
 IMPROVING READER PERFORMANCE OF AN UHF

RFID SYSTEM USING FREQUENCY HOPPING

TECHNIQUES

 By

 JU-YEN HUNG

 Bachelor of Management in Management & Information

 National Open University

 Taipei, Taiwan

 2006

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 May, 2009

 ii

 IMPROVING READER PERFORMANCE OF AN UHF

RFID SYSTEM USING FREQUENCY HOPPING

TECHNIQUES

 Thesis Approved:

 Dr. Venkatesh Sarangan

 Thesis Adviser

 Dr. John P. Chandler

 Dr. Xiaolin Li

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all of those who have provided support and

direction throughout the creation of this thesis. First, I would like to thank my thesis

advisor, Dr. Sarangan, for his patience and guidance. Without his advice and

encouragement, the strength of this research would be diminished. Thanks are due to my

other committee members Dr. Chandler and Dr. Li for their intuition and encouragement

throughout the research process.

To my family and friends, who provided the encouragement I needed through all the

trials and the obstacles. I would like to thank my mom and my sister’s family who

provide me with a home during vacations. Special thanks to my two daughters for their

love and understanding. Special thanks also to my husband; his never ending support has

lifted me even when the situation seemed dim.

Finally, thanks to the faculty of the Computer Science Department who pushed me

towards hard working. I am grateful that I have made many friends in the department and

cherish their friendship.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Introduction ..1
 1.2 RFID basics ..2
 1.2.1 Tag collision problems ..3
 1.2.2 Reader collision problems...3
 1.3 Spread Spectrum Communication ...5
 1.3.1 Why Spread Spectrum ..5
 1.3.2 Frequency Hopping Spread Spectrum ..5

II. REVIEW OF LITERATURE..9

 2.1 Framed Slotted ALOHA protocols ..9
 2.2 Accelerated Framed Slotted ALOHA ..10
 2.3 Advantages and drawbacks for AFSA ...11

III. METHODOLOGY ..14

 3.1 Reduce retransmission time ...14
 3.2 Reduce undetected collisions ...17

IV. SIMULATION ..19

 4.1 Specifications ...19
 4.2 Results ..21

V. CONCLUSION ..25

 5.1 Conclusion ...25
 5.2 Future work ..25

 v

Chapter Page

REFERENCES ..26

APPENDICES ...29

 vi

LIST OF TABLES

Table Page

 1 Optimal m values ...16
 2 Total time spent with different n values ..21
 3 Average reading time using pipelined and sequential scheme22

 vii

LIST OF FIGURES

Figure Page

 1 A typical UHF RFID system..2
 2 Two tags collides in the same reading zone...3
 3 The tag collides with a nearby reader ..4
 4 A tag cannot respond to two readers at the same time ...4
 5 An example of frequency hopping pattern ...6
 6 A fast frequency hopping system ...6
 7 A slow hopping frequency system ...7
 8 Switching overhead ..7
 9 AFSA ...13
 10 The impact of interference ...15
 11 Impact of interference ..16
 12 Sequential execution of AFSA...17
 13 Pipelined execution of AFSA ..17
 14 Data flow chart ...20
 15 Total time spent with different n values ..22
 16 Average reading time using pipelined and sequential scheme23
 17 Comparison between pipelined and sequential scheme 24

 1

CHAPTER I

INTRODUCTION

1.1 Introduction

RFID (Radio Frequency Identification), technology used for object tracking and tracing,

has been deployed widely over several different fields in recent years. The RFID systems

allowing producers and suppliers to scan items in large quantities without line-of-sight,

hence saving money and time, have been gradually substituting bar code and commonly

recognized as boosting efficiency in supply chain management [1]. However, some of the

characteristics of RFID systems, such as large in-flood and inaccuracy, limited the

widespread adoption of RFID technology [2].

The data stream generated by RFID readers is not 100% guaranteed; it may suffer from

the same problems as most wireless communications-- fading, interference, signal

collisions, etc. In the real world, the observed read rate is between 60-70% [2] [3] [4]. An

improved performance may have a detection rate of 95-99% [5]. Nonetheless, this read

rate is greatly environmentally dependant. The results of readings are usually not as

accurate when the processes are done in dense environments. According to the

experiment by Wal-mart in 2005, a fully loaded pallet may have its read rate dropped to

66% [6]. As a consequence, collision problems are blamed as the main reasons for

deficiency of data reading.

Another factor can be interference. In wireless communications, external interference is

not avoidable. The lost information bits due to interference need to be retransmitted later.

 2

Therefore, extra cost is endured. To minimize the cost, the influence of interference must

be reduced by using some techniques, e.g. frequency hopping, which is a technique often

seen in spread spectrum.

In this paper, we propose a new RFID passive tag reading model using frequency

hopping techniques to reduce external interference as well as the number of collisions

during the reading process, so that the overall tag reading performance is improved. The

anti-collision algorithms will be discussed in chapter 2. Chapter 3 describes how we

implement these techniques in our new model. In chapter 4, the simulation results are

presented to prove our new model to be both interference and collision resistant.

Conclusions will be made in chapter 5.

1.2 RFID basics

A typical RFID system usually consists of some active or passive RFID tags and one or

more readers which connect to a backbone computer system [7].

Figure 1. A typical UHF RFID system [7].

RFID tags are small electronic devices consisting of an antenna and a microchip with

data capacity of, at most, 2,000 bytes [8]. An active tag contains a battery which can

power its microchip; a passive tag has no battery on board and needs an RFID reader

providing enough energy to power up the microchip. It is noticeable that the battery in an

active tag is reserved for the microchip not for transmitting signals. Whether active or

passive, in UHF RFID systems, the tag transmits its information using “backscatter”

 3

technology [9]. If all tags backscattered at the same time, the modulated waveforms will

be garbled. This is so called tag collision problem [10]. Since the transmission media is

air, collision problems greatly influence the reader’s performance. It is important to

understand how these problems are encountered. There are three types of collision

problems: tag-to-tag, tag-to-reader and reader-to-reader collision problems respectively.

Tag-to-reader collision problems can be described as a special case in reader collision

problems.

1.2.1 Tag collision problems

When two tags present in the reading zone of a reader, if they send back their information

at the same time, the information collides before reaching to the reader. The reader is not

able to retrieve either tag’s data. This is called tag-to-tag collision. See figure 2.

Figure 2. Two tags collides in the same reading zone

1.2.2 Reader collision problems

When a tag is in a reader’s interrogation region, but not far enough from another reader,

if the tag is responding to a request from the first reader while the second reader is

sending out signals, because the signal strength sent by the second reader is several times

stronger than the tag’s signal, the information sent by the tag will be overlapped by the

 4

second reader. The first reader either receives incorrect data from the second reader or

simply fails to receive any data because of the collision. This is known as the tag-to-

reader collision problem, See figure 3.

Figure 3 The tag collides with a nearby reader

If the signals sent by the two readers arrive to a tag at the same time, this tag is not able to

respond to either reader’s request. This overlapped zone is sometimes called a “dead

zone”. Both readers fail to read this tag. Thus, a reader-to-reader collision occurs. See

figure 4.

Figure 4 A tag cannot respond to two readers at the same time

 5

Collisions prevent success transmission of information either from reader to tag or tag to

reader, thus greatly degrading the efficiency of a system. We will discuss current

techniques which are proposed to solve the collision problems in chapter 2.

1.3 Spread Spectrum Communication

1.3.1 Why Spread Spectrum

As mentioned in the beginning of this chapter, the interference in wireless

communications is hard to avoid but the impact should be able to reduce using some

ways. The idea of spread spectrum technique is to spread the information signals over a

wider bandwidth so that jamming and interception of a channel would be more difficult

[11] [12]. Depending on how the spectrum is spread and the differences between spread

waveforms, the spread spectrum can be identified as frequency hopping spread spectrum,

direct sequence spread spectrum, time hopping spread spectrum and chirp spread

spectrum. Chirp spread spectrum is used for special purposes and is not as popular as the

former three. However, they all share the same benefits of spreading spectrum, which are

interference resistance, low probability of intercept (LPI), multipath fading resistance,

improved multiple access capability, and ranging [12][13][14].

1.3.2 Frequency Hopping Spread Spectrum

Frequency hopping is a sequence of changing carrier frequencies during signal

transmissions. The sequence of hopping from one frequency to the other is called

frequency-hopping pattern. An example of hopping pattern is showed in Figure 5. The set

of possible hopping frequencies is called a hopset. Suppose a hopset contains M

frequencies, each has a bandwidth of B. The hopping occurs over a hopset called the

hopping band, whose bandwidth is W, W≥ MB. Frequency hopping occurs in time

intervals, called hop interval. The duration of each hop interval is named hop duration or

hop period. The changing rate of the frequencies is called the hop rate.

 6

Figure 5. An example of frequency hopping pattern

Frequency Hopping Spread Spectrum, which is the earliest spread spectrum, was the

invention of Hollywood star Hedy Lamarr used in military during the World War II. In

her invention, the transmitter sends one bit with several frequency hopping intervals.

Listening to the channel, whether intentionally or not, will get a sequence of noise like

signals. Only the receiver knows which frequency is the priority, after de-spreading, the

receiver is able to recover the information sent from the transmitter, hence providing

privacy. This is also known as a fast frequency hopping system. See Figure 6.

Figure 6. A fast frequency hopping system

Although fast frequency hopping system provides privacy, it is not efficient for

transmitting data. That is because there is a switching overhead between each hop. Figure

7 shows the switching overhead.

 7

Figure 7. Switching overhead

Switching time is the sum of the fall time, dead time and rise time. The switching time is

only used for switching frequencies, during which no information will be transmitted.

Later on, slow frequency hopping system was introduced. A slow frequency hopping

system is a system with the hopping period longer than the symbol period, see Figure 8.

Figure 8. A slow hopping frequency system.

It is obvious that if a piece of information is transmitted as a whole, it is more efficient.

But if during the transmission interference is taking place, some information will be

garbled. Those lost bits need to be retransmitted to recover the information. A slow

frequency hopping system provides interference resistance by nature. During each

hopping period a portion of the information will be transmitted. If some channel is

 8

jammed or intercepted, the lost information is limited to the portion using that frequency,

not the whole piece of information [15] [16]. The faster hopping rate seems to have better

interference resistance, but produces more switching overhead, which possibly makes the

system less efficient. We will discuss how to determine the ideal hopping intervals so that

the overhead and retransmission time are minimal in chapter 3.

 9

CHAPTER II

REVIEW OF LITERATURE

During the querying process of a RFID reader, if multiple tags reply at the same time, it

leads to a collision. The limited computation ability of a tag made it hard to communicate

among tags to avoid collisions. Instead, the reader takes the responsibility of avoiding

collisions. RFID anti-collision protocols can be generally classified as deterministic

algorithms and probabilistic algorithms.

Deterministic algorithms, also known as tree based algorithms, prevent collisions by

muting most of the tags that are involved. Eventually, there will be a successful

transmission from a tag [17]. The reader finished reading all tags in its read zone by

visiting them one by one. The advantage of tree algorithms is that the system can obtain

higher accuracy, but takes a longer time to read all tags, compared to probabilistic

algorithms, especially when a huge number of tags are present at the same time. On the

other hand, probabilistic algorithms, including the family of ALOHA based protocols,

can read a larger number of tags in a shorter time but in a less accurate manner. There are

a lot of extended slotted ALOHA algorithms, some of the most popular will be discussed

in the following sections.

2.1 Framed Slotted ALOHA protocols

Framed- Slotted ALOHA (FSA) is the most well known protocol among all deterministic

algorithms [18]. By letting each tag transmitting its information to a randomly chosen

time slot in a frame, FSA reduces the probability of tag collision. However, if the

 10

difference between the frame size and the number of tag counts are large, either idle slots

or the number of collisions are also large. This highly degrades the system’s efficiency.

Dynamic FSA (DFSA) [19] and Adaptive Slotted ALOHA Protocol (ASAP) [20] solve

this problem by estimating the number of tags present to determine the ideal frame size in

the subsequent round. In DFSA, if the tag count is large, the frame size needs to be

exponentially increased to identify the tag. Because no matter how many tags remaining

unread, it always starts with the initial minimum frame size after identifying a tag [21]. In

ASAP, the frame size is determined based on the observation of the previous round.

These algorithms work well if the tag counts are small. However, the performance is poor

[21] [22] if the number becomes large, because the frame size cannot increase

indefinitely as the tag counts increase and the fact that large frame sizes increase the

interference between readers in multiple-reader environments. As a result, we need a

scheme that can minimize the reading time even if the frame size is limited.

Enhanced DFSA (EDFSA) [23] guarantees a high tag reading rate with a limited frame

size by grouping tags to a smaller population so that the probability of a successful

reserved slot can be maintained close to 36.8% of the maximum frame size [24]. This

approach, however, does not significantly reduce the rounds needed for reading tags.

2.2 Accelerated Framed Slotted ALOHA (AFSA)

The framework of AFSA [24] extends the three phases seen in most slotted ALOHA

protocols to five phases. The first phase is the advertisement phase, where the reader

broadcasts to all tags within its range: the frame size (N), the number of groups (M) and

an n, which represents the length of an n-bit sequence used for the next phase. A tag first

randomly chooses its group number to determine its eligibility to participate in the

proceeding round. Each eligible tag then changes its state to “select”, and chooses

randomly a time slot.

 11

The second phase is the reservation phase, during which each tag transmits an n-bit

sequence in its chosen slot. There are 2n possible n-bit sequences, according to the value

of n advertised in the previous phase. If an n-bit sequence is received by the reader in a

slot, it assumes there is some tag that has successfully reserved that time slot for

transmitting its data. If a garbled signal is received, the reader knows there is a collision

between two or more tags in that slot.

The third phase is the reservation summary phase, in which a bitmap is generated to

inform the slot reservation status for tags. A 0 in the i th position of this N-bit summary

bitmap indicates either no tag has reserved the i th time slot or a collision occurred in that

slot. Nevertheless, a 1 does not guarantee only one tag has chosen that slot. If more than

one tag has chosen the same time slot and has transmitted the same n-bit sequence to

make the reservation, the reader cannot detect the collision and when those tags transmit

data in the later phase, those tags cause a collision. This is called undetected collision.

The fourth phase is the data transmission phase, wherein all tags that find themselves as

successfully reserved statuses transmit their data in the order of the counting of 1s until

its position on the bitmap. For example, if the summary bitmap is 0110, the tag that

reserved the third time slot should transmit its data second. The rest will go back to

“active” and wait for the next advertisement.

The last phase is the acknowledgment phase. The reader acknowledges the data

transmission from the tags in the form of bits; 0 denotes a failure, 1 denotes a success. A

tag receiving a positive acknowledgment will mute itself. Otherwise it goes back to

“active” and waits for the next advertisement.

The above five phases are executed sequentially. In order to minimize the average round

time, the value of n is limited in the size so that the time for reservation will not be

prolonged.

2.3 Advantages and drawbacks for AFSA

 12

AFSA reduces the number of idle slots as well as the number of collisions so that the

average tag reading time is reduced by up to 40% with respect to the stand alone ALOHA

protocols [24]. It is also found, from the results of simulation, that the optimal value of n

is 2, which minimizes the total round time when the N and K are known; where K is the

participated tag counts for each round. However, by using n = 2, we can at most have

four different n-bit sequences which produces a large number of undetected collisions

that lead to a waste of time slots in the data transmission phase. If we can increase the

value of n without increasing the total round time, the undetected collision can be

reduced and thus improves the performance of the reader.

 13

Figure 9. AFSA

 14

CHAPTER III

METHODOLOGY

In our new model, we adapted all assumptions as to AFSA. We are aiming to two goals:

� Reduce the retransmission time caused by external interference.

� Reduce undetected collisions and average tag reading time.

3.1 Reduce retransmission time

We know that if the hopping rate is fast, the bits lost due to interference is less, but the

switching overhead increases. On the other hand, if the hopping rate is slow, we lose

more information bits due to interference but decrease the switching overhead. How to

find a balance point which can minimize the lost bits as well as switching time? Assume

a tag contains b bits of information, which is divided into m portions and modulated to m

chips during transmission. Each chip period is Tc , where

Tc= δ + b/mR (1)

δ is the switching overhead, R denotes data rate, b/mR is the time that transmits signals

(dwell time). If interference occurs at the beginning of transmitting i th chip and continues

for Ti seconds, the time for retransmitting the lost bits is kTc , where

k= ceiling(Ti / Tc) (2)

 15

The total time spent for reading one tag with retransmitting lost bits becomes

mTc+kTc= Tc (m+k)=(δ + b/mR) (m+k) (3)

Throughput S = b/[(δ + b/mR) (m+k)] (4)

Consider some interference occurs with possibility of p, where 0≤ p ≤1. The total time

spent for reading one tag with retransmitting lost bits is justified as

mTc+kTc*p=Tc(m+kp)=(δ + b/mR) (m+kp) (5)

S = b/[(δ + b/mR) (m+kp)] (6)

From above, we found that by using optimal value of m*=������
�� , the maximal

throughput can be achieved.

Figure 10. The impact of interference, assuming a probability for interference to

occur is 100%, and it continues for Ti seconds.

0

1000

2000

3000

4000

5000

6000

7000

0
.0

0
1

0
.0

0
1

8

0
.0

0
3

2

0
.0

0
5

6

0
.0

1

0
.0

1
7

8

0
.0

3
1

6

0
.0

5
6

2

0
.1

0
.1

7
7

8

0
.3

1
6

3

0
.5

6
2

3 1

1
.7

7
8

3

3
.1

6
2

7

5
.6

2
3

4

1
0

Ti=0.001

Ti=0.004

Ti=0.008

throughput

Tc

 16

Figure 11. Impact of interference, assuming switching overhead =10 ms, data rate =

10 kb/sec, interference duration Ti seconds with an occurring probability p.

Depending on the probability of occurring interference, we found the relationship

between the number of portions divided per tag and the duration of interference shown as

the following table:

Table 1. Optimized m values

Ti p k Tc S m m*

0.0001 0.2 4 0.00083 36718.3 4 2.921

0.0001 0.4 6 0.00043 35437.43 8 5.059

0.0001 0.6 6 0.00043 34613.3 8 6.196

0.0001 0.8 6 0.00043 33826.64 8 7.155

0.0005 0.2 4 0.00083 36718.3 4 2.921

0.0005 0.4 4 0.00083 35049.29 4 4.13

0.0005 0.6 4 0.00083 33525.41 4 5.05

0.0005 0.8 4 0.00083 32128.51 4 5.84

0.001 0.2 2 0.00163 35694.37 2 2.065

0.001 0.4 6 0.00043 32355.92 8 5.059

0

2000

4000

6000

8000

10000

12000

0
.0

0
1

1

0
.0

0
1

8

0
.0

0
3

2

0
.0

0
5

6

0
.0

1

0
.0

1
7

8

0
.0

3
1

6

0
.0

5
6

2

0
.1

0
.1

7
7

8

0
.3

1
6

3

0
.5

6
2

3 1

1
.7

7
8

3

3
.1

6
2

7

5
.6

2
3

4

1
0

p = 0

Ti = 0.001, p = 0.2

Ti = 0.001, p = 0.8

Ti = 0.001, p = 1.0

Ti = 0.008, p = 0.2

Ti = 0.008, p = 0.8

Ti = 0.008, p = 1.0

throughput

Tc

 17

0.001 0.6 6 0.00043 30374.94 8 6.196

0.001 0.8 6 0.00043 28622.54 8 7.155

0.0025 0.2 6 0.00043 32355.92 8 3.577

0.0025 0.4 6 0.00043 28622.54 8 5.059

0.0025 0.6 6 0.00043 25661.59 8 6.196

0.0025 0.8 6 0.00043 23255.81 8 7.155

3.2 Reduce undetected collisions

In the previous study, AFSA executes the 5 phases sequentially. With frequency hopping

techniques, we are able to execute these 5 phases in a two-stage pipeline scheme. To

implement this model, the reader must be able to monitor both uplink and downlink

channels. In other words, the reader should be full duplex, which provides the

functionality to transmit and receive data simultaneously. Figure 12 showed an AFSA

model without frequency hopping. Figure 13 showed an AFSA model with frequency

hopping.

Figure 12. Sequential execution of AFSA.

Figure 13. Pipelined execution of AFSA.

 18

Let TAD, TR, TSU, TD, and TACK denote the duration for advertisement, reservation,

summary, data transmission, and acknowledgment phases respectively.

TAd=12.5 *(20+ log2M+n)

TR =12.5 * N(n+1)

TSu = 12.5*(10+N) (7)

TD = S*(80 * 4+12.5)

TAck = 12.5*(10+ S)

From [16], we know S ≅ 0.38N, and n = 2 have the best efficiency when executing

sequentially. Let TSEQ denote the total time of a round for sequential scheme and THOP for

pipelined scheme. TSEQ can be written as

TSEQ = TAD+TR+TSU+TD+TA (8)

Since pipelining will take effect when there is more than one round, we assume the

reading takes i rounds. On average, THOP is

THOP= (TAD+TR+TSU+TD+TACK+(i-1)*TD)/i

= TD+(TAD+TR+TSU+TACK)/i < TSEQ (9)

We know that n announced in advertisement phase is the key factor of occurring

undetected collision in reservation phase. As n increases, the probability of undetected

collisions reduces but durations of advertisement and reservation phases increase. We

also noticed that as long as this increasing amount of time is small enough, that is, if

TAD+TR+TSU+TACK ≈ TD (10)

we can maximize the throughput. From above, the Optimized n*=
	.	�����

��� can both

reduce the number of undetected collisions as well as total read rounds, and further

improve the reader performance.

 19

CHAPTER IV

SIMULATION

In this chapter, we present the simulation results that outline the performance of our new

model. The source code is listed in the appendix section.

4.1 Specifications

The simulations are done in Java and the results presented in this chapter are the

outcomes of 50 different runs. The testing is divided into two portions, first part tests our

new model with different n values, where n=5~8. Each n value tests for 50 times with

increment of 500 tags and is executed until the unread tag counts less than 2 to provide 99%

accuracy. The second part tests and compares AFSA between pipeline scheme and sequential

scheme. For each scheme tests for 50 times with increments of 50 tags and are executed until

the unread tag counts less than 2 to provide 99% accuracy. In this part, interference is also

considered to be possible and the probability of interference is generated randomly by

program. For simplicity, a tag will retransmit all its information in case of interference. The

results of both portions are outputs of two excel files. Figure 14 showed the diagram of data

flow.

 20

 Figure 14. Data flow chart

 21

4.2 Results

As a result of simulations, we have found that using n*=6 in the pipelined scheme

protocol minimized the total reading time for the given number of time slots (Table 2 and

Figure 15).

Table 2. Total time spent with different n values.

 Total time spent (second)
tag count n=5 n=6 n=7 n=8

500 0.189558 0.19144 0.19831 0.2035
1000 0.387063 0.366668 0.366625 0.3785
1500 0.567943 0.53857 0.536013 0.555627
2000 0.76234 0.684205 0.711415 0.76786
2500 0.89745 0.861428 0.88501 0.926433
3000 1.037185 1.033648 1.047045 1.109575
3500 1.23793 1.231615 1.225283 1.330568
4000 1.411162 1.405355 1.43062 1.445057
4500 1.569765 1.52855 1.5463 1.653975
5000 1.73402 1.725595 1.72965 1.852017
: : : : :

20500 7.109457 6.90744 7.056878 7.581985
21000 7.140802 7.194222 7.2058 7.565645
21500 7.427303 7.308308 7.35098 7.822688
22000 7.74562 7.453395 7.51891 8.019738
22500 7.97172 7.763678 7.656093 8.164128
23000 8.048528 7.905148 7.882303 8.377013
23500 8.11373 7.983488 8.052575 8.59308
24000 8.345117 8.124653 8.288745 8.874668
24500 8.614912 8.27683 8.39088 9.007875
25000 8.603815 8.463832 8.582523 9.084235

Figure

The tests of pipelined scheme and sequential scheme are using different

pipelined scheme, n=6, which is base

sequential scheme uses n

list the results of reading 50~2500 tags using both scheme

Table 3. Average reading time using pipelined and sequential scheme

Tag counts

250
500
750
1000
1250
1500
1750
2000
2250
2500

22

Figure 15. Total time spent with different n values.

The tests of pipelined scheme and sequential scheme are using different

=6, which is based on the results of the first part testing; the

n=2, for it has been proved to be the optimal value for AFSA.

list the results of reading 50~2500 tags using both schemes in Table 3.

Average reading time using pipelined and sequential scheme

 Average tag reading time

ag counts Pipelined scheme Sequential scheme

250 741.18 1769.06
500 725.715 1648.35
750 632.98 1550.753
1000 622.2925 1759.085
1250 724.406 1923.408
1500 776.64 1947.363
1750 669.1257 2119.763
2000 716.0625 2106.715
2250 707.7522 1549.613
2500 639.417 2276.322

The tests of pipelined scheme and sequential scheme are using different n values. For

on the results of the first part testing; the

=2, for it has been proved to be the optimal value for AFSA. We

Average reading time using pipelined and sequential scheme

2750
3000
3250
3500
3750

It is obvious that, on average, the pipelined scheme is twice

Figure 16 showed two very different lines.

which means it is less influence

scheme suffered greatly through interference so that the produced line jumped violently.

It proved that the pipelined scheme

than the sequential scheme

Figure 16. Average reading time using pipelined and sequential scheme

Figure 17 showed the comparison between

tag reading time.

0

500

1000

1500

2000

2500

0 1000

23

2750 683.2455 1633.504
3000 727.115 1550.742
3250 658.8762 1960.914
3500 662.4093 1744.2
3750 734.3507 1710.655

It is obvious that, on average, the pipelined scheme is twice as fast as sequential scheme.

Figure 16 showed two very different lines. The pipelined results produce a smoother line,

less influenced by interference; on the other hand, the

scheme suffered greatly through interference so that the produced line jumped violently.

that the pipelined scheme was more interference resistant and more effic

than the sequential scheme.

. Average reading time using pipelined and sequential scheme

comparison between pipelined and sequential scheme

1000 2000 3000 4000

Sequential, n=2

Pipelined, n=6

Tag count

sequential scheme.

he pipelined results produce a smoother line,

by interference; on the other hand, the sequential

scheme suffered greatly through interference so that the produced line jumped violently.

was more interference resistant and more efficient

. Average reading time using pipelined and sequential scheme

pipelined and sequential scheme over average

Sequential, n=2

Pipelined, n=6

count

 24

Figure 17. Comparison between pipelined and sequential scheme over average tag
reading time

 25

CHAPTER V

CONCLUSION

5.1 Conclusion

The impressive performance of our new model, not only high interference resistance but

also high collision avoidance, has proven to increase efficiency by 50 percent on average,

compared with sequential execution of AFSA. The key factor is that we execute

simultaneously the four phases that are less time consuming with the data transmission

phase, which is taking twice as much execution time as the sum of the other four phases.

Furthermore, we filled up the time gap between the two pipelined stages with a longer n-

bit sequence, which eliminated most undetected collisions.

5.2 Future work

We have proved that with frequency hopping techniques the influence of external

interference can be minimized. We also use a two-stage pipeline scheme to cut down the

total communication time between reader and tags. In the future, the same scheme can be

deploying in mobile environments. It will be a more complex and challenging work,

though.

 26

REFERENCES

 [1] M. Lee, F. Cheng, and Y. Leung. “A quantitative view on how RFID will improve a
supply chain.” Technical report RC23789 (W0511-065), IBM Research Center,
November 2005.

[2] R. Derakhshan, M. Orlowska, and X. Li. “RFID Data Management: Challenges and

Opportunities.” in IEEE International Conference on RFID Gaylord Texan Resort,
Grapevine TX, USA, March 26-28, 2007, pages 175-182.

[3] S. Jeffery, M. Garofalakis, and M. Franklin. “Adaptive cleaning for RFID data

stream.” Proceedings of the 32nd International Conference on Vary Large Data
Bases (VLDB), 2006, pages 163-174

[4] C. Floeremeier and M. Lampe. “Issues with RFID usage in ubiquitous computing

applications.” Pervasive Computing: Second International Conference,
PERVASIVE, 2004. Available at
http://www.vs.inf.ethz.ch/res/papers/RFIDIssues.pdf

[5] N. Ahmed, R. Kumar, R. S. French and U. Ramachandran, “RFID: A Reliable

Middleware Framework for RFID Deployment.” in IEEE International Parallel and
Distributed Processing Symposium, IPDPS March 26-30, 2007, pages 1-10

[6] L. Bolotnyy and D. Evans, “New Directions in Reliability, Security and Privacy in

RFID Systems.”Dec. 7, 2007, Available at
http://www.cs.virginia.edu/colloquia/event681.html

[7] S. Lewis,”A basic introduction to RFID technology and its use in the supply chain.”

Laran RFID white paper, January, 2004, page 5. Available at
http://www.ship2save.com/page_images/wp_printronix_rfid_supplychain.pdf

[8] K. S. Leong, M. L. Ng, A. R. Grasso, and P. H. Cole, “Synchronization of RFID

Readers for Dense RFID Reader Environments,” Proceedings of the 2006
International Symposium on Applications and the Internet Workshops (SAINT’06),
48–51, 2006.

[9] K. Finkenzeller, RFID Handbook second edition, Wiley & Sons, 2003, page 29-56,

183-191, 311-314

 27

[10] P. Sorrells, “Passive RFID Basics.” Microchip Technology Inc.,1998. Available at
http://ww1.microchip.com/downloads/en/AppNotes/00680b.pdf

[11] W. Stallings, “Wireless Communications and Networks” Prentice Hall, New Jersey,

2002, page 168-202.

[12] J. Y. Maina, M. H. Mickle, M. R. Lovell and L. A. Schaefer, “Application of

CDMA for Anti-Collision and Increased Read Efficiency of Multiple RFID Tags.”
in Journal of Manufacturing Systems, Vol. 26, 2007, page 37-43.

[13] Y. Fukumizu, M. Nagata, and K Taki, “Back-End Design of a Collision-Resistive

RFID System through High-Level Modeling Approach.” In IEICE Trans, Electron,
Vol. E89-C, No. 11, November 2006, page 1581-1590

[14] R. M. Buehrer, “Spread Spectrum Communications.” Lecture notes for CEC 5660,

Virginia Tech., 2006, accessible at:
http://www.mprg.org/people/buehrer/5660/Lectures/SpreadSpectrumBook.pdf

[15] M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, “Spread Spectrum

Communications Handbook.” McGraw-Hill, Inc., 2002, page 20-29,

[16] R.M. Buehrer, “Spread Spectrum Communications”, 2007

http://www.mprg.org/people/buehrer/5660/Lectures

[17] W. Chen and G. Lin. “An efficient Anti-Collision Method for Tag Identification in a

RFID System” in IEICE Transactions on Communications, Vol. E89-B, No. 12
December 2006, 3386-3392

[18] “EPCTM Radio-Frequency Identification Protocols Class-1 Generation- 2 UHF

RFID Protocol for Communications at 860MHz-960MHz Version 1.0.9,”
EPCglobal, Jan. 2005.

[19] J. Cha, J. Kim, “Dynamic Framed Slotted ALOHA Algorithms using Fast Tag

Estimation Method for RFID System”, in Proc. IEEE CCNC 2006, pp. 768-772.

[20] G. Khandelwal, K. Lee, A. Yener, and S. Serbetli, “ASAP: a MAC Protocol for

Dense and Time-Constrained RFID Systems,” EURASIP J. Wireless Commun. and
Networking, vol. 2007, article ID 18730, 13 pages, 2007. doi:10.1155/2007/18730.

[21] S. Lee, S. Joo, and C. Lee, “An Enhanced Dynamic Framed Slotted ALOHA

Algorithm for RFID Tag Identification,” in Proc. MobiQuitous, pp. 166-172, July
2005.

[22] H. Vogt, “Multiple Object Identification with Passive RFID Tags.” 2002 IEEE

International Conference on Systems, Man and Cybernetics. October 2002.

 28

[23] H. Vogt, “Efficient Object Identification with Passive RFID Tags.” In International
Conference on Pervasive Computing, LNCS. Springer-Verlag, 2002. pp.98-113.

[24] V. Sarangan, M.R. Devarapalli and S. Radhakrishnan, “A Framework for Fast RFID

Tag Reading in Static and Mobile Environments.” In Computer Networks journal,
vol. 52, no. 5, April 2008, page 1058-1073.

 29

APPENDICES

Simulation code

1. Main Class

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;

public class Main {

 /**
 * @param args
 */

 static int iniCount=0;
 static boolean next=true;
 static PrintStream printStream;
 static PrintStream printStream1;

 public static void main(String[] args) {
 // TODO create an output file, run both sequential and pipelined scheme,
calculate average time
 try {

 printStream = new PrintStream(
 new FileOutputStream(
 new File("result_n.xls")));

 printStream.printf("total time\tn=5\tn=6\tn=7\tn=8\t");
 printStream.println();
 printStream.println("total
count==");

 printStream1 = new PrintStream(
 new FileOutputStream(
 new File("result_hop.xls")));

 30

printStream1.println(" average_time pipelined sequential");
printStream1.println("total_count==
");

 } catch (FileNotFoundException e) {
 // TODO if the file did not create successfully.
 e.printStackTrace();
 }

 for(int i=0; i<50; i++){
 iniCount+=500;
 runHop(5);
 Global.timeHop5=Global.totalTimeHop;
 Global.totalTimeHop=0;
 runHop(6);
 Global.timeHop6=Global.totalTimeHop;
 Global.totalTimeHop=0;
 runHop(7);
 Global.timeHop7=Global.totalTimeHop;
 Global.totalTimeHop=0;
 runHop(8);
 Global.timeHop8=Global.totalTimeHop;
 Global.totalTimeHop=0;
 Computer.dataManager();
 }

 iniCount=0;
 for(int i=0; i<50; i++){
 iniCount+=50;
 runSeq();
 Global.timeSeq=Global.totalTimeSeq;
 Global.totalTimeSeq=0;
 runHop();
 Global.timeHop=Global.totalTimeHop;
 Global.totalTimeHop=0;
 Computer.dataManager1();
 }
 }

 private static void runSeq() {
 // TODO run sequentially with a probability of interference
 Computer.ini();
 Global.unreadTagCount=iniCount;
 double timeSpent=0;

 while(Global.unreadTagCount>3){

 31

 Reader.ad();
 Reader.summary(Tag.reservation(Reader.N,2));
 Tag.transmission();
 Reader.acknowledgment();
 timeSpent+=(Global.adTime+Global.suTime+
 Global.ackTime+Global.reTime+Global.trTime);
 }
 Global.totalTimeSeq=timeSpent;
 }

 private static void runHop() {
 // TODO pipelined scheme with a probability of interference
 Computer.ini();
 Global.unreadTagCount=Main.iniCount;
 Global.n=6;
 Reader.advertisement();//first round
 Reader.summary(Tag.reservation(Reader.N,Reader.nbit));
 Global.totalTimeHop+=(Global.adTimeHop+Global.reTimeHop+Global.suTime);

 //run transmission phase and the previous three phases simultaneously.
 Tag.transmission();//first round
 Reader.advertisement();//second round
 Reader.summary(Tag.reservation(Reader.N,Reader.nbit));//second round
 double
threePhase=Global.adTimeHop+Global.reTimeHop+Global.suTime;

 Global.totalTimeHop+=Math.max(threePhase, Global.trTime);

 //run the rest rounds.
 while(Global.unreadTagCount>3){
 Reader.acknowledgment();//first round
 Tag.transmission();//first round
 Reader.advertisement();//second round
 Reader.summary(Tag.reservation(Reader.N,Reader.nbit));//second
round
 double fourPhase=Global.adTimeHop+Global.reTimeHop
 +Global.suTime+Global.ackTime;
 Global.totalTimeHop+=Math.max(Global.trTime, fourPhase);

 }

 //last round
 Reader.acknowledgment();//previous round
 Tag.transmission();//this round
 Global.totalTimeHop+=Math.max(Global.trTime, Global.ackTime);
 Reader.acknowledgment();//this round

 32

 Global.totalTimeHop+=Global.ackTime;
 }

 private static void runHop(int n) {
 // TODO run pipelined scheme
 Computer.ini();
 Global.n=n;
 Reader.ini();
 }
}

2. Computer Class

public class Computer {

 static void controller(){
 // TODO estimate both frame and n-bit size for the use of advertising

 int numbit=0;
 if(Global.unreadTagCount<256 && Global.unreadTagCount>3){
 Global.frame=(int)Math.pow(2, log(Global.unreadTagCount));
 numbit=log(Global.unreadTagCount);
 if(numbit>Global.n)
 numbit=Global.n;

 }else if(Global.unreadTagCount<4){
 Global.frame=2;
 numbit=1;

 }else{
 Global.frame=256;
 numbit=Global.n;

 }
 Global.n=numbit;
 }

 private static int log(int unreadTag) {
 // TODO 2-base log function, this is a supplement function
 int count=0;
 while(unreadTag>1){
 unreadTag=unreadTag/2;
 count++;

 33

 }
 return count;
 }

 static void dataManager(){
 // TODO print out the results with different n-bit length
 String s=Integer.toString(Main.iniCount);

 if(s.length()<4){
 s=" "+s;
 }
 if(s.length()<5){
 s=" "+s;
 }

 Main.printStream.printf("%s\t%3f4\t%3f4\t%3f4\t%3f4\t",
 s,Global.timeHop5*0.000001,Global.timeHop6*0.000001,
 Global.timeHop7*0.000001,Global.timeHop8*0.000001);
 Main.printStream.println();
 Global.timeHop6=0;
 Global.timeHop7=0;
 Global.timeHop8=0;
 Global.timeHop5=0;
 }

 static void ini() {
 // TODO initiate all variables
 Global.unreadTagCount=0;
 Global.frame=0;
 Global.n=0;
 Global.adTimeHop=0;
 Global.adTime=0;
 Global.undetectCollision=0;
 Global.successRes=0;
 Global.suTime=0;
 Global.ackTime=0;
 Global.totalTagRead=0;
 Global.readCount=0;
 Global.reTime=0;
 Global.trTime=0;
 Global.reTimeHop=0;
 }

 static void dataManager1() {
 // TODO print both hopping and sequential scheme results

 34

 String s=Integer.toString(Main.iniCount);

 if(s.length()<4){
 s=" "+s;
 }
 if(s.length()<5){
 s=" "+s;
 }

 Main.printStream1.printf("%s\t%3f4\t%3f4\t",

 s,Global.timeHop/Main.iniCount,Global.timeSeq/Main.iniCount);
 Main.printStream1.println();
 Global.timeHop=0;
 Global.timeSeq=0;
 }
}

3. Reader Class

import java.util.Arrays;

public class Reader {

 static int N;
 static int nbit;
 static int nextHop;
 static int ack;

 static void advertisement(){
 // TODO advertisement phase
 Computer.controller();
 N=Global.frame;
 nbit=Global.n;
 Global.adTimeHop=12.5*(20+Global.n);
 }

 static int summary(int[][] res){
 // TODO summary phase
 int sucReserTag=0;
 int undetectCollision=0;
 int[] bitmap = new int[N];
 String st="";

 35

 Arrays.sort(res,new Sort2DArray()); // sort 2D array using comparator to
handle 2'nd dim

 if(N>3){
 for(int i=0;i<N-1 ;i++){
 int l=i+1;

 if(res[i][0]==res[l][0] && res[i][1]==res[l][1] &&
bitmap[res[i][0]]!=-1){
 bitmap[res[i][0]]=1; // undetected collision

 undetectCollision++;
 continue;
 }
 if(res[i][0]==res[l][0] && res[i][1]!=res[l][1]&&
bitmap[res[i][0]]==1){
 undetectCollision--;
 bitmap[res[i][0]]=-1;
 }else if(res[i][0]==res[l][0] && res[i][1]!=res[l][1]){
 bitmap[res[i][0]]=-1;
 continue;
 }
 if(res[i][0]!=res[l][0] && bitmap[res[i][0]]!=-1){
 bitmap[res[i][0]]=1;
 }//if

 if(res[N-2][0]!=res[N-1][0]){
 bitmap[res[N-1][0]]=1;
 if(res[N-2][1]==res[N-1][1]){
 undetectCollision++;
 }
 }
 }//for

 }else if(N<=3 && N>0){
 if(Global.unreadTagCount<2||Main.iniCount<2){
 bitmap[0]=1;
 }else{
 if(res[0][0]!=res[1][0] && res[0][1]!=res[1][1]){
 bitmap[0]=1;
 bitmap[1]=1;
 }else if(res[0][0]==res[1][0] && res[0][1]==res[1][1]){
 bitmap[0]=1;
 bitmap[1]=1;
 undetectCollision+=2;

 36

 }else{
 bitmap[0]=0;
 bitmap[1]=0;
 }
 }
 }

 for(int j=0; j<N;j++){
 if(bitmap[j]<0)
 bitmap[j]=0;
 st+=bitmap[j];
 if(bitmap[j]==1){
 sucReserTag++;
 }
 }
 Global.successRes=sucReserTag;
 Global.undetectCollision=undetectCollision;
 //System.out.println("bitmap = ["+st+"]");
 //System.out.println("undetect collisions = "+undetectCollision);
 //System.out.println("Computer.undetect collisions =
"+Global.undetectCollision);
 Global.suTime=12.5*(10+N);
 res=null;

 return Global.successRes;
 }

 static int acknowledgment(){
 // TODO acknowledgment phase

 if(Global.unreadTagCount>=ack){
 ack=Global.readCount;
 Global.totalTagRead+=ack;
 Global.unreadTagCount-=ack;
 }else{
 Global.totalTagRead=Main.iniCount;
 Global.unreadTagCount=0;
 }
 Global.ackTime=12.5*(10+Global.successRes);
 //System.out.println("Total Tag Read= "+Global.totalTagRead);
 //System.out.println("Total unread Tag= "+Global.unreadTagCount);
 return ack;
 }

 37

 static void ini() {
 // TODO initiate reader and start the first 2 rounds
 Global.unreadTagCount=Main.iniCount;
 Reader.advertisement();//first round
 Reader.summary(Tag.reservation(N,nbit));
 Global.totalTimeHop+=(Global.adTimeHop+Global.reTimeHop+Global.suTime);

 // pipelined, run transmission phase and the previous three phases simultaneously.
 Tag.transmission();//first round
 Reader.advertisement();//second round
 Reader.summary(Tag.reservation(N,nbit));//second round
 double
threePhase=Global.adTimeHop+Global.reTimeHop+Global.suTime;

 Global.totalTimeHop+=Math.max(threePhase, Global.trTime);

 //run the rest rounds.
 run();
 }

 static void run() {
 // TODO run pipelining scheme
 while(Global.unreadTagCount>3){
 Reader.acknowledgment();//first round
 Tag.transmission();//first round
 Reader.advertisement();//second round
 Reader.summary(Tag.reservation(N,nbit));//second round
 double fourPhase=Global.adTimeHop
 +Global.reTimeHop+Global.suTime+Global.ackTime;
 Global.totalTimeHop+=Math.max(Global.trTime, fourPhase);
 }
 lastRound();
 }

 private static void lastRound() {
 // TODO last round
 Reader.acknowledgment();//previous round
 Tag.transmission();//this round
 Global.totalTimeHop+=Math.max(Global.trTime, Global.ackTime);
 Reader.acknowledgment();//this round
 Global.totalTimeHop+=Global.ackTime;
 }

 38

 public static void ad() {
 // TODO advertisement phase for sequential scheme
 Computer.controller();
 N=Global.frame;
 Global.adTime=12.5*(20+2);
 }
}

4. Tag Class

public class Tag {

 static int[][] reservation(int slotNum, int num){
 // TODO reservation phase
 int[][]reservation =new int[slotNum][2];
 int slot=0,bit=0;
 int temp=(int)Math.pow(2, num);

 if(slotNum>2){
 for(int j=0; j<slotNum;j++){

 slot=ran(slotNum-1);
 bit=ran(temp-1);
 reservation[j][0]=slot;
 reservation[j][1]=bit;
 }
 }else{
 for(int j=0; j<slotNum;j++){

 slot=ran(slotNum);
 bit=ran(temp);
 reservation[j][0]=slot;
 reservation[j][1]=bit;
 }
 }
 Global.reTimeHop=12.5*(slotNum)*(1+num);
 Global.reTime=12.5*(slotNum)*3;

 return reservation;
 }

 private static int ran(int num) {
 // TODO generate a random integer less than the parameter.
 int r=0;
 r=(int)(Math.random()*1000);

 39

 while(r>num){
 r=Math.abs(r-num);
 }
 return r;
 }

 static void transmission(){
 // TODO transmission phase

 int unsuccessTag=Global.undetectCollision;

 if(Global.successRes>=unsuccessTag){
 Global.readCount=Global.successRes-unsuccessTag;
 }else
 Global.readCount=0;

 Global.trTime=Global.successRes*(12.5+80*4);
 }

 public static void transmission1() {
 // TODO transmission phase with a probability for occurring interference
 double p=Math.random();//Probability for occurring interference
generated by random
 int unsuccessTag=(int)(Global.successRes*p)+Global.undetectCollision;

 //System.out.printf("pro. of interference = %5.2f",p*100);
 //System.out.print("%\n");
 //System.out.println("# of success Res. Tags = "+Global.successRes);
 //System.out.println("# of unsuccess Tags= "+unsuccessTag);
 if(Global.successRes>=unsuccessTag){
 Global.readCount=Global.successRes-unsuccessTag;
 }else
 Global.readCount=0;

 Global.trTime=Global.successRes*(12.5+80*4);
 }
}

5. Global Class

public class Global {

 //variable declaration
 static int unreadTagCount;
 static int frame;

 40

 static int n;
 static double adTimeHop;
 static double adTime;
 static int undetectCollision;
 static int successRes;
 static double suTime;
 static double ackTime;
 static int totalTagRead;
 static int readCount;
 static double reTime;
 static double trTime;
 static double reTimeHop;
 static double timeHop6;
 static double timeHop7;
 static double timeHop8;
 static double totalTimeHop;
 static double timeHop5;
 static double timeHop;
 static double totalTimeSeq;
 static double timeSeq;

}

6. Sort2DArray Class

import java.util.Comparator;

public class Sort2DArray implements Comparator<Object> {
 public int compare(Object o1, Object o2) {
 int[] a1 = (int[])o1; // second dimension arrays
 int[] a2 = (int[])o2; // must be same length
 for (int i=0; i<a1.length; i++) { // establish order by comparing
 if (a1[i] < a2[i]) return -1; // array elements
 else if (a1[i] > a2[i]) return 1; // from left to right
 }
 return 0; // arrays are equal
 }
}

VITA

Ju-Yen Hung

Candidate for the Degree of

Master of Science

Thesis: IMPROVING READER PERFORMANCE OF AN UHF RFID SYSTEM

USING FREQUENCY HOPPING TECHNIQUES

Major Field: Computer Science

Biographical:

Personal Data: Born in Taipei, Taiwan.

Education:
Received Bachelor of Management and Information degree in Management and
Information from National Open University, Taipei, Taiwan in 2006.
Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in May, 2009.

Experience: Teaching Assistant, Department of Computer Science

ADVISER’S APPROVAL: Dr. Venkatesh Sarangan

Name: Ju-Yen Hung Date of Degree: May, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: IMPROVING READER PERFORMANCE OF AN UHF RFID SYSTEM

USING FREQUENCY HOPPING TECHNIQUES

Pages in Study: 40 Candidate for the Degree of Master of Science

Major Field: Computer Science

Abstract:

A new RFID passive tag reading model reducing the average tag reading time in dense

environments is introduced. It is shown that by using frequency hopping techniques our

model can reduce external interference as well as the number of collisions during the

reading processes. The simulation results have further proven that our new model can

significantly reduce the average tag reading time by 50%.

