0,ps)+CNFgrammar[prods].RHS[0]+CNFgrammar[prods].RHS[1]+x.s
tr.substr(p,(int)x.str.length()-ps-(int)NT.length()); 
   int dumy; 
   if((lengthOf(newString,&dumy)<=(*y))&&(strInLimit(newString,(*y)))) 
   { 
    strhis tem; 
    tem.str=newString; 
    tem.history=x.history+x.str+"==>"; 
    amb=1; 
                if(!already((*vec),tem,&amb)) 
                        vec->push_back(tem); 
    if(amb>1) 
    { 
     if(ambiguityFound==0) 
     { 
                        ambiguityFound=1; 
      amStr=newString; 
      DOA=amb; 
      clock_t time2=clock(); 
      out<<"\t"<<"AMBIGUOUS SENTENTIAL FORM 
"<<newString<<" FOUND AT LENGTH: "; 
int zz=0;out<<lengthOf(newString,&zz)<<endl; 
      out<<"\t"<<"TIME TAKEN TO DETECT AMBIGUITY: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      graph<<(time2-
time1)/(double)CLOCKS_PER_SEC<<"\t"; 
     } 
     if((ambiguityFound==1)&&(newString==amStr)) 
      DOA=amb; 
    } 
   } 
  } 
 } 
} 
 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE HAS ALREADY BEEN 
CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis> st,strhis s,int *am) 
{ 
 int x,retval=0; 
 for(x=0;x<(int)st.size();x++) 
 { 
  if(s.str==st[x].str) 
  {    
   if(s.history==st[x].history) 
                retval=1; 
   else 
    (*am)++; 
  } 
 } 
 return retval; 
} 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string s,int *z,int *y) 
{ 
 while(((*z)<(int)s.length())&&((int)s[(*z)]<65)||((int)s[(*z)]>90)) 
  (*z)++; 
 if((*z)==(int)s.length()) 
  return ""; 
 else 
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 { 
  (*y)=(*z); 
  (*z)++; 
  while(((*z)<(int)s.length())&&((int)s[(*z)]<=57)&&((int)s[(*z)]>=48)) 
   (*z)++; 
  return(s.substr((*y),(*z)-(*y))); 
 } 
} 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int n) 
{ 
 int indx,val=1; 
 for(indx=1;indx<=n;indx++) 
  val*=2; 
 return val; 
} 
 
/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string str,int *nN) 
{ 
 int len=0,indx; 
 for(indx=0;indx<(int)str.length();indx++)  
 { 
  if((str[indx]<48)||(str[indx]>57)) 
   len++; 
  if((str[indx]>64)&&(str[indx]<91)) 
   (*nN)++; 
 } 
 return len; 
} 
 
/*THIS FUNCTION CHECKS IF A SENTENTIAL FORM GENERATES A STRING WITHIN THE LIMIT OF 2^p OR 
NOT*/ 
int strInLimit(string str,int lt) 
{ 
 int dum=0,num=0; 
 for(int p=0;p<(int)str.length();) 
 { 
  int isLive=0,isDead=0; 
  string nonTer=getNextNonter(str,&p,&dum); 
  for(int q=0;q<(int)CNFgrammar.size();q++) 
  { 
   if((CNFgrammar[q].RHS[1]!="")&&(CNFgrammar[q].LHS==nonTer)) 
    isLive=1; 
   if((CNFgrammar[q].RHS[1]=="")&&(CNFgrammar[q].LHS==nonTer)) 
    isDead=1; 
  } 
  if(isLive &&(!isDead)) 
   num++; 
 } 
 if((lengthOf(str,&dum)+num)<=lt) 
  return 1; 
 else 
  return 0; 
} 

 
 
Program3 

/*THIS IS A PROGRAM THAT CONVERTS A GIVEN CONTEXT-FREE GRAMMAR INTO CNF AND CHECKS FOR 
ITS AMBIGUITY. THE PROGRAM GENERATES STRING USING THE PROPER GRAMMAR AND THEN CHECKS IF 
THE STRING IS AMBIGUOUS. ALL STRINGS WITH LENGTH LESS THAN 
OR EQUAL TO 2^p (WHERE p IS THE NUMBER OF LIVE PRODUCTIONS) ARE CONSIDERED BEFORE 
DECIDING THAT A GIVEN GRAMMAR IS AMBIGUOUS.*/ 
#include<iostream> 
#include<fstream> 
#include<string> 
#include<vector> 
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#include<time.h> 
using namespace std; 
 
/*THIS IS A STRUCTURE THAT DEFINES THE FORMAT OF A GRAMMAR RULE*/ 
typedef struct gr 
{ 
 string lhs; 
 string rhs; 
}rule; 
 
/*A STRUCTURE THAT DEFINES THE FORMAT OF A CNF GRAMMAR RULE*/ 
typedef struct CNFgramRule 
{ 
 string LHS; 
 string RHS[2]; 
}CNFrule; 
 
/*A STRUCTURE THAT CONTAINS A SENTENTIAL FORM AND ITS DERIVATION SEQUENCE*/ 
typedef struct strHis 
{ 
 string str; 
 string history; 
}strhis; 
 
 
vector<rule> grammar; 
vector<CNFrule> CNFgrammar; 
int limit,unambGram=0,ambGram=0,ambiguityFound,DOA; 
double ambTime=0,unambTime=0; 
string startSym,amStr; 
clock_t time1; 
ofstream out,graph; 
 
 
/*THIS IS A FUNCTION THAT GENERATES STRINGS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *,strhis,int *); 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE HAS ALREADY BEEN 
CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis>,strhis,int *); 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string,int *,int *); 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int); 
 
/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string,int *); 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void); 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string,vector<string>); 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void); 
 
/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void); 
 
/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule,vector<rule>); 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
void removeUnit(void); 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION OR NOT*/ 
int singleProd(rule); 
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/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
void toCNF(void); 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string,vector<rule>,int *); 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule); 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL FORMS*/ 
int presRemStr(string,vector<rule>,string *); 
 
/*TO CHECK IF A STRING IS A SENTENCE OR A SENTENTIAL FORM*/ 
int isTerStr(string); 
 
/*PROGRAM EXECUTION STARTS HERE*/ 
int main() 
{ 
 ifstream inp; 
 inp.open("grammar.txt"); 
 out.open("PROFILE.txt"); 
 if(!inp) 
 { 
  out<<"INPUT FILE MISSING"<<endl; 
  exit(1); 
 } 
 graph.open("GRAPH.txt"); 
 graph<<"TIME LENGTH DOA"<<endl; 
 while(!inp.eof()) 
 { 
  string inpStr; 
  getline(inp,inpStr); 
  out<<"GRAMMAR NAME: "<<inpStr<<endl; 
  getline(inp,inpStr); 
  ambiguityFound=0; 
  DOA=1; 
  while(inpStr!="**END") 
  { 
   int pos=(int)inpStr.find("->",0); 
   rule gramProd; 
   gramProd.lhs=inpStr.substr(0,pos); 
   gramProd.rhs=inpStr.substr(pos+2,inpStr.length()-pos-1); 
   grammar.push_back(gramProd); 
   getline(inp,inpStr); 
  } 
  startSym=grammar[0].lhs; 
  if(!removeEpsilon()) 
  { 
   out<<"\t"<<"GRAMMAR DERIVES EMPTY STRING. SO NO CNF"<<endl; 
  
 out<<"*************************************************"<<endl<<endl; 
  } 
  else 
  { 
   removeUnit(); 
   removeNonGen(); 
   if(grammar[0].lhs!=startSym) 
   { 
    out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
   
 out<<"*************************************************"<<endl<<endl; 
   } 
   else 
   { 
    removeUnreachable(); 
    if((int)grammar.size()==0) 
    { 
     out<<"\t"<<"GRAMMAR DOESN'T PRODUCE ANYTHING"<<endl; 
    
 out<<"*************************************************"<<endl<<endl; 
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    } 
    else 
    { 
     properGrammar=grammar; 
     toCNF(); 
     vector<string> LV; 
     int indx; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
       LV.push_back(CNFgrammar[indx].LHS); 
     } 
     int LR=0,LDL=0; 
     for(indx=0;indx<(int)CNFgrammar.size();indx++) 
     { 
      if(CNFgrammar[indx].RHS[1]!="") 
      { 
      
 if(CNFgrammar[indx].RHS[0]==CNFgrammar[indx].RHS[1]) 
       { 
       
 if(belongsTo(CNFgrammar[indx].RHS[1],LV)) 
         LDL++; 
        else 
         LR++; 
       } 
       else 
        LR++; 
      } 
     } 
     limit=twoPower(LDL)*(LR+1); 
     vector<strhis> senForms; 
     strhis tem; 
     tem.str=CNFgrammar[0].LHS; 
     tem.history=""; 
     senForms.push_back(tem); 
     int numNew=0,i=1; 
     out<<"\t"<<"MAXIMUM LENGTH OF AN UNAMBIGUOUS STRING: 
"<<limit<<endl; 
     out<<"\t"<<"CHECKING FOR AMBIGUITY....."<<endl; 
     time1=clock(); 
     int j; 
     while(i<=limit) 
     { 
      for(j=0;j<(int)senForms.size();j++) 
       genStrings(&senForms,senForms[j],&i); 
      if(DOA>1) 
      { 
       i=limit+1; 
       clock_t time2=clock(); 
       out<<"\t"<<"DEGREE OF AMBIGUITY: 
"<<DOA<<endl; 
       out<<"\t"<<"DIFFERENT LEFT MOST 
DERIVATIONS ARE :"<<endl; 
       for(int 
N=0;N<(int)senForms.size();N++) 
       { 
        if(senForms[N].str==amStr) 
        
 out<<endl<<"\t"<<senForms[N].history<<senForms[N].str<<endl; 
       } 
       out<<endl<<"\t"<<"PROCESSING TIME FOR 
GRAMMAR: "<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS  (THIS TIME INCLUDES THE TIME 
TO CALCULATE DEGREE OF AMBIGUITY)"<<endl; 
       ambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
      
 graph<<(int)amStr.length()<<"\t"<<DOA<<endl; 
       ambGram++; 
      
 out<<"********************************************************"<<endl<<endl; 



 68

       grammar.clear(); 
       CNFgrammar.clear(); 
      } 
      i++; 
     } 
     if(i!=limit+2) 
     { 
      out<<"\t"<<"NO AMBIGUOUS STRINGS FOUND AND 
HENCE UNAMBIGUOUS GRAMMAR"<<endl; 
      clock_t time2=clock(); 
      out<<"\t"<<"PROCESSING TIME FOR GRAMMAR: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      unambTime+=(time2-
time1)/(double)CLOCKS_PER_SEC; 
      unambGram++; 
     
 out<<"*************************************************"<<endl<<endl; 
      grammar.clear(); 
      CNFgrammar.clear(); 
     } 
    } 
   } 
  } 
 }  
 out<<"TOTAL NUMBER OF AMBIGUOUS GRAMMARS: "<<ambGram<<endl; 
 out<<"AVERAGE TIME TAKEN FOR AMBIGUOUS GRAMMARS: "<<ambTime/(double)ambGram<<" 
SECONDS"<<endl; 
 out<<"TOTAL NUMBER OF UNAMBIGUOUS GRAMMARS: "<<unambGram<<endl; 
 out<<"AVERAGE TIME TAKEN FOR UNAMBIGUOUS GRAMMARS: 
"<<unambTime/(double)unambGram<<" SECONDS"<<endl; 
} 
 
 
/*THIS IS A FUNCTION TO REMOVE THE NON GENERATING SYMBOLS FROM A GRAMMAR*/ 
void removeNonGen(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ni))) 
     good=0;  
   } 
   if((good==1)&&(!belongsTo(grammar[i].lhs,Ne))) 
      Ne.push_back(grammar[i].lhs); 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
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 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*A FUNCTION TO CHECK IF A STRING BELONGS TO A VECTOR OF STINGS*/ 
int belongsTo(string s,vector<string> v) 
{ 
 int n; 
 for(n=0;n<(int)v.size();n++) 
 { 
  if(s==v[n]) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION REMOVES THE UNREACHABLE SYMBOLS FROM A GRAMMAR*/ 
void removeUnreachable(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 Ne.push_back(grammar[0].lhs); 
 do 
 { 
  Ni=Ne; 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   if(belongsTo(grammar[i].lhs,Ni)) 
   { 
    for(j=0;j<(int)grammar[i].rhs.length();) 
    {  
     string t=getNextNonter(grammar[i].rhs,&j,&k); 
     if(!belongsTo(t,Ne)) 
       Ne.push_back(t); 
    } 
   } 
  } 
 } 
 while(Ni!=Ne); 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(belongsTo(grammar[i].lhs,Ne)) 
  { 
   int good=1; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if((t!="")&&(!belongsTo(t,Ne))) 
     good=0;  
   } 
   if(good) 
    tempGram.push_back(grammar[i]); 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*A FUNCTION TO REMOVE EPSILON PRODUCTIONS FROM A GRAMMAR*/ 
int removeEpsilon(void) 
{ 
 vector<string> Ni,Ne; 
 int i,j,k=0; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(grammar[i].rhs=="") 
   Ne.push_back(grammar[i].lhs); 
 } 
 while(Ni!=Ne) 
 { 
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  Ni=Ne; 
  int ll=(int)Ne.size(); 
  for(i=0;i<(int)grammar.size();i++) 
  { 
   int good=1,len=0,changed=0; 
   for(j=0;j<(int)grammar[i].rhs.length();) 
   {  
    string t=getNextNonter(grammar[i].rhs,&j,&k); 
    if(t!="") 
    { 
     len++; 
     if((belongsTo(t,Ni))&&good) 
     { 
      good=1; 
      changed=1; 
     } 
     else 
      good=0; 
    }  
   } 
   int dummy=0; 
   if((len==lengthOf(grammar[i].rhs,&dummy)) && good && changed && 
(!belongsTo(grammar[i].lhs,Ne))) 
    Ne.push_back(grammar[i].lhs); 
  } 
 } 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  for(j=0;j<(int)grammar[i].rhs.length();) 
  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(belongsTo(t,Ne))) 
   { 
    string 
newString=grammar[i].rhs.substr(0,k)+grammar[i].rhs.substr(j,(int)grammar[i].rhs.length()
-k-(int)t.length()); 
    rule newRule; 
    newRule.lhs=grammar[i].lhs; 
    newRule.rhs=newString; 
    if(!rulePresent(newRule,grammar)) 
     grammar.push_back(newRule); 
   } 
  } 
 } 
 vector<rule> tempGram; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((grammar[i].lhs==startSym)&&(grammar[i].rhs=="")) 
   return 0; 
  if((grammar[i].rhs!="")&&(!rulePresent(grammar[i],tempGram))) 
   tempGram.push_back(grammar[i]); 
 } 
 grammar.clear(); 
 grammar=tempGram; 
 return 1; 
} 
 
/*THIS FUNCTION CHECKS IF A RULE IS ALREADY PRESENT IN THE SET OF 
GRAMMAR RULES BEING CONSIDERED*/ 
int rulePresent(rule r,vector<rule> vec) 
{ 
 int z; 
 for(z=0;z<(int)vec.size();z++) 
 { 
  if((r.lhs==vec[z].lhs)&&(r.rhs==vec[z].rhs)) 
   return 1; 
 } 
 return 0; 
} 
 
/*FUNCTION TO REMOVE UNIT PRODUCTIONS*/ 
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void removeUnit(void) 
{ 
 vector<string> nonTers; 
 int i,j,k=0,n; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if(!belongsTo(grammar[i].lhs,nonTers)) 
   nonTers.push_back(grammar[i].lhs); 
  for(j=0;j<(int)grammar[i].rhs.length();) 
  {  
   string t=getNextNonter(grammar[i].rhs,&j,&k); 
   if((t!="")&&(!belongsTo(t,nonTers))) 
    nonTers.push_back(t); 
  } 
 } 
 typedef vector<string> pr; 
 vector<pr> singleProds; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  vector<string> Ni,Ne; 
  Ne.push_back(nonTers[n]); 
  while(Ni!=Ne) 
  { 
   Ni=Ne; 
   for(i=0;i<(int)grammar.size();i++) 
   { 
    if(singleProd(grammar[i])) 
    { 
     if(belongsTo(grammar[i].lhs,Ni)) 
     { 
      if(!belongsTo(grammar[i].rhs,Ne)) 
      { 
       Ne.push_back(grammar[i].rhs);  
      } 
     } 
    } 
   } 
  } 
  singleProds.push_back(Ne); 
 } 
 vector<rule> tempGram; 
 for(n=0;n<(int)nonTers.size();n++) 
 { 
  for(i=0;i<(int)grammar.size();i++) 
  { 
  
 if((belongsTo(grammar[i].lhs,singleProds[n]))&&(!singleProd(grammar[i]))) 
   { 
     rule nr; 
     nr.lhs=nonTers[n]; 
     nr.rhs=grammar[i].rhs; 
     if(!rulePresent(nr,tempGram)) 
      tempGram.push_back(nr); 
   } 
  } 
 } 
 grammar.clear(); 
 grammar=tempGram; 
} 
 
/*THIS FUNCTION IS USEDTO CHECK IF A PRODUCTION IS A SINGLE PRODUCTION OR NOT*/ 
int singleProd(rule r) 
{ 
 int dummy=0; 
 if((lengthOf(r.rhs,&dummy)==1)&&((int)r.rhs[0]>64)&&((int)r.rhs[0]<91)) 
  return 1; 
 else 
  return 0; 
} 
 
/*THIS IS A FUNCTION THAT BREAKS UP A PROPER GRAMMAR INTO A CNF GRAMMAR*/ 
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void toCNF(void) 
{ 
 int i,count=1; 
 vector<rule> remGram,remString; 
 for(i=0;i<(int)grammar.size();i++) 
 { 
  if((int)grammar[i].rhs.length()==1) 
  { 
   CNFrule newCNFrule; 
   newCNFrule.LHS=grammar[i].lhs; 
   newCNFrule.RHS[0]=grammar[i].rhs; 
   newCNFrule.RHS[1]=""; 
   CNFgrammar.push_back(newCNFrule); 
  } 
  else 
  { 
   int numNonters=0,len; 
   len=lengthOf(grammar[i].rhs,&numNonters); 
   if(len==2) 
   { 
    if(numNonters==2) 
    { 
     CNFrule newCNFrule; 
     newCNFrule.LHS=grammar[i].lhs; 
     int j=0,k=0; 
    
 newCNFrule.RHS[0]=getNextNonter(grammar[i].rhs,&j,&k); 
    
 newCNFrule.RHS[1]=getNextNonter(grammar[i].rhs,&j,&k); 
     CNFgrammar.push_back(newCNFrule); 
    } 
    else 
    { 
     if(numNonters==1) 
     { 
      CNFrule newCNFrule; 
      newCNFrule.LHS=grammar[i].lhs; 
      int j=0,k=0; 
      string ter,nonter,newNT; 
      nonter=getNextNonter(grammar[i].rhs,&j,&k); 
      if(k==0) 
      { 
       newCNFrule.RHS[0]=nonter; 
      
 ter=grammar[i].rhs.substr((int)nonter.length(),1); 
      
 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[1]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
 
      } 
      else 
      { 
       newCNFrule.RHS[1]=nonter; 
       ter=grammar[i].rhs.substr(0,1); 
      
 newNT=makeNewNonter(ter,remGram,&count); 
       newCNFrule.RHS[0]=newNT; 
       CNFgrammar.push_back(newCNFrule); 
      } 
      newCNFrule.LHS=newNT; 
      newCNFrule.RHS[0]=ter; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      rule nr; 
      nr.lhs=newNT; 
      nr.rhs=ter; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
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     else 
     { 
      CNFrule newCNFrule; 
      string newNT1,newNT2,ter1,ter2; 
      newCNFrule.LHS=grammar[i].lhs; 
      ter1=grammar[i].rhs.substr(0,1); 
      ter2=grammar[i].rhs.substr(1,1); 
      newNT1=makeNewNonter(ter1,remGram,&count); 
      rule nr; 
      nr.lhs=newNT1; 
      nr.rhs=ter1; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
      newNT2=makeNewNonter(ter2,remGram,&count); 
      newCNFrule.RHS[0]=newNT1; 
      newCNFrule.RHS[1]=newNT2; 
      CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT1; 
      newCNFrule.RHS[0]=ter1; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      newCNFrule.LHS=newNT2; 
      newCNFrule.RHS[0]=ter2; 
      newCNFrule.RHS[1]=""; 
      if(!cnfRuleAlready(newCNFrule)) 
       CNFgrammar.push_back(newCNFrule); 
      nr.lhs=newNT2; 
      nr.rhs=ter2; 
      if(!rulePresent(nr,remGram)) 
       remGram.push_back(nr); 
     } 
    } 
   } 
   else 
   { 
    rule curRule; 
    curRule=grammar[i]; 
    int dummy=0; 
    while(lengthOf(curRule.rhs,&dummy)!=2) 
    { 
     string rep=""; 
     if(presRemStr(curRule.rhs,remString,&rep)) 
      curRule.rhs=rep; 
     else 
     { 
      rule newRule,dumRule; 
      dumRule.lhs=curRule.rhs; 
      newRule.lhs=curRule.lhs; 
      string nonter,symbol,newNT; 
      int j=0,k=0; 
      newNT=makeNewNonter("dummy",remGram,&count); 
      curRule.lhs=newNT; 
      nonter=getNextNonter(curRule.rhs,&j,&k); 
      if((k==0)&&(nonter!="")) 
      { 
       newRule.rhs=nonter; 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr((int)nonter.length(),(int)curRule.rhs.length()-
(int)nonter.length()); 
      } 
      else 
      { 
       newRule.rhs=curRule.rhs.substr(0,1); 
       newRule.rhs+=newNT; 
      
 curRule.rhs=curRule.rhs.substr(1,(int)curRule.rhs.length()-1); 
      } 
      dumRule.rhs=newRule.rhs; 
      remString.push_back(dumRule); 
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      grammar.push_back(newRule); 
     } 
     grammar.push_back(curRule); 
    } 
   } 
  } 
 } 
} 
 
/*FUNCTION TO CREATE NEW NONTERMINALS DURING THE CONVERSION TO CNF*/ 
string makeNewNonter(string str,vector<rule> vec,int *cnt) 
{ 
 int indx; 
 for(indx=0;indx<(int)vec.size();indx++) 
 { 
  if(str==vec[indx].rhs) 
   return vec[indx].lhs; 
 } 
 char temp[10]; 
 sprintf(temp,"Z%d",(*cnt)); 
 (*cnt)++; 
 return temp; 
} 
 
/*THIS IS A FUNCTION TO CHECK IF A CNF RULE HAS ALREADY BEEN ADDED*/ 
int cnfRuleAlready(CNFrule cr) 
{ 
 int indx; 
 for(indx=0;indx<(int)CNFgrammar.size();indx++) 
 { 
 
 if((cr.LHS==CNFgrammar[indx].LHS)&&(cr.RHS[0]==CNFgrammar[indx].RHS[0])&&(cr.RHS[1
]==CNFgrammar[indx].RHS[1])) 
   return 1; 
 } 
 return 0; 
} 
 
/*THIS FUNCTION IS USED FOR APPLYING THE RULES TO GENERATE SENTENTIAL FORMS*/ 
int presRemStr(string st,vector<rule> v,string *ret) 
{ 
 int indx; 
 for(indx=0;indx<(int)v.size();indx++) 
 { 
  if(st==v[indx].lhs) 
  { 
   (*ret)=v[indx].rhs; 
   return 1; 
  } 
 } 
 return 0; 
} 
 
/*THIS IS A FUNCTION THAT GENERATES STRINGS TO CHECK FOR AMBIGUITY*/ 
void genStrings(vector<strhis> *vec,strhis x,int *y) 
{ 
 int prods,ps=0,p=0,amb; 
 string newString,NT; 
 NT=getNextNonter(x.str,&p,&ps); 
 for(prods=0;prods<(int)properGrammar.size();prods++) 
 { 
  if((properGrammar[prods].lhs==NT)&&(NT!="")) 
  { 
  
 newString=x.str.substr(0,ps)+properGrammar[prods].rhs+x.str.substr(p,(int)x.str.le
ngth()-ps-(int)NT.length()); 
   int dumy; 
   if(lengthOf(newString,&dumy)<=(*y)) 
   { 
    strhis tem; 
    tem.str=newString; 
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    tem.history=x.history+x.str+"==>"; 
    amb=1; 
                if(!already((*vec),tem,&amb)) 
                        vec->push_back(tem); 
    if(amb>1) 
    { 
     if((ambiguityFound==0)&&(isTerStr(newString))) 
     { 
                        ambiguityFound=1; 
      amStr=newString; 
      clock_t time2=clock(); 
      out<<"\t"<<"AMBIGUOUS SENTENTIAL FORM 
"<<newString<<" FOUND AT LENGTH: "<<(int)newString.length()<<endl; 
      out<<"\t"<<"TIME TAKEN TO DETECT AMBIGUITY: 
"<<(time2-time1)/(double)CLOCKS_PER_SEC<<" SECONDS"<<endl; 
      graph<<(time2-
time1)/(double)CLOCKS_PER_SEC<<"\t"; 
     } 
     if((ambiguityFound==1)&&(newString==amStr)&&(amb>1)) 
      DOA++; 
    } 
   } 
  } 
 } 
} 
 
 
/*THIS FUNCTION CHECKS IF A STRING WITH THE SAME DERIVATION SEQUENCE HAS ALREADY BEEN 
CHECKED FOR AMBIGUITY*/ 
int already(vector<strhis> st,strhis s,int *am) 
{ 
 int x,retval=0; 
 for(x=0;x<(int)st.size();x++) 
 { 
  if(s.str==st[x].str) 
  {    
   if(s.history==st[x].history) 
                retval=1; 
   else 
    (*am)++; 
  } 
 } 
 return retval; 
} 
 
/*A FUNCTION TO RETRIEVE THE NEXT NONTERMINAL FROM A PRODUCTION BODY*/ 
string getNextNonter(string s,int *z,int *y) 
{ 
 while(((*z)<(int)s.length())&&((int)s[(*z)]<65)||((int)s[(*z)]>90)) 
  (*z)++; 
 if((*z)==(int)s.length()) 
  return ""; 
 else 
 { 
  (*y)=(*z); 
  (*z)++; 
  while(((*z)<(int)s.length())&&((int)s[(*z)]<=57)&&((int)s[(*z)]>=48)) 
   (*z)++; 
  return(s.substr((*y),(*z)-(*y))); 
 } 
} 
 
/*A SIMPLE FUNCTION TO CALCULATE 2^n*/ 
int twoPower(int n) 
{ 
 int indx,val=1; 
 for(indx=1;indx<=n;indx++) 
  val*=2; 
 return val; 
} 
 



 76

/*A FUNCTION TO FIND THE NUMBER OF TERMINALS AND NONTERMINALS IN A SENTENTIAL FORM*/ 
int lengthOf(string str,int *nN) 
{ 
 int len=0,indx; 
 for(indx=0;indx<(int)str.length();indx++)  
 { 
  if((str[indx]<48)||(str[indx]>57)) 
   len++; 
  if((str[indx]>64)&&(str[indx]<91)) 
   (*nN)++; 
 } 
 return len; 
} 
 
/*TO CHECK IF A STRING IS A SENTENCE OR A SENTENTIAL FORM*/ 
int isTerStr(string str) 
{ 
 int x; 
 for(x=0;x<(int)str.length();x++) 
 { 
 
 if((((int)str[x]<91)&&((int)str[x]>64))||(((int)str[x]<58)&&((int)str[x]>47))) 
   return 0; 
 } 
 return 1; 
} 
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APPENDIX D 

INPUT SUITE OF GRAMMARS 

 This appendix contains the test suite of 50 grammars that were used as input to 

the programs presented in AppendixC. Of the 50 grammars, 28 are ambiguous and the 

rest are unambiguous. 

 

GRAMMAR#1 AMBIGUOUS 
S->AB 
S->a 
A->SB 
A->b 
B->BA 
B->a 
**END 
GRAMMAR#2 CLASSIC AMBIGUOUS 
E->E+E 
E->E*E 
E->(E) 
E->a 
**END 
GRAMMAR#3 
E->E*T 
E->T 
T->T*F 
T->F 
F->(E) 
F->a 
**END 
GRAMMAR#4 INHERENTLY AMBIGUOUS 
S->AB 
S->C 
A->aAb 
A->ab 
B->cBd 
B->cd 
C->aCd 
C->aDd 
D->bDc 
D->bc 
**END 
GRAMMAR#5 DEGENERATE 
S->AB 
S->CD 
S->EF 
A->a 
B->b 
C->a 
D->b 
E->a 
F->b 
**END 
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GRAMMAR#6 DANGLING ELSE 
S->ictS 
S->ictSeS 
S->a 
**END 
GRAMMAR#7 UNAMBIGUOUS IF-ELSE 
S->M 
S->U 
M->ictMeM 
M->a 
U->ictS 
U->ictMeU 
**END 
GRAMMAR#8 UNAMBIGUOUS 
S->aSa 
S->bSb 
S->c 
**END 
GRAMMAR#9 UNAMBIGUOUS 
S->AB 
S->ASB 
A->a 
B->b 
**END 
GRAMMAR#10 AMBIGUOUS 
S->AB 
S->CA 
A->a 
B->BC 
B->AB 
C->aB 
C->b 
B->b 
**END 
GRAMMAR#11 AMBIGUOUS 
S->AB 
S->BC 
A->BAD 
A->a 
B->CC 
B->bD 
C->AB 
C->c 
D->d 
**END 
GRAMMAR#12 AMBIGUOUS 
S->bA 
S->aB 
A->bAA 
A->aS 
A->a 
B->bBB 
B->b 
B->SB 
**END 
GRAMMAR#13 UNAMBIGUOUS 
S->AA 
S->a 
A->SS 
A->b 
**END 
GRAMMAR#14 AMBIGUOUS 
S->AB 
S->BC 
A->BA 
A->a 
B->CC 
B->b 
C->AB 
C->a 
**END 
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GRAMMAR#15 UNAMBIGUOUS 
S->ABCD 
A->CS 
B->bD 
D->SB 
A->a 
B->b 
C->c 
D->d 
**END 
GRAMMAR#16 UNAMBIGUOUS 
S->N1V1 
S->N2V2 
N1->DN3S1 
N2->DN4 
V1->V3N2 
V2->V4S1 
V2->stink  
S1->CS 
D->the  
N3->fact 
N4->cats  
N4->dogs 
C->that  
V4->think 
V3->amazes  
V3->bothers 
**END 
GRAMMAR#17 SAME AS #16 BUT WITH SINGLE LETTER TERMINALS 
S->N1V1 
S->N2V2 
N1->DN3S1 
N2->DN4 
V1->V3N2 
V2->V4S1 
V2->s 
S1->CS 
D->t 
N3->f 
N4->c 
N4->d 
C->h 
V4->i 
V3->a 
V3->b 
**END 
GRAMMAR#18 AMBIGUOUS 
S->PQ 
P->ROT 
P->a 
R->MP 
O->a 
O->ab 
T->b 
T->bb 
M->a 
Q->CeD 
C->a 
C->ab 
D->d 
D->ed 
**END 
GRAMMAR#19 UNAMBIGUOUS 
S->ABD 
S->ABC 
A->AE 
A->a 
B->SE 
B->b 
D->d 
C->c 
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E->dc 
**END 
GRAMMAR#20 UNAMBIGUOUS 
S->BC 
S->AB 
A->CF 
C->c 
F->ged 
B->ab 
B->aC 
C->c 
**END 
GRAMMAR#21 AMBIGUOUS 
S->U 
S->V 
U->TaU 
U->TaT 
V->TbV 
V->TbT 
T->aTbT 
T->bTaT 
T-> 
**END 
GRAMMAR#22 AMBIGUOUS 
S->AA 
A->AAA 
A->bA 
A->Ab 
A->a 
**END 
GRAMMAR#23 UNAMBIGUOUS 
S->ACA 
A->aAa 
A->B 
A->C 
B->bB 
B->b 
C->cC 
C->c 
**END 
GRAMMAR#24 UNAMBIGUOUS 
T->ABC 
T->ABD 
A->AD 
A->AC 
A->a 
B->AB 
B->b 
C->c 
D->d 
**END 
GRAMMAR#25 AMBIGUOUS 
A->AS 
S->AB 
S->BB 
S->b 
A->bA 
A->AS 
A->a 
**END 
GRAMMAR#26 UNAMBIGUOUS 
S->AB 
B->bb 
B->bB 
A->a 
A->aAb 
**END 
GRAMMAR#27 AMBIGUOUS 
A->a 
A->B 
A->CA 
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B->bD 
B->b 
D->d 
D->dD 
D->ad 
C->bc 
C->c 
C->CC 
**END 
GRAMMAR#28 UNAMBIGUOUS 
Z->aXY 
Z->bXZ 
Z->z 
X->aY 
X->az 
X->y 
Y->y 
**END 
GRAMMAR#29 AMBIGUOUS 
S->NVNDJ 
N->a 
N->h 
N->PJN 
N->PN 
V->f 
V->e 
P->f 
P->p 
D->r 
D->v 
J->b 
J->g 
J->PJ 
**END 
GRAMMAR#30 AMBIGUOUS 
S->AB 
S->CA 
A->a 
B->BC 
B->AB 
C->aB 
C->b 
B->b 
**END 
GRAMMAR#31 AMBIGUOUS 
S->AB 
S->BC 
A->BAD 
A->a 
B->CC 
B->bD 
C->AB 
C->c 
D->d 
**END 
GRAMMAR#32 AMBIGUOUS 
S->bA 
S->aB 
A->bAA 
A->aS 
A->a 
A->bBB 
B->b 
B->SB 
**END 
GRAMMAR#33 UNAMBIGUOUS 
S->T 
S->a 
T->A 
T->b 
T->T 
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A->ab 
A->aab 
**END 
GRAMMAR#34 AMBIGUOUS 
S->t 
S->e 
S->he 
S->S 
S->eH 
S->eHS 
S->H 
H->hH 
H->h 
H->ht 
**END 
GRAMMAR#35 UNAMBIGUOUS 
S->WCT 
W->while 
C->bconditionb 
T->bRb 
R->statement 
R->statementR 
**END 
GRAMMAR#36 UNAMBIGUOUS 
S->WCT 
W->w 
C->bcb 
T->bRb 
R->s 
R->sR 
**END 
GRAMMAR#37 UNAMBIGUOUS 
S->wbcbbRb 
R->s 
R->sR 
**END 
GRAMMAR#38 AMBIGUOUS 
S->SS 
S->AS 
S->a 
S->b 
A->AA 
A->AS 
A->a 
**END 
GRAMMAR#39 AMBIGUOUS 
S->b 
S->Tb 
S->TQ 
T->baT 
T->caT 
T->aT 
T->ba 
T->ca 
T->a 
Q->bc 
Q->bcQ 
Q->caQ 
Q->ca 
Q->a 
Q->aQ 
**END 
GRAMMAR#40 UNAMBIGUOUS 
T->rXr 
T->rXrT 
X->text 
X->C 
C->dtextd 
C->dtextdC 
**END 
GRAMMAR#41 UNAMBIGUOUS 
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S->UVPO 
S->UVCPO 
U->house 
U->houseflies 
V->flies 
V->like 
C->like 
P->a 
P->the 
O->banana 
**END 
GRAMMAR#42 AMBIGUOUS 
S->MN 
S->PQ 
M->aM 
M->Mc 
M->b 
N->Nc 
N->bN 
N->c 
P->Pd 
P->cP 
P->d 
Q->ad 
**END 
GRAMMAR#43 UNAMBIGUOUS 
A->BDE 
B->cA 
B->c 
B->a 
D->cD 
D->d 
D->aB 
E->e 
E->de 
E->ce 
**END 
GRAMMAR#44 AMBIGUOUS 
S->SAB 
S->ASB 
S->b 
A->ab 
A->Ba 
B->b 
B->bB 
**END 
GRAMMAR#45 UNAMBIGUOUS 
L->AND 
L->GA 
A->a 
A->aA 
A->ab 
N->ab 
D->ba 
D->Da 
G->bG 
G->baG 
G->ba 
**END 
GRAMMAR#46 AMBIGUOUS 
S->NVN 
S->NVNVingN 
N->dogs 
N->NVingN 
V->eat 
**END 
GRAMMAR#47 UNAMBIGUOUS 
A->SB 
A->AS 
S->ab 
B->b 
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B->bB 
B->SB 
**END 
GRAMMAR#48 AMBIGUOUS 
P->PRQ 
P->p 
R->pr 
R->r 
R->rR 
Q->q 
Q->qQ 
Q->rq 
**END 
GRAMMAR#49 AMBIGUOUS 
S->ABSB 
S->ASB 
S->a 
A->aA 
A->a 
B->ab 
B->AB 
B->b 
B->bB 
**END 
GRAMMAR#50 AMBIGUOUS 
S->AC 
S->BA 
A->Ba 
A->aB 
A->a 
C->CB 
C->c 
B->Bc 
B->b 
B->bc 
**END 
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