A COMPUTING TOOL AND A RELATIONAL
DATABASE FOR A MEDICAGO TRUNCATULA

MUTAGENESIS PROJECT

By
LIN GE
Bachelor of Science
Suzhou Railway Teachers College
Suzhou, P. R. China

1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2007

A COMPUTING TOOL AND A RELATIONAL
DATABASE FOR A MEDICAGO TRUNCATULA

MUTAGENESIS PROJECT

Thesis Approved:

G. E. Hedrick

Thesis Adviser

John P. Chandler

Nohpill Park

A. Gordon Emslie

Dean of the Graduate College

ACKNOWLEDGEMENTS

| wish to express my deep and sincere gratitude to my thesis advisor, Dr.
G. E. Hedrick, for his excellent guidance and detailed advice throughout this
study. | am also grateful to Drs. J. P. Chandler and N. Park for their

encouragement and constructive suggestions as my committee members.

| would like to thank Dr. R. Chen and the research fellows in his laboratory
at Noble Foundation for providing me with the opportunity to work on their plant
science project, which allowed me to serve biological research employing the

knowledge of computer science.

Last but certainly not least, | am deeply indebted to the love, patience and

constant support of my family.

TABLE OF CONTENTS

Chapter Page
|. INTRODUCTIONcoiiiiiiiiiitieieeie sttt sre e ee e sseesteenseeneesneesseenseas 1
1.1 MOEIVEEION ..ttt et n e et e snne e 1
1.2 Objectives Of the theSIS........ccvi i 5
1.3 Organization Of the theSIS.........cociiiie e 6
1. REVIEW OF LITERATURE......cctiiiiiicie ettt 7
2.1 Component OLJECt MOEoouiiiiiiiece e 7
2.2 ACHIVEX CONEIOL ...t 11
2.3 ActiveX Data Object.NET (ADO.NET)ccceeiiiiiiieiee e 12
2.4 Relational Database and Structured Query Language..........ccocveevveerveenieennne. 14
2.4.1 Relational Database.ccoveiireeiiiieiieeee e 14
2.4.2 Structured Query Language (SQL)cooveereerieerreeriee e 15
2.5 Configuration (config) File and Initialization (INI) File ..., 18
2.5.1 Configuration (Config) File........cccoiiiiiiiiiiiiiee e 18
25.21nitidization (IN1) File.....oooo e 18
2.6 Visual Basic.NET (VB.NET), Relation to Visual Basic and Microsoft
ACCESS (MSACCESS) ..ottt ettt sttt 19
2.6.1 Visual BasiC.NET (VB.NET) ...ccccoiiiiieiieneeeeee e 19
2.6.2 Relation to Visual BaSIC.........cccoieeiiieiiieieesieese e 20
2.6.3 Microsoft ACCESS (MS ACCESS).....cccueeriurerieerieesieeerieesreesieeenseesreeseeens 21
2.7 DNA POOIING ..ottt 22
[11. DESIGN AND IMPLEMENTATION OF THE MEDICAGO COMPUTING
L1 L SRR 23
3.1 The design of the computing tO0Icoooiriiiiiiinie e 23
3.1.1 SyStem fUNCLIONINGcoveeireeiee et 23
3.1.2 Congtruction of auser friendly interface..........ccoocevveiiieneineeneenen 24
3.1.3 Graphic Display of Grid AdAreSS..........ccooveeriieiiieiie e 28
3.2 The implementation of the computing tOOIcccvviieriienienie e 32

3.2.1 Lookup of the grid address of a DNA sample of mutant lines.............. 32
3.2.2 Lookup of DNA sample Number according to PCR screening results.. 34
3.2.3 Display of DNA sample list for row and column pooling 37

V. DEVELOPMENT AND IMPLEMENTATION OF THE MANAGEMENT

SYSTEM FOR MEDICAGO MUTANT RESOURCES..........cccccovieienieneeeens 40
4.1 Overall Structure Design of Database Management System...........cccceeueeene. 40
4.2 Database Normalization and E-R Diagram..........ccccceeveereeiiensieenee e 41
4.2.1 Database NOrmalizationccocueeieeiiieeiieeiie e 41
4.2.2 Design of Entity-Relationship Modelingcccocoevieieeniieniecneee, 45

4.3 Implementation of the Management System for M. truncatula Mutant
RESOUICES ...t e 46
4.3.1 Database SeCUrity and ACCESScoieeiieerieeiee e siee e 46
4.3.2 Datalnput and Management............coceerueeneeiieesieesiee e 48
4.3.3 Statistics and Mutant Image REVIEWccccvveeiieniii e 54
V. SUMMARY AND FUTURE WORKcccoiiiiiiiiieiieie e 58
5.1 SUMIMIBIY ettt ettt b e ne e e e e e e enn e e e enneeeenes 58
5.2 FULUrE WOTK ...ttt s 59
REFERENCES....... .ottt sttt te et neesneenne e e e 60
APPENDIX ...ttt sttt ae ettt et ne e nne e ne e e 62

LIST OF TABLES

Table Page

1. Properties of interface that implements the display of grid address

and unit number of DNA SAMPIEooiiiiiee e 25
2. Properties of interface that implements the display of DNA sample number 26
3. Properties of interface that generates DNA samples list for column pooling........ 27
4. Properties of interface that generates DNA samples list for row pooling.............. 28
5. “Mutant” flat tablE.........coviiiirieieiei e 42
Y/ U1 =0 1Y = o = SRR 43
7. “MUtANtM2” taDIE.........eeeee e 43
8. “MUtaNtM 2Track” tale......cceeeeeeee e 44
S I U1 = 1 4 D2 = o TR 45
10. “IMAGE” TADIE ...t 45

Vi

LIST OF FIGURES
Figure Page

1. Overview of construction of M. truncatula mutant population using fast
neutron radiation. Steps requiring databasing or the assistance of computing
tO0IS A€ INAICALEA.eeeeeeeceee e e e e e nneas 2

2. Three-dimensional pooling of tissues samples for DNA extraction. Each well of
one 96-well plate represents tissues from 5 M2 plants. Tissues from 96-wells are
pooled together to form a plate pool. Tissues from the same column and row
of 5 96-well plates are also pooled to form column superpool (1-12) and row

SUPENPOO! (A-H) .t 5
3. Graphic display of grid address of DNA samples in 96-well plate format........... 24
4. Interface of computing tools to facilitate DNA sample pooling and screening of

M. trUNCALUIA MUEAINES. ...ttt 32
5. Interface of grid address lookup of DNA samples..........cccoovviineiiienieeneene, 34

6. Example of 3-dimenional PCR-based screenings of one pooling unit consisting
Of 2400 MULAINE TINESeeeeeiiee et e e reae e snae e e snae e e e e e enneeennes 35

7. Example of lookup of DNA sample No. according to PCR screening results
(up panel). The DNA sample location on data spreadsheet is shown in bold

(IOW PEINELY et 36
8. Example of generation of DNA sample list for column poolingc.ccceeveenee. 38
9. Example of row pooling of DNA sample using the computing tool.................... 39

10. Flow Chart of the Management System for M. truncatula Mutant Resources..... 41

11. E-R Diagram of the Management System for M. truncatula Mutant Resources.. 46

12, LOGIN INEEITACE ... eeeiieetee ettt sbeeere e 47
13. Change Password INEITACE.ccuiiiieiieeiie e 48
14. Interface of “Data Input and Management”cccvvveereeeniesie e 49

Vii

15. Bookmark POP-UP WINAOWcc.eeiiiiiiiiiiesiiesiee ettt 51

16. Filter with Drop-down menu WINGOWccoveeiieeniennieeeee e 52
17. Find with Drop-down menu WINAOW............c.ceeieeiieenieenee e 53
18. Sort with Drop-down Menu WINAOWcocveieeiiienieeniie e 54
19. Reporting chart in two-dimensional Dar ... 55
20. Reporting chart in two-dimensional 1INe ..o 56
21, MULANE PICLUrE REVIEW ...ttt 57

viii

CHAPTER |

INTRODUCTION

1.1. Motivation

Among crops, legume species such as soybean and alfalfa are unique in their
ability to fix atmospheric nitrogen thanks to the formation of root nodules in which they
house symbiotic bacteria. Since there is no limitation for nitrogen legumes have
developed an ability to accumulate remarkable levels of protein, and contribute nearly
33% of the dietary protein needs of humans. The synthesis of nitrogen fertilizers
consumes fossil energy. The use of nitrogen-fixing legumes to produce proteins results in
a substantial decrease in the consumption of fossil fuels, and thereby lowers the
agricultural contribution to global warming [1]. Legumes also are arich source of edible
oil and diverse natural products with health benefits.

To understand the biological processes unique to legumes, it is logical to
concentrate efforts on a model legume that has a small genome. Information gained on
the species can be transferred to other related legume species. For this reason, Medicago
truncatula (M. truncatula, hereafter), has emerged as a model legume. It has a small
genome, greatly facilitating genetic analysis. The sequencing of the gene spaces in M.

truncatula is scheduled to be completed by the end of 2006 [2].

Plant biologists have already amassed DNA sequence information for thousands
of different genes and gene familiesin M. truncatula. One of the next challenges for plant
biologists is to assign biological functions to all theses sequenced genes. Missing from
plant biologist’s toolbox is a method for generating plant populations that carry
“knockout” mutations of sequenced genes. The process would greatly assist in efforts to
determine the function of genes in vivo. The research community of M. truncatula has
initialized several projects in parallel to generate large mutant populations of the legume
using various mutagenesis methods. As a part of the efforts, Dr. Rujin Chen's group in
the Samuel Roberts Noble Foundation is generating a mutant library of M. truncatula

using fast neutron radiation (Figure 1.1).

Computing tools

Fast neutron radiation

\ 4
/Reverse Genetics: Forward genetics:
L Tissue pooling Isolation of mutants
Wild-type seeds DNA isolation Cloning of genes
Detectmn of lesions Characterization

e N\]

: M2 plahts
(producing M2 seeds) (produ%ng M3 seeds)

plants
. Databasing

Figure 1.1. Overview of construction of M. truncatula mutant population using
fast neutron radiation. Steps requiring databasing or the assistance of computing

tools are indicated.

Embodied in the project is the recognized need that multiple steps in the process
reguire informatics and laboratory information management tools which monitor the
tracking of mutated plants, their DNA and their grains, the design of primers for
polymerase chain reaction (PCR) amplification of targeted regions, the interpretation and
databasing of mutant alleles; and the integrated analysis of mutant alleles and phenotypic
information.

As shown in Figure 1.1., the scientists in the Samuel Roberts Noble Foundation
apply the bombardment of fast neutrons to the wild-type seeds of M. truncatula. The
mutated seeds are grown to generate M1 plants (M1, first generation of mutagenized
plants). The M1 plants yield M2 grains (M2, second generation of mutagenized plants). 5
of M1 plants are grown in the same pot. Their M2 grains are harvested together and are
stored in numbered bag. The detailed information such as the radiation dosage applied,
planting date, grain yield and visible phenotype is recorded and stored in a database. This
is the first stage of the project. Plants for mutant screening are usually grown from M2
seeds because most mutant phenotypes result from homozygous recessive mutations, and
M1 plants, which are heterozygous for induced mutations, do not show the mutant
phenotypes. For this reason, M2 plants are generated from M2 seeds. Again, the detailed
information such as the planting date, M2 seeds used, phenotypes and resultant M3 grains
is documented in database, while developing M2 plants.

M2 plants are subjected to the research of “forward and reverse genetics’ (Figure
1.1.). Forward genetics is used to investigate the mutated plant exhibiting desired
phenotype. It starts with a phenotype and moves towards the discovery of the function of

the responsible gene. The process demands the assistance of a database to record the data

collected. Varied bioinformatics tools are also required to facilitate the design of
experiments in order to characterize responsible gene of which the interruption cause
phenotype. Whereas forward genetics starts with the mutant and then leads to the gene,
reverse genetics starts with the gene of interest and ends with the corresponding mutant.
The approach is to identify the mutation in a particular gene first and then to investigate
the consequence of the mutation. Fast neutron radiations cause several types of mutations
including deletion; the deletion loci in chromosomes can be detected by PCR analysis
using specific primers flanking the targeted genes. This is the basis of revere genetics
screening of M. truncatula mutants mutagenized by fast neutron bombardments.

The objective of this project is to interrupt genes in M. truncatula as many as
possible, and then to identify each individual M2 plant carrying the deletion of gene of
interest. It has been estimated that approximately 100,000 M2 mutant plants will be
generated in order to mutagenize most genes in the model legume. Obvioudly, it is time-
consuming and labor-intensive if the mutation of each mutated plant is identified
individually. Therefore, an efficient and high-throughput approach must be applied to this
kind of large-scale association study. One recent technology to address the cost, time and
labor that are involved in large-scale mutation screening is to carry out analyses not on
individual DNA samples, but on pools made up of DNA from many individuals [3].

To reduce the number of PCR analyses as much as possible, the laboratory in the
Samuel Roberts Noble Foundation pools the seedling tissues of M2 plants both within a
grid and across grids (Figure 1.2.). These pooled tissues are extracted for DNA samples
serving as the templates of PCR-based screening. To pool tissue samples within a grid

and across grids, the numbers of samples of each pool has to be identified first.

Obviously, computing tools are required to facilitate the large-scale pooling of seedling

tissues. On the other hand, computing tool is also required to locate grid address that

contains the tissue from a particular plant carrying mutation based on PCR screening.

Plate pool| — -0 k40— — - — 1 A-H Pooled Rows
(1-5) | oo =1 (Plate 1-5)
oJoJololoJolololclole)Ra (0] Row
DONOOOOORR A Superpools
elolololelelelelole e N4 kd@)
POOOOOO®E®®O ®|—~|OFLPRP—[0
Blolelelolclellelele R Gl I Bd(e
elelelelelolelelolole malCl IO,
elolololelelololelele @144 Edle)
~|®@PRp[—=[O
Ty :8
T P PROEEODEOBO® %
T A A A A A
solumn [O0O0000000000

Figure 1.2. Three-dimensional pooling of tissues samples for DNA extraction. Each

well of one 96-well plate represents tissues from 5 M2 plants. Tissues from 96-wells

are pooled together to form a plate pool. Tissues from the same column and row of 5

96-well plates are also pooled to form column superpool (1-12) and row superpool

(A-H).
1.2. Objectives of thethesis

There are two objectives of the thesis:

1) Develop a computing tool to facilitate the construction and subsequent utilization

of an M. truncatula mutant library.

e Develop atool that generates the list of tissues samples for plate, column
and row pooling (3-dimensional pooling).
e Develop atool that calculates the grid address (i.e., the numbers of plate,
column and row) of a given DNA sample. The tool also shows the grid
address graphically.
e Develop a tool that calculates the number of DNA sample according to
PCR-screening (i.e., the numbers of plate, column and row that gives rise
to positive results). The tool also shows grid address graphically.
2) Develop arelational database to assist in the management of mutant populations
and their progenies, and to record, then store and exploit all data generated within
the project.
1.3. Organization of the thesis

The thesis consists of the following chapters. Chapter one introduces the
background of the biological research project and the embedded needs of computing tools
and database management system. Chapter two is the literature review that describes the
technological details of computer science, which are applied in the thesis. Chapter three
describes the development of computing tools that facilitates the pooling of tissues
samples, and the locating the grid address of tissues sample. The practical tests of these
tools are performed. Chapter four focuses on the construction of arelational database that
manages the day-by-day operation and all information generated whiling creating the

mutant library of M. truncatula. Chapter five is the summary and proposed future work.

CHAPTERII

LITERATURE REVIEW

2.1 Component Object M odel

Component Object Model (COM) is a Microsoft platform for software component
introduced by Microsoft in 1993. It provides a standard mechanism by which objects can
communicate regardless of what language is used to create the components [4]. COM
defines a structure for building program routines (objects) that can be called up and
executed in a Windows environment. This capability was built into Windows 95/98 and
Windows NT 4.0. Parts of Windows itself and Microsoft's own applications are also built as
COM objects. COM provides the interfaces between objects, and Distributed COM
(DCOM) alows them to run remotely. COM is used in the following ways.

1) COM Objects: COM objects can be small or large. They can be written in
any of several programming languages, and they can perform any kind of
processing.

2) Automation (OLE automation): Standard applications, such as word
processors and spreadsheets, can be written to expose their internal functions
as COM objects, alowing them to be "automated" instead of manually

selected from a menu.

3) Controls. Applications can invoke COM objects, called "controls,” that
blend in and become just another part of the program.

4) Compound Documents and ActiveX Documents. Microsoft's OLE
compound documents are based on COM, which lets one document be
embedded within or linked to another (OLE). ActiveX Documents are
extensions to OLE that allow a Web browser, for example, to view not only
Web pages, but also any kind of document.

5) Programming Interfaces. Increasingly, Microsoft is making its standard
programming interfaces conform to the COM object model so that there is
continuity among all interfaces.

COM includes interfaces and API functions that expose operating system services,
as well as other mechanisms necessary for a distributed environment (naming, events, etc.)
[5]. These are referred to as COM technologies (or services), and are shown in detail as
follow:

e Type Information: Some clients need runtime access to type information about
COM objects. This type information is generated by the Microsoft IDL compile
and is stored in a type library. COM provides interfaces to navigate the type
library.

e Sructured Storage and Persistence: COM objects need a way to store their data
when they are not running. The process of saving data for an object is called
making an object persistent. COM supports object persistence through " Structured
Storage”, which creates an analog of a file system within a file. Individual COM

objects can store datawithin the file, thus providing persistence.

Monikers: Clients often require a way to allow them to connect to the exact same
object instance with the exact same state at a later point in time. This support is
provided via "monikers’. A moniker is a COM object that knows how to creste
and initialize the content of asingle COM object instance. A moniker can be asked
to bind to the COM object it represents, such as a COM object residing on specific
machine on the network, or a group of cells inside a spreadsheet.

Uniform Data Transfer: COM objects often need to pass data amongst themselves.
Uniform Data Transfer provides for data transfers and notifications of data
changes between a source called the data object, and something that uses the data,
called the consumer object.

Connectable Objects: Some objects require a way to notify clients that an event
that has occurred. COM allows such objects to define outgoing interfaces to clients
as well asincoming interfaces. The object defines an interface it would like to use

(e.g., anatification interface) and the client implements the interface.

The advantages of COM are as follows:

COM promotes component-based software development Before component-based
development came, software programs have been coded using procedural
programming paradigm, which supports linear form of program execution. But
component-based program development comes with a number of advantages, such
as the ability to use pre-packaged components and tools from third party vendors
into an application and support for code reusability in other parts of the same

application.

COM promotes code reusability Standard classes are normally reused in the same
application but not easily used in other applications; however, COM components
are designed to separate themselves from single applications and hence can be
accessed and used by several different applications without any hassle.

COM promotes Object-oriented programming (OOP) The primary characteristics
of OOP are encapsulation, which allows the implementation details of an object to
be hidden, polymorphism, which is the ability to exhibit multiple behaviors, and
inheritance, which allows for the reuse of existing classes in order to design new
and more specialized classes. Among these, encapsulation is one of COM's most
important characteristics. Encapsulation helps to hide how an object has
implemented a method internally. This ultimately helps to incorporate more
vigoroudly implemented or advanced implementation into an object at later time
without affecting the client which usesiit.

COM comprises the necessary mechanisms for COM components to communicate
with each other In the normal case, two components coded using two different
programming languages cannot communicate with each other. But COM can make
it possible for different language components that adhere to the COM specification
to interact with each other, and hence COM is language-independent.

COM helps to access components loaded in different machines on the network
COM component can reside anywhere on any computer or computer connected to
a network. That is, applications using COM can access and share COM
components regardless of their locations. Thus COM provides location

transparency and COM components are location independent.

10

2.2 ActiveX Control

An ActiveX control is an embeddable COM object that is implemented as an in-
process server DLL. ActiveX isthe name Microsoft has given to a set of "strategic” object-
oriented programming technologies and tools. The main technology is the Component
Object Model (COM).

One of the main advantages of a component is that it can be re-used by many
applications (referred to as component containers) [6]. A COM component object (ActiveX
control) can be created using one of several languages or development tools, as Delphi,
Visual C++, Borland C++, Visual Basic, and PowerBuilder, or with scripting tools such as
VBScript. ActiveX controls can be used in a variety of environments not traditionally
associated with programming, such as Microsoft Word, Microsoft Excel, Lotus, Hypertext
Markup Language (HTML), and Internet Explorer [6].

ActiveX controls expose themselves to the outside world and can be used in a
variety of environments. ActiveX controls are similar to embedded object servers, in that
they are embedded in a container and are responsible for providing a user interface.
ActiveX controls take advantage of the capability to send events to their container; this
capability to send events separates ActiveX controls from other in-process OLE servers|[7].

ActiveX controls communicate with the outside world in three ways:

e Properties: Properties are named attributes or characteristics of an ActiveX control.

Properties can be marked as read-only, but typically these properties can be set or

queried.

11

e Methods. Methods are functions performed by the control to access the control's
functionality. These functions enable an external source to manipulate the
appearance, behavior, or properties of the control.

e Events: Events are notifications generated by the control to provide some sort of
notification to the container. Usually, this is input by the user, such as a mouse click

or keyboard input.

2.3 ActiveX Data Object.NET (ADO.NET)

ADO.NET is a set of computer software components that can be used by
programmers to access data and data services. It is a part of the base class library that is
included with the Microsoft .NET Framework. It commonly is used by programmers to
access and modify data stored in relational database systems, though it can also be used to

access data in non-relational sources[8, 9].

ADO.NET consists of two primary parts:
A. Data provider These classes provide access to a data source, such as a Microsoft
SQL Server or an Oracle database. Each data source has its own set of provider

objects, but they each have a common set of utility classes:

1) Connection: Provides a connection used to communicate with the data
source. Also acts as an abstract factory for command objects.

2) Command: Used to perform some action on the data source, such as reading,
updating, or deleting relational data.

3) Parameter: Describes a single parameter to a command. A common example

is a parameter to a stored procedure.

12

4) DataAdapter: A bridge used to transfer data between a data source and a
DataSet object.
5) DataReader: An object used to efficiently process alarge list of results one

record at atime without storing them.

B. DataSet DataSet objects, a group of classes describing a simple in-memory
relational database, were the star of the show in the initial release (1.0) of the

Microsoft .NET Framework. The classes form a containment hierarchy:

1) A DataSet object represents a schema (either an entire database or a subset
of one). It can contain tables and relationships between those tables.

2) A DataTable object represents a single table in the database. It has a name,
rows, and columns.

3) A DataView object "sits over" a DataT able and sorts the data (much like a
SQL order by clause) and filters the records (much like a SQL where clause
) if afilter is set. An in-memory index is used to facilitate these operations.
All DataTables have a default filter, while any number of additional
DataViews can be defined, reducing interaction with the underlying database
and thus improving performance.

4) A DataColumn represents a column of the table, including its name and type.

5) A DataRow object represents a single row in the table, and allows reading
and updating of the values in that row, as well asretrieving any rows that are

related to it through a primary-key foreign-key relationship.

13

6) A DataRowView represents a single row of a DataView; the distinction
between a DataRow and DataRowView is important when enumerating a
result set.

7) A DataRelation is a relationship between tables, such as a primary-key
foreign-key relationship. This is useful for enabling DataRow's functionality
of retrieving related rows.

8) A Constraint describes an enforced property of the database, such as the

uniqueness of the values in a primary key column.

A DataSet is populated from a database by a dataAdapter whose Connection and
Command properties have been set. However, a DataSet can save its contents to XML
(optionally with an XSD schema), or populate itself from XML, making it exceptionally

useful for web services, distributed computing, and occasionally-connected applications.

2.4 Relational Database and Structured Query Language
2.4.1 Relational Database

The relational database model, first developed by E.F. Codd (of IBM) in 1970,
represents a major breakthrough for both users and designers [10]. The relational database
model is implemented through a very sophisticated relational database management system
(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical
and network DBMS system plus a host of other functions that make the relational database
model easier to understand and to implement. Arguably the most important advantage of

the RDBMS is its ability to let the user/designer operate in a human logical environment.

14

The RDBMS manages all of the complex physical details. Thus, the relational database is
perceived by the user to be a collection of tables in which data are stored.

The relational database is a single data repository in which data independence is
maintained. However, the relational database model adds significant advantages as follow

[11]:

o Ensuring data integrity.

o Storing data storage efficiently.

» Giving your database application tremendous room for growth.

o Creating a database that behaves predictably because it conforms to these well-
tested rules.

o Enabling other database designers to understand your database because it follows
the rules.

» Ensuring that database schema changes are easy to implement.

e Improving the speed of data access.

However, the relational database’s substantial advantages over the hierarchical and
network databases are purchased at the cost of some disadvantages as follows:
» Substantial hardware and system software overhead.
» Poor design and implementation is made easy.

*» May promote “islands of information” problems.

2.4.2 Structured Query Language (SQL)
Structured Query Language (SQL) - A standardized language that approximates the

structure of natural English for obtaining information from database, developed by IBM

15

Research in the mid-1970s [12]. It is a standard interactive and programming language for

getting information into and out of relational database management system. The language

has evolved beyond its original purpose to support object-relational database management

systems. It is an ANSI (American National Standards Institute) and an SO standard for

accessing database systems.

SQL allows users to access data in relational database management systems, such

as Access, Sybase, FileMaker Pro, Microsoft SQL Server, Informix, Oracle, and others, by

allowing users to query, create, insert, delete, find, modify, retrieve, update, store, manage

the data the user wishes to see. SQL also allows users to define the data in database, and

manipulate that data[13, 14].

There are many features of SQL as follows:

Simplicity — Several problems can be expressed in SQL more easily and
concisely than in lower level languages. Simplicity means increased
productivity.

Completeness — The language is relatively complete. i.e., for alarge class of
gueries users need not use loops or branching.

Nonproceduriality — A Language such as the SQL Data Manipulation
Language (DML) is known as a “nonprocedura” language. A SELECT
statement specifies only what data is wanted, not a procedure for obtaining
that data.

Data independence — SQL DML statements do not contain any reference to

explicit access paths such as indexes or physical sequence. Thus, the SQL

16

DML provides total “physical” data independence; i.e., independence of the

way in which the datais physically stored.

To process an SQL statement, a relational database management system (RDBMS)

performs the following five steps:

1)

2)

3)

4)

5)

The RDBMS first parses the SQL statement. It breaks the statement up into
individual words, called tokens, and ascertains that the statement has a valid
verb and valid clauses, and so on. Syntax errors and misspellings can be
detected in this step.

The RDBMS validates the statement. It checks the statement against the
system catalog. Do al the tables named in the statement exist in the
database? Do all of the columns exist, and are the column names
unambiguous? Does the user have the required privileges to execute the
statement? Certain semantic errors can be detected in this step.

The RDBMS generates an access plan for the statement. The access plan isa
binary representation of the steps that are required to carry out the statement;
it isthe DBMS equivalent of executable code.

The RDBMS optimizes the access plan. It explores various ways to carry out
the access plan. Can an index be used to speed a search? Should the RDBM S
first apply a search condition to Table A and then join it to Table B, or
should it begin with the join and use the search condition afterward? Can a
sequential search through a table be avoided or reduced to a subset of the
table? After exploring the alternatives, the RDBM S chooses one of them.

The RDBMS executes the statement by running the access plan.

17

2.5 Configuration (config) Fileand Initialization (INI) File

2.5.1 Configuration (config) File

In computing, configuration files, or config files, are used to configure the initial
settings for some computer programs [15]. They are used for user applications, server
processes and operating system settings. The files are often written in ASCII and line-
oriented, with lines terminated by a newline or carriage return/line feed pair, depending on
the operating system.

Some computer programs only read the configuration (config) files at startup.
Others periodically check the configuration files for changes. Some can be told to re-read
the configuration files and apply the changes to the current process, or indeed to read
arbitrary files as a configuration file.

The general format of a configuration file is quite simple. Each line contains a
keyword and one or more arguments. For simplicity, most lines only contain one argument.
Comment lines are blank lines or lines that start with a '#.

For example:

<name>:<whitespaces><value><newline>
The <name> contains any alphanumeric character or underline (). The <value> can
include any character except newline. It also cannot start with either spaces or tabs since

those are considered part of the whitespace after the colon.

2.5.2Initialization (INI) File
An initialization file or INI file that has a .INI extension and contains configuration

information for MS-Windows based applications [16]. Starting with Windows 95, the INI

18

file format was superseded but not entirely replaced by a registry database in Microsoft
operating systems. Although made popular by Windows, INI files can be used on any
system because of their flexibility. They allow a program to store configuration data, which
can then be easily parsed and changed.
A typical INI file format might look like this:
[sectionl]
; Some comment on sectionl
varl = foo
var2 = 451
[section2]
; another comment
varl =123
var2 = bar
= Sections. Section declarations start with ' and end with ' as in [sectionl] and
[section2] above. And sections start with section declarations.
= Parameters: The "varl = foo" above is an example of a parameter (also known as an
item). Parameters are made up of akey (‘'varl’), equals sign ('="), and a value (‘'foo’).

= Comments. All the lines starting with a ';" are assumed to be comments, and are

ignored.

2.6 Visual Basc.NET (VB.NET), Relation to Visual Basic and Microsoft Access (M S
Access)

2.6.1 Visual Basic.NET (VB.NET)
Visual Basic .NET (VB.NET) is an object-oriented computer language that can be
viewed as a evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft

NET framework. Its introduction has been controversial, as significant changes were made

19

that broke backward compatibility with VB and caused a rift within the developer
community [17].

The great majority of VB.NET developers use Visual Studio .NET as their
integrated development environment (IDE). SharpDevelop provides an open-source
aternative IDE. There are advantages of using VB.NET as follows [18]:

e Problems can be solved easily and effectively.
e |[tispossibleto create web applications with a zero learning curve.
Like all .NET languages, programs written in VB.NET require the .NET framework

to execute. The .NET Framework offers a number of advantages to developers as follows:

It is aconsistent programming model.

It has direct support for security.

It has simplified development efforts.

It has easy application deployment and maintenance.

2.6.2 Relation to Visual Basic

Whether Visual Basic .NET should be considered as just another version of Visual
Basic or acompletely different language is atopic of debate. One simple change that can be
confusing to previous users isthat of Integer and Long data types, which have each doubled
in length; a 16-bit integer is known as a Short in VB.NET, while Integer and Long are 32
and 64 bits respectively. Similarly, the Windows Forms GUI editor is very similar in style
and function to the Visual Basic form editor [19].

The things that have changed significantly are the semantics [20]. The changes have

altered many underlying assumptions about the "right" thing to do with respect to

20

performance and maintainability. Some functions and libraries no longer exist; others are
available, but not as efficient as the "native" .NET alternatives. Even if they compile, most
converted VB6 applications will require some level of refectory to take full advantage of
the new language. Extensive documentation is available to cover changes in the syntax,

debugging applications, deployment and terminology.

2.6.3 Microsoft Access (M S Access)

Microsoft Access is a popular relational database management system for creating,
managing desktop and client/server database applications that run under the Windows
operating system. It was packaged with Microsoft Office Professional which combines the
relational Microsoft Jet Database Engine with a graphical user interface [4].

Microsoft Access can use data sored in Access/Jet, Microsoft SQL Server, Oracle,
or any ODBC-compliant data container [21]. It alows relatively quick development
because all database tables, queries, forms, and reports are stored in the database. For query
development, Access utilizes the Query Design Grid, a graphical user interface that allows
users to create queries without knowledge of the SQL programming language.

One of the benefits of Access from a programmer's perspective is its relative
compatibility with SQL—queries may be viewed and edited as SQL statements, and SQL
statements can be used directly as Macros and VBA Modules to manipulate Access tables
[21].

There are four features for using Access as follow:

e Access Systems are Fast to Develop. Due to the nature of Microsoft Access it is
possible to get a system up and running in much less time than with other

development environments.

21

e Access Systems are low risk. Due to the widespread use of Microsoft Systems
worldwide one should never find oneself in the situation where the system will
have to "be rewritten" because it's out of date.

e Fadgt to Modify. If one has a custom report that must be included as soon as possible,
then Microsoft Access can allow the report to be written without disrupting use of
the system.

e Link Systemsto Other Applications. Sometimes this can be done directly, sometimes

through an import/export process.

2.7 DNA Pooling

DNA pooling is a method for reducing the burden of genotyping large numbers of
individuals. In DNA pooling, individuals DNA specimens are combined into one sample,
and that sample is genotyped to estimate allelic frequencies in the original population.
Pooling allows allele frequencies in groups of individuals to be measured using far fewer
PCR reactions and genotyping assays than are used when genotyping individuals [3].

Two advantages of DNA pooling are:

e [tisapowerful and efficient tool for high throughput association analysis.

e |t significantly reduces the consumable and labor costs of a study.

22

CHAPTER I11

DESIGN AND IMPLEMENTATION OF MEDICAGO COMPUTING TOOL

3.1. The design of the computing tool
3.1.1 System functioning

According to the requirement for tissue pooling for DNA isolation as described
in Chapter 1, the computing tool is employed to implement the display of a DNA sample
location pooled in 3-dimensional manner, and the generation of a DNA sample list for
pooling. It includes the following computing functions:

1) Calculate the grid location (i.e., the numbers of plate, column and row) and unit
number (5 plates per unit) of each pooled DNA sample according to the number
of DNA sample.

2) Calculate the number of DNA samples and its unit number belonging according to
the grid address (i.e., the numbers of plate, column and row) resulting from PCR
screening.

3) Calculate and generate the list of the numbers of DNA samples in certain column
of each unit according to the numbers of unit and column.

4) Calculate and generate the list of the numbers of DNA samples in certain row of

each unit according to the numbers of unit and row.

23

The scientists at the Noble Foundation prefer to lookup the graphics display of the
grid address of the DNA sample in the 96-wells plate format, which consists of 12
columns (C1, C2, C3 ... C12) and 8 rows (RA, RB, RC ... RH) (Figure 3.1); therefore,
the graphics display was programmed to show the grid address of the DNA sample in a
96-well plate according to the number of the DNA sample or the grid address of the DNA

sample resulting from PCR-screening.

Cl C2 C3 C4 Ch CB CZ C8 C3 cCio Ccin1 Ci2

RB
RC
RD
RE
RF
RG
RH

Figure3.1. Graphic display of grid address of DNA samplesin 96-well plate format.

3.1.2 Construction of user friendly interface

The computing tool was written in the Visual Basic 6.0 language using an object-
oriented methodology. It operates in Windows XP. The application of each function is
selectable from the main interface. Tables 3.1-4 show objects designed for 4 function

interfaces.

24

Table 3.1 Properties of interface that implements the display of grid address and

unit number of DNA sample

Object Property Setting
frmGrid Caption Location
(Form) Height 7995
Width 12000
Labell Caption Display Grid Location of Each Pooled DNA
Sample From Mutant Lines
Label2 Caption Input No. of DNA Sample
Label3 Caption Location
Label4 Caption (0~11):C1-C12
(12~ 19): RA - RH
Shape Shape 0-Rectangle
(0~95)
Height 400
Width 621
TextBox1 | nput Number of DNA Sample >0
TextBox2 Data Field Grid Location
(P-Plate; C-Column; R-Row; U-Unit)
CommandButtonl | Caption Display Grid Location of DNA Sample
CommandButton2 | Caption Clear All
CommandButton3 | Caption Back
CommandButton4 | Caption Exit

25

Table3.2 Properties of interface that implements the display of DNA sample number

Object Property Setting
frmCertainLocation Caption Number of DNA Samples
(Form) Height 7905

Width 10800
TextBox1 Input Number of plate > 0
TextBox2 I nput 0 < column number< 13
TextBox3 I nput From (A or &) to (H or h)
Uppercase or Lowercase
TextBox4 Text No. of DNA Sample
(C-Column; R-Row, P-Plate,
U-Unit)
CommandButtonl Caption Display
CommandButton2 Caption Clear
CommandButton3 Caption Back
CommandButton4 Caption Exit
Shape Shape 0-Rectangle
(0~95)
Height 400
Width 621
Labell Caption Input Plate Number
Label2 Caption Input Column
Label3 Caption Input Row
Label4 Caption No. of DNA Samples
Label5 Caption (0~11):C1-C12
(12~19:RA-RH

26

Table3.3 Properties of interface that generates DNA samples list for column pooling

Object Property Setting
frmDNAColumn | Caption Column
(Form) Height 6800
Width 12000
Labell Caption Input Unit
1 Unit =5 Plates = 480 (Wells)
IblCol Caption Input Column
(Label)
IbIColNum Caption No. of DNA Sample
(Label)
IbITitle Data Field Display DNA Samples of Mutant
(TextBox) Linesin Certain Column of Each Unit
txtUnit Input >0
(TextBox)
txtCol Input 0 < column number < 13
(TextBox)
Textl Text List of No. of DNA sample
(TextBox)
CommandButtonl | Caption Proceed
CommandButton2 | Caption Display No. of DNA Samples
CommandButton3 | Caption Clear All
CommandButton4 | Caption Back
CommandButton5 | Caption Exit

27

Table3.4 Properties of interface that generates DNA samples list for row pooling

Object Property Setting
frmDNARow Caption Row
(Form) Height 6880
Width 12000
Labell Caption Display DNA Samples of Mutant Linesin
Certain Row of Each Unit
Label2 Caption Input Unit:
1 Unit = 5 Plates = 480(Wells)
Label3 Caption Input Row
From (A or &) to (H or h)
Label4 Caption No. of DNA Sample:
Textl Data member List of No. of DNA Sample
(TextBox)
txtRow Data | nput (A ora)to(Horh)
(TextBox) Uppercase or Lowercase
txtUnit Data I nput >0
(TextBox)
Commandl Caption Proceed
Command?2 Caption Display No. of DNA Sample
Command3 Caption Clear All
Command4 Caption Back
Command5 Caption Exit

3.1.3 Graphic Display of a Grid Address
To achieve the graphics indication of DNA sample in 96-well plate format, | used
shape control built in Visual basic to show 96 wells. They were organized into 12

Columns and 8 Rows. The algorithm for graphic displays was the following codes:

Select Case Text9.Text
Case"A"
Case"a'
R=1
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)
If ID Mod 480 =0 Then
Unit = 1D\ 480
Else
Unit=1D\480+1

28

End If
Text6.Text=ID & " " & "(Unitis:" & Unit & ")"
For =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Cae"B"
Case"b"
R=2
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)
If ID Mod 480 =0 Then

Unit =1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID & " " & "(Unitis:" & Unit & ")"
For| =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case"C"
Case"c"
R=3
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)
If ID Mod 480 =0 Then

Unit =1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID & " " & "(Unitis:" & Unit & ")"
For =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case"D"
Case"d"
R=4
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)
If ID Mod 480 =0 Then
Unit = 1D\ 480

29

Else
Unit=1D\480+1
End If
Text6.Text=ID & " " & "(Unitis:" & Unit & ")"
For| =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case"E"
Case"€"
R=5
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)

If ID Mod 480 = 0 Then

Unit =1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID & " " & "(Unitis:" & Unit& ")"
For| =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case"F'
Case "f"
R=6
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)

If ID Mod 480 = 0 Then

Unit =1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID & " " & "(Unitis:" & Unit& ")"
For1=0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case"G"
Case"g"

30

R=7
ID=12* (R- 1) + Text8.Text + 96 * (Text7.Text - 1)

If ID Mod 480 = 0 Then

Unit =1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID & " " & "(Unitis:" & Unit& ")"
For =0To 95
If(1)\12+1=ROr(I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case "H"
Case"h"
R=8
ID=12* (R-1) + Text8.Text + 96 * (Text7.Text - 1)

If ID Mod 480 = 0 Then

Unit = 1D\ 480
Else

Unit=1D\480+1
End If

Text6.Text=ID& " " & "(Unitis:" & Unit & ")"
For1 =0To 95
If(1)\12+1=ROr (I) Mod 12 + 1 = Text8.Text Then
Shapel(l).FillColor = & HCO00&
Shapel(l).FillStyle=7
End If
Next |
Case Else
MsgBox " invalid Row Number, Please Input Again!!!"
Text6. Text =""
Text9.Text =""
End Select

31

3.2. Theimplementation of the computing tool
The main interface of the software package in the Windows system is shown in
Figure 3.2. It was named the Medicago Computing Tool. The following sections

demonstrate each function of the software.

. Medicago Computing Tool

|COMPUTING TOOL FOR MEDICAGO MUTAGENESIS

Gridf Address of DNA Sample of Mutant I ines

PNA Sample of Mutant I ines in Certain L ocation

DNA Samiple List of Mutant ines in Certain Colfumns of Fach Unit

PNA Samiple List of Mutant Lines in Certain Rows of Fach Unit

Figure 3.2. Interface of computing tools to facilitate DNA sample

pooling and screening of M. truncatula mutants.

3.2.1. Lookup of the grid address of a DNA sample of mutant lines

The scientists at the Noble Foundation pool tissue samples from multiple mutant
lines prior to DNA isolations. The pooling architecture is described in Chapter 1 (Figure
1. 2). Since the DNA samples of ~100,000 mutant lines are pooled, the localization of a

particular DNA sample is difficult without the aid of a computing tool. One of the

32

functions of the Medicago Tool is to look up the grid address of DNA samples (Figure
3.3). For instance, if a user would like to check the location of a DNA sample, No. 5806
that is input into the software through the input panel (Figure 3.3), the grid address of the
DNA sample is displayed when the user clicks the button of “Display Grid Locations of
DNA Samples’. The software thereafter indicates that the DNA sampleisin Plate (P) 61,
Column (C) 10 and Row (R) D. As mentioned in Chapter 1, one pooling unit consists of
DNA samples of 5 plates. The users would like to know the unit number when they look
at the grid address of any specific DNA sample; therefore, the software also is designed
to display the Unit number. As shown in Figure 3.3, for example, DNA sample No. 5806
belongs to Unit 13. In addition, the users at the Noble Foundation prefer to view the
graphics display of grid address of a DNA sample on a plate. The software, therefore,
was written to satisfy this requirement. On the interface of grid address lookup,
overlapping shadowed cells indicate DNA sample location on a 96-well plate (Figure
3.3). To look up the location of new DNA samples, users can click the button, “Clear
All", to erase existing input and display. The “Back” button allows the user to go back to
main menu for other applications. The “Exit” button alows the user to log off the

computing tool system.

33

= |ocation E] @ @

Grid Address of DMA Sample

Input No. of DNA Sample ‘5806

Location ‘P:61 C:10R:D (Unitis: 13)

P-Plate; C-Column; R-Row; U-Unit

' Display Grid Location | Clear All ‘ Back Exit

Cl Cc2 C3 C4 Ch CB cCy Cg C3 C10 Ci11 C12

RB
RC
RD
RE
RF
RG
RH

Figure 3.3 Interface of grid address lookup of DNA samples

3.2.2. Lookup of DNA sample Number according to PCR screening results

The scientists at the Noble Foundation conduct PCR reactions to screen pooled
DNA samples in order to identify a desired mutant line. As described in Chapter 1, one
pooling unit consists of 25 pooled DNA samples; 25 PCR reactions with the 25 pooled
DNA samples allow to screening 2400 mutant lines. For each target gene, specific primer
pair is designed to run the 25 PCR reactions. Three positive signals; i.e., three identical
PCR products appear if one mutant carrying deletion in a given target gene exits in the
2400 mutant lines (Figure 3.4). The Medicago tool allows the user to obtain the DNA
sample number of a particular mutant group (5 mutants per well) that gives rise to the

positive screening results.

Figure 3.4 Example of 3-dimenional PCR-based screenings of one pooling

unit consisting of 2400 mutant lines.

As shown in Figure 3.5, the user is able to input PCR results; i.e., the numbers of
plate, row and column that give rise to positive signals. The information is processed
when the button, “Display No. of DNA Samples’, is clicked. For instance, the PCR
screening results shown in Figure 3.4 indicate that the DNA sample from the grid address
of Plate-19, Row-C and Column-6 carries a target mutation. To find out the DNA sample
number of the grid address for further mutant analysis, user can input the PCR screening
results on the interface of DNA sample No. Lookup (Figure 3.5). The DNA sample

number and its unit number are displayed when clicking the button of “Display No. of

35

DNA Samples’. The location of the DNA sample on 96-well plate also is indicated

graphically on the same interface.

"= DNA Samples CBEX]

Ly

PANA Sample No. of Cerfain Localion

Input Plate Number |19 Back Exit J
Input Column ‘6 No. of DNA Samples
(FRang:1Tol12)
SO ‘c 1758 (Unitis: 4)

[FRang: AToH)

C-Column: R-Row. P-Plate. U-Unit

c c2 C3 c4 Ch Cb c? c8 c3 cio Ci11 c12

RB
RC
RD
RE
RF
RG
RH

Row-E | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692
Row-F | 1693 | 1694 | 1695 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704
Row-G | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 1711 [1712 | 1713 | 1714 | 1715 | 1716
Row-H | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 |1725 | 1726 | 1727 | 1728
Plate19|Col-1 Col-2 Col-3 Col-4 Col5 Col6 Col-7 Col8 Col2 Col-10 Col-11 Col-12
Row-A | 1729 1730 | 1731 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740
Row-B | 1741 | 1742 | 1743 | 1744 | 1745 | 1746 | 1747 | 1748 | 1749 | 1750 | 1751 | 1752
Row-C | 1753 | 1754 | 1755 | 1756 | 1757 |1758 | 1759 | 1760 1761 | 1762 | 1763 | 1764
Row-D | 1765 | 1766 | 1767 | 1768 | 1769 | 1770 | 1771 [1772 | 1773 | 1774 | 1775 | 1776
Row-E | 1777 | 1778 | 1779 | 1780 | 1781 | 1782 | 1783 | 1784 | 1785 | 1786 | 1787 | 1788
Row-F | 1789 1790 | 1791 | 1792 | 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | 1800
Row-G | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 1807 | 1808 | 1809 | 1810 | 1811 | 1812
Row-H | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 | 1820 | 1821 | 1822 | 1823 § 1824
Plate20|Col-1 Col-2 Col-3 Col4 Col5 Col6 Col-7 Col8 Col9 Col-10 Col-11 Col-12
Row-A | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836
Row-B | 1837 | 1838 | 1839 | 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848
Row-C | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | 1856 | 1857 | 1858 | 1859 | 1860
Row-D | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | 1872

Figure 3.5 Example of lookup of DNA sample No. according to PCR
screening results (up panel). The DNA sample location on data spreadsheet is

shown in bold (low panel).

36

3.2.3. Display of a DNA samplelist for row and column pooling

The plate pool consists of 96 DNA samples of which their numbers are in order.
By contrast, column and row pools of each unit (5 plates) consist of 40 and 60 DNA
samples across plates, respectively. Therefore, extreme care must be taken when
preparing row and column pools in order to avoid mishandling. It is estimated that DNA
samples of approximately 100,000 mutant lines are pooled in order to screen mutation in
most given genes. The scientists at the Noble Foundation require a computing tool that
generates the lists of DNA samples for column and row pooling. The Medicago
Computing Tool includes the functions to assist the routine manipulations.

Figure 3.6 demonstrates the column pooling using the computing tool. To
generate the DNA sample list for the pooling of column 11 in unit 58, the numbers of the
unit (58) and the column (11) are input through the function interface. The numbers of 60
DNA samples are displayed. Users are able to paste and print the list of DNA samples for
pooling as follows:

The list of DNA samples for the pooling of column 11 in unit 58: 27371, 27383,
27395, 27407, 27419, 27431, 27443, 27455, 27467, 27479, 27491, 27503, 27515, 27527,
27539, 27551, 27563, 27575, 27587, 27599, 27611, 27623, 27635, 27647, 27659, 27671,
27683, 27695, 27707, 27719, 27731, 27743, 27755, 27767, 27779, 27791, 27803, 27815,

27827, and 27839.

37

& Column Q@

DNA Sample List in Cerfain Column of Each Uni?

Input Unit : |58

1 Unit =5 Plates = 4580 (‘Wells)

Input Column {1t012): |11

Display Mo. of DNA Sample :

Proceed First

e

Display No.of®

\DNA Samples:

2731 —

27383 Clear All
27395

27407 Back
27419

27431 Exit

Figure 3.6 Example of generation of DNA sample list for column pooling

Likewise, the function interface as shown in Figure 3.7 was designed to generate
the list of DNA samples for row pooling. For the pooling of row “g” in unit 129, the
numbers of DNA samples are as follows:

The list of DNA samples for the pooling of row “g” in unit 129: 61513, 61514,
61515, 61516, 61517, 61518, 61519, 61520,61521, 61522, 61523, 61524, 61609, 61610,
61611, 61612, 61613, 61614, 61615, 61616, 61617, 61618, 61619, 61620, 61705, 61706,
61707, 61708, 61709, 61710, 61711, 61712, 61713, 61714, 61715, 61716, 61801, 61802,
61803, 1804, 61805, 61806, 61807, 61808, 61809, 61810, 61811, 61812, 61897, 61898,

61899, 61900, 61901, 61902, 61903, 61904, 61905, 61906, 61907 and 61908.

38

il Row

DAA Sample List in Cerfain Row of Each Unif

Input Unit : ‘1 29

1 Unit= & Flates = 4300 Wells)

Input Row { Ato H): g

Display No. of DNA Sample :

61513
61514
61515
61516
61517
61518
61519
61520

Proceed First ‘

Sample

i Display No. of DNA

Clear All

Back

Exit

s

EBX

Figure 3.7 Example of row pooling of DNA sample using the computing tool.

39

CHAPTER IV

DEVELOPMENT AND IMPLEMENTATION OF MANAGEMENT SYSTEM

FOR MEDICAGO MUTANT RESOURCES

4.1 Overall Structure Design of the Database Management System

One objective of the thesis is to develop a relational database to assist in the
management of the M. truncatula mutant populations and their progenies, and to record,
then store and exploit all data generated within the project. The relational database
consists of three functional components. user management, data management and data
analysis (Figure 4.1).

e User management: This component allows users of Noble Foundation to log on,
input password and change password in order to maintain the security of the
system.

e Data management: This component implements many functions such as day-by-
day datainput, sorting, bookmark, filter and so on.

e Data analysis and mutant image review: This component allows the users to
monitor the progress of the M. truncatula mutagenesis project. It also allows to
viewing and comparing mutant images in order to pick desired mutant individual

for further biological characterization. The data statistics implemented through

40

this component provides information such as the progress of the project, the basis

of the next-step plan.

Database Management System

A 4 A 4 A 4

Statistics & 1mage Data lnput & Database Security &
Review Management Access
I mage Data Day-by-day Data Input & Change User
Review Analysis Edit, Sort, Filter, Bookmark... Password Register

Figure 4.1 Flow Chart of the Management System for M. truncatula Mutant Resources

4.2 Database Normalization and E-R Diagram
4.2.1 Database Normalization
Data normalization is the process of designing a database and organizing data to

take best advantage of relational database principles. Normalizing allows to reaching the
following goals:

e Minimization of redundancy in data.

e Removal of insertion, deletion and updating of anomalies during database

activities.

e Reduction of the need to reorganize data when it is modified or enhanced.

Flat Table A flat table as shown in Table 4.1 includes all fields of data generated in the

M. truncatula mutagenesis project. The database has a designation of “Mutant”. Flat table

41

is not the most efficient design, and it consumes more physical space on hard drive than a
set of normalized database tables. Therefore, normalized tables were generated thereafter.

Table 4.1 “Mutant” flat table

Field Name Description

MutantM 11D ID of mutant M1

PlantDate The date of planting

GerminationDate The data of seed germination

FlowerDate The date of seed flowering

NumPlants The number of plant grown

HarvestDate The date of seed harvest

WeightofSeedBag Weight of seed collected in each bag

Phenotype Mutant phenotype description

OtherComment Additional information input

ScreenedforNodulation Mutant screened for nodulation phenotype

NoDNASampling The number of tissue for DNA isolation

MutantM2ID ID of mutant M2

DateofSeedTreatment The date of seed treatment germination

DateofRemovalfromFungicideT reatment The date of removing the fungicide
reagent

Type/ Amountof FungicideUsed(mL/Lwater) Information of fungicide used such as
concentration

Dateof TransplantingtoPlate The date of transplanting treated seeds on
to germinating plate

DateofSeedlingl noculation The date of seedling inoculated

Dateof TransplantingtoPot The date of transplanting seedlings to pot

Group Batch number

Imagel D ID of mutant image

I mage I mages of mutant

First Normal Form First normal form (INF) excludes the possibility of repeating
groups by requiring that each field in a database hold an atomic value, and that records be
defined in such away asto be uniquely identifiable by means of a primary key. In the flat
table designed above (Table 4.1), there are many repeated sets of fields for the data of
mutant generations 1 and 2. | identified “MutantM1” and “MutantM2” as its two distinct

topics. Taking “Mutant” flat table to the first normal form would mean that | could create

42

two tables: one for “MutantM1” and one for “MutantM?2”. Table 4.2 and 4.3 present the

datafieldsin INF.

Table 4.2 “MutantM1” table

Field Name Description

Mutantl D A unique ID for mutant

MutantM 11D ID of mutant M1. Thisfield is primary key.

PlantDate The date of planting

GerminationDate The data of seed germination

FlowerDate The date of seed flowering

NumPlants The number of plant grown

HarvestDate The date of seed harvest

WeightofSeedBag Weight of seed collected in each bag

Phenotype Mutant phenotype description

OtherComment Additional information input

ScreenedforNodulation Mutant screened for nodulation phenotype
Table 4.3 “MutantM2” table

Field Name Description

MutantM 11D ID of mutant M1

MutantM2ID ID of mutant M2. Thisfield is primary

NoDNASampling

Dateof SeedTreatment

key

The number of tissue for DNA
isolation. Thisfield is foreign key.
The date of seed treatment germination

DateofRemovalfromFridge/FungicideTreatment The date of removing the fungicide

Type/ Amountof FungicideUsed(mL/Lwater)
Dateof TransplantingtoPlate

DateofSeedlingl noculation
Dateof TransplantingtoPot

NumPlants
Phenotype
OtherComments
Group

Imagel D

Image

reagent

Information of fungicide used such as
concentration

The date of transplanting treated seeds
on to germinating plate

The date of seedling inoculated

The date of transplanting seedlingsto
pot

The number of plant grown

Mutant phenotype description
Additional information input

Batch number

ID of mutant image

I mages of mutant

43

Second Normal Form Second Normal Form (2NF) requires that all data elements in a
table are functionally dependent on all of the table's primary keys. If data elements only
depend on part of a primary key, then they are parsed to separate tables. If the table has a
single field as the primary key, it is automatically in 2NF. A table isin 2NF if and only if
1) it is in INF and 2) each non-primary key attribute is irreducibly dependent on the

primary key. In “MutantM2” table, ID, NoDNASampling, Location can become a table

called “MutantM 2Track” with a primary key of NoDNASampling, as shown in Table 4.4.

Table 4.4 “MutantM2Track” table

Field Name Description

ID AutoNumber

NoDNASampling The number of tissue for DNA isolation.
Thisfield is primary key

Location Mutant grid location

Third Normal Form The third normal form (3NF) is used to check whether all the non-
key attributes of a relation depend only on the candidate keys of the relation. This means
that all non-key attributes are mutually independent or, in other words, that a non-key
attribute cannot be transitively dependent on another non-key attribute. ImagelD and
Image attributes are less dependent upon the MutantM2ID then they are on the image

attribute. ImagelD, NoDNASampling, Seedm2ID and Image can become a new table

called image. Table 4.5 and 4.6 show the Table 4.3 in 3NF.

Table 4.5 “MutantM2” table

Field Name Description
MutantM 11D ID of mutant M1
MutantM2ID ID of mutant M2. Thisfield is primary

NoDNASampling

DateofSeedTreatment
DateofRemovalfromFridge/FungicideT reatment

Type/ Amountof FungicideUsed(mL/Lwater)
Dateof TransplantingtoPlate

DateofSeedlingl noculation
Dateof TransplantingtoPot

key

The number of tissue for DNA
isolation. Thisfield is foreign key.
The date of seed treatment germination
The date of removing the fungicide
reagent

Information of fungicide used such as
concentration

The date of transplanting treated seeds
on to germinating plate

The date of seedling inoculated

The date of transplanting seedlingsto
pot

NumPlants The number of plant grown
Phenotype Mutant phenotype description
OtherComments Additional information input
Group Batch number

Table 4.6 “Image” table
Field Name Description
Imagel D A unique number for image. Thisfield is

primary key

NoDNASampling The number of tissue for DNA isolation
SeedmlID ID of mutant M2
Seedm2ID ID of mutant M2
I mage I mages of mutant

4.2.2 Design of Entity-Relationship M odeling

Databases are used to store structured data. The structure of the data, together

with other constraints, can be designed using a variety of techniques, one of which is

called entity-relationship (E-R) modeling. Figure 4.2 shows an E-R Diagram of the

45

Management System for M. truncatula Mutant Resources. Its components are: 1)
rectangles representing entity sets, 2) ellipses representing attributes, 3) diamonds
representing relationship sets, and 4) lines linking attributes to entity sets and entity sets

to relationship sets.

NofDNASample
No.ofSeedM1 < ID >

Phenotype No.SeedM?2

DateSeedTreat
DateRemoval

Type/Amount

DateTranPlate
DateSeedling

Date_Plant

Date Ger
Is related to
Date_Flower
Is related to

M2_Plant [
Date Har Is available on
DateTranPot

Weight_Seed
Is available on

Nodulation
; Fhenotype

Figure 4.2 E-R Diagram of the Management System for M. truncatula Mutant Resources

OtherComment

4.3 Implementation of the Management System for M. truncatula M utant Resour ces

4.3.1 Database Security and Access

To control what an individual user or group of users can do with a given database,
the database has to be secured. It is necessary to consider who will use the database and
what types of activities the users should be allowed to perform with the database. These

activities might include viewing, modifying or deleting database objects or information.

46

To control the access, an input interface of user ID and password was generated
for the M. truncatula mutant management system (Figure 4.3). User is also able to
change password through the interface as shown in Figure 4.4 after logging on. Currently,
the database is used by the research staff on the same project. In the near future, other
researchers will be allowed to assess the database. However, the administrator of the

database may authorize limited rights such as viewing only to the user outside.

= Login

Medicago Mutant Regource Management System

User Name |
Password
Ok Cancel ‘

Figure 4.3 Login Interface

47

=, Password chanpe

Medicago Mutant Regource Management System

Change Password ‘rxxxx

xxxxx

password Confirmation

(01,9 Cancel

Figure 4.4 Change Password Interface

4.3.2 Data Input and M anagement

According to users requirement, the component of “Data Input and
Management” achieves many functions such as day-by-day data input, sorting,
bookmark, filter and so on. The runtime interface of the component is shown in the
Figure 4.5
Data manipulation The component allows users to conduct data manipulation
including adding, updating, deleting, canceling, editing and refreshing. Other functions of
the component includes navigating (move first, move previous, move next, and move
last), finding (first and next), filtering, sorting and as well as adjusting of datagrid width

based on the longest field in underlying source of data

48

= Medicago Mutant Database

=3 [i7ma

MNoDM&Sampling [4180

utanthd11D ‘nom -2

Mutanth2ID ‘0001 21 Add
1D MNoDMAS ampling Mutanttd 210 MumPlants| Mutanthd 110 Darpnf‘:FPdTr;

» [1799 AT80 0001-2.1 1 0001-2 10/10/2003 —
1566 ATD7 0002-2.1 1 0002-2 10/10/2003 Delete
1567 AT07 0002-2.2 1 0002-2 1071072003 Edit
1568 ATO7 0004-1.1 1 0004-1 107102003 Refrash
1569 AT08 0005-1.1 1 0005-1 1071072003
1570 ATOR 0005-1.2 1 0005-1 10/10/2003 Find...
1571 AT08 0005-1.3 1 0005-1 1071072003 Filtar .
1572 AT09 0005-2.1 1 0005-2 10/10/2003 T
1573 A109 0006-1.1 1 0006-1 1071072003 =
1574 AT09 0007-1.1 1 0007-1 10/10/2003 Sart
1575 A109 0008-1.1 1 0008-1 10/10/2003 Bookmark. .
1577 ATTD 000321 1 0008-2 10/10/2003 DataGrid
1745 A179 0008-2.2 1 0008-2 10/10/2003 -
1580 AT 0013-1.1 1 00713-1 1071072003
1608 AT18 007511] 00757 071072003 _Image
1581 AT 001811 1 0018-1 1071072003
1585 Al12 0021-1.1 1 0021-1 1071072003
1582 AT 0021-2.1 1 0021-2 10/10/2003

K | o[ChangePsw

Exit
I | “ Record number 1 from 1258 53 ‘ 33 |

Fig 4.5 Interface of “Data Input and Management”

“Add” Button: Click on the button to display the interface of data adding

for users.

“Update” button: If the user is either adding or editing a record, the

“Update” button is enabled and can be pressed.

“Cancel” button: Click on the button to cancel last operation.

“Refresh” button: Click on the button to back to the very first record.
“Delete” button: Click on the button to display “delete command” working

window for user to delete data that will not be use anymore with a pop-up

window to remind users to make sure to delete the record.

49

“Edit” button: Click on the button to displays “edit command” working
window for user to edit data in any column field and highlight the edited
record for user.

“DataGrid” button: Click on the button to display “DataGrid command”
working window for users, which allow to adjusting datagrid width based

on the longest field in underlying source.

Bookmark Pop-up Window Bookmark is away to mark arecord in a recordset so that

users can go back to the record later quickly without remembering the position of that

record. The users of the database can implement the function as follows (Figure 4. 6):

Select the record to be bookmarked by clicking it in DataGrid or through
Navigation button in M. truncatula mutant interface, then input the
bookmark name in the textbox above, and then press “Enter” key or click
“Add” button to add this name to the list box below.

Click bookmark name in the listbox, then click “Jump” button;
alternatively, double-click the bookmark name in the listbox, if user wants
to go back to record bookmarked.

Click bookmark name in the listbox, then click “Delete” button, if user
wants to delete the bookmark name,

Click bookmark name in the listbox, then click “Help” button, if user

wants to get the direction about using “bookmark” function.

50

&= Medicago Mutant Database G|E_\\E|

D
NoDMNASampling [a111
Wutanthd11D ‘0021 -2
hutanttA2ID ‘0021-2.1 Add
18] HoDMAS ampling tMutantid 210 HumPlants| Mutantd 11D DateafSeedlr -
1581 A1711 001911 1 0014-1 1071072003 _|
1585 Al12 o021-1.1 1 0021-1 107102003 Delete
2.1 1 0021-2 10] Edit
A112 00241 1 0024-1 1071072003 Rafrash
Al12 002421 1 0024-2 1071072003
AlB 0026-1.1 1 0026-1 8/22/2003 Find..
Al13 0026-2.1 1 0026-2 107132003 Fifter.
A113 0027-1.1 1 0027-1 101372003 Gnﬁher
A113 002%-2.1 1 &m_ 003 =
A114 002%-2.2 1 -ROETIEL. ﬂnm Bor..
All4 0oa0-2.1 1 Bookmark name: n03 Bookmark..
A114 0322 1 [003 DetaGrid
A178 0030-2 3 1 D006-1.1 003
Al15 003111 1 il 003 -
AlT5 0031-1.2 1 000411 003 e
AT11 0032-11 [Dauble dick the name ta ga to its record] [TER Statistics
ATTE 00312 1 [TER
A181 003213 1 003
ChangeFsw
1] | e
Exxit
l | | ‘ Delete | Jump ‘
l<< << || Record number 18 from 1258 3 33|

Figure 4.6 Bookmark Pop-up Window.

Filter Pop-up Window “Filter” function is used to specify which records in the database
will be included in the specified project. The user of the database can implement the
function as follows (Figure 4.7):

e Select the field name from the drop down menu.

. Enter the value of the field to filter.

= Medicago Mutant Database

D 1505
NoDMASampling Jagz
Mutanibd 11D |0739-2
MutanthielD |0739-2.1 Add
] NoDMASampling DateafSeedTisatment
p (1505 ABY g/26/2003 —
1505 Af? §/25/200 Delge
1507 ABY 57262003 Edit
1508 ARE 57252003 Refresh
1509 ABE G/25/2003
Find...
Filter..
Unfilter
Sor..
Filter in Field: |MulantM1 o j m
. Cancel e
Filter What: |g?39.2 j
[Match whole word only Phata
Statistics
ChangePsw
K | y AN)
Eit

‘ le< ‘ < || Record number 1 of & 1wy ‘] |

Figure 4.7 Filter with Drop-down menu Window

Find Pop-up Window “Find” function was designed quickly to locate any record in the
database. The user of the database can implement the function as follows (Figure 4.8):
e Select the field name from the drop down menu.

. Enter the value of the field to find.

52

= Medicago Mutant Database

10 1557
NoDMASampling 4104
Mutanthd11D |n?4?-1
MutanthZID |0?4?-1.1 Add
Undate
D HoDhASampling Mutanthd210 HumPlants| Mutant4110 DateolSeedlr 4| Cancel
1528 AS4 073812 1 073581 92642003 —_—
1529 A 073%13 1 0735 472572003 | L
1530 AG5 0735-1.4] 07351 8/75/2003 Edit
153 A5 073815 1 07381 9/25/2003 Refrash
1505 ABY 073821 1 0738-2 942602003
1506 AB7 073522 g q252003 Find...
1507 A8 173542 —
1508 ABB 07332 03 ———
Find First b Unfilter
1509 Afd 073%2 Findin Field: INoDNASampIing .1! & —_—
477 578 N Fnd et | 03 _ Sot. |
1478 AT8 07413 Findwhat — fa1ns R TE Bookmark...
1784 AT 0741-2 I~ Match whole word only Cancel | & DataGrid
1476 AT 0742-1 B e 03
1554 IXTiE 07441 i'(? [Diizplay the complete data in found recor iE =
1555 4103 074511 10/3/2003 Stafistics
15ER ATG 0745-1.2 i Found ‘8104 in record nurmber 1244 10/3/2003
b |1557 AT04 074711 \) : 10/3/2003 &
ID: 1557 ChangePsw
K | NoDNASampling: 4104 2] PR
MutankM2I0: 0747-1.1 Exn
I HumPlants: 1 S
Mutantt110; 0747-1
DateofseedTreatment: 10/3/2003
| k< | <« || Fiecord number 1244 from 1258 ¥

Figure 4.8 Find with Drop-down menu Window

Sort Pop-up Window The user of the database can sort a selected recordset as follows
(Figure 4.9):

e Choose sortinfield.

e Choose sort type. Click “Ascending” or “Descending” to sort.

) Click sort button on the sort for M. truncatula

53

a=g|

0 1682
NoDMASampling [a111
Mutanthd1 (D |0021 2
Mutanib2iD |0021 21 Add
[i] MoDNASampling Mutantd 10 DatenfSeedlr «
1581 AT KR 10/10/2003 __|
1585 AlTZ 10211 1071072003 Ul
p (1582 AN no21-2 10/10/2003 Ecit
1586 Al12 10241 1041042003 Retresh
1587 Al12 n024-2 1041042003
1274 AlR n0ze-1 Bf22f2003 Find..
1588 AlT3 Filter.
1589 AlT3 Unfiter
1590 Al1d Sort ~-.
Sort in Figld |MutantM2ID = Sart..
1593 Al14 Coa
D A Cance
1594 AlT4 SotType |NeDNASameling Bookmark..
1585 Al14 ulant DatalGrid
| Mutanti 2D —_—
1796 ATTY DateofSeedTreatment
1595 AR DateofRemovaliomFridge/FungicideT e E
Type/AmountofFungicidel) sed(ml/Lw Fhata
1597 AlTS D atenfTransplantingtoPlate v [13f2003 e
1583 ATTT 00321 1071072003 Stfistics
1599 Al1R 103241 1041352003
1803 AlB1 003z 10110/2003 & ch P
|‘ ‘ '|— hangePsw
Exit
‘ (34 | &« ” Record number 18 from 1258 5y ‘ 33| |

4.3.3 Statistics and M utant | mage Review

Figure 4.9 Sort with Drop-down Menu Window

Statistics: The users at the Noble Foundation desire to monitor the progress of the M.

truncatula mutagenesis project through the database. Therefore, the “reporting statistics”

function was designed to meet the need. The users of the database are able to generate

charts for reporting statistics through the interface as shown in Figure 4.10 and 11. They

can prepare graphic presentations that show the number of M. truncatula mutants

generated monthly. Mutant populations generated in multiple years can be presented in

parallel in the same chart. The users can generate three types of plots of which Figure

4.10 and 11 show two. Graphic files prepared can be saved in different file formats.

W Statistics

E00 =)

500 500

400 r 400

300 L 5o [2004
1 2005

200 - 200

100 1 - 100

0+ 1)
Jan ' Feh ' Mar ' Apr ' bay ' Jun dul P Aug ' Sep ' Oct ' Mow ' Dec

| 2DBar | 20Lne Tips

m L] = |

Save As Cancel

Figure 4.10 Reporting chart in two-dimensional bar

55

| Statistics Q@@

600 800
500 — 500
400 ' ,/ \V/ \\ 400
300 — H o0 = 20M
/ 2005
1
200 200
100 100
il il
Jan ' Feb Yo Mar U Apr " May ' odun ' oJul U Aug ' Sep ' Qct ' Nov ' Dec
DB | 2Dline Tis = L :
¥ Bave Ag ‘ Lancel ‘ Bl ‘

Figure 4.11 Reporting chart in two-dimensional line

Mutant Image Review: Morphological alternations are visible phenotypes that indicate
the mutations carried by individual plant. The phenotypes of M2 plants become stable.
The users of Noble Foundation requested to store the images of Medicag M2 plantsin the
database. Figure 10.12 shows the interface of the mutant image input and review of the
database. Users are able to input, browse and compare the phenotypes of mutant
individuals. This will facilitate to select mutant plants showing interesting phenotypes for

further biological characterizations (forward genetics).

56

= Mutant Image Review

MoDNASampling 42084

ImagelD 78

Frewview
Update
Save
BackTokMed

Exit

MHdu

| «|Mutant Picture Resiew [b |M

Figure 4.12 Mutant Picture Review

57

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

This thesis describes the design and implementation of a computing tool and a
relational database for the M. truncatula mutagenesis project conducted by the research
fellows in Dr. Rujin Chen’s laboratory at the Noble Foundation. The research group plans
to generate approximately 100,000 mutant lines in order to interrupt most genes in the
model legume, M. truncatula. To meet the needs of computer science embodied in the
biological project, various computer technologies such as VB, VB.NET programming,
relational database, SQL and Microsoft Access were used. The major achievements

described in this thesis are as follows:

® The computing tool, M. truncatula Computing Tool, has been developed to
generate error-free tissue sample lists for 3-dimentional pooling prior to DNA
isolation. The tool grestly facilitates the routine operation of tissue pooling.
Furthermore, M. truncatula Computing Tool facilitates the utilization of
pooled mutant populations. It provides lookup functions that allow the
scientists in the Noble Foundation to localize the grid address of DNA sample
according to tissue sample number, and to identify the DNA sample number

according to biological screening results.

58

® M. truncatula Mutant Management System described in the thesis, provides a
powerful laboratory database to manage all resources and information
generated within the long-term project. It assists in the management of the M.
truncatula mutant populations and their progenies, and to record, then store
and exploit all data generated within the project. The statistics function of the
system allows the users to monitor the day-by-day progress of the M.
truncatula mutagenesis project, which is the basis of next-step plan. The
database also provides the review of mutant images to facilitate the selection

of individual mutant for further biological analysis (Forward genetics).

5.2 Future Work

The objective of the M. truncatula mutagenesis project is to generate mutant
populations for the research community of M. truncatula. To share research resources,
one of emerging needs in the near future is to develop an external database, which will
allow the authorized scientist outside to access the M. truncatula mutant resources
generated at the Noble Foundation via the Internet. M. truncatula Mutant Management
System developed in the present work will be the basis for the development of external
database. On the other hand, the utilizations of the M. truncatula mutant resources will be
steadily grown with the increase of mutant populations. To further facilitate biological
research, one of other recognized needs is to provide various bioinformatics tools
connected with M. truncatula Mutant Management System. Those bioinformatics tools
could be already well developed such as sequence blast searching. New bioinformatics

tools will also be developed according to specific requirements of the ongoing project.

59

10.

REFERENCES

Vance, C.P., Symbiotic nitrogen fixation and phosphorus acquisition. Plant
nutrition in a world of declining renewable resources. Plant Physiology, 2001.
127(2): p. 390-7.

Young, N.D., et al., Sequencing the genespaces of Medicago truncatula and Lotus
japonicus. Plant Physiology, 2005. 137(4): p. 1174-81.

Sham, P., et al., DNA Pooling: a tool for large-scale association studies. Nature
reviews. Genetics, 2002. 3(11): p. 862-71.

Prague, C. N., M. Irwin, R. and J. Reardon, Access 2003 Bible. 2003: Wiley.
Santiago, C.D., Component Object Model (COM), DCOM, and Related
Capabilities. 2001.

Williams, M. and M. Williams, Visual C** 6 Unleashed. 2000: Sams.

Appleman, D., Developing COM/ActiveX Components with Visual Basic 6. 2000:
Sams.

Williams, C., Professional Visual Basic 6 Databases with VB, ADO, SQL Server
and MTS 1999, Birmingham: Wrox Press Ltd.

Johnson, G., Programming Microsoft ADO.NET 2.0 Applications; Advanced
Topics. 2005: Microsoft Press.

Rob, P. and C. Coronel, Database Systems. Design, Implementation and

Management. Sixth Edition ed. 2004: Course Technology.

60

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Forte, S.,, T. Howe, and K. Wall, Access Database Design and Normalization.
2002: Sams.

Lans, R.F.., Introduction to SQL. 1988: Wokingham, England ; Reading, Mass. :
Addison-Wesley Pub. Co.

Din, A.l., Structured Query Language (SQL): a Practical Introduction. 1994:
NCC Blackwell.

McFadyen, R. and V. Kanabar, Introduction to Structured Query Language.
1991: William C. Brown Pub.

How To Create the Web.config File for an ASP.NET Application

http: //support.microsoft.convkb/815179.

McComb, G., Using INI Filesto Sore Data. 1997.

Barwell, F., Professional VB.NET. 2 ed. 2002: Wiley, John & Sons, Incorporated.
Grimes, R., Developing Applications with Visual Sudio.NET. 1st edition. 2002:
Addison-Wesley Professional.

Appleman, D. and D. Appleman, Moving to VB.NET: Srategies, Concepts, and
Code. 2001: Apress.

MacDonald, M., The Book of VB.NET: .NET Insight for VB Developers. 1 edition
ed. 2002: No Starch Press.

Viescas, J.L., Building Microsoft Access Applications. Pap/Cdr edition ed. 2005:

Microsoft Press.

61

APPENDIX

A. Acronym and Abbreviation

ADO Active Data Objects

ANSI American National Standards I nstitute
API Application Programming I nterface
CGl Common Gateway Interface

COM Component Object Model

CONFIG File Configuration File

DAO Data Access Objects
DFD Data Flow Diagram
DNA Deoxyribonucleic acid

E-R Diagram Entity Relationship Diagram.

GA Genetic Algorithm
IDL Interface Description Language
INI file Initialization file

MS Access Microsoft Access

MSDASQL The Microsoft OLE-DB provider for ODBC

OCX OLE Control Extension
ODBC Open Database Connectivity
OLE Object Linking and Embedding

62

OLE DB

OOoP

RDBMS

RDO

UDA

VBXs

Object Linking and Embedding for Databases
Object-oriented Programming

Polymerase chain reaction

Relational Database Management System
Remote Data Objects

Structured Query Language

Universal Data Access

Visual Basic Controls

63

B. Glossary

Application Program Interface (API) An abbreviation of application program interface,
a set of routines, protocols, and tools for building software applications.

Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between
sequences. The program compares nucleotide or protein sequences to sequence databases
and calculates the statistical significance of matches. BLAST can be used to infer
functional and evolutionary relationships between sequences as well as help identify
members of gene families.

Component Object Model (COM) A model for binary code developed by Microsoft
that enables programmers to develop objects that can be accessed by any COM-compliant
application.

Configuration (config) File In computing, configuration files, or config files, are used to
configure the initial settings for some computer programs. They are used for user
applications, server processes and operating system settings. The files are often written in
ASCII (rarely UTF-8) and line-oriented, with lines terminated by a newline or carriage
return/line feed pair, depending on the operating system. They may be considered a
simple database. Some files are created and modified using an ASCII editor. Others are
created and modified as a side-effect of changing settings in a graphical user interface
(GUI) program. Some computer programs only read the configuration files at startup.
Others periodically check the configuration files for changes. Some can be told to re-read
the configuration files and apply the changes to the current process, or indeed to read

arbitrary files as a configuration file.

Data flow diagram (DFD) is a graphical representation of the "flow" of data through an
information system. A data flow diagram can also be used for the visualization of data
processing (structured design). It is common practise for a designer to draw a context-
level DFD first which shows the interaction between the system and outside entities. This
context-level DFD isthen "exploded" to show more detail of the system being modelled.
Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions for
the biological development of a cellular form of life or a virus. All known cellular life
and some viruses have DNAs. DNA is a long polymer of nucleotides (a polynucleotide)
that encodes the sequence of amino acid residues in proteins, using the genetic code: each
amino acid is represented by three consecutive nucleotides (atriplet code).

Dynamic-link library (DLL) isalibrary of executable functions or data that can be used
by a Windows application. Typically, a DLL provides one or more particular functions
and a program accesses the functions by creating either a static or dynamic link to the
DLL. A gtatic link remains constant during program execution while a dynamic link is
created by the program as needed. DLLs can also contain just data. DLL files usually end
with the extension .dll, .exe, .drv, or .fon.

Entity Relationship Diagram (E-R Diagram) A model provides a high-level
description of a conceptual data model. Data modeling provides a graphical notation for
representing such data models in the form of entity-relationship diagrams (ERD).
Initialization file (INI file) INI file is a configuration file that contains configuration
data for Microsoft Windows based applications.

Interface Description Language (IDL) An Interface Description Language (or

alternately, Interface Definition Language), or IDL for short, is a computer language used

65

to describe a software component's interface. IDLs describe an interface in a language-
neutral way, enabling communication between software components that do not share a
language — for example, between components written in C and components written in
Pascal.

M 1 plants Plants grown from seeds mutated by fast-neutron mutagenesis.

M 2 seeds Seeds produced by M1 plants.

M 2 plants Plants grown from M2 seeds.

M 3 seeds Seeds produced by M2 plants.

Object Link Embedded (OLE DB) It is a set of interfaces implemented using the
Component Object Model (COM). OLE DB separates the data store from the application
that needs access to it through a set of abstractions, such as connections, record sets and
attributes.

Object-oriented Programming (OOP) in computer science, object-oriented
programming is a computer programming paradigm. Many programming languages
support object-oriented programming. Many programming frameworks, like the Java
platform and the .NET Framework, are built on object-oriented principles. Object-
oriented programming is often abbreviated as OOP.

Polymerase chain reaction (PCR) is a molecular biology technique, for enzymatically
replicating DNA without using a living organism, such as E. coli or yeast. Like
amplification using living organisms, the technique allows a small amount of the DNA
molecule to be amplified exponentially. However, because it is an in vitro technique, it
can be performed without restrictions on the form of DNA and it can be extensively

modified to perform awide array of genetic manipulations.

66

Relational Database Management System (RDBMYS) A type of database management
system (RDBMYS) that stores data in the form of related tables. Relational databases are
powerful because they require few assumptions about how data is related or how it will

be extracted from the database.

67

VITA
LIN GE
Candidate for the Degree of

Master of Science

Thesiss. A COMPUTING TOOL AND A RELATIONAL DATABASE FOR A
MEDICAGO TRUNCATULA MUTAGENESIS PROJECT

Major Field: Computer Science

Education:

Received the Degree of Bachelor of Science at Suzhou Railway Teachers
College, Suzhou, P. R. Chinaiin 1991.

Received the Certificate of Geographic Information Systems at Oklahoma State
University, Stillwater, Oklahoma in 2003.

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in December, 2007.

