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CHAPTER I 
 
 

INTRODUCTION 

 

1.1. Motivation 

Among crops, legume species such as soybean and alfalfa are unique in their 

ability to fix atmospheric nitrogen thanks to the formation of root nodules in which they 

house symbiotic bacteria. Since there is no limitation for nitrogen legumes have 

developed an ability to accumulate remarkable levels of protein, and contribute nearly 

33% of the dietary protein needs of humans. The synthesis of nitrogen fertilizers 

consumes fossil energy. The use of nitrogen-fixing legumes to produce proteins results in 

a substantial decrease in the consumption of fossil fuels, and thereby lowers the 

agricultural contribution to global warming [1]. Legumes also are a rich source of edible 

oil and diverse natural products with health benefits.   

To understand the biological processes unique to legumes, it is logical to 

concentrate efforts on a model legume that has a small genome. Information gained on 

the species can be transferred to other related legume species. For this reason, Medicago 

truncatula (M. truncatula, hereafter), has emerged as a model legume. It has a small 

genome, greatly facilitating genetic analysis. The sequencing of the gene spaces in M. 

truncatula is scheduled to be completed by the end of 2006 [2]. 



 2 

Plant biologists have already amassed DNA sequence information for thousands 

of different genes and gene families in M. truncatula. One of the next challenges for plant 

biologists is to assign biological functions to all theses sequenced genes.  Missing from 

plant biologist’s toolbox is a method for generating plant populations that carry 

“knockout” mutations of sequenced genes. The process would greatly assist in efforts to 

determine the function of genes in vivo. The research community of M. truncatula has 

initialized several projects in parallel to generate large mutant populations of the legume 

using various mutagenesis methods. As a part of the efforts, Dr. Rujin Chen’s group in 

the Samuel Roberts Noble Foundation is generating a mutant library of M. truncatula 

using fast neutron radiation (Figure 1.1).   

 

Figure 1.1. Overview of construction of M. truncatula mutant population using 

fast neutron radiation. Steps requiring databasing or the assistance of computing 

tools are indicated. 
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Embodied in the project is the recognized need that multiple steps in the process 

require informatics and laboratory information management tools which monitor the 

tracking of mutated plants, their DNA and their grains; the design of primers for 

polymerase chain reaction (PCR) amplification of targeted regions, the interpretation and 

databasing of mutant alleles; and the integrated analysis of mutant alleles and phenotypic 

information. 

As shown in Figure 1.1., the scientists in the Samuel Roberts Noble Foundation 

apply the bombardment of fast neutrons to the wild-type seeds of M. truncatula. The 

mutated seeds are grown to generate M1 plants (M1, first generation of mutagenized 

plants). The M1 plants yield M2 grains (M2, second generation of mutagenized plants). 5 

of M1 plants are grown in the same pot. Their M2 grains are harvested together and are 

stored in numbered bag. The detailed information such as the radiation dosage applied, 

planting date, grain yield and visible phenotype is recorded and stored in a database. This 

is the first stage of the project. Plants for mutant screening are usually grown from M2 

seeds because most mutant phenotypes result from homozygous recessive mutations, and 

M1 plants, which are heterozygous for induced mutations, do not show the mutant 

phenotypes. For this reason, M2 plants are generated from M2 seeds. Again, the detailed 

information such as the planting date, M2 seeds used, phenotypes and resultant M3 grains 

is documented in database, while developing M2 plants. 

M2 plants are subjected to the research of “forward and reverse genetics” (Figure 

1.1.). Forward genetics is used to investigate the mutated plant exhibiting desired 

phenotype. It starts with a phenotype and moves towards the discovery of the function of 

the responsible gene. The process demands the assistance of a database to record the data 
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collected.  Varied bioinformatics tools are also required to facilitate the design of 

experiments in order to characterize responsible gene of which the interruption cause 

phenotype. Whereas forward genetics starts with the mutant and then leads to the gene, 

reverse genetics starts with the gene of interest and ends with the corresponding mutant.  

The approach is to identify the mutation in a particular gene first and then to investigate 

the consequence of the mutation. Fast neutron radiations cause several types of mutations 

including deletion; the deletion loci in chromosomes can be detected by PCR analysis 

using specific primers flanking the targeted genes. This is the basis of revere genetics 

screening of M. truncatula mutants mutagenized by fast neutron bombardments. 

The objective of this project is to interrupt genes in M. truncatula as many as 

possible, and then to identify each individual M2 plant carrying the deletion of gene of 

interest. It has been estimated that approximately 100,000 M2 mutant plants will be 

generated in order to mutagenize most genes in the model legume. Obviously, it is time-

consuming and labor-intensive if the mutation of each mutated plant is identified 

individually. Therefore, an efficient and high-throughput approach must be applied to this 

kind of large-scale association study. One recent technology to address the cost, time and 

labor that are involved in large-scale mutation screening is to carry out analyses not on 

individual DNA samples, but on pools made up of DNA from many individuals [3].  

To reduce the number of PCR analyses as much as possible, the laboratory in the 

Samuel Roberts Noble Foundation pools the seedling tissues of M2 plants both within a 

grid and across grids (Figure 1.2.). These pooled tissues are extracted for DNA samples 

serving as the templates of PCR-based screening. To pool tissue samples within a grid 

and across grids, the numbers of samples of each pool has to be identified first. 
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Obviously, computing tools are required to facilitate the large-scale pooling of seedling 

tissues. On the other hand, computing tool is also required to locate grid address that 

contains the tissue from a particular plant carrying mutation based on PCR screening. 

 

Figure 1.2. Three-dimensional pooling of tissues samples for DNA extraction.  Each 

well of one 96-well plate represents tissues from 5 M2 plants.  Tissues from 96-wells 

are pooled together to form a plate pool.  Tissues from the same column and row of 5 

96-well plates are also pooled to form column superpool (1-12) and row superpool 

(A-H). 

1.2. Objectives of the thesis 

 There are two objectives of the thesis: 

1) Develop a computing tool to facilitate the construction and subsequent utilization 

of an M. truncatula mutant library. 
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• Develop a tool that generates the list of tissues samples for plate, column 

and row pooling (3-dimensional pooling).  

• Develop a tool that calculates the grid address (i.e., the numbers of plate, 

column and row) of a given DNA sample. The tool also shows the grid 

address graphically. 

• Develop a tool that calculates the number of DNA sample according to 

PCR-screening (i.e., the numbers of plate, column and row that gives rise 

to positive results).  The tool also shows grid address graphically.  

2) Develop a relational database to assist in the management of mutant populations 

and their progenies, and to record, then store and exploit all data generated within 

the project.   

1.3. Organization of the thesis 

The thesis consists of the following chapters: Chapter one introduces the 

background of the biological research project and the embedded needs of computing tools 

and database management system. Chapter two is the literature review that describes the 

technological details of computer science, which are applied in the thesis. Chapter three 

describes the development of computing tools that facilitates the pooling of tissues 

samples, and the locating the grid address of tissues sample. The practical tests of these 

tools are performed. Chapter four focuses on the construction of a relational database that 

manages the day-by-day operation and all information generated whiling creating the 

mutant library of M. truncatula. Chapter five is the summary and proposed future work.
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CHAPTER II
 
 

LITERATURE REVIEW 

 

2.1 Component Object Model  

Component Object Model (COM) is a Microsoft platform for software component 

introduced by Microsoft in 1993. It provides a standard mechanism by which objects can 

communicate regardless of what language is used to create the components [4]. COM 

defines a structure for building program routines (objects) that can be called up and 

executed in a Windows environment. This capability was built into Windows 95/98 and 

Windows NT 4.0. Parts of Windows itself and Microsoft's own applications are also built as 

COM objects. COM provides the interfaces between objects, and Distributed COM 

(DCOM) allows them to run remotely. COM is used in the following ways. 

1) COM Objects: COM objects can be small or large. They can be written in 

any of several programming languages, and they can perform any kind of 

processing. 

2) Automation (OLE automation): Standard applications, such as word 

processors and spreadsheets, can be written to expose their internal functions 

as COM objects, allowing them to be "automated" instead of manually 

selected from a menu. 
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3) Controls: Applications can invoke COM objects, called "controls," that 

blend in and become just another part of the program. 

4) Compound Documents and ActiveX Documents: Microsoft's OLE 

compound documents are based on COM, which lets one document be 

embedded within or linked to another (OLE). ActiveX Documents are 

extensions to OLE that allow a Web browser, for example, to view not only 

Web pages, but also any kind of document. 

5) Programming Interfaces: Increasingly, Microsoft is making its standard 

programming interfaces conform to the COM object model so that there is 

continuity among all interfaces. 

COM includes interfaces and API functions that expose operating system services, 

as well as other mechanisms necessary for a distributed environment (naming, events, etc.) 

[5]. These are referred to as COM technologies (or services), and are shown in detail as 

follow: 

• Type Information: Some clients need runtime access to type information about 

COM objects. This type information is generated by the Microsoft IDL compile 

and is stored in a type library. COM provides interfaces to navigate the type 

library. 

• Structured Storage and Persistence: COM objects need a way to store their data 

when they are not running. The process of saving data for an object is called 

making an object persistent. COM supports object persistence through "Structured 

Storage", which creates an analog of a file system within a file. Individual COM 

objects can store data within the file, thus providing persistence. 
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• Monikers: Clients often require a way to allow them to connect to the exact same 

object instance with the exact same state at a later point in time. This support is 

provided via "monikers". A moniker is a COM object that knows how to create 

and initialize the content of a single COM object instance. A moniker can be asked 

to bind to the COM object it represents, such as a COM object residing on specific 

machine on the network, or a group of cells inside a spreadsheet. 

• Uniform Data Transfer: COM objects often need to pass data amongst themselves. 

Uniform Data Transfer provides for data transfers and notifications of data 

changes between a source called the data object, and something that uses the data, 

called the consumer object. 

• Connectable Objects: Some objects require a way to notify clients that an event 

that has occurred. COM allows such objects to define outgoing interfaces to clients 

as well as incoming interfaces. The object defines an interface it would like to use 

(e.g., a notification interface) and the client implements the interface. 

The advantages of COM are as follows: 

• COM promotes component-based software development  Before component-based 

development came, software programs have been coded using procedural 

programming paradigm, which supports linear form of program execution. But 

component-based program development comes with a number of advantages, such 

as the ability to use pre-packaged components and tools from third party vendors 

into an application and support for code reusability in other parts of the same 

application.  
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• COM promotes code reusability   Standard classes are normally reused in the same 

application but not easily used in other applications; however, COM components 

are designed to separate themselves from single applications and hence can be 

accessed and used by several different applications without any hassle.  

• COM promotes Object-oriented programming (OOP) The primary characteristics 

of OOP are encapsulation, which allows the implementation details of an object to 

be hidden, polymorphism, which is the ability to exhibit multiple behaviors, and 

inheritance, which allows for the reuse of existing classes in order to design new 

and more specialized classes. Among these, encapsulation is one of COM's most 

important characteristics. Encapsulation helps to hide how an object has 

implemented a method internally. This ultimately helps to incorporate more 

vigorously implemented or advanced implementation into an object at later time 

without affecting the client which uses it.  

• COM comprises the necessary mechanisms for COM components to communicate 

with each other   In the normal case, two components coded using two different 

programming languages cannot communicate with each other. But COM can make 

it possible for different language components that adhere to the COM specification 

to interact with each other, and hence COM is language-independent.  

• COM helps to access components loaded in different machines on the network 

COM component can reside anywhere on any computer or computer connected to 

a network. That is, applications using COM can access and share COM 

components regardless of their locations. Thus COM provides location 

transparency and COM components are location independent. 
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2.2 ActiveX Control 

An ActiveX control is an embeddable COM object that is implemented as an in-

process server DLL. ActiveX is the name Microsoft has given to a set of "strategic" object-

oriented programming technologies and tools. The main technology is the Component 

Object Model (COM). 

One of the main advantages of a component is that it can be re-used by many 

applications (referred to as component containers) [6]. A COM component object (ActiveX 

control) can be created using one of several languages or development tools, as Delphi, 

Visual C++, Borland C++, Visual Basic, and PowerBuilder, or with scripting tools such as 

VBScript. ActiveX controls can be used in a variety of environments not traditionally 

associated with programming, such as Microsoft Word, Microsoft Excel, Lotus, Hypertext 

Markup Language (HTML), and Internet Explorer [6].  

ActiveX controls expose themselves to the outside world and can be used in a 

variety of environments. ActiveX controls are similar to embedded object servers, in that 

they are embedded in a container and are responsible for providing a user interface. 

ActiveX controls take advantage of the capability to send events to their container; this 

capability to send events separates ActiveX controls from other in-process OLE servers [7]. 

ActiveX controls communicate with the outside world in three ways: 

• Properties: Properties are named attributes or characteristics of an ActiveX control. 

Properties can be marked as read-only, but typically these properties can be set or 

queried. 
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• Methods: Methods are functions performed by the control to access the control's 

functionality. These functions enable an external source to manipulate the 

appearance, behavior, or properties of the control. 

• Events: Events are notifications generated by the control to provide some sort of 

notification to the container. Usually, this is input by the user, such as a mouse click 

or keyboard input. 

2.3 ActiveX Data Object.NET (ADO.NET) 

ADO.NET is a set of computer software components that can be used by 

programmers to access data and data services. It is a part of the base class library that is 

included with the Microsoft .NET Framework. It commonly is used by programmers to 

access and modify data stored in relational database systems, though it can also be used to 

access data in non-relational sources [8, 9]. 

ADO.NET consists of two primary parts: 

A. Data provider These classes provide access to a data source, such as a Microsoft 

SQL Server or an Oracle database. Each data source has its own set of provider 

objects, but they each have a common set of utility classes: 

1) Connection: Provides a connection used to communicate with the data 

source. Also acts as an abstract factory for command objects.  

2) Command: Used to perform some action on the data source, such as reading, 

updating, or deleting relational data.  

3) Parameter: Describes a single parameter to a command. A common example 

is a parameter to a stored procedure.  
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4) DataAdapter: A bridge used to transfer data between a data source and a 

DataSet object.  

5) DataReader: An object used to efficiently process a large list of results one 

record at a time without storing them.  

B. DataSet DataSet objects, a group of classes describing a simple in-memory 

relational database, were the star of the show in the initial release (1.0) of the 

Microsoft .NET Framework. The classes form a containment hierarchy: 

1) A DataSet object represents a schema (either an entire database or a subset 

of one). It can contain tables and relationships between those tables.  

2) A DataTable object represents a single table in the database. It has a name, 

rows, and columns. 

3)  A DataView object "sits over" a DataTable and sorts the data ( much like a 

SQL order by clause ) and filters the records ( much like a SQL where clause 

) if a filter is set. An in-memory index is used to facilitate these operations. 

All DataTables have a default filter, while any number of additional 

DataViews can be defined, reducing interaction with the underlying database 

and thus improving performance.  

4) A DataColumn represents a column of the table, including its name and type.  

5) A DataRow object represents a single row in the table, and allows reading 

and updating of the values in that row, as well as retrieving any rows that are 

related to it through a primary-key foreign-key relationship.  
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6) A DataRowView represents a single row of a DataView; the distinction 

between a DataRow and DataRowView is important when enumerating a 

result set.  

7) A DataRelation is a relationship between tables, such as a primary-key 

foreign-key relationship. This is useful for enabling DataRow's functionality 

of retrieving related rows.  

8) A Constraint describes an enforced property of the database, such as the 

uniqueness of the values in a primary key column.  

A DataSet is populated from a database by a dataAdapter whose Connection and 

Command properties have been set. However, a DataSet can save its contents to XML 

(optionally with an XSD schema ), or populate itself from XML, making it exceptionally 

useful for web services, distributed computing, and occasionally-connected applications. 

 

2.4 Relational Database and Structured Query Language 

2.4.1 Relational Database 

The relational database model, first developed by E.F. Codd (of IBM) in 1970, 

represents a major breakthrough for both users and designers [10]. The relational database 

model is implemented through a very sophisticated relational database management system 

(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical 

and network DBMS system plus a host of other functions that make the relational database 

model easier to understand and to implement. Arguably the most important advantage of 

the RDBMS is its ability to let the user/designer operate in a human logical environment. 
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The RDBMS manages all of the complex physical details. Thus, the relational database is 

perceived by the user to be a collection of tables in which data are stored. 

The relational database is a single data repository in which data independence is 

maintained. However, the relational database model adds significant advantages as follow 

[11]:   

• Ensuring data integrity. 

• Storing data storage efficiently. 

• Giving your database application tremendous room for growth. 

• Creating a database that behaves predictably because it conforms to these well-

tested rules. 

• Enabling other database designers to understand your database because it follows 

the rules. 

• Ensuring that database schema changes are easy to implement. 

• Improving the speed of data access.  

However, the relational database’s substantial advantages over the hierarchical and 

network databases are purchased at the cost of some disadvantages as follows: 

� Substantial hardware and system software overhead. 

� Poor design and implementation is made easy. 

� May promote “islands of information” problems. 

2.4.2 Structured Query Language (SQL) 

Structured Query Language (SQL) - A standardized language that approximates the 

structure of natural English for obtaining information from database, developed by IBM 
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Research in the mid-1970s [12]. It is a standard interactive and programming language for 

getting information into and out of relational database management system. The language 

has evolved beyond its original purpose to support object-relational database management 

systems. It is an ANSI (American National Standards Institute) and an ISO standard for 

accessing database systems. 

 SQL allows users to access data in relational database management systems, such 

as Access, Sybase, FileMaker Pro, Microsoft SQL Server, Informix, Oracle, and others, by 

allowing users to query, create, insert, delete, find, modify, retrieve, update, store, manage 

the data the user wishes to see. SQL also allows users to define the data in database, and 

manipulate that data [13, 14]. 

There are many features of SQL as follows: 

• Simplicity – Several problems can be expressed in SQL more easily and 

concisely than in lower level languages. Simplicity means increased 

productivity. 

• Completeness – The language is relatively complete. i.e., for a large class of 

queries users need not use loops or branching. 

• Nonproceduriality – A Language such as the SQL Data Manipulation 

Language (DML) is known as a “nonprocedural” language. A SELECT 

statement specifies only what data is wanted, not a procedure for obtaining 

that data. 

• Data independence – SQL DML statements do not contain any reference to 

explicit access paths such as indexes or physical sequence. Thus, the SQL 
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DML provides total “physical” data independence; i.e., independence of the 

way in which the data is physically stored. 

To process an SQL statement, a relational database management system (RDBMS) 

performs the following five steps:  

1) The RDBMS first parses the SQL statement. It breaks the statement up into 

individual words, called tokens, and ascertains that the statement has a valid 

verb and valid clauses, and so on. Syntax errors and misspellings can be 

detected in this step. 

2) The RDBMS validates the statement. It checks the statement against the 

system catalog. Do all the tables named in the statement exist in the 

database? Do all of the columns exist, and are the column names 

unambiguous? Does the user have the required privileges to execute the 

statement? Certain semantic errors can be detected in this step. 

3) The RDBMS generates an access plan for the statement. The access plan is a 

binary representation of the steps that are required to carry out the statement; 

it is the DBMS equivalent of executable code. 

4) The RDBMS optimizes the access plan. It explores various ways to carry out 

the access plan. Can an index be used to speed a search? Should the RDBMS 

first apply a search condition to Table A and then join it to Table B, or 

should it begin with the join and use the search condition afterward? Can a 

sequential search through a table be avoided or reduced to a subset of the 

table? After exploring the alternatives, the RDBMS chooses one of them. 

5) The RDBMS executes the statement by running the access plan. 
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2.5 Configuration (config)  File and Initialization (INI) File  

2.5.1 Configuration (config) File  

In computing, configuration files, or config files, are used to configure the initial 

settings for some computer programs [15]. They are used for user applications, server 

processes and operating system settings. The files are often written in ASCII and line-

oriented, with lines terminated by a newline or carriage return/line feed pair, depending on 

the operating system. 

Some computer programs only read the configuration (config) files at startup. 

Others periodically check the configuration files for changes. Some can be told to re-read 

the configuration files and apply the changes to the current process, or indeed to read 

arbitrary files as a configuration file. 

The general format of a configuration file is quite simple. Each line contains a 

keyword and one or more arguments. For simplicity, most lines only contain one argument. 

Comment lines are blank lines or lines that start with a '#'.  

For example: 

<name>:<whitespace><value><newline>  
 
The <name> contains any alphanumeric character or underline (_). The <value> can 

include any character except newline. It also cannot start with either spaces or tabs since 

those are considered part of the whitespace after the colon. 

 

2.5.2 Initialization (INI) File 

An initialization file or INI file that has a .INI extension and contains configuration 

information for MS-Windows based applications [16]. Starting with Windows 95, the INI 
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file format was superseded but not entirely replaced by a registry database in Microsoft 

operating systems. Although made popular by Windows, INI files can be used on any 

system because of their flexibility. They allow a program to store configuration data, which 

can then be easily parsed and changed. 

A typical INI file format might look like this: 

[section1] 
 
; some comment on section1 
var1 = foo 
var2 = 451 
  
[section2] 
 
; another comment 
var1 = 123 
var2 = bar 

� Sections: Section declarations start with '[' and end with ']' as in [section1] and 

[section2] above. And sections start with section declarations.  

� Parameters: The "var1 = foo" above is an example of a parameter (also known as an 

item). Parameters are made up of a key ('var1'), equals sign ('='), and a value ('foo').  

� Comments: All the lines starting with a ';' are assumed to be comments, and are 

ignored. 

2.6 Visual Basic.NET (VB.NET), Relation to Visual Basic and Microsoft Access (MS 

      Access) 

2.6.1 Visual Basic.NET (VB.NET)  

Visual Basic .NET (VB.NET) is an object-oriented computer language that can be 

viewed as a evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft 

.NET framework. Its introduction has been controversial, as significant changes were made 
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that broke backward compatibility with VB and caused a rift within the developer 

community [17].  

The great majority of VB.NET developers use Visual Studio .NET as their 

integrated development environment (IDE). SharpDevelop provides an open-source 

alternative IDE. There are advantages of using VB.NET as follows [18]: 

• Problems can be solved easily and effectively. 

• It is possible to create web applications with a zero learning curve. 

Like all .NET languages, programs written in VB.NET require the .NET framework 

to execute. The .NET Framework offers a number of advantages to developers as follows:  

• It is a consistent programming model.  

• It has direct support for security. 

• It has simplified development efforts. 

• It has easy application deployment and maintenance. 

 

2.6.2 Relation to Visual Basic 
 

Whether Visual Basic .NET should be considered as just another version of Visual 

Basic or a completely different language is a topic of debate. One simple change that can be 

confusing to previous users is that of Integer and Long data types, which have each doubled 

in length; a 16-bit integer is known as a Short in VB.NET, while Integer and Long are 32 

and 64 bits respectively. Similarly, the Windows Forms GUI editor is very similar in style 

and function to the Visual Basic form editor [19]. 

The things that have changed significantly are the semantics [20]. The changes have 

altered many underlying assumptions about the "right" thing to do with respect to 
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performance and maintainability. Some functions and libraries no longer exist; others are 

available, but not as efficient as the "native" .NET alternatives. Even if they compile, most 

converted VB6 applications will require some level of refectory to take full advantage of 

the new language. Extensive documentation is available to cover changes in the syntax, 

debugging applications, deployment and terminology. 

2.6.3 Microsoft Access (MS Access) 

Microsoft Access is a popular relational database management system for creating, 

managing desktop and client/server database applications that run under the Windows 

operating system. It was packaged with Microsoft Office Professional which combines the 

relational Microsoft Jet Database Engine with a graphical user interface [4].  

Microsoft Access can use data stored in Access/Jet, Microsoft SQL Server, Oracle, 

or any ODBC-compliant data container [21]. It allows relatively quick development 

because all database tables, queries, forms, and reports are stored in the database. For query 

development, Access utilizes the Query Design Grid, a graphical user interface that allows 

users to create queries without knowledge of the SQL programming language. 

One of the benefits of Access from a programmer's perspective is its relative 

compatibility with SQL—queries may be viewed and edited as SQL statements, and SQL 

statements can be used directly as Macros and VBA Modules to manipulate Access tables 

[21]. 

There are four features for using Access as follow: 

• Access Systems are Fast to Develop. Due to the nature of Microsoft Access it is 

possible to get a system up and running in much less time than with other 

development environments. 
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• Access Systems are low risk. Due to the widespread use of Microsoft Systems 

worldwide one should never find oneself in the situation where the system will 

have to "be rewritten" because it's out of date. 

• Fast to Modify. If one has a custom report that must be included as soon as possible, 

then Microsoft Access can allow the report to be written without disrupting use of 

the system. 

• Link Systems to Other Applications. Sometimes this can be done directly, sometimes 

through an import/export process. 

 

2.7 DNA Pooling 

DNA pooling is a method for reducing the burden of genotyping large numbers of 

individuals. In DNA pooling, individuals' DNA specimens are combined into one sample, 

and that sample is genotyped to estimate allelic frequencies in the original population. 

Pooling allows allele frequencies in groups of individuals to be measured using far fewer 

PCR reactions and genotyping assays than are used when genotyping individuals [3].  

Two advantages of DNA pooling are: 

• It is a powerful and efficient tool for high throughput association analysis. 

• It significantly reduces the consumable and labor costs of a study. 
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CHAPTER III
 
 

DESIGN AND IMPLEMENTATION OF MEDICAGO COMPUTING TOOL 

 

3.1. The design of the computing tool 

3.1.1 System functioning 

 According to the requirement for tissue pooling for DNA isolation as described 

in Chapter 1, the computing tool is employed to implement the display of a DNA sample 

location pooled in 3-dimensional manner, and the generation of a DNA sample list for 

pooling. It includes the following computing functions: 

1) Calculate the grid location (i.e., the numbers of plate, column and row) and unit 

number (5 plates per unit) of each pooled DNA sample according to the number 

of DNA sample. 

2) Calculate the number of DNA samples and its unit number belonging according to 

the grid address (i.e., the numbers of plate, column and row) resulting from PCR 

screening. 

3) Calculate and generate the list of the numbers of DNA samples in certain column 

of each unit according to the numbers of unit and column.  

4) Calculate and generate the list of the numbers of DNA samples in certain row of 

each unit according to the numbers of unit and row. 
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The scientists at the Noble Foundation prefer to lookup the graphics display of the 

grid address of the DNA sample in the 96-wells plate format, which consists of 12 

columns (C1, C2, C3  … C12) and 8 rows (RA, RB, RC … RH) (Figure 3.1); therefore, 

the graphics display was programmed to show the grid address of the DNA sample in a 

96-well plate according to the number of the DNA sample or the grid address of the DNA 

sample resulting from PCR-screening. 

 

Figure3.1. Graphic display of grid address of DNA samples in 96-well plate format. 

3.1.2 Construction of user friendly interface 

The computing tool was written in the Visual Basic 6.0 language using an object-

oriented methodology. It operates in Windows XP. The application of each function is 

selectable from the main interface. Tables 3.1-4 show objects designed for 4 function 

interfaces.    
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Table 3.1  Properties of interface that implements the display of grid address and 

unit number of DNA sample 

Object Property Setting 
Caption Location 
Height 7995 

frmGrid 
(Form) 

Width 12000 
Label1 Caption Display Grid Location of Each Pooled DNA 

Sample From Mutant Lines 
Label2 Caption Input No. of DNA Sample 
Label3 Caption Location 
Label4 Caption (0 ~ 11): C1 – C 12 

(12 ~ 19): RA - RH 
Shape 0-Rectangle 

( 0 ~ 95 ) 
Height 400 

Shape 

Width 621 
TextBox1 Input Number of DNA Sample > 0 
TextBox2 Data Field Grid Location 

(P-Plate; C-Column; R-Row; U-Unit) 
CommandButton1 Caption Display Grid Location of DNA Sample 
CommandButton2 Caption Clear All 
CommandButton3 Caption Back 
CommandButton4 Caption Exit 
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Table3.2 Properties of interface that implements the display of DNA sample number 

Object Property Setting 
Caption Number of DNA Samples 
Height 7905 

frmCertainLocation 
(Form) 

Width 10800 
TextBox1 Input Number of plate > 0 
TextBox2 Input 0 < column number< 13 
TextBox3 Input From (A or a) to (H or h) 

Uppercase or Lowercase 
TextBox4 Text No. of DNA Sample 

(C-Column; R-Row, P-Plate, 
U-Unit) 

CommandButton1 Caption Display 
CommandButton2 Caption Clear 
CommandButton3 Caption Back 
CommandButton4 Caption Exit 

Shape 0-Rectangle 
( 0 ~ 95 ) 

Height 400 

Shape 

Width 621 
Label1 Caption Input Plate Number 
Label2 Caption Input Column 
Label3 Caption Input Row 
Label4 Caption No. of DNA Samples 
Label5 Caption (0 ~ 11): C1 - C12 

(12 ~ 19): RA - RH 
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Table3.3 Properties of interface that generates DNA samples list for column pooling  

Object Property Setting 
Caption Column 
Height 6800 

frmDNAColumn 
(Form) 

Width 12000 
Label1 Caption Input Unit  

1 Unit = 5 Plates = 480 ( Wells ) 
lblCol 
(Label) 

Caption Input Column 
 

lblColNum 
(Label) 

Caption No. of DNA Sample  

lblTitle 
(TextBox) 

Data Field Display DNA Samples of Mutant  
Lines in Certain Column of Each Unit 

txtUnit 
(TextBox) 

Input > 0 

txtCol 
(TextBox) 

Input 0 < column number < 13 

Text1 
(TextBox) 

Text List of No. of DNA sample 

CommandButton1 Caption Proceed 
CommandButton2 Caption Display No. of DNA Samples 
CommandButton3 Caption Clear All 
CommandButton4 Caption Back 
CommandButton5 Caption Exit 
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Table3.4 Properties of interface that generates DNA samples list for row pooling  

Object Property Setting 
Caption Row 
Height 6880 

frmDNARow 
(Form) 

Width 12000 
Label1 Caption Display DNA Samples of Mutant Lines in 

Certain Row of Each Unit 
Label2 Caption Input Unit: 

1 Unit = 5 Plates = 480( Wells ) 
Label3 Caption Input Row  

From (A or a) to (H or h) 
Label4 Caption No. of DNA Sample: 
Text1 
(TextBox) 

Data member List of No. of DNA Sample 

txtRow 
(TextBox) 

Data Input (A or a) to (H or h) 
Uppercase or Lowercase 

txtUnit 
(TextBox) 

Data Input > 0 

Command1 Caption Proceed 
Command2 Caption Display No. of DNA Sample 
Command3 Caption Clear All 
Command4 Caption Back 
Command5 Caption Exit 

 
 

3.1.3 Graphic Display of a Grid Address 

To achieve the graphics indication of DNA sample in 96-well plate format, I used 

shape control built in Visual basic to show 96 wells. They were organized into 12 

Columns and 8 Rows. The algorithm for graphic displays was the following codes: 

 
Select Case Text9.Text 
                    Case "A" 
                    Case "a" 
                        R = 1 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
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                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                          If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                             Shape1(I).FillColor = &HC000& 
                             Shape1(I).FillStyle = 7 
                          End If 
                        Next I 
                    Case "B" 
                    Case "b" 
                        R = 2 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                              Shape1(I).FillColor = &HC000& 
                              Shape1(I).FillStyle = 7 
                            End If 
                        Next I 
                    Case "C" 
                    Case "c" 
                        R = 3 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                        Next I 
                    Case "D" 
                    Case "d" 
                        R = 4 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
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                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                         Next I 
                    Case "E" 
                    Case "e" 
                        R = 5 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                         Next I 
                    Case "F" 
                    Case "f" 
                        R = 6 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                        
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                        Next I 
                    Case "G" 
                    Case "g" 
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                        R = 7 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
                     
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                        Next I 
                    Case "H" 
                    Case "h" 
                        R = 8 
                        ID = 12 * (R - 1) + Text8.Text + 96 * (Text7.Text - 1) 
     
                        If ID Mod 480 = 0 Then 
                            Unit = ID \ 480 
                        Else 
                            Unit = ID \ 480 + 1 
                        End If 
                        Text6.Text = ID & "    " & "(Unit is: " & Unit & ")" 
                        For I = 0 To 95 
                            If (I) \ 12 + 1 = R Or (I) Mod 12 + 1 = Text8.Text Then 
                                Shape1(I).FillColor = &HC000& 
                                Shape1(I).FillStyle = 7 
                            End If 
                        Next I 
                    Case Else 
                        MsgBox " invalid Row Number, Please Input Again!!!" 
                        Text6.Text = "" 
                        Text9.Text = "" 
                End Select 
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3.2. The implementation of the computing tool   

The main interface of the software package in the Windows system is shown in 

Figure 3.2. It was named the Medicago Computing Tool. The following sections 

demonstrate each function of the software.  

 
 

Figure 3.2. Interface of computing tools to facilitate DNA sample 

pooling and screening of M. truncatula mutants. 

3.2.1. Lookup of the grid address of a DNA sample of mutant lines 

The scientists at the Noble Foundation pool tissue samples from multiple mutant 

lines prior to DNA isolations. The pooling architecture is described in Chapter 1 (Figure 

1. 2). Since the DNA samples of ~100,000 mutant lines are pooled, the localization of a 

particular DNA sample is difficult without the aid of a computing tool.  One of the 
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functions of the Medicago Tool is to look up the grid address of DNA samples (Figure 

3.3). For instance, if a user would like to check the location of a DNA sample, No. 5806 

that is input into the software through the input panel (Figure 3.3), the grid address of the 

DNA sample is displayed when the user clicks the button of “Display Grid Locations of 

DNA Samples”. The software thereafter indicates that the DNA sample is in Plate (P) 61, 

Column (C) 10 and Row (R) D.  As mentioned in Chapter 1, one pooling unit consists of 

DNA samples of 5 plates. The users would like to know the unit number when they look 

at the grid address of any specific DNA sample; therefore, the software also is designed 

to display the Unit number. As shown in Figure 3.3, for example, DNA sample No. 5806 

belongs to Unit 13.  In addition, the users at the Noble Foundation prefer to view the 

graphics display of grid address of a DNA sample on a plate. The software, therefore, 

was written to satisfy this requirement.  On the interface of grid address lookup, 

overlapping shadowed cells indicate DNA sample location on a 96-well plate (Figure 

3.3).  To look up the location of new DNA samples, users can click the button, “Clear 

All”, to erase existing input and display. The “Back” button allows the user to go back to 

main menu for other applications. The “Exit” button allows the user to log off the 

computing tool system. 
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Figure 3.3 Interface of grid address lookup of DNA samples 

 

3.2.2. Lookup of DNA sample Number according to PCR screening results 

The scientists at the Noble Foundation conduct PCR reactions to screen pooled 

DNA samples in order to identify a desired mutant line. As described in Chapter 1, one 

pooling unit consists of 25 pooled DNA samples; 25 PCR reactions with the 25 pooled 

DNA samples allow to screening 2400 mutant lines. For each target gene, specific primer 

pair is designed to run the 25 PCR reactions. Three positive signals; i.e., three identical 

PCR products appear if one mutant carrying deletion in a given target gene exits in the 

2400 mutant lines (Figure 3.4).  The Medicago tool allows the user to obtain the DNA 

sample number of a particular mutant group (5 mutants per well) that gives rise to the 

positive screening results.  
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Figure 3.4  Example of 3-dimenional PCR-based screenings of one pooling 

unit consisting of 2400 mutant lines.  

As shown in Figure 3.5, the user is able to input PCR results; i.e., the numbers of 

plate, row and column that give rise to positive signals. The information is processed 

when the button, “Display No. of DNA Samples”, is clicked. For instance, the PCR 

screening results shown in Figure 3.4 indicate that the DNA sample from the grid address 

of Plate-19, Row-C and Column-6 carries a target mutation. To find out the DNA sample 

number of the grid address for further mutant analysis, user can input the PCR screening 

results on the interface of DNA sample No. Lookup (Figure 3.5). The DNA sample 

number and its unit number are displayed when clicking the button of “Display No. of 
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DNA Samples”. The location of the DNA sample on 96-well plate also is indicated 

graphically on the same interface. 

 

 
 

 

Figure 3.5 Example of lookup of DNA sample No. according to PCR 

screening results (up panel). The DNA sample location on data spreadsheet is 

shown in bold (low panel). 
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3.2.3. Display of a DNA sample list for row and column pooling 

The plate pool consists of 96 DNA samples of which their numbers are in order. 

By contrast, column and row pools of each unit (5 plates) consist of 40 and 60 DNA 

samples across plates, respectively. Therefore, extreme care must be taken when 

preparing row and column pools in order to avoid mishandling. It is estimated that DNA 

samples of approximately 100,000 mutant lines are pooled in order to screen mutation in 

most given genes. The scientists at the Noble Foundation require a computing tool that 

generates the lists of DNA samples for column and row pooling. The Medicago 

Computing Tool includes the functions to assist the routine manipulations.   

Figure 3.6 demonstrates the column pooling using the computing tool. To 

generate the DNA sample list for the pooling of column 11 in unit 58, the numbers of the 

unit (58) and the column (11) are input through the function interface. The numbers of 60 

DNA samples are displayed. Users are able to paste and print the list of DNA samples for 

pooling as follows: 

The list of DNA samples for the pooling of column 11 in unit 58: 27371, 27383, 

27395, 27407, 27419, 27431, 27443, 27455, 27467, 27479, 27491, 27503, 27515, 27527, 

27539, 27551, 27563, 27575, 27587, 27599, 27611, 27623, 27635, 27647, 27659, 27671, 

27683, 27695, 27707, 27719, 27731, 27743, 27755, 27767, 27779, 27791, 27803, 27815, 

27827, and 27839. 

 



 38 

 

Figure 3.6 Example of generation of DNA sample list for column pooling 

 

Likewise, the function interface as shown in Figure 3.7 was designed to generate 

the list of DNA samples for row pooling. For the pooling of row “g” in unit 129, the 

numbers of DNA samples are as follows:  

The list of DNA samples for the pooling of row “g” in unit 129: 61513, 61514, 

61515, 61516, 61517, 61518, 61519, 61520,61521, 61522, 61523, 61524, 61609, 61610, 

61611, 61612, 61613, 61614, 61615, 61616, 61617, 61618, 61619, 61620, 61705, 61706, 

61707, 61708, 61709, 61710, 61711, 61712, 61713, 61714, 61715, 61716, 61801, 61802, 

61803, 1804, 61805, 61806, 61807, 61808, 61809, 61810, 61811, 61812, 61897, 61898, 

61899, 61900, 61901, 61902, 61903, 61904, 61905, 61906, 61907 and 61908. 
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Figure 3.7 Example of row pooling of DNA sample using the computing tool. 
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CHAPTER IV
 
 

DEVELOPMENT AND IMPLEMENTATION OF MANAGEMENT SYSTEM 

FOR MEDICAGO MUTANT RESOURCES 

 

4.1 Overall Structure Design of the Database Management System  

One objective of the thesis is to develop a relational database to assist in the 

management of the M. truncatula mutant populations and their progenies, and to record, 

then store and exploit all data generated within the project. The relational database 

consists of three functional components: user management, data management and data 

analysis (Figure 4.1). 

• User management: This component allows users of Noble Foundation to log on, 

input password and change password in order to maintain the security of the 

system. 

• Data management: This component implements many functions such as day-by-

day data input, sorting, bookmark, filter and so on. 

• Data analysis and mutant image review: This component allows the users to 

monitor the progress of the M. truncatula mutagenesis project. It also allows to 

viewing and comparing mutant images in order to pick desired mutant individual 

for further biological characterization. The data statistics implemented through 
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this component provides information such as the progress of the project, the basis 

of the next-step plan. 

 
Figure 4.1 Flow Chart of the Management System for M. truncatula Mutant Resources  

 
 
4.2 Database Normalization and E-R Diagram 
 
4.2.1 Database Normalization 
 

Data normalization is the process of designing a database and organizing data to 

take best advantage of relational database principles. Normalizing allows to reaching the 

following goals: 

• Minimization of redundancy in data. 

• Removal of insertion, deletion and updating of anomalies during database 

activities. 

• Reduction of the need to reorganize data when it is modified or enhanced. 

Flat Table A flat table as shown in Table 4.1 includes all fields of data generated in the 

M. truncatula mutagenesis project. The database has a designation of “Mutant”. Flat table 

Database Management System 

Database Security & 
Access 

Data Input & 
Management 

Statistics & Image 
Review  

User 
Register 

Change 
Password 

Day-by-day Data Input & 
Edit, Sort, Filter, Bookmark… 

Data 
Analysis 

Image 
Review 
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is not the most efficient design, and it consumes more physical space on hard drive than a 

set of normalized database tables. Therefore, normalized tables were generated thereafter. 

Table 4.1 “Mutant” flat table 

Field Name Description 
MutantM1ID ID of mutant M1 
PlantDate The date of planting 
GerminationDate The data of seed germination 
FlowerDate 
NumPlants 

The date of seed flowering 
The number of plant grown 

HarvestDate The date of seed harvest 
WeightofSeedBag Weight of seed collected in each bag 
Phenotype Mutant phenotype description 
OtherComment Additional information input 
ScreenedforNodulation Mutant screened for nodulation phenotype 
NoDNASampling The number of tissue for DNA isolation 
MutantM2ID ID of mutant M2 
DateofSeedTreatment The date of seed treatment germination 
DateofRemovalfromFungicideTreatment The date of removing the fungicide 

reagent 
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as 

concentration 
DateofTransplantingtoPlate The date of transplanting treated seeds on 

to germinating plate 
DateofSeedlingInoculation The date of seedling inoculated 
DateofTransplantingtoPot The date of transplanting seedlings to pot 
Group Batch number 
ImageID ID of mutant image 
Image Images of mutant  
 
 

First Normal Form  First normal form (1NF) excludes the possibility of repeating 

groups by requiring that each field in a database hold an atomic value, and that records be 

defined in such a way as to be uniquely identifiable by means of a primary key. In the flat 

table designed above (Table 4.1), there are many repeated sets of fields for the data of 

mutant generations 1 and 2. I identified “MutantM1” and “MutantM2” as its two distinct 

topics. Taking “Mutant” flat table to the first normal form would mean that I could create 
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two tables: one for “MutantM1” and one for “MutantM2”. Table 4.2 and 4.3 present the 

data fields in 1NF.  

Table 4.2 “MutantM1” table 

Field Name Description 
MutantID A unique ID for mutant 
MutantM1ID ID of mutant M1. This field is primary key. 
PlantDate The date of planting 
GerminationDate The data of seed germination 
FlowerDate The date of seed flowering 
NumPlants The number of plant grown 
HarvestDate The date of seed harvest 
WeightofSeedBag Weight of seed collected in each bag 
Phenotype Mutant phenotype description 
OtherComment Additional information input 
ScreenedforNodulation Mutant screened for nodulation phenotype 

 
 

Table 4.3 “MutantM2” table 

Field Name Description 
MutantM1ID ID of mutant M1 
MutantM2ID ID of mutant M2. This field is primary 

key 
NoDNASampling The number of tissue for DNA 

isolation. This field is foreign key.  
DateofSeedTreatment The date of seed treatment germination 
DateofRemovalfromFridge/FungicideTreatment The date of removing the fungicide 

reagent 
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as 

concentration 
DateofTransplantingtoPlate The date of transplanting treated seeds 

on to germinating plate 
DateofSeedlingInoculation The date of seedling inoculated 
DateofTransplantingtoPot The date of transplanting seedlings to 

pot 
NumPlants The number of plant grown 
Phenotype Mutant phenotype description 
OtherComments Additional information input 
Group Batch number 
ImageID ID of mutant image 
Image Images of mutant 
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Second Normal Form  Second Normal Form (2NF) requires that all data elements in a 

table are functionally dependent on all of the table's primary keys. If data elements only 

depend on part of a primary key, then they are parsed to separate tables. If the table has a 

single field as the primary key, it is automatically in 2NF. A table is in 2NF if and only if 

1) it is in 1NF and 2) each non-primary key attribute is irreducibly dependent on the 

primary key. In “MutantM2” table, ID, NoDNASampling, Location can become a table 

called “MutantM2Track” with a primary key of NoDNASampling, as shown in Table 4.4. 

Table 4.4 “MutantM2Track” table 

Field Name Description 
ID AutoNumber 
NoDNASampling The number of tissue for DNA isolation. 

This field is primary key  
Location Mutant grid location 
 

Third Normal Form The third normal form (3NF) is used to check whether all the non-

key attributes of a relation depend only on the candidate keys of the relation. This means 

that all non-key attributes are mutually independent or, in other words, that a non-key 

attribute cannot be transitively dependent on another non-key attribute. ImageID and 

Image attributes are less dependent upon the MutantM2ID then they are on the image 

attribute. ImageID, NoDNASampling, Seedm2ID and Image can become a new table 

called image. Table 4.5 and 4.6 show the Table 4.3 in 3NF. 
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Table 4.5 “MutantM2” table 

Field Name Description 
MutantM1ID ID of mutant M1 
MutantM2ID ID of mutant M2. This field is primary 

key 
NoDNASampling The number of tissue for DNA 

isolation. This field is foreign key.  
DateofSeedTreatment The date of seed treatment germination 
DateofRemovalfromFridge/FungicideTreatment The date of removing the fungicide 

reagent 
Type/AmountofFungicideUsed(mL/Lwater) Information of fungicide used such as 

concentration 
DateofTransplantingtoPlate The date of transplanting treated seeds 

on to germinating plate 
DateofSeedlingInoculation The date of seedling inoculated 
DateofTransplantingtoPot The date of transplanting seedlings to 

pot 
NumPlants The number of plant grown 
Phenotype Mutant phenotype description 
OtherComments Additional information input 
Group Batch number 
 

 

Table 4.6 “Image” table 

Field Name Description 
ImageID A unique number for image. This field is 

primary key 
NoDNASampling The number of tissue for DNA isolation 

Seedm1ID ID of mutant M2 

Seedm2ID ID of mutant M2 
Image Images of mutant 
 
 

4.2.2 Design of Entity-Relationship Modeling  

Databases are used to store structured data. The structure of the data, together 

with other constraints, can be designed using a variety of techniques, one of which is 

called entity-relationship (E-R) modeling. Figure 4.2 shows an E-R Diagram of the 
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Management System for M. truncatula Mutant Resources. Its components are: 1) 

rectangles representing entity sets, 2) ellipses representing attributes, 3) diamonds 

representing relationship sets, and 4) lines linking attributes to entity sets and entity sets 

to relationship sets.  

 

Figure 4.2 E-R Diagram of the Management System for M. truncatula Mutant Resources  

 

4.3 Implementation of the Management System for M. truncatula Mutant Resources 

4.3.1 Database Security and Access 

To control what an individual user or group of users can do with a given database, 

the database has to be secured. It is necessary to consider who will use the database and 

what types of activities the users should be allowed to perform with the database. These 

activities might include viewing, modifying or deleting database objects or information.  
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To control the access, an input interface of user ID and password was generated 

for the M. truncatula mutant management system (Figure 4.3).  User is also able to 

change password through the interface as shown in Figure 4.4 after logging on. Currently, 

the database is used by the research staff on the same project. In the near future, other 

researchers will be allowed to assess the database. However, the administrator of the 

database may authorize limited rights such as viewing only to the user outside. 

 

Figure 4.3 Login Interface 
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Figure 4.4 Change Password Interface 

4.3.2 Data Input and Management  

According to users’ requirement, the component of “Data Input and 

Management” achieves many functions such as day-by-day data input, sorting, 

bookmark, filter and so on. The runtime interface of the component is shown in the 

Figure 4.5 

Data manipulation   The component allows users to conduct data manipulation 

including adding, updating, deleting, canceling, editing and refreshing. Other functions of 

the component includes navigating (move first, move previous, move next, and move 

last), finding (first and next), filtering, sorting and as well as adjusting of datagrid width 

based on the longest field in underlying source of data. 
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Fig 4.5 Interface of “Data Input and Management” 

 
 

• “Add” Button: Click on the button to display the interface of data adding 

for users.  

• “Update” button: If the user is either adding or editing a record, the 

“Update” button is enabled and can be pressed.  

• “Cancel” button: Click on the button to cancel last operation.  

• “Refresh” button: Click on the button to back to the very first record. 

• “Delete” button: Click on the button to display “delete command” working 

window for user to delete data that will not be use anymore with a pop-up 

window to remind users to make sure to delete the record. 
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• “Edit” button: Click on the button to displays “edit command” working 

window for user to edit data in any column field and highlight the edited 

record for user.  

• “DataGrid” button: Click on the button to display “DataGrid command” 

working window for users, which allow to adjusting datagrid width based 

on the longest field in underlying source. 

Bookmark Pop-up Window Bookmark is a way to mark a record in a recordset so that 

users can go back to the record later quickly without remembering the position of that 

record. The users of the database can implement the function as follows (Figure 4. 6):  

• Select the record to be bookmarked by clicking it in DataGrid or through 

Navigation button in M. truncatula mutant interface, then input the 

bookmark name in the textbox above, and then press “Enter” key or click 

“Add” button to add this name to the list box below.  

• Click bookmark name in the listbox, then click “Jump” button; 

alternatively, double-click the bookmark name in the listbox, if user wants 

to go back to record bookmarked. 

• Click bookmark name in the listbox, then click “Delete” button, if user 

wants to delete the bookmark name,  

• Click bookmark name in the listbox, then click “Help” button, if user 

wants to get the direction about using “bookmark” function.  
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Figure 4.6 Bookmark Pop-up Window. 

 

Filter Pop-up Window  “Filter” function is used to specify which records in the database 

will be included in the specified project. The user of the database can implement the 

function as follows (Figure 4.7): 

• Select the field name from the drop down menu. 

• Enter the value of the field to filter. 
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Figure 4.7 Filter with Drop-down menu Window 

 

 Find Pop-up Window “Find” function was designed quickly to locate any record in the 

database. The user of the database can implement the function as follows (Figure 4.8): 

• Select the field name from the drop down menu. 

• Enter the value of the field to find. 
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Figure 4.8 Find with Drop-down menu Window 

 

Sort Pop-up Window The user of the database can sort a selected recordset as follows 

(Figure 4.9): 

• Choose sort in field. 

• Choose sort type. Click “Ascending” or “Descending” to sort. 

• Click sort button on the sort for M. truncatula  
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Figure 4.9 Sort with Drop-down Menu Window 

4.3.3 Statistics and Mutant Image Review 

Statistics: The users at the Noble Foundation desire to monitor the progress of the M. 

truncatula mutagenesis project through the database. Therefore, the “reporting statistics” 

function was designed to meet the need. The users of the database are able to generate 

charts for reporting statistics through the interface as shown in Figure 4.10 and 11. They 

can prepare graphic presentations that show the number of M. truncatula mutants 

generated monthly. Mutant populations generated in multiple years can be presented in 
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parallel in the same chart.  The users can generate three types of plots of which Figure 

4.10 and 11 show two. Graphic files prepared can be saved in different file formats. 

 

 

Figure 4.10 Reporting chart in two-dimensional bar 
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Figure 4.11 Reporting chart in two-dimensional line 

 

Mutant Image Review: Morphological alternations are visible phenotypes that indicate 

the mutations carried by individual plant. The phenotypes of M2 plants become stable. 

The users of Noble Foundation requested to store the images of Medicag M2 plants in the 

database. Figure 10.12 shows the interface of the mutant image input and review of the 

database. Users are able to input, browse and compare the phenotypes of mutant 

individuals. This will facilitate to select mutant plants showing interesting phenotypes for 

further biological characterizations (forward genetics).        
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Figure 4.12 Mutant Picture Review



 58 

CHAPTER V
 
 

SUMMARY AND FUTURE WORK 

 

5.1 Summary 

This thesis describes the design and implementation of a computing tool and a 

relational database for the M. truncatula mutagenesis project conducted by the research 

fellows in Dr. Rujin Chen’s laboratory at the Noble Foundation. The research group plans 

to generate approximately 100,000 mutant lines in order to interrupt most genes in the 

model legume, M. truncatula. To meet the needs of computer science embodied in the 

biological project, various computer technologies such as VB, VB.NET programming, 

relational database, SQL and Microsoft Access were used. The major achievements 

described in this thesis are as follows: 

• The computing tool, M. truncatula Computing Tool, has been developed to 

generate error-free tissue sample lists for 3-dimentional pooling prior to DNA 

isolation. The tool greatly facilitates the routine operation of tissue pooling. 

Furthermore, M. truncatula Computing Tool facilitates the utilization of 

pooled mutant populations. It provides lookup functions that allow the 

scientists in the Noble Foundation to localize the grid address of DNA sample 

according to tissue sample number, and to identify the DNA sample number 

according to biological screening results.  
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• M. truncatula Mutant Management System described in the thesis, provides a 

powerful laboratory database to manage all resources and information 

generated within the long-term project. It assists in the management of the M. 

truncatula mutant populations and their progenies, and to record, then store 

and exploit all data generated within the project. The statistics function of the 

system allows the users to monitor the day-by-day progress of the M. 

truncatula mutagenesis project, which is the basis of next-step plan. The 

database also provides the review of mutant images to facilitate the selection 

of individual mutant for further biological analysis (Forward genetics).  

5.2 Future Work 

The objective of the M. truncatula mutagenesis project is to generate mutant 

populations for the research community of M. truncatula.  To share research resources, 

one of emerging needs in the near future is to develop an external database, which will 

allow the authorized scientist outside to access the M. truncatula mutant resources 

generated at the Noble Foundation via the Internet. M. truncatula Mutant Management 

System developed in the present work will be the basis for the development of external 

database. On the other hand, the utilizations of the M. truncatula mutant resources will be 

steadily grown with the increase of mutant populations. To further facilitate biological 

research, one of other recognized needs is to provide various bioinformatics tools 

connected with M. truncatula Mutant Management System. Those bioinformatics tools 

could be already well developed such as sequence blast searching.  New bioinformatics 

tools will also be developed according to specific requirements of the ongoing project.
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APPENDIX

 

A. Acronym and Abbreviation 

ADO  Active Data Objects 

ANSI   American National Standards Institute 

API  Application Programming Interface 

CGI  Common Gateway Interface 

COM   Component Object Model 

CONFIG File Configuration File 

DAO  Data Access Objects 

DFD  Data Flow Diagram 

DNA  Deoxyribonucleic acid  

E-R Diagram Entity Relationship Diagram. 

GA  Genetic Algorithm      

IDL  Interface Description Language 

INI file  Initialization file 

MS Access Microsoft Access 

MSDASQL  The Microsoft OLE-DB provider for ODBC 

OCX  OLE Control Extension 

ODBC  Open Database Connectivity 

OLE  Object Linking and Embedding 
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OLE DB  Object Linking and Embedding for Databases 

OOP   Object-oriented Programming  

PCR  Polymerase chain reaction  

RDBMS  Relational Database Management System  

RDO  Remote Data Objects 

SQL  Structured Query Language 

UDA  Universal Data Access 

VBXs  Visual Basic Controls 

 



 64 

B. Glossary 

Application Program Interface (API) An abbreviation of application program interface, 

a set of routines, protocols, and tools for building software applications. 

Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between 

sequences. The program compares nucleotide or protein sequences to sequence databases 

and calculates the statistical significance of matches. BLAST can be used to infer 

functional and evolutionary relationships between sequences as well as help identify 

members of gene families.  

Component Object Model (COM) A model for binary code developed by Microsoft 

that enables programmers to develop objects that can be accessed by any COM-compliant 

application. 

Configuration (config) File In computing, configuration files, or config files, are used to 

configure the initial settings for some computer programs. They are used for user 

applications, server processes and operating system settings. The files are often written in 

ASCII (rarely UTF-8) and line-oriented, with lines terminated by a newline or carriage 

return/line feed pair, depending on the operating system. They may be considered a 

simple database. Some files are created and modified using an ASCII editor. Others are 

created and modified as a side-effect of changing settings in a graphical user interface 

(GUI) program. Some computer programs only read the configuration files at startup. 

Others periodically check the configuration files for changes. Some can be told to re-read 

the configuration files and apply the changes to the current process, or indeed to read 

arbitrary files as a configuration file. 
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Data flow diagram (DFD) is a graphical representation of the "flow" of data through an 

information system. A data flow diagram can also be used for the visualization of data 

processing (structured design). It is common practise for a designer to draw a context-

level DFD first which shows the interaction between the system and outside entities. This 

context-level DFD is then "exploded" to show more detail of the system being modelled. 

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions for 

the biological development of a cellular form of life or a virus. All known cellular life 

and some viruses have DNAs. DNA is a long polymer of nucleotides (a polynucleotide) 

that encodes the sequence of amino acid residues in proteins, using the genetic code: each 

amino acid is represented by three consecutive nucleotides (a triplet code). 

Dynamic-link library (DLL) is a library of executable functions or data that can be used 

by a Windows application. Typically, a DLL provides one or more particular functions 

and a program accesses the functions by creating either a static or dynamic link to the 

DLL. A static link remains constant during program execution while a dynamic link is 

created by the program as needed. DLLs can also contain just data. DLL files usually end 

with the extension .dll, .exe, .drv, or .fon. 

Entity Relationship Diagram (E-R Diagram) A model provides a high-level 

description of a conceptual data model. Data modeling provides a graphical notation for 

representing such data models in the form of entity-relationship diagrams (ERD). 

Initialization file (INI file) INI file is a configuration file that contains configuration 

data for Microsoft Windows based applications.  

Interface Description Language (IDL) An Interface Description Language (or 

alternately, Interface Definition Language), or IDL for short, is a computer language used 
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to describe a software component's interface. IDLs describe an interface in a language-

neutral way, enabling communication between software components that do not share a 

language – for example, between components written in C and components written in 

Pascal. 

M1 plants Plants grown from seeds mutated by fast-neutron mutagenesis. 

 M2 seeds Seeds produced by M1 plants. 

 M2 plants Plants grown from M2 seeds. 

 M3 seeds Seeds produced by M2 plants. 

Object Link Embedded (OLE DB) It is a set of interfaces implemented using the 

Component Object Model (COM). OLE DB separates the data store from the application 

that needs access to it through a set of abstractions, such as connections, record sets and 

attributes. 

Object-oriented Programming (OOP) in computer science, object-oriented 

programming is a computer programming paradigm. Many programming languages 

support object-oriented programming. Many programming frameworks, like the Java 

platform and the .NET Framework, are built on object-oriented principles. Object-

oriented programming is often abbreviated as OOP. 

Polymerase chain reaction (PCR) is a molecular biology technique, for enzymatically 

replicating DNA without using a living organism, such as E. coli or yeast. Like 

amplification using living organisms, the technique allows a small amount of the DNA 

molecule to be amplified exponentially. However, because it is an in vitro technique, it 

can be performed without restrictions on the form of DNA and it can be extensively 

modified to perform a wide array of genetic manipulations. 
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Relational Database Management System (RDBMS) A type of database management 

system (RDBMS) that stores data in the form of related tables. Relational databases are 

powerful because they require few assumptions about how data is related or how it will 

be extracted from the database.   
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