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NOMENCLATURE 

 

 

m Total Number of processors in the system 

Pi The i
th 

processor in the system  

Ei The total time taken for the processor Pi compute the S and M matrices 

Seq X The first sequence that is given for the sequence alignment 

Seq Y The second sequence that is given for the sequence alignment 

C  The time taken for communication 

x Length of sequence x 

y Length of sequence y 

Z Total number of iterations used to compute the S and M matrices 

xi Total number of residues of sequence x  assigned to Pi where 

xx
m

i

i =∑
=1

 

yi Total number of residues of sequence y  assigned to Pi where 

yy
Z

j

i =∑
=1

 

Si,j The sub matrix of S matrix 

Mi,j The sub matrix of M matrix 

T(m) The total processing time for the alignment of the sequences 
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CHAPTER I 

 

 

INTRODUCTION 

 

Motivation 

 

The interest in network based computing has grown in recent years. Many applications in 

scientific and engineering domains are structured as large numbers of independent tasks 

with low granularity.  These applications are thus amenable to straightforward 

parallelization, typically in master-slave fashion, provided that efficient scheduling 

strategies are available. Such applications are called divisible load because a scheduler 

may divide the computation time among worker processes arbitrarily, both in terms of 

task and task sizes. 

Scheduling the tasks of a parallel application on the resources of a distributed computing 

platform efficiently is critical for achieving high performance.  

Over the past few decades research in the field of molecular biology has made 

advancement that is coupled with advances in genomic technologies. This has led to an 

explosive growth in the biological information generated, in turn, led to the requirement 

for computerized databases to store, organize, and index the data and for specialized tools 

to view and analyze the data.  
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Research Overview 

 

The load distribution problem in distributed computing networks, consisting of a 

number of processors interconnected through communication links, has attracted a great 

deal of attention. Divisible Load Theory (DLT) is a methodology that is involved in the 

linear and continuous modeling of partition able computation and communication loads 

for parallel processing. DLT is primarily used for handling large scale processing on 

network based systems. 

 

The processor partitions the load into many fractions, keeps one of the fractions 

for itself to process and sends the rest to its neighbors (other nodes in the network) for 

processing [2]. The important problem here is to decide how to achieve a balance in the 

load distribution between processors so that the computation is completed in shortest 

possible time [2]. After partitioning the load into fractions the root node or the first node 

that has the load with it can divide the load in two ways which can be termed as “With 

Front End Communication” and “Without Front End Communication”. In the first case 

the root node processes it share of load and then will communicate the rest of the load to 

its children and in this case the processing time increases. In the second case, the root 

node communicates to other nodes and computes the load on its node simultaneously and 

this reduces the computation time to a great extent. 

 

This DLT paradigm has numerous applications such as edge detection in image 

processing, file compression, joining operations in relational databases, graph coloring 

and genetic searches [8]. Some more examples of real divisible applications include 
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searching for pattern in text, audio, graphic files, database and measurement processing, 

data retrieval systems, some linear algebra algorithms, and simulations [4]. 

 

The merging of the two rapid advancing technologies of molecular biology and 

computer science resulted in a new informatics science, namely bioinformatics.  Over the 

past few years, the interest and research in the area of biotechnology has increased 

drastically. This area of study deals primarily with the methodologies of operating on 

molecular biological information. The present days of molecular biology is characterized 

by collection of large volumes of data.  

 

The most common operations on biological data include sequence analysis, 

protein structures predications, genome sequence alignment, phylogeny tree construction, 

pathway research and sequence database placement. One of the most basic and important 

application of bioinformatics task is to find a set of homologies for a given sequence 

because the sequences are often related to the functions, if they are similar. 

 

The different bioinformatics applications like sequence analysis, protein 

structures predications, genome sequence alignment, and phylogeny tree construction are 

distributed in different individual projects and they require high performance 

computational environments. Biologists use a tool called the BLAST for performing 

research. This tool is a database search, in other words this is described as a Google for 

biological sequences. This tool provides a method for searching a nucleotide and protein 
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database. This BLAST is designed in such a way that it can detect local and global 

alignment. 

Sequence Alignment is often used in biological analysis. This sequence alignment 

between any two newly discovered biological sequences can be aligned with the 

algorithms present in the literature and the similarity can be determined. This sequence 

alignment can be useful in understanding the function, structure and origin of the new 

gene. In sequence alignment two sequences are compared with the residues of one 

another while taking the positions of the residues into account. Residues in the sequence 

can be inserted, deleted or substituted to achieve maximum similarity or optimal 

alignment [8]. For example, GenBank is growing at an exponential rate , with as  many as 

1.2 million new sequences being appended in the year of 2000 [8] [37]. To meet the 

growing needs a wide variety of heuristics methods have been proposed for aligning the 

sequences such as FASTP, FASTA,BLAST, and FLASH [28]. 

Contributions 

In this thesis a multiprocessor strategy is designed that exploits the computational 

characteristics of the algorithms that are used for biological sequence comparisons 

proposed in the literature. In designing the strategy the load is partitioned among the 

processors of the network using the DLT paradigm. 

The two commonly used algorithms for sequence alignment are the Needleman-

Wunsch Algorithm and Smith-Waterman Algorithm where the former is employed for 

Global Alignment and the latter is used for Local Alignment. The complexity of the 
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Needleman- Wunsch Algorithm and Smith-Waterman Algorithm to align sequence of 

length x is given by O(x
2
). 

The algorithm that is employed in this study is the Needleman-Wunsch 

Algorithm. Communication delays are considered to be an important part of the 

processing time in all distributed algorithms while generating the matrix M. The way that 

has been adopted in this study to for parallelizing the Needleman-Wunsch Algorithm is 

by computing the matrix elements in diagonal fashion by using a Multiple Instruction 

Multiple Data Systems. 

Divisible Load Theory is employed for handling the sequence alignment. The 

objective is to minimize the total processing time for sequence alignment. The partition 

of the load depends primarily on the matrix that is generated by the Needleman-Wunsch 

Algorithm. The network has been studied for variable link speed and constant link speed.  

Outline of the Thesis 

The remainder of this document contains chapters as follows. Chapter 2 contains 

the Literature Review related work pertinent to the problem definition. The Methodology 

is discussed in Chapter 3. Chapter 4 discusses the Results. Chapter 5 discusses the 

Conclusion and Future Work.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

 

Divisible Load Theory 

 

The origin of this Divisible Load Theory came into existence by having the desire 

to create intelligent sensor networks [2]. But the most recent applications include parallel 

and distributed computing. Divisible loads can be defined as computations which can be 

divided into small parts of different sizes and these can be processed independently in 

parallel. The paradigm of load distribution is basically concerned with a single large load 

which originates or arrives at one of the nodes in the network. Divisible loads can be 

classified into two basic categories, namely 1. Modularly Divisible Loads 2. Arbitrarily 

Divisible Loads. These can be defined as follows  

Modularly Divisible Loads: These loads are divided into predetermined modules and are 

represented in the form of task graph with precedence relations [2]. 

Arbitrarily Divisible Loads: These loads can be arbitrarily divided into many parts and 

can be assigned to different processors [2].  

The load is massive and requires an enormous amount of time to process, given the 

computing capability of the node.  
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This Divisible Load Theory can be applied to any kind of network. The processor 

partitions the load into many fractions, keeps one of the fractions for itself to process and 

sends the rest to its neighbors for processing. One of the main points to be taken to 

consideration is about how balance can be achieved while distributing the load between 

the processors in order to complete the computation in shortest possible time. With this 

we can say that the grain of parallelism is small, and there are no data dependencies. The 

size of the load parts should be adjusted to the speeds of communication and computation 

such that they have the shortest computation time for the given job. Some examples of 

real divisible applications include image processing applications like feature extraction, 

edge detection and many signal processing applications. 

In this divisible load theory the manner in which the partitioning of the load 

depends on its divisibility property, which can be defined as the property which 

determines whether a load can be decomposed into a set of smaller loads or not as shown 

in figure 1. 
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 Figure 1: Classification of Processing Loads [2] 

 

Multi-Installment Strategy 
 

 

This new strategy of load distribution became an area of research interests as it 

minimizes the processing time. Divisible Load Theory divides the computations into 

parts of arbitrary sizes and these can be processed independently in parallel. To reduce 

the waiting time during the parallel computation the load is sent to the processors in 

multiple small installments. This can also be explained as the distribution of load in more 

than one installment in an optimal manner to minimize the processing time. The divisible 

load theory makes an assumption that the processor starts computation only after it has 

received the entire load that has been assigned to it and this gives a considerable amount 

of ideal time for almost all the processors because of the delay involved in 

communicating load from one processor to another. In order to reduce the ideal time this 

Processing Load 

Arbitrarily 

Divisible 

Divisible Load Indivisible Load 

Modularly 

Divisible 
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multi installment strategy will be used in which the load assigned to processor is sent in 

more than one installment.  

In any network communication delays constitute an important part of the 

processing time. In order to reduce the initial waiting of data and for the computations to 

be initialized, the entire load is divided into small chunks rather than sending as one big 

chunk which is the divisible load theory. This way of divisible load distribution and 

execution is called multi-installment processing [4]. This strategy reduced the idle time of 

the processors in the network to a great extent, which in turn reduced the communication 

delays. 

Bioinformatics 

Introduction 

Information science when applied to biology produced a field called the 

“Bioinformatics”. The areas of bioinformatics and computational biology involve the use 

of techniques and concepts including applied mathematics, informatics, statistics, 

computer science, artificial intelligence, chemistry, and biochemistry to solve biological 

problems usually on the molecular level. The terms of bioinformatics and computational 

biology are often interchangeable. Research in computational biology often overlaps with 

systems biology. Major research efforts in the field include sequence alignment, gene 

finding, genome assembly, protein structure alignment, protein structure prediction, 

prediction of gene expression and protein-protein interactions, and the modeling of 

evolution. The area of bioinformatics more clearly refers to the creation and advancement 

of algorithms, computational and statistical techniques, and also includes the theory to 

solve formal and practical problems arising from the management and analysis of 
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biological data. Computational biology refers to hypothesis-driven investigation of a 

specific biological problem using computers, carried out with experimental or simulated 

data, with the primary goal of discovery and the advancement of biological knowledge. 

In other words, bioinformatics is concerned with the information while computational 

biology is concerned with the hypotheses. 

The NIH Biomedical Information Science and Technology Initiative Consortium 

that was held on July 17, 2000 has agreed on formal definitions for bioinformatics and 

computational biology. They also recognized that there is no definition that could 

completely eliminate the overlap of the variations in interpretation by different 

individuals and organizations. One of the definition proposed by them are as follows: 

Bioinformatics: Research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze, or visualize such data [32]. 

Computational Biology: The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation techniques to 

the study of biological, behavioral, and social systems [32].  

The areas of bioinformatics and computational biology use mathematical tools to 

extract useful information from data produced by high-throughput biological techniques 

such as genome sequencing. One of the most common representative problems in 

bioinformatics is the assembly of high-quality genome sequences from fragmentary 

"shotgun" DNA sequencing. Other common problems include the study of gene 

regulation using data from micro arrays or mass spectrometry. 
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Sequence Analysis 

Sequence Analysis" in biology can be explained by subjecting a DNA or peptide 

sequence to sequence alignment, sequence databases, repeated sequence searches, or 

other bioinformatics methods on a computer. Sequence analysis in molecular biology and 

bioinformatics is an automated, computer-based examination of characteristically 

fragments, for example a DNA-strand. It basically includes five biologically relevant 

topics: 

1. This is used for the comparison of sequences in order to find similar sequences 

(sequence alignment)  

2. In identification of gene-structures, reading frames, distributions of introns and 

exons and regulatory elements 

3. Used for prediction of protein structures  

4. Used for genome mapping  

5. Comparison of homologous sequences to construct a molecular phylogeny. 

Similarity detection is often used in biological analysis. This is widely used when a new 

gene sequence and unknown gene sequence can give significant understanding on the 

function, structure and origin of the new gene. While comparing two gene sequences, 

which is also known as aligning two sequences residues form, one sequence is compared 

with the residues of the other, in which the position of the residues is taken into 

consideration. The different operations that can be performed are insertion, deletion and 

substitution of residues in other sequence. 

Many algorithms have been proposed in the literature for comparing two biological 

sequences for similarities. The most popular algorithms in aligning the DNA are the 
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Needleman-Wunsch algorithm. For protein alignment it’s the Smith-Waterman 

algorithm. In the sequence comparison a combination of the DLT approach and the 

algorithms are used in order to align the sequences accurately. 

Needleman-Wunsch Algorithm 

The Needleman–Wunsch algorithm is one of the algorithm that performs a global 

alignment on two sequences (called X and Y here). This algorithm finds its application in 

bioinformatics to align protein or nucleotide sequences. The algorithm was first proposed 

by Saul Needleman and Christian Wunsch in 1970 .The Needleman–Wunsch algorithm is 

an example of dynamic programming, and was the first application of dynamic 

programming to biological sequence comparison. 

The algorithm can be explained in the following steps 

1. Initialize the matrix S=0 

2. Fill in the matrix S with 1 if it is a match and 0 if it is a mismatch 

3. Compute score from right hand bottom based on the formula,                               

M[i,j]=S[i, j]+Max{M[i+1:x ],M[j+1:y]}. 

4. Trace back from the left-top corner, and select the maximum value from the 

adjacent column and row, and so on.  

For example let us consider two sequences GTCAGTC and GCCTC. In order to align 

these sequences we first need to construct the matrix as shown below 
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 G T C A G T C 

G 1 0 0 0 1 0 0 

C 0 0 1 0 0 0 1 

C 0 0 1 0 0 0 1 

T 0 1 0 0 0 1 0 

C 0 0 1 0 0 0 1 

 

Figure 2: Needleman-Wunsch Algorithm after the generation of S matrix 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Needleman-Wunsch Algorithm after the generation of M matrix 

 

 

                          G              T  C                  A  G            T  C 

          G              C  C                   -   -             T  C 

  

 

BLAST (Basic Local Alignment  Search Tool) 

 

Background Study 

In the area of bioinformatics a tool has been developed by National Center for 

Biotechnological Information called the BLAST. This tool is an algorithm for comparing 

 G T C A G T C 

G 4 3 2 2 3 1 0 

C 4 3 3 2 2 1 1 

C 2 2 3 2 2 1 1 

T 1 2 1 1 1 2 0 

C 0 0 1 0 1 0 1 

Match Mismatch Match Gap 



 14

primary biological sequence information, for amino-acid sequences of different proteins 

or the nucleotides of DNA sequences.  

This tool primarily enables researchers to compare a query sequence with the 

available database of sequences and identify library sequence that resembles the query. 

BLAST is primarily used in research for identifying similar gene sequences. This can be 

explained by the following example, if a scientist discovers a previously unknown gene 

in a mouse, he will typically perform a BLAST search of the human genome to see if 

humans carry the same gene and BLAST will identify sequences with similarity in both 

the species. 

Reasons for the wide use of BLAST 

This tool is one of the most widely used bioinformatics programs as it addresses 

the fundamental problem of similarity detection and sequence alignment and the 

algorithm also emphasizes speed over sensitivity. This speed of the tool plays a vital role 

in searching the huge genome databases currently available. BLAST can also be used to 

answer these other questions in the research and is widely used in appropriate sequence 

matching.  

Input / Output in BLAST 

The input and output in BLAST are represented by FASTA format.  This FASTA 

sequence is a text-based format for representing nucleic acid or peptide sequence in 

which base pair or amino acids are represented by single letter. The simplicity of FASTA 

format makes it easy to manipulate and parse sequences using text-processing tools and 

scripting languages like Python and Perl. 
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A sequence in FASTA format begins with a single-line description, followed by 

lines of sequence data. The description line is distinguished from the sequence data by a 

greater-than (">") symbol in the first column. The word following the ">" symbol is the 

identifier of the sequence, and the rest of the line is the description (both are optional). 

There should be no space between the ">" and the first letter of the identifier. It is 

recommended that all lines of text be shorter than 80 characters. The sequence ends if 

another line starting with a ">" appears; this indicates the start of another sequence. A 

simple example of one sequence in FASTA format: 

 

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus 
maximus] 
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLF
SAIPYIGTNLVEWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPL
GLTSDSDKIPFHPYYTIKDFLGLLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHI
KPEWYFLFAYAILRSVPNKLGGVLALFLSIVILGLMPFLHTSKHRSMMLRPLSQALFWT
LTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGXIENY 
 

Figure 4: Example of FASTA sequence [34] 

 

From the figure we can see that the header line begins with ‘>’, and this gives a name 

and/or a  unique identifier for the sequence, and often lots of other information too. Many 

different sequence databases use standardized headers, which helps in automatically 

extracting information from the header. The header line may contain more than one 

header, separated by a ^A (Control-A) character. 

 

Sequence representation 

 

After the header and comments, one or more lines may follow describing the 

sequence: each line of a sequence should have fewer than 80 characters. Sequences may 
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be protein sequences or nucleic acid sequences, and they can contain gaps or alignment 

characters (see sequence alignment). Sequences are expected to be represented in the 

standard IUB/IUPAC amino acid and nucleic acid codes, with these exceptions: lower-

case letters are accepted and are mapped into upper-case; a single hyphen or dash can be 

used to represent a gap character; and in amino acid sequences, U and * are acceptable 

letters (see below). Numerical digits are not allowed but are used in some databases to 

indicate the position in the sequence. 

The nucleic acid codes supported are: 

 

Nucleic Acid Code   Meaning   

A Adenosine 

C Cytidine 

G Guanine 

T Thymidine 

U Uracil 

R G A (puRine) 

Y T C (pYrimidine) 

K G T (Ketone) 

M A C (aMino group) 

S G C (Strong interaction) 

W A T (Weak interaction) 

B G T C (not A) (B comes after A) 

D G A T (not C) (D comes after C) 

H A C T (not G) (H comes after G) 

N A G C T (aNy) 

X Masked 

- gap of indeterminate length 

 

Table 1:  Nucleic acid codes [34] 
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The amino acid codes supported are: 

 

Amino Acid Code   Meaning   

A Alanine 

B Aspartic acid or Asparagine 

C Cysteine 

D Aspartic acid 

E Glutamic acid 

F Phenylalanine 

G Glycine 

H Histidine 

I Isoleucine 

K Lysine 

L Leucine 

M Methionine 

N Asparagine 

P Proline 

Q Glutamine 

R Arginine 

S Serine 

T Threonine 

U Selenocysteine 

V Valine 

W Tryptophan 

Y Tyrosine 

Z Glutamic acid or Glutamine 

X Any 

* translation stop 

- gap of indeterminate length 

 

Table 2: Amino Acid Codes [34] 
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Algorithm 

 

 

To run, BLAST requires two sequences as input: a query sequence (also called the 

target sequence) and a sequence database. BLAST will find subsequences in the query 

that are similar to subsequences in the database. In typical usage, the query sequence is 

much smaller than the database, e.g., the query may be one thousand nucleotides while 

the database is several billion nucleotides. 

 

BLAST searches for high scoring sequence alignments between the query 

sequence and sequences in the database using a heuristic approach that approximates the 

Smith-Waterman algorithm. The exhaustive Smith-Waterman approach is too slow for 

searching large genomic databases such as GenBank. Therefore, the BLAST algorithm 

uses a heuristic approach that is slightly less accurate than Smith-Waterman but over 50 

times faster. The speed and relatively good accuracy of BLAST are the key technical 

innovation of the BLAST programs and arguably why the tool is the most popular 

bioinformatics search tool. 

 

The BLAST algorithm can be conceptually divided into three stages. 

• In the first stage, BLAST searches for exact matches of a small fixed length W 

between the query and sequences in the database. For example, given the 

sequences AGTTAC and ACTTAG and a word length W = 3, BLAST would 

identify the matching substring TTA that is common to both sequences. By 

default, W = 11 for nucleic seeds.  

• In the second stage, BLAST tries to extend the match in both directions, starting 

at the seed. The ungapped alignment process extends the initial seed match of 

length W in each direction in an attempt to boost the alignment score. Insertions 

and deletions are not considered during this stage.  

If a high-scoring ungapped alignment is found, the database sequence is passed on to the 

third stage. 
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In the third stage, BLAST performs a gapped alignment between the query sequence and 

the database sequence using a variation of the Smith-Waterman algorithm. Statistically 

significant alignments are then displayed to the user [34].
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CHAPTER III 

 

 

METHODOLOGY 

 

Analysis of Needleman-Wunsch Algorithm 
 

We will first briefly discuss about the Needleman-Wunsch Algorithm as well as 

some of the characteristics of the S and M matrices that are generated by the algorithm. 

In aligning the two biological sequences that are denoted as Seq X and Seq Y of length x 

and y respectively, the algorithm generates two matrices represented by S and M as 

mentioned above. The matrices S and M are related to each other with the equation 

M[i,j]=S[i, j]+Max{M[i+1: x ],M[j+1: y]} for the range 1 ≤ p ≤  x, 1 ≤ q ≤  y where Sp,q 

and Mp,q represents the p
th

 row and q
th 

 column of the matrices S and M respectively.  

In this computation process, residues in Seq X and Seq Y are tested recursively so 

that they will give the best possible alignment. S and M matrices computation gives the 

best possible alignment. The S matrix contains all the scores for the matches and 

mismatches and the M matrix give the alignment of the sequence and the data 

dependencies are given as shown in figure 5. 
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 Figure 5: Illustration of the computational dependency of the element (p,q) in the 

M matrix 
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The pseudo code for the Needleman-Wunsch Algorithm is as shown below 

 

 
Figure 6: Pseudo code for the Needleman-Wunsch Algorithm 

 

 

 

 

 

For the calculation of the S matrix 

 

for i=1 to length (x) 

S(i,1)� 1  if it is a match 

S(i,1)� 0  if it is a mis-match 

for i=1 to length (y) 

S(i,1)� 1  if it is a match 

S(i,1)� 0  if it is a mis-match 

 

This completes the calculation of S matrix 

 

For the calculation of M matrix 

 

for i= length (x) to 1 

for j= length (y) to 1 

M(i,j)=S(i,j) 

Score� M(i,j) 

Score_diagonal � M(i+1,j+1) 

Score_left� M(i+1,j) 

Score_Right � M(I,j+1) 

While (length(x)!=0 & length(y)!=0) 

If ((Score_diaognal ≥ Score_left) && (Score_diaognal ≥ Score_Right)) 

{ 

    Then there is a match 

} 

Else if ((Score_left ≥ Score_diagonal) && (Score_Right ≥ Score_diagonal)) 

{ 

  Then there is a mismatch/ gap 

} 

Else if ((Score_left ≥ Score_diagonal) && (Score_Right ≥ Score_diagonal)) 

{ 

  Then there is a mismatch/ gap 

} 
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Problem Formulation 

 

In this section, the network topology will be discussed. The network that will be 

considered is a simple single level tree network (SLTN) with the constraint that the root 

node can communicate only with one child at a time. The approach to the problem can be 

described in a series of steps. The first step is creating a simple SLTN with a fixed 

number of nodes and applying divisible load theory on the same network. Further the 

number of nodes in the system is increased and DLT technique is applied. The two 

biological sequences are given to the network and the Needleman-Wunsch algorithm 

gives the alignment. The final aim of this thesis report will include the computation time 

involved in processing the job. By the results it can be observed that by applying DLT 

technique the computation time decreases drastically. 

 

 

 
 

 

Figure 7: Single Level Tree Network 

 

 

P0 

P1 P2 Pn-1 Pn 

C1 

C2 Cn-1 

Cn 
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Our objective in this thesis is to design a strategy such that the processing time or 

the computation time for the alignment of the two biological sequences is a minimum. 

The two biological sequences are considered to be Ix and y denoted as Sequence x and 

Sequence y. These sequences may vary from 1 character to 1000’s of characters. In the 

results section however the sequences are varied from length of 100 to 1000. 

We assume that all the processors in the network P1,P2,…..Pm already have 

Sequence x and Sequence y in their local memories, or they can be initialized in this way. 

To carry the process of sequence alignment in a multiprocessor environment one of the 

way will be by keeping a copy of the sequences in the local memory.  

 

Design of the Load Distribution Strategy 

 

In this section we describe the load distribution strategy. The distribution strategy 

for the S matrix is just a matrix of 0’s and 1’s so it does not have any special kind of 

distribution. The M matrix is partitioned into sub matrices like Mp,q where p= 1,2,….m 

and  q= 1,2….z where each portion of Seq x and Seq y is contained in one particular cell 

of the matrix M. This assignment can be explained as shown in Figure 7. 
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                                                                   Seq y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Load Distribution Pattern  

 

 

 
 

Figure 9: Timing Diagram [22] 

 

 

The distribution pattern is as shown in figure 8. According to the Needleman-

Wunsch Algorithm the last row will be calculated first. So the last row is given to the first 

Mm,1 Mm,2 Mm,3 … Mm,Z-3 Mm,Z-2 Mm,Z-1 Mm,Z 

Mm-1,1 Mm-1,2 Mm-1,3 … Mm-1,Z-3 Mm-1,Z-2 Mm-1,Z-1 Mm-1,Z 

Mm-1,1 Mm-1,2 Mm-1,3 … Mm-1,Z-3 Mm-1,Z-2 Mm-1,Z-1 Mm-1,Z 

   

M4,1 M4,2 M4,3 … M4,Z-3 M4,Z-2 M4,Z-1 M4,Z 

M3,1 M3,2 M3,3 … M3,Z-3 M3,Z-2 M3,Z-1 M3,Z 

M1,2 M2,2 M2,3 … M2,Z-3  M2,Z-2 M2,Z-1 M2,Z 

M1,1 M1,2 M1,3 … M1,z-3 M1,Z-2 M1,Z-1 M1,Z 

Seq x 
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processor or the root node of the system. And with respect to the data dependencies the 

cells with same (p+q) values can be calculated which enables parallel processing to take 

place in parallel during the calculation of the matrix M. This may be observed form the 

timing diagram. The generalized equations are as shown below. The two sequences can 

be fractioned into a number of smaller parts. This can be explained from the example 

given below. Let us consider that sequence Seq x and Seq y are where 

Seq x = GCCTC 

  Seq y = GCTAC 

The length of Seq x is 5 and length of Seq y is 5. There for the total length should be 5. 

From the above example we can write the generalized equations as follows 

 

We can say that 
yyyyyy

xxxxxx

nn

nn

=+++++

=+++++

−

−

1321

1321

.......

.......
 

 

From the timing diagram we can derive the generalized equation for the load on each 

processor  

 

By generalizing the equations we can say that  
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The total completion time for the alignment of the two sequences is given by  
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To enhance the understanding of the performance of Needleman-Wunsch Algorithm and 

divisible load strategy a single machine has been used [8]. Therefore the speedup, can be 

defined as 

                                       Speedup= T(1)/ T(m) 

 

where T(m) is the processing time of our strategy on a system using m-processors. T(1) is 

the processing time using a single processor and is given by 

 T(1)=xyE1 
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CHAPTER IV 

 

 

RESULTS 

 

This section discusses the results obtained in the study. The results have been 

tabulated for the network that has constant link speed and also variable link speed. The 

testing has been performed for sequence lengths varying from 100 to 1000 characters. 

The changes have been observed and the graphs have been plotted.  

 

Implementation of the Algorithm 

 

The algorithm implementation is as shown in the flowchart below and the code of 

is given in Appendix. The Needleman-Wunsch algorithm can be given by a simple 

diagrammatic representation as shown in Figure 10.  The methods and classes that have 

been used in the coding are also given 
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START 

Read the java 
file 
Alignment.java 

The code is 
given in the 
Appendix  

Read the two 
sequences x and y 

Length 
x, y >0  

No 
Check the 
sequence length 

STOP Yes 

Float S=0, M=0 
Int length x and length y 

for(int i=0;i<len2;i++)      
   { 
     M[i][len1-1]=S[i][len1-1]; 
      tempo = 0; 
  tempo = tempo + 1; 
  E[i][len1-1] = tempo; 
     } 

temp = temp + 1;      
        a = M[i+1][j+1]; 
        b = M[i][j+1]; 
        c = M[i+1][j]; 

 

1 
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1 

if 
((a>=b)&
&(a>=c)) 

 

if 
(b>=c) 

 

t = b; 

t = c; 

YES 

NO NO 

YES 

t = a; 

The sequence 
alignment is 
printed  

Calculating the Iterations 
    temp_sum = 0; 
  for (j=0;j<len1;j++ ) 
  { 
temp_sum = temp_sum + B[i][j]; 
   } 
    

Total computation Time for each 
processors 
for(i=0; i < len2; i++) 
{ 
temp_sum = 0; 
for (j=0;j<len1;j++ ){ 
temp_sum = temp_sum + E[i][j]; 
} 

2 
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Figure 10: Implementation of Needleman-Wunsch Algorithm 

 

Preliminary Results  

This section discusses the preliminary results that have been obtained. As defined 

in the problem definition a simple single level tree network has been taken as shown in 

Figure 7.  The results have been generated in MATLAB for single level tree network. 

Figure 11 shows the results generated by applying the divisible load theory on the 

2 

Total computation Time for each 
processors 
for(i=0; i < len2; i++) 
{ 
temp_sum = 0; 
for (j=0;j<len1;j++ ){ 
temp_sum = temp_sum + E[i][j]; 
} 

calculate[0] = 1.0; 
 for (i=1;i<m;i++) { 
alp=cal.calc_alph(sum_time_row[i-
1], sum_time_row[i], sum_beta[i-1], 
sum_beta[i], C[i-1]); 
calculate[i] = calculate[i-1]*alp; 
} 

 

Print the values of alp and 
the computation time on the 
console 

Generate the Graphs 

STOP 
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network. The x- axis of the graph represents the number of children and the Y-axis 

represents the computation time for the load.   

 

 

Figure 11: Number of Children (X-axis) Vs Computation Time (Y-axis) applying 

Divisible Load Theory 

The result for the multi-installment strategy is as shown in figure 12. The X- axis 

represents the number of installments and the Y-axis represents the computation time. In 

both Figure 11 and Figure 12 we observe that that as the number of children and number 

of installments increase the computational time decreases. 
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Figure 12: Number of Installments (X-axis) Vs Computation Time (Y-axis) applying 

Multi Installment Strategy 

Final Results 

Variable Link Speed 

 

This section briefly discusses about how does the processing time changes when 

the link speed has been varied. The graphs have been plotted for two ranges of link speed 

variations. The link speed has been varied from 1-10 nano seconds and 1-100 nano 

seconds. In graphs (Fig 13, Fig 14, Fig 15) the link speed(C) has been varied from 1-10 

nano Seconds.  In the graphs (Fig 16, Fig 17) the link speed has been varied from 1-100 

nano seconds. From the graphs it can be observed that the processing time depends on the 

communication link speed C. In other words, the higher the link speed of the network the 
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faster is the job processing. The link speed has been varied using the Random Generator 

method in java. The results and the tabulated values are as shown below. 

 

Number of 

processors 

Processing Time  

(Sec) 

3 166915.49 

5 62671.53 

7 33498.78 

10 20163.56 

20 11250.11 

30 6804.34 

40 4493.82 

50 3186.41 

60 2387.78 

70 1868.71 

80 1514.16 

90 1262.08 

100 1076.88 

 

Table 3: Values for processing times for variable link speed 
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Constant Length of Sequence Vs Number of Processors
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Figure 13: Number of Processors Vs Processing Time for a constant length of sequence 

 

Figure 13 represents the graph for “Number of Processors Vs Processing time” 

with X-axis as the number of processors and Y-axis as the Processing Time. This graph 

has been plotted for a constant sequence length of 1000. From the graph it has been 

observed that for a constant sequence length as the number of processors increase the 

computation time decreases This also reemphasizes the definition of  DLT that as more 

number of processors are added into the network the processing time decreases. 
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Figure 14: Number of processors Vs Length of the string Vs Processing Time 

 

Figure 14 demonstrates the 3-D representation of how the processing time varies with 

respect to the length of the sequence and number of processors. From the 3-D graph of 

the single processor tree network  it can be observed that keeping the length of the 

sequence constant as the number of processors increase the processing time decreases. 

On the other hand it can also be observed that as the numbers of processors are kept 

constant and the length of sequences increases and the computation time increases. As 

discussed in the Methodology chapter, the speedup has been calculated and the values are 

tabulated as shown for a constant sequence length of 1000. 
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Number of 

processors 

Speedup 

(Sec) 

3 3 

5 7.99 

7 14.95 

10 24.84 

20 44.53 

30 73.62 

40 111.48 

50 157.23 

60 209.81 

70 268.09 

80 330.87 

90 396.96 

100 465.23 

 

Table 4: Values for speedup for variable link speed 
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Figure 15: Speed up of the network for variable link speed 

 

Figure 15 represents the 3-D graph for “Speed Up of the Network” with X-axis as the 

number of processors and Y-axis as the Processing Time. This graph has been plotted for 

sequence length that is being varied from 100-1000. From the graph it has been observed 

that speed up achieved for long sequences is greater as the time spent on computation is 

much larger when compared to idle time of a processor. 
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For Constant Number of Processors (m=100) 
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Figure 16: Length of Sequence Vs Processing Time for a constant number of processors 

 

Figure 16 represents the graph for “Length of sequence Vs Processing Time” for a 

constant number of processors (m=100), in which X-axis represents the length of 

sequence and Y-axis represents the Processing Time. According to divisible load theory 

for a constant number of processors as the length of sequence increases the processing 

time increases because each processors in the system has more load on it. But from the 

graph we can say that the processing time is not constantly increasing. This can be 

attributed to the communication link, as the processing time is dependent on the 

communication link speed. The greater the communication link speed the lesser the 

processing time. 
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For Constant Length of Sequence (110) Number of Processors Vs Processing Time
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Figure 17: Number of Processors Vs Processing Time for a constant length of sequence 

 
Figure 17 represents the graph for “Number of Processors Vs Processing Time” for a 

constant length of sequence, in which X-axis represents the number of processors and Y-

axis represents the Processing Time. According to divisible load theory for a constant 

length of sequence as the number of processors increases the processing time should 

decrease, as more number of processors is being added to the system the load should be 

distributed among all of them. But from the graph we can say that the processing time is 

not constantly decreasing. This can be attributed to the communication link, as the 

processing time is dependent on the communication link speed. The greater the 

communication link speed the lesser the processing time. 
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Constant Link Speed 

 

This section briefly discusses the about how the processing time vary when the link speed 

has been varied. In the graphs shown below (Fig 18, Fig 19, Fig 20) the link speed(C) has 

been taken as 5 nanoseconds. The results have been discussed as shown below.  

Number of 

processors 

Processing Time  

(Sec) 

3 165000 

5 62500 

7 33400 

10 20100 

20 11200 

30 6790 

40 4480 

50 3170 

60 2380 

70 1864 

80 1511 

90 1250 

100 1074 

 

Table 5: Values for processing times for constant link speed 
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For Constant Link Speed and Length of sequence (1000)
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Figure 18: Number of Processors Vs Processing Time for a constant length of sequence 

 

Figure 18 represents the graph for “Number of Processors Vs Processing time” with X-

axis as the number of processors and Y-axis as the Processing Time. This graph has been 

plotted for a constant sequence length of 1000. From the graph it has been observed that 

for a constant sequence length as the number of processors increase the computation time 

decreases This adds strength to the definition of  DLT that as more number of processors 

are added into the network the processing time decreases. 
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Figure 19: Number of processors Vs Length of the string Vs Processing Time 

 

Figure 19 demonstrates the 3-D representation of how the processing time varies with 

respect to the length of the sequence and number of processors. From the 3-D graph of 

the single processor tree network it can be observed that keeping the length of the 

sequence constant as the number of processors increase the processing time decreases. 

On the other hand it can also be observed that as the numbers of processors are kept 

constant and the length of sequences increases the computation time increases. As 

discussed in the Methodology chapter, the speedup has been calculated and the values are 

tabulated as shown for a constant sequence length of 1000. 
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Number of 

processors 

Speedup 

(Sec) 

3 3 

5 7.99 

7 14.95 

10 24.84 

20 44.53 

30 73.63 

40 111.48 

50 157.23 

60 209.82 

70 268.1 

80 330.88 

90 396.97 

100 465.25 

 

Table 6: Values for speedup for variable link speed 
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Figure 20: Speed up of the network for constant link speed 

 

Figure 20 represents the 3-D graph for “Speed Up of the Network” with X-axis as 

the number of processors and Y-axis as the Processing Time. This graph has been 

plotted for a sequence length that has been being varied from 100-1000. From the 

graph it has been observed that speed up achieved for long sequences is greater as 

the time spent on computation is much larger when compared to idle time of a 

processor. 
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CHAPTER V 

 

 

CONCLUSION AND FUTURE WORK 

 

Conclusions 

 

The problem that has been addressed in this research is the alignment of two 

biological sequences. We proposed a multiprocessor solution using a single level tree 

network, where communication delays are assumed to be non zero. In the design of this 

strategy we used the Needleman- Wunsch algorithm in the alignment of the two 

biological sequences. In the design we used the properties of Divisible Load Theory to 

determine the number of residues that should be assigned to each processor in the 

network.  

 

The approach presented in this thesis is, first we had a matrix S which is a matrix 

of order x X y where x is the length of the first sequence and y is the length of the second 

sequence. Then we derived the M matrix which will give the final values and depending 

on that we can align the sequences. We derived the equations that will determine the size 

of the sub matrices according to the processor speeds where here it is assumed that all 

processors have equal speeds and the communication speeds are varied. With these 

constraints the equations have been derived and the graphs have been plotted.  
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From the results we observed that as the number of processors in the network increases 

the processing time for the job decreases and the speed up \ increases.  

 

Future Work 

 

Future extensions to this work can be deriving solutions that will further decrease 

the computation speed. This can be achieved by applying multi-installment strategy and 

performing the analysis using the Needleman- Wunsch Algorithm. The same problem of 

aligning biological sequences can be applied to various types of networks. 

 

The alignment of biological sequences can be solved using the Sellers algorithm 

and the load distribution strategy. Further work can also be carried out on aligning 

multiple sequences with various types of clustering strategies. The same strategy of 

aligning sequences can be further extended to aligning multiple sequences using the 

algorithm like Berger-Munson algorithm 
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APPENDICES 

This gives the coding for the final results of the thesis. The algorithm Needleman-

Wunsch has been coded in java and the code is as shown below. 

/**********************************************************************
******************************** 
* Name: Sudha Gunturu 
* Thesis Title: Load Scheduling for Bioinformatics Applications in 
Large Scale Networks 
* Algorithm Implemented for Sequence Alignment: Needleman-Wunsch 
Algorithm 
* Advisor: Dr Xiaolin (Andy) Li 
* Commitee Members: Dr.Park, Dr.George 
* The aim of this thesis is to prove that as the number of processors 
in the     
* network are incresead the total processing time for sequence 
alignment   
* decreases. 
* The algorithm that is used in sequence alignment is "Needleman-
Wunsch"  
* algorithm. 
* The algorithm will align the given two sequences and then also 
calculate    
* the load distriburtion that should be  
* given to each processor. 
* 
/**********************************************************************
**********************************************/ 
import java.io.*; 
import java.util.*; 
import java.lang.*; 
 
 /*This is the main class  */ 
  
public class Alignment 
{ 
     
    public static void main(String[] args) 
    {  
    String seq1,seq2; 
    // The two strings that are to be aligned are declared as seq1 and        
    // seq2 
    
seq1="GTCAGTCUVBERTYUDJSEIOPOSMHREUNFDHIKZHFYRNJHTUWLCMNUYRFJDHTURTUTBN
BVDURUSSSMSKDUTITTPOLVREYWWIQNFHJHE"; 
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seq2="VQPTPADHFTFGLWTVGWTGADPFGVATRANLDPVEAVHKLAELGAYGITFHDNDLIPFDATAAE
REKILGDFNQALADTGLKVPMVTTNLFSHPVFKDG"; 
     
    /* There are two matrices that are used in the Needleman-Wunsch  
     * Algorithm. One matrix gives the match and mismatch an 
     * other matrix gives the string alignment. In this program S is 
declared  
     * as an array that gives the match and mismatch 
     * and the other matris is M which is also an array that gives the 
final  
     * alignment of the string */ 
     int len1=seq1.length(); 
     int len2=seq2.length(); 
     float S[][]=new float[len2][len1]; 
     float M[][]=new float[len2][len1]; 
   
     
    /* This for loop sets the value of the S matrix to 1 and 0's 
depending on  
     * weather it is a match or mismatch. If it is a  
     * match a value of '1' is assigned in the respective cell and if 
it is a  
     * mismatch a value of '0' is assigned in the cell */  
 for(int i=0;i<len2;i++)    
   { 
     for(int j=0;j<len1;j++)     
      { 
      if((seq2.charAt(i))==(seq1.charAt(j)))  
       {  
       S[i][j]=1; 
      }// End of if 
      else   
      { 
          S[i][j]=0; 
      }// end of else 
     } // End of nested for loop 
    } //End of for loop 
   
  /* This loop will intialize the initial value of the second matrix M 
that  
   * will give the final value of the alignment to 
   *  zero. Then further values are filled into the matrix depending on 
the  
   * comparisons which follows from Node- Left-Right*/ 
      
    for(int i=0;i<len2;i++)    
      { 
      for(int j=0;j<len1;j++)   
      { 
        M[i][j]=0;        
      }//End of inner for loop 
    }//End of outer for loop*/   
      
    /* The array E is defined as the time taken to calculate each cell 
in the  
     * matrix which is also given as the computation time. When the row 
is  
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     * assigned to a processor the time taken by each row is given as 
the  
     * total computation for each processor.*/ 
    
  float E[][]=new float[len2][len1]; 
  float tempo = 0; 
   /* This loop performs the assignment of values in the matrix M the 
last  
    * row of S is made as the first row of M accordingthe implementaion 
of  
    * the Needleman-Wunsch Algorithm and tempo is a temporary variable 
that  
    * is used in the calculation of the times for each cell. This loop  
    * performs the operation od storing the last row of the S matrix as 
the  
    * first row of the M matrix*/    
     for(int j=0;j<len1;j++)      
      { 
  tempo = 0; 
      M[len2-1][j]=S[len2-1][j]; 
      tempo = tempo + 1; 
  E[len2-1][j] = tempo; 
     }// End of for loop 
      
/* This loop performs the operation of calculating the values of M 
matrix  */ 
  for(int i=0;i<len2;i++)      
   { 
     M[i][len1-1]=S[i][len1-1]; 
      tempo = 0; 
  tempo = tempo + 1; 
  E[i][len1-1] = tempo; 
     }// End of for loop 
 
    for(int i=len2-2;i>=0;i--) {   
  tempo= 0; 
      for(int j=len1-2;j>=0;j--)  { 
  tempo= 0; 
       float low=0; 
       for(int l=i+1;l<=len2-1;l++) { 
        tempo = tempo + 1; 
        for(int k=j+1;k<=len1-1;k++) { 
         tempo = tempo + 1; 
         if(low<M[l][k]) 
          low=M[l][k]; 
        } 
       }// end of nested outer for loop 
       M[i][j]=S[i][j]+low; 
  E[i][j] = tempo; 
      } //end of inner for loop 
    }//end of outer for loop 
 
 
 
// --------------------------------------------------------------------
---------------------- 
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  /* For finding the flow in the matrix M. Computing the path and 
saving the   
   * row and coloumn indices which has the  
   * higher values i has the row element, j has the coloumn element and 
this 
   * method will also give the alignment. The comparison will follow 
the  
   * sequence of Node- Left-Right that is it will first compare the 
element 
   * that is to its diaognal then to its left and then to its right*/ 
   
    
 int i=0,j=0,temp = 0; 
    float a=0,b=0,c=0, t = -1.0f; 
    int seq1_new[]=new int[len1+len2]; 
    int seq2_new[]=new int[len2+len1]; 
    for(int k=0;k<len1+len2;k++)   { 
     seq1_new[k]=-1; 
     seq2_new[k]=-1;      
    } 
    seq1_new[temp] = j; 
    seq2_new[temp] = i; 
    while((i<len2-1)&&(j<len1-1))   { 
     temp = temp + 1;      
        a = M[i+1][j+1]; 
        b = M[i][j+1]; 
        c = M[i+1][j]; 
         
        if ((a>=b)&&(a>=c)) 
         t = a;  
         else if (b>=c) 
          t = b; 
          else 
           t = c; 
            
        if (t==M[i+1][j+1]) 
        { 
           i = i+1; 
                 j = j+1;          
        } 
        else if (t == M[i][j+1]) 
        { 
         i = i; 
         j = j+1; 
        } 
        else  
        {         
         i = i+1; 
         j = j; 
          
        } 
        seq1_new[temp] = j; 
     seq2_new[temp] = i; 
      
    }     
// --------------------------------------------------------------------
------ 
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  /* This will give the string alignment of the two strings. There are 
three kinds of cases which can be termed as 
   * 1. Match- if the same alphabet is found 
   * 2. Mismatch- if different alphabet is found 
   * 3. Gap- in order to align the sequence in the best possible way a 
gap is  
   *    inserted and this alignment is based upon the path trace in the 
final  
        M matrix. */ 
      
        int p = 0; 
        String seq1_new_str,seq1_xx; 
        String seq2_new_str,seq2_xx; 
        seq1_new_str= seq1.charAt(seq1_new[0]) + "";  
        seq2_new_str= seq2.charAt(seq2_new[0]) + "";  
        p = p +1; 
 
      
         while((seq1_new[p] != -1) && (seq2_new[p] != -1)) { 
// if we dont represent the same row element twice get the char else 
keep it as a '-'  
         if (seq1_new[p]!= seq1_new[p-1])  
          {  
          seq1_xx =seq1.charAt(seq1_new[p]) + ""; 
    seq1_new_str =  seq1_new_str + 
seq1.charAt(seq1_new[p]) ; 
   }// end of if 
            else  
             { 
    seq1_xx = "-"; 
    seq1_new_str = seq1_new_str + seq1_xx; 
   }//end of else 
 
 // if we dont represent the same row element twice get the char else 
keep it as a '-'  
            if (seq2_new[p]!= seq2_new[p-1]) 
             { 
          seq2_xx =seq2.charAt(seq2_new[p]) + ""; 
    seq2_new_str =  seq2_new_str + 
seq2.charAt(seq2_new[p]); 
   } 
            else { 
    seq2_xx = "-"; 
    seq2_new_str = seq2_new_str + seq2_xx ; 
   } 
             
            p = p + 1;  
        } 
   
   /* This conditions will make sure that all the characters in the 
strings are visited or not. */ 
  if(seq1_new[p-1] < len1) 
   {    
   for (i = seq1_new[p-1] + 1; i<len1 ; i++ )  
    { 
    seq1_new_str = seq1_new_str + seq1.charAt(i); 
   } 
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  } 
 
  if(seq2_new[p-1] < len2){ 
   for (i = seq2_new[p-1] + 1; i<len2 ; i++ ) { 
    seq2_new_str = seq2_new_str + seq2.charAt(i); 
   } 
  } 
 
            
    if (seq1_new_str.length() < seq2_new_str.length()) { 
     for 
(i=seq1_new_str.length();i<seq2_new_str.length();i++)  { 
      seq1_new_str = seq1_new_str + "-"; 
     } 
    } 
 
 
    if (seq2_new_str.length() < seq1_new_str.length())  
     { 
     for 
(i=seq2_new_str.length();i<seq1_new_str.length();i++)   
      { 
      seq2_new_str = seq2_new_str + "-"; 
     } 
      
    }      
 
 // This will intilize the array B that is used to find the number 
of iterations  
        float B[][]=new float[len2][len1]; 
  for(j=0;j<len1;j++) { 
       B[len2-1][j]=1; 
         } 
   for(i=0;i<len2;i++) { 
       B[i][len1-1]=1; 
         } 
 
// --------------------------------------------------------------------
------------------- 
 /* To calculate the iterations . This iterations is defined as the 
number of times the different cells are to  
  * be visited in order to copmlete the M matrix*/ 
  
  for( i=len2-2;i>=0;i--)   
   { 
   for( j=len1-2;j>=0;j--)    
    { 
    temp = 0; 
         for(int l=i+1;l<=len2-1;l++)   
          { 
          for(int k=j+1;k<=len1-1;k++)    
           { 
      temp = temp  + 1; 
          } 
    } 
         B[i][j]=temp; 
    }  
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  }  
 
 
 
        System.out.println(" ------------------------------------------
-----");      
/*................................. calucation of Beta Values 
[Iteration Time] for the each row........................*/ 
           float temp_sum; 
     float sum_beta[] = new float[len2]; 
   for(i=0; i < len2; i++) 
    { 
   temp_sum = 0; 
   for (j=0;j<len1;j++ ) 
    { 
    temp_sum = temp_sum + B[i][j]; 
   } 
   sum_beta[i] = temp_sum; 
  } 
/*............................Calucating the Total Computation Time for 
each Row ..................................*/ 
   
           float sum_time_row[] = new float[len2]; 
  for(i=0; i < len2; i++){ 
   temp_sum = 0; 
   for (j=0;j<len1;j++ ){ 
    temp_sum = temp_sum + E[i][j]; 
   } 
   sum_time_row[i] = temp_sum; 
  } 
 
  
 
/* Calcuating the communication time of the tree. To calculate the 
communication time we need the link speed which is  
 * generated by the random generator [Number generated between 1 to 
10]. This generated random C value is given as the  
 * link speed in the calculation of alpha. Link speed is given in nano 
seconds.*/ 
  
 
Random randomGenerator = new Random(); 
float C[] = new float[len2]; 
 for (int idx = 0; idx <len2; idx++) 
  { 
       //C[idx] = randomGenerator.nextInt(10) + 1; 
       C[idx]=5; 
 } 
 
   
/* ......................Calucating Alpha -- The load on processes 
...........................................*/ 
   /* The loads that are to be assigned to each process is defined by 
alpha and with the help of the timing  
    * diagram an equation is derived that gives the final value of the 
alphas. */ 
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       double calculate[] = new double[len2]; 
    double alpha[] = new double[len2]; 
    double alp,xx=0;     
    calcu cal = new calcu(); 
 
        // This will take the number of processors that we are going to 
test. 
  int no_of_processors[] = 
{3,5,7,10,20,30,40,50,60,70,80,90,100}; 
  int m; 
 
  for(int tempt=0; tempt < no_of_processors.length; tempt++)
 { 
   System.out.println("---------------------------------
-----"); 
   System.out.println("Processors equal to :" + 
no_of_processors[tempt]); 
   m = no_of_processors[tempt];   
 
       calculate[0] = 1.0; 
    for (i=1;i<m;i++) { 
     alp = cal.calc_alph(sum_time_row[i-1], 
sum_time_row[i], sum_beta[i-1], sum_beta[i], C[i-1]); 
     calculate[i] = calculate[i-1]*alp; 
    } 
 
    for (i=0;i<m;i++) { 
     xx = xx + calculate[i]; 
    } 
   
    alpha[0] = len1/xx; 
    
        for (i=1;i<m;i++)  { 
        alpha[i] = alpha[0] * calculate[i]; 
        } 
      
    
   System.out.println("Calucalating the values of 
alpha"); 
   for (i=0;i<m;i++)  { 
     System.out.println(alpha[i]);    
    } 
   System.out.println("\n"); 
 
    // caluclating processing time 
    double proc_1, proc_2, process_time; 
    proc_1 = cal.summation(sum_time_row, len2); 
    proc_2 = cal.summation(C,len2); 
    process_time = (double) 
alpha[0]*len2*sum_time_row[0] + proc_1 + 2*proc_2*(len2-1);   
  
    System.out.println("The Processing Time : " + 
"\t" + process_time); 
 
    // Speed Up caluculation 
 
    double speedupvalue, speed_up; 
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    speedupvalue = len1*len2*sum_time_row[0]; 
    speed_up = speedupvalue/process_time; 
    System.out.println("The Speed up equals: " + 
speed_up); 
  } 
    
 
 }// End of main 
}// End of class 
 
/* This class will return the alpha values and the value is calculated 
from the formula derivied from the 
 * timing diagarm*/ 
class calcu 
{ 
  public double calc_alph(float E1, float E2, float B1, float B2, 
float C1){ 
    double alp; 
    alp = (double) ( (B1*E1) - (2*C1) )/(B2*E2); 
/* This is the condition checking if alpha negative*/ 
    if (alp < 0)   
     { 
       System.out.println("The value of alpha goes to 
negitive: chck it"); 
     System.exit(0); 
    } 
    return alp; 
   } 
 
   public double summation(float[] A,int len){ 
    double xx=0; 
           for (int i =0;i<len;i++){ 
      xx = xx + A[i]; 
           } 
     return xx; 
   }      
} 
 

The 3-D graphs have been implemented in Matlab and the code is as shown below 

 

For a constant link speed: 

clc 
close all 
processors = [3,5,7,10,20,30,40,50,60,70,80,90,100]; 
length = [100,200,300,400,500,600,700,800,900,1000]; 
Time3 = [1.65 53.2 404 1700 5200  12900 27900 54500 98500 165000]; 
Time5 = [0.63, 20, 152, 641, 1950, 4860, 10500, 20400, 36900, 62500]; 
Time7= [0.34, 10.8, 81.7, 343, 1040, 2600, 5620, 10900, 19700, 33400]; 
Time10 = [0.212, 6.59, 49.5, 207, 632, 1570, 3390, 6600, 11800, 20100]; 
Time20 = [0.122, 3.73, 27.9, 116, 354, 879, 1890, 3680, 6630, 11200]; 
Time30 = [0.0782, 2.32, 17.1, 71.4, 216, 534, 1150, 2230, 4010, 6790]; 
Time40 = [0.0562, 1.6, 11.6, 47.9, 144, 355, 763, 1480, 2650, 4480]; 
Time50 = [0.0443, 1.2, 8.55, 34.8, 103, 254, 545, 1050, 1880, 3170]; 
Time60 = [0.0373, 0.962, 6.68, 26.8, 79.4, 193, 411, 793, 1410, 2380]; 
Time70 = [0.0328, 0.808 ,5.47 ,21.6, 63.5, 153, 325, 624, 1110,1864]; 
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Time80 = [0.0298, 0.705, 4.66, 18.1, 52.7, 126, 266, 509, 903, 1511]; 
Time90 = [0.0276, 0.632, 4.08, 15.6, 45, 107, 224, 427, 755, 1250]; 
Time100 = [0.025, 0.58, 3.67, 13.8, 39.4, 93.3, 194, 367, 646, 1074]; 
 
Time = [Time3;Time5; Time7; Time10; Time20; Time30; Time40; Time50; 
Time60; Time70; Time80; Time90; Time100]; 
 
figure; 
surf(length,processors,Time); 
xlabel('Length of the String'); 
ylabel('Number of Processors'); 
zlabel('Processing Time (sec) '); 
title('For Constant Link Speed, Length of the String vs Number of 
Processors vs Processing Time'); 
 
 
 
speed3 = [3.01, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]; 
speed5 = [7.94, 7.97 ,7.98, 7.985, 7.988, 7.99, 7.991, 7.992, 7.993, 
7.994]; 
speed7 =[15.57, 14.7, 14.87, 14.89, 14.91, 14.92, 14.93, 14.94, 14.95, 
14.95]; 
speed10 = [23.57, 24.25, 24.49, 24.62, 24.69, 24.74, 24.78, 24.8, 
24.82, 24.84]; 
speed20 = [40.92, 42.8, 43.5, 43.86, 44, 44.22, 44.33, 44.41, 44.48, 
44.53 ]; 
speed30 = [63.87, 68.7, 70.68, 71.69, 72.32, 73.75, 73.06, 73.29, 
73.48, 73.63]; 
speed40 = [88.8, 99.7, 104.22, 106.67, 108.22, 109.28, 110, 110.65, 
111.11, 111.48]; 
speed50 = [112.74, 132.95, 141.94, 147, 150.24, 152.49, 154.14, 155.41, 
156.42, 157.23]; 
speed60 = [133.99, 166.22, 181.73, 190.77, 196.69, 200.86, 203.97, 
206.36, 208.72, 209.82]; 
speed70 = [152.09, 197.86, 221.72, 236.2, 245.9, 252.86, 258.09, 
262.16, 265.43, 268.1]; 
speed80 = [167.36, 226.86, 260.51, 281.74, 296.34, 306.99, 315, 321.48, 
326.64, 330.88]; 
speed90 = [180.99, 252.77, 297.11, 326.19, 346.69, 361.93, 373.6, 
383.04, 390.65, 396.97]; 
speed100 = [199.2, 275.53, 330.94, 368.66, 395.93, 416.55, 432.7, 
445.68, 456.34, 465.25]; 
 
figure; 
Speedup = [speed3; speed5; speed7; speed10; speed20; speed30; speed40; 
speed50; speed60; speed70; speed80; speed90; speed100]; 
surf(length,processors,Speedup); 
xlabel('Length of the String'); 
ylabel('Number of Processors'); 
zlabel('Speed Up'); 
title('For Constant Link Speed, Length of the String vs Number of 
Processors vs Speed Up'); 

 

For a variable link speed: 

clc 
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close all  
processors = [3,5,7,10,20,30,40,50,60,70,80,90,100]; 
length = [100,200,300,400,500,600,700,800,900,1000]; 
Time3 = [1.65, 53.19, 404.29, 1704.47, 5203.03, 12948.98, 27991.44, 
54578.66, 98359.84, 166915.49 ]; 
Time5 = [0.629, 20.07, 152.24,  641.16, 1955.99, 4865.96, 10515.45,  
20498.88,  36936.05,  62671.53 ]; 
Time7 = [0.342, 10.82, 81.79, 343.84, 1047.8, 2604.73, 5625.94, 
10962.95, 19747.62,  33498.78 ]; 
Time10= [0.21, 6.59, 49.59, 207.94, 632.68, 1571.14, 3390.95, 6604.03, 
11890.64, 20163.56 ];  
Time20 = [0.122, 3.73, 27.93, 116.73, 354.45, 879.03, 1895.33, 3688.51, 
6637.35, 11250.11 ]; 
Time30 = [0.0782, 2.32, 17.18, 71.4,  216.03, 534.39, 1150.15,  
2235.23, 4017.89, 6804.34]; 
Time40 = [0.056,  1.6,  11.65, 47.99, 144.37, 355.75,  763.52,   
1480.69, 2657.12, 4493.82];  
Time50 = [0.044, 1.2, 8.55, 34.82, 103.99, 254.95, 545.14, 1054.18, 
1887.49, 3186.41];  
Time60 = [0.037, 0.96, 6.68, 26.83, 79.43, 193.55, 411.99, 793.92, 
1417.58, 2387.78];  
Time70 = [0.032, 0.8, 5.47, 21.67, 63.53, 153.75, 325.59, 624.93, 
1112.3, 1868.71]; 
Time80 = [0.029, 0.7, 4.66, 18.17, 52.75, 126.64, 266.68, 509.63, 
903.88, 1514.16]; 
Time90 = [0.027, 0.63, 4.08, 15.69, 45.06, 107.42, 224.87, 427.72, 
755.75, 1262.08]; 
Time100 = [0.025, 0.58, 3.67, 13.88,  39.46, 93.3, 194.2, 367.61,  
646.98, 1076.88]; 
 
Time = [Time3;Time5; Time7; Time10; Time20; Time30; Time40; Time50; 
Time60; Time70; Time80; Time90; Time100]; 
 
figure; 
surf(length,processors,Time); 
xlabel('Length of the String'); 
ylabel('Number of Processors'); 
zlabel('Processing Time (sec)'); 
title('For Variable Link Speed, Length of the String vs Number of 
Processors vs Processing Time'); 
 
 
 
 
 
speed3 = [3.01, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]; 
speed5 = [7.94, 7.97, 7.98, 7.98, 7.98, 7.99, 7.99, 7.99, 7.99, 7.99]; 
speed7 =[14.57, 18.78, 14.85, 14.89, 14.91, 14.92, 14.93, 14.94, 14.95, 
14.95]; 
speed10 = [23.56, 24.25, 24.49, 24.62, 24.69, 24.74, 24.78, 24.8, 
24.82, 24.84]; 
speed20 = [40.92, 42.8, 43.5, 43.85, 44.08, 44.22, 44.33, 48.41, 44.48, 
44.53]; 
speed30 = [63.86, 68.77, 70.68, 71.69, 72.32, 72.75, 73.06, 73.29, 
73.48, 73.62]; 
speed40 = [88.75, 99.7, 104.22, 106.67, 108.22, 109.28, 110.06, 110.65, 
111.11, 111.4]; 
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speed50 = [112.7, 132.95, 141.94, 147, 150.24, 152.49, 154.14, 155.41, 
156.42, 157.23]; 
speed60 = [133.95, 166.22, 181.73, 190.77, 196.69, 200.86, 203.97, 
206.36, 208.27, 209.81]; 
speed70 = [152.03, 197.85, 221.72, 236.19, 245.9, 252.86, 258.09, 
262.16, 265.43, 268.09]; 
speed80 = [167.29, 226.85, 260.5, 281.74, 296.34, 306.99, 315.1, 
321.48, 326.63, 330.87]; 
speed90 = [180.9, 252.76, 297.1, 326.18, 346.69, 361.93, 373.69, 
383.04, 390.69, 396.96]; 
speed100 = [199.1, 275.52, 330.94, 368.65, 395.93, 416.55, 432.7, 
445.68, 456.34, 465.23]; 
 
figure; 
Speedup = [speed3; speed5; speed7; speed10; speed20; speed30; speed40; 
speed50; speed60; speed70; speed80; speed90; speed100]; 
surf(length,processors,Speedup); 
xlabel('Length of the String'); 
ylabel('Number of Processors'); 
zlabel('Speed Up'); 
title('For Variable Link Speed, Length of the String vs Number of 
Processors vs Speed Up'); 

 

This gives the coding for the Initial results of the thesis. The graphs for the divisible load 

theory and multi-installment strategy have been generated using MATLAB and is as 

shown below. 

Code for generating the graph for Divisible load theory 

clc 
clear all 
z = [2 0.5 5]; 
omega = [2 1 1 2]; 
tcp = 1; 
tcm = 1; 
number_of_childs = length(z); 
 
sigma = zeros(1,(length(z))); 
for i = 1 : length(z) 
    [sigma(i)] = compute_sigma(z(i),tcm,omega(i+1),tcp); 
end 
 
sub_alpha(1,:) = [ 0 0 0 ]; 
for i = 2 :length(z)+1 
    [sub_alpha(i,:)] = compute_sub_alpha(sigma(i-1),number_of_childs); 
end 
 
alpha = zeros(1,length(sigma)+1); 
for i = 2 : length(sigma)+ 1 
    [alpha(i)] = compute_alpha(sub_alpha(i,:),sigma(i-
1),number_of_childs); 
end 
 
alpha(1) = 1 - sum(alpha) 
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function [alpha] = 
compute_alpha(sub_alpha,sigma,number_of_installments) 
 
xx = 0; 
for i = 1 : number_of_installments 
    xx = xx + sigma^(i-1); 
end 
 
alpha = sub_alpha(1)*xx; 

 

function [sigma] = compute_sigma(z,tcm,omega,tcp) 
 
sigma = (omega *tcp) / (z*tcm); 

 

For multi installment strategy 

clc 
clear all 
close all 
 
n = 100; 
total_computational_time(1) = 0; 
for i = 2 : n 
    z = ones(1,i); 
    omega = ones(1,i+1); 
    tcm = 1; 
    tcp = 0.5; 
    number_of_installments = 3; 
    [total_computational_time(i)] = 
multi_installment(z,omega,tcp,tcm,number_of_installments); 
end 
 
figure 
plot(2:n,total_computational_time(:,(2:n))) 
%......................................................................
... 
 %   ..................... 
 
 
n = 7; 
number_of_installments = 10; 
total_computational_time = zeros(1,number_of_installments); 
for i = 3 : number_of_installments 
    z = ones(1,n); 
    omega = ones(1,n+1); 
    tcm = 1; 
    tcp = 0.5; 
 
    [total_computational_time(i)] = 
multi_installment(z,omega,tcp,tcm,i); 
end 
figure 
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plot(3:number_of_installments,total_computational_time(:,(3:number_of_i
nstallments))) 
 
%......................................................................
.... 
 %   ................... 
 
% z = [2 0.5 5 ]; 
% omega = [2 1 1 2]; 
% tcp = 1; 
% tcm = 1; 
% number_of_installments = 3; 
% [total_computational_time] = 
multi_installment(z,omega,tcp,tcm,number_of_installments); 

 

function [sub_alpha] = compute_sub_alpha(sigma,number_of_installments) 
 
sub_alpha(1) = 1; 
 
for i = 2 : number_of_installments 
    sub_alpha(i) = sub_alpha(i-1)*sigma; 
end 
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