
 LOAD SCHEDULING FOR BIOINFORMATICS

APPLICATIONS IN LARGE SCALE NETWORKS

 By

 SUDHA GUNTURU

 Bachelor of Technology in Computer Science

 Jawaharlal Nehru Technological University

 Hyderabad, Andhra Pradesh

 2005

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2008

 ii

 LOAD SCHEDULING FOR BIOINFORMATICS

APPLICATIONS IN LARGE SCALE

 Thesis Approved:

 Xiaolin Li

 Thesis Adviser

 Nophill Park

 K. M. George

 A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I would like to extend my deep gratitude and appreciation to my major advisor

Dr. Xiaolin (Andy) Li for his support and guidance provided throughout this study.

Without his help this study would not have been possible. I would like to acknowledge

the help and support of Dr. Bharadwaj Veeravalli for his guidance provided throughout

this study.

Likewise the support of committee members Dr. Nophill Park and Dr. George is greatly

appreciated. A special note of thanks is due to the faculty members and secretarial staff of

the Department of Computer Science at Oklahoma State University for their support

during my time at Oklahoma State University.

Finally, I would like to express my deepest and sincerest thanks to my parents

Lakshmi Gunturu and Rama Krishna Gunturu, Husband Srinivas Singampalli, Sister

Sandhya Sripada, Brother-in-law Ravi Sripada family members and friends (Narsimham

Singampalli, Gouri Singampalli, Srinivas Indla, Krupa Singampalli, Sailaja Sabbella,

Pranav Peddi, Venkatesh Akella, Ravi Nidadavolu, Veenita Grover, Archana Patel

nephews Srijan V. Sripada and Aditya Indla) for their never-ending encouragement and

support, which has enabled the completion of this degree.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

 Motivation ... 1

 Research Overview ... 2

 Contributions ... 3

 Outline of Thesis ... 5

II. REVIEW OF LITERATURE ... 6

 Divisible Load Theory .. 6

 Multi Installment Strategy ... 8

 Bioinformatics ... 9

 Introduction ... 9

 Sequence Analysis... 11

 Needleman-Wunsch Algorithm... 12

 BLAST .. 13

 Background Study ... 13

 Reason for the use of BLAST ... 14

 Input/ Output in BLAST ... 14

 Sequence Representation..15

 Algorithm..18

III. METHODOLOGY .. 20

 Analysis of Needleman-Wunsch Algorithm ... 20

 Problem Formulation... 23

 Design of Load Distribution Strategy ... 24

 v

Chapter Page

IV. RESULTS ... 28

 Implementation.. 28

 Preliminary Results ... 31

 Final Results .. 33

V. CONCLUSION AND FUTURE WORK .. 46

 Conclusions ... 46

 Future Work .. 47

REFERENCES .. 48

APPENDICES ... 52

 vi

LIST OF TABLES

Table Page

 Table 1- Nucleic Acid Codes ... 16

 Table 2- Amino Acid Codes... 17

 Table 3- Values for Processing Time for Variable Link Speed 34

 Table 4-Values for Speedup for Variable Link Speed ... 37

 Table 5- Values for Processing Time for Constant Link Speed 41

 Table 6- Values for Speedup for Variable Link Speed .. 44

 vii

LIST OF FIGURES

Figure Page

 Figure 1- Classification of Loads ... 8

 Figure 2- Needleman-Wunsch Algorithm for the generation of S matrix 13

 Figure 3- Needleman-Wunsch Algorithm for the generation of M matrix 13

 Figure 4- Example of FASTA sequence .. 15

 Figure 5- Illustration of the computational dependency .. 21

 Figure 6- Pseudo Code for the Needleman- Wunsch Algorithm 22

 Figure 7- Single Level Tree Network .. 23

 Figure 8- Load Distribution Pattern ... 25

 Figure 9- Timing Diagram ... 25

 Figure 10- Implementation of Needleman- Wunsch Algorithm 31

 Figure 11- Number of children Vs Computation Time .. 32

 Figure 12- Number of Installments Vs Computation Time 33

 Figure 13- Number of Processors Vs Processing Time for Constant Length 35

 Figure 14- Classification of Loads .. 36

 Figure 15- Classification of Loads .. 38

 Figure 16- Classification of Loads .. 39

 Figure 17- Classification of Loads .. 40

 Figure 18- Classification of Loads .. 42

 Figure 19- Classification of Loads .. 43

 viii

Figure Page

Figure 20- Classification of Loads...45

 ix

NOMENCLATURE

m Total Number of processors in the system

Pi The i
th

processor in the system

Ei The total time taken for the processor Pi compute the S and M matrices

Seq X The first sequence that is given for the sequence alignment

Seq Y The second sequence that is given for the sequence alignment

C The time taken for communication

x Length of sequence x

y Length of sequence y

Z Total number of iterations used to compute the S and M matrices

xi Total number of residues of sequence x assigned to Pi where

xx
m

i

i =∑
=1

yi Total number of residues of sequence y assigned to Pi where

yy
Z

j

i =∑
=1

Si,j The sub matrix of S matrix

Mi,j The sub matrix of M matrix

T(m) The total processing time for the alignment of the sequences

 1

CHAPTER I

INTRODUCTION

Motivation

The interest in network based computing has grown in recent years. Many applications in

scientific and engineering domains are structured as large numbers of independent tasks

with low granularity. These applications are thus amenable to straightforward

parallelization, typically in master-slave fashion, provided that efficient scheduling

strategies are available. Such applications are called divisible load because a scheduler

may divide the computation time among worker processes arbitrarily, both in terms of

task and task sizes.

Scheduling the tasks of a parallel application on the resources of a distributed computing

platform efficiently is critical for achieving high performance.

Over the past few decades research in the field of molecular biology has made

advancement that is coupled with advances in genomic technologies. This has led to an

explosive growth in the biological information generated, in turn, led to the requirement

for computerized databases to store, organize, and index the data and for specialized tools

to view and analyze the data.

 2

Research Overview

The load distribution problem in distributed computing networks, consisting of a

number of processors interconnected through communication links, has attracted a great

deal of attention. Divisible Load Theory (DLT) is a methodology that is involved in the

linear and continuous modeling of partition able computation and communication loads

for parallel processing. DLT is primarily used for handling large scale processing on

network based systems.

The processor partitions the load into many fractions, keeps one of the fractions

for itself to process and sends the rest to its neighbors (other nodes in the network) for

processing [2]. The important problem here is to decide how to achieve a balance in the

load distribution between processors so that the computation is completed in shortest

possible time [2]. After partitioning the load into fractions the root node or the first node

that has the load with it can divide the load in two ways which can be termed as “With

Front End Communication” and “Without Front End Communication”. In the first case

the root node processes it share of load and then will communicate the rest of the load to

its children and in this case the processing time increases. In the second case, the root

node communicates to other nodes and computes the load on its node simultaneously and

this reduces the computation time to a great extent.

This DLT paradigm has numerous applications such as edge detection in image

processing, file compression, joining operations in relational databases, graph coloring

and genetic searches [8]. Some more examples of real divisible applications include

 3

searching for pattern in text, audio, graphic files, database and measurement processing,

data retrieval systems, some linear algebra algorithms, and simulations [4].

The merging of the two rapid advancing technologies of molecular biology and

computer science resulted in a new informatics science, namely bioinformatics. Over the

past few years, the interest and research in the area of biotechnology has increased

drastically. This area of study deals primarily with the methodologies of operating on

molecular biological information. The present days of molecular biology is characterized

by collection of large volumes of data.

The most common operations on biological data include sequence analysis,

protein structures predications, genome sequence alignment, phylogeny tree construction,

pathway research and sequence database placement. One of the most basic and important

application of bioinformatics task is to find a set of homologies for a given sequence

because the sequences are often related to the functions, if they are similar.

The different bioinformatics applications like sequence analysis, protein

structures predications, genome sequence alignment, and phylogeny tree construction are

distributed in different individual projects and they require high performance

computational environments. Biologists use a tool called the BLAST for performing

research. This tool is a database search, in other words this is described as a Google for

biological sequences. This tool provides a method for searching a nucleotide and protein

 4

database. This BLAST is designed in such a way that it can detect local and global

alignment.

Sequence Alignment is often used in biological analysis. This sequence alignment

between any two newly discovered biological sequences can be aligned with the

algorithms present in the literature and the similarity can be determined. This sequence

alignment can be useful in understanding the function, structure and origin of the new

gene. In sequence alignment two sequences are compared with the residues of one

another while taking the positions of the residues into account. Residues in the sequence

can be inserted, deleted or substituted to achieve maximum similarity or optimal

alignment [8]. For example, GenBank is growing at an exponential rate , with as many as

1.2 million new sequences being appended in the year of 2000 [8] [37]. To meet the

growing needs a wide variety of heuristics methods have been proposed for aligning the

sequences such as FASTP, FASTA,BLAST, and FLASH [28].

Contributions

In this thesis a multiprocessor strategy is designed that exploits the computational

characteristics of the algorithms that are used for biological sequence comparisons

proposed in the literature. In designing the strategy the load is partitioned among the

processors of the network using the DLT paradigm.

The two commonly used algorithms for sequence alignment are the Needleman-

Wunsch Algorithm and Smith-Waterman Algorithm where the former is employed for

Global Alignment and the latter is used for Local Alignment. The complexity of the

 5

Needleman- Wunsch Algorithm and Smith-Waterman Algorithm to align sequence of

length x is given by O(x
2
).

The algorithm that is employed in this study is the Needleman-Wunsch

Algorithm. Communication delays are considered to be an important part of the

processing time in all distributed algorithms while generating the matrix M. The way that

has been adopted in this study to for parallelizing the Needleman-Wunsch Algorithm is

by computing the matrix elements in diagonal fashion by using a Multiple Instruction

Multiple Data Systems.

Divisible Load Theory is employed for handling the sequence alignment. The

objective is to minimize the total processing time for sequence alignment. The partition

of the load depends primarily on the matrix that is generated by the Needleman-Wunsch

Algorithm. The network has been studied for variable link speed and constant link speed.

Outline of the Thesis

The remainder of this document contains chapters as follows. Chapter 2 contains

the Literature Review related work pertinent to the problem definition. The Methodology

is discussed in Chapter 3. Chapter 4 discusses the Results. Chapter 5 discusses the

Conclusion and Future Work.

 6

CHAPTER II

REVIEW OF LITERATURE

Divisible Load Theory

The origin of this Divisible Load Theory came into existence by having the desire

to create intelligent sensor networks [2]. But the most recent applications include parallel

and distributed computing. Divisible loads can be defined as computations which can be

divided into small parts of different sizes and these can be processed independently in

parallel. The paradigm of load distribution is basically concerned with a single large load

which originates or arrives at one of the nodes in the network. Divisible loads can be

classified into two basic categories, namely 1. Modularly Divisible Loads 2. Arbitrarily

Divisible Loads. These can be defined as follows

Modularly Divisible Loads: These loads are divided into predetermined modules and are

represented in the form of task graph with precedence relations [2].

Arbitrarily Divisible Loads: These loads can be arbitrarily divided into many parts and

can be assigned to different processors [2].

The load is massive and requires an enormous amount of time to process, given the

computing capability of the node.

 7

This Divisible Load Theory can be applied to any kind of network. The processor

partitions the load into many fractions, keeps one of the fractions for itself to process and

sends the rest to its neighbors for processing. One of the main points to be taken to

consideration is about how balance can be achieved while distributing the load between

the processors in order to complete the computation in shortest possible time. With this

we can say that the grain of parallelism is small, and there are no data dependencies. The

size of the load parts should be adjusted to the speeds of communication and computation

such that they have the shortest computation time for the given job. Some examples of

real divisible applications include image processing applications like feature extraction,

edge detection and many signal processing applications.

In this divisible load theory the manner in which the partitioning of the load

depends on its divisibility property, which can be defined as the property which

determines whether a load can be decomposed into a set of smaller loads or not as shown

in figure 1.

 8

 Figure 1: Classification of Processing Loads [2]

Multi-Installment Strategy

This new strategy of load distribution became an area of research interests as it

minimizes the processing time. Divisible Load Theory divides the computations into

parts of arbitrary sizes and these can be processed independently in parallel. To reduce

the waiting time during the parallel computation the load is sent to the processors in

multiple small installments. This can also be explained as the distribution of load in more

than one installment in an optimal manner to minimize the processing time. The divisible

load theory makes an assumption that the processor starts computation only after it has

received the entire load that has been assigned to it and this gives a considerable amount

of ideal time for almost all the processors because of the delay involved in

communicating load from one processor to another. In order to reduce the ideal time this

Processing Load

Arbitrarily

Divisible

Divisible Load Indivisible Load

Modularly

Divisible

 9

multi installment strategy will be used in which the load assigned to processor is sent in

more than one installment.

In any network communication delays constitute an important part of the

processing time. In order to reduce the initial waiting of data and for the computations to

be initialized, the entire load is divided into small chunks rather than sending as one big

chunk which is the divisible load theory. This way of divisible load distribution and

execution is called multi-installment processing [4]. This strategy reduced the idle time of

the processors in the network to a great extent, which in turn reduced the communication

delays.

Bioinformatics

Introduction

Information science when applied to biology produced a field called the

“Bioinformatics”. The areas of bioinformatics and computational biology involve the use

of techniques and concepts including applied mathematics, informatics, statistics,

computer science, artificial intelligence, chemistry, and biochemistry to solve biological

problems usually on the molecular level. The terms of bioinformatics and computational

biology are often interchangeable. Research in computational biology often overlaps with

systems biology. Major research efforts in the field include sequence alignment, gene

finding, genome assembly, protein structure alignment, protein structure prediction,

prediction of gene expression and protein-protein interactions, and the modeling of

evolution. The area of bioinformatics more clearly refers to the creation and advancement

of algorithms, computational and statistical techniques, and also includes the theory to

solve formal and practical problems arising from the management and analysis of

 10

biological data. Computational biology refers to hypothesis-driven investigation of a

specific biological problem using computers, carried out with experimental or simulated

data, with the primary goal of discovery and the advancement of biological knowledge.

In other words, bioinformatics is concerned with the information while computational

biology is concerned with the hypotheses.

The NIH Biomedical Information Science and Technology Initiative Consortium

that was held on July 17, 2000 has agreed on formal definitions for bioinformatics and

computational biology. They also recognized that there is no definition that could

completely eliminate the overlap of the variations in interpretation by different

individuals and organizations. One of the definition proposed by them are as follows:

Bioinformatics: Research, development, or application of computational tools and

approaches for expanding the use of biological, medical, behavioral or health data,

including those to acquire, store, organize, archive, analyze, or visualize such data [32].

Computational Biology: The development and application of data-analytical and

theoretical methods, mathematical modeling and computational simulation techniques to

the study of biological, behavioral, and social systems [32].

The areas of bioinformatics and computational biology use mathematical tools to

extract useful information from data produced by high-throughput biological techniques

such as genome sequencing. One of the most common representative problems in

bioinformatics is the assembly of high-quality genome sequences from fragmentary

"shotgun" DNA sequencing. Other common problems include the study of gene

regulation using data from micro arrays or mass spectrometry.

 11

Sequence Analysis

Sequence Analysis" in biology can be explained by subjecting a DNA or peptide

sequence to sequence alignment, sequence databases, repeated sequence searches, or

other bioinformatics methods on a computer. Sequence analysis in molecular biology and

bioinformatics is an automated, computer-based examination of characteristically

fragments, for example a DNA-strand. It basically includes five biologically relevant

topics:

1. This is used for the comparison of sequences in order to find similar sequences

(sequence alignment)

2. In identification of gene-structures, reading frames, distributions of introns and

exons and regulatory elements

3. Used for prediction of protein structures

4. Used for genome mapping

5. Comparison of homologous sequences to construct a molecular phylogeny.

Similarity detection is often used in biological analysis. This is widely used when a new

gene sequence and unknown gene sequence can give significant understanding on the

function, structure and origin of the new gene. While comparing two gene sequences,

which is also known as aligning two sequences residues form, one sequence is compared

with the residues of the other, in which the position of the residues is taken into

consideration. The different operations that can be performed are insertion, deletion and

substitution of residues in other sequence.

Many algorithms have been proposed in the literature for comparing two biological

sequences for similarities. The most popular algorithms in aligning the DNA are the

 12

Needleman-Wunsch algorithm. For protein alignment it’s the Smith-Waterman

algorithm. In the sequence comparison a combination of the DLT approach and the

algorithms are used in order to align the sequences accurately.

Needleman-Wunsch Algorithm

The Needleman–Wunsch algorithm is one of the algorithm that performs a global

alignment on two sequences (called X and Y here). This algorithm finds its application in

bioinformatics to align protein or nucleotide sequences. The algorithm was first proposed

by Saul Needleman and Christian Wunsch in 1970 .The Needleman–Wunsch algorithm is

an example of dynamic programming, and was the first application of dynamic

programming to biological sequence comparison.

The algorithm can be explained in the following steps

1. Initialize the matrix S=0

2. Fill in the matrix S with 1 if it is a match and 0 if it is a mismatch

3. Compute score from right hand bottom based on the formula,

M[i,j]=S[i, j]+Max{M[i+1:x],M[j+1:y]}.

4. Trace back from the left-top corner, and select the maximum value from the

adjacent column and row, and so on.

For example let us consider two sequences GTCAGTC and GCCTC. In order to align

these sequences we first need to construct the matrix as shown below

 13

 G T C A G T C

G 1 0 0 0 1 0 0

C 0 0 1 0 0 0 1

C 0 0 1 0 0 0 1

T 0 1 0 0 0 1 0

C 0 0 1 0 0 0 1

Figure 2: Needleman-Wunsch Algorithm after the generation of S matrix

Figure 3: Needleman-Wunsch Algorithm after the generation of M matrix

 G T C A G T C

 G C C - - T C

BLAST (Basic Local Alignment Search Tool)

Background Study

In the area of bioinformatics a tool has been developed by National Center for

Biotechnological Information called the BLAST. This tool is an algorithm for comparing

 G T C A G T C

G 4 3 2 2 3 1 0

C 4 3 3 2 2 1 1

C 2 2 3 2 2 1 1

T 1 2 1 1 1 2 0

C 0 0 1 0 1 0 1

Match Mismatch Match Gap

 14

primary biological sequence information, for amino-acid sequences of different proteins

or the nucleotides of DNA sequences.

This tool primarily enables researchers to compare a query sequence with the

available database of sequences and identify library sequence that resembles the query.

BLAST is primarily used in research for identifying similar gene sequences. This can be

explained by the following example, if a scientist discovers a previously unknown gene

in a mouse, he will typically perform a BLAST search of the human genome to see if

humans carry the same gene and BLAST will identify sequences with similarity in both

the species.

Reasons for the wide use of BLAST

This tool is one of the most widely used bioinformatics programs as it addresses

the fundamental problem of similarity detection and sequence alignment and the

algorithm also emphasizes speed over sensitivity. This speed of the tool plays a vital role

in searching the huge genome databases currently available. BLAST can also be used to

answer these other questions in the research and is widely used in appropriate sequence

matching.

Input / Output in BLAST

The input and output in BLAST are represented by FASTA format. This FASTA

sequence is a text-based format for representing nucleic acid or peptide sequence in

which base pair or amino acids are represented by single letter. The simplicity of FASTA

format makes it easy to manipulate and parse sequences using text-processing tools and

scripting languages like Python and Perl.

 15

A sequence in FASTA format begins with a single-line description, followed by

lines of sequence data. The description line is distinguished from the sequence data by a

greater-than (">") symbol in the first column. The word following the ">" symbol is the

identifier of the sequence, and the rest of the line is the description (both are optional).

There should be no space between the ">" and the first letter of the identifier. It is

recommended that all lines of text be shorter than 80 characters. The sequence ends if

another line starting with a ">" appears; this indicates the start of another sequence. A

simple example of one sequence in FASTA format:

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus
maximus]
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLF
SAIPYIGTNLVEWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPL
GLTSDSDKIPFHPYYTIKDFLGLLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHI
KPEWYFLFAYAILRSVPNKLGGVLALFLSIVILGLMPFLHTSKHRSMMLRPLSQALFWT
LTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGXIENY

Figure 4: Example of FASTA sequence [34]

From the figure we can see that the header line begins with ‘>’, and this gives a name

and/or a unique identifier for the sequence, and often lots of other information too. Many

different sequence databases use standardized headers, which helps in automatically

extracting information from the header. The header line may contain more than one

header, separated by a ^A (Control-A) character.

Sequence representation

After the header and comments, one or more lines may follow describing the

sequence: each line of a sequence should have fewer than 80 characters. Sequences may

 16

be protein sequences or nucleic acid sequences, and they can contain gaps or alignment

characters (see sequence alignment). Sequences are expected to be represented in the

standard IUB/IUPAC amino acid and nucleic acid codes, with these exceptions: lower-

case letters are accepted and are mapped into upper-case; a single hyphen or dash can be

used to represent a gap character; and in amino acid sequences, U and * are acceptable

letters (see below). Numerical digits are not allowed but are used in some databases to

indicate the position in the sequence.

The nucleic acid codes supported are:

Nucleic Acid Code Meaning

A Adenosine

C Cytidine

G Guanine

T Thymidine

U Uracil

R G A (puRine)

Y T C (pYrimidine)

K G T (Ketone)

M A C (aMino group)

S G C (Strong interaction)

W A T (Weak interaction)

B G T C (not A) (B comes after A)

D G A T (not C) (D comes after C)

H A C T (not G) (H comes after G)

N A G C T (aNy)

X Masked

- gap of indeterminate length

Table 1: Nucleic acid codes [34]

 17

The amino acid codes supported are:

Amino Acid Code Meaning

A Alanine

B Aspartic acid or Asparagine

C Cysteine

D Aspartic acid

E Glutamic acid

F Phenylalanine

G Glycine

H Histidine

I Isoleucine

K Lysine

L Leucine

M Methionine

N Asparagine

P Proline

Q Glutamine

R Arginine

S Serine

T Threonine

U Selenocysteine

V Valine

W Tryptophan

Y Tyrosine

Z Glutamic acid or Glutamine

X Any

* translation stop

- gap of indeterminate length

Table 2: Amino Acid Codes [34]

 18

Algorithm

To run, BLAST requires two sequences as input: a query sequence (also called the

target sequence) and a sequence database. BLAST will find subsequences in the query

that are similar to subsequences in the database. In typical usage, the query sequence is

much smaller than the database, e.g., the query may be one thousand nucleotides while

the database is several billion nucleotides.

BLAST searches for high scoring sequence alignments between the query

sequence and sequences in the database using a heuristic approach that approximates the

Smith-Waterman algorithm. The exhaustive Smith-Waterman approach is too slow for

searching large genomic databases such as GenBank. Therefore, the BLAST algorithm

uses a heuristic approach that is slightly less accurate than Smith-Waterman but over 50

times faster. The speed and relatively good accuracy of BLAST are the key technical

innovation of the BLAST programs and arguably why the tool is the most popular

bioinformatics search tool.

The BLAST algorithm can be conceptually divided into three stages.

• In the first stage, BLAST searches for exact matches of a small fixed length W

between the query and sequences in the database. For example, given the

sequences AGTTAC and ACTTAG and a word length W = 3, BLAST would

identify the matching substring TTA that is common to both sequences. By

default, W = 11 for nucleic seeds.

• In the second stage, BLAST tries to extend the match in both directions, starting

at the seed. The ungapped alignment process extends the initial seed match of

length W in each direction in an attempt to boost the alignment score. Insertions

and deletions are not considered during this stage.

If a high-scoring ungapped alignment is found, the database sequence is passed on to the

third stage.

 19

In the third stage, BLAST performs a gapped alignment between the query sequence and

the database sequence using a variation of the Smith-Waterman algorithm. Statistically

significant alignments are then displayed to the user [34].

 20

CHAPTER III

METHODOLOGY

Analysis of Needleman-Wunsch Algorithm

We will first briefly discuss about the Needleman-Wunsch Algorithm as well as

some of the characteristics of the S and M matrices that are generated by the algorithm.

In aligning the two biological sequences that are denoted as Seq X and Seq Y of length x

and y respectively, the algorithm generates two matrices represented by S and M as

mentioned above. The matrices S and M are related to each other with the equation

M[i,j]=S[i, j]+Max{M[i+1: x],M[j+1: y]} for the range 1 ≤ p ≤ x, 1 ≤ q ≤ y where Sp,q

and Mp,q represents the p
th

 row and q
th

 column of the matrices S and M respectively.

In this computation process, residues in Seq X and Seq Y are tested recursively so

that they will give the best possible alignment. S and M matrices computation gives the

best possible alignment. The S matrix contains all the scores for the matches and

mismatches and the M matrix give the alignment of the sequence and the data

dependencies are given as shown in figure 5.

 21

 Seq y

 Figure 5: Illustration of the computational dependency of the element (p,q) in the

M matrix

Seq x

 22

The pseudo code for the Needleman-Wunsch Algorithm is as shown below

Figure 6: Pseudo code for the Needleman-Wunsch Algorithm

For the calculation of the S matrix

for i=1 to length (x)

S(i,1)� 1 if it is a match

S(i,1)� 0 if it is a mis-match

for i=1 to length (y)

S(i,1)� 1 if it is a match

S(i,1)� 0 if it is a mis-match

This completes the calculation of S matrix

For the calculation of M matrix

for i= length (x) to 1

for j= length (y) to 1

M(i,j)=S(i,j)

Score� M(i,j)

Score_diagonal � M(i+1,j+1)

Score_left� M(i+1,j)

Score_Right � M(I,j+1)

While (length(x)!=0 & length(y)!=0)

If ((Score_diaognal ≥ Score_left) && (Score_diaognal ≥ Score_Right))

{

 Then there is a match

}

Else if ((Score_left ≥ Score_diagonal) && (Score_Right ≥ Score_diagonal))

{

 Then there is a mismatch/ gap

}

Else if ((Score_left ≥ Score_diagonal) && (Score_Right ≥ Score_diagonal))

{

 Then there is a mismatch/ gap

}

 23

Problem Formulation

In this section, the network topology will be discussed. The network that will be

considered is a simple single level tree network (SLTN) with the constraint that the root

node can communicate only with one child at a time. The approach to the problem can be

described in a series of steps. The first step is creating a simple SLTN with a fixed

number of nodes and applying divisible load theory on the same network. Further the

number of nodes in the system is increased and DLT technique is applied. The two

biological sequences are given to the network and the Needleman-Wunsch algorithm

gives the alignment. The final aim of this thesis report will include the computation time

involved in processing the job. By the results it can be observed that by applying DLT

technique the computation time decreases drastically.

Figure 7: Single Level Tree Network

P0

P1 P2 Pn-1 Pn

C1

C2 Cn-1

Cn

…

 24

Our objective in this thesis is to design a strategy such that the processing time or

the computation time for the alignment of the two biological sequences is a minimum.

The two biological sequences are considered to be Ix and y denoted as Sequence x and

Sequence y. These sequences may vary from 1 character to 1000’s of characters. In the

results section however the sequences are varied from length of 100 to 1000.

We assume that all the processors in the network P1,P2,…..Pm already have

Sequence x and Sequence y in their local memories, or they can be initialized in this way.

To carry the process of sequence alignment in a multiprocessor environment one of the

way will be by keeping a copy of the sequences in the local memory.

Design of the Load Distribution Strategy

In this section we describe the load distribution strategy. The distribution strategy

for the S matrix is just a matrix of 0’s and 1’s so it does not have any special kind of

distribution. The M matrix is partitioned into sub matrices like Mp,q where p= 1,2,….m

and q= 1,2….z where each portion of Seq x and Seq y is contained in one particular cell

of the matrix M. This assignment can be explained as shown in Figure 7.

 25

 Seq y

Figure 8: Load Distribution Pattern

Figure 9: Timing Diagram [22]

The distribution pattern is as shown in figure 8. According to the Needleman-

Wunsch Algorithm the last row will be calculated first. So the last row is given to the first

Mm,1 Mm,2 Mm,3 … Mm,Z-3 Mm,Z-2 Mm,Z-1 Mm,Z

Mm-1,1 Mm-1,2 Mm-1,3 … Mm-1,Z-3 Mm-1,Z-2 Mm-1,Z-1 Mm-1,Z

Mm-1,1 Mm-1,2 Mm-1,3 … Mm-1,Z-3 Mm-1,Z-2 Mm-1,Z-1 Mm-1,Z

M4,1 M4,2 M4,3 … M4,Z-3 M4,Z-2 M4,Z-1 M4,Z

M3,1 M3,2 M3,3 … M3,Z-3 M3,Z-2 M3,Z-1 M3,Z

M1,2 M2,2 M2,3 … M2,Z-3 M2,Z-2 M2,Z-1 M2,Z

M1,1 M1,2 M1,3 … M1,z-3 M1,Z-2 M1,Z-1 M1,Z

Seq x

 26

processor or the root node of the system. And with respect to the data dependencies the

cells with same (p+q) values can be calculated which enables parallel processing to take

place in parallel during the calculation of the matrix M. This may be observed form the

timing diagram. The generalized equations are as shown below. The two sequences can

be fractioned into a number of smaller parts. This can be explained from the example

given below. Let us consider that sequence Seq x and Seq y are where

Seq x = GCCTC

 Seq y = GCTAC

The length of Seq x is 5 and length of Seq y is 5. There for the total length should be 5.

From the above example we can write the generalized equations as follows

We can say that
yyyyyy

xxxxxx

nn

nn

=+++++

=+++++

−

−

1321

1321

.......

.......

From the timing diagram we can derive the generalized equation for the load on each

processor

By generalizing the equations we can say that

nnnnnnnn

m

n

EyxCEyxx /2 11111

2

−−−−−

=

−=∑

]/]2[1/[111

2

1 nn

m

n

EyCEyxx −+= ∑
=

The total completion time for the alignment of the two sequences is given by

 27

)1(2)(
2

1 −+∑+= ∑
=

mCExyEmT
m

i

i

To enhance the understanding of the performance of Needleman-Wunsch Algorithm and

divisible load strategy a single machine has been used [8]. Therefore the speedup, can be

defined as

 Speedup= T(1)/ T(m)

where T(m) is the processing time of our strategy on a system using m-processors. T(1) is

the processing time using a single processor and is given by

 T(1)=xyE1

 28

CHAPTER IV

RESULTS

This section discusses the results obtained in the study. The results have been

tabulated for the network that has constant link speed and also variable link speed. The

testing has been performed for sequence lengths varying from 100 to 1000 characters.

The changes have been observed and the graphs have been plotted.

Implementation of the Algorithm

The algorithm implementation is as shown in the flowchart below and the code of

is given in Appendix. The Needleman-Wunsch algorithm can be given by a simple

diagrammatic representation as shown in Figure 10. The methods and classes that have

been used in the coding are also given

 29

START

Read the java
file
Alignment.java

The code is
given in the
Appendix

Read the two
sequences x and y

Length
x, y >0

No
Check the
sequence length

STOP Yes

Float S=0, M=0
Int length x and length y

for(int i=0;i<len2;i++)
 {
 M[i][len1-1]=S[i][len1-1];
 tempo = 0;
 tempo = tempo + 1;
 E[i][len1-1] = tempo;
 }

temp = temp + 1;
 a = M[i+1][j+1];
 b = M[i][j+1];
 c = M[i+1][j];

1

 30

1

if
((a>=b)&
&(a>=c))

if
(b>=c)

t = b;

t = c;

YES

NO NO

YES

t = a;

The sequence
alignment is
printed

Calculating the Iterations
 temp_sum = 0;
 for (j=0;j<len1;j++)
 {
temp_sum = temp_sum + B[i][j];
 }

Total computation Time for each
processors
for(i=0; i < len2; i++)
{
temp_sum = 0;
for (j=0;j<len1;j++){
temp_sum = temp_sum + E[i][j];
}

2

 31

Figure 10: Implementation of Needleman-Wunsch Algorithm

Preliminary Results

This section discusses the preliminary results that have been obtained. As defined

in the problem definition a simple single level tree network has been taken as shown in

Figure 7. The results have been generated in MATLAB for single level tree network.

Figure 11 shows the results generated by applying the divisible load theory on the

2

Total computation Time for each
processors
for(i=0; i < len2; i++)
{
temp_sum = 0;
for (j=0;j<len1;j++){
temp_sum = temp_sum + E[i][j];
}

calculate[0] = 1.0;
 for (i=1;i<m;i++) {
alp=cal.calc_alph(sum_time_row[i-
1], sum_time_row[i], sum_beta[i-1],
sum_beta[i], C[i-1]);
calculate[i] = calculate[i-1]*alp;
}

Print the values of alp and
the computation time on the
console

Generate the Graphs

STOP

 32

network. The x- axis of the graph represents the number of children and the Y-axis

represents the computation time for the load.

Figure 11: Number of Children (X-axis) Vs Computation Time (Y-axis) applying

Divisible Load Theory

The result for the multi-installment strategy is as shown in figure 12. The X- axis

represents the number of installments and the Y-axis represents the computation time. In

both Figure 11 and Figure 12 we observe that that as the number of children and number

of installments increase the computational time decreases.

 33

Figure 12: Number of Installments (X-axis) Vs Computation Time (Y-axis) applying

Multi Installment Strategy

Final Results

Variable Link Speed

This section briefly discusses about how does the processing time changes when

the link speed has been varied. The graphs have been plotted for two ranges of link speed

variations. The link speed has been varied from 1-10 nano seconds and 1-100 nano

seconds. In graphs (Fig 13, Fig 14, Fig 15) the link speed(C) has been varied from 1-10

nano Seconds. In the graphs (Fig 16, Fig 17) the link speed has been varied from 1-100

nano seconds. From the graphs it can be observed that the processing time depends on the

communication link speed C. In other words, the higher the link speed of the network the

 34

faster is the job processing. The link speed has been varied using the Random Generator

method in java. The results and the tabulated values are as shown below.

Number of

processors

Processing Time

(Sec)

3 166915.49

5 62671.53

7 33498.78

10 20163.56

20 11250.11

30 6804.34

40 4493.82

50 3186.41

60 2387.78

70 1868.71

80 1514.16

90 1262.08

100 1076.88

Table 3: Values for processing times for variable link speed

 35

Constant Length of Sequence Vs Number of Processors

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100 120

Number of Processors

P
ro
ce
ss
ig
 T
im
e
(S
ec
)

Series1

Figure 13: Number of Processors Vs Processing Time for a constant length of sequence

Figure 13 represents the graph for “Number of Processors Vs Processing time”

with X-axis as the number of processors and Y-axis as the Processing Time. This graph

has been plotted for a constant sequence length of 1000. From the graph it has been

observed that for a constant sequence length as the number of processors increase the

computation time decreases This also reemphasizes the definition of DLT that as more

number of processors are added into the network the processing time decreases.

 36

Figure 14: Number of processors Vs Length of the string Vs Processing Time

Figure 14 demonstrates the 3-D representation of how the processing time varies with

respect to the length of the sequence and number of processors. From the 3-D graph of

the single processor tree network it can be observed that keeping the length of the

sequence constant as the number of processors increase the processing time decreases.

On the other hand it can also be observed that as the numbers of processors are kept

constant and the length of sequences increases and the computation time increases. As

discussed in the Methodology chapter, the speedup has been calculated and the values are

tabulated as shown for a constant sequence length of 1000.

 37

Number of

processors

Speedup

(Sec)

3 3

5 7.99

7 14.95

10 24.84

20 44.53

30 73.62

40 111.48

50 157.23

60 209.81

70 268.09

80 330.87

90 396.96

100 465.23

Table 4: Values for speedup for variable link speed

 38

Figure 15: Speed up of the network for variable link speed

Figure 15 represents the 3-D graph for “Speed Up of the Network” with X-axis as the

number of processors and Y-axis as the Processing Time. This graph has been plotted for

sequence length that is being varied from 100-1000. From the graph it has been observed

that speed up achieved for long sequences is greater as the time spent on computation is

much larger when compared to idle time of a processor.

 39

For Constant Number of Processors (m=100)

Length of Sequence Vs Processing Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

98 100 102 104 106 108 110 112

Length of Sequence

P
ro
ce
ss
in
g
 T
im
e
(S
ec
)

Series1

Figure 16: Length of Sequence Vs Processing Time for a constant number of processors

Figure 16 represents the graph for “Length of sequence Vs Processing Time” for a

constant number of processors (m=100), in which X-axis represents the length of

sequence and Y-axis represents the Processing Time. According to divisible load theory

for a constant number of processors as the length of sequence increases the processing

time increases because each processors in the system has more load on it. But from the

graph we can say that the processing time is not constantly increasing. This can be

attributed to the communication link, as the processing time is dependent on the

communication link speed. The greater the communication link speed the lesser the

processing time.

 40

For Constant Length of Sequence (110) Number of Processors Vs Processing Time

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

Number of Processors

P
ro
ce
ss
in
g
 T
im
e
(S
ec
)

Series1

Figure 17: Number of Processors Vs Processing Time for a constant length of sequence

Figure 17 represents the graph for “Number of Processors Vs Processing Time” for a

constant length of sequence, in which X-axis represents the number of processors and Y-

axis represents the Processing Time. According to divisible load theory for a constant

length of sequence as the number of processors increases the processing time should

decrease, as more number of processors is being added to the system the load should be

distributed among all of them. But from the graph we can say that the processing time is

not constantly decreasing. This can be attributed to the communication link, as the

processing time is dependent on the communication link speed. The greater the

communication link speed the lesser the processing time.

 41

Constant Link Speed

This section briefly discusses the about how the processing time vary when the link speed

has been varied. In the graphs shown below (Fig 18, Fig 19, Fig 20) the link speed(C) has

been taken as 5 nanoseconds. The results have been discussed as shown below.

Number of

processors

Processing Time

(Sec)

3 165000

5 62500

7 33400

10 20100

20 11200

30 6790

40 4480

50 3170

60 2380

70 1864

80 1511

90 1250

100 1074

Table 5: Values for processing times for constant link speed

 42

For Constant Link Speed and Length of sequence (1000)

Number of Processors Vs Processing Times

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100 120

Number of Processors

P
ro
ce
ss
in
g
 T
im
es
 (
S
ec
)

Series1

Figure 18: Number of Processors Vs Processing Time for a constant length of sequence

Figure 18 represents the graph for “Number of Processors Vs Processing time” with X-

axis as the number of processors and Y-axis as the Processing Time. This graph has been

plotted for a constant sequence length of 1000. From the graph it has been observed that

for a constant sequence length as the number of processors increase the computation time

decreases This adds strength to the definition of DLT that as more number of processors

are added into the network the processing time decreases.

 43

Figure 19: Number of processors Vs Length of the string Vs Processing Time

Figure 19 demonstrates the 3-D representation of how the processing time varies with

respect to the length of the sequence and number of processors. From the 3-D graph of

the single processor tree network it can be observed that keeping the length of the

sequence constant as the number of processors increase the processing time decreases.

On the other hand it can also be observed that as the numbers of processors are kept

constant and the length of sequences increases the computation time increases. As

discussed in the Methodology chapter, the speedup has been calculated and the values are

tabulated as shown for a constant sequence length of 1000.

 44

Number of

processors

Speedup

(Sec)

3 3

5 7.99

7 14.95

10 24.84

20 44.53

30 73.63

40 111.48

50 157.23

60 209.82

70 268.1

80 330.88

90 396.97

100 465.25

Table 6: Values for speedup for variable link speed

 45

Figure 20: Speed up of the network for constant link speed

Figure 20 represents the 3-D graph for “Speed Up of the Network” with X-axis as

the number of processors and Y-axis as the Processing Time. This graph has been

plotted for a sequence length that has been being varied from 100-1000. From the

graph it has been observed that speed up achieved for long sequences is greater as

the time spent on computation is much larger when compared to idle time of a

processor.

 46

CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusions

The problem that has been addressed in this research is the alignment of two

biological sequences. We proposed a multiprocessor solution using a single level tree

network, where communication delays are assumed to be non zero. In the design of this

strategy we used the Needleman- Wunsch algorithm in the alignment of the two

biological sequences. In the design we used the properties of Divisible Load Theory to

determine the number of residues that should be assigned to each processor in the

network.

The approach presented in this thesis is, first we had a matrix S which is a matrix

of order x X y where x is the length of the first sequence and y is the length of the second

sequence. Then we derived the M matrix which will give the final values and depending

on that we can align the sequences. We derived the equations that will determine the size

of the sub matrices according to the processor speeds where here it is assumed that all

processors have equal speeds and the communication speeds are varied. With these

constraints the equations have been derived and the graphs have been plotted.

 47

From the results we observed that as the number of processors in the network increases

the processing time for the job decreases and the speed up \ increases.

Future Work

Future extensions to this work can be deriving solutions that will further decrease

the computation speed. This can be achieved by applying multi-installment strategy and

performing the analysis using the Needleman- Wunsch Algorithm. The same problem of

aligning biological sequences can be applied to various types of networks.

The alignment of biological sequences can be solved using the Sellers algorithm

and the load distribution strategy. Further work can also be carried out on aligning

multiple sequences with various types of clustering strategies. The same strategy of

aligning sequences can be further extended to aligning multiple sequences using the

algorithm like Berger-Munson algorithm

 48

REFERENCES

[1] V. Bharadwaj, D. Ghose and V. Mani. “Multi-installment Load Distribution in Tree

Network with Delays”.

[2] V. Bharadwaj, D. Ghose and Thomas G. Robertazzi. “Divisible load Theory: A New

Paradigm for Load Scheduling in Distributed Systems”.

[3] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang . “Scheduling Divisible

Load on Star and Tree Networks: Results and Open Problems”.

[4] Maciej Drozdowski, Marcin Lawenda. “ On Optimum Multi-installment Divisible

load Processing in Heterogeneous Distributed Systems”

[5] Shang Mingsheng, Sun Shixin. “Optimal Multi-installments Algorithm for Divisible

Load Scheduling”.

[6] Sameer Bataineh, Te-Yu Hsiung, Thomas G. Robertazzi. “Closed Form Solutions for

Bus and Tree Networks of Processors Load Sharing a Divisible Job”.

[7] Tieng K. Yap, Ophir Frieder and Robert L. Martion. “Parallel Computation in

Biological Sequence Analysis”.

[8] Wong Han Min, Bharadwaj Veeravalli. “Aligning Biological Sequences on

Distributed Bus Networks: A Divisible Load Scheduling Approach”.

 49

[9] David P. Anderson. “BOINC: A System for Public-Resource Computing and

Storage”.

[10] David P. Anderson, John McLeod VII. “Local Scheduling for Volunteer

Computing”.

[11] Jeeho Sohn, Thomas G. Robertazzi and Serge Luryi. “Optimizing Computing Costs

Using Divisible Load Analysis”.

[12] Baohua Wei, Gilles Fedak and Franck Cappello. “Collaborative Data Distriution

with BitTorrent for Computational Desktop Grids”.

[13] Chiou-Nan Chen, Kuan-Ching Li, Chuan Yi Tang, Yaw-Lin Lin, Hsiao-His Wang,

Tsung-Ying Wu. “On Design and Implementation of a Bioinformatics Portal in Cluster

and Grid Environments”.

[14] C. Germain. “ Result Checking in Global Computing Systems”. ACM Int. Conf. on

Supercomputing (ICS 03).2003. P. 226-233

[15] Distributed.net, http://distributed.net

[16] BOINC, http://boinc.berkeley.edu/

[17] T.G. Robertazzi, Scheduling in Parallel and Distributed Systems. [Online].

Available: http://www.ee.sunysb.edu/~tom/dlt.html

[18] Mani, V. and Ghose, D., "Distributed Computation in a Linear Network: Closed-

Form Solutions and Computational Techniques", IEEE Transactions on Aerospace &

Electronic Systems, Vol. 30, No. 2, April 1994.

 50

[19] Robertazzi, T.G., "Processor Equivalence for a Linear Daisy Chain of Load Sharing

Processors", IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4,

Oct. 1993, pp. 1216-1221.

[20] Cheng, Y.C. and Robertazzi, T.G., "Distributed Computation for a Tree Network

with Communication Delays", IEEE Transactions on Aerospace and Electronic Systems,

Vol. 26, No. 3, May 1990, pp. 511-516.

[21] Cheng, Y.C. and Robertazzi, T.G., "Distributed Computation with Communication

Delays", IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 6, Nov.

1988, pp. 700-712.

[22] Li, X., Bharadwaj, V. and Ko, C.C., "Optimal Divisible Task Scheduling on Single-

Level Tree Networks with Finite Size Buffers", Accepted for publication in IEEE

Transactions on Aerospace and Electronic Systems, February 2000.

[23] Li, X., Bharadwaj, V. and Ko, C.C., "Divisible Load Scheduling on Single Level

Tree Networks with Buffer Constraints", IEEE Transactions on Aerospace and Electronic

Systems. vol. 36, no. 4, Oct. 2000, pp. 1298-1308.

[24] V. Bharadwaj, Xiaolin Li, and, Ko Chi Chung, "On the Influence of Start-up Costs

in Scheduling Divisible Loads on Bus Networks", IEEE Transactions on Parallel and

Distributed Systems, Vol. 11, No. 12, pp. 1288-1305, December 2000.

[25] Bharadwaj, V. and Viswanadham, N., "Sub-Optimal Solutions Using Integer

Approximation Techniques for Scheduling Divisible Loads on Distributed Bus

Networks", IEEE Transactions on Systems, Man, and Cybernetics: Part A, Vol. 30, No.

6, pp. 680-691, November 2000.

[26] Jones, Neil C. An introduction to bioinformatics algorithms.

 51

[27] Aaron Elkiss. “Biological Database Normalization by Sequence Alignment”

[28] T.K. Yap, O. Frieder, and R.L. Martino, High Performance Computational Methods

for biological sequence analysis. Norwell, MA: Kluwer, 1996.

[29] Bharadwaj, V., Ghose, D. and Mani, V., "An Efficient Load Distribution Strategy

for a Distributed Linear Network of Processors with Communication Delays", Computer

and Mathematics with Applications, Vol. 29, No. 9, May 1995, pp. 95-112.

[30] Gerrit Voss, Andre Schröder. Wolfgang Müller- Wittig, Bertil Schmidt. “ Biological

Sequence Alignment on Graphics Processing Units”.

[31] Robertazzi, T.G. “Ten Reasons to Use Divisible Load Theory”.

[32] NIH Working Definition of Bioinformatics and Computational Biology

[33] Altschul, SF, W Gish, W Miller, EW Myers, and DJ Lipman. “Basic local alignment

search tool”. J Mol Biol 215(3):403-10, 1990

[34] http://en.wikipedia.org/wiki/BLAST

[35] http://en.wikipedia.org/wiki/FASTA_format

[36] T.F.Smith and M.S.Waterman “Identification of Common Molecular Subsequences”

[37] D.A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B.A. Rapp, and D.L.

Wheller, “Genbank,” Nucleic Acids Research, Vol. 28, no. 1, pp. 15-18, 2000.

[38] http://www.rff.com/flowchart_shapes.htm

 52

APPENDICES

This gives the coding for the final results of the thesis. The algorithm Needleman-

Wunsch has been coded in java and the code is as shown below.

/**

* Name: Sudha Gunturu
* Thesis Title: Load Scheduling for Bioinformatics Applications in
Large Scale Networks
* Algorithm Implemented for Sequence Alignment: Needleman-Wunsch
Algorithm
* Advisor: Dr Xiaolin (Andy) Li
* Commitee Members: Dr.Park, Dr.George
* The aim of this thesis is to prove that as the number of processors
in the
* network are incresead the total processing time for sequence
alignment
* decreases.
* The algorithm that is used in sequence alignment is "Needleman-
Wunsch"
* algorithm.
* The algorithm will align the given two sequences and then also
calculate
* the load distriburtion that should be
* given to each processor.
*
/**
**/
import java.io.*;
import java.util.*;
import java.lang.*;

 /*This is the main class */

public class Alignment
{

 public static void main(String[] args)
 {
 String seq1,seq2;
 // The two strings that are to be aligned are declared as seq1 and
 // seq2

seq1="GTCAGTCUVBERTYUDJSEIOPOSMHREUNFDHIKZHFYRNJHTUWLCMNUYRFJDHTURTUTBN
BVDURUSSSMSKDUTITTPOLVREYWWIQNFHJHE";

 53

seq2="VQPTPADHFTFGLWTVGWTGADPFGVATRANLDPVEAVHKLAELGAYGITFHDNDLIPFDATAAE
REKILGDFNQALADTGLKVPMVTTNLFSHPVFKDG";

 /* There are two matrices that are used in the Needleman-Wunsch
 * Algorithm. One matrix gives the match and mismatch an
 * other matrix gives the string alignment. In this program S is
declared
 * as an array that gives the match and mismatch
 * and the other matris is M which is also an array that gives the
final
 * alignment of the string */
 int len1=seq1.length();
 int len2=seq2.length();
 float S[][]=new float[len2][len1];
 float M[][]=new float[len2][len1];

 /* This for loop sets the value of the S matrix to 1 and 0's
depending on
 * weather it is a match or mismatch. If it is a
 * match a value of '1' is assigned in the respective cell and if
it is a
 * mismatch a value of '0' is assigned in the cell */
 for(int i=0;i<len2;i++)
 {
 for(int j=0;j<len1;j++)
 {
 if((seq2.charAt(i))==(seq1.charAt(j)))
 {
 S[i][j]=1;
 }// End of if
 else
 {
 S[i][j]=0;
 }// end of else
 } // End of nested for loop
 } //End of for loop

 /* This loop will intialize the initial value of the second matrix M
that
 * will give the final value of the alignment to
 * zero. Then further values are filled into the matrix depending on
the
 * comparisons which follows from Node- Left-Right*/

 for(int i=0;i<len2;i++)
 {
 for(int j=0;j<len1;j++)
 {
 M[i][j]=0;
 }//End of inner for loop
 }//End of outer for loop*/

 /* The array E is defined as the time taken to calculate each cell
in the
 * matrix which is also given as the computation time. When the row
is

 54

 * assigned to a processor the time taken by each row is given as
the
 * total computation for each processor.*/

 float E[][]=new float[len2][len1];
 float tempo = 0;
 /* This loop performs the assignment of values in the matrix M the
last
 * row of S is made as the first row of M accordingthe implementaion
of
 * the Needleman-Wunsch Algorithm and tempo is a temporary variable
that
 * is used in the calculation of the times for each cell. This loop
 * performs the operation od storing the last row of the S matrix as
the
 * first row of the M matrix*/
 for(int j=0;j<len1;j++)
 {
 tempo = 0;
 M[len2-1][j]=S[len2-1][j];
 tempo = tempo + 1;
 E[len2-1][j] = tempo;
 }// End of for loop

/* This loop performs the operation of calculating the values of M
matrix */
 for(int i=0;i<len2;i++)
 {
 M[i][len1-1]=S[i][len1-1];
 tempo = 0;
 tempo = tempo + 1;
 E[i][len1-1] = tempo;
 }// End of for loop

 for(int i=len2-2;i>=0;i--) {
 tempo= 0;
 for(int j=len1-2;j>=0;j--) {
 tempo= 0;
 float low=0;
 for(int l=i+1;l<=len2-1;l++) {
 tempo = tempo + 1;
 for(int k=j+1;k<=len1-1;k++) {
 tempo = tempo + 1;
 if(low<M[l][k])
 low=M[l][k];
 }
 }// end of nested outer for loop
 M[i][j]=S[i][j]+low;
 E[i][j] = tempo;
 } //end of inner for loop
 }//end of outer for loop

// --

 55

 /* For finding the flow in the matrix M. Computing the path and
saving the
 * row and coloumn indices which has the
 * higher values i has the row element, j has the coloumn element and
this
 * method will also give the alignment. The comparison will follow
the
 * sequence of Node- Left-Right that is it will first compare the
element
 * that is to its diaognal then to its left and then to its right*/

 int i=0,j=0,temp = 0;
 float a=0,b=0,c=0, t = -1.0f;
 int seq1_new[]=new int[len1+len2];
 int seq2_new[]=new int[len2+len1];
 for(int k=0;k<len1+len2;k++) {
 seq1_new[k]=-1;
 seq2_new[k]=-1;
 }
 seq1_new[temp] = j;
 seq2_new[temp] = i;
 while((i<len2-1)&&(j<len1-1)) {
 temp = temp + 1;
 a = M[i+1][j+1];
 b = M[i][j+1];
 c = M[i+1][j];

 if ((a>=b)&&(a>=c))
 t = a;
 else if (b>=c)
 t = b;
 else
 t = c;

 if (t==M[i+1][j+1])
 {
 i = i+1;
 j = j+1;
 }
 else if (t == M[i][j+1])
 {
 i = i;
 j = j+1;
 }
 else
 {
 i = i+1;
 j = j;

 }
 seq1_new[temp] = j;
 seq2_new[temp] = i;

 }
// --

 56

 /* This will give the string alignment of the two strings. There are
three kinds of cases which can be termed as
 * 1. Match- if the same alphabet is found
 * 2. Mismatch- if different alphabet is found
 * 3. Gap- in order to align the sequence in the best possible way a
gap is
 * inserted and this alignment is based upon the path trace in the
final
 M matrix. */

 int p = 0;
 String seq1_new_str,seq1_xx;
 String seq2_new_str,seq2_xx;
 seq1_new_str= seq1.charAt(seq1_new[0]) + "";
 seq2_new_str= seq2.charAt(seq2_new[0]) + "";
 p = p +1;

 while((seq1_new[p] != -1) && (seq2_new[p] != -1)) {
// if we dont represent the same row element twice get the char else
keep it as a '-'
 if (seq1_new[p]!= seq1_new[p-1])
 {
 seq1_xx =seq1.charAt(seq1_new[p]) + "";
 seq1_new_str = seq1_new_str +
seq1.charAt(seq1_new[p]) ;
 }// end of if
 else
 {
 seq1_xx = "-";
 seq1_new_str = seq1_new_str + seq1_xx;
 }//end of else

 // if we dont represent the same row element twice get the char else
keep it as a '-'
 if (seq2_new[p]!= seq2_new[p-1])
 {
 seq2_xx =seq2.charAt(seq2_new[p]) + "";
 seq2_new_str = seq2_new_str +
seq2.charAt(seq2_new[p]);
 }
 else {
 seq2_xx = "-";
 seq2_new_str = seq2_new_str + seq2_xx ;
 }

 p = p + 1;
 }

 /* This conditions will make sure that all the characters in the
strings are visited or not. */
 if(seq1_new[p-1] < len1)
 {
 for (i = seq1_new[p-1] + 1; i<len1 ; i++)
 {
 seq1_new_str = seq1_new_str + seq1.charAt(i);
 }

 57

 }

 if(seq2_new[p-1] < len2){
 for (i = seq2_new[p-1] + 1; i<len2 ; i++) {
 seq2_new_str = seq2_new_str + seq2.charAt(i);
 }
 }

 if (seq1_new_str.length() < seq2_new_str.length()) {
 for
(i=seq1_new_str.length();i<seq2_new_str.length();i++) {
 seq1_new_str = seq1_new_str + "-";
 }
 }

 if (seq2_new_str.length() < seq1_new_str.length())
 {
 for
(i=seq2_new_str.length();i<seq1_new_str.length();i++)
 {
 seq2_new_str = seq2_new_str + "-";
 }

 }

 // This will intilize the array B that is used to find the number
of iterations
 float B[][]=new float[len2][len1];
 for(j=0;j<len1;j++) {
 B[len2-1][j]=1;
 }
 for(i=0;i<len2;i++) {
 B[i][len1-1]=1;
 }

// --

 /* To calculate the iterations . This iterations is defined as the
number of times the different cells are to
 * be visited in order to copmlete the M matrix*/

 for(i=len2-2;i>=0;i--)
 {
 for(j=len1-2;j>=0;j--)
 {
 temp = 0;
 for(int l=i+1;l<=len2-1;l++)
 {
 for(int k=j+1;k<=len1-1;k++)
 {
 temp = temp + 1;
 }
 }
 B[i][j]=temp;
 }

 58

 }

 System.out.println(" --
-----");
/*................................. calucation of Beta Values
[Iteration Time] for the each row........................*/
 float temp_sum;
 float sum_beta[] = new float[len2];
 for(i=0; i < len2; i++)
 {
 temp_sum = 0;
 for (j=0;j<len1;j++)
 {
 temp_sum = temp_sum + B[i][j];
 }
 sum_beta[i] = temp_sum;
 }
/*............................Calucating the Total Computation Time for
each Row*/

 float sum_time_row[] = new float[len2];
 for(i=0; i < len2; i++){
 temp_sum = 0;
 for (j=0;j<len1;j++){
 temp_sum = temp_sum + E[i][j];
 }
 sum_time_row[i] = temp_sum;
 }

/* Calcuating the communication time of the tree. To calculate the
communication time we need the link speed which is
 * generated by the random generator [Number generated between 1 to
10]. This generated random C value is given as the
 * link speed in the calculation of alpha. Link speed is given in nano
seconds.*/

Random randomGenerator = new Random();
float C[] = new float[len2];
 for (int idx = 0; idx <len2; idx++)
 {
 //C[idx] = randomGenerator.nextInt(10) + 1;
 C[idx]=5;
 }

/*Calucating Alpha -- The load on processes
...*/
 /* The loads that are to be assigned to each process is defined by
alpha and with the help of the timing
 * diagram an equation is derived that gives the final value of the
alphas. */

 59

 double calculate[] = new double[len2];
 double alpha[] = new double[len2];
 double alp,xx=0;
 calcu cal = new calcu();

 // This will take the number of processors that we are going to
test.
 int no_of_processors[] =
{3,5,7,10,20,30,40,50,60,70,80,90,100};
 int m;

 for(int tempt=0; tempt < no_of_processors.length; tempt++)
 {
 System.out.println("---------------------------------
-----");
 System.out.println("Processors equal to :" +
no_of_processors[tempt]);
 m = no_of_processors[tempt];

 calculate[0] = 1.0;
 for (i=1;i<m;i++) {
 alp = cal.calc_alph(sum_time_row[i-1],
sum_time_row[i], sum_beta[i-1], sum_beta[i], C[i-1]);
 calculate[i] = calculate[i-1]*alp;
 }

 for (i=0;i<m;i++) {
 xx = xx + calculate[i];
 }

 alpha[0] = len1/xx;

 for (i=1;i<m;i++) {
 alpha[i] = alpha[0] * calculate[i];
 }

 System.out.println("Calucalating the values of
alpha");
 for (i=0;i<m;i++) {
 System.out.println(alpha[i]);
 }
 System.out.println("\n");

 // caluclating processing time
 double proc_1, proc_2, process_time;
 proc_1 = cal.summation(sum_time_row, len2);
 proc_2 = cal.summation(C,len2);
 process_time = (double)
alpha[0]*len2*sum_time_row[0] + proc_1 + 2*proc_2*(len2-1);

 System.out.println("The Processing Time : " +
"\t" + process_time);

 // Speed Up caluculation

 double speedupvalue, speed_up;

 60

 speedupvalue = len1*len2*sum_time_row[0];
 speed_up = speedupvalue/process_time;
 System.out.println("The Speed up equals: " +
speed_up);
 }

 }// End of main
}// End of class

/* This class will return the alpha values and the value is calculated
from the formula derivied from the
 * timing diagarm*/
class calcu
{
 public double calc_alph(float E1, float E2, float B1, float B2,
float C1){
 double alp;
 alp = (double) ((B1*E1) - (2*C1))/(B2*E2);
/* This is the condition checking if alpha negative*/
 if (alp < 0)
 {
 System.out.println("The value of alpha goes to
negitive: chck it");
 System.exit(0);
 }
 return alp;
 }

 public double summation(float[] A,int len){
 double xx=0;
 for (int i =0;i<len;i++){
 xx = xx + A[i];
 }
 return xx;
 }
}

The 3-D graphs have been implemented in Matlab and the code is as shown below

For a constant link speed:

clc
close all
processors = [3,5,7,10,20,30,40,50,60,70,80,90,100];
length = [100,200,300,400,500,600,700,800,900,1000];
Time3 = [1.65 53.2 404 1700 5200 12900 27900 54500 98500 165000];
Time5 = [0.63, 20, 152, 641, 1950, 4860, 10500, 20400, 36900, 62500];
Time7= [0.34, 10.8, 81.7, 343, 1040, 2600, 5620, 10900, 19700, 33400];
Time10 = [0.212, 6.59, 49.5, 207, 632, 1570, 3390, 6600, 11800, 20100];
Time20 = [0.122, 3.73, 27.9, 116, 354, 879, 1890, 3680, 6630, 11200];
Time30 = [0.0782, 2.32, 17.1, 71.4, 216, 534, 1150, 2230, 4010, 6790];
Time40 = [0.0562, 1.6, 11.6, 47.9, 144, 355, 763, 1480, 2650, 4480];
Time50 = [0.0443, 1.2, 8.55, 34.8, 103, 254, 545, 1050, 1880, 3170];
Time60 = [0.0373, 0.962, 6.68, 26.8, 79.4, 193, 411, 793, 1410, 2380];
Time70 = [0.0328, 0.808 ,5.47 ,21.6, 63.5, 153, 325, 624, 1110,1864];

 61

Time80 = [0.0298, 0.705, 4.66, 18.1, 52.7, 126, 266, 509, 903, 1511];
Time90 = [0.0276, 0.632, 4.08, 15.6, 45, 107, 224, 427, 755, 1250];
Time100 = [0.025, 0.58, 3.67, 13.8, 39.4, 93.3, 194, 367, 646, 1074];

Time = [Time3;Time5; Time7; Time10; Time20; Time30; Time40; Time50;
Time60; Time70; Time80; Time90; Time100];

figure;
surf(length,processors,Time);
xlabel('Length of the String');
ylabel('Number of Processors');
zlabel('Processing Time (sec) ');
title('For Constant Link Speed, Length of the String vs Number of
Processors vs Processing Time');

speed3 = [3.01, 3, 3, 3, 3, 3, 3, 3, 3, 3];
speed5 = [7.94, 7.97 ,7.98, 7.985, 7.988, 7.99, 7.991, 7.992, 7.993,
7.994];
speed7 =[15.57, 14.7, 14.87, 14.89, 14.91, 14.92, 14.93, 14.94, 14.95,
14.95];
speed10 = [23.57, 24.25, 24.49, 24.62, 24.69, 24.74, 24.78, 24.8,
24.82, 24.84];
speed20 = [40.92, 42.8, 43.5, 43.86, 44, 44.22, 44.33, 44.41, 44.48,
44.53];
speed30 = [63.87, 68.7, 70.68, 71.69, 72.32, 73.75, 73.06, 73.29,
73.48, 73.63];
speed40 = [88.8, 99.7, 104.22, 106.67, 108.22, 109.28, 110, 110.65,
111.11, 111.48];
speed50 = [112.74, 132.95, 141.94, 147, 150.24, 152.49, 154.14, 155.41,
156.42, 157.23];
speed60 = [133.99, 166.22, 181.73, 190.77, 196.69, 200.86, 203.97,
206.36, 208.72, 209.82];
speed70 = [152.09, 197.86, 221.72, 236.2, 245.9, 252.86, 258.09,
262.16, 265.43, 268.1];
speed80 = [167.36, 226.86, 260.51, 281.74, 296.34, 306.99, 315, 321.48,
326.64, 330.88];
speed90 = [180.99, 252.77, 297.11, 326.19, 346.69, 361.93, 373.6,
383.04, 390.65, 396.97];
speed100 = [199.2, 275.53, 330.94, 368.66, 395.93, 416.55, 432.7,
445.68, 456.34, 465.25];

figure;
Speedup = [speed3; speed5; speed7; speed10; speed20; speed30; speed40;
speed50; speed60; speed70; speed80; speed90; speed100];
surf(length,processors,Speedup);
xlabel('Length of the String');
ylabel('Number of Processors');
zlabel('Speed Up');
title('For Constant Link Speed, Length of the String vs Number of
Processors vs Speed Up');

For a variable link speed:

clc

 62

close all
processors = [3,5,7,10,20,30,40,50,60,70,80,90,100];
length = [100,200,300,400,500,600,700,800,900,1000];
Time3 = [1.65, 53.19, 404.29, 1704.47, 5203.03, 12948.98, 27991.44,
54578.66, 98359.84, 166915.49];
Time5 = [0.629, 20.07, 152.24, 641.16, 1955.99, 4865.96, 10515.45,
20498.88, 36936.05, 62671.53];
Time7 = [0.342, 10.82, 81.79, 343.84, 1047.8, 2604.73, 5625.94,
10962.95, 19747.62, 33498.78];
Time10= [0.21, 6.59, 49.59, 207.94, 632.68, 1571.14, 3390.95, 6604.03,
11890.64, 20163.56];
Time20 = [0.122, 3.73, 27.93, 116.73, 354.45, 879.03, 1895.33, 3688.51,
6637.35, 11250.11];
Time30 = [0.0782, 2.32, 17.18, 71.4, 216.03, 534.39, 1150.15,
2235.23, 4017.89, 6804.34];
Time40 = [0.056, 1.6, 11.65, 47.99, 144.37, 355.75, 763.52,
1480.69, 2657.12, 4493.82];
Time50 = [0.044, 1.2, 8.55, 34.82, 103.99, 254.95, 545.14, 1054.18,
1887.49, 3186.41];
Time60 = [0.037, 0.96, 6.68, 26.83, 79.43, 193.55, 411.99, 793.92,
1417.58, 2387.78];
Time70 = [0.032, 0.8, 5.47, 21.67, 63.53, 153.75, 325.59, 624.93,
1112.3, 1868.71];
Time80 = [0.029, 0.7, 4.66, 18.17, 52.75, 126.64, 266.68, 509.63,
903.88, 1514.16];
Time90 = [0.027, 0.63, 4.08, 15.69, 45.06, 107.42, 224.87, 427.72,
755.75, 1262.08];
Time100 = [0.025, 0.58, 3.67, 13.88, 39.46, 93.3, 194.2, 367.61,
646.98, 1076.88];

Time = [Time3;Time5; Time7; Time10; Time20; Time30; Time40; Time50;
Time60; Time70; Time80; Time90; Time100];

figure;
surf(length,processors,Time);
xlabel('Length of the String');
ylabel('Number of Processors');
zlabel('Processing Time (sec)');
title('For Variable Link Speed, Length of the String vs Number of
Processors vs Processing Time');

speed3 = [3.01, 3, 3, 3, 3, 3, 3, 3, 3, 3];
speed5 = [7.94, 7.97, 7.98, 7.98, 7.98, 7.99, 7.99, 7.99, 7.99, 7.99];
speed7 =[14.57, 18.78, 14.85, 14.89, 14.91, 14.92, 14.93, 14.94, 14.95,
14.95];
speed10 = [23.56, 24.25, 24.49, 24.62, 24.69, 24.74, 24.78, 24.8,
24.82, 24.84];
speed20 = [40.92, 42.8, 43.5, 43.85, 44.08, 44.22, 44.33, 48.41, 44.48,
44.53];
speed30 = [63.86, 68.77, 70.68, 71.69, 72.32, 72.75, 73.06, 73.29,
73.48, 73.62];
speed40 = [88.75, 99.7, 104.22, 106.67, 108.22, 109.28, 110.06, 110.65,
111.11, 111.4];

 63

speed50 = [112.7, 132.95, 141.94, 147, 150.24, 152.49, 154.14, 155.41,
156.42, 157.23];
speed60 = [133.95, 166.22, 181.73, 190.77, 196.69, 200.86, 203.97,
206.36, 208.27, 209.81];
speed70 = [152.03, 197.85, 221.72, 236.19, 245.9, 252.86, 258.09,
262.16, 265.43, 268.09];
speed80 = [167.29, 226.85, 260.5, 281.74, 296.34, 306.99, 315.1,
321.48, 326.63, 330.87];
speed90 = [180.9, 252.76, 297.1, 326.18, 346.69, 361.93, 373.69,
383.04, 390.69, 396.96];
speed100 = [199.1, 275.52, 330.94, 368.65, 395.93, 416.55, 432.7,
445.68, 456.34, 465.23];

figure;
Speedup = [speed3; speed5; speed7; speed10; speed20; speed30; speed40;
speed50; speed60; speed70; speed80; speed90; speed100];
surf(length,processors,Speedup);
xlabel('Length of the String');
ylabel('Number of Processors');
zlabel('Speed Up');
title('For Variable Link Speed, Length of the String vs Number of
Processors vs Speed Up');

This gives the coding for the Initial results of the thesis. The graphs for the divisible load

theory and multi-installment strategy have been generated using MATLAB and is as

shown below.

Code for generating the graph for Divisible load theory

clc
clear all
z = [2 0.5 5];
omega = [2 1 1 2];
tcp = 1;
tcm = 1;
number_of_childs = length(z);

sigma = zeros(1,(length(z)));
for i = 1 : length(z)
 [sigma(i)] = compute_sigma(z(i),tcm,omega(i+1),tcp);
end

sub_alpha(1,:) = [0 0 0];
for i = 2 :length(z)+1
 [sub_alpha(i,:)] = compute_sub_alpha(sigma(i-1),number_of_childs);
end

alpha = zeros(1,length(sigma)+1);
for i = 2 : length(sigma)+ 1
 [alpha(i)] = compute_alpha(sub_alpha(i,:),sigma(i-
1),number_of_childs);
end

alpha(1) = 1 - sum(alpha)

 64

function [alpha] =
compute_alpha(sub_alpha,sigma,number_of_installments)

xx = 0;
for i = 1 : number_of_installments
 xx = xx + sigma^(i-1);
end

alpha = sub_alpha(1)*xx;

function [sigma] = compute_sigma(z,tcm,omega,tcp)

sigma = (omega *tcp) / (z*tcm);

For multi installment strategy

clc
clear all
close all

n = 100;
total_computational_time(1) = 0;
for i = 2 : n
 z = ones(1,i);
 omega = ones(1,i+1);
 tcm = 1;
 tcp = 0.5;
 number_of_installments = 3;
 [total_computational_time(i)] =
multi_installment(z,omega,tcp,tcm,number_of_installments);
end

figure
plot(2:n,total_computational_time(:,(2:n)))
%..
...
 %

n = 7;
number_of_installments = 10;
total_computational_time = zeros(1,number_of_installments);
for i = 3 : number_of_installments
 z = ones(1,n);
 omega = ones(1,n+1);
 tcm = 1;
 tcp = 0.5;

 [total_computational_time(i)] =
multi_installment(z,omega,tcp,tcm,i);
end
figure

 65

plot(3:number_of_installments,total_computational_time(:,(3:number_of_i
nstallments)))

%..
....
 %

% z = [2 0.5 5];
% omega = [2 1 1 2];
% tcp = 1;
% tcm = 1;
% number_of_installments = 3;
% [total_computational_time] =
multi_installment(z,omega,tcp,tcm,number_of_installments);

function [sub_alpha] = compute_sub_alpha(sigma,number_of_installments)

sub_alpha(1) = 1;

for i = 2 : number_of_installments
 sub_alpha(i) = sub_alpha(i-1)*sigma;
end

VITA

Type Full Name Here

Candidate for the Degree of

Master of Science

Thesis: LOAD SCHEDULING FOR BIOINFORMATICS APPLICATIONS IN

LARGE SCALE

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science or Arts in Computer

Science at Oklahoma State University, Stillwater, Oklahoma in December 2008.

.

Completed the requirements for the Bachelor of Technology in Computer

Science at Jawaharlal Nehru Technological University, Hyderabad, India in

May 2005.

ADVISER’S APPROVAL: Xiaolin (Andy) Li

Name: Sudha Gunturu Date of Degree: December 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: LOAD SCHEDULING FOR BIOINFORMATICS APPLICATIONS

 IN LARGE SCALE NETWORKS

Pages in Study: 65 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

A load scheduling strategy with near-optimal processing time is designed to explore the

computational characteristics of DNA sequence alignment algorithms, specifically, the

Needleman-Wunsch Algorithm. Following the divisible load scheduling theory, we

design an efficient load scheduling strategy to manage such bioinformatics applications

in a large-scale network so that the overall processing time of the sequencing tasks is

minimized. The row-wise and column-wise partitioning of the workload is adopted in the

scheduling strategy. In this study, the load distribution depends on the length of the

sequence and number of processors in the network and, the total processing time is also

affected by communication link speed. We considered several cases in our study by

varying the sequences, communication and computation speeds, and number of

processors.

Findings and Conclusions:

Through simulation and numerical analysis, this study demonstrates that for a constant

sequence length as the numbers of processors increase in the network the processing time

for the job decreases and minimum overall processing time is achieved.

