
AUTOMATIC COMPOSITION OF WEB SERVICES

USING INTELLIGENT AGENT

 By

 BINOD GURUNG

 Bachelor of Science in Computer Engineering

 Kathmandu University

 Dhulikhel, Nepal

 2003

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2008

 ii

 AUTOMATIC COMPOSITION OF WEB SERVICES

USING INTELLIGENT AGENT

 Thesis Approved:

 Dr. Johnson P. Thomas

 Thesis Adviser

 Dr. Venkatesh Sarangan

 Dr. Xiaolin Li

 Dr. A. Gordon Emslie
 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

The idea of working on Web services came up during discussions with my thesis

advisor Dr. Johnson P. Thomas. Later during my research, I found the idea of

automatically composing Web services appealing. I would like express my gratitude to

Dr. Johnson P. Thomas for his guidance and support without which this would not have

been possible.

 I am indebted to Dr. Venkatesh Sarangan and Dr. Xiaolin Li for willing to be in

my thesis committee and helping me with questions and suggestions.

I would also like to thank all the professors from the computer science department

who have contributed to this work directly or indirectly. I believe my work is heavily

influenced by what they taught me.

I am very thankful for having such a caring and supporting family. Without their

guidance and support none of this would have been possible.

Last, but not least I would like to thank my friends Pradeep Baral, Abhishek

Ghale, Prakash Giri, Moti KC, Nabin Ghimire and Abshiek Parajuli for being there for

me all the time.

 iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1

 1.1 Composite Web Service ...2
 1.2 Software Agent ..3

2. REVIEW OF LITERATURE ..4

 2.1 Agent as Web Service ..5
 2.2 Static and Dynamic Composition ..6
 2.3 Fault Tolerant Composition ...6
 2.4 Composition Using Chain Data Structure..7

3. PROBLEM STATEMENT ..10

4. METHODS, RESULTS AND DISCUSSION ...11

 4.1 Methodology ..11
 4.2 Calculation of Total Execution Time ...13
 4.3 Implementation ..15
 4.4 Experimental Verification ..18
 4.5 Execution ...22

5. CONCLUSION ..23

REFERENCES ..25

A DATA STRUCTURES ..27

 v

LIST OF TABLES

Tables Page

 4.1 List of Web services used in the experiment ..18

 4.2 Composed service error chart ...19

 4.3 Compositions and their average execution times..19

 vi

LIST OF FIGURES

Figure Page

 1.1 Message flow in Web service, client and UDDI...1

 2.1 Fault tolerant Web services ...7

 2.2 WS Chain table and Web service inputs and outputs ...8

 2.3 Web service Search Tree ..9

 4.1 O node and Modified W node ...11

 4.2 Solution Tree in creation (logical view) ...13

 4.3 Calculation of TT in W node ..14

 4.4 Experimental Setup Block Diagram ...15

 4.5 Administrator view of the agent ...16

 4.6 User view of the agent ..16

 4.7 Service Description Document ...17

 4.8 Composed Web service Tree ..20

 4.9 Composed Web service Tree after sorting ..20

 4.10 Simulation Result ..21

 4.11 Execution of the composed Web service ..22

 1

CHAPTER 1

INTRODUCTION

A Web service is a platform independent software system that resides in the

World Wide Web and performs specific tasks on behalf of its clients. The architecture for

Web services rests on principle and standards for connection, communication, description

and discovery. In its most common form, clients and servers communicate using XML

messages that follow the SOAP standard. The entire process is shown in figure 1.1.

Web services these days can be simply Web APIs that can be accessed over the

Internet. Examples include Payment systems by vendors like PayPal and Authoize.net.

Web services advertise themselves using WSDL document which are stored by a registry

system called Universal Data Description and Integration (UDDI). Clients find out about

Fig 1.1 Message flow in Web service, client and UDDI

 2

Web services by querying the UDDI registry which returns WSDL documents. UDDI

acts as both a yellow and a white page directory service [1]. Using the information in

WSDL documents, client systems know how to communicate with Web services.

1.1 Composite Web service

A single Web service may not be able to fulfill a client’s request. In such case, for a

single task, multiple Web services have to be invoked. Hence users have to first make a

list of Web services whose combination will satisfy their need. Secondly they have to

locate all the required Web services using various methods like querying the UDDI

registry. Thirdly they have to negotiate with different service providers and invoke those

services. To simplify this task, a composite Web service can be developed which can

serve as a one stop shop for its customers.

A composite Web service is a Web service that uses other Web services and

performs complex tasks on behalf of its clients. Therefore, a composite Web service is

invoking a sequence of other Web services rather than implementing its own service.

This research is dedicated to compose an efficient Web service by using a chain data

structure which can recover when one or more services in the composition fails.

 3

1.2 Software Agent

A software agent or simply agent is a piece of code that acts on behalf of a user

with authority to decide for the best action for the user [1]. These agents can learn on its

own and can make decisions like changing the course of action to achieve their goal.

There may be some metrics associated with agents which makes them improve

themselves like humans and perform better when similar tasks are done more than once.

They retain the knowledge they gain through a series of successes and failures and are

capable of using that knowledge in future. The examples of Agents are many in the real

world. Agents are used to sell products on the Internet with an aim to get the best price.

They are also used to buy products to get the best deal. Agents use different kinds of

logic like decision tree, neural network enhanced by algorithms like bagging and

boosting to represent and store the knowledge. Agents can also be simple reactive agents

which act based on data perceived from the environment. Such Agents uses various kinds

of data structures to store knowledge. Agents are also used as Web services to provide

quality and cost effective service to clients [2] and are expected to be very important

players in the Semantic Web. Agents not only provide service but also collect feedbacks

behind the scene and modify themselves to satisfy future customer needs. Agents are an

effective way of automating a sequence of jobs that need to be done. Agents therefore

are useful in automating composition of Web services and change the composition when

one or more Web services fail or slow down, thereby affecting the performance of the

composed Web service.

 4

CHAPTER 2

REVIEW OF LITERATURE

For a Web service to be useful to many applications, Web services should not be

too complicated [3]. When a complex Web service is needed, simple Web services can be

used as building blocks. However composition is useful only when we are looking for a

Web service with specific input and output parameters [3]. A lot of research has been

done on different methods to compose a complex Web service using existing services [1],

[3] and [1]. Most of these methods are static and some are dynamic. Static methods first

collect all the component Web services and use them to compose a complex Web service.

The dynamic method composes new Web services on the fly looking at input and output

parameters as the request comes. These methods are robust and scalable, but since they

compose Web services on the fly, they usually do not match the performance of the static

services. Since a complex Web service depends on number of services, failure at one

point results in failure. Therefore a composed Web service should be designed such that

they can cope with such failures. Most of the research is focused on dynamically

composing a Web service. Little has been done to compose a Web service with better

performance than others.

 5

2.1 Agent as Web Service

The World Wide Web is evolving into a semantic web which is a friendly

environment for software agents. The web was designed for humans. Web pages were

designed to be viewed by people and Hypertext Markup Language (html) is used to

describe the page’s appearance. Agents however are not interested in appearance but

content of the page. Semantic web is designed for humans and agents alike. Although

software agents can use web as it is now e.g. shop bots, the semantic web will make the

Web more accessible to agents by making use of semantic constructs like ontology

represented in well established languages so that agents can understand what information

the part of a web page contains.

Agents and Web services are similar in many ways. They both can also provide

yellow and white page directory service to advertise their functionalities. However,

agents extend Web services in many ways. Agents not only know about self unlike Web

services, but they also know about the customers and their needs. It also can gain

knowledge about other agents offering similar services. Such awareness can help it

improve services for better customer satisfaction. Agents can be designed to use ontology

which helps in better communication with clients. Agents are active and are able to

provide alerts and updates when they are available. Web service standard requires it to be

autonomous though it is rarely in real life. However it is a trait of an agent to be

autonomous but at the same time it can form coalitions by cooperation between the

agents to provide higher level and more comprehensive services. So to take advantage of

these features, agents can be wrapped as web services [1].

 6

2.2 Static and Dynamic Composition

Most Web service composition algorithms are static i.e. they compose complex

Web service when all the component Web services are available. This approach has its

own advantages but is hard to scale and is not robust to changes. Dynamic Web service

composition is gaining ground with its obvious advantages on scalability and robustness.

Pat. P.W. Chan et al. proposed an algorithm which makes use of WSCI, a XML based

interface description language to describe the message flow between participating Web

services [1]. It complements WSDL by describing the way operations should be

choreographed. The algorithm searches the WSDL for the desired output and makes it the

root of the tree. If the input of that operation is same as the required input, composition is

complete. If not WSCI is searched for a matching action that needs to be invoked. This

process will continue till the operation which gives the desired input is found. This

algorithm also claims create a deadlock free composition [1].

2.3 Fault Tolerant Composition

Since Web services are gaining popularity, different versions of the same service

are available. Thus their selection might be critical to create a fault tolerant and highly

available composite Web services. Not all of these services are available all the time.

This fact should be taken into consideration to compose a Web service. To compose a

highly available and fault tolerant Web service, a round robin algorithm can be used to

select a particular Web service among its different versions. When fault occurs, different

version can be selected and UDDI registry can be adjusted to select the one which is

available [1].

 7

2.4 Composition using chain data structure

Unlike other Web service composition algorithms, it makes use of a data structure

called WS chain table which captures the dependency relationship among component

Web services [3]. This algorithm is an efficient algorithm with time complexity of

O (n x log (m)) where n is the number of Web services and m denotes the number of

output parameters. There are two kinds of nodes in WS chain table. O node and W node.

O node contains term and link. Term field contains name of an output parameter. Link

field contains pointer to a W node. A W node contains name: name of Web service,

URL: location of Web service, nlink: pointer to another W node, Oi: name of ith output

parameter of the web service, Ii : i
th input parameter of the Web service, Ilinki: contains

pointer to an O node whose term is same as Ii.

Fig. 2.1 Fault tolerant Web services [1]

 8

The algorithm maintains two lists; T which contains list of known items and G

which contains list of unknowns. With current state as a root state it creates a breadth first

tree with branches as Web services whose output(s) are elements of G. It updates the list

of known items by adding the output of the Web service to the T list and removes it from

G list. But the input to a Web service may not be in the list of known items. If that is the

case, T will be updated by adding the item(s) that are required to invoke the Web service.

The algorithm ends when G is empty. In the figure below, in the known items are t1 and

t2 and required outputs or unknowns are t3 and t4. The composed Web service is the

sequence on invocation of WS7, WS4 and WS6.

Term Link Name URL O1 O2 . . . Ok I1 Ilink1 I2 Ilink2 . . . Ih Ilinkh nlink

O node W node

Fig. 2.2 WS Chain table and Web service inputs and outputs [3]

 9

T: t1, t2, t3, t5
G: t9, t4

T: t1, t2, t3, t6
G: t4

WS3 WS4

T: t1, t2, t3
G: t5, t4

T: t1, t2, t3
G: t5, t4

T: t1, t2, t3
G: t6, t4

T: t1, t2, t4
G: t8, t3

T: t1, t2, t4
G: t3

WS1 WS5 WS6 WS8 WS7

T: t1, t2
G: t3, t4

RS

1 2 3 4
5

6
7

Fig. 2.3 Web service Search Tree

 10

CHAPTER 3

PROBLEM STATEMENT

Web services are located in different machines in different part of the world.

Much of the work in Web service composition has been done to address one issue at a

time such as composing Web service efficiently [3], composing a reliable Web service

[1] etc. When a composite Web service is created, few problems arise. Since a single

composite Web service depends on a number of other Web services, probability of failure

of the composite Web service increases considerably. Therefore one of the focuses of this

research is to come up with a design which will make a composite Web service fault

tolerant.

The other issue is the execution or response time of a composite Web service.

Since there are many Web services providing same service, it is important to choose the

best combination of Web services which will reduce the response or execution time. One

of the techniques used is forecasting the response time of the composed service [3] and

choosing the one with best forecast. This research tries to get the solution with best

response time by keeping track of response times and failures of each member Web

services.

 11

CHAPTER 4

METHODS, RESULTS AND DISCUSSION

The aim of this research is to develop an agent which can compose an efficient

composite Web service which can still deliver when one or more Web services in the

composition fails. It uses the data structure mentioned in section 2.2 with additional fields

ART (Average Response Time), FT (Full Time) and n to W node. For this research, it

will be assumed that there will be one output for each Web service.

4.1 Methodology

The agent will use WS chain table to create a tree. Each branch of a tree is a

composite Web service. This tree is created by using WS chain table. Each node of the

tree is a W node which stores information about a particular Web service. ART in W

node gives average time the Web service it represent takes to respond, n refers to number

of times the Web service has been invoked, FT which is used when the W node is in tree,

the approximate time it takes from that point to complete the Web service.

O node W node

Term Link Name URL O ART TT n I1 Ilink1 I 2 Ilink2 . . . Ih Ilinkh nlink

Fig 4.1 O node and Modified W node

 12

To create a composite Web service using the WS chain table, two things are

required; the name of the inputs the composed Web service is supposed to take and the

name of the output it is supposed to give. For example if we are trying to compose a Web

service which takes restaurant type and zip code as input and outputs the phone number

of a restaurant, the input names should be “restaurant type” and “zip code” and output

should be “phone number”.

The agent will perform depth first exploration of the WS chain table to compose

all possible solutions that can be achieved from the Web services whose information is

stored in the WS chain table. When each solution is found, it is added to the tree as a

branch. Since there will be many solutions for each composite Web service, it is

supposed to be fault tolerant and selecting the best all the solutions will make the

composite Web service faster. An example of composite Web service is shown in fig. 4.2

and 4.3.

 13

4.2 Calculation of Total Execution Time

A composite Web service is created when a tree as shown in fig. 4.2 is created.

When the Web service is first used, the agent has no idea which of the combinations

provides better service. So each time a composite service is invoked, the agent updates

the ART value of the Web service. Using the ART value it calculates total time (TT) in

each node. Fig 4.3 shows the calculation of TT by the agent. The initial value for ART

and TT for each W node is 0. It means if a composite service is not tested yet, it will be

treated as the best possible composite Web service and will be used next time the

composite service is invoked. This way we can always be sure that the one composition

Fig. 4.2 Solution Tree in creation (logical view)

5

1 2 3

T: t1, t2, t3, t6, t4, t3

WS7

WS7

T: t1, t2, t3, t5
G: t9, t4

T: t1, t2, t3, t6
G: t4

6
7

WS3 WS4 WS3

T: t1, t2, t3
G: t5, t4

T: t1, t2, t3
G: t5, t4

T: t1, t2, t3
G: t6, t4

WS1 WS5 WS6

T: t1, t2
G: t3, t4

rs

 14

we are using is really the best composition we know. The diagram below shows how TT

is calculated.

Composite Service = Sequential Execution (Service 1, Service 2, Service 3)

After calculation of TT in composite service, the composite services are arranged

in ascending order of TT. Insertion sort is used to sort composite services. In this way,

the first composite service of choice will be the one with least value of TT in the first W

node. Each time a composite service is invoked, the value of ART for the component

Web service is updated. The value of n in W node is also incremented by 1. The formula

shown below is used to calculate new ART. The new ART will eventually be used to

calculate new TT.

ART = (ART x n + time taken) / (n+1).

If a Web service fails, the failing Web service is penalized by updating ART value as

shown below.

ART = (ART x n + 2 x ART) / (n+1)

Service 1 ART=a TT = a + z Service 3 ART=c TT=c Service 2 ART=b TT=z=b+c

Fig. 4.3 Calculation of TT in W node

 15

4.3 Implementation

The agent program itself is a Web service. The user therefore first calls the agent

Web service. The agent program uses a service description document which is an XML

document created using a WSDL document. This document acts as a static database for

the list of Web services available to use. The service description document is used to

create a WS chain table which later will be used to compose a composite Web service.

The client program can either invoke the Web services or can invoke the composed Web

service which again uses services from the Services provider.

The Agent has two interfaces. The first interface is meant for administrators to

compose Web services. To compose a Web service, the agent should know what will be

the input (input names e.g. “zip code” or “food type”) and output (output names e.g.

Service Description
Document

Service Provider Composed Service

Client Program

4.4 Experimental Setup block diagram

 16

“phone number”) to the composite Web service. When the agent creates a WS chain table

and uses the input names as output names to create a Web service tree. The process is

shown in fig 4.5

The Web service tree is saved as a text file by the agent. The same tree will be

used when the service is requested through the second interface. After each execution of

the composed Web service, W nodes in the tree are updated and total execution time is

calculated. The Web service tree is then sorted and saved for future use. The process is

shown in fig 4.6.

 Interface 1

Input names and
output names

Output file
(Used to create solution tree)

Fig. 4.5 Administrator view of the agent

Agent

 Output

 Interface 2

Inputs

Output file
(Used to create solution tree)

Fig. 4.6 User view of the agent

Agent Output

Get file to create solution tree Update the tree and save it

 17

 In this experiment, Apache Tomcat was used as a Web server, Apache Axis 2

was used to deploy Web services and the agent and the client program were written in

Java. Sample service description document is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<Services>
<service>
 <name>name1</name>
 <url>http://localhost:8080/Webservice/services/WS</url>
 <inputs>
 <input>a</input>
 <input>b</input>
 </inputs>
 <output>c</output>
</service>

<service>
 <name>name2</name>
 <url> http://localhost:8080/Webservice/services/WS </url>
 <inputs>
 <input>a</input>
 <input>b</input>
 </inputs>
 <output>d</output>
</service>
.
.
.
<service>
 <name>name9</name>
 <url> http://localhost:8080/Webservice/services/WS </url>
 <inputs>
 <input>a</input>
 <input>x</input>
 </inputs>
 <output>c</output>
</service>

</Services>

Fig. 4.7 Service Description Document

 18

4.4 Experimental Verification

In this experiment nine Web services are used. Each Web service is a simple Web

service which takes two parameters as input and gives one value as output. The

information about the Web services used is shown in the table below. The Average

response shown in the table below is calculated by invoking the each Web services 50

times and taking average of the response times.

The inputs used in this experiment are “a” and “b” and required output is “e”.

Interface 1 takes “a” and “b” as input and creates the tree shown in fig. 4.7. It finds 5

solutions as shown in table 4.2. After number of executions the based on total execution

time (TT), the tree is sorted as shown in fig 4.8. Table 4.3 shows the TT for each

composition after 50 executions of each composition.

Web Service Name
Average Response
Time (ms)

Error
Probability inputs output

WS1 622 0.1 a, b c
WS2 312 0.1 a, b d
WS3 219 0.1 c, d e
WS4 416 0.1 a, b u
WS5 518 0.1 a, b v
WS6 62 0.1 c, u e
WS7 358 0.1 d, v e
WS8 170 0.1 a, x c
WS 9 313 0.1 a, b x

 Table 4.1 List of Web services used in the experiment

 19

Table 4.2 shows the number of times each of the 5 composed Web services failed during

50 simulation runs. The right most column of the table shows that if the agent is used, it

recovers from failure making the composed service fault tolerant.

Table 4.3 shows the execution time of each of the composed Web services. The agent

creates a tree using all the 5 composed Web services as shown in fig. 4.7. When all the 5

composed Web Services are run at least once, they are sorted as shown in figure 4.8. So

when the next request comes, C4 will be executed first. If C4 fails, then the next best will

be executed.

Composed

Service No of runs

No of times failed when

created using WS chain

No. of times failed

using Agent

C1 50 10 0

C2 50 20 0

C3 50 13 0

C4 50 17 0

C5 50 10 0

Table 4.2 Composed service error chart

Composition Average TT

C4 1038.76

C2 1081.24

C5 1233.14

C3 1152.5

C1 1196.56

Table 4.3 Compositions and their average execution times

 20

WS9 WS1

WS2

WS3

RS

WS4 WS9

WS8
WS1

WS8

WS2

WS3

WS6 WS4

WS6

WS5

WS2

WS7

C1 C2 C3 C4 C5

RS

C4 C2 C3
C1 C5

WS9

WS8

WS4

WS6

WS8

WS2

WS3

WS4

WS1

WS6

WS1

WS2

WS3

WS5

WS2

WS7

WS9

Fig. 4.8 Composed Web service Tree

Fig. 4.9 Composed Web service Tree after sorting

 21

The red line in the graph shows the results got with the assumption that no error

occurs during execution. The results shows that after fluctuating initially, the composed

Web service becomes steady which means it has found the best solution. The green line is

the result when each Web service has probability of 0.1 to fail. The rise and fall seen on

the graph is due to failure of one or more Web services. When a Web service fails, it

moves to the next solution and hence takes more time. Apart from sharp edges, most part

of the green line coincides with the red line showing that it also found the best solution

and executes that solution most of the time.

It is important to note that network delays add to the response time. However, this

will not affect our proposed approach as the agent measures total response time which

also includes network delays. Hence, our method is applicable to local web services or

remote web services.

Fig. 4.10 Simulation result

X- Axis: no. of executions
Y-Axis: Time in ms

 22

4.5 Execution

When the agent selects one of the compositions, it executes the first Web service

in composition. The agent gets the result and invokes another Web service using the

result if necessary. Finally it executes the last Web service and the result is sent to the

user. Fig. 4.10 shows the execution of the composed Web service. The agent first invokes

WS9 and gets the result. Then it executes WS8, WS4 and WS6. The result it gets from

WS6 is sent as output to the user.

Agent

WS 9 WS 8 WS 4 WS 6

Output

Fig 4.11 Execution of the composed Web service

 23

CHAPTER 5

CONCLUSION

Web service composition algorithms are useful when input and output are

specific. When this criterion is met we can create complex Web services using existing

simple Web services. The Web services if just created may have some flaws. If one of the

component Web services fails, the composed Web service fails. This way the probability

of failure of the composed Web service is higher. In this thesis we propose an approach

to recover when one of the composite Web services fails. We also propose an approach to

determine the most efficient composed Web service out of the many different

combinations of composed Web services that will fulfill our need.

Inverted chain data structure is an efficient method of storing information about

Web services that we used to compose complex Web services. We use this as our

database for Web services and created an agent which not only finds a single solution but

finds all possible solutions to create a composed Web service which is efficient in terms

of execution speed or response time and recovers from failure easily. We implemented

this web service architecture and results show that our proposed approach selects the best

composed service and also recovers from failure.

 24

Many Web services in a composed Web service can be invoked in parallel. This

requires finding out dependency relationship among the member Web services and agent

should be able to invoke multiple Web services at the same time and process or store the

results as required. This aspect of the composed Web service can be explored in future.

Some Web services can be fast but may fail often. Others can be reliable but slow.

The agent can be trained to find balance between the two so that it can select a member

Web service which serves out best interest.

 25

REFERENCES

[1] P.P.W. Chan and M.R. Lyu, “Dynamic Web service Composition: A New Approach

in Building Reliable Web service,” Proceedings of IEEE International Conference on

Advanced Information Networking and Applications, pp: 20 – 25, 2008, [Online].

Available: http://doi. ieeecomputersociety.org/ 10.1109/AINA.2008.133

[2] J. Chi, J. Song, “Intelligent-Agent and Web-service Based service Composition for E-

Business”, Canadian conference on Electrical and Computer Engineering (2007), pp:

840 – 843, 2007

[3] J. Eder, H. Pichler, “Response Time Histogram for Composite Web Services,”

Proceedings of the IEEE International Conference on Web Services, pp: 832-833, 2007.

[Online]. Available: http://doi.ieeecomputersociety.org/ 10.1109/ICWS.2004.1314963

[4] M. N Huhns, “Agent as Web services,” IEEE Internet Computing, vol. 6, no. 4

pp: 93-95, 2002. [online]. Available:

http://doi.ieeecomputersociety.org/10.1109/MIC.2002.1020332

[5] S. Hwang, E. Lim, C. Lee and C. Chen, “On Composing a Reliable Composite Web

service: A Study of Dynamic Web service Selection,” Proceedings of IEEE International

Conference on Web services, pp: 184-191, 2007, [Online]. Available:

http://doi.ieeecomputersociety.org/ 10.1109/ICWS.2007.133

 26

[6] L. Li, M. Jun, C. Z. Min, and S. Ling, “An Efficient Algorithm for Web services

Composition with a Chain Data Structure”`, Proceedings of IEEE Asia-Pacific

Conference on Services Computing , pp. 64 – 69, 2005. [Online]. Available:

http://doi.ieee.computersociety.org/ 10.1109/APSCC.2006.28

[7] S. Liu, P. Küngas, and M.Matskin, “ Agent-Based Web service Composition with

JADE and JXTA”, 2006. [Online]. Available:

http://www.idi.ntnu.no/~peep/papers/SWWS2006_LiKM.pdf

[8] S. A. Mcilraith, T. C. Son, and H. Zeng, Semantic Web services, Proceedings of

IEEE on Intelligent Systems, pp: 43 – 56, 2001

[9] M. Ouzzani, A. Bouguettaya, “Efficient Access to Web services,” IEEE Internet

Computing, vol. 8, no. 2, pp: 34-44, 2004. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/MIC.2004.1273484

[10] T. Takase, M. Tatsubori, “Efficient Web services Response Caching by Selecting

Optimal Data Representation,” Proceedings of IEEE International Conference on

Distributed Computing Systems, pp. 188 – 197, 2004. [Online]. Available:

http://doi.ieeecomputersociety.org/ 10.1109/ICDCS.2004.1281583

 27

APPENDIX A

DATA STRUCTURES

Onode

{

 Onode next;

 Term term;

 Wnode link;

}

Wnode
{
 String wsname;

 String url;

 String output;

 InputLink inputs;

 Wnode next;

 Wnode child;

 int TT=0;

 int ART=0;

 int n=0;

}

 28

InputLink

 {

 String input;

 Onode link;

 InputLink next;

}

Term

 {

 String term;

 Term next;

}

VITA

Binod Gurung

Candidate for the Degree of

Master of Science

Thesis: AUTOMATIC COMPOSITION OF WEB SERVICES USING INTELLIGENT

AGENT

Major Field: Computer Science

Biographical:

Personal Data: Born in Pokhara, Nepal on December 1, 1979

Education:

Received B.E. Degree from Kathmandu University, Dhulikhel, Nepal,
2003 in Computer Engineering
Completed the requirements for the Master of Science in Computer
Science at Oklahoma State University, Stillwater, Oklahoma in December
2008

Experience:

Graduate Assistant in Department of CEAT Continuing Education,
Oklahoma State University, 2007 to 2008

ADVISER’S APPROVAL: Dr. Johnson P. Thomas

Name: Binod Gurung Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AUTOMATIC COMPOSITION OF WEB SERVICES USING

INTELLIGENT AGENT

Pages in Study: 28 Candidate for the Degree of Master of Science/Arts

Major Field: Computer Science

Scope and Method of Study:

Previous works on Web service composition focused on developing algorithms for a
specific purpose like efficient composition, efficient composite service or fault tolerant
composition. The aim of this research was to develop an agent which will compose
efficient Web service and also recover from failure. The performance of the agent was
evaluated by simulation. It was found that the proposed composed Web service performs
better. It was also able to recover from failure thus reducing failure rate.

