
   IMPROVING READER PERFORMANCE OF AN UHF 

RFID SYSTEM USING FREQUENCY HOPPING 

TECHNIQUES 

 

 

   By 

   JU-YEN HUNG 

   Bachelor of Management in Management & Information  

   National Open University 

   Taipei, Taiwan 

   2006 

 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 
   the requirements for 

   the Degree of 
   MASTER OF SCIENCE  

   May, 2009  



 ii

   IMPROVING READER PERFORMANCE OF AN UHF 

RFID SYSTEM USING FREQUENCY HOPPING 

TECHNIQUES 

 
 
 
 

   Thesis Approved: 
 

 
   Dr. Venkatesh Sarangan 

   Thesis Adviser 
 

   Dr. John P. Chandler 
 

   Dr. Xiaolin Li 

 
  Dr. A. Gordon Emslie 

   Dean of the Graduate College 
 



 iii  

ACKNOWLEDGMENTS 
 
 
I would like to take this opportunity to thank all of those who have provided support and 

direction throughout the creation of this thesis. First, I would like to thank my thesis 

advisor, Dr. Sarangan, for his patience and guidance. Without his advice and 

encouragement, the strength of this research would be diminished. Thanks are due to my 

other committee members Dr. Chandler and Dr. Li for their intuition and encouragement 

throughout the research process. 

 

To my family and friends, who provided the encouragement I needed through all the 

trials and the obstacles. I would like to thank my mom and my sister’s family who 

provide me with a home during vacations. Special thanks to my two daughters for their 

love and understanding. Special thanks also to my husband; his never ending support has 

lifted me even when the situation seemed dim. 

 

Finally, thanks to the faculty of the Computer Science Department who pushed me 

towards hard working. I am grateful that I have made many friends in the department and 

cherish their friendship. 

 

  



 iv

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 

 
 1.1 Introduction ........................................................................................................1 
 1.2 RFID basics ........................................................................................................2 
  1.2.1 Tag collision problems ..............................................................................3 
  1.2.2 Reader collision problems.........................................................................3 
 1.3 Spread Spectrum Communication .....................................................................5 
  1.3.1 Why Spread Spectrum ..............................................................................5 
  1.3.2 Frequency Hopping Spread Spectrum ......................................................5 
 
 
II. REVIEW OF LITERATURE....................................................................................9 
  
 2.1 Framed Slotted ALOHA protocols ....................................................................9 
 2.2 Accelerated Framed Slotted ALOHA ..............................................................10 
 2.3 Advantages and drawbacks for AFSA .............................................................11 
 
 
III. METHODOLOGY ................................................................................................14 
 
 3.1 Reduce retransmission time .............................................................................14 
 3.2 Reduce undetected collisions ...........................................................................17 
  
 
IV. SIMULATION ......................................................................................................19 
 
 4.1 Specifications ...................................................................................................19 
 4.2 Results ..............................................................................................................21 
  
 
V.  CONCLUSION ......................................................................................................25 
 
 5.1 Conclusion .......................................................................................................25 
 5.2 Future work ......................................................................................................25 
 



 v

Chapter          Page 
 
REFERENCES ............................................................................................................26 
 
APPENDICES .............................................................................................................29 
 



 vi

LIST OF TABLES 
 
 

Table           Page 
 
   1 Optimal m values ...................................................................................................16 
   2 Total time spent with different n values ................................................................21 
   3 Average reading time using pipelined and sequential scheme ..............................22 

 
 



 vii

LIST OF FIGURES 
 

Figure           Page 
 
   1 A typical UHF RFID system....................................................................................2 
   2 Two tags collides in the same reading zone.............................................................3 
   3 The tag collides with a nearby reader ......................................................................4 
   4 A tag cannot respond to two readers at the same time .............................................4 
   5 An example of frequency hopping pattern ...............................................................6 
   6 A fast frequency hopping system .............................................................................6 
   7 A slow hopping frequency system ...........................................................................7 
   8 Switching overhead ..................................................................................................7 
   9 AFSA .....................................................................................................................13 
   10 The impact of interference ...................................................................................15 
   11 Impact of interference ..........................................................................................16 
   12 Sequential execution of AFSA.............................................................................17 
   13 Pipelined execution of AFSA ..............................................................................17 
   14 Data flow chart .....................................................................................................20 
   15 Total time spent with different n values ..............................................................22 
   16 Average reading time using pipelined and sequential scheme ............................23 
   17 Comparison between pipelined and sequential scheme  ......................................24 
 



 1

CHAPTER I 
 
 

INTRODUCTION 

 

1.1 Introduction 

 

RFID (Radio Frequency Identification), technology used for object tracking and tracing, 

has been deployed widely over several different fields in recent years. The RFID systems 

allowing producers and suppliers to scan items in large quantities without line-of-sight, 

hence saving money and time, have been gradually substituting bar code and commonly 

recognized as boosting efficiency in supply chain management [1]. However, some of the 

characteristics of RFID systems, such as large in-flood and inaccuracy, limited the 

widespread adoption of RFID technology [2].  

 

The data stream generated by RFID readers is not 100% guaranteed; it may suffer from 

the same problems as most wireless communications-- fading, interference, signal 

collisions, etc. In the real world, the observed read rate is between 60-70% [2] [3] [4]. An 

improved performance may have a detection rate of 95-99% [5]. Nonetheless, this read 

rate is greatly environmentally dependant. The results of readings are usually not as 

accurate when the processes are done in dense environments. According to the 

experiment by Wal-mart in 2005, a fully loaded pallet may have its read rate dropped to 

66% [6]. As a consequence, collision problems are blamed as the main reasons for 

deficiency of data reading. 

 

Another factor can be interference. In wireless communications, external interference is 

not avoidable. The lost information bits due to interference need to be retransmitted later. 
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Therefore, extra cost is endured.  To minimize the cost, the influence of interference must 

be reduced by using some techniques, e.g. frequency hopping, which is a technique often 

seen in spread spectrum.  

 

In this paper, we propose a new RFID passive tag reading model using frequency 

hopping techniques to reduce external interference as well as the number of collisions 

during the reading process, so that the overall tag reading performance is improved. The 

anti-collision algorithms will be discussed in chapter 2. Chapter 3 describes how we 

implement these techniques in our new model. In chapter 4, the simulation results are 

presented to prove our new model to be both interference and collision resistant. 

Conclusions will be made in chapter 5.  

 

1.2 RFID basics 

 

A typical RFID system usually consists of some active or passive RFID tags and one or 

more readers which connect to a backbone computer system [7].  

 

Figure 1. A typical UHF RFID system [7]. 

RFID tags are small electronic devices consisting of an antenna and a microchip with 

data capacity of, at most, 2,000 bytes [8]. An active tag contains a battery which can 

power its microchip; a passive tag has no battery on board and needs an RFID reader 

providing enough energy to power up the microchip.  It is noticeable that the battery in an 

active tag is reserved for the microchip not for transmitting signals. Whether active or 

passive, in UHF RFID systems, the tag transmits its information using “backscatter” 
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technology [9]. If all tags backscattered at the same time, the modulated waveforms will 

be garbled. This is so called tag collision problem [10]. Since the transmission media is 

air, collision problems greatly influence the reader’s performance. It is important to 

understand how these problems are encountered. There are three types of collision 

problems: tag-to-tag, tag-to-reader and reader-to-reader collision problems respectively. 

Tag-to-reader collision problems can be described as a special case in reader collision 

problems. 

 

1.2.1 Tag collision problems 

 

When two tags present in the reading zone of a reader, if they send back their information 

at the same time, the information collides before reaching to the reader. The reader is not 

able to retrieve either tag’s data. This is called tag-to-tag collision. See figure 2. 

 

Figure 2. Two tags collides in the same reading zone 

 

1.2.2 Reader collision problems 

 

When a tag is in a reader’s interrogation region, but not far enough from another reader, 

if the tag is responding to a request from the first reader while the second reader is 

sending out signals, because the signal strength sent by the second reader is several times 

stronger than the tag’s signal, the information sent by the tag will be overlapped by the 
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second reader. The first reader either receives incorrect data from the second reader or 

simply fails to receive any data because of the collision. This is known as the tag-to- 

reader collision problem, See figure 3. 

 

Figure 3 The tag collides with a nearby reader 

If the signals sent by the two readers arrive to a tag at the same time, this tag is not able to 

respond to either reader’s request. This overlapped zone is sometimes called a “dead 

zone”. Both readers fail to read this tag. Thus, a reader-to-reader collision occurs. See 

figure 4. 

 

Figure 4 A tag cannot respond to two readers at the same time 
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Collisions prevent success transmission of information either from reader to tag or tag to 

reader, thus greatly degrading the efficiency of a system. We will discuss current 

techniques which are proposed to solve the collision problems in chapter 2. 

 

1.3 Spread Spectrum Communication 

 

1.3.1 Why Spread Spectrum 

 

As mentioned in the beginning of this chapter, the interference in wireless 

communications is hard to avoid but the impact should be able to reduce using some 

ways. The idea of spread spectrum technique is to spread the information signals over a 

wider bandwidth so that jamming and interception of a channel would be more difficult 

[11] [12]. Depending on how the spectrum is spread and the differences between spread 

waveforms, the spread spectrum can be identified as frequency hopping spread spectrum, 

direct sequence spread spectrum, time hopping spread spectrum and chirp spread 

spectrum. Chirp spread spectrum is used for special purposes and is not as popular as the 

former three. However, they all share the same benefits of spreading spectrum, which are 

interference resistance, low probability of intercept (LPI), multipath fading resistance, 

improved multiple access capability, and ranging [12][13][14]. 

 

1.3.2 Frequency Hopping Spread Spectrum 

 

Frequency hopping is a sequence of changing carrier frequencies during signal 

transmissions. The sequence of hopping from one frequency to the other is called 

frequency-hopping pattern. An example of hopping pattern is showed in Figure 5. The set 

of possible hopping frequencies is called a hopset. Suppose a hopset contains M 

frequencies, each has a bandwidth of B. The hopping occurs over a hopset called the 

hopping band, whose bandwidth is W, W≥ MB. Frequency hopping occurs in time 

intervals, called hop interval. The duration of each hop interval is named hop duration or 

hop period. The changing rate of the frequencies is called the hop rate.  
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Figure 5. An example of frequency hopping pattern 

Frequency Hopping Spread Spectrum, which is the earliest spread spectrum, was the 

invention of Hollywood star Hedy Lamarr used in military during the World War II.  In 

her invention, the transmitter sends one bit with several frequency hopping intervals. 

Listening to the channel, whether intentionally or not, will get a sequence of noise like 

signals. Only the receiver knows which frequency is the priority, after de-spreading, the 

receiver is able to recover the information sent from the transmitter, hence providing 

privacy. This is also known as a fast frequency hopping system. See Figure 6. 

 

Figure 6. A fast frequency hopping system 

Although fast frequency hopping system provides privacy, it is not efficient for 

transmitting data. That is because there is a switching overhead between each hop. Figure 

7 shows the switching overhead.  
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Figure 7. Switching overhead 

Switching time is the sum of the fall time, dead time and rise time. The switching time is 

only used for switching frequencies, during which no information will be transmitted.   

 

Later on, slow frequency hopping system was introduced. A slow frequency hopping 

system is a system with the hopping period longer than the symbol period, see Figure 8. 

Figure 8. A slow hopping frequency system. 

It is obvious that if a piece of information is transmitted as a whole, it is more efficient. 

But if during the transmission interference is taking place, some information will be 

garbled. Those lost bits need to be retransmitted to recover the information. A slow 

frequency hopping system provides interference resistance by nature. During each 

hopping period a portion of the information will be transmitted. If some channel is 
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jammed or intercepted, the lost information is limited to the portion using that frequency, 

not the whole piece of information [15] [16]. The faster hopping rate seems to have better 

interference resistance, but produces more switching overhead, which possibly makes the 

system less efficient. We will discuss how to determine the ideal hopping intervals so that 

the overhead and retransmission time are minimal in chapter 3. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

During the querying process of a RFID reader, if multiple tags reply at the same time, it 

leads to a collision. The limited computation ability of a tag made it hard to communicate 

among tags to avoid collisions. Instead, the reader takes the responsibility of avoiding 

collisions. RFID anti-collision protocols can be generally classified as deterministic 

algorithms and probabilistic algorithms.  

 

Deterministic algorithms, also known as tree based algorithms, prevent collisions by 

muting most of the tags that are involved. Eventually, there will be a successful 

transmission from a tag [17]. The reader finished reading all tags in its read zone by 

visiting them one by one. The advantage of tree algorithms is that the system can obtain 

higher accuracy, but takes a longer time to read all tags, compared to probabilistic 

algorithms, especially when a huge number of tags are present at the same time. On the 

other hand, probabilistic algorithms, including the family of ALOHA based protocols, 

can read a larger number of tags in a shorter time but in a less accurate manner. There are 

a lot of extended slotted ALOHA algorithms, some of the most popular will be discussed 

in the following sections.  

 

2.1 Framed Slotted ALOHA protocols 

 

Framed- Slotted ALOHA (FSA) is the most well known protocol among all deterministic 

algorithms [18]. By letting each tag transmitting its information to a randomly chosen 

time slot in a frame, FSA reduces the probability of tag collision. However, if the  
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difference between the frame size and the number of tag counts are large, either idle slots 

or the number of collisions are also large. This highly degrades the system’s efficiency.  

 

Dynamic FSA (DFSA) [19] and Adaptive Slotted ALOHA Protocol (ASAP) [20] solve 

this problem by estimating the number of tags present to determine the ideal frame size in 

the subsequent round. In DFSA, if the tag count is large, the frame size needs to be 

exponentially increased to identify the tag. Because no matter how many tags remaining 

unread, it always starts with the initial minimum frame size after identifying a tag [21]. In 

ASAP, the frame size is determined based on the observation of the previous round. 

These algorithms work well if the tag counts are small. However, the performance is poor 

[21] [22] if the number becomes large, because the frame size cannot increase 

indefinitely as the tag counts increase and the fact that large frame sizes increase the 

interference between readers in multiple-reader environments. As a result, we need a 

scheme that can minimize the reading time even if the frame size is limited. 

 

Enhanced DFSA (EDFSA) [23] guarantees a high tag reading rate with a limited frame 

size by grouping tags to a smaller population so that the probability of a successful 

reserved slot can be maintained close to 36.8% of the maximum frame size [24]. This 

approach, however, does not significantly reduce the rounds needed for reading tags.  

 

2.2 Accelerated Framed Slotted ALOHA (AFSA)  

 

The framework of AFSA [24] extends the three phases seen in most slotted ALOHA 

protocols to five phases. The first phase is the advertisement phase, where the reader 

broadcasts to all tags within its range: the frame size (N), the number of groups (M) and 

an n, which represents the length of an n-bit sequence used for the next phase. A tag first 

randomly chooses its group number to determine its eligibility to participate in the 

proceeding round. Each eligible tag then changes its state to “select”, and chooses 

randomly a time slot. 
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The second phase is the reservation phase, during which each tag transmits an n-bit 

sequence in its chosen slot. There are 2n possible n-bit sequences, according to the value 

of n advertised in the previous phase. If an n-bit sequence is received by the reader in a 

slot, it assumes there is some tag that has successfully reserved that time slot for 

transmitting its data. If a garbled signal is received, the reader knows there is a collision 

between two or more tags in that slot.  

 

The third phase is the reservation summary phase, in which a bitmap is generated to 

inform the slot reservation status for tags. A 0 in the i th position of this N-bit summary 

bitmap indicates either no tag has reserved the i th time slot or a collision occurred in that 

slot. Nevertheless, a 1 does not guarantee only one tag has chosen that slot. If more than 

one tag has chosen the same time slot and has transmitted the same n-bit sequence to 

make the reservation, the reader cannot detect the collision and when those tags transmit 

data in the later phase, those tags cause a collision. This is called undetected collision. 

 

The fourth phase is the data transmission phase, wherein all tags that find themselves as 

successfully reserved statuses transmit their data in the order of the counting of 1s until 

its position on the bitmap. For example, if the summary bitmap is 0110, the tag that 

reserved the third time slot should transmit its data second. The rest will go back to 

“active” and wait for the next advertisement. 

 

The last phase is the acknowledgment phase. The reader acknowledges the data 

transmission from the tags in the form of bits; 0 denotes a failure, 1 denotes a success. A 

tag receiving a positive acknowledgment will mute itself. Otherwise it goes back to 

“active” and waits for the next advertisement.  

 

The above five phases are executed sequentially. In order to minimize the average round 

time, the value of n is limited in the size so that the time for reservation will not be 

prolonged.  

 

2.3 Advantages and drawbacks for AFSA 
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AFSA reduces the number of idle slots as well as the number of collisions so that the 

average tag reading time is reduced by up to 40% with respect to the stand alone ALOHA 

protocols [24]. It is also found, from the results of simulation, that the optimal value of n 

is 2, which minimizes the total round time when the N and K are known; where K is the 

participated tag counts for each round. However, by using n = 2, we can at most have 

four different n-bit sequences which produces a large number of undetected collisions 

that lead to a waste of  time slots in the data transmission phase. If we can increase the 

value of n without increasing the total round time, the undetected collision can be 

reduced and thus improves the performance of the reader. 
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Figure 9.  AFSA 
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CHAPTER III 

 
 

METHODOLOGY 

 

In our new model, we adapted all assumptions as to AFSA. We are aiming to two goals:  

� Reduce the retransmission time caused by external interference. 

� Reduce undetected collisions and average tag reading time. 

 

3.1 Reduce retransmission time 

 

We know that if the hopping rate is fast, the bits lost due to interference is less, but the 

switching overhead increases. On the other hand, if the hopping rate is slow, we lose 

more information bits due to interference but decrease the switching overhead. How to 

find a balance point which can minimize the lost bits as well as switching time? Assume 

a tag contains b bits of information, which is divided into m portions and modulated to m 

chips during transmission. Each chip period is Tc , where  

Tc= δ + b/mR                                                        (1) 

δ is the switching overhead, R denotes data rate, b/mR is the time that transmits signals 

(dwell time). If interference occurs at the beginning of transmitting i th chip and continues 

for Ti seconds, the time for retransmitting the lost bits is kTc , where  

k= ceiling(Ti / Tc)                                                     (2) 
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The total time spent for reading one tag with retransmitting lost bits becomes  

mTc+kTc= Tc (m+k)=(δ + b/mR) (m+k)                  (3) 

Throughput S = b/[(δ + b/mR) (m+k)]                     (4) 

Consider some interference occurs with possibility of p, where 0≤ p ≤1. The total time 

spent for reading one tag with retransmitting lost bits is justified as 

mTc+kTc*p=Tc(m+kp)=(δ + b/mR) (m+kp)              (5) 

S = b/[(δ + b/mR) (m+kp)]                                        (6) 

From above, we found that by using optimal value of m*=������
��  , the maximal 

throughput can be achieved. 

 

Figure 10. The impact of interference, assuming a probability for interference to 

occur is 100%, and it continues for Ti seconds. 
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Figure 11. Impact of interference, assuming switching overhead =10 ms, data rate = 

10 kb/sec, interference duration Ti seconds with an occurring probability p. 

 

Depending on the probability of occurring interference, we found the relationship 

between the number of portions divided per tag and the duration of interference shown as 

the following table:    

Table 1. Optimized m values 

Ti  p  k  Tc  S  m  m*  

0.0001  0.2  4  0.00083  36718.3  4  2.921  

0.0001  0.4  6  0.00043  35437.43  8  5.059  

0.0001  0.6  6  0.00043  34613.3  8  6.196  

0.0001  0.8  6  0.00043  33826.64  8  7.155  

0.0005  0.2  4  0.00083  36718.3  4  2.921  

0.0005  0.4  4  0.00083  35049.29  4  4.13  

0.0005  0.6  4  0.00083  33525.41  4  5.05  

0.0005  0.8  4  0.00083  32128.51  4  5.84  

0.001  0.2  2  0.00163  35694.37  2  2.065  

0.001  0.4  6  0.00043  32355.92  8  5.059  
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0.001  0.6  6  0.00043  30374.94  8  6.196  

0.001  0.8  6  0.00043  28622.54  8  7.155  

0.0025  0.2  6  0.00043  32355.92  8  3.577  

0.0025  0.4  6  0.00043  28622.54  8  5.059  

0.0025  0.6  6  0.00043  25661.59  8  6.196  

0.0025  0.8  6  0.00043  23255.81  8  7.155  

 

3.2 Reduce undetected collisions 

 

In the previous study, AFSA executes the 5 phases sequentially. With frequency hopping 

techniques, we are able to execute these 5 phases in a two-stage pipeline scheme. To 

implement this model, the reader must be able to monitor both uplink and downlink 

channels. In other words, the reader should be full duplex, which provides the 

functionality to transmit and receive data simultaneously. Figure 12 showed an AFSA 

model without frequency hopping. Figure 13 showed an AFSA model with frequency 

hopping. 

Figure 12. Sequential execution of AFSA. 

 

Figure 13. Pipelined execution of AFSA. 
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Let TAD, TR, TSU, TD, and TACK denote the duration for advertisement, reservation, 

summary, data transmission, and acknowledgment phases respectively. 

TAd=12.5 *(20+ log2M+n) 

TR =12.5 * N(n+1) 

TSu = 12.5*(10+N)                                             (7) 

TD = S*(80 * 4+12.5) 

TAck = 12.5*(10+ S) 

From [16], we know S ≅ 0.38N, and n = 2 have the best efficiency when executing 

sequentially. Let TSEQ denote the total time of a round for sequential scheme and THOP for 

pipelined scheme. TSEQ can be written as 

TSEQ = TAD+TR+TSU+TD+TA                                  (8) 

Since pipelining will take effect when there is more than one round, we assume the 

reading takes i rounds. On average, THOP is  

THOP= (TAD+TR+TSU+TD+TACK+(i-1)*TD)/i  

= TD+( TAD+TR+TSU+TACK)/i < TSEQ               (9) 

We know that n announced in advertisement phase is the key factor of occurring 

undetected collision in reservation phase. As n increases, the probability of undetected 

collisions reduces but durations of advertisement and reservation phases increase. We 

also noticed that as long as this increasing amount of time is small enough, that is, if  

TAD+TR+TSU+TACK ≈ TD                                         (10) 

we can maximize the throughput. From above, the Optimized n*=
	.	�����

���  can both 

reduce the number of undetected collisions as well as total read rounds, and further 

improve the reader performance. 
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CHAPTER IV 
 
 

SIMULATION 

 

In this chapter, we present the simulation results that outline the performance of our new 

model. The source code is listed in the appendix section. 

 

4.1 Specifications 

 

The simulations are done in Java and the results presented in this chapter are the 

outcomes of 50 different runs. The testing is divided into two portions, first part tests our 

new model with different n values, where n=5~8. Each n value tests for 50 times with 

increment of 500 tags and is executed until the unread tag counts less than 2 to provide 99% 

accuracy. The second part tests and compares AFSA between pipeline scheme and sequential 

scheme. For each scheme tests for 50 times with increments of 50 tags and are executed until 

the unread tag counts less than 2 to provide 99% accuracy. In this part, interference is also 

considered to be possible and the probability of interference is generated randomly by 

program. For simplicity, a tag will retransmit all its information in case of interference. The 

results of both portions are outputs of two excel files. Figure 14 showed the diagram of data 

flow. 

 



 20

 Figure 14. Data flow chart 
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4.2 Results 

 

As a result of simulations, we have found that using n*=6 in the pipelined scheme 

protocol minimized the total reading time for the given number of time slots (Table 2 and 

Figure 15).  

Table 2. Total time spent with different n values. 

 Total time spent (second) 
tag count n=5 n=6 n=7 n=8 

500 0.189558 0.19144 0.19831 0.2035 
1000 0.387063 0.366668 0.366625 0.3785 
1500 0.567943 0.53857 0.536013 0.555627 
2000 0.76234 0.684205 0.711415 0.76786 
2500 0.89745 0.861428 0.88501 0.926433 
3000 1.037185 1.033648 1.047045 1.109575 
3500 1.23793 1.231615 1.225283 1.330568 
4000 1.411162 1.405355 1.43062 1.445057 
4500 1.569765 1.52855 1.5463 1.653975 
5000 1.73402 1.725595 1.72965 1.852017 
: : : : : 

20500 7.109457 6.90744 7.056878 7.581985 
21000 7.140802 7.194222 7.2058 7.565645 
21500 7.427303 7.308308 7.35098 7.822688 
22000 7.74562 7.453395 7.51891 8.019738 
22500 7.97172 7.763678 7.656093 8.164128 
23000 8.048528 7.905148 7.882303 8.377013 
23500 8.11373 7.983488 8.052575 8.59308 
24000 8.345117 8.124653 8.288745 8.874668 
24500 8.614912 8.27683 8.39088 9.007875 
25000 8.603815 8.463832 8.582523 9.084235 

 



 

Figure 

The tests of pipelined scheme and sequential scheme are using different 

pipelined scheme, n=6, which is base

sequential scheme uses n

list the results of reading 50~2500 tags using both scheme

Table 3. Average reading time using pipelined and sequential scheme

 

Tag counts

250
500
750
1000
1250
1500
1750
2000
2250
2500
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Figure 15. Total time spent with different n values. 

The tests of pipelined scheme and sequential scheme are using different 

=6, which is based on the results of the first part testing; the 

n=2, for it has been proved to be the optimal value for AFSA. 

list the results of reading 50~2500 tags using both schemes in Table 3.  

Average reading time using pipelined and sequential scheme

 Average tag reading time 

ag counts Pipelined scheme Sequential scheme 

250 741.18 1769.06 
500 725.715 1648.35 
750 632.98 1550.753 
1000 622.2925 1759.085 
1250 724.406 1923.408 
1500 776.64 1947.363 
1750 669.1257 2119.763 
2000 716.0625 2106.715 
2250 707.7522 1549.613 
2500 639.417 2276.322 
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Figure 17 showed the comparison between 

tag reading time. 
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2750 683.2455 1633.504 
3000 727.115 1550.742 
3250 658.8762 1960.914 
3500 662.4093 1744.2 
3750 734.3507 1710.655 

It is obvious that, on average, the pipelined scheme is twice as fast as sequential scheme. 

Figure 16 showed two very different lines. The pipelined results produce a smoother line, 

less influenced by interference; on the other hand, the 

scheme suffered greatly through interference so that the produced line jumped violently. 

that the pipelined scheme was more interference resistant and more effic

than the sequential scheme. 
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Figure 17. Comparison between pipelined and sequential scheme over average tag 
reading time 
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CHAPTER V 

 
 

CONCLUSION 

 

5.1 Conclusion 

 

The impressive performance of our new model, not only high interference resistance but 

also high collision avoidance, has proven to increase efficiency by 50 percent on average, 

compared with sequential execution of AFSA. The key factor is that we execute 

simultaneously the four phases that are less time consuming with the data transmission 

phase, which is taking twice as much execution time as the sum of the other four phases. 

Furthermore, we filled up the time gap between the two pipelined stages with a longer n-

bit sequence, which eliminated most undetected collisions. 

 

5.2 Future work 

 

We have proved that with frequency hopping techniques the influence of external 

interference can be minimized. We also use a two-stage pipeline scheme to cut down the 

total communication time between reader and tags. In the future, the same scheme can be 

deploying in mobile environments. It will be a more complex and challenging work, 

though. 
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APPENDICES 

Simulation code 

1. Main Class 

import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.PrintStream; 
 
public class Main { 
 
 /** 
  * @param args 
  */ 
  
 static int iniCount=0; 
 static boolean next=true;  
 static PrintStream printStream; 
 static PrintStream printStream1; 
  
  
 public static void main(String[] args) { 
  // TODO create an output file, run both sequential and pipelined scheme, 
calculate average time   
  try { 
          
   printStream = new PrintStream( 
     new FileOutputStream( 
     new File("result_n.xls"))); 
    
   printStream.printf("total time\tn=5\tn=6\tn=7\tn=8\t"); 
   printStream.println(); 
   printStream.println("total 
count========================================================"); 
    
   printStream1 = new PrintStream( 
     new FileOutputStream( 
     new File("result_hop.xls"))); 
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printStream1.println(" average_time pipelined      sequential"); 
printStream1.println("total_count========================================
"); 
   
  } catch (FileNotFoundException e) { 
   // TODO if the file did not create successfully. 
   e.printStackTrace(); 
  } 
   
  for(int i=0; i<50; i++){ 
   iniCount+=500;  
   runHop(5); 
   Global.timeHop5=Global.totalTimeHop; 
   Global.totalTimeHop=0; 
   runHop(6); 
   Global.timeHop6=Global.totalTimeHop; 
   Global.totalTimeHop=0; 
   runHop(7); 
   Global.timeHop7=Global.totalTimeHop; 
   Global.totalTimeHop=0; 
   runHop(8); 
   Global.timeHop8=Global.totalTimeHop; 
   Global.totalTimeHop=0;    
   Computer.dataManager();    
  } 
   
  iniCount=0; 
  for(int i=0; i<50; i++){ 
   iniCount+=50; 
   runSeq(); 
   Global.timeSeq=Global.totalTimeSeq; 
   Global.totalTimeSeq=0; 
   runHop(); 
   Global.timeHop=Global.totalTimeHop; 
   Global.totalTimeHop=0; 
   Computer.dataManager1();   
  }    
 } 
 
 private static void runSeq() { 
  // TODO run sequentially with a probability of interference 
  Computer.ini(); 
  Global.unreadTagCount=iniCount; 
  double timeSpent=0; 
   
  while(Global.unreadTagCount>3){ 
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   Reader.ad();    
   Reader.summary(Tag.reservation(Reader.N,2)); 
   Tag.transmission(); 
   Reader.acknowledgment(); 
   timeSpent+=(Global.adTime+Global.suTime+ 
     Global.ackTime+Global.reTime+Global.trTime); 
  } 
  Global.totalTimeSeq=timeSpent; 
 } 
 
 private static void runHop() { 
  // TODO pipelined scheme with a probability of interference 
  Computer.ini(); 
  Global.unreadTagCount=Main.iniCount;  
  Global.n=6; 
  Reader.advertisement();//first round        
        Reader.summary(Tag.reservation(Reader.N,Reader.nbit)); 
        Global.totalTimeHop+=(Global.adTimeHop+Global.reTimeHop+Global.suTime); 
        
        //run transmission phase and the previous three phases simultaneously. 
        Tag.transmission();//first round 
  Reader.advertisement();//second round 
  Reader.summary(Tag.reservation(Reader.N,Reader.nbit));//second round 
  double 
threePhase=Global.adTimeHop+Global.reTimeHop+Global.suTime;    
  
  Global.totalTimeHop+=Math.max(threePhase, Global.trTime); 
   
  //run the rest rounds. 
  while(Global.unreadTagCount>3){ 
   Reader.acknowledgment();//first round 
   Tag.transmission();//first round 
   Reader.advertisement();//second round    
   Reader.summary(Tag.reservation(Reader.N,Reader.nbit));//second 
round   
   double fourPhase=Global.adTimeHop+Global.reTimeHop 
   +Global.suTime+Global.ackTime; 
   Global.totalTimeHop+=Math.max(Global.trTime, fourPhase); 
   
  } 
   
  //last round 
  Reader.acknowledgment();//previous round  
  Tag.transmission();//this round 
  Global.totalTimeHop+=Math.max(Global.trTime, Global.ackTime); 
  Reader.acknowledgment();//this round  
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  Global.totalTimeHop+=Global.ackTime; 
 } 
 
 private static void runHop(int n) { 
  // TODO run pipelined scheme  
  Computer.ini(); 
  Global.n=n; 
  Reader.ini();   
 } 
} 
 

2. Computer Class 

 
public class Computer { 
 
 static void controller(){ 
  // TODO estimate both frame and n-bit size for the use of advertising 
   
  int numbit=0; 
  if(Global.unreadTagCount<256 && Global.unreadTagCount>3){ 
   Global.frame=(int)Math.pow(2, log(Global.unreadTagCount)); 
   numbit=log(Global.unreadTagCount);  
   if(numbit>Global.n) 
    numbit=Global.n; 
    
  }else if(Global.unreadTagCount<4){ 
   Global.frame=2;  
   numbit=1; 
    
  }else{ 
   Global.frame=256;  
   numbit=Global.n; 
    
  } 
  Global.n=numbit;  
 } 
  
  
 private static int log(int unreadTag) { 
  // TODO 2-base log function, this is a supplement function 
  int count=0; 
  while(unreadTag>1){ 
   unreadTag=unreadTag/2; 
   count++; 
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  } 
  return count; 
 } 
 
 static void dataManager(){ 
  // TODO print out the results with different n-bit length 
  String s=Integer.toString(Main.iniCount); 
     
  if(s.length()<4){ 
   s="  "+s; 
  } 
  if(s.length()<5){ 
   s=" "+s; 
  } 
   
  Main.printStream.printf("%s\t%3f4\t%3f4\t%3f4\t%3f4\t", 
    s,Global.timeHop5*0.000001,Global.timeHop6*0.000001, 
    Global.timeHop7*0.000001,Global.timeHop8*0.000001); 
  Main.printStream.println(); 
  Global.timeHop6=0; 
  Global.timeHop7=0; 
  Global.timeHop8=0; 
  Global.timeHop5=0; 
 } 
  
 static void ini() { 
  // TODO initiate all variables 
  Global.unreadTagCount=0; 
  Global.frame=0; 
  Global.n=0; 
  Global.adTimeHop=0; 
  Global.adTime=0; 
  Global.undetectCollision=0; 
  Global.successRes=0; 
  Global.suTime=0; 
  Global.ackTime=0; 
  Global.totalTagRead=0; 
  Global.readCount=0; 
  Global.reTime=0; 
  Global.trTime=0; 
  Global.reTimeHop=0; 
 } 
 
 
 static void dataManager1() { 
  // TODO print both hopping and sequential scheme results 
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  String s=Integer.toString(Main.iniCount); 
   
  if(s.length()<4){ 
   s="  "+s; 
  } 
  if(s.length()<5){ 
   s=" "+s; 
  } 
   
  Main.printStream1.printf("%s\t%3f4\t%3f4\t", 
   
 s,Global.timeHop/Main.iniCount,Global.timeSeq/Main.iniCount); 
  Main.printStream1.println(); 
  Global.timeHop=0; 
  Global.timeSeq=0; 
 } 
} 
 

3. Reader Class 

import java.util.Arrays; 
 
public class Reader { 
 
 static int N; 
 static int nbit; 
 static int nextHop; 
 static int ack; 
 
 
 static void advertisement(){ 
  // TODO advertisement phase 
  Computer.controller(); 
  N=Global.frame; 
  nbit=Global.n; 
  Global.adTimeHop=12.5*(20+Global.n); 
 } 
   
  
 static int summary(int[][] res){ 
  // TODO summary phase 
  int sucReserTag=0; 
  int undetectCollision=0;   
  int[] bitmap = new int[N]; 
  String st=""; 
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  Arrays.sort(res,new Sort2DArray()); // sort 2D array using comparator to 
handle 2'nd dim 
   
  
  if(N>3){ 
   for(int i=0;i<N-1 ;i++){ 
    int l=i+1; 
     
    if(res[i][0]==res[l][0] && res[i][1]==res[l][1] &&  
bitmap[res[i][0]]!=-1){ 
     bitmap[res[i][0]]=1; // undetected collision  
   
     undetectCollision++; 
     continue; 
    } 
    if(res[i][0]==res[l][0] && res[i][1]!=res[l][1]&& 
bitmap[res[i][0]]==1){ 
     undetectCollision--; 
     bitmap[res[i][0]]=-1; 
    }else if(res[i][0]==res[l][0] && res[i][1]!=res[l][1]){ 
     bitmap[res[i][0]]=-1; 
     continue; 
    } 
    if(res[i][0]!=res[l][0] && bitmap[res[i][0]]!=-1){ 
     bitmap[res[i][0]]=1;      
    }//if 
     
    if(res[N-2][0]!=res[N-1][0]){ 
     bitmap[res[N-1][0]]=1; 
     if(res[N-2][1]==res[N-1][1]){ 
      undetectCollision++; 
     } 
    } 
   }//for      
    
  }else if(N<=3 && N>0){ 
   if(Global.unreadTagCount<2||Main.iniCount<2){ 
    bitmap[0]=1; 
   }else{ 
   if(res[0][0]!=res[1][0] && res[0][1]!=res[1][1]){ 
    bitmap[0]=1; 
    bitmap[1]=1; 
   }else if(res[0][0]==res[1][0] && res[0][1]==res[1][1]){ 
    bitmap[0]=1; 
    bitmap[1]=1; 
    undetectCollision+=2; 
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   }else{ 
    bitmap[0]=0; 
    bitmap[1]=0; 
    } 
   } 
  } 
   
  for(int j=0; j<N;j++){ 
   if(bitmap[j]<0) 
    bitmap[j]=0; 
   st+=bitmap[j]; 
   if(bitmap[j]==1){ 
    sucReserTag++; 
   } 
  }  
  Global.successRes=sucReserTag; 
  Global.undetectCollision=undetectCollision;  
  //System.out.println("bitmap = ["+st+"]"); 
  //System.out.println("undetect collisions = "+undetectCollision); 
  //System.out.println("Computer.undetect collisions = 
"+Global.undetectCollision); 
  Global.suTime=12.5*(10+N); 
  res=null; 
   
  return Global.successRes;   
 } 
    
  
 static int acknowledgment(){ 
  // TODO acknowledgment phase 
   
  if(Global.unreadTagCount>=ack){ 
   ack=Global.readCount; 
   Global.totalTagRead+=ack; 
   Global.unreadTagCount-=ack; 
  }else{    
   Global.totalTagRead=Main.iniCount; 
   Global.unreadTagCount=0; 
  } 
  Global.ackTime=12.5*(10+Global.successRes); 
  //System.out.println("Total Tag Read= "+Global.totalTagRead); 
  //System.out.println("Total unread Tag= "+Global.unreadTagCount); 
  return ack; 
 } 
   
  



 37

 static void ini() { 
  // TODO initiate reader and start the first 2 rounds           
  Global.unreadTagCount=Main.iniCount;   
  Reader.advertisement();//first round        
        Reader.summary(Tag.reservation(N,nbit)); 
        Global.totalTimeHop+=(Global.adTimeHop+Global.reTimeHop+Global.suTime); 
        
        // pipelined, run transmission phase and the previous three phases simultaneously. 
        Tag.transmission();//first round 
  Reader.advertisement();//second round 
  Reader.summary(Tag.reservation(N,nbit));//second round 
  double 
threePhase=Global.adTimeHop+Global.reTimeHop+Global.suTime;    
  
  Global.totalTimeHop+=Math.max(threePhase, Global.trTime); 
   
  //run the rest rounds. 
  run(); 
 } 
 
 
 static void run() { 
  // TODO run pipelining scheme 
  while(Global.unreadTagCount>3){ 
   Reader.acknowledgment();//first round 
   Tag.transmission();//first round 
   Reader.advertisement();//second round    
   Reader.summary(Tag.reservation(N,nbit));//second round   
   double fourPhase=Global.adTimeHop 
   +Global.reTimeHop+Global.suTime+Global.ackTime; 
   Global.totalTimeHop+=Math.max(Global.trTime, fourPhase); 
  } 
  lastRound(); 
 } 
 
 
 private static void lastRound() { 
  // TODO last round   
  Reader.acknowledgment();//previous round  
  Tag.transmission();//this round 
  Global.totalTimeHop+=Math.max(Global.trTime, Global.ackTime); 
  Reader.acknowledgment();//this round  
  Global.totalTimeHop+=Global.ackTime; 
 } 
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 public static void ad() { 
  // TODO advertisement phase for sequential scheme 
  Computer.controller(); 
  N=Global.frame; 
  Global.adTime=12.5*(20+2); 
 } 
} 
 

4. Tag Class 

public class Tag { 
   
 static int[][] reservation(int slotNum, int num){   
  // TODO reservation phase 
  int[][]reservation =new int[slotNum][2];  
  int slot=0,bit=0; 
  int temp=(int)Math.pow(2, num); 
 
  if(slotNum>2){ 
   for(int j=0;  j<slotNum;j++){      
  
    slot=ran(slotNum-1); 
    bit=ran(temp-1); 
    reservation[j][0]=slot;    
    reservation[j][1]=bit; 
   } 
  }else{ 
   for(int j=0;  j<slotNum;j++){      
  
    slot=ran(slotNum); 
    bit=ran(temp); 
    reservation[j][0]=slot;    
    reservation[j][1]=bit; 
   } 
  } 
  Global.reTimeHop=12.5*(slotNum)*(1+num); 
  Global.reTime=12.5*(slotNum)*3; 
   
  return reservation; 
 } 
  
 private static int ran(int num) { 
  // TODO generate a random integer less than the parameter.  
  int r=0; 
  r=(int)(Math.random()*1000); 
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  while(r>num){ 
   r=Math.abs(r-num); 
  }   
  return r; 
 } 
 
 static void transmission(){ 
  // TODO transmission phase 
   
  int unsuccessTag=Global.undetectCollision; 
  
  if(Global.successRes>=unsuccessTag){ 
   Global.readCount=Global.successRes-unsuccessTag; 
  }else 
   Global.readCount=0; 
   
  Global.trTime=Global.successRes*(12.5+80*4); 
 } 
 
 public static void transmission1() { 
  // TODO transmission phase with a probability for occurring interference  
  double p=Math.random();//Probability for occurring interference 
generated by random   
  int unsuccessTag=(int)(Global.successRes*p)+Global.undetectCollision; 
  
  //System.out.printf("pro. of interference =  %5.2f",p*100); 
  //System.out.print("%\n"); 
  //System.out.println("# of success Res. Tags = "+Global.successRes); 
  //System.out.println("# of unsuccess Tags= "+unsuccessTag); 
  if(Global.successRes>=unsuccessTag){ 
   Global.readCount=Global.successRes-unsuccessTag; 
  }else 
   Global.readCount=0; 
   
  Global.trTime=Global.successRes*(12.5+80*4); 
 }  
} 
 

5. Global Class 

public class Global { 
 
 //variable declaration  
 static int unreadTagCount; 
 static int frame; 
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 static int n; 
 static double adTimeHop; 
 static double adTime; 
 static int undetectCollision; 
 static int successRes; 
 static double suTime; 
 static double ackTime; 
 static int totalTagRead; 
 static int readCount; 
 static double reTime; 
 static double trTime; 
 static double reTimeHop; 
 static double timeHop6; 
 static double timeHop7; 
 static double timeHop8; 
 static double totalTimeHop; 
 static double timeHop5; 
 static double timeHop; 
 static double totalTimeSeq; 
 static double timeSeq; 
  
} 

 

6. Sort2DArray Class 

import java.util.Comparator; 
 
public class Sort2DArray implements Comparator<Object> { 
 public int compare(Object o1, Object o2) { 
       int[] a1 = (int[])o1; // second dimension arrays   
       int[] a2 = (int[])o2; // must be same length 
       for (int i=0; i<a1.length; i++) {      // establish order by comparing 
          if (a1[i] < a2[i]) return -1;       // array elements 
          else if (a1[i] > a2[i]) return 1;   // from left to right 
       } 
       return 0; // arrays are equal 
 }    
} 
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