A PROPOSED UNIFIED VISUAL PROGRAMMING
LANGUAGE

By
NABOU DIENG
Bachelor of Science in Computer Science
Oklahoma State University
Stillwater, Oklahoma
2005

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2010

A PROPOSED UNIFIED VISUAL
PROGRAMMING LANGUAGE

Thesis Approved:

Dr. Blayne Mayfield

Thesis Adviser

Dr. John Chandler

Dr. Johnson Thomas

Dr. Mark Payton

Dean of the Graduate College

ACKNOWLEDGMENTS

The successful preparation of this research would not have been possible without the
invaluable contribution of my adviser, Dr Blayne Mayfield, nor would it have been possible
without the great educational experience received from the professors of the Computer
Science department of Oklahoma State University. For these reasons I would like to express
my deepest gratitude to the members of my committee: Dr Blayne Mayfield, Dr John Chandler
and Dr Johnson Thomas. I also would like to extend my sincere thanks to Dr Mansur
Samadzadeh and Dr Nohpill Park, who have helped me tremendously during my university
curriculum.

I further would like to thank my mother Dr Khadijhatou Seck for her unconditional
encouragements in my studies, my dear brother Ababacar Dieng for his absolute support and
my brother Madior Dieng for always motivating me.

Last but not least, I would like to take this opportunity to acknowledge the support
and understanding throughout my life of my late farther Dr Papa Amath Dieng, who is not

going to read these lines but who would have been proud to see me reach this milestone.

Table of Contents

Chapter Page
LIST OF FIGURES.ottt ettt ettt et sh e s it st st e b e bt e s bt e s st e et e et e e b e e nbeesaeesanenas 7
LIST OF TABLES ... ettt ettt ettt sttt et e be e s bt e s et e st e st e e bt e be e s bt e s st e emteenbeebeenbeesanesanenas 9
(0 0 F=T o =T o RSP 10
INTRODUCGTIONcceiitiieieieetieteeeeeteeeee ettt ettt ettt ettt et ee ettt et eeeeeeereeeeeeeeeees e et e eseeeeeeeeaeeeerererereresasaresesesesarenes 10
1.1 Visual Programming LANGUAEEScceevcuiieiiiciiieeiriiieesciieeesstteeessieeeessaeeeesssneeeesssnsaeessnes 10
1.2 Issues of Visual Programming LANSUAEESceevviieeieiireeeeiiieeeeiireeessiveeessnveeessnseeeens 11
1.3 Objectives and limits of this research.........ccccueee i 12
1.4 B N Y o] o] o =L o F U RUROE 12
1.5 ChaPLEIS OVEIVIEW ..uviiiiiiiiiieciieee e ecitee e ettt e e ettt e e e st e e e s te e e e st ae e e ssbeeeesabaeeessaseeeeennseeas 12
(0 0 F=T o1 =T o | TP TP 14
REVIEW OF LITERATURE....ccttiititiiititeeeeeeeeeteeeseeeeeeeeseesesessesssseseseeesesesenes 14
2.1 2T =q Co 01 Vo [} ARV o I 14
2.2 VPL Classification SYSTEMciiiiciiieecciie ettt et e e et e e e eate e e e sata e e e sntaeaeeanes 16
2.3 VPL GFamMIMar .ottt ettt e e e et e e s e e e e s sne e e e s sreeeessaneneessanee 17
2.4 Cognitive DIMENSION Of VPLSciiiiiiiiiiiiiie ettt e e vee e e sbae e s sabae e e e 20
2.5 SROME VPL SUINVEY .ottt ettt ettt ettt e e et ae e e e s bte e e s s abte e e esabaeeeesabeeeeennseeas 21
2.6 Scaling up Visual Programming LaNgUAEES......c.ueeieivieeeieiieeeeciieeeesieee e esreee e ssveee e esveeas 24
2.7 Iteration CONSErUCES TN VPLSoiiiiiiiieee et 26
2.8 Arrays representation iN VPLS........coooiiiiiii 28
2.9 Principles of programming langUages........ccccueriiiiiiieeeiiiee e ettt e e aree e 30
(0 0 F=T o1 =T ol 1| ST PRSP 32
METHODOLOGYuviiiieiieniieete ettt sttt sttt et et e st e sate st s bt e b e s be e sbeesaeeeateesbeesaeesanesanesaneenneenes 32
3.1 VPLS SelOCTION PrOCESS ...couvieiiieieeieenite ettt sttt sttt sr e s s e 32
3.2 Analysis of principles for the selected VPLS..........ooeicciiie ittt 34
33 Variables and [ITerals.........oo e 36
3.4 Arithmetic, Boolean, and Comparison Operations........ccccceeeeeeeecciiiieeeeeeeeecireeeeee e 42
35 CONEIOI FIOW ..ttt st sttt s sae e st be e saeesane e 47
3.6 INPUL / OUEPUL c.ueiitiectiecie ettt ettt eete e st e st e etveeabeebeeste e teesaneeaseesseenbeesteesssesaneens 55
3.7 Unified Visual Programming Language — UVPL.........cccooiiiiiiiiiieiee et 63

3.7.1 UVPL Programming FEAtUIESoeeuieiiiiieii ettt 63

3.7.2 UVPL Programming CONSTIUCTScouuuiiiiieieeiiiiiiieee e eeirree e e e et e e e e e e s sieneeeeeees 71
3.7.3 (0] o [=To1 S @1 51T o] =T I U AV o] O 77
3.7.4 Principles analysis Of UVPL........coociiiiiiiiie ettt ertree e et e e e e e 81
(0 0 F=T o1 =T o VTR 86
TESTING . ettt ettt ettt ettt et et e et ee e et et e e et et e e et et e e e e e e e e e e et e e e e e e e e e ee e s eeee e s e s eseeeseeesenenenenes 86
4.1 o4 =T 0 o T =2 £ N 86
41.1 Program Test iN AlICE 2.2 ..uuviiie ettt e e e e e s e sbee e s e areeas 89
4.1.2 Program Test in LUmina ANAlytica 4.2ccooiii ittt e 90
4,13 Program Test in Microsoft VPL 2.1uviiiiie ettt 91
4.1.4 e T=q Yo T =T T T =T] Ut R TN 92
4.1.5 Program TeSt iN UVPL ...ttt et s e e e s s s aabeaeee s 93
4.1.6 Analysis Of the Program TeStS......uiiiiiiiiiciiiee et ree e e e 94
4.1.7 VPL Metrics for the Test Programseeeccuiieeiciieee et e e cree e e e e 95
4.1.8 TSt Programs COUNESuuuuiiiiieiiiiiiiiieiiitiiieiaiatirareeaeaeeaaeaeaaaeeaaeaeaaaaaaaeaaaaaaaaaanaannaanaannns 98
4.1.9 VPL Metrics Values for the Test Programs.........ccceeeeecieeeeiiieeececiieeeecieeeeeeieee e 99
(00 F=T o1 =T o PP 103
CONCLUSION . ..ottt sttt ettt st st ettt e bt e s bt e saee st e sab e e bt e beesreesmeesmeeemneenneen 103
5.1 10T [T Y= PP PR 103
5.2 GOQIS ACITBVEM ...ttt sttt st et 106
53 Halstead MEaSUrEMENTSciiiiiiiiie ettt ettt s saee s 107
5.4 FUBUIE WOTKS ...ttt st et nb e s bt e s bt st st e beesbeesaeesaeenas 107
REFERENCES ... ettt ettt sttt et e st st r et e b e s me e et e ene et e e sbeesanesane e 109
APPPENDICES ...ttt sttt ettt st st sttt et b e s st st b e b et san e s er e reenes 110
Appendix A: Program test in AlICEciiicuiiii ettt 110
Appendix B: Program test in IMIS VPL ...ttt ettt e e e et re e e e e e 119
Appendix C: Program LSt iN TEISUS....ciiicciiiieeee e e e ettt e e e e e e errtere e e e e e e ssrerre e e e e e e e esnnrseeeeeaeeenns 126
Appendix D: Program test in ANalYtiCa.....ccuveeeeeiieecciieeee et 134
Appendix E: Program test in UVPL........ooo ittt e e vee e s e sabae e e 140
VT A ettt et b e b e s h e s a e st b e bt b e b et e he e s ae e ettt e bt e e b e e sReesane s bt e re e neenes 1

LIST OF FIGURES

Figure 2.2.1: Example of adding VPLs to the ACM CR system. Modified from figure 2.2.2...... 16
Figure 2.2.2: VPLs Classification System [3] ..o e e 17
Figure 2.5.1: static VIPR representation of an if statement [8].ccvviiiiiiiiiiiiiii, 22
Figure 2.8.1 Array of 2 dimensions with scroll bars [14] ..o 28
Figure 2.8.2: Summing a list in Formulate [14] oo e 29
Figure 3.2.1: Example of @ variable in AliCE......oviiiiiiiii e 39
Figure 3.2.2: Syntactic consistency violation ... 39
Figure 3.2.3: Example of a variable with @ long name........cooiiiiiiiiiiiiiic e 39
Figure 3.2.4: example of a variable in ANalytiCa.......coviiiiiii e 40
Figure 3.2.5: some grokens and viprocons in Analytica.......ccovvviiiiiiiiiiiiiie e 40
Figure 3.2.6: Example of @ variable in MS VPL.....cociiiiiiii e ee e e 41
Figure 3.2.7: example of @ variable in TersuSccoiiiiiiiii e ees 42
Figure 3.2.8: addition iN AlICEuiri i e 45
Figure 3.2.9: compariSON iN AlICE .. .cuiiiii s e e e 45
Figure 3.2.10: Example of Operation in AnalytiCa......ccvviiiiiiiiii e 46
Figure 3.2.11: invalid operation in MS VPL ... e 46
Figure 3.2.12: Invalid operation iN TerSUS ...uuiitieii i et e e e e e e 47
Figure 3.2.13: WHhIl@ 100D TN AlCE .. .cuiiiii it e e e e e 50
Figure 3.2.14: FOr l00P iN AlICE .. e et e e e e e 50
Figure 3.2.15: Special library in Analyticacccvviiiiiiiii e 51
Figure 3.2.16: Indirectness in ANalytiCa.oieieiiiiii e 52
Figure 3.2.17: If VIProCon iN MS VPL ...t e e e 53
Figure 3.2.18: SWILCh iN MS VPL .. uiiiiiiiiii i e e a e e e e as 53
Figure 3.2.19: Control fIOW iN TerSUSciuiiiii e e e e 54
Figure 3.2.20: Setting up iNPUEL iN AlICE ...ttt e e 58
Figure 3.2.21: Setting up input in Analyticacooeiiiiiii e 58
Figure 3.2.22: InpUt in ANalytiCa. ..o e e e 59
Figure 3.2.23: Output and Input example in MS VPL ..ot 60
Figure 3.2.24: Text to speech Output in MS VPL.....oiiiiiiiii e 60
Figure 3.2.25: Miscellaneous I/O example in MS VPL.......oiiiiiiiiiie e 61
Figure 3.2.26: I/0eXamples iN TeISUS .. .iuiiitii ittt et et e e e e neeas 62
Figure 3.2.27: More I/0eXamples iN TeISUS ... cuieieieieieiiiiiieer e e e e e e a e e nenens 62
Figure 3.3.1: Partial view of @ UVPL program =1......coiuiiiiiiiiiiiiiiiii e e e e e e e 64
Figure 3.3.2: Partial view Of @ UVPL Program =2.......ccieiiiiiiiiiiie et se et s eerene s nee e 64
Figure 3.3.3: INSErUCHION DOXES .. .cuineieiiii it e e e e e e e 65
Figure 3.3.4: Hidden COmMMENES .. .ttt et et e et e e e e e as 66
Figure 3.3.5: ShOWN COMMIENT ...ttt e e e e e e e e aenenens 67
Figure 3.3.6: Concealing incoming variables.........c.ooiiiiiiiii e 68
Figure 3.3.7: Revealing concealed variablesoc i 68

Figure 3.3.8:
Figure 3.3.9:

Figure 3.3.10:
Figure 3.3.11:
Figure 3.3.12:
Figure 3.3.13:
Figure 3.3.14:
Figure 3.3.15:
Figure 3.3.16:
Figure 3.3.17:
Figure 3.3.18:
Figure 3.3.19:
Figure 3.3.20:
Figure 3.3.21:
Figure 3.3.22:
Figure 3.3.23:
Figure 3.3.24:

Figure 3.3.25
Figure 3.3.26
Figure 4.1.1:

concealing incoming expression and variable..........ccoooiiii 68
revealing incoming expression and variable ... 69
(o oTel 1o I o] goTe | = o o NP PP 69
mouse over to magnify minimized blOCKcccoiiiiiiiiiii 70
Adding Exception Handling Stubcooiiiiiii 70
Exception handling in UVPL ..o e e 71
Data types iN UVPL ..o s 72
ArThMEtiC OPEratorS. .o e 73
Arithmetic operations iNn UVPL........coiiiiii s 74
BOO0IEaN OPEratOrS ... it 75
(O(e] g g1 s =T {0l g Je] o1=] =) o] =T PP 75
Iterations iN UV PL ... e e neenes 76
File and standard I/0 .iuiiiieiiiiiii i i iiis e ssissteraissesssssssraaresssnsseernnns 77
AN ODJECE IN UVPL. e e e e e e 78
Procedures and functions in UVPLcooviiiiiiiii e e 79
Example of an activity (ProcessEmployee) in MS VPL......cocovviiiiiiiiiiiiiiiinns 79
Public non-static method signature ..o 80
:Public static method Signature.......ccooiiiiiiii 80
: Private static method signature ... 80
EVENES 1N Al Gttt e 90

LIST OF TABLES

Table 3.1-1: VPLS 0 SEIECE FrOM ..uiiiiiiiee ettt e s s e e s snaae e s sanes 33
Table 3.2-1: List of Strategies and prinCiplescocciiieiiciiie e 35
Table 3.2-2: Principles related to variables and literals........ccccocveeiieciiiiicciiie e 38
Table 3.2-3: Principles related to 0perations.........ccoccvieiieciiii e 43
Table 3.2-4: Principles related to control flOWcccuviiiiiiie e 48
Table 3.2-5: Principles related to 1/0ttt b e e b e s 56
Table 3.3-1: Variables and literals prinCiplescuuiiiiciiei e 81
Table 3.3-2: Principles for OPeratioNS........c.uuiiicciiee e ettt e e e eire e e e erae e e e easaeeeeanes 82
Table 3.3-3: Principles and Strategies for Control FIOWSccoveiiiiiiiiieciiee e 83
Table 3.3-4: PrinCiPIEs FOr 1/O .ottt ettt ettt e e te e et e e e be e ebeeeetaeesreeenns 85
Table 4.1.8-1: TESt Programs COUNTScccccieieieiiiieeeeciieeeeeciteeeeeitteeeeerteeesesteeesssssesesssssasassassanessnnes 99
Table 4.1.9-1: DeSirability OFTErcoccuiiiieiiie e e e s saaeeeeas 100
Table 4.1.9-2: ViSUAI DENSITY ..cccccuiiiiicciiie et ettt ettt e et e e tee e e e satr e e e e eaaeeeseasaeeesensbaeesannseeanan 100
Table 4.1.9-3: VTVC FaLi0 weeeiieeieeiieciee ettt ees et tee sttt s s vt e e s te e ste e e saaeesnsaeesseeesnseesneeesnsenan 101
Table 4.1.9-5: Average Connectors per CONtaiNer.....cc.uuiieciiieeeiiieee ettt e e e e s saree e 101
Table 4.1.9-6: Average Deepest BrowSing LEVEL........c..ueiiiiiiiiicciiiieeeceee et 102

Chapter I

INTRODUCTION

1.1 Visual Programming Languages

Visual programming languages (VPLs) are the class of programming languages with
which users build programs by manipulating visual objects. The semantics of the program are
thus expressed by graphical tokens as opposed to textual tokens used in textual programming
languages (TPLs), and visual programming constructs as opposed to textual programming
constructs in TPLs.

Integrated development environments such as Microsoft Visual Studio are visual
programming environments (VPEs), and the languages they support for development, such as
Visual C#, are not VPLs, since all the tokens of these languages are textual.

It is important to note that the term visual programming language, as known today,
refers to a hybrid language that lies between a pure TPL and a pure VPL. Pure VPLs might not
be a practical alternative to TPLs.

The main goals of VPLs are defined by Burnett [1]. She states that the three goals of
VPLs are: to make programming easier to understand for audiences other than programmers,

to reduce error proneness when programming and to help users program faster.

10

1.2 Issues of Visual Programming Languages

The most successful of the currently-available VPLs are domain specific; such
languages include LabView, used for industrial automation or instrument control, and
OpenMusic, used for musical composition. The other uses of VPLs generally are limited to
teaching or research. The main issue faced by VPLs is their limited ability to produce a
complex program while preserving a reasonable level of readability and maintainability. These
issues of scale are a result of the presentation of a visual program. Since the program has text
and graphics, it is visually bulkier than a TPL. The fact that most VPLs do not have a static
representation — that is, a complete (unabridged) representation of the program—introduces
readability issues. A high level of abstraction should be attained without sacrificing details that
aid in the understanding of a program, as a whole. Again, because programming in a VPL is
synonymous with manipulating visual objects to build a program, the management of the
screen area poses a problem in building large programs efficiently.

Another concern with VPLs is the visual presentation of proper documentation, so that
it is in line with the graphical nature of VPLs, while at the same time not adding more visual
clutter to the program.

The last issue addressed in Burnett's paper—as well as in this section—is the
readability of VPL programs. For instance, VPLs developed with arrows to direct the flow of
data, or to represent the notion of ‘next statement’ have the advantage of showing visually
the different segments of a program that could be executed concurrently; however, reading

such programs is often very difficult because of the clutter added by the arrows.

11

1.3 Objectives and limits of this research

The first objective of this research is to analyze the grokens (graphical tokens) and
viprocons (visual programming constructs) of a few selected VPLs in order to identify how
issues related to the scaling up of VPLs are addressed in those languages, and also to identify
weaknesses that preferably should not be part of a VPL.

The second objective is to design a general purpose VPL that could be used for
complex programs, so that these programs can be reviewed and maintained more effectively
than similar programs written in the VPLs analyzed in the first part of this research. The
design of this “Unified visual programming language” or UVPL focuses on the visual features
that could contribute to better scalability in visual programming, by using the analysis that
results from the first objective.

Because this research focuses on the visual aspect of VPLs and its implications on
readability and maintainability rather than on performance, an interpreter or a compiler is not

developed for UVPL.

1.4 The Approach
In an attempt to fulfill the first objective, some popular, general-purpose and domain-
specific VPLs are analyzed. The analysis is based on principles of programming languages and
on strategies used in VPLs. The results of this analysis are used as a starting point to design
the grokens and viprocons of UVPL. The last phase of this research consists of implementing a
test program in each of the selected VPLs and in UVPL in order to gather metrics that allow a

conclusion to be drawn about the goals attained by UVPL.

1.5 Chapters overview
This thesis first presents a review of background and previous work in VPLs relevant to
this study. Then, the methodology adopted to conduct the research—which ranges from the
selection of VPLs used in this research to the comparison techniques of these languages with

UVPL—is described. Following the chapter on methodology, the results chapter presents a

12

comparison between the selected VPLs and UVPL, and the comparison is used to evaluate the

goals achieved by UVPL.

13

Chapter II

REVIEW OF LITERATURE

2.1 Background of VPLs

Margaret Burnett, whose primary research focus is on end-user programming,
presents a thorough description of VPLs and their motivation [1]. To begin with, she explains
the essential differences between TPLs and VPLs. Her major point is that the semantics of a
program in a TPL can be conveyed only through text, whereas in a VPL the semantics of a
program are conveyed at multiple levels, such as text, graphics, color, animation, etc.

In her paper Burnett addresses the history of VPLs by describing the precursory works
related to the development of programming by demonstration and programming via
executable flowcharts. Even though these first attempts seem very interesting, these
languages could not be scaled up for programs of more conventional size, therefore they were
less useful than their TPL counterparts.

Later on, the designs of VPLs took a new direction, and research was oriented towards
domain-specific VPLs. These systems proved to be more successful than the earlier ones, since
the target was a single, specific domain. As a result, it became possible to narrow down the
collection of visual artifacts, operations, data structures, etc. to just those entities that are

needed for a particular domain.

14

In her research Burnett identifies four strategies that could help achieve the most
important goals of VPL research, which are making programming more understandable to non-
programmers, increasing productivity of programmers and increasing correctness of programs.
The four strategies used to achieve these goals are:

Concreteness: getting away from abstractness. An example would be to display
automatically the effects of a program on a variable as the program runs.

Directness: directly manipulating objects. As an example, instead of describing
semantics to be applied to an object, the programmer specifies the semantics by directly
manipulating the object.

Explicitness: directly stating aspects of semantics rather than inferring them. For
instance, using edges in a dataflow to express explicitly the relationships between variables or
actions, or to direct explicitly the flow of data.

Immediate visual feedback: providing a livelier aspect of the programming experience.
As programs are edited, the modifications to variables and objects are displayed
automatically.

In her description of VPLs, Burnett also addresses the issue of abstraction in VPLs. The
ability to reach some level of abstraction remains important, because it plays a major role in
scalability. This statement is not in contradiction to strategy 1, because she refers here to the
use of data and procedural abstraction, rather than the type of abstraction described in
strategy 1. Data and procedural abstraction are possible in VPLs, since several current VPLs
support these concepts. An example of procedural abstraction for VPL would be the ability to
iconify a section of a dataflow. However, there is still room for improvement in this regard.

Among other important issues, Burnett discusses language specification for VPLs (this
subject will be developed later in this chapter) and the cognitive dimension of VPLs, since the

aim of these languages is to improve the programming experience of humans.

15

2.2 VPL Classification System
In 1993, Burnett and Baker proposed a classification system for visual programming

languages [2]. As the literature of VPLs was broadening, they sensed that the development of
a classification system to help researchers find the right material was a necessity. Although a
similar computing reviews system already was designed by the Association for Computing
Machinery (ACM), Burnett and Baker came to the conclusion that this system was not suitable
for classifying VPLs. The ACM computing classification system is a four-level tree; placing VPLs
under classification D3 (Programming Languages) would mean that only one more level could
be added underneath VPLs. But, defining VPLs is more complex, and therefore, more than one
subsection is needed to classify VPLs properly. However, for Burnett and Baker, this limitation
could not satisfactorily classify the work in VPLs. Figure 2.2.1 shows an explanation of the
levels in the ACM computing review system and the limitation for adding VPLs as a level-3 leaf

in the tree, and figure 2.2.2 shows the classification of VPLs that Burnett and Baker proposed.

A. General Literaturs

B. Hardware
C. Computer Svstams Organization
D. Softwars

= D0 Genaral

o D.1 Prograrmming Teclmiquas @‘x‘_‘_ﬂ

Ete...

o D.3 Programming Langnagss
= D30 Ganarsal

v Standards

+ D31 Formal Definitions and Theorye—"] == |
v Semantics
* Syntax

» D3 ZLasnguage Classifications

v _Applicarive (functibnal) lanpuages

v Concwrent, distributsd, and parailsl languagss
= D.33Langnape Construct and Faatures (E2)

v Absiract dat fypes

v (lasser and objects
» D34 Processor

v Code generation

= D35 Visual Programming lansnagas *—m
* Examplsl Levcdd

Figure 2.2.1: Example of adding VPLs to the ACM CR system. Modified from figure 2.2.2

16

VPL: Visual ngra.mminf Languages
VPL-L Environments and Tools tor VPLs YPL-1V. Language Implementation Issues
VPL-1L. Language Classifications A. Computational approaches (e.g,
A. Paradigms demand-driven, data-driven)
1. Concurrent languages B. Effictency
1. Constraint-based languages C. Parsing
3. Dara-flow languages D, Translators {interpreters and compilers)
4. Form-based and spreadsheed-based VPL-V. Language Purpose
languages A, General-purpose languages
5. Funcuonal languages B. Database languages
6. Imperative languages C. Image-processing languages
7. Logic languages [Sciennhe visualizavon languages
8. Mulu-paradigm languages E. User-interface generation languages
9. Object-oricnted languages VPL-VI. Theory of VPLs
10. Programmng-by-demonstranon A. Formal definition of VPLs
languages B. lcon theory
11. Rule-based languages C. Language design issues
B. Wisual representations 1. Cogniuve and user-interface design
1. Diagrammatic languages issues {e.g. usability studies,
2. lconic languages graphical perception)
3. Languages based on static picrorial 2. Effective use of screen real estate
SeqUEnces 3. Liveness
VPL-U. Language Fearures 4, Scope
A, Abstraction 5. Type checking and type theory
1. Data abstraction 6. Visual representation issues (eg,
2. Procedural abstraction static representation, animation)
B. Control flow
C. Data types and structures
[, Deocumentation
E. Event handling
F. Exception handling

Figure 2.2.2: VPLs Classification system [3]

For the purpose of this research Burnett and Baker's classification system is used to
categorize VPLs, even though this classification originally was designed to help researchers
find proper research materials in the VPL areas. A given VPL can be categorized at the same
time under the section VPL II - Language classification (by paradigm or visual representation)
- and also under the section VPL V - Language Purpose. The other sections are engaged more
specifically with visual programming language features than with the taxonomy, and thus

could be disregarded if one’s purpose is to find some sort of hierarchical taxonomy.

2.3 VPL Grammar

Describing a textual programming language in Backus Naur Form (BNF) is possible
because only one type of relationship is allowed between symbols: the relationship next to

[4]; thus there is no need to define the specific type of relationship. However, formally

17

specifying a VPL is more challenging, since there is more than one relationship that needs
specifically to be added to the grammar.

In 1994, Kim Marriot presented a framework to formally define visual languages—the
constraints multiset grammar (CMG) [4]. He proposed a theoretical foundation to generate a
parser from a grammar describing a visual language. The parser takes as input a multiset of
strings, lines, arcs, circles etc. Marriot states that for visual languages, grammars and parsers
use multisets instead of sequences, because in general, people do not follow the same order
when drawing complex diagrams.

Marriot explains that CMGs differ from traditional string grammars in two ways:

1. String grammars rewrite sequences of tokens, but multiset constraint
grammars rewrite multisets of tokens.

2. String grammars have only one type of relationship, which is “next to”, but
multiset constraint grammars have a wider number of relationships, such as
intersection, next to, above, below etc.

Constraints are used in a CMG to define the relationship between components. A CMG
over a computation domain D is defined formally by Marriot as being composed of:

- a set of terminal type symbols, Tt

- a set of non-terminal type symbols, Tyt

- a distinguished start type symbols, St € Tyt

- a set of productions

The language of the grammar will be the set of all sentences that can be generated
from the start symbol using the productions in the grammar.

Marriott defines that in a constraint multiset grammar, a production is of the form:

S::=54,.,5,3Con S',...,.S'm

where S is a non-terminal symbol that can be rewritten to the multiset of symbols
S4,..,Sn and C is a set of constraints on the attributes of other symbols S'y,...,S’,. Marriott
defines the constraints C as elements that enable the encodement of spatial layouts and
relationships between a diagram and its components in the grammar.

Marriott gives the following production example:

P:state ::= Q:circle, T:text

18

where
Q .midpoint = T .midpoint,
2 * Q.radius >= T.height,

2 * Q.radius >= T.width,

P.midpoint = Q.midpoint,

P.radius = Q.radius,

P.name = T.string,

P.kind = normal.

In this production:

- Q.midpoint = T .midpoint constrains the midpoint of the text so that it is the same as
the midpoint of the circle; therefore the text and the circle share a common area.

- 2* Q.radius >= T.height informs that the text height fits in the circle

- 2 * Q.radius >= T.width informs that the text width fits in the circle

It can be deduced that the text is entirely in the circle, and that the text is perfectly
centered in the circle.

- P.midpoint = Q.midpoint >the center of the production is the center of the circle.
- P.radius = Q.radius - the radius of the production is the radius of the circle.

- P.name = T.string > the name attribute of the production is the text value of T.
- P.kind = normal > the production is of the type or kind normal.

In his study Marriot unfortunately found out that parsing a sentence to find if it
belongs to the language of a CMG is an undecidable problem because CMGs can emulate two-
counter machines. Indeed, this is based on the fact that the halting problem for two-counter
Turing machines is unsolvable, as proved by Pierce from the Carnegie Melon School of
Computer Science [5].

The details of the formal description of these CMGs are outside the scope of this
research; therefore, this section presents only the result of Marriot's studies. After
investigating CMGs that are cycle free, Marriot came to the conclusion that the complexity of

parsing a cycle-free CMG is not polynomial but exponential, but parsing a fixed deterministic

19

CMG has a polynomial complexity. The analysis of his results determined that the complexity
of CMGs is in between that of string grammars and constraint logic grammars.

The research results presented by Marriott give a sense of the difficulty in formally
specifying a VPL using a grammar, thus, the formal specification of UVPL will not be covered in

this research.

2.4 Cognitive Dimension of VPLs
The primary purpose for the development of VPLs is to provide usability. However,
development of VPLs seldom includes tests to show whether or not a VPL is usable.
T.R.G. Green proposes a method based on cognitive walkthrough to help designers of
VPLs detect the level of usability they have achieved [6]. His paper elaborates on the human
computer interaction (HCI) technique known as cognitive walkthrough. This technique is used
to detect and correct usability problems on a user interface.
Cognitive walkthrough is a tool that was designed originally for testing usability in the
engineering field. Green states the four phases of this approach:
1. Set a goal to be accomplished
2. Search the interface for available actions
3. Select an action that seems likely to make progress toward the goal
4. Perform the action and check to see if progress is made towards the goal.
Green declares that cognitive walkthrough is a good method to evaluate the use of
VPLs for the following reasons:
- The development of a program using a VPL usually is done through a GUI. The
cognitive walkthrough method focuses on a user's ability to figure out how to use
a new UI; therefore, it is beneficial to use a cognitive walkthrough method to test
the usability of VPLs.
- Usually computer scientists do not have a background in cognitive science;
however, the cognitive walkthrough method—unlike other HCI approaches—seems
more easily usable by computer scientists that are not familiar with cognitive

science.

20

In his paper, Green describes a method he calls the WYSIWYT (what you see is what
you test) methodology that he uses to test the VPL Forms/3; this visual language was
developed by Burnett and Ambler in 1991 [9]. Green shows that this method did not yield
good results, and that refining this method with cognitive walkthroughs produced better
results.

Finally, Green concludes that cognitive walkthrough is a method with limitations, since
it cannot evaluate the cost of making an error, for instance. Nevertheless, cognitive
walkthroughs perform faster than pilot analysis or protocol analysis, and the focus of this

method is on specific areas in a subtask, which helps to target specific design issues.

2.5 Short VPL Survey
The following section presents a brief survey of different types of domain specific VPLs.

Alternate Reality Kit (ARK) [7]: implemented in Smalltalk-80, ARK was developed

around 1986 by Randall Smith. It is a virtual world programming environment and can be
classified as a domain-specific VPL, since its sole purpose is to aid in the simulation of the
fundamental laws of nature via a 2D animated environment. ARK is a system developed for a
non-programmer audience that needs to understand the laws of nature, like gravity or friction.
This VPL enables the users to grasp the concepts of physical laws by allowing them to apply
the simulated laws to physical objects via virtual simulation. In ARK, objects are images that
have a position and velocity, and to which forces can be applied. A user manipulates a given
object with another object, a hand, which is controlled using a mouse. ARK allows the user to
simulate the physical laws in their very basics, whereby the full details of reality are not
implemented; instead, the user directly simulates the effect of an action, rather than all the
different small reactions that lead to the final action. Smith gives the example of the
implementation of an electrical switch; the user does not simulate the physical installation of a
button where electrical lines are connecting the switch to the power supply, but the button is
visualized, and pushing it on or off will have a simulated reaction.

In ARK, users interact with the objects through a GUI; they also can create new kinds
of objects and add them to the library of built-in objects in the ARK warehouse.

ARK has three types of users:

21

1. The application level user who typically just runs a simulation

2. The simulation builder who builds a simulation application

3. The lowest level user who builds tools to be used by the simulation builder.

An important issue to point out about ARK is the use of the mouse to operate what is
called the hand object. It has been observed that use of the mouse to operate the hand is not
intuitive, and confuses a lot of users [7]. Indeed, many computer mice have only two buttons
(left and right), yet a hand can grab, pull, push, release etc., which means that the mouse
cannot, in an easy manner simulate all the different capabilities of the physical hand. However
it is very easy to learn the idea behind ARK and its concepts.

Visual Imperative Programming (VIPR)[8]: VIPR was developed at the University of
Colorado by Wayne Citrin. VIPR is not an iconic VPL; instead of text or icons or graphs it uses
nested concentric rings to convey the semantic of a program. From one step of the program to
another, inner rings are being merged while the outermost ring is connected to the state.

Figure 2 shows how VIPR represents an “if” statement.

if B then 31 else 52; 33

Figure 2.5.1: static VIPR representation of an if statement [8].

The development of VIPR was motivated by the desire to have an object-oriented

language that is easy to learn and use; therefore, VIPR has all the features of an object-

22

oriented language: inheritance, polymorphism, and dynamic dispatch, to name a few. The
semantics are similar to C++, thus VIPR can be used for low or high level programming.
An expression oriented component, VEX, which is used for lambda calculus, also was

added to VIPR. Lambda calculus is a notation to describe computable functions.

Prograph [9]: developed by Cox and Pietryzkowsky around 1990. Several versions
have been released, and the latest one is Prograph/CPX. It is an object-oriented visual
language that combines visual dataflow specifications with notions such as classes and
objects. Prograph is an imperative language, which is a programming paradigm that describes
computation in terms of statements that change the state of a program and the statements
are executed in a sequential manner. In Prograph, cases and multiplexes are control
structures used to replace explicit iteration by a sophisticated flow control. Prograph also
provides persistent objects that are stored in a database. Methods are built up as
accumulations of cases; each case in a method is a dataflow diagram that describes how the
case should be executed. The diagrams are comprised of inputs, outputs and a set of
operations; these entities are all connected. In Prograph, the order of execution is data-
driven: the edges in a flow diagram indicate the data flow from one operation to another.

Visual TPL [10]: Visual TPL was proposed by Tu, Chen and Cheng, as the result of a
research they conducted. This language is a domain-specific VPL, as its only use is for
transforming data for generating reports. The inputs for a Visual TPL program are tables that
come from a database. This language has four native components: table, helper, aggregation,
and data source. A table component transforms one table into another. The resulting table
typically is the data used in reports. The helper component is a collection of functions used for
transforming data, and the functions are grouped as arithmetic, logical and relational
operations. The aggregation component is another tool for data transformation, and it permits
the programmer to perform aggregates such as averages, counts etc. The last native
component Tu, et al. present in their report is the data source component, which is basically
the component that will connect to a database to provide requested tables. The programmer

also can combine preexisting components to make a composite one. The authors mention that

23

the construction of composite components can be viewed as performing abstraction since the
subcomponents used in a composite component are hidden.

A Visual TPL program is developed using an environment called Visual TPS, and this
environment was designed specifically for Visual TPL. Tu. et al. describe the environment as
having five areas. One area has icons for the native components, and another area is
designated for the composite components; the components from these two areas can be
dragged and dropped into a third area, which is a canvas where a program is built. All the
components dropped on the canvas are linked by connectors that will drive the flow of the
program. The fourth area in the Visual TPS environment is a display for immediate feedback,
allowing the programmer to preview the result. The last area makes the components most
used by the programmer easily accessible. The authors claim that the Visual TPS environment,
which generates reports by designing a graphical data flow program, is easy to use and

intuitive.

2.6 Scaling up Visual Programming Languages

The scalability issue is an important one for the viability of VPLs. Even though using
visual languages can be a very interesting approach for editing a program, their usefulness
has been affected by the inability of these languages to uphold large projects. Burnett and
Baker describe this issue as "how to expand applicability without sacrificing the goals of better
logic expression and understanding” [11].

In their paper, they discuss some issues pertaining to scaling up VPLs and some
possible solutions, described below.

Static representation of a program, which is the complete representation of a
program at rest, is de facto in traditional TPLs; however for VPLs — and more particularly
interactive VPLs — it can be difficult to represent the entire program statically. Consequently,
the review of a VPL program can be a difficult task. Some ideas that have been proposed
would resolve this issue, but at the price of a VPL partially losing its visual nature. For
instance, Burnett and Baker mention the translation of the program to a textual program for
static representation; however this solution defies the purpose of VPLs, since the result of that
transformation is a textual program. The usefulness of a VPL program representation is

24

measured by evaluating the editability vs. the ability of a VPL to achieve some level of
abstraction to hide excessive visual details.

Management of Screen real estate is another important problem, because of
the nature of visual languages. It is challenging to edit and display a large visual program if
the ratio of screen size to visual object size is too small. This issue involves how to display a
large enough part of a VPL program to represent a logical block within the program. Burnett
and Baker state that one solution to this problem is the use of scroll bars, but this solution
would need to be coupled with others to be effective.

Burnett and Baker raise another issue concerning the incorporation of internal
documentation in a VPL; this issue is solved in TPLs by the use of in-line comments ignored by
the compiler. Documentation participates in scalability, because any type of documentation
needs space—whether the documentation is always apparent, or whether the documentation
is a dynamic text, where the text only appears at certain events such as a ‘mouse over’. Some
VPLs can be, by their nature, self-documenting, which alleviates the need for extra, explicit
documentation; however, for VPLs that do not have implicit documentation, other solutions
have been used. The VPL Forms/3 uses a form of documentation that is neither text, nor does
it use space; rather, visual markers such as, coloring or boxing and lining perform the work of
documentation. Another type of documentation, named ad-hoc documentation, also has been
used; since the purpose of documenting is to help the reader of a program understand it
better, ad-hoc documentation is a technique that tries to achieve this goal by providing an ad-
hoc animation that displays the computation and the intermediate values for a portion of the
program.

For a modern programmer the use of procedural abstraction is taken for
granted, but in the early days of programming, it was considered as an important step
forward. Similarly for VPLs the ability to reduce a logical portion of a program to an icon is
considered an advanced way to apply procedural abstraction, and is considered a big
contribution to the ability to scale up VPLs.

Jamal and Wenzel, in research on the scalability of LabView, point out that the
criticism that has affected VPLs mostly is the lack of visual abstraction methods [12]. They

explored the scalability of LabView and the abstraction mechanisms present in this language

25

that help in managing large scale programs. Such mechanisms include icons on a diagram to
describe its functionality. Another mechanism is the reuse of a diagram that was previously
iconified.

Data abstraction—which is the use of user-defined data types—is as important
as procedural abstraction. Burnett, et al. state that this object-oriented feature can contribute
to the problem of VPL scalability [11]; even though data abstraction contributes in achieving a
high level language, it might prevent interactivity. Proper access of a user-defined object is
allowed only through operations defined in the data type of the object; if those operations are
not visual, but rather textual, there is a possibility of losing interactivity or visibility [11].

In order to address this issue, a VPL that supports data abstraction needs to meet —
according to Burnett and Baker—the following requirement: a VPL that supports data
abstraction should provide a visual process to define a new data type, which also results in a
visual program.

Finally Burnett, et al. discuss the relationship between programming language
efficiency and scaling up a VPL. As most VPLs strive to supply immediate feedback, the need
to provide responsiveness can affect the efficiency of a program, since the program will need
to be translated and executed more often than a program in a language that does not provide

immediate visual feedback.

2.7 Iteration constructs in VPLs

Another important issue in designing VPLs is the design of program control constructs,
such as iteration. The nature of VPLs might make the representations more challenging. The
biggest challenge in VPLs regarding the mechanisms of iteration is how to provide a compact
viprocon with enough information to represent them properly. In the particular case of data
flow VPLs, the issue is how to provide a mechanism for iteration without violating the very
nature of a data flow paradigm. Mosconi and Porta, two researchers from the University of
Pavia in Italy wrote a paper that presents the minimum set of characteristics to implement
iterations in a data flow VPL, and they also show some types of iterations that could be

implemented using the characteristics they defined [13].

26

Mosconi and Porta survey different iteration mechanisms adopted by several data flow
VPLs such as LabView and Prograph, and they argue that some of these mechanisms do not
respect the data-flow paradigm, even though they do contribute to a simplified user
interaction. Mosconi and Porta state that one rule that should be followed in data flow
languages is to avoid cycles; however, they notice that all the VPLs they studied use cycles to
implement the constructs for their iteration. This is why the authors came to the conclusion
that some data flow VPLs do not respect the data flow paradigm. They agreed that using
cycles to represent data flow in iterations works, but they also studied others aspects of the
data flow model to help implement better iterations.

Their studies allowed them to come up with four definitions, three theorems and six
corollaries that describe pure data flow VPLs. Some relevant ones are given below.

Definition 1: A pure, data-driven, data-flow VPL is one that is made up only of nodes
(visual elements representing functions, variables, constants) and links (visual elements
connecting the nodes).

Definition 3: A pure, data flow VPL sub-graph is said to be iterative if there exists a
function A in the sub-graph such that at least one of its inputs derives from an output of
another function B for which, in turn, at least one input derives from an output of A (vice
versa).

Theorem 1: In a pure, data-driven, data flow VPL it is not possible to implement an
iterative behavior unless at least one function in the looped sub-graph receives more than one
link for the same input.

Corollary 1: If a pure, data-driven ..., data flow VPL does not allow functions to
receive more than one link for the same input, iterative behaviors can be obtained by
introducing into the language a special element that has two or more inputs and that behaves
in the following way: it fires whenever one of its inputs is available; simply emitting that input
as an output introducing the special element means that the data flow VPL is no longer pure.

With respect to these characteristics and some others that are not quoted here,
Mosconi and Porta described in the remaining part of their paper the implementations of some
iteration constructs that use enabling signals to avoid synchronization issues possible with

inhibitor signals.

27

2.8 Arrays representation in VPLs

Allen Ambler published two papers pertaining to the representation and manipulation
of data structures such as arrays in VPLs. He states that manipulating arrays in textual
languages always has been a difficult task, especially for the non-trained programmer, since
all manipulations have to be done through indexing. A certain level of abstraction in a visual
language definition can allow certain kinds of operations on arrays without the need to index
in any way. In his papers he proposes a different representation of arrays and also describes
their manipulation [14] [15].

In his representation, arrays are represented by cells, and the user can choose to

display scroll bars, since the array could be of any dimension.

Figure 2.8.1 Array of 2 dimensions with scroll bars [14]

Arrays can be split into multiple parts called regions. Formulas or expressions can be
applied to a whole region rather than just a cell, and therefore the user never has to deal with
indexing.

Allen gives a few examples of manipulating arrays using his technique in the VPL
Formulate. For instance, appending two arrays is performed by just providing to the function
the two arrays to append. He also shows how arrays can be partitioned to form new regions
by selecting and dragging borders. He demonstrates how summing a vector or a list could be
done by creating a second vector or list that will carry along the partial sum of the elements,

and thus the last element will contain the sum of the entire array, as shown in figure 2.8.2.

28

Figure 2.8.2: Summing a list in Formulate [14]

However by attempting to solve the Eight Queen problem, Allen concludes that not all
the problems involving arrays can be solved without explicitly indexing the array.

One can come to the conclusion that representing arrays and manipulating them can
be facilitated to some extent by providing the users some functions for the most common
tasks, giving them the ability to build their own functions and providing them the ability to
index the arrays. If the goal is to provide an easier way to manipulate arrays to inexperienced
programmers, the goal can be achieved with built-in functions such as ‘append array’, ‘sum a
list” etc. The experienced programmers who already understand how to manipulate arrays can
use either the built in functions or make up their own, as they most likely will be the users
that will need more than just the built-in functions. Finally, displaying arrays as cells implies
that the programmer probably prefers entering values or formulas into the cells rather than
using indexing. The programmer many times does not know these values, and inserting
formulas into the cells is not an elegant solution; thus, it might be preferable to abstract the

structure of arrays in VPLs in order to better manage the edit area.

29

2.9 Principles of programming languages

In the book Principles of Programming Languages, McLennan aspires to provide

descriptive tools, which he suggests are important for designing programming languages [16].
He insists that these principles are not laws that absolutely have to be followed; also, they are
neither axioms nor a set of formal constraints. Further, some of these principles of
programming languages cannot be applied at the same time because they contradict each
other. Also, some principles may complement each other. It then becomes difficult to know
which principles to adopt. Furthermore, unlike principles such as scientific laws, the principles
of programming languages do not have quantitative measurements yet; therefore, McLennan
suggests making tradeoffs based on qualitative judgments. The principles defined by
McLennan that are used in this research are the following:

- The responsible design principle: find out what users need, not what they want.

- The automation principle: automate mechanical or error-prone activities.

- The syntactic consistency principle: similar things should look similar and different things
different.

- The defense in depth principle: if an error is not caught by one defense, it probably will be
caught by another.

- The information hiding principle: the user has all information needed to use a module and
nothing more; all information needed to implement a module is provided and nothing more.

- The security principle: if a program violates its language definition or intended structure, the
violation should be detected.

- The abstraction principle: avoid anything to be stated more than once.

- The elegance principle: designs look good because they are good.

- The simplicity principle: use a minimum number of concepts, with simple rules for their
combination.

- The impossible error principle: making errors impossible to commit.

- The orthogonality principle: independent functions should be controlled by independent
mechanisms.

- The preservation of information principle: representation of information that user might
know and compiler might need.

30

- The structure principle: the visual form of a program leads the user to visualize its behavior.

- The 0 - 1- oo principle: zero, one and infinity are the only reasonable numbers.[16].

31

Chapter III

METHODOLOGY

3.1 VPLs Selection Process

As a starting point, some visual programming languages (VPLs) are selected for a
short survey. The starting list was composed of 43 currently available VPLs; each of these
languages was considered for inclusion in the survey based on the following characteristics:
the language purpose, the availability, the type of support available, the platforms supported
and whether or not it is a teaching tool.

The language purpose is an important criterion, because some languages that are too
specific, such as languages to edit music.

- Because this research in not funded, the availability criterion is used to eliminate
the languages that are not freely available and the languages that do not provide
free support.

- The study is conducted entirely on a Microsoft Windows machine, and so only
languages available on Windows platforms are considered.

- VPLs used as teaching tools might not be good examples for designing a language
for scalable programs; however, they probably have features that can be

considered for helping non-programmers.

32

Applying these criteria, the list of VPLs was reduced to 10, as shown in Table 3.1-1

below.
VPL Purpose availability | Platform Support | Teaching tool
AgentSheets game Trial Mac / Win yes No
Alice game yes Lin / Mac / Win | yes Yes
Analytica spreadsheet Trial Win yes No
Labview testing, control device | Trial Win yes No
Lily Web dev. yes Lin / Mac / Win | yes No
Microsoft VPL robotics yes Win yes No
PointDragon Web dev yes browser yes No
Simulink /Matlab | math Trial Win yes No
Tersus Web dev yes Win / Lin yes No
VisSim hardware testing Trial Win yes No

Table 3.1-1: VPLs to select from

From these remaining VPLs, one from each purpose category was selected arbitrarily,

and the list of VPLs chosen for use in this study was reduced to Alice 2.2, Lumina Analytica

4.2, Microsoft VPL 2.1 and Tersus 1.3.

Alice is a VPL designed for high school and college students. It uses 3D graphics to

teach introductory computing to an audience already familiar with videogames. Programs are

built on a drag and drop interface. The 3D objects that are provided by Alice are used to

create virtual worlds, and the program animates those objects.

Analytica is used to create and manipulate decision models. It is not a teaching tool.

The user creates models by dragging to the work area viprocons (visual programming icons)

that represent decisions, variables, chances, objectives, modules, indices, constants,

functions, and text. The viprocons are connected with arrows that represent the flow of data.

Each node has a definition that can be written with a procedural language very similar to

Pascal. Analytica has 11 system libraries, and the user also can build more libraries.

33

Microsoft Visual Programming Language (MS VPL) is part of Robotics Developer
Studio. It is a dataflow VPL and supports concurrency. MS VPL is designed for novice
programmers, but also can be used by professionals. It is designed mainly for robotics
programming, but also can be used for general purpose programming. The user manipulates
blocks that are connected with arrows. Blocks such as the “If”, “Calculate”, or “Case”, have
expressions similar to C#. Libraries are wrapped around decentralized software services. Users
can create their own services in C#, and can edit the not escape preexisting ones.

Tersus is designed for web application development. It is not a teaching tool. Tersus is
a data flow programming language, and so the blocks in the diagrams need to be connected
with arrows. A Tersus program has a top-down design, and is composed of web services, and
built-in or user-defined components. The Tersus work area is called an “infinite drawing
board,” because the top model represents the system, and the user drills down to specify the
components of the system and the details of those components, and the user can continue to

drill deeper and deeper.

3.2 Analysis of principles for the selected VPLs

A design analysis needs to begin by laying down the principles that should be followed.
For this purpose, a compilation of strategies from Burnett [1], who has focused her research
on visual programming and especially on achieving scalability with VPLs, and principles from
McLennan [16] are compiled in

Table 3.2-1. These strategies and principles are described in sections 2.4 and 2.5 of
this thesis, and are used throughout this section to analyze the grokens and viprocons of the
selected VPLs and later UVPL. The following sections describe the analysis of the categories of

the programming constructs.

34

IMMEDIATE VIS. FEED.

AUTOMATION

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

ORTHOGONALITY

PRESERVATION OF INFO

STRUCTURE

0-1-o0

Table 3.2-1: List of Strategies and principles

35

3.3 Variables and literals

The analysis of variables in the VPLs selected for this research helps to determine
which languages follow, or do not follow, the identified principles. Some examples related to
variables and literals are given, and the analysis is summarized in Table 3.2-2.

The directness strategy: e.g. naming a variable should be done directly on the groken
rather than by entering the name in a property window, since the name of the variable is part
of the groken.

The explicitness strategy: e.g. the flow of data should be visually or textually explicit.
Arrows can be used to direct the data flow explicitly. Keywords such as set get or the equal
sign can be used as well to show whether a value is being assigned to a variable or a value is
being retrieved from a variable.

The labeling principle: e.g. the memory location of a variable is not used to
manipulate it, instead its name is used.

The portability principle: e.g. the data type of a variable should not be specific to a
subset of machines architecture.

The regularity principle: e.g. in a language all variables are initialized automatically,
or none of them are initialized automatically.

The responsible design principle: e.g. it would be irresponsible to design a language
that provides to the user only integers of precision 128 so that a novice programmer will not
have to worry about which precision to use. A responsible approach provides to the user
integers of different precisions.

The immediate visual feedback principle: e.g. the value of a variable shall be
displayed as the program is being edited, provided no run time value is needed.

The automation principle: e.g. the declaration of a variable is one of the activities
where errors commonly occur. A common error made by novice programmers is to use a
variable in the code without declaring it. This declaration could be performed automatically.

The syntactic consistency principle: e.g. the grokens for variables shall all look similar

and they shall look different from other programming constructs.

36

The defense in depth principle: e.g. if the user can assign a string value to an integer
variable while editing a program, the system should catch that error when an expression uses
that variable.

The information hiding principle: e.g. for a string variable, the user will be provided all
the string operations the language provides, but the system will hide the operations for
integers.

The abstraction principle: e.g. two pieces of information are not needed to identify a
variable as being an integer.

The elegance principle: e.g. this principle is violated if the groken for a variable is a
really complicated geometric figure,. Add more about having choice of a simpler design.

The simplicity principle: e.g. the concepts should be simple.

The impossible error principle: e.g. mechanisms such as not allowing a string literal to
be assigned to an integer variable can be implemented to avoid those errors.

The preservation of information principle: e.g. the user declares a variable to be of a
certain type, and the system keeps track of that type.

The structure principle: e.g. use of a unidirectional arrow to represent assignment of
the content of a variable to a different variable.

The 0 - 1- oo principle: e.g. the maximum dimensions of arrays should not be limited
to arbitrary numbers such as 4 or 7; the language should either not allow arrays (0), or allow

only arrays of one dimension (1) or allow arrays of any dimension (o).

37

ALICE | ANALYTICA | MS VPL | TERSUS
v
v Y v
v Y
v | Y
v v
IMMEDIATE VIS. FEED.
AUTOMATION v v
SYNTACTIC CONSISTENCY v v
DEFENSE IN DEPTH
INFORMATION HIDING v v v v
SECURITY n/a n/a n/a n/a
ABSTRACTION v v
ELEGANCE
SIMPLICITY v v
IMPOSSIBLE ERROR
PRESERVATION OF INFO v v v
STRUCTURE v
0-1-o0 v v

Table 3.2-2: Principles related to variables and literals

38

Strength and Weaknesses of Variables in Alice

Strengths:

Even though immediate visual feedback - as defined by Burnett - is not provided in
Alice, the user can watch the values of the variables being updated when the program is
running. The data type and the value assigned to the variable are presented visually and

explicitly as shown in Figure 3.2.1.

[12¢] Intermediateval = 0

Figure 3.2.1: Example of a variable in Alice

@ myhge = 0 — @ myBirth¥ear = 1~ , ;;;@]this‘(ear = 2009 € Variable at declaration time

myAge ~ | set value to |} (thisYear — = myBirthYear —) more... € Variables in the program

Figure 3.2.2: Syntactic consistency violation

E;EEH]thisisthenameufmwariahleitisinueEuuennunganditduesnutha'u.-'eaIimitastuthenumherufcharacters =1

Figure 3.2.3: Example of a variable with a long name

Weaknesses:

Alice lacks direct manipulation of the variable grokens, leading assignments to be very
cumbersome. One goes through several selection menus to assign to a variable a number, the
value of a different variable, or the value of an expression. In Alice, a variable looks different
when used in an expression than when declared, as shown in Figure 3.2.2. Figure 3.2.3 shows

how variable grokens do not have a fixed size, whereby the icon grows as the name gets

39

longer; this can lead to issues for screen real estate. All numbers in Alice are double precision

floating point.

Strength and Weaknesses of Variables in Analytica
Strengths:
Analytica does not provide typed variables, however the type is deduced when

operations are performed against the variables.

Figure 3.2.4: example of a variable in Analytica

et . }sortn)
- : -+ | adecision
e . : . VI . . .

Figure 3.2.5: some grokens and viprocons in Analytica

Weaknesses:

The variable grokens in Analytica as depicted in Figure 3.2.4 are not manipulated
directly; all interactions are effectuated in secondary screens, using a procedural, textual,
language. Some grokens and viprocons, such as variables and modules are very similar to

each other as shown in Figure 3.2.5, and furthermore the user has the option to make them

40

look identical by setting them to the same color. The behavior of the program is not visualized

easily, as values assigned to variables are not shown explicitly.

Strength and Weaknesses of Variables in Microsoft VPL

Strengths:

In MS VPL, regardless of the data type, all variables look the same and are

differentiated from other grokens and viprocons by the color and the object label.

Vanable

myMName ~
string

Figure 3.2.6: Example of a variable in MS VPL

Weaknesses:

The variable a groken represents is interchangeable at any point during editing by
simply choosing a different variable from the dropdown, as seen in Figure 3.2.6. On one hand
this feature adds convenience to programming, since on most VPLs changing a variable
requires the groken to be deleted and replaced. But on the other hand this feature can be

error prone.

Strength and Weaknesses of Variables in Tersus

Strengths:

Unlike in MS VPL, variable grokens in Tersus consistently receive data from their left
side and output data through their right side, consequently leading to a simple design. The
declaration of a variable is automated, whereby the user only needs to drag and drop the

groken and starts using it.

41

Figure 3.2.7 shows how the data type is unnecessarily stated twice on the groken;
nevertheless, the data type tags on the variable groken are persistent, which can help during

editing of a program.

5 ryddge [Number]

Figure 3.2.7: example of a variable in Tersus

3.4 Arithmetic, Boolean, and Comparison Operations
An operation groken accepts operands, and produces a result after some
computation(s) are performed on the operands. The way in which these actions are performed
in Alice, Analytica, MS VPL and Tersus are analyzed in this section, using the same strategies

and principles described earlier in this chapter, and the findings are summarized in Table.

42

ALICE | ANALYTICA | MS VPL | TERSUS
v | v v v
v Y v v
n/a n/a n/a n/a
v | Y v v
v v v
v v v
IMMEDIATE VIS. FEED.
AUTOMATION n/a n/a n/a n/a
SYNTACTIC CONSISTENCY | v v v v
DEFENSE IN DEPTH v
INFORMATION HIDING v v v v
SECURITY n/a n/a n/a n/a
ABSTRACTION v v v
ELEGANCE v v
SIMPLICITY v v
IMPOSSIBLE ERROR v v
ORTHOGONALITY v v
PRESERVATION OF INFO n/a n/a n/a n/a
STRUCTURE v v v

Table 3.2-3: Principles related to operations

To put into context Burnett’s strategies and McLennan’s principles, some examples are
provided to relate them to the operations analyzed in this section.

The directness strategy: e.g. arguments should be directly assigned to an operation by
the use of arrows or other directive components.

The explicitness strategy: e.g. the purpose of the operation should be visually explicit;
if it is an addition the operation groken should have the name or the symbol of the operation
in it.

43

The regularity principle: e.g. all operations should accept arguments on a particular
side (such as the left side) and output results from a different side (such as the right side).

The responsible design principle: e.g. the language should not permit a programmer to
rename a built-in operation.

The immediate visual feedback principle: e.g. the result of an operation is displayed as
the program is being edited.

The syntactic consistency principle: e.g. all grokens for categories of operations should
have the same look and feel.

The defense in depth principle: e.g. if the VPL development environment fails to catch
that not enough arguments are given to an operation, this error should be caught later in the
editing process of the program, as the output from the operation is being used in another
operation.

The information hiding principle: e.g. when the user is manipulating string variables,
arithmetic operations should be disabled or hidden from the user.

The abstraction principle: e.g. two sorts of information are not needed to define an
operation - like having the word "addition" and the symbol “+” used in the same groken.

The impossible error principle: e.g. the example provided for the information hiding
principle , reduces the likelihood of programmer error.

The orthogonality principle: e.g. using the addition operation to perform additions and
subtractions would be a lack of orthogonality.

The structure principle: e.g. the use of a unidirectional arrow to represent the result of

an operation being sent to an output argument.

Strength and Weaknesses of Operations in Alice

Strengths:

Alice has an approach that follows information hiding, whereby the contextual menus

do not display string functions when the variables being manipulated are numbers.

44

A set value to (A~ +B~)

Figure 3.2.8: addition in Alice

ol 1} ==

Figure 3.2.9: comparison in Alice

Weaknesses:

In Alice there is no notion of grokens to represent operations, and thus the operations
are closer to being textual as illustrated in Figure 3.2.8 and Figure 3.2.9. Manipulating
operations is not simple, because the user builds expressions entirely through selection
menus. Floating point division is provided, but integer division is not; this is a direct effect of
the lack of orthogonality in the design of variables, since in Alice all numbers are double

precision floating point numbers.

Strength and Weaknesses of Operations in Analytica

Strengths:
It is not readily apparent that Analytica strongly complies with Burnett’s strategies and

McLennan’s principles.

45

E!L Double click on “adjusted rank”

ﬂ Diagrarn - Operation examples

() Variable ¥ | Adjusted_rank Units: =l

Title: Adjusted rank

Description: Last year's ranking is adjusted by a factor.

Definition: Last_year_ranking*1.5

Inputs: () Last year_ranking Lastyearrankingj
1 | Ld

Figure 3.2.10: Example of Operation in Analytica

Weaknesses
Similar to VPLs such as MS VPL the user types expressions in a textual, procedural,

language, and thus all operations are textual, as shown in the property form in Figure 3.2.10.

Strength and Weaknesses of Operations in MS VPL
Strengths:
If an operation is adding a string to an integer, an error occurs if the result is being set

as shown in Figure 3.2.11.

Calculate

Variable Variabl!

The incoming message type, 'string’, cannot be used to set the value for
B8 this variable, which is type 'int’.

Figure 3.2.11: invalid operation in MS VPL

46

Weaknesses:

In MS VPL, the operations are not iconic - they are textual, and are used like TPL

operations.

Strength and Weaknesses of Operations in Tersus
Strengths:
Tersus operations have dedicated grokens, and in general follow the defense in depth

principle, such as detecting when an integer is being added to a string as shows Figure 3.2.12.

% T [Text] b

<Sumz

5 B [Numbet] SR s
Elanks

Figure 3.2.12: Invalid operation in Tersus

Weaknesses:

The user has the ability to rename an operation - for example, addition - to
meaningless or misleading names such as ‘division’, ‘&’ etc.; this feature gives the user the
freedom to name an operation anything, but on the other hand it can lead to maintainability

issues, if the programmer does not use it responsibly.

3.5 Control Flow
The result of the analysis of the control flow from the selected VPLs is presented in

Table 3.2-4.

47

ALICE | ANALYTICA | MS VPL | TERSUS
v v v
v v
n/a n/a n/a n/a
v | ¥ v
n/a n/a n/a n/a
v v

IMMEDIATE VIS. FEED.

AUTOMATION v v

SYNTACTIC CONSISTENCY v

DEFENSE IN DEPTH

INFORMATION HIDING v v v v

SECURITY v

ABSTRACTION v v v

ELEGANCE

SIMPLICITY v

IMPOSSIBLE ERROR v

ORTHOGONALITY n/a n/a n/a n/a

PRESERVATION OF INFO v v v v

STRUCTURE v v

Table 3.2-4: Principles related to control flow

What follows are examples of applications of the strategies and principles related to
control flow:

The directness strategy: e.g. "for loop" counters or "while loop" conditions could be
assigned directly to a control flow viprocon by the use of arrows.

The explicitness strategy: e.g. the purpose of a control flow should be visually explicit;
the viprocon should have the name or the symbol of the type of the control flow construct.

The programmer should not have to infer the type of control flow.

48

The responsible design principle: e.g. the language should not permit an instruction
within a loop to jump to any other part of the program except to the statements of the loop or
to the statement right after the loop.

The immediate visual feedback principle: e.g. the language allows the display of the
value of a counter as a "for loop" is unfolding.

The automation principle: e.g. the language should provide the option to increment
counters in iterations automatically.

The syntactic consistency principle: e.g. the viprocons for all control flow should have
a similar look and feel.

The defense in depth principle: e.g. the programming language could generate a
warning if an infinite loop is detected; this could be useful to novice programmers.

The information hiding principle: e.g. a control flow viprocon should not request more
information from the user than is needed to start or stop iterations.

The security principle: e.g. if a loop runs infinitely, all resources could be consumed,
which in turn could lead to security issues.

The abstraction principle: e.g. a conditional loop should be implemented in such a way
that the condition itself is stated only once, either at the beginning of the loop or at the end of
the loop, instead of both at the beginning and at the end, or at the beginning of each case
value.

The impossible error principle: e.g. mechanisms that could detect possible infinite
loops should be encouraged.

The orthogonality principle: this principle is not applicable because, e.g., writing a for
loop as a while loop is not a bad design

The preservation of information principle: e.g. representing a stopping condition in a
"for loop" is an example of preserving information that the user knows and the compiler
needs.

The structure principle: e.g. symbols to represent the beginning and the end of a loop

could be used to add structure in a control flow viprocon.

49

Control flow in Alice

Strengths:

Alice provides a lot of automation, whereby counter variables are created
automatically if the user does not specify any; there is also an option to set automatically a
loop to run infinitely. Figure 3.2.14Figure 3.2.13 illustrates how in Alice the beginning and the
end of a loop can be distinguished visually; indeed, a control flow block is represented by a

distinctly-colored rectangle.

isMinor == flrue

ncrement currentyear by 1 more...

- { currentyear — | — BirthYear = |} D= 21

3 isMinor set value to false more...

Else
(Do Mothing

Figure 3.2.13: While loop in Alice

@ world.my first method

world.my first method Noparamelors | create new parameter |

Nowvariahles | create new variable |

g?éELm:up @] index from 0 up to (but not including) 10 times incrementing by 1 ghow simple version |

print index 1time

2 times
5times

® 10 times
infinity times

expressions

math 4

other...

Figure 3.2.14: For loop in Alice

50

Weaknesses:
Figure 3.2.14 shows how in Alice for loops do not decrement, and when incrementing
by (-1) - to perform a decrement - the program halts without throwing an error or returning

any results. Furthermore, in the for loop an existing variable cannot be used as the loop index;

Alice creates that index automatically.

Control flow in Analytica
Strengths:
If the programmer defines the statements to execute in a control flow using

undeclared variables, Analytica creates these variables automatically.

=

W Oyjser Flidar

Library:| Special Vl Find... |

5 Elasticity (Y, X, uena.preseﬂ
#5 Evalate (exprText, params
B Handle (X, Ashdex)
&% Handlefromidentifier (varlame }
B xi=v] identi=U] v|
temp | expr
For ... Do | | neox | B=CeD

“For Temp := | Do Expr® terates across index |, returning the value of exprezsion J
Expr by substiuting Temp with each value of index |. The result is an array of
valuez for exprezsion Expr, indexed by index |.

|
Cancel Wiki Help L

Figure 3.2.15: Special library in Analytica

51

[0 J0bject Dol fory M=E3

Do__for

Parameters: (param1)

Description:

Definition: For int_l ;= int_IDX Do B=C+D

Inputs: () Int_idx
B

O c c

[o

Figure 3.2.16: Indirectness in Analytica.

Replace this image with added function.

Weaknesses:

In Analytica, the control flow viprocons are the same as the function viprocons, and
even though the control flow constructs are considered to be special functions, they cannot be
distinguished from regular functions as shown in Figure 3.2.156. The user never manipulates
directly the control flow viprocons; instead there are additional windows where the indices and
conditions are specified as shown in Figure 3.2.16. Neither control flow nor iteration viprocons

are visually explicit, so the programmer needs to give the viprocons a proper name.

Control Flow in Microsoft Visual Programming Language

Strengths:

The design of control flow in MS VPL has syntactic consistency; those viprocons are
grey in contrast to red and green for variables and data as illustrated in Figure 3.2.18. The

structure of the viprocons helps visualize their behavior for different outcomes.

52

Figure 3.2.17: If viprocon in MS VPL

Vanable Calculate

-

string -..

Figure 3.2.18: Switch in MS VPL

Weaknesses:
Control flow concepts in MS VPL are arguably explicit: for system-provided viprocons
such as the if statement shown in Figure 3.2.17, the purpose of the control flow is explicit, but

for viprocons such as a for loop the type of the control flow has to be inferred.

Control Flow in Tersus

Strengths:

The control flow viprocons are explicit; they are tagged by their names and have a
representation of how the triggers (inputs) could affect the exits (outputs). Loops can be
implemented through a repetitive functionality in Tersus. This feature simplifies for the user
the set up process of loops, however it might be a concept hard to grasp for novice

programmers.

53

- I:<Done> i -
L

Branch by Tvpe

o ontral

Dat%:?@onditional Flow \:%

Branch

Figure 3.2.19: Control flow in Tersus

Weaknesses:

Unlike many other VPLs, Tersus does not provide viprocons for control flow constructs
such as “if” or “for...loop”. Instead, Tersus provides "if, then, else" control flow in the form of
comparisons, and therefore each comparison is a viprocon by itself with "then" and "else"
branches. Loops in general are implemented through recursion. Further, Tersus provides an
“and” viprocon - depicted in Figure 3.2.19 - which exits only if all mandatory triggers have
values. Another iteration in Tersus is the “branch” viprocon, which evaluates its inputs and,
based on the values, takes the corresponding exit; this viprocon is similar to a switch. The
other iterations are the “branch by type” viprocon, which evaluates the type of its inputs, and
based on the data type takes the corresponding exit. The input of the “conditional flow”
viprocon as depicted in Figure 3.2.19 is transferred to the exit if all required triggers receive

data.

54

3.6 Input / Output
A programming language is not of much value if it does not have functionalities to
process inputs and to produce outputs. I/O functions in VPLs are of as much importance as
operations or control flow, and the result of whether or not they were implemented with

Burnett’s strategies and McLennan’s principles are summarized in table 5.

55

ALICE | ANALYTICA | MS VPL | TERSUS
v v
v v v
n/a n/a n/a n/a
n/a
n/a n/a n/a n/a
v v v
IMMEDIATE VIS. FEED.
AUTOMATION n/a n/a n/a n/a
SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH v v
INFORMATION HIDING v v v
SECURITY v v v v
ABSTRACTION v v v v
ELEGANCE v v
SIMPLICITY v v v
IMPOSSIBLE ERROR v v
ORTHOGONALITY n/a n/a n/a n/a
PRESERVATION OF INFO v v v v
STRUCTURE v v v
0-1- n/a n/a n/a n/a

Table 3.2-5: Principles related to I/O

As in previous sections, examples of applications of the strategies and principles to the
design of I/O are stated below.

The directness strategy: e.g. the user could connect directly an input variable to an
I/0 viprocon.

The explicitness strategy: e.g. reading an input into a variable should be explicit, with

the use of flow arrows or similar mechanisms.

56

The responsible design principle: e.g. the programmer should be limited on the
number of files s/he is allowed to have open at the same time.

The immediate visual feedback principle: e.g. this strategy could be achieved by
visually acknowledging changes to the state of a file, as a programmer is writing code
affecting the file.

The syntactic consistency: e.g. 1/0 viprocons should look similar.

The defense in depth principle: e.g. if the user neglects to close explicitly a file in the
program, the file should be closed upon exit of the running program by the system.

The information hiding principle: e.g. only the path of a file and the open mode of a
file should be needed to perform an open file operation.

The security principle: e.g. some I/0O operations should be subject to file permissions
settings.

The abstraction principle: e.g. the information about the path of a file could be
optional if the file is located in the same folder as the executables of the programs accessing
it.

The preservation of information principle: e.g. the user should provide information of
what needs to be read and where to store it.

The structure principle: e.g. reading from an input should be visualized as information

leaving the input; writing to an output should be visualized as information entering the output.

I/0 in Alice

Strengths:

Alice adopts the impossible error principle whereby the user is constrained to build an
I/0 operation by picking items from contextual menus as Figure 3.2.20 shows, and those

menus only have items that can be used without causing errors.

57

world's details

properties rmethnds rfunctiuns

create new function |

hoolean logic

math

random

string

ask user

“ ask user for a humber

- [EDoin order

: user_number -~ set value to 1 more.~
fuestion

* ask user for yes or no

“ ask user for a string

mouse
time Enter a Number:
advanced math
other ather...

Figure 3.2.20: Setting up input in Alice

Weaknesses:
Because an Alice program looks like one in a TPL, there is no notion of manipulating
directly an I/O viprocon. Alice 2.2 does not support files I/0O, however a user can import music

files; all other I/0O is executed through standard input and output.

I/0 in Analytica

Strengths:
Analytica uses modal dialog boxes to read information from the user or to display
information to the user as depicted in Figure 3.2.22. Unlike in Alice, files can be handled in

Analytica.

58

Title: MezzageBox
Parameters: (parami)
Description:

Bxpr W
Definition: Msgbox(A, K Test')

Inputs: () 4

Figure 3.2.21: Setting up input in Analytica

0
Library:| All Available - I Find...
T} Function ™ | M — I
Title: MessageBox E5 - Min (X1 IgnureNDnNuﬂ
= Mirr (values, |, finance
Parameters: (parami) EE Mod (X, Y, Pos)
5 Monocubicinterp (DR X 1) 1
Description: ! (r utton
) Nurmal. [mean., stddey, ov <
e I L
@ Definition: message buttons title
Msghox A | Tesf
M=gBox displays a standard popup modal dialog with a user-supplied message 3
_ when it iz evaluated. Evaluation ceases until the user presses a button on the
box.
=
Wiki Help Ll

Figure 3.2.22: Input in Analytica

Weaknesses:

Although Analytica supports files handling, there are not any dedicated viprocons to

perform file I/O; instead the user writes code to perform these actions. Analytica does not

follow the syntactic consistency principle, since I/O operations are set up as functions, and

therefore can be difficult to differentiate from other functions. The information hiding principle

is not observed, as Figure 3.2.22 shows; parameters such as units are requested by the

system but are not needed to perform an output.

59

I/0 in Microsoft Visual Programming Language

Strengths:

MS VPL has I/0 for different data types, including text or numbers as shown in figures
Figure 3.2.23 and Figure 3.2.24. MS VPL supports input from video sources or direct input
from game controllers such as joysticks, as shown in Figure 3.2.25. I/O viprocons have
directness and explicitness, as those are manipulated directly by the programmer, and the

text tag or image explicitly define the nature of the I/0.

Data Varable

string = int

Figure 3.2.23: Output and Input example in MS VPL

SayTextSynchronous

Figure 3.2.24: Text to speech Output in Ms VPL

60

Figure 3.2.25: Miscellaneous I/O example in MS VPL

Weaknesses:
MS VPL does not handle natively text file I/O; instead the user needs to implement a

decentralized software service in C# for reading and writing text files.

I/0 in Tersus

Strengths:

Tersus VPL has a plethora of I/0 viprocons, whereby the program can accept all native
data type data for I/O operations. There are also some specialized I/O operations such as
outputting an image as depicted in Figure 3.2.26, or reading an MS Excel document as shown
in Figure 3.2.27. Tersus does not adopt the impossible error principle. Instead a defense in
depth protocol is implemented; Figure 3.2.27 shows that the program cannot be validated if,

for instance, a boolean variable is provided as the argument for the read file viprocon.

61

+]]
Q IG_EI (e Flle U5 <Data Structures <AL Documents,
[=
Text Input Field)
Popup £ Read FI|8
o &
E te"t <Content:
== URL
Sirnple Table Text Display : 4 i <O <ML Documents <Parzed Tree:
-
. Write Resource B
Image
Figure 3.2.26: I/Oexamples in Tersus
[+]
abc
T ext Input Field
[+] [+]
123
text 123
T et Display MNumber Input Fie..
[+]
j) <File Narnf} <File Text:
23 WY St G
Mumber Dizplay Read File

[+]
]

Image

Figure 3.2.27: More I/Oexamples in Tersus

Weaknesses:
In Tersus, the responsible design principle is not followed; the user is allowed to

change the name of a viprocon to an improper name.

62

3.7 Unified Visual Programming Language - UVPL

The analysis of the four selected VPLs is used as a basis to design the unified visual
programming language (UVPL). The design of UVPL is inspired by the programming constructs
in Alice, Analytica, MS VPL and Tersus. As a result, some elements in UVPL are similar to the
ones in those languages. Nevertheless, different features are added to facilitate the
programming task, ensuring that enterprise-sized programs can be developed with UVPL, all
the while keeping in mind factors that could affect scalability. UVPL is intended to be a genera-
purpose, object-oriented, visual programming language.

It has been noticed that the design of a VPL goes hand-in-hand with its development
environment. For this reason, the design of UVPL is comprised of elements that are related to
the development environment - programming features — and elements that define the

language - programming constructs.

3.7.1 UVPL Programming Features
UVPL Development Environment Layout

The programming environment has a panel layout design to use more efficiently
screen space but also to facilitate the viewing of a program. Initially only one panel is available
to the user; as that panel fills up a scroll bar appears to enable viewing of items that do not fit
on the screen. Subsequently, the user can opt to use more than one panel. By choosing to do
so, the part of the program that cannot be viewed without scrolling is pushed automatically
into the additional panel (s). Only the right-most and left-most panels have a vertical scrolling
bar at that point: the left-most panel can only scroll up, and the right-most panel can only
scroll down. Scrolling affects all the panels as the program moves as a whole. A program in
UVPL is read in top-down, left-to-right order. Figure 3.3.1 and Figure 3.3.2 illustrate an

example of the partial view of a program in a 3-panel layout.

63

Unified Visual Programming

File Edit Debug Build = ------ meeem eeee- Help

LoadEmployees" LoadStates l Process1Emp "ProcessAIEmpsl

(Global Variables E] an_&gﬂ@ arr_%

Main

In Parameters

Cocavaraves (] e [1) Fame (2] erte 3] ous (1] Index [c]Swiage =] x| o

|

Cul
New Class
C
Method IS
Instr. box
Get_LastName fabc
variable 3
Arithmetic ‘ = '
Boolean
Compare
Flow ctrl.
/0
Standard Lib.

Figure 3.3.1: Partial view of a UVPL program -1

Unified Visual Programming

File Edit Debug Build ------ meem oo Help

LoadEmponees" LoadStates I Process1Emp "ProcessAIEmpsI

Global Variables E] arr_&@@ arr_@

Local Variables [¥] LName (2] FName (] PayRate (5] Hours (5] Index [5]stMinWage[c] Stlax iments

Main

In Parameters

D) (4P| D]

New Class

Method

Instr. box

variable

Arithmetic ‘

Boolean

Compare

Flow ctrl.
/0
Standard Lib.

o

et—p Current

(E]mdex B

Figure 3.3.2: Partial view of a UVPL program -2

64

Sequentiality

In flow-graph-based VPLs such as MS VPL or Tersus, programming constructs need to
be connected to propagate values or to represent explicitly the execution sequences of a
program. The static representation of large programs in those languages is similar to a
gigantic graph, and they can be difficult to view and understand. To alleviate this issue, the
programmer can choose a modular programming approach, keeping each module a reasonable
size. However one needs to be careful in adopting an ‘extreme’ modular approach, because if
the modules are very small, as the program grows larger it will, at some point, become as
difficult to understand as an un-modularized program that performs the same tasks. To this
effect, UVPL has a different approach and combines the boxing effect of Alice, the top-down
approach of Tersus, the notion of instruction found in TPLs, and a minimal use of connecting
elements such as arrows in flow graphs. The result is what we call an “instruction box”. Figure
3.3.3 shows an example of a box with two nested instruction boxes, and an instruction without
any nesting. An instruction box contains a single instruction or a sequence of instruction boxes
each containing a single instruction. Within an outer instruction box, the nested boxes are
always in a single columnar arrangement. Apart from allowing a visual separation for the

instructions, these boxes can be used for other purposes described later in this section.

Figure 3.3.3: Instruction boxes

Comments
A well-written or well-built program - in the case of VPLs - clearly informs the

reviewer what the program is doing. Adding comments to a well-built program provides more

65

information; for instance a comment for a mathematical expression can explain why that
particular formula was chosen over others. This additional information provided by comments
is very useful when programs are being reviewed, and therefore can influence its scalability.
However, when it comes to the design of VPLs, one need to pay particular attention to the
implementation of comments. Indeed, while in a TPL, a comment can take as little space as an
instruction, following that same approach for VPLs like Alice causes comments to occupy much
needed screen space. MS VPL solves this issue by allowing comments to be minimized to an
icon; unfortunately those comments in MS VPL are not attached to any part of the program
diagram. In UVPL a different approach is taken; comments are interactive and are displayed
only if the user chooses so. A comment can be added to an instruction box or to a sequence of
instruction boxes if they first are nested into another instruction box. The border of the outer-
most box then becomes a red line as shown in Figure 3.3.4. On a mouse-over of the red line,
the comment appears in a call-out box as Figure 3.3.5 depicts. In this way, comments never
use space permanently, and even when hidden the red line informs the reader about the

presence of comments for a particular instruction box.

o
YourSalary

= ’1000 —D MySalary

Figure 3.3.4: Hidden comments

66

comment on mouse
roll over the red box.

Figure 3.3.5: shown comment

Concealing / Revealing Expressions

For better management of screen real estate, UVPL adds the concealment of
expressions to save screen space. Expressions are built as trees, and at each operation level,
the user can choose to conceal the incoming branches to that operation, whether the incoming
branches are just variables or expressions. In Figure 3.3.6, concealment occurs at a point
where there are incoming branches, and the result of the addition is itself an input to the
multiplication. In this case, everything before the addition is concealed, and the expression is
reduced to what is depicted in Figure 3.3.7. In Figure 3.3.8, the user chooses to conceal at the
division; in this case, everything except the division is concealed, as Figure 3.3.9 depicts. The
user also can conceal several levels in the same expression with a single click. The concealing

and revealing expressions allow the user to choose how much they want to see.

67

Figure 3.3.6: Concealing incoming variables

Figure 3.3.7: Revealing concealed variables

Figure 3.3.8: concealing incoming expression and variable

68

Figure 3.3.9: revealing incoming expression and variable

Docking

Docking is another concept that is added to UVPL for better management of screen
real estate. Docking a program is an option that can be turned on or off in the Edit menu.
When a program is in docking mode, blocks in the program are minimized to icon size as
Figure 3.3.10 shows. A mouse over a minimized block magnifies it; Figure 3.3.11 pictures an
example. Docking allows the programmer to have a better overall view of the program, and a

block that is of interest can be magnified for a close up view.

Unified Visual Programming
File Edit Debug Build ------ sseen aeee- Help

Main {Employee
Libraries g

Variables EmpID | [£] LastName [3] FirstName (2] Hours PayRate g

New Class FS@

Method

Instr. box || =
variable

Arithmetic | g

Boolean |

Compare | —_7
Flow ctrl. | *?‘/J

w |[—
W
Standard Lib.{ | —

Figure 3.3.10: docked program

69

Unified Visual Programming]

T D — Help
Main Emplcyee‘

Libraries

Variables EmpID] LastName [£] FirstName (2] Hours (2] PayRate |

Methods 8

New Class

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.
10

@)
Standard Lib., @
B9

Figure 3.3.11: mouse over to magnify minimized block

Exception Handling

Unlike most visual languages, UVPL incorporates exception handling mechanisms.

After a method is built, the user can add exceptions. First, the user right-clicks on the
viprocon of the method in which exceptions need to be handled, and then chooses “add
Exception” from the menu. This action adds a button with the symbol E! to the method’s
viprocon, as shown in Figure 3.3.13: Exception handling in UVPL2. Additionally, a tab labeled
using the name of the corresponding method with the symbol E! appended to it is created.
Initially, this tab is not visible; to open that newly created tab the user clicks on the E! button

in the method’s viprocon, as figure Figure 3.3.12: Adding Exception Handling Stub3 shows.

Get_LibraryName Get_LibraryName Get_LibraryName

777

Publi /I}}/‘//A
Public bt

v static
static

Add Exceptjon
Add Exception ption

Figure 3.3.12: Adding Exception Handling Stub

70

The newly created tab contains in dock mode a read-only representation of the
corresponding method’s code. Into that tab, the programmer adds exception handling code
under any block of instruction boxes, as Figure 3.3.13: Exception handling in UVPL depicts.

Having method code in one tab, and exception handling for that method in a different

tab allows a clear separation of the algorithmic code from the exception handling code.

Unified Visual Programming

File' Edit Debug Build -—--- - e Help

Get Title |Get 1sBN|Get_ Bookinfo | get BookPrice B

Global Variables StatelD Sta1eName Tax

Local Variables
In Parameters ShelfPrice

New Class

nite
Method gﬂeﬂmeﬂus boak :)'r}},h
Instr. box srworcn | —then) -
_if) 7*3)

KI3J[E13)

[

uén

variable melse)

Arithmetic

Boolean
Compare 5=
Flow ctrl. E
/0
Standard Lib.|

Kl

Figure 3.3.13: Exception handling in UVPL

3.7.2 UVPL Programming Constructs
Variables and Literals

Variables in UVPL are similar to variables in Alice and Tersus, where the type of the
variable is attached to the groken. At any point in a UVPL program, the type of a variable is

always known, as Figure 3.3.14 shows. In contrast to Alice and Tersus, UVPL has more native

data types:

71

- Integers: they are by default int and can be set via a right click to tinyint (1 byte),
smallint (2 bytes), int (4 bytes), or long (8 bytes).
- Floating point numbers: they are by default single precision, but can be set via
a right click to single or double precision.
- String.
- Boolean.

- Object.

New Class

Method

(123

Instr. box

variable

Arithmetic

W
/ v/

(]
@ & E E
| abc | [01
|
\v4

| T/F |

Boolean

T/F

Compare

Flow ctrl.
1/0

Standard Lib.

Figure 3.3.14: Data types in UVPL

Arithmetic Operators

The grokens for arithmetic operators shown in Figure 3.3.15 can take more than two
operands for inputs, allowing expressions to be more compact.

For additions and multiplications, the orders in which operands are added or multiplied
do not affect the result, and therefore the user can add as many operands as necessary to the

same groken.

72

For subtractions, divisions and modulus, it is important to know the minuend and the
dividend, and thus these two terms are connected to the groken through a red, single-dotted,
connecting line, as represented in Figure 3.3.16. For a division operation with more than two
arguments, the dividend is divided first by any of the divisors and the quotient of that
operation is in turn divided by any remaining divisors until no more divisors are left. The key
in this operation is that as long as a dividend is identified, the divisors are applied one by one
in any order to the quotients. This same rule applies for a subtraction operation. However, for
a modulo operation the order in which the divisors are applied to the remainder is important;
therefore they are used from top to bottom.

If the user decides to change the minuend or the dividend to a different argument,
s/he needs to drag the red dot to the desired argument. At that point the selected minuend or
dividend has a red, single-dotted, connecting line and the previous selection is turned to a
black line without the red dot. The selected minuend and dividend is put always automatically
at the top.

Assignment to a variable is represented simply by an arrow.

Setting the value of a cell array, or getting the value from a cell array is performed by

using the get and set grokens represented in Figure 3.3.16.

| New Class ‘[
[Method 7
Instr. box 7
variable |
: Arithmetic |
Boolean '

Compare

mn

| Flow ctrl.
7o |

.Standard Lib.!|

Figure 3.3.15: Arithmetic operators

73

Figure 3.3.16: Arithmetic operations in UVPL

Boolean and comparison operators
The Boolean operators AND, OR and NOT are represented by logic gates symbols.
They accept Boolean values and return a Boolean value. To fulfill the syntactic consistency

principle, all operators have the same look and feel, and are manipulated in the same way.

74

New Class

]

Method

Instr. box

variable
Arithmetic

Boolean

'e

Compare

Flow ctrl.
/0

Bl

Standard Lib.

Figure 3.3.17: Boolean operators

Method

Instr. box

variable
Arithmetic
Boolean
Compare

Flow ctrl.
/!
Standard Lib.

>

0

Figure 3.3.18: Comparison operators

Control Flow

Aside from the switch viprocon, which is designed based on the one in MS VPL, the
iteration viprocon designs are not based on the selected VPLs for the following reasons: Alice
does not have dedicated viprocons that can be manipulated directly by the user for iterations;

Analytica iterations are in fact textual; and Tersus does not have traditional iteration

75

constructs. In Tersus for instance, the if statement is combined with the result of a
comparison. Instead of having a single if...then...else viprocon, Tersus has for each type of
comparison a different viprocon representing an if...then...else. The other control flow
viprocons in Tersus are branching by data type of a variable, and branching by value, the
latter being basically a switch.

UVPL has four different iteration viprocons; Figure 3.3.19 has a representation for
each. The viprocons have a box where the user builds the condition that is evaluated to decide
how to branch or how to loop. There are three variants of the for loop viprocon:

- The first one is a for<variable>from<starting value>,to<last value>,by<increment>.
- The second variant is a for each<arrIndex>in<array>.

- The last variant is a for each<arrlndex>,in<array>, key<condition>.

New Class |

Method

Instr. box

variable ok
Arithmetic ﬁ) from

Boolean

Compare

Flow ctrl.

I/0

Standard Lib.

Figure 3.3.19: Iterations in UVPL

76

Input / Output

UVPL has standard I/0 and file I/0 as Figure 3.3.20 shows. The design of the I/0 is
based on the viprocons of Tersus file I/O. Among the selected VPLs, Tersus alone handles
different types of files; furthermore, the dedicated I/O viprocons of Tersus explicitly represent

their purpose and are manipulated directly by the user.

New Class

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.
I/0 |

Standard Lib.

Figure 3.3.20: File and standard I/O

3.7.3 Object-Oriented UVPL

UVPL is not a fully object-oriented language, because it does not have OO features

such as inheritance or packages. However a UVPL program is constructed with classes defining

77

objects. An object is represented like a variable with the type attached to its groken, as shown

in Figure 3.3.21.

(Book)
My_BookObj

Figure 3.3.21: an object in UVPL

Methods, shown in Figure 3.3.22, are represented as viprocons to allow direct
manipulation and reuse when the method needs to be invoked more than once. A
unidirectional arrow is used to pass variables into the method by value; a bidirectional arrow is
used to pass variables by reference. The visual design of methods is based on that of activities
in MS VPL. An activity is a viprocon that symbolizes a method. Figure 3.3.23 shows an
example of an activity, ProcessEmployee, in MS VPL. But because UVPL is an object-oriented
language, its methods have more capabilities than those in MS VPL. Indeed, UVPL methods
can be public or private, static or not and can accept arguments by value or by reference.
Furthermore, all arguments passed are visually represented, allowing a reviewer to have more
information about the method, all the while abstracting the details of what the method is

doing.

78

Create_Patient_File

Figure 3.3.22: Procedures and functions in UVPL

List of 5

Calculate

Action Result

Calculate

—

Figure 3.3.23: Example of an activity (ProcessEmployee) in MS VPL

A public method, as depicted in Figure 3.3.24, has a slot where the groken for the
object that is referenced is dropped. In this example, My _BookObj is an instance of the class
Book; the user invokes the public method Search_word, to search a given word within the

object My_BookObj.

79

In a public static method, as shown in Figure 3.3.25, the slot contains no groken, but
instead is hatched to symbolize inaccessibly. However, when invoked outside the host class,
the hatched slot will have the host class name.

Figure 3.3.26 represents a private static method; the background of the viprocon is

hatched as well as the object slot.

Figure 3.3.24: Public non-static method signature

Figure 3.3.25:Public static method signature

Figure 3.3.26: Private static method signature

80

3.7.4 Principles analysis of UVPL
Variables and literals
The table 3.3-1 summarizes the strategies and principles for variables and literals

present in UVPL in comparison to those present in the selected VPLs.

ALICE [ANALYTICA [MS VPL [TERSUS | UVPL
v
v v v
v v
v v
v v
v
IMMEDIATE VIS. FEED.
AUTOMATION v v
SYNTACTIC CONSISTENCY v v v
DEFENSE IN DEPTH
INFORMATION HIDING v v v v
SECURITY n/a n/a n/a n/a n/a
ABSTRACTION v v v
ELEGANCE v
SIMPLICITY v v v
IMPOSSIBLE ERROR ! v
ORTHOGONALITY n/a n/a n/a n/a n/a
PRESERVATION OF INFO v v v v
STRUCTURE v v
0-1-o v v v

Table 3.3-1: Variables and literals principles

Strengths:

UVPL respects the automation principle for declaration and data type assignment,
through which the user just drags, drops and names the groken to start using it. Unlike most
VPLs, regarding variables, UVPL adopts a responsible design: the language provides different
precisions for integers and floats. In UVPL, the variable groken will be resized automatically as
the name grows, but to avoid having really long grokens — as in Alice — the names of the
variables are constrained to be no longer than 25 characters.

The variable design in UVPL addresses the lack of direct manipulation found in Alice,
Analytica and MS VPL, as well as the violation of responsible design, simplicity and elegance

principles.

81

Weaknesses:

UVPL does not provide immediate visual feedback. This VPL strategy, proposed by
Burnett, has not been considered for UVPL as a tradeoff for less disruption during the edit of a
visual program, but also for better efficiency. As Burnett, et al. mentioned, the need to
provide responsiveness can affect the efficiency of a program.

Table 3.2-2 represents principles and strategies of UVPL and the selected VPLs used in

this research.

ANALYTICA | MS VPL | TERSUS | UVPL
v v
v v v v
n/a n/a n/a n/a
v v v v
v v v v
v v v
IMMEDIATE VIS. FEED.
AUTOMATION n/a n/a n/a n/a n/a
SYNTACTIC CONSISTENCY v v
DEFENSE IN DEPTH v
INFORMATION HIDING v v v v v
SECURITY n/a n/a n/a n/a n/a
ABSTRACTION v v v
ELEGANCE ? v v
SIMPLICITY v v v
IMPOSSIBLE ERROR v v v
ORTHOGONALITY v v v
PRESERVATION OF INFO n/a n/a n/a n/a n/a
STRUCTURE v v
0-1-o n/a n/a n/a n/a n/a

Table 3.3-2: Principles for operations

Strengths:

The function of an operation always is represented explicitly on the groken. The
operations in UVPL are designed with syntactic consistency at different levels. UVPL is not
designed with defense in depth mechanisms; instead, the impossible error principle is

implemented.

82

Weaknesses:

By choosing a design in which the user does not type expressions as in a TPL, the
expressions in UVPL tend to occupy more space than in the other selected VPLs. Nevertheless
this choice was necessary to allow direct manipulation of operations, less abstraction and
better reviewing of visual programs. To overcome the screen space issue, UVPL introduces the

concealing and revealing of expressions described in section 0.

Iteration

Table 3.3-3 is a summary of the principles present in UVPL in comparison to the

selected VPLs.

ALICE | ANALYTICA | MS VPL | TERSUS | UVPL
v v v
v v
n/a n/a n/a n/a
v v v
n/a n/a n/a n/a
v v
IMMEDIATE VIS. FEED.
AUTOMATION v v
SYNTACTIC CONSISTENCY v v
DEFENSE IN DEPTH v
INFORMATION HIDING v v v v v
SECURITY v v
ABSTRACTION v v v v
ELEGANCE v
SIMPLICITY v
IMPOSSIBLE ERROR v
ORTHOGONALITY n/a n/a n/a n/a n/a
PRESERVATION OF INFO v v v v v
STRUCTURE v v v
0-1- o n/a n/a n/a n/a n/a

Table 3.3-3: Principles and Strategies for Control Flows

Strengths:
Elements such as counters and conditional statements are part of the iteration

viprocons; this visual information clearly indicates the type of the control flow and the

83

expected behavior. The responsible design principle has been respected since the programmer
does not have the ability to change the keyword of the viprocons (e.g. If, For, While).

UVPL implements a soft version of the impossible error and defense in depth
principles:

1. Impossible error: for a while loop the compiler checks and issues a warning if the
value(s) of the variable(s) that define whether or not the loop continues are not being
modified in some fashion.

2. Defense in depth: if a program segment is looping for a fairly large number of
times, the system will issue a warning to caution the user about the possibility of an infinite
loop. A default number is used to set off the warning; however the user has the option to set
different numbers for different loops.

None of these measures can prevent completely issues such as infinite loops, but they
can contribute to avoiding them. Because infinite loops cannot be avoided completely, it can

be concluded that UVPL has only some level of security.

Weaknesses:

For control flow UVPL does not provide immediate visual feedback or automation such

as automatically creating undeclared counter variables used in the control flow viprocons.

84

Input / Output
Table 3.3-4 presents the principles followed in UVPL in contrast with the ones followed

in the selected VPLs, regarding 1/0.

ALICE | ANALYTICA | MS VPL | TERSUS | UVPL
v v v
v v v v
n/a n/a n/a n/a n/a
n/a v
n/a n/a n/a n/a n/a
IMMEDIATE VIS. FEED.
AUTOMATION n/a n/a n/a n/a n/a
SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH v v
INFORMATION HIDING v v v v
SECURITY v v v v v
ABSTRACTION v v v v v
ELEGANCE v v v
SIMPLICITY v v v v
IMPOSSIBLE ERROR v v v
ORTHOGONALITY n/a n/a n/a n/a n/a
PRESERVATION OF INFO v v v v
STRUCTURE v v v v
0-1- n/a n/a n/a n/a n/a
Table 3.3-4: Principles for I/O
Strengths:

Unlike Tersus, the user is not allowed to change the name of the I/0 viprocon. The
visual structure of the viprocons helps in visualizing their behaviors; for instance, in UVPL a

write viprocon has in and out parameters symbolized by arrows to show the flow of data.

Weaknesses:

UVPL does not have as many file I/O operations as Tersus; for instance, UVPL does not

have XML parsing or PDF file generation.

85

Chapter IV

TESTING

4.1 Program Tests

The analysis of the selected VPLs using principles defined by McLennan, and strategies
defined by Burnett, helped identify the strengths and weaknesses of the selected VPLs. The
result of this analysis was the basis on which UVPL was designed, by avoiding - where
possible -the weaknesses and by incorporating the strengths identified by the analysis of the
VPLs.

The next phase of this research involves implementing a test program in each
language, i.e. in the selected VPLs and UVPL. A quantitative analysis is performed, whereas
various metrics are computed for each implementation. These metrics are used to determine
how UVPL measures against the selected VPLs in achieving scalability.

A specific test program is designed, because most standard test programs used in
research focus on the performance of the languages rather than on the scalability of the
language. No standard test program for comparing programming languages for scalability is

yet available.

86

It is important to note that benchmarking programming languages is a difficult task.
Indeed, the ideal way to achieve this task is to implement the test program using the exact
same algorithm in each language. However, every programmer has her/his own programming
style, which means that there are multiple ways to implement an algorithm. Furthermore,
programming languages are designed differently, and this implies that it might be more
appropriate to use a particular construct in one language, but in another language a different
construct is more suitable to serve the same purpose.

Taking into account these facts about the difficulty of conducting benchmarks on
programming languages, a few rules are drawn to conduct this step of the research to obtain
meaningful results:

- All programs are implemented by the same person; this insures that the same

programming style is kept across the different implementations.

- Programs are implemented using programming constructs or data types that best
fit the language. In other words, the programmer is not required to build an
abstract data type if the language does not provide it, just so that s/he can use

the same data types used in other implementations.

- If a language does not provide a necessary feature - for instance, the capability to
read a file - the programmer uses workarounds rather than eliminating the

language.

The idea behind the designed test program is to perform simple yet common tasks.
The test program ensures that, where possible, the following actions are performed:

- Use of objects such as primary data types and data structures

- Value assighments

- Execution of arithmetic, comparison and Boolean operations

- Use of iterations and conditional jumps

- Use of libraries such as math or string libraries

87

- Create and invoke methods

- Create and instantiate classes

- Perform I/O operations

- Handle exceptions

- Comment code

The program reads and stores the records from a file of employee data in an array or
a list. The file has five records and each record has five fields concerning an employee:

- 1D

- last name

- first name

- the number of hours worked in a given month

- pay rate

The program also should read and store the records from a file containing data for five
states, where each state’s record contains:

- ID

- name

tax rate as a percentage

- minimum wage.

For each employee, the first and last names should be displayed, and then the user is
asked the name of the state used to compute the wages of that employee. If the pay rate of
the employee is less than or equal to zero, an exception should be thrown. If the pay rate of

the employee is less than the state’s minimum wage, then the state’s minimum wage should

88

be used in place of the pay rate to compute the wage. The wage is computed using the
following formula:

hours worked * pay rate - hours worked * pay rate * state’s tax rate / 100

The result is rounded to the nearest integer value and displayed to the user of the
program.

The subsequent sections of this chapter aim at describing and discussing the

implementation of the test program in the different selected languages and in UVPL.

4.1.1 Program Test in Alice 2.2

Classes in Alice are represented by animals, people and other 3D objects that move,
spin or react to the mouse, and thus are not necessarily suitable to create, for example, an
employee object. Each Alice program has a class “world”; some of the properties of this class
are “atmosphereColor” and “fogStyle”. The “world” class basically defines the environment in
which the 3D objects interact. The programmer can define more properties, methods or
functions.

The test program is implemented in Alice with workarounds, because Alice 2.2 does
not support file I/O. Instead of reading a file, the program’s specifications are modified to read
the fields of the records one by one through a dialog box. Alice 2.2 does not have error
handling mechanisms either; in this test program, the execution of the program is stopped
after an error message is displayed to the user. The test program is implemented with 4
methods and 2 functions added to the “world” class.

- Method MainEntry is the equivalent of a Java or C main static method that

specifies where the execution of a program should start. Alice does not have this
concept, but to specify where the program should start executing, the programmer

needs to create an event, as shown in Figure 4.1.1: Events in Alice.

89

~ When the world starts, do world.my first method

Figure 4.1.1: Events in Alice

- Method ReadEmps prompts the user to enter the different fields for the employee

records.

- Method ReadStates prompts the user to enter the different fields for the state

records.

- Method DisplayResults takes as input 3 arrays of the same size, used to simulate a
3-dimensional array, and displays the content of the rows of the arrays. This
method is called in the MainEntry method to display the first name, last name and

computed wage of employees.

- Function GetStateTax returns the tax percentage of a given state.

- Function GetStateMinWage returns the state minimum wage of a given state.

4.1.2 Program Test in Lumina Analytica 4.2

Similar to Alice, the implementation of the program in Analytica is performed with
workarounds. File I/O in Analytica is provided only for the paid professional edition. For the
freely-available version of Analytica used in this research, the records of employees and states
are provided as initialized values to the program, instead of a file. These values are used to
simulate the content of a file, and thus records are read one by one using the “spliText "
function provided by Analytica. In turn, each record is split again to capture the different fields
of an employee or state record. Analytica is not an object-oriented VPL, and thus no classes
are created, and the program is procedural. Variables in Analytica are defined such that the

definition of the variable itself is either a piece of textual code or values; the use of these

90

variables triggers the execution of the code if it is present in the definition. The result of the

computation is used instead of the variables. In other words, variables are manipulated like

functions when they have code as their definition.

The program is implemented with 7 Analytica variable grokens, and 1 function viprocon

4.1.3

The variable Employees contains all the employee records as in a text file

The variable States contains all the state records as in a text file

The variable EmpRecs holds the employee records; it is a result of the "spliText"

function on the Employees.

The variable StateRecs holds the state records.

The variable EmpFields holds the fields of a given employee; it is the result of the

"spliText" function on a row in EmpRecs. This variable takes as input an index.

The variable StateFields holds the fields of a given state; it is the result of the

"spliText" function on a row in StateRecs.

The variable Display calls in a loop the procedure ComputendDisplay.

The procedure ComputeandDisplay is called with an employee variable, with
StateRecs and with StateFields. This procedure performs all the processing and

rounds the value of the employee's wages.

Program Test in Microsoft VPL 2.1

The implementation of the test program in MS VPL encompasses most of the

programming features listed earlier. Because MS VPL is not an object-oriented language, the

program is built solely with procedure-like objects, called activities. The Diagram holds the

entire data-flow that represents the program. Only activities have input and output pins to

receive input data and send result data. MS VPL does not provide text file I/O; however the

platform allows a programmer to create easily decentralized software services (DSS) to

perform tasks that are not part of the language as provided. In fact most of the library items

91

in MS VPL are DSS. DSS items are lightweight, state-oriented, service models, and they can

be modified effortlessly by the programmer. Therefore, in this test, a DSS item is created to

read text files. There are no exception handling mechanisms in MS VPL; the programmer

needs to validate the data and branch to the end of the data-flow in order to stop the

execution of the program, should a catchable error be detected.

4.1.4

The test program is implemented with 5 activities:

The GetListOfRecords activity returns a list of records from a file; the input is the

pathname of the file.

The GetStatelnfo activity parses and returns the tax and the minimum wage of a

state, given a list of states and the index of a given state in that list.

The GetEmplInfo activity parses and returns the hours, pay rate, last name, and

first name of an employee, given an employee record.

The CompSalary activity computes and returns a salary given the hours, a pay

rate, a state’s minimum wage and a tax rate.

The ProcessEmployee activity accepts as input a list of employees, a list of states,
and the index of the employee to process. It extracts from its input only the data
needed to compute the wage of the employee. In return the activity provides a

formatted string of the processed employee data and the calculated wage.

In the main Diagram the files of employee and state data are read, and the
records are stored in a list - MS VPL does not provide arrays. Those lists are used

to process all the employees. For each employee, the result is displayed.

Program Test in Tersus 1.3

The Tersus VPL is not object-oriented; however, the user can use systems to group

logically method-like entities called actions. Tersus does not provide exceptions handling

mechanisms, and thus the programmer needs to handle properly any possible exceptions that

can occur in the program. There are not any mechanisms for adding comments in a Tersus

92

program. A solution could be to use a text literal groken to add comments; however those

comments will not be tied logically to any portion of the diagram.

4.1.5

The test program in Tersus is implemented with 7 actions:

The GetAState action takes as inputs the path of the file of state data and a state
ID; the action returns the minimum wage and the tax rate percentage of that

state.

The GetAnEmployee action takes as inputs the path for the file of employee data
and the ID of the employee to process. This action returns the last name, the first

name, the hours worked, and the pay rate of the employee.

MakeACaption is an action that is used to format the output question used in the

UI for a user of the program, given a last name and a first name.

The AskState action generates an interactive webpage to capture the answer from

the user, when the user is asked the state to be used to process an employee.

The ComputeEmpSalary action returns a computed salary given a number of hours

worked, a pay rate, and a tax rate percentage.

The OneRound action calls GetAnEmployee, asks the user which state to use for
processing, decides which pay rate to use, calls ComputeEmpSalary and displays

to the user the computed salary for a given employee.

ProcessAlIEmployee calls in a repetitive mode - which is how Tersus VPL performs

loops - the action OneRound.

Program Test in UVPL

The test program in UVPL is implemented, but is neither compiled nor

executed because only the language specifications have been defined in this research. The

definition of this language allows the manipulating primitive and non-primitive data structures

the use of various types of operations and libraries, and the performance of I/O operations as

93

well as conditional jumps and iterations. UVPL also provides the means to add comments
within the program.

UVPL has some features of object-oriented programming: data abstraction,
encapsulation and modularity. The test program in UVPL is represented with 3 classes, and 21
methods.

- The class Employee has properties EmpID, LastName, FirstName, Hours, Payrate

and Salary. Each property has an accessor and a mutator. The class Employee also

has a method Compute_Salary to calculate the salary of an employee object.

- The class State has properties StateID, StateName, Tax and Minwage; and each

property has an accessor and a mutator.

- The class Main is a static class, and has 4 methods:

o LoadEmployees is a method that takes as input the pathname for a file of

employee data and loads into an objects array representing employees.

o LoadStates takes as input the pathname for a file of state data and loads

into an array objects representing states.

o Processl1Emp takes as input an employee object and processes it by
gathering information to compute salary and by calling Compute_Salary

for that employee. This method returns the modified employee object.

o ProcessAllEmps calls in a loop Process1Emp for each employee object in

the array.

4.1.6 Analysis of the Program Tests

This step of the research allows hands-on interaction with the selected VPLs, and that
permits further identification of features not provided in those languages.

None of the visual languages selected provide exceptions handling mechanisms. This

feature is important to the ability to scale up a program. When a language does not provide a

94

way to handle run-time errors, the programmer needs to perform more validations for possible
run-time errors such as division by zero, and also needs to provide appropriate responses.
However this practice leads to adding to the program code that is not part of the algorithm. As
a result, there is no separation of the algorithmic code from the error handling code, which
tends to add avoidable complexity to the program.

Commenting is another programming element that is provided neither in Analytica nor
Tersus; on the other hand, Alice and MS VPL provide a means for adding comments.
Nonetheless, comments in MS VPL lack structure, because a particular comment does not
belong to any part in an MS VPL diagram.

File I/O is not implemented in most of those VPLs probably because the use of those
languages generally excludes the need of reading from files or writing to files. The approach
taken by Tersus is to provide different viprocons for reading and writing files of different
formats; so Tersus has viprocons to read and write text files, to load a CSV text or an Excel
sheet into a Tersus table, to parse an XML document or serialize a data structure as an XML
document, to create or parse a JSON, to concatenate PDFs, etc.

VPLs usually allow modular programming, but they seldom provide OOP features.
Among the selected VPLs, only Alice provides a simplistic version of OO programming, by
focusing more on the concepts of objects in a story-telling context. Nowadays, OOP plays an
important role in scalable computing. OOP allows reuse of objects and a better way to modify
programs, since the visibility of methods in classes can be limited and modifying one object
does not necessarily affect another object. OOP contributes as well in maintaining programs,

because again classes can be maintained separately.

4.1.7 VPL Metrics for the Test Programs

The test programs in the four selected VPLs and in UVPL are evaluated and compared
using the following metrics:

- The program volume

- The program visual density

- The ratio of vocabulary to total visual components

95

- The average number of connectors per container

- The average deepest browsing level.

These metrics are computed using operands, operators, connectors and containers
further defined as followed:

Any labels - textual or graphical - in a groken or a viprocon that can be edited by the
programmer are counted as operators because they either convey a piece of information about
the type or can be considered to carry the same weight as a comment. However if a label in a
groken or a viprocon cannot be edited by the programmer, it is not counted as part of the
language. For instance, programs in Analytica have additional property windows to define
further the attributes of an object; in those windows there are labels such as Unit or Definition
that cannot be edited by the user. These labels are part of the UI, not the language.

An instance of a class is counted as an operand. The methods of a class are counted
as operators.

An arrow is an operator, and arrows serving different purposes or arrows with different
labels are counted individually.

A groken can be an operator and an operand at the same time; this happens in cases
where the groken is an operand but information such as the type of the operand is embedded
in the same groken.

Any declared variables that are not used in the program are not counted as part of the
program.

A container is counted as a pair of parenthesis, thus as an operator.

In compound statements, each atomic entity is counted; however a user-entered
string is counted as one operand - from opening to closing string markers — and as one
operator for comments - from opening to closing comment markers.

Uniqueness is at the module level; i.e. a global variable is counted once throughout
the program, and a local variable is counted once within its scope. By doing so, variables of
the same name in different methods are counted once in each method.

Pieces of code that can be disabled, such as found in Alice, are not counted.

96

Variables that are part of a function’s signature are counted as operands. In the
particular case of Analytica, variables that have literals as their value are counted as

operands, and variables that have executable code as their value are counted as operators.

The VPL metrics listed earlier are described as followed:

- The program volume corresponds to the number of screens necessary to visualize
the entire program, under the default settings of the system. The visual elements
are neither maximized nor minimized; and those elements also are neither
magnified nor reduced. This metric is used primarily in this research to compute
other metrics. The program volume by itself is not an accurate measurement for

comparing the size of the implementation of the same algorithm in different VPLs.

- The visual density is the average number of visual components per screen. It is
the total number of components in a VPL divided by the program volume.
Compared to the program volume, it gives a more accurate indication of the
density of a program. A high value could be an indication that the program
produced is very dense; such programs are difficult to review because they have a
high concentration of visual elements, and the user may find it difficult to navigate
through the program. A low value could be an indication that the program
produced is very sparse; such programs also can be difficult to review because the

user needs to flip between many screens.

- The vocabulary is the count of distinct operators and operands. The vocabulary
size by itself is not a useful metric, because its meaning or importance is relative

to the size of the program.

- The ratio of vocabulary to total visual components indicates the level of a VPL. The
lower the ratio, the more frequently operators and operands are repeated in the

program. Low-level languages have, in general, a small vocabulary and programs

97

written in those languages are, in general, harder to understand. A high ratio is a

sign that the language has too much visual abstraction.

- The average number of connectors per container is used to get an insight into the
visual complexity of a visual program. The higher this value is, the more
connectors a container has. The total humber of connectors is not used because

this metric by itself cannot reflect the visual complexity.

- The average deepest browsing level is the depths to which the user must go on
average to visualize parts of a visual program. If a program is symbolized as
multiple sets of Russian nesting dolls, each doll and its contents being a subset of
the program, this metric would correspond to the average number of Russian dolls
to open to get to any given doll. This metric is important because it reflects how
much of a program is visually abstracted to the viewer. The lowest average is one

- meaning there is no need to browse any deeper - and there is no upper bound.

4.1.8 Test Programs Counts

The counts of operators, operands, connectors and containers are gathered from the
implementations of the test algorithm in Alice, MS VPL, Tersus and Analytica, as well as from
the representation of the test algorithm in UVPL. Table 4.1.8-1 shows the corresponding

counts for each language.

98

Alice Ms VPL Tersus | Analytica | UVPL

Total number of operators N1 391 369 389 276 480
Total number of operands N2 198 176 30 152 245
number of distinct operators nl 125 113 171 127 185
number of distinct operands n2 87 90 29 85 94

Vocabulary nl1 + n2 212 203 200 212 279

Total Program components N1+

N2 589 545 419 428 725
Total # of containers 23 19 24 25 136
Total # of connectors 0 156 85 6 86
Program volume 6 7 7 14 28

Table 4.1.8-1: Test Programs counts

4.1.9 VPL Metrics Values for the Test Programs

Each metric is used to evaluate how UVPL performs compared to the selected VPLs.
This analysis is based on a single algorithm. An analysis based on multiple algorithms would
give a more complete picture, but is beyond the scope of the current research. Nevertheless,
this short analysis gives an insight of how UVPL could perform on small programs, and the
result of the analysis could be used further to extrapolate how UVPL may perform on
enterprise-size programs.

The results presented below are ordered from less desirable to more desirable, using

the scheme shown in Table 4.1.9-1.

99

More desirable

Less Desirable

Table 4.1.9-1: Desirability order

Visual Density

In reference to Table 4.1.9-2, Tersus has a better performance. This result is
important because it indicates that a program in Tersus may be easier to review. The high
value for Alice points out that the program in Alice is dense. The low value for UVPL is
explained by the fact that UVPL is an object-oriented language, and thus has more structures
since the programmer defines classes and methods. Because the test program is relatively
small, most of the features in UVPL are not used to its advantage. However, as programs
become larger and more complex, one can predict that the UVPL program volume value will

improve relative to the program volume values of the selected VPLs.

Alice UVPL | Analytica | MSVPL | Tersus

Visual density | 98.17 | 25.89 | 30.57 9.86

Table 4.1.9-2: Visual Density

The Vocabulary to total visual components ratio (VTVC)

This ratio should be neither too high nor too low. A reasonable level of abstraction is
important in achieving scalability, especially considering that the reviewer of a VPL might not
be a seasoned programmer who can understand in a timely manner programs with very high
abstraction levels.

As illustrated in Table 4.1.9-3, the values for all the languages are very close, Tersus
and Analytica being respectively at the lowest and highest extremities, and UVPL lying in the

100

middle. Given that the ratios lie at neither extreme, it can be concluded that all the VPLs

including UVPL have adequate vocabulary to components ratios.

Tersus | MsVPL | UVPL | Alice | Analytica

vocabulary to visual components | 0.36 0.37 0.38 0.48 0.49

Table 4.1.9-3: VTVC ratio

Average number of connectors per container

A low average is desirable, because a program with too many connectors is, in
general, difficult to view.

Alice has a value of zero, as shown in Table 4.1.9-5, because this VPL does not use
connectors to direct the execution flow of a program. The MS VPL test program has a lot of

connectors and could be the hardest to review and this is reflected here by its value.

MsVPL | Tersus | UVPL | Analytica | Alice

average # of connectors per container | 8.21 3.54

Table 4.1.9-5: Average Connectors per Container

Average deepest browsing level

On one hand, average deepest browsing levels that are close or equal to one are not
desirable because that VPL may not support iconization for abstraction purposes. On the other
hand, averages that are too high are not desirable either, because the program becomes then
difficult to review.

Table 4.1.9-6 shows that, as expected, Tersus has the deepest browsing level since
the user-interface is designed in such a way that the user needs to drill down to view details of

any objects.

101

Alice | Tersus

Ms VPL

UVPL | Analytica

avg deepest browsing level | 1 2.43

2.14

1.43

Table 4.1.9-6: Average Deepest Browsing Level

As a summary, UVPL has:

- One of the worst program visual densities, because it is too sparse.

- An acceptable value for the vocabulary to total visual components ratio.

One of the best average deepest browsing levels.

An acceptable average for the connectors per container value.

These values are in accordance with the experience of the tester.

102

Chapter V

CONCLUSION

5.1 Findings

The objectives of this research have been to propose a visual language - UVPL— that
could fulfill the need for a general-purpose, object-oriented, scalable, visual, programming
language. The larger family of programming languages is the general-purpose one. This group
of programming languages is dominated largely by TPLs. General-purpose programming
languages are more popular because they can solve a wider range of problems. Unfortunately
general-purpose VPLs have not had their breakthrough yet, thus the need for more research in
this area. In that same line of thought, visual languages need to be designed with more
object-oriented features to achieve scalable programs.

For this purpose, an analysis of the grokens and viprocons of Alice, Analytica, MS VPL
and Tersus has been conducted. The results of that analysis were used as a basis to design
UVPL, which is built upon the strengths of those languages, all the while avoiding their
weaknesses. The focus of this research has been on the visual aspects of UVPL and its
development environment that affect scalability of visual programs in general. New elements -
non-existent in the selected VPLs - were introduced to ease the review and maintenance of

UVPL programs and to address scalability issues.

103

To validate the result of the proposed programming language, UVPL, it has been
compared to the selected VPLs using:
- A qualitative analysis: VPL strategies from Burnett and programming language

principles from McLennan.

- A guantitative analysis: metrics relevant to scalability issues.

The result of the qualitative analysis shows the strengths and weaknesses of UVPL.

Strengths:

UVPL has automation for the declaration of variable grokens and adopts a responsible
design approach for handling integers and floats: the language provides different precisions.
The variable grokens can be resized to better manage screen real estate. UVPL allows direct
manipulation of operations, less abstraction and better reviewing of visual programs. To
overcome the screen space issue, UVPL introduces the ability to conceal and reveal
expressions; this permits the user to confine an expression to a smaller space (concealing)
and view part or all the expression as needed (revealing). Elements such as counters and
conditional statements are embedded within the iteration viprocons to better indicate the type
of the control flow and its expected behavior. The flow of data into and out of an iteration
viprocon or a method is symbolized by arrows. The flow of control is symbolized by
consecutive instruction boxes, top to bottom.

The strengths of UVPL work together for better scalability of the programs from the
perspective of a novice programmer.

Weaknesses:

For variables and flow controls, UVPL does not provide immediate visual feedback
during the editing of a program. This feature can provide responsiveness but it might have an
effect on the efficiency of the editing process. In UVPL, the user does not type expressions; as
a result, expressions in UVPL tend to occupy more space than in the other selected VPLs, but
this weakness is offset by the ability to conceal or reveal expressions. UVPL does not have as
many file I/O operations as Tersus; for instance, UVPL does not have XML parsing or PDF file

generation.

104

The qualitative analysis of UVPL is rather subjective. Because this analysis cannot be
used alone to determine whether or not UVPL has attained its objectives, a quantitative
analysis was used in parallel. This analysis produced metrics used to rank UVPL and the
selected VPLs. The following paragraphs present the results of that analysis.

The program visual density value of UVPL compared poorly to those of the selected
VPLs; the test program in UVPL is too sparse compared to the implementations in the other
languages. Paradoxically, this result is a good one for UVPL to some extent: UVPL is an object-
oriented language, and thus harbors mechanisms to construct a well-modularized program.
When building relatively small visual programs such as toy programs, the UVPL program will
have more structures — and might be spread across more screens - than the same program in
its counterparts. These structures are accessors, mutators and other methods for each class.
They add volume to the program, but are necessary to follow an object-oriented approach. As
the program is scaled up, the visual density metric is expected to improve for UVPL, which
indicates that UVPL might be more suitable for large programs.

UVPL has an acceptable value for the vocabulary to total visual components ratio. This
metric is used to determine the level of abstraction of a VPL. , Too much abstraction can be a
drawback for a novice programmer, as the program might be harder to understand. The ratio
value for UVPL implies that it has an adequate level of abstraction.

UVPL has an acceptable average for the connectors per container value. Compared to
Tersus or MS VPL, a program implemented in UVPL is expected to be easier to decipher
because it has fewer arrows. This is comparable to complex flow charts, which are difficult to
understand because the reader needs to follow many connecting arrows between objects to
understand the flow of the program.

UVPL has one of the best average deepest browsing levels. This metric signifies that
the test program in UVPL is viewed more easily than a program in Alice, Tersus and MS VPL.

Indeed, the user needs on average fewer clicks to reach any point of the program.

105

5.2 Goals achieved

The goals of this research were to propose a programming language that is visual,
general-purpose, object-oriented and scalable. This section evaluates each of these goals.

UVPL is a visual language, but not a purely visual language. As mentioned in previous
chapters, a purely visual language is not practical. Such languages are represented entirely
with visual elements or symbols other than textual symbols, and thus virtually do not need a
keyboard for implementing programs. Purely textual languages are languages entirely
represented with textual symbols. On the scale between visual and textual languages, UVPL is
closer to a purely visual language, because most of a program is constructed with grokens
(graphical tokens) and viprocons (visual programming constructs). Textual symbols are
needed only when naming a structure or assigning a literal value.

UVPL is a general-purpose language. UVPL is considered to be more general-purpose
than Tersus or MS VPL, for instance, that are for web development and robotics, respectively.
These languages are specifically designed for a single domain; web development or robotics
problems are solved more easily with those domain-specific VPLs. Tersus and MS VPL are not
the appropriate choices to solve decision-support problems; those would be better solved by
VPLs such as Analytica or UVPL. Native libraries of the domain-specific languages usually have
specialized functions to fit the nature of the language. If the programmer is allowed to build
user-defined libraries, they generally are built on top of the specialized native libraries.
However, in a general-purpose language, the native libraries are a support to solve a wide
range of problems, and the user has more flexibility when building user-defined libraries.

UVPL is an object-oriented language. Even though UVPL is not a fully object-oriented
language, the programs are built with classes, objects and their members. A UVPL object can
be instantiated, and UVPL has abstraction and encapsulation. However, UVPL was not
developed with inheritance and polymorphism. These features could be added to the language
later. Novice programmers might not have a strong need for inheritance and polymorphism.

Because UVPL is a visual, general-purpose, object-oriented language, it should have

the capabilities to produce scalable programs.

106

5.3 Halstead measurements

In a first attempt to gather quantitative measurements, Halstead complexity measures
were used [17]. Even though this method was developed in 1977, it still is used by institutions
such as the Metric Data Program of NASA and by Verifysoft Technology, a German company
specializing in software testing [18-19]. In a nutshell, Halstead metrics are based on the fact
that algorithms are made up of operands and operators only, and that it is possible to identify
those operands and operators in the implementation of an algorithm in any language.
Halstead states that the operators and operands are defined as symbols or combinations of
symbols. Some of the measurable properties defined by Halstead are:

nl - The number of distinct operators

n2 > the number of distinct operands

N1 - the total number of operators

N2 - the total number of operands

These measurable properties are used to compute metrics such as the program length
(V = (N1+N2) Logy(nl+ n2)) and the estimated number of delivered bugs (B = V / 3000).

However Halstead complexity measures were developed at a time when computer
programs were purely textual. Using these metrics on visual programs gives results that do
not reflect or take into account the visual aspects of VPLs, and thus are not suitable to
evaluate visual programs quantitatively. More research needs to be conducted to develop a set

of standard metrics more appropriate for VPLs.

5.4 Future works
UVPL has not been specified formally in a grammar, because the research area of VPL
grammars is still in its infancy. Research conducted by Marriot on constraints multiset
grammars (CMG) give a sense of the difficulty in formally specifying a VPL using a grammar.
This field of study needs to be more developed for VPLs to be defined properly in this way.
As mentioned earlier, this research focuses on the design of the visual aspects of
UVPL. For this language to be fully functional, its design — as well as a compiler or an

interpreter —needs to be implemented as well.

107

Since UVPL is a general-purpose VPL, it will need to be delivered with enough libraries
such as math, text processing, regular expressions, database, security, etc. Concepts such as
the sharing of libraries between different users could be introduced to allow the libraries of
UVPL to grow faster.

The results of this research were validated using a single test program. To obtain a
more accurate result, it will be necessary to implement in UVPL and the selected VPLs several
test algorithms solving a large variety of problems. This will insure a more statistically
accurate assessment of UVPL.

As stated in previous chapters, VPLs are tightly coupled to their development
environment; thus testing their usability should be performed with human subjects. Such tests
can be conducted using methods such as the cognitive walkthrough; this human/computer
interaction (HCI) technique was proposed by T.R.G. Green and is used to help designers of
VPLs detect the level of usability they have achieved [6] and correct usability problems on a
user interface.

Is unifying currently-popular VPLs the best approach to design a general-purpose,
object-oriented, scalable, visual, programming language? UVPL certainly achieved its goals for
being a visual programming language that is general-purpose and object-oriented. However a
more definite conclusion shall be made once UVPL is fully implemented and functional, once

UVPL is tested using a statistical approach and once the UVPL user-interface is tested as well.

108

[1]
[2]

[3]

(4]
[5]

(6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]

[19]

REFERENCES

M. Burnett, Visual Programming. New York, 1999.

M. M. Burnett and M. J. Baker, "A Classification System for Visual Programming
Languages," Oregon State University1993.

ACM. (1998, 04/04/2010). The 1998 ACM Computing Classification System —
Association for Computing Machinery. Available:
http://www.acm.org/about/class/ccs98-html

K. Marriott, "Constraint multiset grammars," in Visual Languages, 1994. Proceedings.,
IEEE Symposium on, 1994, pp. 118-125.

B. C. Pierce, "Bounded quantification is undecidable," presented at the Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
Albuquerque, New Mexico, United States, 1992.

T. R. G. Green and M. Petre, "Usability Analysis of Visual Programming Environments:
A []Cognitive Dimensions' Framework," Journal of Visual Languages & Computing,
vol. 7, pp. 131-174, 1996.

R. B. Smith, "Experiences with the alternate reality kit: an example of the tension
between literalism and magic," presented at the Proceedings of the SIGCHI/GI
conference on Human factors in computing systems and graphics interface, Toronto,
Ontario, Canada, 1987.

M. D. Wayne Citrin, Benjamin Zorn, "The Design of a Completely Visual Object-
Oriented Programming Language," Visual Object-Oriented Programming, 1994.

P. T. Cox, et al., "Prograph: a step towards liberating programming from textual
conditioning," in Visual Languages, 1989., IEEE Workshop on, 1989, pp. 150-156.

T. Pin-Ying, et al., "A Visual Programming Language for Data Transformation," in
Computer Science and its Applications, 2008. CSA '08. International Symposium on,
2008, pp. 96-101.

M. J. B. Margaret M. Burnett, Carisa Bohus, Paul Carlson, Sherry Yang, Pieter van Zee,
"Scaling Up Visual Programming Languages," Computer 0018-9162, vol. 28, pp. 45-
54, 1995.

R. Jamal and L. Wenzel, "The applicability of the visual programming language
LabVIEW to large real-world applications," in Visual Languages, Proceedings., 11th
IEEE International Symposium on, 1995, pp. 99-106.

M. M. M. a. M. Porta, "Iteration constructs in data-flow visual programming languages
" Computer Languages, vol. 26, pp. 67-104, 2001.

A. Ambler, "The Formulate Visual Programming Language : Representing Structured
Data," Dr. Dobb's journal, vol. 24, pp. 21-29, 1999.

J. L. Leopold and A. L. Ambler, "A User Interface for the Visualization and Manipulation
of Arrays," presented at the Proceedings of the 1996 IEEE Symposium on Visual
Languages, 1996.

B. J. MacLennan, "Principles of Programming Languages: Design, Evaluation, and
Implementation,” ed New York: Oxford University Press, 1999, p. 509.

M. H. Halstead, "Elements of Software Science," ed Amsterdam: Elsevier Science Inc.
New York, NY, USA, 1977, p. 128.

J. Long. (2008, NASA IV&YV Facility Metrics Data Program - HALSTEAD METRICS: .
Available: http://mdp.ivv.nasa.gov/halstead metrics.html

(2007, March 30th). Verifysoft > Halstead Metrics. Available:
http://www.verifysoft.com/en halstead metrics.html

109

http://www.acm.org/about/class/ccs98-html
http://mdp.ivv.nasa.gov/halstead_metrics.html
http://www.verifysoft.com/en_halstead_metrics.html

APPPENDICES

Appendix A: Program test in Alice

£3 Alice (2.2 8/1/2009) CA_uRmYbUtTeRfly\School\VisualProglangProgramsTest\1- Alice\Emps.a2w = L=

File Edit Tools Help
@ v

0 world_MainEntry 0 warld ReadEmps 0 world ReadStates o wiorld DisplayStates 0 warld DisplayResults 123 world GetStateTax

world.MainEntry Vo parameters
Stmestasen -,

EmpHoursWorked ==,
. :;E] Statevvage_calc = 1 B ::E] zero = 0 s

Result_wages = =

States ==,

Result_States ==, |.

Result_empinfo = =,

‘123 Employeewage _calc|= 1 |,

// Read from command prompt the list of emplpoyees

world.ReadEmps EmpsiDs = EmployeelDs L =Empl Fir = EmpFir Pay =EmpPayRates Hoursworked =EmpHoursWorked

// Read from prompt list of states

world.ReadStates Statefntials = States StatesTax = StatesTaxzes 5 L ges = i 1t}

C[=lwmile true

i/ Display employee that is being processed

_ilem DX from EmpFirstdames

from EmplLastNames

E:: /¢ Display the states for the user to pick from

world DisplayStates ArrayOfStatas = States © /| Statelaxes =StatesTazes

PickAState set value to ask user for a string guestion =Pick a State(1->0K 2.>TX 3->NV 4->VA 5->NY): — more... more...

/¢ Check whether to use state or employee pay rate

ax_calc set value to Effwurld Tax it = Picl Siates = States Taxes =StatesTaxes more...

. StateWage_calc set value to f; world.GetStateMinWage Stateirnit =PickAState Statles =States 7 ges = i 0 more...

Zero

©item IDX from EmpPayRates

rint Mot a valid entry for the employee payrate ! -

“Doin order Do together “IiElse Loop While |For allin order :For all together S Wait | | print B

110

53 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w ==

File Edit Tools Help
@

e world_MainEntry @ wotld ReadEmps @ world ReadStates @ witld DisplayStates @ world DisplayResults 123 wotld. GetStateTax

world.MainEntry No parameters

EmployeelDs ==,

EmpLastNames ==, EmpHoursWorked ==, |
[E] StateVWage_calc = 1 . [E] zero = 0 ,

Result_wages ==

EmpFirstlames ==, :

22 mx= 0 |,

Result_emplinfo = =, E] Result_States ==,

States ==,

StatesMinWages = =, _E!]tax_calc =1 , ickAState = default string ,

[E] EmploveeyWage_calc = 1,

print Not a valid entry for the emplovee payrate !

1 StateWage_calc €= fitem DX from EmpPayRates

StateVWage_calc set value to em DX from EmpPayRates MOre...

Else
(Do Nothing

item IDX from EmpHoursWorked *

{ StateWage_calc * { tax_calc I 100]]]

mployee¥vage_calc set value to

more...
mployeeWage_calc set value to { StateWage_calc — * item IDX = from EmpHoursWorked I} More...
mployeeWage_calc set value to round EmployeeWage_calc more...
Y Save result in a result array
ot itemn IDX to item IDX from EmpFirstNames joined with joined with item IDX from EmpLastNames in Result_empinfo more...

et item IDX to PickAState in Result_States more...

et item DX to EmployeeWage_calc in Result_wages more...

‘Doinorder Dotogether INEIse Loop While Forallinorder For alltogether | Wait | print

111

(===

53 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w

File Edit Tools Help

@ e
123 world. GetStateTax

0 world.MainEntry 0 watld ReadEmps 0 wotld ReadStates 0 world DisplayStates 0 watld. DisplayResults
world.MainEntry No pararmeters

EmpHoursWorked ==, | States ==,
[E] StateVWage_calc = 1 . [E] zero = 0 ,

Result_wages ==

EmployeelDs ==, EmpFirstlames ==, :

StatesMinWages ==, @tax_calc =1 , @ ID¥ =0,
Result_emplinfo = =, E] Result_States ==,

EmplLastNames ==,

ickAState = default string — |,

[E] EmploveeyWage_calc = 1,

Else
(Do Nothing

item DX from EmpHoursWorked "'(tax_calc I 100]]] more...

*

{ StateVWage_calc

mployeeWage_calc set value to

mployeeWage_calc set value to - (StateVWage_calc @ item DX from EmpHoursWorked] more...
mployeeWage_calc set value to round EmployeeWage_calc MOre...
Y Save result in a result array

_nem DX from EmpFirstNames joined with joined with item IDX from EmpLastMames in Result_empinfo more...

etitem IDX to

et item DX to PickAState in Result_States more...

to EmployeeWwage_calc in Result_wages MOore...

et item IDX

ncrement DX by 1 more...

i Ji Display the results
world.DisplayResults TextArrayA = Result_emg Ty B =Result_States NumArrayC =Result_wages

‘Doinorder Dotogether INEIse Loop While Forallinorder For alltogether | Wait | print

112

53 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w ==

File Edit Tools Help
EE2N I

O world MainEntry 0 world ReadEmps 0 wotld ReadStates 0 world DisplayStates 0 watld. DisplayResults E wotld. GetStateTax

[Elwhile ContinueYN

setitem ldx — to = i ? in EmpsiDs — more...

TempLN set value to sk user for a string guestfonr =Last name? MOrE... MOre...

 TempFN — | set value to | askuSErfor astring guestion =First name? — more... ore...

‘setitem ldx — to TempLN in LastNames — more...
set item ldx TempFN in FirstHames More...
setitem ld= sk user for a number guestion =Payrate? more... in Payrates OFE....
set item ld= - ask user for a number gues#ion =Hours worked? MOore... in Hoursworked MOore...

ncrement Idx by 1 more...

ContinueYN set value to @skuserfor yes or no guestion =More employees? mMore...

‘Doinorder| Dotogether IFElse Loop | While - Forallinorder - For alltogether | Wait | print

113

{3 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w ==

File Edit Tools Help

0 world MainEntry 0 watld ReadEmps 0 world.ReadStates C world DisplayStates 0 watld. DisplayResults E wotld. GetStateTax

world. ReadStates iti StatesTax , StatesMinWages
(7| ContinueyN = true — |, 123 iDx /= 0

[Elwhile ContinueYN

set item IDX to sk user for a string guestion = State initials: more... in Statelnitials MOre...

set item IDX to sk user for a number guestion = State tax percentage: MOre... in StatesTax MOre...

set item IDX to ask user for a number gures#ion = State minimum wage: more... in StatesMinWages more...

ncrement IDX — by 1 more...

ContinueYN set value to ask user for yes or no gues#ion = More states to enter? MOre...

‘Doinorder| Dotogether IFElse Loop | While - Forallinorder - For alltogether | Wait | print

114

{3 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w ==

File Edit Tools Help

0 world MainEntry 0 wotld ReadStates 0 world.DisplayStates 0 watld. DisplayResults E wotld. GetStateTax

world.DisplayStates | (% stateTaxes

it ftem idx — from ArrayOfStates

crement idx — by 1 more...

‘Doinorder| Dotogether IFElse Loop | While - Forallinorder - For alltogether | Wait | print

115

{3 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w

File Edit Tools Help

E wiotld. GetStateTax

@ world DisplayStates @ world.DisplayResults

0 warld MainEntry
world.DisplayResults

‘hz3io% = 0

ze of MumArrayC
from TextArravh
from TextArrayB

from NumArrayC

crement DX hy 1 more...

- Wait | | print

‘Doinorder| Dotogether | IFElse Loop While - Forallin order - For all together

116

{3 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w

File Edit Tools Help

0 world MainEntry C witld DisplayStates

0 world DisplayResults

world.GetStateTax

‘hz3io% = 0

E world.GetStateTax

create new parameter
create new variahle

item IDX — from States
: StateTax — set value to ftem DX — from Taxes

DX — set value to size of Taxes

DX~ set value to - (1 +IDX

 Return StateTax

‘IfElse Loop While - Forallinorder

117

{3 Alice (2.2 8/1/2009) C_uRmYbUtTeRfly\School\VisualProglang'\ProgramsTest\1- Alice\Emps.a2w
File Edit Tools Help

C wirtld ReadBtates 0 wotld DisplayBtates C witld. DisplayResults E world. GetStateTax

28| world. GetStateMinWage
0 warld MainEntry

world.GetStateMinWage

0 wirld ReadEmps
MinWages

create new parameter
create new variahle
size of MinWages

 Statelnit — — | item IDX — from States

Ewmie DX~ <

set value to item IDX — from MinWages

set value to size of MinWages

set value to (1 +IDX

Return Wage

‘IfElse Loop While - Forallinorder

118

Appendix B: Program test in MS VPL

2}0 PROGRAMS* - Microsoft Visual Programming Language

File Edit

NEHY ™| %

View

Build Run Help

EEE

bW

Basic ~ | |Diagram X |GeilistOfRecords X | GetStatelnfo X |GELEmpIr1fD x ICompSalary X IPmcEssEmployee X Proje ~ X
8 Activity Data Comment - —— | v & Diag
. i Cond
Get List of all employees into a list. c\EasyAccess\StateTaxes. b Pl NDD:;
string = string =
#a)
o
L Result-<d #‘ [Action pathh [f<
tion B = - Result
Switch # st <
g List Calculate Listt < -
B st Funct > E— e
¥ C <l EmpyStringlList <l EmpyStringlist *] ¥
ommeni List of string = =
-
Variable Top
Bl EmpyStringlist ~ Calculate
4 : 3 Calculate
List of string ...
Erron ~ X
Calculate
5 Action #‘ - Result— AlertDialog W E L
mp
Calculate States
1
Servii ~ X
D uil
- - ummyn'=g pent has no p
Find serviei -
= All Fou =~
 Use®
Bl (Use®
HUsh
%(Usd’ A Variable
ystr e
Joc (Use > _ Calculate string
& (UseD prec—— <l dummystr B
g 1y's
H Usch
) Used - .
<[» « m L
Loaded

119

B)G PROGRAMS* - Microsoft Visual Programming Language

—

File Edit WView Build Run Help
DEHE 9 [%Ra@aXrw
Diagram X | GetListOfRecords X |GetStateInfo X |GetEmplnfo X ICompSalar_y X IPmcessEmponee X

Basic ~ x| Proje ~ x|
Action: Action ~ %y [ﬂDiag
gl Cond
< | il Ned
Calculate
B EmptyStringlist Calculate
) ListOfRecords ({4
B ;
Switch Calculate Calculate Eaiie % Calculate
- y <l ListOfRecords ~ [l Set—dff L A
. Bl Patnfiie o) TR (I By L -
EList Funct| Result b 4 D »
Comment ————
! Prop: = X
Calculate
TextFile M |[PiUser) Split B g Bl Lcomecords I Comment
<[v
Error: = X
List Functions
C = [- L
TEid Variable -
’-ﬂ Set |l ListOfRecards v Variable:
List of string ... ListOfRecc
\ stringslist
L \ y ListOfReco|
E— S i
Servii = X 1 P .
Find servigt —f| strarmr =
= All Fo Calculate
Hoo - -
strticx
BHus0 —
(U0 —
% Us@ Calculate
e (Use strirr
¥ (Use®
C -
B0 alculate
4)Use0 -
4 D [
Loaded

120

B)G PROGRAMS* - Microsoft Visual Programming Language =
File Edit WView Build Run Help
NEHD ™| % a@mXx|[rw
Basic -~ * | |Diagram X IGetListO‘[Records X| GetStatelnfo X |GetEmplnfo X ICompSalar_y X IPmcessEmponee X Proje ~ X |
Action: Gets ~ By ! ¢/ Disg
&l Conil
& Ned

B
[switch
Bluist
EList Funct| Result ’ 4 D »
Comment
Calculate Calculate Calculate Prop: =~ X
B LS -) Stri 1 intjval -
_— o o 2 e
Calculate
Error: ~ *
> > 1 Calculate
B —pf Lsis - 1
b— 1/ - | Bl tax -
||]I (User) Split-M| h“ Bl mwage
/| Calculate erge \
iR b Lsis - 1 \
Servii - ¥ > l".l
- - t has no p
Find serviek \ Calculate Calculate | en
Calculate .
\) Strings[2] (doublevalue [
= All Fav - B B LSIS - 1] -
bt =)
= (Uscl > .
F s
=0 \ Calculate
Du=0 > B Lsis - 1
J Use® >
¥ (Use®
B (U0
4)Use0 -
4 D »
Loaded

121

E)G PROGRAMS* - Microsoft Visual Programming Language

=
File Edit WView Build Run Help
NEHD ™| % a@mXx|[rw
Basic ~ X | |Diagram X IGetListO‘[Records X IGetStateInfo X | GetEmplnfo X ‘Comp&alar_y X IPmcessEmponee X Proje ~ x|
Action: Action ~ %y I &l Diagl
&l Conil
& Ned

If) Strings[1] [{B-
[switch
Bluist
. | Calculate
ELIStFL.InClI Result
Commeni) Strings[2] ({B- = ’ <G
Prop: = X
<] |
Error: ~ * o m
pf
Calculate -
S B Sl g
'
Calculate Calculate g
o strings2] >
Servii ~ X
Find . ent has no p|
ind servie
5 : Calculate Calculate
bé:?ﬂs:;&) Strings[4] [{B-Bf (doublejvalue [{B .
F s
(U0
D Used
J Use®
(Use®
B (U0
4)Use0 -
4 D »
Loaded

Calculate

122

E)G PROGRAMS* - Microsoft Visual Programming Language

=i

File Edit WView Build Run Help
NEHD ™| % a@mXx|[rw
Basic -~ X |Diagram X IGetListO‘[Records X IGetStateInfo X |GetEmplnfo X | CompSalary X |ProcessEmployes X

9 Activity

Action: Action ~ ’l
m\"ariable

(=)

Switch
Bluist

E List Funct

Commen

lII Calculate
L »

Hours

Calculate

Error: ~ % (H*E)- (H*E™*T/100)

Calculate
EmpPayRate .

b
.

—
Yl

* StateMinWage [fB—"

Servii =~ X

Calculate
Find servis
= All Fou
E Usd
Bl s
B0
D Use
S (Use®
& (Use®
=0
4 (U=e@ -
<

g Result ’

Proje ~ x|

I ¢ Diag|
& Conil
& Nod

]

Prop: = X

ent has no p|

Loaded

123

B)G PROGRAMS* - Microsoft Visual Programming Language

—

File Edit WView Build Run Help
NEHD9C XA X| > W

Basic ~ X |Diagram X IGetListO‘[Records X IGetStateInfo X |GetEmplnfo X ICompSalary X| ProcessEmployee X

Proje ~ X
W Activity | | Action: Action ~ @4 " &l Diog
& Cond
&l Nod
- Calculate Calculate
PromptDialog | E =
= I
If Calculate e
[Switch Bl Teanat [- ol T
e ==
. | g B tion
ELISt Funct|]
Comment Calculate 3 N
g > P Calculate Calalate Bl P Prop ~ %
—
d . B-Result
b w
Calculate >
Error: = X > > Calculate Calculate
B g N o
’_‘ Calculate
> Calculate srsial
> > > >
S X Calculate sreeoi
F ent has
Find serviei bp g > pent has no p
= All Fou «
g (USEQD (User) Split M| h” r——
U C
-0 Bl Strings[1] = " + Strings[Z] + "\n1->0K - 23T - 3-3NV - 4->VA - 5->NY"
=0
D Used
J Us<@
& Us<®
=0
4)Use0 -
4 D - 4 m v
Loaded |I - :I

124

B)G PROGRAMS* - Microsoft Visual Programming Language =

File Edit WView Build Run Help
NEHD9C XA X| > W
Basic ~ X | |Diagram X IGetListO‘[Records X IGetStateInfo X |GetEmplnfo X ICompSalar_y X| ProcessEmployee X Proje ~ %
—
1 Activity Action: Action = Py I ¢ Diag|
& Cond
&l Nod
Calculate placnale Calculate
B - "Name: "+ F+"" + L+ " Monthly salary: §" + 5
B
=04
=T Calculate | [l 5
Swnch) Calculate -
= intjresps .
Bl st i gy > |y on B \ ' | Calculate
Bl st Funcy e ion # ol sory Result 1 | o
Comment
Calculate
Calculate B P Prop ~ %
. —
I- tion Result > 4 13 >
<) '
B L
Em Calculate placnale -
8
S
Calculate
Calculate
g g bb
Servii = X - Calculate
Calculate
Find servie B Ld e > pent has ne p|
= All Fou «
E Usd— 'i @
Huso | |
Strings[2] + "n1->0K - 2->TX - 3->NV - 4-5VA - 5->NY"
Buo o
Dusd |
T (Use@®
¥ (Use®
BHuso
4)Use0 -
<] v < m] v
Loaded |' “ :I

125

Appendix C: Program test in Tersus

4, Tersus Modeling - ProcessAllEmployees/ProcessAllEmployee - Tersus Studio

= 2

File Edit

o
L

52 » =0

=

3
il

i

E
e

I

TEEE! S

&

&

I BESE

1

127 ReadAFi
T Requisit
1T sEQ

1.0 TreedMc;
0 VPLTest

MNavigate

7 VPLTest ™
5

Search Project Run

Q- | &

" ProcessAllEmployees &9

Window Help
Ko o v

" ProcesslEmp

=) @

" ComputeEmpSalary

" AskState

L | Quick Hosting +[ll

A GetAState

" GetAnEmployee

" MakeCaption

EView

[2

Process1 Emp

=]

“

E Properties &7

%4 Usages

T

==} @Tersus Mode... l';'E}Tersus Debu...

(= Display Acti...

=0

=
Ly

L2 Palette

iz] [[

(= Data Types
= Constants
= Formatted ...
= Basic

= Collections
= Database

= Dates

(= Display
580
HEEE

Il

i
wolex OFE

i

@ [

= Flow Control .

51

= - =
A =]

126

37M of oM m

O, Tersus Modeling - ProcessAllEmployees/OneRound - Tersus Studio E=aan X
File Edit MNavigate Search Project Run Window Help

1 = Q- ¥ v L= = & [CRST I I | Quick Hosting <l Y | gl Tersus Mode... B8 Tersus Debu...

P * T 0% ProcessAllEmployees T ProcesslEmp % T ComputeEmpSalary A AskState " GetAState T GetAnEmployee T MakeCaption =8

.|| [Ed[Process1Emp] <<Action>> =

gt 0 MR [
|

I b Lot e L
=l [l A

AzkState

]

GetdnEmployes

g

JE

&3]

EE

£l |
P
P
& F_
i
v
Al L
127 ReadAFi
T Requisit
T 5EQ
T TreedMc,
0 VPLTest
7 VPLTest ™ || =l Properties &2 *i Usages
v

Concatenate [Concatenate 4

i s e sl WY I O AT AT TR ANTR TR AT Y

i

€
i}
4
I
)| «

" @ IMotM |

127

O, Tersus Modeling - ProcessAllEmployees/ComputeEmpSalary - Tersus Studio

o (@

File Edit MNavigate Search Project Run Window Help
1 = Q- &~ L= = & [CRST I I | Quick Hosting <l Y | gl Tersus Mode... B8 Tersus Debu...
P * T 0% ProcessAllEmployees b ProcesslEmp T ComputeEmpSalary @2 A AskState " GetAState T GetAnEmployee T MakeCaption =8 o
a7 - o
S = — 12 Palette |l a
- [P [ComputeEmpSalary] <<Acfion>> 5 $ =
23 M
23 M -
E3F 1
o <Product:
[I
i s H [Number] [1 ¥XY [=] [[
B Multiply (= Data Types
e § = Constants
f'(“‘j 5 [~ Formatted ...
s <Differences = =
;1“‘: . K= (= Basic
}'Imj s Subt t = Collections
[Uz (= Database
= § R [Dates 3
g T (= Display
\
a Zl=l=ls
& Tents E @ E E
] @
& il
lE_’El] | Hauo} Conwert Mumber to Text
X
fA t . <
B | Divide
@A
@ (| B
i BH "G A
il
v
Al L
LT ReadAFi
T Requisit
T SEQ | Display Acti...
7 TresdMc M = 8 (== Flow Control -
0 VPLTest
. =T VPLTerst T || 2 Properties i *i Usages [=0
o & IMotM |

128

O, Tersus Modeling - ProcessAllEmployees/AskState - Tersus Studio

=RAOEs X

File Edit MNavigate Search Project Run Window Help

T O

gt 0 MR [

O fop g e G

g

&3]

EE

5|
t
£l |
=
iR
A
@A
Gl
Al L
T ReadAFi
T Requisit
T 5EQ
T TreedMc,
0 VPLTest

7 VPLTest ™
r

e

A GetAState

Q- & - L= & [ORCTN S | Quick Hosting <[l
"2 ProcessAllEmployees b ProcesslEmp b ComputeEmpSalary A AskState &3
=

Fd [AskState] <<Action>>

<Teat>

<Mumber:

EPop-in

O Text iza ™, 2]

BFooter

FEaccept <<Cancel>>

O Pap-in]

Cloze Wi,

E Properties 2 *i Usages

T GetAnEmployee

T MakeCaption

B dTersusMode... l%}TersusDebu‘..
=0

] [[

(= Data Types
= Constants
[~ Formatted ...
[~ Basic

= Collections
= Database

m

[~ Dates

(= Display
HEEO0
HEEE

| Display Acti...
= Flow Control .

= - =
A = =

129

35M of oM

o

O, Tersus Modeling - ProcessAllEmployees/AskState - Tersus Studio

o (@

File Edit MNavigate Search Project Run Window Help
1 = Q- &~ L= = & @ | m Quick Hosting <l Y | gl Tersus Mode... B8 Tersus Debu...
P * T 0% ProcessAllEmployees b ProcesslEmp b ComputeEmpSalary A AskState &3 A GetAState T GetAnEmployee T MakeCaption =8
=
a7 F- =
= <Tests <Numbers L2 Palette |l a
[N y: =
23 M s M R
E Corvert Text to Number
E3F
F f -
F OPop-in o =]] [[
= red =
F kL | abel = (= Data Types
e § 3 <\alues [Te == Constants
hod
T: : % <Caption> [Te (= Formatted ...
;:“:: ; [: [~ Basic
31u: c =||(= Collections
<k -
e S t (= Database
= S EFooter = (= Dates i
g T B (= Display
\ =
i . Baccept <<Cancel>> N BHEO
= HEBRE
& g y,/r[:
i1 A — .
‘E-E ‘ @ Popin = Close Window
5|
°F -
|
(91 ———
pp
i
7 A=
v
Al L
T ReadAFi
T Requisit
T SEQ —| = Display Acti...
LT Treedhic v [= Flow Control -
0 VPLTest
. =T VPLTerst T || 2 Properties i *i Usages [=0
o & UMofpm |

130

O, Tersus Modeling - ProcessAllEmployees/GetAState - Tersus Studio

=RAOEs X

File Edit Window Help
LR e

Mavigate Search Project Run

il Q-
23))1 :IE

¥ -

"2 ProcessAllEmployees b ProcesslEmp

b ComputeEmpSalary

L | Quick Hosting <[l

A AskState " GetAState i3 T GetAnEmployee T MakeCaption

Fd [GetAState] <<Action>>

R "StateT axes.tat"
Eila k1 [
<Separatarsy| L de

Fiead Filz [Read Filz 2] bR

¢File TeFEHL]

plit [Split 3]

< Segmentsx Texts

e

et Numbered Item [Get kambered ltem ..

g

kil

aits
kg

I

e

5

EH |
@
@u
i
e
@V
Al L
T ReadAFi
T Requisit
T SEQ

Get Mumbered [tem 3 [Get Mu.

=

<Mumbef:

<Ibarmz

et

mber:

Corwert Text to Mumber .

T TreedMc,

0 VPLTest

7 VPLTest ™ || =l Properties &2
r

“

*i Usages

I

B dTersusMode... l%}TersusDebu‘..
=0
[

] [[

(= Data Types
= Constants
[~ Formatted ...
[~ Basic

= Collections
= Database

m

[~ Dates
(= Display

0O = E

(= Display Acti...
8 (== Flow Control -

= - =
A = =

e

131

37M of oM

&

L

O, Tersus Modeling - ProcessAllEmployees/GetAnEmployee - Tersus Studio

=RAOEs X

File Edit

BN

e

g

&3]

e

LT ReadAFi
T Requisit
T 5EQ

T TreedMc,
0 VPLTest

e

Mavigate

Q-

Search Project Run Window Help
& - ¥o o o- & (ORISR I | Quick Hosting <l
C) C) - - - ~ ~ -
A ProcessAllEmployees A ProcesslEmp A ComputeEmpSalary A AskState A GetAState A GetAnEmployee i3 A MakeCaption
=

7 VPLTest ™ || =l Properties &2
r

Ed [GetAnEmployee] <<Action>>

+File Mame: <File Text:

EH "Emps.tat"

ISegments:

<Separatorss

<Segments>

urt|

Corvert Text to Number

.,x.
i
[Corvert Text bo Mumber 4]

':g'

Corwert Text ko Mumber 2 [Convert Text o Mumber 2 2]

< Mumb

*i Usages

Fr

ber:

3
B

B dTersus Mode... l%}Tersus Debu...

=8
[

] [[

(= Data Types
= Constants
[~ Formatted ...
[~ Basic

= Collections
= Database

m

[~ Dates
(= Display

0O = E

(= Display Acti...
= Flow Control .

= - =
A = =

132

UM of oM

o

O, Tersus Modeling - ProcessAllEmployees/MakeCaption - Tersus Studio

=RAOEs X

File Edit

57 T O

gt 0 MR [

O fop g e G

g

&3]

EE

5|
t
£l |
=
iR
A
@A
Gl
Al L
T ReadAFi
T Requisit
T 5EQ
T TreedMc,
0 VPLTest

e

Mavigate

7 VPLTest ™
r

Search Project Run
(& -

"2 ProcessAllEmployees

¥ -

Window Help
¥ G -

b ProcesslEmp

& @ &

b ComputeEmpSalary

L | Quick Hosting <[l

A AskState

“a GetAState

b GetAnEmployee

B dTersus Mode... l%}Tersus Debu...

" MakeCaption &3

Ed [MakeCaption] <<Action>>

B "Choose a state for "

Concatenate

o cSeparatoly
W’

ftConcatenate 2

< Coneatenation:

B =0K - 2 =T - 3 == NY - 4 =VA - B=NY"

L+ Concatenate 3

=

E Properties 2

*i Usages

_ |[= Display Acti...

=8

&
L

2= Palette

] [[

(= Data Types
= Constants
[~ Formatted ...
[~ Basic

= Collections
= Database

m

[~ Dates

(= Display
BB2O
HEEE

= Flow Control .

= - =
A = =

133

36M of oM [mk

Appendix D: Program test in Analytica

@ Test - Analytica® Player - C:_uRmYbUtTeRfLy\Sct glang'F st\4-Analyti y.ana E T 9 k. N L. ™ o

134

@ Test - Analytica® Player - CA uRmYbUtTeRfly\School\VisualProglang\ProgramsTestid-Analytica\ComputeSalary.ana B T N - L T (o | it

File Edit Object Definition Result Diagram Window Help

Employess

Title: Employees

Description:

Definition: “I|Nash|Stevel43(23
ZiBarkleyiCharles{7 g7
3ordaniMichagl40sT
4PiercelPaull407s
S|GamettiKevinBBiSss"

Outputs: () Emprecs

states

Title: States

Description:

Definition: ‘OK1214
T3
NS0
WAIZ0{28
NYIZ9124'

Outputs: () Statefields StateFields
() Staterecs StateRecs

135

@ Test - Analytica® Player - CA uRmYbUtTeRfly\School\VisualProglang\ProgramsTestid-Analytica\ComputeSalary.ana B T N - L T (o | it

File Edit Object Definition Result Diagram Window Help

i ﬁWW\l*

() Variable ™ | Emprecs
Title: EmpRecs
Description:
|
Definition: Array(Eidx, SpltText(Employees, chr(13]}))
Inputs: /7 FEidx Eidx
() Employees Employees|
Outputs: () Empfields EmpFields

[Variale | sterecs

Title: StateRecs

Description:

Definition: Array(sidx, SplifText{States, chri13))}

Inputs: 7 Sidx
() States

G

136

9 st Ay Plgr VTRl SchooViran PrgpamsTest AnsaComputesamyans - - b

File Edit Object Definition Result Diagram Window Help

i@ ﬁWW\l*

Emprieids

Title: EmpFields
Description:
Definition: For row := Eidx Do
Array(Fldidx, SplitText(Emprecs[Eidx=row]T))

Inputs: /7 Eidx Eidx
() Emprecs EmpRecs
£F Fididx Fididx

Qutputs: () Testdisplay TestDisplay

Statefields

Title: StateFields

Description:

Definition: Array(col SpitText((Array(row SpitText{States, chri13)3}),TH

Inputs: /7 Col
7 Row
O States

o

137

@ Test - Analytica® Player - CA uRmYbUtTeRfly\School\VisualProglang\ProgramsTestid-Analytica\ComputeSalary.ana B T N - L T (o | it

File Edit Object Definition Result Diagram Window Help

i@ ﬁWW\l*

Title: TestDisplay

For row := Eidx Do
ComputeandDisplay(EmpFields[Eidx=row Fididx=4] EmpFields|Eidx=row Fididx=>5], EmpFields[Eidx=row Fididx=3]&"
SEmpFields[Eidx=row,Fididx=2]);

Inputs: ¥ i I

{7 Eidx Eidx
(' Empfisids
{7 Fididx

138

@ Test -- Analytica® Player -- C_uRmYbUtTeRfLy\School\VisualProglang'Prog Test\d-Analytica\Comy

[« M=

D Fancton |

Title: ComputeandDisplay

Parameters: (parami,paramz param3)
Description:
war Hrs ;= Evaluate(param1);

war PRate:=Evaluate(param2};
msgBox{param3);

war StatelD: ("State for® &p : " 'Pick a state');

megBox(Staterecs[Sidx=StatelD]);

war Tax:=Evaluate(StateFields[col=2 row=5tatelD]);
war MinW:= Evaluate(StateFields[col=3, row=>5tatelD]);
magBox(Tax: "&Taxs, MinWV: "&Minvv);

if PRate = Min¥V

Then msgBox (‘Salary is: ' &Round((PRate*Hrs }-(PRate*Hrs"Tax/ 100} ,2))
Else msgBox (‘Salary is: * & Round((MinWW*Hrs}-(MinW*Hrs*Tax/100} ,2))

7 col
7 Row
{7 sidx
O Statefields
() Staterecs
O

Qutputs: Testdisplay

col

row

Sidx
StateFields
StateRecs

TestDisplay

139

Appendix E: Program test in UVPL

Unified Visual Programming

File Edit Debug Build

Help

Main " Employee " State]

Libraries |

Main

Variables || arm_Emps =] arr States

O

LoadEmployees Lo_aaStates

New Class
Method
Instr. box
variable
Arithmetic

Boolean
Compare

Flow ctrl.

Standard Lib.

Sl e

Procesélémp

ProcessAllEmps |

| [

140

Unified Visual Programming
File ~ Edit Debug Build

Help

Main | Employee | State

< =
e

Employee

Libraries |

[abc]

Variables 8 E%

[abc]

Get_LastName |ahc

New Class S
Set_LastName

Method [Body |

Instr. box

variable

Arithmetic

Boolean Compute_Salary

Compare

Flow ctrl.
1/0]
Standard Lib.‘

Get_Hours

Set_Hours

141

Unified Visual Programming

File Edit Debug

Build

Help

Main | Employee | State

Libraries |

Variables |

(o]
o~
-

e

Get_StateName

New Class

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.
1/0]
Standard Lib.‘

Set_Tax -

State

142

Kl

Unified Visual Programming

File Edit Debug Build

Help

New Class

Get_LastName “Get_FirstName” Get_PayRateHGet_Hours HGet_Salary” Set_LastName ”Set_FirstName ” Set_PayRate "Set_Hours ”Set_SaIary

>>

Global Variables (2] EmpID [] LastName |] FirstName (%] Hours (2] PayRate (2] Salary

Local Variables

Out Parameters | LN }

D) [€D) €D

LastName 7 LN

Method
Instr. box

variable

HEEEH

Arithmetic

Boolean

Compare

Flow ctrl.

I/0

Standard Lib.

i

E)
k=1
2

143

Unified Visual Programming

File Edit Debug Build Help

Get_LastName lGet_FirstNameH Get_PayRateHGet_Hours”Get_SaIaryH Set_LastName ”Set_FirstName H Set_PayRate ”Set_Hours ”Set_SaIary H:]

Global Variables (] EmpID |] LastName [] FirstName (2] Hours (2] PayRate (2] Salary

New Class

Local Variables

E13j[K13

Out Parameters | FN

Method

Instr. box

variable

Arithmetic

Boolean

i

Compare

Flow ctrl. ‘

1/0 |

Standard Lib.]

FistName —{3] PN

Kl

m
3
=
2
@
@™

144

Unified Visual Programming

File Edit Debug Build Help
Get_LastName |Get_FirstName | Get_PayRate IGet_Hours”Get_SaIaryu Set_LastName HSet_FirstName HSet_PayRate ”Set_Hours “Set_SaIaryl[:]
Global Variables (] EmpID | [£] LastName [2] FirstName] Hours (<] PayRate (2] Salary ol
Local Variables g M
Out Parameters PR \ -
~
PajRate —p[z] PR
Method |
Instr. box l
variable ‘
Arithmetic l
Boolean ’
Compare
o |
Standard Lib.‘
v

145

Unified Visual Programming

File Edit Debug Build Help
Get_LastName | Get_FirstName Get_PayRat¢i|[Get_Hours [Get_SaIary" Set_LastName ”Set_FirstName HSet_PayRate l’Set_HoursUSet_SaIarylFl
Global Variables (] EmpID (%] LastName (%] FirstName] Hours (2] PayRate (2] Salary ol |
Local Variables @IM’
Out Parameters Hrs ‘\ I-
~
W Hours —p{&] Hs
Method ‘
Instr. box l
variable]
Arithmetic ’
Boolean
| Compare |
Flow ctrl. ‘
1/0
v

146

Unified Visual Programming
File Edit Debug Build Help

Get_LastName |Get_FirstName | Get_PayRate |Get_Hours| Get_Salary|| Set_LastName ||Set_FirstName ISet_PayRate Set_Hours Set_SaIaryl[:]

Global Variables (] EmpID | [£] LastName | 5] FirstName (2] Hours (2] PayRate (2] Salary

Local Variables

Out Parameters | Sal ‘

Employee

i E

New Class Salary Sal

Method

Instr. box

variable l

Arithmetic]

Boolean]

Compare

Flow ctrl.

I/0

Standard Lib.‘

147

Unified Visual Programming

File Edit

Debug Build

Help

New Class

Get_LastName ”Get_FirstName ” Get_PayRate"Get_Hours”Get_SaIary“ Set_LastName “Set_FirstName ” Set_PayRate ”Set_Hours “Set_SaIary H> >|

Global Variables (2] EmpID (] LastName (] FirstName (3] Hours (2] PayRate (2] Salary

Local Variables

e
g

In Parameters

‘LN]

5| IN

—D[Z] LastName

Method

Instr. box

variable

Arithmetic

Boolean

EEl
Compare

Flow ctrl.

/0

Standard Lib.

K

Employee

o

148

Unified Visual Programming

File Edit Debug Build Help

New Class

g

Get_LastName IlGet_FirstName" Get_PayRate"Get_Hours"Get_Salary" Set_LastName " Set_FirstName“Set_PayRate "Set_HoursI’Set_SaIary“»l

Global Variables (%] EmpID [2] LastName (] FirstName (2] Hours (2] PayRate (2] Salary

g

Local Variables

In Parameters | FN J

Method

Instr. box

variable

i

Arithmetic

[Boolean

Compare

Flow ctrl.

/o |

Standard Lib.

5 PN —p[F] FirstName

v
e

=

Employee

149

Unified Visual Programming

File Edit Debug Build

Help

New Class

Get_LastName "Get_FirstName" Get_PayRate"Get_HoursHGet_SaIaryH Set_LastName HSet_FirstName H Set_PayRate “SeLHours HSet_SaIary”»l

Global Variables| (%] EmpID [2] LastName [] FirstName (%] Hours (2] PayRate (2] Salary

& v

g“ Employee

Local Variables
B @

In Parameters

PR —P[5] PayRate

0.

Method

Instr. box

variable

Arithmetic

i

Boolean

Compare

Flow ctrl.

1/0

Standard Lib.

150

Unified Visual Programming
File Edit Debug Build Help

Get_LastName "Get_FirstName ll Get_PayRatel’Get_Hours”Get_SaIary" Set_LastName HSet_FirstName ” Set_PayRate ”Set_Hours Set_Salary .
Global Variables (2] EmpID (] LastName (] FirstName (3] Hours (2] PayRate (2] Salary)

Local Variables @ Employee
In Parameters | Hrs 1 |-

7] Hs (5] Hours I}
New Class - }. i j‘

Method

Instr. box

variable

Arithmetic

Compare

Flow ctrl.

1/0

Standard Lib.

|
|
Boolean]
|
|
|
|

151

Unified Visual Programming

File Edit Debug Build Help

New Class

Get_LastName "Get_FirstName" Get_PayRateHGet_Hours"Get_SaIary” Set_LastName HSet_FirstName ”Set_PayRate HSet_HourleSet_Salary

Global Variables (%] EmpID [3] LastName [] FirstName [%] Hours [S] PayRate (5] salary

Local Variables

In Parameters sal. Tl

sl 5] salaril)

Method

|

Instr. box

|

variable

Arithmetic

Boolean

Flow ctrl.

/0

Standard Lib

|
|
|
-I

=

Employee

152

Unified Visual Programming

File Edit Debug Build Help

New Class

Get_FirstName " Get_PayRate IlGet_Hours”Get_SaIaryH Set_LastName ”Set_FirstName ” Set_PayRate ‘[Set_Hours H Set_SaIary”Compute_Salaryl

Global Variables (%] EmpID [3] LastName [] FirstName [%] Hours [S] PayRate (5] salary |

)

Local Variables

In Parameters sal. Tl

Sal z Salary }

Method l

Instr. box]

variable

Arithmetic

Boolean

Compare I

Flow ctrl. l
1/0]
Standard Lib.l

=

Employee

153

Unified Visual Programming
File Edit Debug Build Help

F“Get_FirstName “ Get_PayRate][Get__Hours"Get_Salary" Set_LastName ”Set_FirstName ” Set_PayRate "Set_Hours HSet_SaIary Il Compute_Salary
Global Variables [%] EmpID 2] LastName [5] FirstName 3] Hours |[3] PayRate [2] Salary =
Local Variables ComputedSQflj @lw
In Parameters | [|Given_PRate Given_Hoqg:sg Given_Tax I-

iven_PRai!?;
m‘ Given_HWE%:g. g

Method

Instr. box iven . ComputedSéﬂ

variable
Given_HQ!Jt;_%’f

Given_Tax .

Arithmetic

Boolean

123

Flow ctrl.

1/0

|
|
|
Compare J
|
|
Standard Lib.‘

Computedsa'li Salary

154

Unified

Visual Programming

File Edit Debug Build Help

£ | StateName -
New Class e

Get_StateName"Get_Tax "Get_MinWage " Set_StateName "Set_Tax "Set_MinWage l

Global Variables (%] StatelD [] StateName (2] Tax (] Minwage

Local Variables

& e

Out Parameters | SN 1

=

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

1/0

Standard Lib.

|
|
|
|
|
|
|

155

Unified Visual Programming

File Edit Debug Build Help

New Class

Get_StateName I Get_Tax "Get_MinWage " Set_StateName "Set_Tax "Set_MinWage l

Global Variables (%] StatelD [] StateName (2] Tax (] Minwage

Local Variables

Out Parameters | Tx 1

(5] ™ 5] x 1

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

1/0

Standard Lib

|
|
|
|
|
|
-l

State

i

156

Unified Visual Programming

File Edit Debug Build Help

Get_StateName I’Get_Tax "Get_MinWage “ Set_StateName "Set_Tax "Set_MinWage l

Global Variables StateIDJ StateNajl‘T@ Tax j Minwa‘géﬁim]

Local Variables

[wan |
& erore)

Out Parameters | MW J

=

Minwage —p{z] MW

Method

Instr. box

variable

Arithmetic

Boolean

Flow ctrl.

1/0

|
|
|
Compare J
|
|
Standard Lib.l

157

Unified Visual Programming

File Edit Debug Build Help

New Class

GEt_StatENameI’Get_Tax "Get_MinWage“ Set_StateName"Set_Tax "Set_MinWage l

Global Variables StateIDJ StateNajl'.T% Tax j Minwa‘géﬁim]

Local Variables

& e

In Parameters | SN]

=

SN —p[F]stateName

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

1/0

Standard Lib.

|
|
|
|
|
|
|

158

Unified

Visual Programming

File Edit Debug Build Help

Get_StateName "Get_Tax "Get_MinWage " Set_StateName " Set_Tax “Set_MinWage l

Global Variables (%] StatelD [] StateName (2] Tax (] Minwage |

Local Variables

In Parameters | 12 j

N

State

=

X j Tax 7
New Class i o

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

1/0

Standard Lib.

|
|
|
|
|
|
|

159

Unified

Visual Programming

File Edit Debug Build Help

New Class

Get_StateName "Get_Tax "Get_MinWage H Set_StateName " Set_Tax “ Set,MinWage]

Global Variables (%] StatelD [] StateName (2] Tax (] Minwage

Local Variables

& o)

In Parameters | MW j

=

MW —p[z] Minwage |

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

1/0

Standard Lib.

|
|
|
|
|
|
|

160

Unified Visual Programming

File Edit Debug Build

Main I[Employeel[State]

Help

Libraries |

Variables =] arr_Em

LoadEmployees

New Class

Method

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

vo |
Standard Lib.l

ProcessAllEmps

161

Unified Visual Programming

File Edit Debug Build

Help

LoadEmponees" LoadStates " Process1Emp " ProcessAIEmpsI

Global Variables [=] arr_Emps =] arr_States|

Local Variables | alLil

Main

In Parameters | || FilePat

|

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare
Flow ctrl.

I/

(e}

HERHGHEEEE

aLin'?'é Emp‘sl:@

Set_LastName

DIO®)

162

Unified Visual Programming

File Edit Debug Build

Help

New Class
Method

Instr. box

Ak

variable

Arithmetic

Boolean

il

Compare

Flow ctrl.

/O

Standard Lib.

i

LoadEmponees” LoadStates “ Process1Emp "ProcessAIEmpsI

Global Variables || arr_Emps =] arr_States |

Local Variables | aline (3] EmpsFields (] LN [2] PN [2] PRate |] Hrs ‘remiemp (2

In Parameters | (3] FilePath |

KK

Current

tEmp

S

Index

Main

|

163

Unified Visual Programming

File Edit Debug Build

Help

LoadEmponeesl LoadStates ” Process1Emp "ProcessAlEmps]

Global Variables E] arr_Emps JE] arr_State's’_iW

Main

Local Variables aline 3] stateFields (] StName [5] StTax [c] StMinW (2] Index Coremswte

In Parameters E FilePath ‘

|

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare

Flow ctrl.

=
(@]

HERHGHEEE

abc

[abe aline

FilePath -

from

to

by

aline ,-‘-; StateFields

StateFieIds‘Z.J

get StName J

q =

get StMinW

13

| KK

<

164

Unified Visual Programming

File Edit Debug Build

Help

LoadEmponeesl LoadStates " Process1Emp]IProcessAIEmsz

Global Variables (] arr_Emps =] arr_States|

Main

In Parameters | 4] FilePa

Local Variables | 3] aline |[3]StateFields [3] StNeme (2] Stlax [] stMinw |[Z] Ind

(D) €] (€D

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare
Flow ctrl.

(0]

=

HERHGHEEEE

123

165

Unified Visual Programming

File Edit

Debug Build

Help

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare
Flow ctrl.

I/

(e}

LoadEmponees“ LoadStates | Process1Emp " ProcessAIEmpsl

Global Variables (-] arr_Emps =] arr_States|

Local Variables | [£] LName (2] FName 3]

PayRate (%] Hours [X] Index [Z]StMinWage(s] StTax ‘cumentste

In Parameters |

Employee
CurrentEmp

HERHGHEEEE

=

Get_FirstName {abc
[Body |

(] sviniage

Comrpuie_'S'alry

D<)]9

Main

|

166

Unified Visual Programming

Build

[File Edit Debug Help

LoadEmponees‘l LoadStates I Process1Emp "ProcessAIEmps]

Global Variables arr_Emps J arr_Statésj

New Class

Method

Local Variables LName J

FName PayRate Hours

m
~
-

Index ;\StMinWagg StTax

" State R
~ CurrentState

®

In Parameters

Employee

CurrentEmp

g

Main

|

Get_PayRate

Emgloiee :

CurrentEmp

PayRate

StMinW-—,
PayRaté.%»"

hen

(5] stvinWage—>{ =] Pafte

else)

Instr. box
variable

Arithmetic

Boolean
Compare

Flow ctrl.

=
(@]

HERDGHREEE

%} Choose a State for: > mmm]-

v
2
o

(Name —3
%l->ok,2—>m3->N\L4»>VA,S->NV e &

FName —2

Compute_Salary

Kl

167

Unified Visual Programming

[File Edit Debug Build

Help

New Class
Method
Instr. box
variable

Arithmetic

Boolean

Compare

HHGHAAE!

Flow ctrl.

I/0

v
Q
=
Q.
o
[o N
=
S

LoadEmponees” LoadStates H Process1Emp "ProcessAIEmpsl

)

Global Variables E] arr_Emps

arr_Stat’éS‘?

Local Variables LName ;I FNam_et:'_] PayRate;g'“ Hours] Index _]StMinW_ J StTax j%m

g =)
3 o

In Parameters

CurrentEﬁ

arr_States [—T—
- get—p CurrentState
Index

mmthen)‘smmv@—p m]’
mmelse)

swinv?;\,
PayRate

—ite)

Compute_Salary

Get_MinWage

=t
S

StMinwﬂ

mployee

-
ki Curnemeﬁﬁ CurrentEmp

& 5]
-

168

Unified Visual Programming

[Fne Edit Debug Build Help

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare

Flow ctrl.

HHGHAAEE

=
(@]

@2
Q
=)
o
o
a
=
28

LoadEmponees“ LoadStates I Process1Emp " ProcessAIEmps]

Global Variables| arr_EmﬁéEjE] arr_States

Local Variables | LName;i FName:_j PayRaté_:] Hours] Index :] StMinWag% StTax J

C_Sete)
CurrentState

A = - Employee
In Parameters | CurrentEmp

:
g

-

Gf_SaIary

o1 PayReiEll

FName —2
LName —3
PayRate —4

Main

|

169

Unified Visual Programming

lFiIe Edit Debug Build

Help

New Class
Method
Instr. box
variable

Arithmetic

Boolean
Compare

Flow ctrl.

=
(@]

HEROGHEEEE

LoadEmponees" LoadStates H Process1Emp]lProcessAIEmps

Global Variables' arr_Erri'ﬁa@ a"_S?a@

\Local Variables \ Index ! %

LoadEmployees

;%c\l?iles\Empsm

LoadStates

ié \Files)\States txt

Kl

170

Unified Visual Programming

[Fne Edit Debug Build

Help

LoadEmponees" LoadStates H Process1Emp HProcessAlEmps

Global Variables| arr_Emps‘?]E] arr_Staté#fj

L

Main

Tk (_Employee]
Local Variables | | ®| Index BC:&:&;@

FO Index 7]

from |

New Class
to

Method

by

Instr. box

variable

Arithmetic

Boolean

Compare

Flow ctrl.

=
(@]

Sl

171

VITA

Seynabou Dieng
Candidate for the Degree of
Master of Science

Thesis: A PROPOSED UNIFIED VISUAL PROGRAMMING LANGUAGE

Major Field: Computer Science

Biographical: Born in Dakar, Sénégal on February 12", 1978. The daughter of Khadijhatou
Seck and the late Papa Amath Dieng.

Education: Graduated from Yalla Suur En high school, Dakar, Sénégal with a Baccalauréat with
honors in 1998. Received a Technical Diploma in Informatics from Cheikh Anta Diop
University —ESP, Dakar, Sénégal in 2000. Received a Bachelor of Science degree in
Computer science from Oklahoma State University, Stillwater, Oklahoma in May 2005.
Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in November, 2010.

Experience: Employed as a programmer analyst at MAERSK Sealand in Dakar, Sénégal from
November 2000 to July 2001. Employed as a Database Analyst at Site Specific
Technology in Stillwater, Oklahoma from July 2003 to August 2010. Employed as a
System Analyst II at Sprint Nextel in Overland Park, Kansas from August 2010.

Professional Memberships: None.

Name: Seynabou Dieng Date of Degree: December, 2010
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: A PROPOSED UNIFIED VISUAL PROGRAMMING LANGUAGE

Pages in Study: 171 Candidate for the Degree of Master of Science
Major Field: Computer Science

Scope and Method of Study: this study aimed at contributing to the area of visual
programming languages, by proposing the framework for a visual programming
language (VPL) that is the unification of the best features of four existing VPLs. This
unified VPL, or UVPL, is designed to better achieve scalability, which is lacking - in
general - in current VPLs. The design of UVPL is based on the analysis of four existing
VPLs. This study also aimed at providing a short survey of the four selected VPLs.

Findings and Conclusions: the design of UVPL succeeded in being a programming language
that is general-purpose and object-oriented. However, UVPL as well as its development
environment needs to be implemented for further, more concrete testing and
comparison.

Dr. Blayne Mayfield

	LIST OF FIGURES
	LIST OF TABLES
	Chapter I
	INTRODUCTION
	1.1 Visual Programming Languages
	1.2 Issues of Visual Programming Languages
	1.3 Objectives and limits of this research
	1.4 The Approach
	1.5 Chapters overview

	Chapter II
	REVIEW OF LITERATURE
	2
	2.1 Background of VPLs
	2.2 VPL Classification System
	2.3 VPL Grammar
	2.4 Cognitive Dimension of VPLs
	2.5 Short VPL Survey
	2.6 Scaling up Visual Programming Languages
	2.7 Iteration constructs in VPLs
	2.8 Arrays representation in VPLs
	2.9 Principles of programming languages

	Chapter III
	METHODOLOGY
	3
	3.1 VPLs Selection Process
	3.2 Analysis of principles for the selected VPLs
	3.3 Variables and literals
	3.4 Arithmetic, Boolean, and Comparison Operations
	3.5 Control Flow
	3.6 Input / Output
	3
	3.1
	3.2
	3.7 Unified Visual Programming Language – UVPL
	3.7.1 UVPL Programming Features
	3.7.2 UVPL Programming Constructs
	3.7.3 Object-Oriented UVPL
	3.7.4 Principles analysis of UVPL

	Chapter IV
	TESTING
	4
	4.1 Program Tests
	4.1.1 Program Test in Alice 2.2
	4.1.2 Program Test in Lumina Analytica 4.2
	4.1.3 Program Test in Microsoft VPL 2.1
	4.1.4 Program Test in Tersus 1.3
	4.1.5 Program Test in UVPL
	4.1.6 Analysis of the Program Tests
	4.1.7 VPL Metrics for the Test Programs
	4.1.8 Test Programs Counts
	4.1.9 VPL Metrics Values for the Test Programs

	Chapter V
	CONCLUSION
	5
	5.1 Findings
	5.2 Goals achieved
	5.3 Halstead measurements
	5.4 Future works

	REFERENCES
	APPPENDICES
	Appendix A: Program test in Alice
	Appendix B: Program test in MS VPL
	Appendix C: Program test in Tersus
	Appendix D: Program test in Analytica
	Appendix E: Program test in UVPL

	VITA

