
A COMPUTING TOOL AND A RELATIONAL

DATABASE FOR A MEDICAGO TRUNCATULA

MUTAGENESIS PROJECT

 By

 LIN GE

 Bachelor of Science

 Suzhou Railway Teachers College

 Suzhou, P. R. China

 1991

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2007

 ii

A COMPUTING TOOL AND A RELATIONAL

DATABASE FOR A MEDICAGO TRUNCATULA

MUTAGENESIS PROJECT

 Thesis Approved:

G. E. Hedrick

Thesis Adviser

John P. Chandler

Nohpill Park

A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

I wish to express my deep and sincere gratitude to my thesis advisor, Dr.

G. E. Hedrick, for his excellent guidance and detailed advice throughout this

study. I am also grateful to Drs. J. P. Chandler and N. Park for their

encouragement and constructive suggestions as my committee members.

I would like to thank Dr. R. Chen and the research fellows in his laboratory

at Noble Foundation for providing me with the opportunity to work on their plant

science project, which allowed me to serve biological research employing the

knowledge of computer science.

Last but certainly not least, I am deeply indebted to the love, patience and

constant support of my family.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

 1.1 Motivation ... 1
 1.2 Objectives of the thesis .. 5
 1.3 Organization of the thesis... 6

II. REVIEW OF LITERATURE.. 7

 2.1 Component Object Model .. 7
 2.2 ActiveX Control .. 11
 2.3 ActiveX Data Object.NET (ADO.NET)... 12
 2.4 Relational Database and Structured Query Language 14
 2.4.1 Relational Database... 14
 2.4.2 Structured Query Language (SQL) .. 15
 2.5 Configuration (config) File and Initialization (INI) File 18
 2.5.1 Configuration (config) File.. 18
 2.5.2 Initialization (INI) File .. 18
 2.6 Visual Basic.NET (VB.NET), Relation to Visual Basic and Microsoft
 Access (MSAccess) ... 19
 2.6.1 Visual Basic.NET (VB.NET) .. 19
 2.6.2 Relation to Visual Basic .. 20
 2.6.3 Microsoft Access (MS Access).. 21
 2.7 DNA Pooling ... 22

III. DESIGN AND IMPLEMENTATION OF THE MEDICAGO COMPUTING
 TOOL.. 23

 3.1 The design of the computing tool ... 23
 3.1.1 System functioning ... 23
 3.1.2 Construction of a user friendly interface .. 24
 3.1.3 Graphic Display of Grid Address .. 28
 3.2 The implementation of the computing tool... 32

 v

 3.2.1 Lookup of the grid address of a DNA sample of mutant lines 32
 3.2.2 Lookup of DNA sample Number according to PCR screening results.. 34
 3.2.3 Display of DNA sample list for row and column pooling 37

IV. DEVELOPMENT AND IMPLEMENTATION OF THE MANAGEMENT
 SYSTEM FOR MEDICAGO MUTANT RESOURCES 40

 4.1 Overall Structure Design of Database Management System 40
 4.2 Database Normalization and E-R Diagram... 41
 4.2.1 Database Normalization .. 41
 4.2.2 Design of Entity-Relationship Modeling ... 45
 4.3 Implementation of the Management System for M. truncatula Mutant
 Resources .. 46
 4.3.1 Database Security and Access ... 46
 4.3.2 Data Input and Management.. 48
 4.3.3 Statistics and Mutant Image Review.. 54

V. SUMMARY AND FUTURE WORK .. 58

 5.1 Summary ... 58
 5.2 Future Work .. 59

REFERENCES.. 60

APPENDIX... 62

 vi

LIST OF TABLES

Table Page

1. Properties of interface that implements the display of grid address

 and unit number of DNA sample .. 25

2. Properties of interface that implements the display of DNA sample number 26

3. Properties of interface that generates DNA samples list for column pooling........ 27

4. Properties of interface that generates DNA samples list for row pooling 28

5. “Mutant” flat table.. 42

6. “MutantM1” table... 43

7. “MutantM2” table... 43

8. “MutantM2Track” table.. 44

9. “MutantM2” table... 45

10. “Image” table .. 45

 vii

LIST OF FIGURES

Figure Page

1. Overview of construction of M. truncatula mutant population using fast
 neutron radiation. Steps requiring databasing or the assistance of computing
 tools are indicated.. 2

2. Three-dimensional pooling of tissues samples for DNA extraction. Each well of
 one 96-well plate represents tissues from 5 M2 plants. Tissues from 96-wells are
 pooled together to form a plate pool. Tissues from the same column and row
 of 5 96-well plates are also pooled to form column superpool (1-12) and row
 superpool (A-H) .. 5

3. Graphic display of grid address of DNA samples in 96-well plate format........... 24

4. Interface of computing tools to facilitate DNA sample pooling and screening of
 M. truncatula mutants.. 32

5. Interface of grid address lookup of DNA samples .. 34

6. Example of 3-dimenional PCR-based screenings of one pooling unit consisting
 of 2400 mutant lines ... 35

7. Example of lookup of DNA sample No. according to PCR screening results
 (up panel). The DNA sample location on data spreadsheet is shown in bold
 (low panel) ... 36

8. Example of generation of DNA sample list for column pooling 38

9. Example of row pooling of DNA sample using the computing tool.................... 39

10. Flow Chart of the Management System for M. truncatula Mutant Resources 41

11. E-R Diagram of the Management System for M. truncatula Mutant Resources.. 46

12. Login Interface .. 47

13. Change Password Interface.. 48

14. Interface of “Data Input and Management” ... 49

 viii

15. Bookmark Pop-up Window ... 51

16. Filter with Drop-down menu Window ... 52

17. Find with Drop-down menu Window... 53

18. Sort with Drop-down Menu Window... 54

19. Reporting chart in two-dimensional bar ... 55

20. Reporting chart in two-dimensional line .. 56

21. Mutant Picture Review .. 57

 1

CHAPTER I

INTRODUCTION

1.1. Motivation

Among crops, legume species such as soybean and alfalfa are unique in their

ability to fix atmospheric nitrogen thanks to the formation of root nodules in which they

house symbiotic bacteria. Since there is no limitation for nitrogen legumes have

developed an ability to accumulate remarkable levels of protein, and contribute nearly

33% of the dietary protein needs of humans. The synthesis of nitrogen fertilizers

consumes fossil energy. The use of nitrogen-fixing legumes to produce proteins results in

a substantial decrease in the consumption of fossil fuels, and thereby lowers the

agricultural contribution to global warming [1]. Legumes also are a rich source of edible

oil and diverse natural products with health benefits.

To understand the biological processes unique to legumes, it is logical to

concentrate efforts on a model legume that has a small genome. Information gained on

the species can be transferred to other related legume species. For this reason, Medicago

truncatula (M. truncatula, hereafter), has emerged as a model legume. It has a small

genome, greatly facilitating genetic analysis. The sequencing of the gene spaces in M.

truncatula is scheduled to be completed by the end of 2006 [2].

 2

Plant biologists have already amassed DNA sequence information for thousands

of different genes and gene families in M. truncatula. One of the next challenges for plant

biologists is to assign biological functions to all theses sequenced genes. Missing from

plant biologist’s toolbox is a method for generating plant populations that carry

“knockout” mutations of sequenced genes. The process would greatly assist in efforts to

determine the function of genes in vivo. The research community of M. truncatula has

initialized several projects in parallel to generate large mutant populations of the legume

using various mutagenesis methods. As a part of the efforts, Dr. Rujin Chen’s group in

the Samuel Roberts Noble Foundation is generating a mutant library of M. truncatula

using fast neutron radiation (Figure 1.1).

Figure 1.1. Overview of construction of M. truncatula mutant population using

fast neutron radiation. Steps requiring databasing or the assistance of computing

tools are indicated.

 3

Embodied in the project is the recognized need that multiple steps in the process

require informatics and laboratory information management tools which monitor the

tracking of mutated plants, their DNA and their grains; the design of primers for

polymerase chain reaction (PCR) amplification of targeted regions, the interpretation and

databasing of mutant alleles; and the integrated analysis of mutant alleles and phenotypic

information.

As shown in Figure 1.1., the scientists in the Samuel Roberts Noble Foundation

apply the bombardment of fast neutrons to the wild-type seeds of M. truncatula. The

mutated seeds are grown to generate M1 plants (M1, first generation of mutagenized

plants). The M1 plants yield M2 grains (M2, second generation of mutagenized plants). 5

of M1 plants are grown in the same pot. Their M2 grains are harvested together and are

stored in numbered bag. The detailed information such as the radiation dosage applied,

planting date, grain yield and visible phenotype is recorded and stored in a database. This

is the first stage of the project. Plants for mutant screening are usually grown from M2

seeds because most mutant phenotypes result from homozygous recessive mutations, and

M1 plants, which are heterozygous for induced mutations, do not show the mutant

phenotypes. For this reason, M2 plants are generated from M2 seeds. Again, the detailed

information such as the planting date, M2 seeds used, phenotypes and resultant M3 grains

is documented in database, while developing M2 plants.

M2 plants are subjected to the research of “forward and reverse genetics” (Figure

1.1.). Forward genetics is used to investigate the mutated plant exhibiting desired

phenotype. It starts with a phenotype and moves towards the discovery of the function of

the responsible gene. The process demands the assistance of a database to record the data

 4

collected. Varied bioinformatics tools are also required to facilitate the design of

experiments in order to characterize responsible gene of which the interruption cause

phenotype. Whereas forward genetics starts with the mutant and then leads to the gene,

reverse genetics starts with the gene of interest and ends with the corresponding mutant.

The approach is to identify the mutation in a particular gene first and then to investigate

the consequence of the mutation. Fast neutron radiations cause several types of mutations

including deletion; the deletion loci in chromosomes can be detected by PCR analysis

using specific primers flanking the targeted genes. This is the basis of revere genetics

screening of M. truncatula mutants mutagenized by fast neutron bombardments.

The objective of this project is to interrupt genes in M. truncatula as many as

possible, and then to identify each individual M2 plant carrying the deletion of gene of

interest. It has been estimated that approximately 100,000 M2 mutant plants will be

generated in order to mutagenize most genes in the model legume. Obviously, it is time-

consuming and labor-intensive if the mutation of each mutated plant is identified

individually. Therefore, an efficient and high-throughput approach must be applied to this

kind of large-scale association study. One recent technology to address the cost, time and

labor that are involved in large-scale mutation screening is to carry out analyses not on

individual DNA samples, but on pools made up of DNA from many individuals [3].

To reduce the number of PCR analyses as much as possible, the laboratory in the

Samuel Roberts Noble Foundation pools the seedling tissues of M2 plants both within a

grid and across grids (Figure 1.2.). These pooled tissues are extracted for DNA samples

serving as the templates of PCR-based screening. To pool tissue samples within a grid

and across grids, the numbers of samples of each pool has to be identified first.

 5

Obviously, computing tools are required to facilitate the large-scale pooling of seedling

tissues. On the other hand, computing tool is also required to locate grid address that

contains the tissue from a particular plant carrying mutation based on PCR screening.

Figure 1.2. Three-dimensional pooling of tissues samples for DNA extraction. Each

well of one 96-well plate represents tissues from 5 M2 plants. Tissues from 96-wells

are pooled together to form a plate pool. Tissues from the same column and row of 5

96-well plates are also pooled to form column superpool (1-12) and row superpool

(A-H).

1.2. Objectives of the thesis

 There are two objectives of the thesis:

1) Develop a computing tool to facilitate the construction and subsequent utilization

of an M. truncatula mutant library.

 6

• Develop a tool that generates the list of tissues samples for plate, column

and row pooling (3-dimensional pooling).

• Develop a tool that calculates the grid address (i.e., the numbers of plate,

column and row) of a given DNA sample. The tool also shows the grid

address graphically.

• Develop a tool that calculates the number of DNA sample according to

PCR-screening (i.e., the numbers of plate, column and row that gives rise

to positive results). The tool also shows grid address graphically.

2) Develop a relational database to assist in the management of mutant populations

and their progenies, and to record, then store and exploit all data generated within

the project.

1.3. Organization of the thesis

The thesis consists of the following chapters: Chapter one introduces the

background of the biological research project and the embedded needs of computing tools

and database management system. Chapter two is the literature review that describes the

technological details of computer science, which are applied in the thesis. Chapter three

describes the development of computing tools that facilitates the pooling of tissues

samples, and the locating the grid address of tissues sample. The practical tests of these

tools are performed. Chapter four focuses on the construction of a relational database that

manages the day-by-day operation and all information generated whiling creating the

mutant library of M. truncatula. Chapter five is the summary and proposed future work.

 7

CHAPTER II

LITERATURE REVIEW

2.1 Component Object Model

Component Object Model (COM) is a Microsoft platform for software component

introduced by Microsoft in 1993. It provides a standard mechanism by which objects can

communicate regardless of what language is used to create the components [4]. COM

defines a structure for building program routines (objects) that can be called up and

executed in a Windows environment. This capability was built into Windows 95/98 and

Windows NT 4.0. Parts of Windows itself and Microsoft's own applications are also built as

COM objects. COM provides the interfaces between objects, and Distributed COM

(DCOM) allows them to run remotely. COM is used in the following ways.

1) COM Objects: COM objects can be small or large. They can be written in

any of several programming languages, and they can perform any kind of

processing.

2) Automation (OLE automation): Standard applications, such as word

processors and spreadsheets, can be written to expose their internal functions

as COM objects, allowing them to be "automated" instead of manually

selected from a menu.

 8

3) Controls: Applications can invoke COM objects, called "controls," that

blend in and become just another part of the program.

4) Compound Documents and ActiveX Documents: Microsoft's OLE

compound documents are based on COM, which lets one document be

embedded within or linked to another (OLE). ActiveX Documents are

extensions to OLE that allow a Web browser, for example, to view not only

Web pages, but also any kind of document.

5) Programming Interfaces: Increasingly, Microsoft is making its standard

programming interfaces conform to the COM object model so that there is

continuity among all interfaces.

COM includes interfaces and API functions that expose operating system services,

as well as other mechanisms necessary for a distributed environment (naming, events, etc.)

[5]. These are referred to as COM technologies (or services), and are shown in detail as

follow:

• Type Information: Some clients need runtime access to type information about

COM objects. This type information is generated by the Microsoft IDL compile

and is stored in a type library. COM provides interfaces to navigate the type

library.

• Structured Storage and Persistence: COM objects need a way to store their data

when they are not running. The process of saving data for an object is called

making an object persistent. COM supports object persistence through "Structured

Storage", which creates an analog of a file system within a file. Individual COM

objects can store data within the file, thus providing persistence.

 9

• Monikers: Clients often require a way to allow them to connect to the exact same

object instance with the exact same state at a later point in time. This support is

provided via "monikers". A moniker is a COM object that knows how to create

and initialize the content of a single COM object instance. A moniker can be asked

to bind to the COM object it represents, such as a COM object residing on specific

machine on the network, or a group of cells inside a spreadsheet.

• Uniform Data Transfer: COM objects often need to pass data amongst themselves.

Uniform Data Transfer provides for data transfers and notifications of data

changes between a source called the data object, and something that uses the data,

called the consumer object.

• Connectable Objects: Some objects require a way to notify clients that an event

that has occurred. COM allows such objects to define outgoing interfaces to clients

as well as incoming interfaces. The object defines an interface it would like to use

(e.g., a notification interface) and the client implements the interface.

The advantages of COM are as follows:

• COM promotes component-based software development Before component-based

development came, software programs have been coded using procedural

programming paradigm, which supports linear form of program execution. But

component-based program development comes with a number of advantages, such

as the ability to use pre-packaged components and tools from third party vendors

into an application and support for code reusability in other parts of the same

application.

 10

• COM promotes code reusability Standard classes are normally reused in the same

application but not easily used in other applications; however, COM components

are designed to separate themselves from single applications and hence can be

accessed and used by several different applications without any hassle.

• COM promotes Object-oriented programming (OOP) The primary characteristics

of OOP are encapsulation, which allows the implementation details of an object to

be hidden, polymorphism, which is the ability to exhibit multiple behaviors, and

inheritance, which allows for the reuse of existing classes in order to design new

and more specialized classes. Among these, encapsulation is one of COM's most

important characteristics. Encapsulation helps to hide how an object has

implemented a method internally. This ultimately helps to incorporate more

vigorously implemented or advanced implementation into an object at later time

without affecting the client which uses it.

• COM comprises the necessary mechanisms for COM components to communicate

with each other In the normal case, two components coded using two different

programming languages cannot communicate with each other. But COM can make

it possible for different language components that adhere to the COM specification

to interact with each other, and hence COM is language-independent.

• COM helps to access components loaded in different machines on the network

COM component can reside anywhere on any computer or computer connected to

a network. That is, applications using COM can access and share COM

components regardless of their locations. Thus COM provides location

transparency and COM components are location independent.

 11

2.2 ActiveX Control

An ActiveX control is an embeddable COM object that is implemented as an in-

process server DLL. ActiveX is the name Microsoft has given to a set of "strategic" object-

oriented programming technologies and tools. The main technology is the Component

Object Model (COM).

One of the main advantages of a component is that it can be re-used by many

applications (referred to as component containers) [6]. A COM component object (ActiveX

control) can be created using one of several languages or development tools, as Delphi,

Visual C++, Borland C++, Visual Basic, and PowerBuilder, or with scripting tools such as

VBScript. ActiveX controls can be used in a variety of environments not traditionally

associated with programming, such as Microsoft Word, Microsoft Excel, Lotus, Hypertext

Markup Language (HTML), and Internet Explorer [6].

ActiveX controls expose themselves to the outside world and can be used in a

variety of environments. ActiveX controls are similar to embedded object servers, in that

they are embedded in a container and are responsible for providing a user interface.

ActiveX controls take advantage of the capability to send events to their container; this

capability to send events separates ActiveX controls from other in-process OLE servers [7].

ActiveX controls communicate with the outside world in three ways:

• Properties: Properties are named attributes or characteristics of an ActiveX control.

Properties can be marked as read-only, but typically these properties can be set or

queried.

 12

• Methods: Methods are functions performed by the control to access the control's

functionality. These functions enable an external source to manipulate the

appearance, behavior, or properties of the control.

• Events: Events are notifications generated by the control to provide some sort of

notification to the container. Usually, this is input by the user, such as a mouse click

or keyboard input.

2.3 ActiveX Data Object.NET (ADO.NET)

ADO.NET is a set of computer software components that can be used by

programmers to access data and data services. It is a part of the base class library that is

included with the Microsoft .NET Framework. It commonly is used by programmers to

access and modify data stored in relational database systems, though it can also be used to

access data in non-relational sources [8, 9].

ADO.NET consists of two primary parts:

A. Data provider These classes provide access to a data source, such as a Microsoft

SQL Server or an Oracle database. Each data source has its own set of provider

objects, but they each have a common set of utility classes:

1) Connection: Provides a connection used to communicate with the data

source. Also acts as an abstract factory for command objects.

2) Command: Used to perform some action on the data source, such as reading,

updating, or deleting relational data.

3) Parameter: Describes a single parameter to a command. A common example

is a parameter to a stored procedure.

 13

4) DataAdapter: A bridge used to transfer data between a data source and a

DataSet object.

5) DataReader: An object used to efficiently process a large list of results one

record at a time without storing them.

B. DataSet DataSet objects, a group of classes describing a simple in-memory

relational database, were the star of the show in the initial release (1.0) of the

Microsoft .NET Framework. The classes form a containment hierarchy:

1) A DataSet object represents a schema (either an entire database or a subset

of one). It can contain tables and relationships between those tables.

2) A DataTable object represents a single table in the database. It has a name,

rows, and columns.

3) A DataView object "sits over" a DataTable and sorts the data (much like a

SQL order by clause) and filters the records (much like a SQL where clause

) if a filter is set. An in-memory index is used to facilitate these operations.

All DataTables have a default filter, while any number of additional

DataViews can be defined, reducing interaction with the underlying database

and thus improving performance.

4) A DataColumn represents a column of the table, including its name and type.

5) A DataRow object represents a single row in the table, and allows reading

and updating of the values in that row, as well as retrieving any rows that are

related to it through a primary-key foreign-key relationship.

 14

6) A DataRowView represents a single row of a DataView; the distinction

between a DataRow and DataRowView is important when enumerating a

result set.

7) A DataRelation is a relationship between tables, such as a primary-key

foreign-key relationship. This is useful for enabling DataRow's functionality

of retrieving related rows.

8) A Constraint describes an enforced property of the database, such as the

uniqueness of the values in a primary key column.

A DataSet is populated from a database by a dataAdapter whose Connection and

Command properties have been set. However, a DataSet can save its contents to XML

(optionally with an XSD schema), or populate itself from XML, making it exceptionally

useful for web services, distributed computing, and occasionally-connected applications.

2.4 Relational Database and Structured Query Language

2.4.1 Relational Database

The relational database model, first developed by E.F. Codd (of IBM) in 1970,

represents a major breakthrough for both users and designers [10]. The relational database

model is implemented through a very sophisticated relational database management system

(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical

and network DBMS system plus a host of other functions that make the relational database

model easier to understand and to implement. Arguably the most important advantage of

the RDBMS is its ability to let the user/designer operate in a human logical environment.

 15

The RDBMS manages all of the complex physical details. Thus, the relational database is

perceived by the user to be a collection of tables in which data are stored.

The relational database is a single data repository in which data independence is

maintained. However, the relational database model adds significant advantages as follow

[11]:

• Ensuring data integrity.

• Storing data storage efficiently.

• Giving your database application tremendous room for growth.

• Creating a database that behaves predictably because it conforms to these well-

tested rules.

• Enabling other database designers to understand your database because it follows

the rules.

• Ensuring that database schema changes are easy to implement.

• Improving the speed of data access.

However, the relational database’s substantial advantages over the hierarchical and

network databases are purchased at the cost of some disadvantages as follows:

� Substantial hardware and system software overhead.

� Poor design and implementation is made easy.

� May promote “islands of information” problems.

2.4.2 Structured Query Language (SQL)

Structured Query Language (SQL) - A standardized language that approximates the

structure of natural English for obtaining information from database, developed by IBM

 16

Research in the mid-1970s [12]. It is a standard interactive and programming language for

getting information into and out of relational database management system. The language

has evolved beyond its original purpose to support object-relational database management

systems. It is an ANSI (American National Standards Institute) and an ISO standard for

accessing database systems.

 SQL allows users to access data in relational database management systems, such

as Access, Sybase, FileMaker Pro, Microsoft SQL Server, Informix, Oracle, and others, by

allowing users to query, create, insert, delete, find, modify, retrieve, update, store, manage

the data the user wishes to see. SQL also allows users to define the data in database, and

manipulate that data [13, 14].

There are many features of SQL as follows:

• Simplicity – Several problems can be expressed in SQL more easily and

concisely than in lower level languages. Simplicity means increased

productivity.

• Completeness – The language is relatively complete. i.e., for a large class of

queries users need not use loops or branching.

• Nonproceduriality – A Language such as the SQL Data Manipulation

Language (DML) is known as a “nonprocedural” language. A SELECT

statement specifies only what data is wanted, not a procedure for obtaining

that data.

• Data independence – SQL DML statements do not contain any reference to

explicit access paths such as indexes or physical sequence. Thus, the SQL

 17

DML provides total “physical” data independence; i.e., independence of the

way in which the data is physically stored.

To process an SQL statement, a relational database management system (RDBMS)

performs the following five steps:

1) The RDBMS first parses the SQL statement. It breaks the statement up into

individual words, called tokens, and ascertains that the statement has a valid

verb and valid clauses, and so on. Syntax errors and misspellings can be

detected in this step.

2) The RDBMS validates the statement. It checks the statement against the

system catalog. Do all the tables named in the statement exist in the

database? Do all of the columns exist, and are the column names

unambiguous? Does the user have the required privileges to execute the

statement? Certain semantic errors can be detected in this step.

3) The RDBMS generates an access plan for the statement. The access plan is a

binary representation of the steps that are required to carry out the statement;

it is the DBMS equivalent of executable code.

4) The RDBMS optimizes the access plan. It explores various ways to carry out

the access plan. Can an index be used to speed a search? Should the RDBMS

first apply a search condition to Table A and then join it to Table B, or

should it begin with the join and use the search condition afterward? Can a

sequential search through a table be avoided or reduced to a subset of the

table? After exploring the alternatives, the RDBMS chooses one of them.

5) The RDBMS executes the statement by running the access plan.

 18

2.5 Configuration (config) File and Initialization (INI) File

2.5.1 Configuration (config) File

In computing, configuration files, or config files, are used to configure the initial

settings for some computer programs [15]. They are used for user applications, server

processes and operating system settings. The files are often written in ASCII and line-

oriented, with lines terminated by a newline or carriage return/line feed pair, depending on

the operating system.

Some computer programs only read the configuration (config) files at startup.

Others periodically check the configuration files for changes. Some can be told to re-read

the configuration files and apply the changes to the current process, or indeed to read

arbitrary files as a configuration file.

The general format of a configuration file is quite simple. Each line contains a

keyword and one or more arguments. For simplicity, most lines only contain one argument.

Comment lines are blank lines or lines that start with a '#'.

For example:

<name>:<whitespace><value><newline>

The <name> contains any alphanumeric character or underline (_). The <value> can

include any character except newline. It also cannot start with either spaces or tabs since

those are considered part of the whitespace after the colon.

2.5.2 Initialization (INI) File

An initialization file or INI file that has a .INI extension and contains configuration

information for MS-Windows based applications [16]. Starting with Windows 95, the INI

 19

file format was superseded but not entirely replaced by a registry database in Microsoft

operating systems. Although made popular by Windows, INI files can be used on any

system because of their flexibility. They allow a program to store configuration data, which

can then be easily parsed and changed.

A typical INI file format might look like this:

[section1]

; some comment on section1
var1 = foo
var2 = 451

[section2]

; another comment
var1 = 123
var2 = bar

� Sections: Section declarations start with '[' and end with ']' as in [section1] and

[section2] above. And sections start with section declarations.

� Parameters: The "var1 = foo" above is an example of a parameter (also known as an

item). Parameters are made up of a key ('var1'), equals sign ('='), and a value ('foo').

� Comments: All the lines starting with a ';' are assumed to be comments, and are

ignored.

2.6 Visual Basic.NET (VB.NET), Relation to Visual Basic and Microsoft Access (MS

 Access)

2.6.1 Visual Basic.NET (VB.NET)

Visual Basic .NET (VB.NET) is an object-oriented computer language that can be

viewed as a evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft

.NET framework. Its introduction has been controversial, as significant changes were made

 20

that broke backward compatibility with VB and caused a rift within the developer

community [17].

The great majority of VB.NET developers use Visual Studio .NET as their

integrated development environment (IDE). SharpDevelop provides an open-source

alternative IDE. There are advantages of using VB.NET as follows [18]:

• Problems can be solved easily and effectively.

• It is possible to create web applications with a zero learning curve.

Like all .NET languages, programs written in VB.NET require the .NET framework

to execute. The .NET Framework offers a number of advantages to developers as follows:

• It is a consistent programming model.

• It has direct support for security.

• It has simplified development efforts.

• It has easy application deployment and maintenance.

2.6.2 Relation to Visual Basic

Whether Visual Basic .NET should be considered as just another version of Visual

Basic or a completely different language is a topic of debate. One simple change that can be

confusing to previous users is that of Integer and Long data types, which have each doubled

in length; a 16-bit integer is known as a Short in VB.NET, while Integer and Long are 32

and 64 bits respectively. Similarly, the Windows Forms GUI editor is very similar in style

and function to the Visual Basic form editor [19].

The things that have changed significantly are the semantics [20]. The changes have

altered many underlying assumptions about the "right" thing to do with respect to

 21

performance and maintainability. Some functions and libraries no longer exist; others are

available, but not as efficient as the "native" .NET alternatives. Even if they compile, most

converted VB6 applications will require some level of refectory to take full advantage of

the new language. Extensive documentation is available to cover changes in the syntax,

debugging applications, deployment and terminology.

2.6.3 Microsoft Access (MS Access)

Microsoft Access is a popular relational database management system for creating,

managing desktop and client/server database applications that run under the Windows

operating system. It was packaged with Microsoft Office Professional which combines the

relational Microsoft Jet Database Engine with a graphical user interface [4].

Microsoft Access can use data stored in Access/Jet, Microsoft SQL Server, Oracle,

or any ODBC-compliant data container [21]. It allows relatively quick development

because all database tables, queries, forms, and reports are stored in the database. For query

development, Access utilizes the Query Design Grid, a graphical user interface that allows

users to create queries without knowledge of the SQL programming language.

One of the benefits of Access from a programmer's perspective is its relative

compatibility with SQL—queries may be viewed and edited as SQL statements, and SQL

statements can be used directly as Macros and VBA Modules to manipulate Access tables

[21].

There are four features for using Access as follow:

• Access Systems are Fast to Develop. Due to the nature of Microsoft Access it is

possible to get a system up and running in much less time than with other

development environments.

 22

• Access Systems are low risk. Due to the widespread use of Microsoft Systems

worldwide one should never find oneself in the situation where the system will

have to "be rewritten" because it's out of date.

• Fast to Modify. If one has a custom report that must be included as soon as possible,

then Microsoft Access can allow the report to be written without disrupting use of

the system.

• Link Systems to Other Applications. Sometimes this can be done directly, sometimes

through an import/export process.

2.7 DNA Pooling

DNA pooling is a method for reducing the burden of genotyping large numbers of

individuals. In DNA pooling, individuals' DNA specimens are combined into one sample,

and that sample is genotyped to estimate allelic frequencies in the original population.

Pooling allows allele frequencies in groups of individuals to be measured using far fewer

PCR reactions and genotyping assays than are used when genotyping individuals [3].

Two advantages of DNA pooling are:

• It is a powerful and efficient tool for high throughput association analysis.

• It significantly reduces the consumable and labor costs of a study.

 23

CHAPTER III

DESIGN AND IMPLEMENTATION OF MEDICAGO COMPUTING TOOL

3.1. The design of the computing tool

3.1.1 System functioning

 According to the requirement for tissue pooling for DNA isolation as described

in Chapter 1, the computing tool is employed to implement the display of a DNA sample

location pooled in 3-dimensional manner, and the generation of a DNA sample list for

pooling. It includes the following computing functions:

1) Calculate the grid location (i.e., the numbers of plate, column and row) and unit

number (5 plates per unit) of each pooled DNA sample according to the number

of DNA sample.

2) Calculate the number of DNA samples and its unit number belonging according to

the grid address (i.e., the numbers of plate, column and row) resulting from PCR

screening.

3) Calculate and generate the list of the numbers of DNA samples in certain column

of each unit according to the numbers of unit and column.

4) Calculate and generate the list of the numbers of DNA samples in certain row of

each unit according to the numbers of unit and row.

 24

The scientists at the Noble Foundation prefer to lookup the graphics display of the

grid address of the DNA sample in the 96-wells plate format, which consists of 12

columns (C1, C2, C3 … C12) and 8 rows (RA, RB, RC … RH) (Figure 3.1); therefore,

the graphics display was programmed to show the grid address of the DNA sample in a

96-well plate according to the number of the DNA sample or the grid address of the DNA

sample resulting from PCR-screening.

Figure3.1. Graphic display of grid address of DNA samples in 96-well plate format.

3.1.2 Construction of user friendly interface

The computing tool was written in the Visual Basic 6.0 language using an object-

oriented methodology. It operates in Windows XP. The application of each function is

selectable from the main interface. Tables 3.1-4 show objects designed for 4 function

interfaces.

 25

Table 3.1 Properties of interface that implements the display of grid address and

unit number of DNA sample

Object Property Setting
Caption Location
Height 7995

frmGrid
(Form)

Width 12000
Label1 Caption Display Grid Location of Each Pooled DNA

Sample From Mutant Lines
Label2 Caption Input No. of DNA Sample
Label3 Caption Location
Label4 Caption (0 ~ 11): C1 – C 12

(12 ~ 19): RA - RH
Shape 0-Rectangle

(0 ~ 95)
Height 400

Shape

Width 621
TextBox1 Input Number of DNA Sample > 0
TextBox2 Data Field Grid Location

(P-Plate; C-Column; R-Row; U-Unit)
CommandButton1 Caption Display Grid Location of DNA Sample
CommandButton2 Caption Clear All
CommandButton3 Caption Back
CommandButton4 Caption Exit

 26

Table3.2 Properties of interface that implements the display of DNA sample number

Object Property Setting
Caption Number of DNA Samples
Height 7905

frmCertainLocation
(Form)

Width 10800
TextBox1 Input Number of plate > 0
TextBox2 Input 0 < column number< 13
TextBox3 Input From (A or a) to (H or h)

Uppercase or Lowercase
TextBox4 Text No. of DNA Sample

(C-Column; R-Row, P-Plate,
U-Unit)

CommandButton1 Caption Display
CommandButton2 Caption Clear
CommandButton3 Caption Back
CommandButton4 Caption Exit

Shape 0-Rectangle
(0 ~ 95)

Height 400

Shape

Width 621
Label1 Caption Input Plate Number
Label2 Caption Input Column
Label3 Caption Input Row
Label4 Caption No. of DNA Samples
Label5 Caption (0 ~ 11): C1 - C12

(12 ~ 19): RA - RH

 27

Table3.3 Properties of interface that generates DNA samples list for column pooling

Object Property Setting
Caption Column
Height 6800

frmDNAColumn
(Form)

Width 12000
Label1 Caption Input Unit

1 Unit = 5 Plates = 480 (Wells)
lblCol
(Label)

Caption Input Column

lblColNum
(Label)

Caption No. of DNA Sample

lblTitle
(TextBox)

Data Field Display DNA Samples of Mutant
Lines in Certain Column of Each Unit

txtUnit
(TextBox)

Input > 0

txtCol
(TextBox)

Input 0 < column number < 13

Text1
(TextBox)

Text List of No. of DNA sample

CommandButton1 Caption Proceed
CommandButton2 Caption Display No. of DNA Samples
CommandButton3 Caption Clear All
CommandButton4 Caption Back
CommandButton5 Caption Exit

 28

Table3.4 Properties of interface that generates DNA samples list for row pooling

Object Property Setting
Caption Row
Height 6880

frmDNARow
(Form)

Width 12000
Label1 Caption Display DNA Samples of Mutant Lines in

Certain Row of Each Unit
Label2 Caption Input Unit:

1 Unit = 5 Plates = 480(Wells)
Label3 Caption Input Row

From (A or a) to (H or h)
Label4 Caption No. of DNA Sample:
Text1
(TextBox)

Data member List of No. of DNA Sample

txtRow
(TextBox)

Data Input (A or a) to (H or h)
Uppercase or Lowercase

txtUnit
(TextBox)

Data Input > 0

Command1 Caption Proceed
Command2 Caption Display No. of DNA Sample
Command3 Caption Clear All
Command4 Caption Back
Command5 Caption Exit

3.1.3 Graphic Display of a Grid Address

To achieve the graphics indication of DNA sample in 96-well plate format, I used

shape control built in Visual basic to show 96 wells. They were organized into 12

Columns and 8 Rows. The algorithm for graphic displays was the following codes:

Select Case Text9.Text
 Case "A"
 Case "a"
 R = 1
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)
 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1

 29

 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "B"
 Case "b"
 R = 2
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)
 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "C"
 Case "c"
 R = 3
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)
 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "D"
 Case "d"
 R = 4
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)
 If ID Mod 480 = 0 Then
 Unit = ID \ 480

 30

 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "E"
 Case "e"
 R = 5
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)

 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "F"
 Case "f"
 R = 6
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)

 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "G"
 Case "g"

 31

 R = 7
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)

 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case "H"
 Case "h"
 R = 8
 ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1)

 If ID Mod 480 = 0 Then
 Unit = ID \ 480
 Else
 Unit = ID \ 480 + 1
 End If
 Text6.Text = ID & " " & "(Unit is: " & Unit & ")"
 For I = 0 To 95
 If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then
 Shape1(I).FillColor = &HC000&
 Shape1(I).FillStyle = 7
 End If
 Next I
 Case Else
 MsgBox " invalid Row Number, Please Input Again!!!"
 Text6.Text = ""
 Text9.Text = ""
 End Select

 32

3.2. The implementation of the computing tool

The main interface of the software package in the Windows system is shown in

Figure 3.2. It was named the Medicago Computing Tool. The following sections

demonstrate each function of the software.

Figure 3.2. Interface of computing tools to facilitate DNA sample

pooling and screening of M. truncatula mutants.

3.2.1. Lookup of the grid address of a DNA sample of mutant lines

The scientists at the Noble Foundation pool tissue samples from multiple mutant

lines prior to DNA isolations. The pooling architecture is described in Chapter 1 (Figure

1. 2). Since the DNA samples of ~100,000 mutant lines are pooled, the localization of a

particular DNA sample is difficult without the aid of a computing tool. One of the

 33

functions of the Medicago Tool is to look up the grid address of DNA samples (Figure

3.3). For instance, if a user would like to check the location of a DNA sample, No. 5806

that is input into the software through the input panel (Figure 3.3), the grid address of the

DNA sample is displayed when the user clicks the button of “Display Grid Locations of

DNA Samples”. The software thereafter indicates that the DNA sample is in Plate (P) 61,

Column (C) 10 and Row (R) D. As mentioned in Chapter 1, one pooling unit consists of

DNA samples of 5 plates. The users would like to know the unit number when they look

at the grid address of any specific DNA sample; therefore, the software also is designed

to display the Unit number. As shown in Figure 3.3, for example, DNA sample No. 5806

belongs to Unit 13. In addition, the users at the Noble Foundation prefer to view the

graphics display of grid address of a DNA sample on a plate. The software, therefore,

was written to satisfy this requirement. On the interface of grid address lookup,

overlapping shadowed cells indicate DNA sample location on a 96-well plate (Figure

3.3). To look up the location of new DNA samples, users can click the button, “Clear

All”, to erase existing input and display. The “Back” button allows the user to go back to

main menu for other applications. The “Exit” button allows the user to log off the

computing tool system.

 34

Figure 3.3 Interface of grid address lookup of DNA samples

3.2.2. Lookup of DNA sample Number according to PCR screening results

The scientists at the Noble Foundation conduct PCR reactions to screen pooled

DNA samples in order to identify a desired mutant line. As described in Chapter 1, one

pooling unit consists of 25 pooled DNA samples; 25 PCR reactions with the 25 pooled

DNA samples allow to screening 2400 mutant lines. For each target gene, specific primer

pair is designed to run the 25 PCR reactions. Three positive signals; i.e., three identical

PCR products appear if one mutant carrying deletion in a given target gene exits in the

2400 mutant lines (Figure 3.4). The Medicago tool allows the user to obtain the DNA

sample number of a particular mutant group (5 mutants per well) that gives rise to the

positive screening results.

 35

Figure 3.4 Example of 3-dimenional PCR-based screenings of one pooling

unit consisting of 2400 mutant lines.

As shown in Figure 3.5, the user is able to input PCR results; i.e., the numbers of

plate, row and column that give rise to positive signals. The information is processed

when the button, “Display No. of DNA Samples”, is clicked. For instance, the PCR

screening results shown in Figure 3.4 indicate that the DNA sample from the grid address

of Plate-19, Row-C and Column-6 carries a target mutation. To find out the DNA sample

number of the grid address for further mutant analysis, user can input the PCR screening

results on the interface of DNA sample No. Lookup (Figure 3.5). The DNA sample

number and its unit number are displayed when clicking the button of “Display No. of

 36

DNA Samples”. The location of the DNA sample on 96-well plate also is indicated

graphically on the same interface.

Figure 3.5 Example of lookup of DNA sample No. according to PCR

screening results (up panel). The DNA sample location on data spreadsheet is

shown in bold (low panel).

 37

3.2.3. Display of a DNA sample list for row and column pooling

The plate pool consists of 96 DNA samples of which their numbers are in order.

By contrast, column and row pools of each unit (5 plates) consist of 40 and 60 DNA

samples across plates, respectively. Therefore, extreme care must be taken when

preparing row and column pools in order to avoid mishandling. It is estimated that DNA

samples of approximately 100,000 mutant lines are pooled in order to screen mutation in

most given genes. The scientists at the Noble Foundation require a computing tool that

generates the lists of DNA samples for column and row pooling. The Medicago

Computing Tool includes the functions to assist the routine manipulations.

Figure 3.6 demonstrates the column pooling using the computing tool. To

generate the DNA sample list for the pooling of column 11 in unit 58, the numbers of the

unit (58) and the column (11) are input through the function interface. The numbers of 60

DNA samples are displayed. Users are able to paste and print the list of DNA samples for

pooling as follows:

The list of DNA samples for the pooling of column 11 in unit 58: 27371, 27383,

27395, 27407, 27419, 27431, 27443, 27455, 27467, 27479, 27491, 27503, 27515, 27527,

27539, 27551, 27563, 27575, 27587, 27599, 27611, 27623, 27635, 27647, 27659, 27671,

27683, 27695, 27707, 27719, 27731, 27743, 27755, 27767, 27779, 27791, 27803, 27815,

27827, and 27839.

 38

Figure 3.6 Example of generation of DNA sample list for column pooling

Likewise, the function interface as shown in Figure 3.7 was designed to generate

the list of DNA samples for row pooling. For the pooling of row “g” in unit 129, the

numbers of DNA samples are as follows:

The list of DNA samples for the pooling of row “g” in unit 129: 61513, 61514,

61515, 61516, 61517, 61518, 61519, 61520,61521, 61522, 61523, 61524, 61609, 61610,

61611, 61612, 61613, 61614, 61615, 61616, 61617, 61618, 61619, 61620, 61705, 61706,

61707, 61708, 61709, 61710, 61711, 61712, 61713, 61714, 61715, 61716, 61801, 61802,

61803, 1804, 61805, 61806, 61807, 61808, 61809, 61810, 61811, 61812, 61897, 61898,

61899, 61900, 61901, 61902, 61903, 61904, 61905, 61906, 61907 and 61908.

 39

Figure 3.7 Example of row pooling of DNA sample using the computing tool.

 40

CHAPTER IV

DEVELOPMENT AND IMPLEMENTATION OF MANAGEMENT SYSTEM

FOR MEDICAGO MUTANT RESOURCES

4.1 Overall Structure Design of the Database Management System

One objective of the thesis is to develop a relational database to assist in the

management of the M. truncatula mutant populations and their progenies, and to record,

then store and exploit all data generated within the project. The relational database

consists of three functional components: user management, data management and data

analysis (Figure 4.1).

• User management: This component allows users of Noble Foundation to log on,

input password and change password in order to maintain the security of the

system.

• Data management: This component implements many functions such as day-by-

day data input, sorting, bookmark, filter and so on.

• Data analysis and mutant image review: This component allows the users to

monitor the progress of the M. truncatula mutagenesis project. It also allows to

viewing and comparing mutant images in order to pick desired mutant individual

for further biological characterization. The data statistics implemented through

 41

this component provides information such as the progress of the project, the basis

of the next-step plan.

Figure 4.1 Flow Chart of the Management System for M. truncatula Mutant Resources

4.2 Database Normalization and E-R Diagram

4.2.1 Database Normalization

Data normalization is the process of designing a database and organizing data to

take best advantage of relational database principles. Normalizing allows to reaching the

following goals:

• Minimization of redundancy in data.

• Removal of insertion, deletion and updating of anomalies during database

activities.

• Reduction of the need to reorganize data when it is modified or enhanced.

Flat Table A flat table as shown in Table 4.1 includes all fields of data generated in the

M. truncatula mutagenesis project. The database has a designation of “Mutant”. Flat table

Database Management System

Database Security &
Access

Data Input &
Management

Statistics & Image
Review

User
Register

Change
Password

Day-by-day Data Input &
Edit, Sort, Filter, Bookmark…

Data
Analysis

Image
Review

 42

is not the most efficient design, and it consumes more physical space on hard drive than a

set of normalized database tables. Therefore, normalized tables were generated thereafter.

Table 4.1 “Mutant” flat table

Field Name Description
MutantM1ID ID of mutant M1
PlantDate The date of planting
GerminationDate The data of seed germination
FlowerDate
NumPlants

The date of seed flowering
The number of plant grown

HarvestDate The date of seed harvest
WeightofSeedBag Weight of seed collected in each bag
Phenotype Mutant phenotype description
OtherComment Additional information input
ScreenedforNodulation Mutant screened for nodulation phenotype
NoDNASampling The number of tissue for DNA isolation
MutantM2ID ID of mutant M2
DateofSeedTreatment The date of seed treatment germination
DateofRemovalfromFungicideTreatment The date of removing the fungicide

reagent
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as

concentration
DateofTransplantingtoPlate The date of transplanting treated seeds on

to germinating plate
DateofSeedlingInoculation The date of seedling inoculated
DateofTransplantingtoPot The date of transplanting seedlings to pot
Group Batch number
ImageID ID of mutant image
Image Images of mutant

First Normal Form First normal form (1NF) excludes the possibility of repeating

groups by requiring that each field in a database hold an atomic value, and that records be

defined in such a way as to be uniquely identifiable by means of a primary key. In the flat

table designed above (Table 4.1), there are many repeated sets of fields for the data of

mutant generations 1 and 2. I identified “MutantM1” and “MutantM2” as its two distinct

topics. Taking “Mutant” flat table to the first normal form would mean that I could create

 43

two tables: one for “MutantM1” and one for “MutantM2”. Table 4.2 and 4.3 present the

data fields in 1NF.

Table 4.2 “MutantM1” table

Field Name Description
MutantID A unique ID for mutant
MutantM1ID ID of mutant M1. This field is primary key.
PlantDate The date of planting
GerminationDate The data of seed germination
FlowerDate The date of seed flowering
NumPlants The number of plant grown
HarvestDate The date of seed harvest
WeightofSeedBag Weight of seed collected in each bag
Phenotype Mutant phenotype description
OtherComment Additional information input
ScreenedforNodulation Mutant screened for nodulation phenotype

Table 4.3 “MutantM2” table

Field Name Description
MutantM1ID ID of mutant M1
MutantM2ID ID of mutant M2. This field is primary

key
NoDNASampling The number of tissue for DNA

isolation. This field is foreign key.
DateofSeedTreatment The date of seed treatment germination
DateofRemovalfromFridge/FungicideTreatment The date of removing the fungicide

reagent
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as

concentration
DateofTransplantingtoPlate The date of transplanting treated seeds

on to germinating plate
DateofSeedlingInoculation The date of seedling inoculated
DateofTransplantingtoPot The date of transplanting seedlings to

pot
NumPlants The number of plant grown
Phenotype Mutant phenotype description
OtherComments Additional information input
Group Batch number
ImageID ID of mutant image
Image Images of mutant

 44

Second Normal Form Second Normal Form (2NF) requires that all data elements in a

table are functionally dependent on all of the table's primary keys. If data elements only

depend on part of a primary key, then they are parsed to separate tables. If the table has a

single field as the primary key, it is automatically in 2NF. A table is in 2NF if and only if

1) it is in 1NF and 2) each non-primary key attribute is irreducibly dependent on the

primary key. In “MutantM2” table, ID, NoDNASampling, Location can become a table

called “MutantM2Track” with a primary key of NoDNASampling, as shown in Table 4.4.

Table 4.4 “MutantM2Track” table

Field Name Description
ID AutoNumber
NoDNASampling The number of tissue for DNA isolation.

This field is primary key
Location Mutant grid location

Third Normal Form The third normal form (3NF) is used to check whether all the non-

key attributes of a relation depend only on the candidate keys of the relation. This means

that all non-key attributes are mutually independent or, in other words, that a non-key

attribute cannot be transitively dependent on another non-key attribute. ImageID and

Image attributes are less dependent upon the MutantM2ID then they are on the image

attribute. ImageID, NoDNASampling, Seedm2ID and Image can become a new table

called image. Table 4.5 and 4.6 show the Table 4.3 in 3NF.

 45

Table 4.5 “MutantM2” table

Field Name Description
MutantM1ID ID of mutant M1
MutantM2ID ID of mutant M2. This field is primary

key
NoDNASampling The number of tissue for DNA

isolation. This field is foreign key.
DateofSeedTreatment The date of seed treatment germination
DateofRemovalfromFridge/FungicideTreatment The date of removing the fungicide

reagent
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as

concentration
DateofTransplantingtoPlate The date of transplanting treated seeds

on to germinating plate
DateofSeedlingInoculation The date of seedling inoculated
DateofTransplantingtoPot The date of transplanting seedlings to

pot
NumPlants The number of plant grown
Phenotype Mutant phenotype description
OtherComments Additional information input
Group Batch number

Table 4.6 “Image” table

Field Name Description
ImageID A unique number for image. This field is

primary key
NoDNASampling The number of tissue for DNA isolation

Seedm1ID ID of mutant M2

Seedm2ID ID of mutant M2
Image Images of mutant

4.2.2 Design of Entity-Relationship Modeling

Databases are used to store structured data. The structure of the data, together

with other constraints, can be designed using a variety of techniques, one of which is

called entity-relationship (E-R) modeling. Figure 4.2 shows an E-R Diagram of the

 46

Management System for M. truncatula Mutant Resources. Its components are: 1)

rectangles representing entity sets, 2) ellipses representing attributes, 3) diamonds

representing relationship sets, and 4) lines linking attributes to entity sets and entity sets

to relationship sets.

Figure 4.2 E-R Diagram of the Management System for M. truncatula Mutant Resources

4.3 Implementation of the Management System for M. truncatula Mutant Resources

4.3.1 Database Security and Access

To control what an individual user or group of users can do with a given database,

the database has to be secured. It is necessary to consider who will use the database and

what types of activities the users should be allowed to perform with the database. These

activities might include viewing, modifying or deleting database objects or information.

 47

To control the access, an input interface of user ID and password was generated

for the M. truncatula mutant management system (Figure 4.3). User is also able to

change password through the interface as shown in Figure 4.4 after logging on. Currently,

the database is used by the research staff on the same project. In the near future, other

researchers will be allowed to assess the database. However, the administrator of the

database may authorize limited rights such as viewing only to the user outside.

Figure 4.3 Login Interface

 48

Figure 4.4 Change Password Interface

4.3.2 Data Input and Management

According to users’ requirement, the component of “Data Input and

Management” achieves many functions such as day-by-day data input, sorting,

bookmark, filter and so on. The runtime interface of the component is shown in the

Figure 4.5

Data manipulation The component allows users to conduct data manipulation

including adding, updating, deleting, canceling, editing and refreshing. Other functions of

the component includes navigating (move first, move previous, move next, and move

last), finding (first and next), filtering, sorting and as well as adjusting of datagrid width

based on the longest field in underlying source of data.

 49

Fig 4.5 Interface of “Data Input and Management”

• “Add” Button: Click on the button to display the interface of data adding

for users.

• “Update” button: If the user is either adding or editing a record, the

“Update” button is enabled and can be pressed.

• “Cancel” button: Click on the button to cancel last operation.

• “Refresh” button: Click on the button to back to the very first record.

• “Delete” button: Click on the button to display “delete command” working

window for user to delete data that will not be use anymore with a pop-up

window to remind users to make sure to delete the record.

 50

• “Edit” button: Click on the button to displays “edit command” working

window for user to edit data in any column field and highlight the edited

record for user.

• “DataGrid” button: Click on the button to display “DataGrid command”

working window for users, which allow to adjusting datagrid width based

on the longest field in underlying source.

Bookmark Pop-up Window Bookmark is a way to mark a record in a recordset so that

users can go back to the record later quickly without remembering the position of that

record. The users of the database can implement the function as follows (Figure 4. 6):

• Select the record to be bookmarked by clicking it in DataGrid or through

Navigation button in M. truncatula mutant interface, then input the

bookmark name in the textbox above, and then press “Enter” key or click

“Add” button to add this name to the list box below.

• Click bookmark name in the listbox, then click “Jump” button;

alternatively, double-click the bookmark name in the listbox, if user wants

to go back to record bookmarked.

• Click bookmark name in the listbox, then click “Delete” button, if user

wants to delete the bookmark name,

• Click bookmark name in the listbox, then click “Help” button, if user

wants to get the direction about using “bookmark” function.

 51

Figure 4.6 Bookmark Pop-up Window.

Filter Pop-up Window “Filter” function is used to specify which records in the database

will be included in the specified project. The user of the database can implement the

function as follows (Figure 4.7):

• Select the field name from the drop down menu.

• Enter the value of the field to filter.

 52

Figure 4.7 Filter with Drop-down menu Window

 Find Pop-up Window “Find” function was designed quickly to locate any record in the

database. The user of the database can implement the function as follows (Figure 4.8):

• Select the field name from the drop down menu.

• Enter the value of the field to find.

 53

Figure 4.8 Find with Drop-down menu Window

Sort Pop-up Window The user of the database can sort a selected recordset as follows

(Figure 4.9):

• Choose sort in field.

• Choose sort type. Click “Ascending” or “Descending” to sort.

• Click sort button on the sort for M. truncatula

 54

Figure 4.9 Sort with Drop-down Menu Window

4.3.3 Statistics and Mutant Image Review

Statistics: The users at the Noble Foundation desire to monitor the progress of the M.

truncatula mutagenesis project through the database. Therefore, the “reporting statistics”

function was designed to meet the need. The users of the database are able to generate

charts for reporting statistics through the interface as shown in Figure 4.10 and 11. They

can prepare graphic presentations that show the number of M. truncatula mutants

generated monthly. Mutant populations generated in multiple years can be presented in

 55

parallel in the same chart. The users can generate three types of plots of which Figure

4.10 and 11 show two. Graphic files prepared can be saved in different file formats.

Figure 4.10 Reporting chart in two-dimensional bar

 56

Figure 4.11 Reporting chart in two-dimensional line

Mutant Image Review: Morphological alternations are visible phenotypes that indicate

the mutations carried by individual plant. The phenotypes of M2 plants become stable.

The users of Noble Foundation requested to store the images of Medicag M2 plants in the

database. Figure 10.12 shows the interface of the mutant image input and review of the

database. Users are able to input, browse and compare the phenotypes of mutant

individuals. This will facilitate to select mutant plants showing interesting phenotypes for

further biological characterizations (forward genetics).

 57

Figure 4.12 Mutant Picture Review

 58

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

This thesis describes the design and implementation of a computing tool and a

relational database for the M. truncatula mutagenesis project conducted by the research

fellows in Dr. Rujin Chen’s laboratory at the Noble Foundation. The research group plans

to generate approximately 100,000 mutant lines in order to interrupt most genes in the

model legume, M. truncatula. To meet the needs of computer science embodied in the

biological project, various computer technologies such as VB, VB.NET programming,

relational database, SQL and Microsoft Access were used. The major achievements

described in this thesis are as follows:

• The computing tool, M. truncatula Computing Tool, has been developed to

generate error-free tissue sample lists for 3-dimentional pooling prior to DNA

isolation. The tool greatly facilitates the routine operation of tissue pooling.

Furthermore, M. truncatula Computing Tool facilitates the utilization of

pooled mutant populations. It provides lookup functions that allow the

scientists in the Noble Foundation to localize the grid address of DNA sample

according to tissue sample number, and to identify the DNA sample number

according to biological screening results.

 59

• M. truncatula Mutant Management System described in the thesis, provides a

powerful laboratory database to manage all resources and information

generated within the long-term project. It assists in the management of the M.

truncatula mutant populations and their progenies, and to record, then store

and exploit all data generated within the project. The statistics function of the

system allows the users to monitor the day-by-day progress of the M.

truncatula mutagenesis project, which is the basis of next-step plan. The

database also provides the review of mutant images to facilitate the selection

of individual mutant for further biological analysis (Forward genetics).

5.2 Future Work

The objective of the M. truncatula mutagenesis project is to generate mutant

populations for the research community of M. truncatula. To share research resources,

one of emerging needs in the near future is to develop an external database, which will

allow the authorized scientist outside to access the M. truncatula mutant resources

generated at the Noble Foundation via the Internet. M. truncatula Mutant Management

System developed in the present work will be the basis for the development of external

database. On the other hand, the utilizations of the M. truncatula mutant resources will be

steadily grown with the increase of mutant populations. To further facilitate biological

research, one of other recognized needs is to provide various bioinformatics tools

connected with M. truncatula Mutant Management System. Those bioinformatics tools

could be already well developed such as sequence blast searching. New bioinformatics

tools will also be developed according to specific requirements of the ongoing project.

 60

REFERENCES

1. Vance, C.P., Symbiotic nitrogen fixation and phosphorus acquisition. Plant

nutrition in a world of declining renewable resources. Plant Physiology, 2001.

127(2): p. 390-7.

2. Young, N.D., et al., Sequencing the genespaces of Medicago truncatula and Lotus

japonicus. Plant Physiology, 2005. 137(4): p. 1174-81.

3. Sham, P., et al., DNA Pooling: a tool for large-scale association studies. Nature

reviews. Genetics, 2002. 3(11): p. 862-71.

4. Prague, C. N. , M. Irwin, R. and J. Reardon, Access 2003 Bible. 2003: Wiley.

5. Santiago, C.D., Component Object Model (COM), DCOM, and Related

Capabilities. 2001.

6. Williams, M. and M. Williams, Visual C++ 6 Unleashed. 2000: Sams.

7. Appleman, D., Developing COM/ActiveX Components with Visual Basic 6. 2000:

Sams.

8. Williams, C., Professional Visual Basic 6 Databases with VB, ADO, SQL Server

and MTS. 1999, Birmingham: Wrox Press Ltd.

9. Johnson, G., Programming Microsoft ADO.NET 2.0 Applications: Advanced

Topics. 2005: Microsoft Press.

10. Rob, P. and C. Coronel, Database Systems: Design, Implementation and

Management. Sixth Edition ed. 2004: Course Technology.

 61

11. Forte, S., T. Howe, and K. Wall, Access Database Design and Normalization.

2002: Sams.

12. Lans, R.F.., Introduction to SQL. 1988: Wokingham, England ; Reading, Mass. :

Addison-Wesley Pub. Co.

13. Din, A.I., Structured Query Language (SQL): a Practical Introduction. 1994:

NCC Blackwell.

14. McFadyen, R. and V. Kanabar, Introduction to Structured Query Language.

1991: William C. Brown Pub.

15. How To Create the Web.config File for an ASP.NET Application

http://support.microsoft.com/kb/815179.

16. McComb, G., Using INI Files to Store Data. 1997.

17. Barwell, F., Professional VB.NET. 2 ed. 2002: Wiley, John & Sons, Incorporated.

18. Grimes, R., Developing Applications with Visual Studio.NET. 1st edition. 2002:

Addison-Wesley Professional.

19. Appleman, D. and D. Appleman, Moving to VB.NET: Strategies, Concepts, and

Code. 2001: Apress.

20. MacDonald, M., The Book of VB.NET: .NET Insight for VB Developers. 1 edition

ed. 2002: No Starch Press.

21. Viescas, J.L., Building Microsoft Access Applications. Pap/Cdr edition ed. 2005:

Microsoft Press.

 62

APPENDIX

A. Acronym and Abbreviation

ADO Active Data Objects

ANSI American National Standards Institute

API Application Programming Interface

CGI Common Gateway Interface

COM Component Object Model

CONFIG File Configuration File

DAO Data Access Objects

DFD Data Flow Diagram

DNA Deoxyribonucleic acid

E-R Diagram Entity Relationship Diagram.

GA Genetic Algorithm

IDL Interface Description Language

INI file Initialization file

MS Access Microsoft Access

MSDASQL The Microsoft OLE-DB provider for ODBC

OCX OLE Control Extension

ODBC Open Database Connectivity

OLE Object Linking and Embedding

 63

OLE DB Object Linking and Embedding for Databases

OOP Object-oriented Programming

PCR Polymerase chain reaction

RDBMS Relational Database Management System

RDO Remote Data Objects

SQL Structured Query Language

UDA Universal Data Access

VBXs Visual Basic Controls

 64

B. Glossary

Application Program Interface (API) An abbreviation of application program interface,

a set of routines, protocols, and tools for building software applications.

Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between

sequences. The program compares nucleotide or protein sequences to sequence databases

and calculates the statistical significance of matches. BLAST can be used to infer

functional and evolutionary relationships between sequences as well as help identify

members of gene families.

Component Object Model (COM) A model for binary code developed by Microsoft

that enables programmers to develop objects that can be accessed by any COM-compliant

application.

Configuration (config) File In computing, configuration files, or config files, are used to

configure the initial settings for some computer programs. They are used for user

applications, server processes and operating system settings. The files are often written in

ASCII (rarely UTF-8) and line-oriented, with lines terminated by a newline or carriage

return/line feed pair, depending on the operating system. They may be considered a

simple database. Some files are created and modified using an ASCII editor. Others are

created and modified as a side-effect of changing settings in a graphical user interface

(GUI) program. Some computer programs only read the configuration files at startup.

Others periodically check the configuration files for changes. Some can be told to re-read

the configuration files and apply the changes to the current process, or indeed to read

arbitrary files as a configuration file.

 65

Data flow diagram (DFD) is a graphical representation of the "flow" of data through an

information system. A data flow diagram can also be used for the visualization of data

processing (structured design). It is common practise for a designer to draw a context-

level DFD first which shows the interaction between the system and outside entities. This

context-level DFD is then "exploded" to show more detail of the system being modelled.

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions for

the biological development of a cellular form of life or a virus. All known cellular life

and some viruses have DNAs. DNA is a long polymer of nucleotides (a polynucleotide)

that encodes the sequence of amino acid residues in proteins, using the genetic code: each

amino acid is represented by three consecutive nucleotides (a triplet code).

Dynamic-link library (DLL) is a library of executable functions or data that can be used

by a Windows application. Typically, a DLL provides one or more particular functions

and a program accesses the functions by creating either a static or dynamic link to the

DLL. A static link remains constant during program execution while a dynamic link is

created by the program as needed. DLLs can also contain just data. DLL files usually end

with the extension .dll, .exe, .drv, or .fon.

Entity Relationship Diagram (E-R Diagram) A model provides a high-level

description of a conceptual data model. Data modeling provides a graphical notation for

representing such data models in the form of entity-relationship diagrams (ERD).

Initialization file (INI file) INI file is a configuration file that contains configuration

data for Microsoft Windows based applications.

Interface Description Language (IDL) An Interface Description Language (or

alternately, Interface Definition Language), or IDL for short, is a computer language used

 66

to describe a software component's interface. IDLs describe an interface in a language-

neutral way, enabling communication between software components that do not share a

language – for example, between components written in C and components written in

Pascal.

M1 plants Plants grown from seeds mutated by fast-neutron mutagenesis.

 M2 seeds Seeds produced by M1 plants.

 M2 plants Plants grown from M2 seeds.

 M3 seeds Seeds produced by M2 plants.

Object Link Embedded (OLE DB) It is a set of interfaces implemented using the

Component Object Model (COM). OLE DB separates the data store from the application

that needs access to it through a set of abstractions, such as connections, record sets and

attributes.

Object-oriented Programming (OOP) in computer science, object-oriented

programming is a computer programming paradigm. Many programming languages

support object-oriented programming. Many programming frameworks, like the Java

platform and the .NET Framework, are built on object-oriented principles. Object-

oriented programming is often abbreviated as OOP.

Polymerase chain reaction (PCR) is a molecular biology technique, for enzymatically

replicating DNA without using a living organism, such as E. coli or yeast. Like

amplification using living organisms, the technique allows a small amount of the DNA

molecule to be amplified exponentially. However, because it is an in vitro technique, it

can be performed without restrictions on the form of DNA and it can be extensively

modified to perform a wide array of genetic manipulations.

 67

Relational Database Management System (RDBMS) A type of database management

system (RDBMS) that stores data in the form of related tables. Relational databases are

powerful because they require few assumptions about how data is related or how it will

be extracted from the database.

VITA

LIN GE

Candidate for the Degree of

Master of Science

Thesis: A COMPUTING TOOL AND A RELATIONAL DATABASE FOR A

MEDICAGO TRUNCATULA MUTAGENESIS PROJECT

Major Field: Computer Science

Education:

Received the Degree of Bachelor of Science at Suzhou Railway Teachers
College, Suzhou, P. R. China in 1991.

Received the Certificate of Geographic Information Systems at Oklahoma State
University, Stillwater, Oklahoma in 2003.

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in December, 2007.

