AUTOMATIC COMPOSITION OF WEB SERVICES

USING INTELLIGENT AGENT

By
BINOD GURUNG
Bachelor of Science in Computer Engineering
Kathmandu University
Dhulikhel, Nepal

2003

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2008

AUTOMATIC COMPOSITION OF WEB SERVICES

USING INTELLIGENT AGENT

Thesis Approved:

Dr. Johnson P. Thomas

Thesis Adviser

Dr. Venkatesh Sarangan

Dr. Xiaolin Li

Dr. A. Gordon Emslie

Dean of the Graduate College

ACKNOWLEDGMENTS

The idea of working on Web services came up dwlisgussions with my thesis
advisor Dr. Johnson P. Thomas. Later during myarese | found the idea of
automatically composing Web services appealingouldl like express my gratitude to
Dr. Johnson P. Thomas for his guidance and supptitout which this would not have
been possible.

| am indebted to Dr. Venkatesh Sarangan and 2wl Li for willing to be in
my thesis committee and helping me with questiomssaiggestions.

| would also like to thank all the professors frtim computer science department
who have contributed to this work directly or ireditly. | believe my work is heavily
influenced by what they taught me.

| am very thankful for having such a caring andparping family. Without their
guidance and support none of this would have bessiple.

Last, but not least | would like to thank my friendradeep Baral, Abhishek
Ghale, Prakash Giri, Moti KC, Nabin Ghimire and Alek Parajuli for being there for

me all the time.

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION ...ttt ettt e e e a e e e semnn e e e e e s 1
1.1 COMPOSItE WED SEIVICE......civiiiiiiiiceeeeee et 2
1.2 SOMWAIrE AQENT ..o nnee 3
2. REVIEW OF LITERATUREooiiiiiiiiit ittt e e 4
2.1 Agent as WED SerVICeoooviiiiii i 5
2.2 Static and Dynamic COMPOSITIONcummmmreerereerrrrerrmemenemmnenmmmnnnnnenmnnnnnn 6
2.3 Fault Tolerant COMPOSItIONuuviviuies e 6
2.4 Composition Using Chain Data StruCtUre.......ccoooeveeeiiieiiieiii e 7
3. PROBLEM STATEMENT ...ttt et e e ieeeas 10
4. METHODS, RESULTS AND DISCUSSION........uutiiiiiiiiiiieiieeee e 11
7230 N \V T4 g ToTo (o] (o]0 | V2T TUTUR R 11
4.2 Calculation of Total EXeCULION TIME .. .o 13
4.3 IMPIEMENTATION .ceeiiiiiiiiiiiiiiie it eeeeee et e et ee e et e eeeaeeaeeteebeeeesbeeebebreeneneeeeeeeas 15
4.4 Experimental VerifiCationeo e 18
4.5 EXECULION ...coiiiiiiiiiiiii ittt mm e e e e e e e e e e 22
5. CONCLUSION ...ciiiiiie ettt ettt e e e e e e e s e e e e e e e e e e e nnnsaeeeaeeseannneees 23
REFERENGCES ...ttt ettt e e e e e e e e e e e e e nnnee e 25
A DATA STRUCTURES ..ottt e et ee e e e e e e e s e snnesaeeeaaananes 27

LIST OF TABLES

Tables Page
4.1 List of Web services used in the experiment.................ueevevvviveeieeviniennnn 18
4.2 Composed Service error Chart ... e 19
4.3 Compositions and their average executiorSim..............cccceevvveeiiiiinenenenn, 9.1

LIST OF FIGURES

Figure Page
1.1 Message flow in Web service, client and UDDI................cuvvvvviviiiiniiiinninn. 1.
2.1 Fault tolerant WeD SEIVICES........i et 7
2.2 WS Chain table and Web service inputs atudsl..............ooeeeeeiiiiiiieninecenenn, 8
2.3 WED SErviCe SEArCh TIEEummmmmeeeeeeeeeeseassiieireeee e e e e e s aeneeee s s e nnees 9
4.1 O node and Modified W NOUE..........commmmeeeeeeeiiiiiiiiieiee e eieieeeeeas 11
4.2 Solution Tree in creation (10gQiCal VIEW)..........uuuvuriiuiriminiiiiiiiiiiiniiiiennimnnnnes 13
4.3 Calculation of TT in W NOAEeummeeceeeiiiiiiiiieie e 14
4.4 Experimental Setup BIOCK DIiagram 15
4.5 Administrator view of the agentcoeeeiiiiiiiiiiiiiiii e 16
4.6 User view of the agent ... 16
4.7 Service DescCription DOCUMENL ... eeeeeieeeeeiee et aeeeeea s 17
4.8 Composed WeD SErviCe TrEe ...t 20
4.9 Composed Web service Tree after SOMing...........ueeeeeeeieeeieeiieieeiieiiiiiniees 20
4.10 Simulation RESUIL...........ooo e 21
4.11 Execution of the composed Web Service..........cccccvvviiiiiiiiciecieee, 22

Vi

CHAPTER 1

INTRODUCTION

A Web service is a platform independent softwastesy that resides in the
World Wide Web and performs specific tasks on biedfalts clients. The architecture for
Web services rests on principle and standardsoienection, communication, description
and discovery. In its most common form, clients aadzers communicate using XML

messages that follow the SOAP standard. The gmtireess is shown in figure 1.1.

Service
Broker
;i UDDI
L F
WSDL WSDL
| soar | &
| o
Service Service
Reguester Provider

Fig 1.1 Message flow in Web service, client and UDD

Web services these days can be simply Web APIs#rmabe accessed over the
Internet. Examples include Payment systems by wsrid@ PayPal and Authoize.net.
Web services advertise themselves using WSDL dootimiegich are stored by a registry

system called Universal Data Description and Irdggn (UDDI). Clients find out about

Web services by querying the UDDI registry whicturas WSDL documents. UDDI
acts as both a yellow and a white page directanyice[1]. Using the information in

WSDL documents, client systems know how to commateigvith Web services.

1.1 Composite Web service

A single Web service may not be able to fulfillleeot’'s request. In such case, for a
single task, multiple Web services have to be iedokHence users have to first make a
list of Web services whose combination will satigfgir need. Secondly they have to
locate all the required Web services using varimethods like querying the UDDI
registry. Thirdly they have to negotiate with difat service providers and invoke those
services. To simplify this task, a composite Wetvise can be developed which can
serve as a one stop shop for its customers.

A composite Web service is a Web service that afesr Web services and
performs complex tasks on behalf of its clientserBifiore, a composite Web service is
invoking a sequence of other Web services rattaer timplementing its own service.
This research is dedicated to compose an effitMati service by using a chain data

structure which can recover when one or more ses\irt the composition fails.

1.2 Software Agent

A software agent or simply agent is a piece of dbaé acts on behalf of a user
with authority to decide for the best action foe tser [1]. These agents can learn on its
own and can make decisions like changing the cafraetion to achieve their goal.
There may be some metrics associated with agenthwiakes them improve
themselves like humans and perform better whenaiitaisks are done more than once.
They retain the knowledge they gain through a sesfesuccesses and failures and are
capable of using that knowledge in future. Thengplas of Agents are many in the real
world. Agents are used to sell products on therttewith an aim to get the best price.
They are also used to buy products to get thedsssdt Agents use different kinds of
logic like decision tree, neural network enhancgalgorithms like bagging and
boosting to represent and store the knowledge. &geamn also be simple reactive agents
which act based on data perceived from the envieminSuch Agents uses various kinds
of data structures to store knowledge. Agents lsewsed as Web services to provide
guality and cost effective service to clients [Bflaare expected to be very important
players in the Semantic Web. Agents not only gieservice but also collect feedbacks
behind the scene and modify themselves to satisfiyd customer needs. Agents are an
effective way of automating a sequence of jobsniead to be done. Agents therefore
are useful in automating composition of Web s@&wiand change the composition when
one or more Web services fail or slow down, theraffgcting the performance of the

composed Web service.

CHAPTER 2

REVIEW OF LITERATURE

For a Web service to be useful to many applicativvesb services should not be
too complicated [3]. When a complex Web servicegsded, simple Web services can be
used as building blocks. However composition iSulsenly when we are looking for a
Web service with specific input and output paramsefg]. A lot of research has been
done on different methods to compose a complex ¥eéelice using existing services [1],
[3] and [1]. Most of these methods are static anmdesare dynamic. Static methods first
collect all the component Web services and use tihetompose a complex Web service.
The dynamic method composes new Web services diytlomking at input and output
parameters as the request comes. These methodbast and scalable, but since they
compose Web services on the fly, they usually dowaich the performance of the static
services. Since a complex Web service depends miberuof services, failure at one
point results in failure. Therefore a composed \&fetvice should be designed such that
they can cope with such failures. Most of the reges focused on dynamically
composing a Web service. Little has been donetgpose a Web service with better

performance than others.

2.1 Agent asWeb Service

The World Wide Web is evolving into a semantic weétich is a friendly
environment for software agents. The web was desdifor humans. Web pages were
designed to be viewed by people and Hypertext Matlanguage (html) is used to
describe the page’s appearance. Agents howeveoaisterested in appearance but
content of the page. Semantic web is designeduorams and agents alike. Although
software agents can use web as it is now e.g. Isbtsp the semantic web will make the
Web more accessible to agents by making use ofrgentanstructs like ontology
represented in well established languages so ¢jestts.can understand what information
the part of a web page contains.

Agents and Web services are similar in many wakisyboth can also provide
yellow and white page directory service to adverttseir functionalities. However,
agents extend Web services in many ways. Agentsmgtknow about self unlike Web
services, but they also know about the custometdtaeir needs. It also can gain
knowledge about other agents offering similar sevi Such awareness can help it
improve services for better customer satisfacthkgents can be designed to use ontology
which helps in better communication with clientgjeiits are active and are able to
provide alerts and updates when they are availsdd service standard requires it to be
autonomous though it is rarely in real life. Howeités a trait of an agent to be
autonomous but at the same time it can form coalitby cooperation between the
agents to provide higher level and more comprekrersgrvices. So to take advantage of

these features, agents can be wrapped as webesef{]c

2.2 Static and Dynamic Composition

Most Web service composition algorithms are stagicthey compose complex
Web service when all the component Web serviceaa#able. This approach has its
own advantages but is hard to scale and is nostabichanges. Dynamic Web service
composition is gaining ground with its obvious acheges on scalability and robustness.
Pat. P.W. Chan et al. proposed an algorithm whiakes use of WSCI, a XML based
interface description language to describe the agesow between participating Web
services [1]. It complements WSDL by describingweey operations should be
choreographed. The algorithm searches the WSDth&desired output and makes it the
root of the tree. If the input of that operatiors@éne as the required input, composition is
complete. If not WSCI is searched for a matchirtgpbadhat needs to be invoked. This
process will continue till the operation which givihie desired input is found. This

algorithm also claims create a deadlock free coitipad1].

2.3 Fault Tolerant Composition

Since Web services are gaining popularity, differersions of the same service
are available. Thus their selection might be a@ltto create a fault tolerant and highly
available composite Web services. Not all of themwices are available all the time.
This fact should be taken into consideration to pose a Web service. To compose a
highly available and fault tolerant Web servicepand robin algorithm can be used to
select a particular Web service among its diffek@msions. When fault occurs, different
version can be selected and UDDI registry can lpesgetl to select the one which is

available [1].

Forolee Web Serwice
* Wab Service
[s
Rapication Managar P I'Tpﬁl_ﬂ;ﬁ_j;
- o ol | Detabass -|
Wb senice | e i)
seiechion baprr=" —
Clieni 1 mlu'ﬂ'l'l | T — Wilish Sirdos
~ Fan | _ WatthDog | LY e
Appication | | Agplication |
— % s T
| Database | : Update WSDL - | Databazs]
= = Begister k‘x — &
y
uoDl Heep checking the .
—————— apailability of A i
| Reglsty | | Web serwices. % WWeb Sendce |
Loalwp CE— Ta Weh serwice < e
| _wsbL | | filedupdatethe .
Get WSDL ’ List of awailability of | Appheation |
Web serwices — —
| [Cralaiza e

Fig. 2.1 Fault tolerant Web services [1]

2.4 Composition using chain data structure

Unlike other Web service composition algorithmsnékes use of a data structure
called WS chain table which captures the dependesiationship among component
Web services [3]. This algorithm is an efficierg@iithm with time complexity of
O (n x log (m)) where n is the number of Web sexsiand m denotes the number of
output parameters. There are two kinds of nod&83nchain table. O node and W node.
O node containterm andlink. Term field contains name of an output paraméiek
field contains pointer to a W node. A W node cordaame: name of Web service,
URL: location of Web service, nlink: pointer to @her W node, © name of ' output
parameter of the web servicg, if" input parameter of the Web service, llirtontains

pointer to an O nodehose term is same as |

O nod¢ W node

Term Link Name| URL Q[Oy .. | Q|] ink| 1] tinky| . .. 1| tinks | niink

._-——'| Wss |t3 | | | | —H W51 ﬂ | |tl | | _’_>| WS6 |13 |.... |"6 | A

4 _,—-'| wsT |H | © | | »| | _l_,| wss |[4 | .|‘s |,\ || A | WSl I 0. 5. 0.3

ws2: {I: 17; 0.

__,| ws3 |5 | . |—9 | | | A | ws3: {I: 19; 0. 15

i WSs4: {I; 11 0.)

t6 _»I o | | | | | | WSss: {I. t3; 0. 3}

L _ wsd |6 | Al | A Wse. {1, 16, o o)
W57, {I. 2. O 4 5}

o8 74| Wws2 |t9 | _ | |,~. | | H ws7 |t4 | e m| | A | WSE. {1, 3. 0.

Fig. 2.2 WS Chain table and Web service inputsautgduts [3]

The algorithm maintains two lists; T which contaliss of known items and G

which contains list of unknowns. With current stasea root state it creates a breadth first
tree with branches as Web services whose outpargéstlements of G. It updates the list
of known items by adding the output of the Web merto the T list and removes it from

G list. But the input to a Web service may notiioéhie list of known items. If that is the
case, T will be updated by adding the item(s) #natrequired to invoke the Web service.

The algorithm ends when G is empty. In the figuety, in the known items are t1 and

t2 and required outputs or unknowns are t3 an@itié.composed Web service is the

sequence on invocation of WS7, WS4 and WS6.

T: 11,12, t4
G: t3

T:t1,12,t3
G:t5,t4

T:11,12,t3
G:t5,t4

T:11,12,t3,t5
G: 19, t4

T:11,12,13,t6
G:t4

Fig. 2.3 Web service Search Tree

CHAPTER 3

PROBLEM STATEMENT

Web services are located in different machinesfferént part of the world.
Much of the work in Web service composition hasrbeéene to address one issue at a
time such as composing Web service efficiently §@mposing a reliable Web service
[1] etc. When a composite Web service is creawsl,droblems arise. Since a single
composite Web service depends on a number of Y¥ebrservices, probability of failure
of the composite Web service increases considerdbirefore one of the focuses of this
research is to come up with a design which will emalcomposite Web service fault
tolerant.

The other issue is the execution or response timecomposite Web service.
Since there are many Web services providing saméseit is important to choose the
best combination of Web services which will redtiee response or execution time. One
of the techniques used is forecasting the respiimgeof the composed service [3] and
choosing the one with best forecast. This resemiefito get the solution with best
response time by keeping track of response timégalures of each member Web

services.

10

CHAPTER 4

METHODS, RESULTS AND DISCUSSION

The aim of this research is to develop an agenthvban compose an efficient
composite Web service which can still deliver wioae or more Web services in the
composition fails. It uses the data structure nogrtd in section 2.2 with additional fields
ART (Average Response Time), FT (Full Time) and M node. For this research, it

will be assumed that there will be one output facteWeb service.

O nod¢ W node

Term Link Name URL OART TT n Iy llinky 15 llink, ... K llink, nlink

Fig 4.1 O node and Modified W node

4.1 Methodology
The agent will use WS chain table to create a taeh branch of a tree is a
composite Web service. This tree is created byguidis chain table. Each node of the
tree is a W node which stores information abouardiqular Web service. ART in W
node gives average time the Web service it repteéakes to respond, n refers to number
of times the Web service has been invoked, FT isicised when the W node is in tree,

the approximate time it takes from that point tonptete the Web service.

11

To create a composite Web service using the WSi¢hhle, two things are
required; the name of the inputs the composed Wahce is supposed to take and the
name of the output it is supposed to give. For gtarf we are trying to compose a Web
service which takes restaurant type and zip codiepas and outputs the phone number
of a restaurant, the input names should be “restatlype” and “zip code” and output
should be “phone number”.

The agent will perform depth first exploration b&tWS chain table to compose
all possible solutions that can be achieved froenWeb services whose information is
stored in the WS chain table. When each solutidausd, it is added to the tree as a
branch. Since there will be many solutions for eammposite Web service, it is
supposed to be fault tolerant and selecting thediethe solutions will make the
composite Web service faster. An example of comipdsfeb service is shown in fig. 4.2

and 4.3.

12

T:t1,t2,13,t6
G:t4

T:11,12,t3,t5
G:t9,t4

T: 11, t2, t3, t6, t4,§
N\

\/

Fig. 4.2 Solution Tree in creation (logical view)

4.2 Calculation of Total Execution Time

A composite Web service is created when a treb@srsin fig. 4.2 is created.
When the Web service is first used, the agent badea which of the combinations
provides better service. So each time a compositéce is invoked, the agent updates
the ART value of the Web service. Using the ARTuealt calculates total time (TT) in
each node. Fig 4.3 shows the calculation of TThayagent. The initial value for ART
and TT for each W node is 0. It means if a composgtrvice is not tested yet, it will be
treated as the best possible composite Web samtavill be used next time the

composite service is invoked. This way we can ab\ag sure that the one composition

13

we are using is really the best composition we knbiwe diagram below shows how TT

is calculated.

Composite Service = Sequential Execution (Servjcgetvice 2, Service 3)

Service 3 ART:(# TT=c

A 4

Service 2 ART:I‘) TT=z=b+d

A 4

Service 1 ART:%A TT=a+

Fig. 4.3 Calculation of TT in W node

After calculation of TT in composite service, theposite services are arranged
in ascending order of TT. Insertion sort is useddd composite services. In this way,
the first composite service of choice will be theeavith least value of TT in the first W
node. Each time a composite service is invokedyéhee of ART for the component
Web service is updated. The value of n in W noddss incremented by 1. The formula
shown below is used to calculate new ART. The n&®T Avill eventually be used to
calculate new TT.

ART = (ART x n + time taken) / (n+1).
If a Web service fails, the failing Web serviceoenalized by updating ART value as
shown below.

ART = (ART x n + 2 X ART) / (n+1)

14

4.3 Implementation
The agent program itself is a Web service. The teefore first calls the agent
Web service. The agent program uses a serviceipiggerdocument which is an XML
document created using a WSDL document. This dontiaets as a static database for
the list of Web services available to use. Theisergescription document is used to
create a WS chain table which later will be usedaimpose a composite Web service.
The client program can either invoke the Web sesyar can invoke the composed Web

service which again uses services from the Seryic@sder.

Service Description
Document

Service Provider |« »| Composed Service

/

4.4 Experimental Setup block diagram

Client Program

The Agent has two interfaces. The first interfaceneant for administrators to
compose Web services. To compose a Web servicagtrd should know what will be

the input (input names e.g. “zip code” or “food &ypand output (output names e.g.

15

“phone number”) to the composite Web service. Wihemagent creates a WS chain table
and uses the input names as output names to er&¥déb service tree. The process is

shown in fig 4.5

Input names and
output names

@ Interface .

l Output

Output file
(Used to create solution treg)

Fig. 4.5 Administrator view of the agent

The Web service tree is saved as a text file byagent. The same tree will be
used when the service is requested through thendenterface. After each execution of
the composed Web service, W nodes in the treepatated and total execution time is
calculated. The Web service tree is then sortedsamdd for future use. The process is
shown in fig 4.6.

Inputs

@ Interface !
@ Output

Update the tree and sav l T Get file to create solution tr

Output file
(Used to create solution treg)

Fig. 4.6 User view of the agent

16

In this experiment, Apache Tomcat was used as la 3&s/er, Apache Axis 2
was used to deploy Web services and the agenthandiént program were written in

Java. Sample service description document is shlow.

<?xml version="1.0" encoding="UTF-8"?>

<Services>
<service>
<name>namel</name>
<url>http://localhost:8080/Webservice/services/\iBks
<inputs>
<input>a</input>
<input>b</input>
</inputs>
<output>c</output>
</service>

<service>

<name>name2</name>

<url> http://localhost:8080/Webservice/services/Wer|>
<inputs>

<input>a</input>

<input>b</input>

</inputs>

<output>d</output>

</service>

<service>

<name>name9</name>

<url> http://localhost:8080/Webservice/services/Wer|>
<inputs>

<input>a</input>

<input>x</input>

</inputs>

<output>c</output>

</service>

</Service>

Fig. 4.7 Service Description Document

17

In this experiment nine Web services are used. Réeh service is a simple Web
service which takes two parameters as input anesgime value as output. The
information about the Web services used is showhertable below. The Average

response shown in the table below is calculateidmking the each Web services 50

4.4 Experimental Verification

times and taking average of the response times.

Average Response¢

b Error

Web Service Name Time (ms) Probability | inputs| output
WS1 622 0.1 a,b C
WS2 312 0.1 ab d
WS3 219 0.1 c, d e
WS4 416 0.1 a,b u
WS5 518 0.1 ab Y
WS6 62 0.1 c,u e
WS7 358 0.1 d, v e
WS8 170 0.1 a, X C
WS 9 313 0.1 a, b X

Table 4.1 List of Web services usechim éxperiment

The inputs used in this experiment are “a” and&htl required output is “e”.
Interface 1 takes “a” and “b” as input and creditestree shown in fig. 4.7. It finds 5
solutions as shown in table 4.2. After number afepions the based on total execution

time (TT), the tree is sorted as shown in fig Z.8ble 4.3 shows the TT for each

composition after 50 executions of each composition

18

Composed

No of times failed when

No. of times failed

Service No of runs created using WS chain using Agent
1 50 10 0
Cc2 50 20 0
c3 50 13 0
c4 50 17 0
c5 50 10 0

Table 4.2 shows the number of times each of thentposed Web services failed during

50 simulation runs. The right most column of thaléashows that if the agent is used, it

Table 4.2 Composed service error chart

recovers from failure making the composed senactt tolerant.

Composition Average TT
ca 1038.76
Cc2 1081.24
C5 1233.14
Cc3 1152.5
Cc1 1196.56

Table 4.3 Compositions and their average exettimnoes

Table 4.3 shows the execution time of each of tmposed Web services. The agent
creates a tree using all the 5 composed Web seragshown in fig. 4.7. When all the 5
composed Web Services are run at least once, teespeed as shown in figure 4.8. So

when the next request comes, C4 will be executet ff C4 fails, then the next best will

be executed.

19

RS

Cle c2 CBJ o \ C5
v a ~A
ws1 WS9 Ws4 WS9 WS5
ws8
WS2 l ws1 ws8 Wf 2
l l ws7
ws2 WS6 ws4
ws3 l
WS3 WS6
Fig. 4.8 Composed Web service Tree
RS
C4 c2 C#
ng/ x/ v \E:l \25
l WS¢ ws4 ws1 WS5
ws8 WS l Ws2
ws4 W2 WS6 l ws7
l l ws3
WS6 WS3

Fig. 4.9 Composed Web service Tree after sorting

20

2000

7000 ——

6000 —

5000 —hH—

4000 H H—— —\Without error simulation

With error simulation

3000 +—\—5— — - -

2000 M1+

1000 | Il Ao i Batanl Anl oo X- AXiS: NO. Of executions
Y-Axis: Time in ms

1 4 7 10131619 22 2528 313437 4043 46 49

Fig. 4.10 Simulation result

The red line in the graph shows the results gdt e assumption that no error
occurs during execution. The results shows that #ifictuating initially, the composed
Web service becomes steady which means it has finenidest solution. The green line is
the result when each Web service has probability. bto fail. The rise and fall seen on
the graph is due to failure of one or more Webisess When a Web service fails, it
moves to the next solution and hence takes mom thpart from sharp edges, most part
of the green line coincides with the red line shaythat it also found the best solution
and executes that solution most of the time.

It is important to note that network delays adthe response time. However, this
will not affect our proposed approach as the agesdsures total response time which
also includes network delays. Hence, our methagbjgicable to local web services or

remote web services.

21

4.5 Execution

When the agent selects one of the compositioesgeitutes the first Web service
in composition. The agent gets the result and ies@nother Web service using the
result if necessary. Finally it executes the lagth\ervice and the result is sent to the
user. Fig. 4.10 shows the execution of the comp¥geld service. The agent first invokes
WS9 and gets the result. Then it executes WS8, 8M84VS6. The result it gets from

WSE6 is sent as output to the user.

Fig 4.11 Execution of the composed Web service

22

CHAPTER 5

CONCLUSION

Web service composition algorithms are useful wiheat and output are
specific. When this criterion is met we can creatmplex Web services using existing
simple Web services. The Web services if just egtatay have some flaws. If one of the
component Web services fails, the composed Welicssiails. This way the probability
of failure of the composed Web service is higheithis thesis we propose an approach
to recover when one of the composite Web serviaigs WWe also propose an approach to
determine the most efficient composed Web servitebthe many different
combinations of composed Web services that wiflifdur need.

Inverted chain data structure is an efficient métbbstoring information about
Web services that we used to compose complex Welzes. We use this as our
database for Web services and created an agent wbionly finds a single solution but
finds all possible solutions to create a composedh ¥érvice which is efficient in terms
of execution speed or response time and recovams fiilure easily. We implemented
this web service architecture and results showdbhaproposed approach selects the best

composed service and also recovers from failure.

23

Many Web services in a composed Web service camvioked in parallel. This
requires finding out dependency relationship ambegnember Web services and agent
should be able to invoke multiple Web servicehatdame time and process or store the
results as required. This aspect of the composedu $&evice can be explored in future.

Some Web services can be fast but may fail oftéhnexd can be reliable but slow.
The agent can be trained to find balance betwestnth so that it can select a member

Web service which serves out best interest.

24

REFERENCES

[1] P.P.W. Chan and M.R. Lyu, “Dynamic Web serv@emposition: A New Approach
in Building Reliable Web service,” Proceedings BEE International Conference on
Advanced Information Networking and Applicationg; 20 — 25, 2008, [Online].

Available: http://doi. ieeecomputersociety.org/1M9/AINA.2008.133

[2] J. Chi, J. Song, “Intelligent-Agent and Webssee Based service Composition for E-
Business”, Canadian conference on Electrical ammifiliter Engineering (2007), pp:

840 — 843, 2007

[3] J. Eder, H. Pichler, “Response Time HistogramGomposite Web Services,”
Proceedings of the IEEE International Conferenc®/et Services, pp: 832-833, 2007.

[Online]. Available: http://doi.ieeecomputersogieirg/ 10.1109/ICWS.2004.1314963

[4] M. N Huhns, “Agent as Web services,” |EE&Eernet Computing, vol. 6, no. 4
pp: 93-95, 2002. [online]. Available:

http://doi.ieeecomputersociety.org/10.1109/MIC.20020332

[5] S. Hwang, E. Lim, C. Lee and C. Chen, “On Caosipg a Reliable Composite Web
service: A Study of Dynamic Web service Selectidrdceedings of IEEE International
Conference on Web services, pp: 184-191, 200nlij€]. Available:

http://doi.ieeecomputersociety.org/ 10.1109/ICW82033

25

[6] L. Li, M. Jun, C. Z. Min, and S. Ling, “An Effient Algorithm for Web services
Composition with a Chain Data Structure™, Procagdiof IEEE Asia-Pacific
Conference on Services Computing , pp. 64 — 6952[@nline]. Available:

http://doi.ieee.computersociety.org/ 10.1109/APXD06.28

[7] S. Liu, P. Kiingas, and M.Matskin, “ Agent-Bdsé&/eb service Composition with
JADE and JXTA”, 2006. [Online]. Available:

http://www.idi.ntnu.no/~peep/papers/SWWS2006_ LiKNf.p

[8] S. A. Mcilraith, T. C. Son, and H. Zeng, Setia Web services, Proceedings of

IEEE on Intelligent Systems, pp: 43 — 56, 2001

[9] M. Ouzzani, A. Bouguettaya, “Efficient Acce® Web services,” IEEE Internet
Computing, vol. 8, no. 2, pp: 34-44, 2004. [Online]. aable:

http://doi.ieeecomputersociety.org/10.1109/MIC.20Q43484

[10] T. Takase, M. Tatsubori, “Efficient Web sems Response Caching by Selecting
Optimal Data Representation,” Proceedings of IEEErnational Conference on
Distributed Computing Systems, pp. 188 — 197, 2q@hline]. Available:

http://doi.ieeecomputersociety.org/ 10.1109/ICD@8£1281583

26

APPENDIX A

DATA STRUCTURES

Onode

{
Onodenext,
Termterm
Whnodelink

}

Wnode

{ Stringwsname
Stringurl;
Stringoutput

InputLinkinputs
Wnodenext
Whnodechild;

int TT=0;

int ART=0;

int n=0;

27

InputLink

{
Stringinput,
Onodelink;
InputLink next

}

Term

{
Stringterm
Termnext

}

28

VITA
Binod Gurung
Candidate for the Degree of

Master of Science

Thesis: AUTOMATIC COMPOSITION OF WEB SERVICES UN& INTELLIGENT
AGENT

Major Field: Computer Science
Biographical:
Personal Data: Born in Pokhara, Nepal on Decerhb&979

Education:
Received B.E. Degree from Kathmandu University, liXmel, Nepal,
2003 in Computer Engineering
Completed the requirements for the Master of Se@emcComputer
Science at Oklahoma State University, StillwatddaBoma in December
2008

Experience:
Graduate Assistant in Department of CEAT Continutagication,
Oklahoma State University, 2007 to 2008

Name: Binod Gurung Date of Degree: Decembef&0
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AUTOMATIC COMPOSITION OF WEB SERVES USING
INTELLIGENT AGENT

Pages in Study: 28 Candidate foDbgree of Master of Science/Arts
Major Field: Computer Science

Scope and Method of Study:

Previous works on Web service composition focusedeveloping algorithms for a
specific purpose like efficient composition, efint composite service or fault tolerant
composition. The aim of this research was to dgvaloagent which will compose
efficient Web service and also recover from faildree performance of the agent was

evaluated by simulation. It was found that the psgal composed Web service performs
better. It was also able to recover from failunestihreducing failure rate.

ADVISER’S APPROVAL: Dr. Johnson P. Thomas

