
A PROPOSED UNIFIED VISUAL PROGRAMMING

LANGUAGE

 By

 NABOU DIENG

 Bachelor of Science in Computer Science

 Oklahoma State University

 Stillwater, Oklahoma

 2005

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2010

ii

 A PROPOSED UNIFIED VISUAL

PROGRAMMING LANGUAGE

 Thesis Approved:

Dr. Blayne Mayfield

 Thesis Adviser

Dr. John Chandler

Dr. Johnson Thomas

 Dr. Mark Payton

 Dean of the Graduate College

iv

ACKNOWLEDGMENTS

The successful preparation of this research would not have been possible without the

invaluable contribution of my adviser, Dr Blayne Mayfield, nor would it have been possible

without the great educational experience received from the professors of the Computer

Science department of Oklahoma State University. For these reasons I would like to express

my deepest gratitude to the members of my committee: Dr Blayne Mayfield, Dr John Chandler

and Dr Johnson Thomas. I also would like to extend my sincere thanks to Dr Mansur

Samadzadeh and Dr Nohpill Park, who have helped me tremendously during my university

curriculum.

I further would like to thank my mother Dr Khadijhatou Seck for her unconditional

encouragements in my studies, my dear brother Ababacar Dieng for his absolute support and

my brother Madior Dieng for always motivating me.

Last but not least, I would like to take this opportunity to acknowledge the support

and understanding throughout my life of my late farther Dr Papa Amath Dieng, who is not

going to read these lines but who would have been proud to see me reach this milestone.

5

Table of Contents

Chapter Page

LIST OF FIGURES ... 7

LIST OF TABLES ... 9

Chapter I ... 10

INTRODUCTION .. 10

1.1 Visual Programming Languages ... 10

1.2 Issues of Visual Programming Languages .. 11

1.3 Objectives and limits of this research .. 12

1.4 The Approach ... 12

1.5 Chapters overview ... 12

Chapter II .. 14

REVIEW OF LITERATURE ... 14

2.1 Background of VPLs.. 14

2.2 VPL Classification System ... 16

2.3 VPL Grammar ... 17

2.4 Cognitive Dimension of VPLs ... 20

2.5 Short VPL Survey .. 21

2.6 Scaling up Visual Programming Languages .. 24

2.7 Iteration constructs in VPLs ... 26

2.8 Arrays representation in VPLs .. 28

2.9 Principles of programming languages .. 30

Chapter III ... 32

METHODOLOGY ... 32

3.1 VPLs Selection Process ... 32

3.2 Analysis of principles for the selected VPLs ... 34

3.3 Variables and literals .. 36

3.4 Arithmetic, Boolean, and Comparison Operations .. 42

3.5 Control Flow ... 47

3.6 Input / Output .. 55

3.7 Unified Visual Programming Language – UVPL .. 63

6

3.7.1 UVPL Programming Features ... 63

3.7.2 UVPL Programming Constructs .. 71

3.7.3 Object-Oriented UVPL .. 77

3.7.4 Principles analysis of UVPL ... 81

Chapter IV .. 86

TESTING .. 86

4.1 Program Tests .. 86

4.1.1 Program Test in Alice 2.2 ... 89

4.1.2 Program Test in Lumina Analytica 4.2 ... 90

4.1.3 Program Test in Microsoft VPL 2.1 .. 91

4.1.4 Program Test in Tersus 1.3 ... 92

4.1.5 Program Test in UVPL .. 93

4.1.6 Analysis of the Program Tests .. 94

4.1.7 VPL Metrics for the Test Programs .. 95

4.1.8 Test Programs Counts .. 98

4.1.9 VPL Metrics Values for the Test Programs ... 99

Chapter V ... 103

CONCLUSION .. 103

5.1 Findings .. 103

5.2 Goals achieved ... 106

5.3 Halstead measurements .. 107

5.4 Future works .. 107

REFERENCES ... 109

APPPENDICES ... 110

Appendix A: Program test in Alice ... 110

Appendix B: Program test in MS VPL ... 119

Appendix C: Program test in Tersus ... 126

Appendix D: Program test in Analytica .. 134

Appendix E: Program test in UVPL ... 140

VITA .. 1

7

LIST OF FIGURES

Figure 2.2.1: Example of adding VPLs to the ACM CR system. Modified from figure 2.2.216

Figure 2.2.2: VPLs Classification system [3] ..17

Figure 2.5.1: static VIPR representation of an if statement [8]. ...22

Figure 2.8.1 Array of 2 dimensions with scroll bars [14] ...28

Figure 2.8.2: Summing a list in Formulate [14] ...29

Figure 3.2.1: Example of a variable in Alice ...39

Figure 3.2.2: Syntactic consistency violation ...39

Figure 3.2.3: Example of a variable with a long name ...39

Figure 3.2.4: example of a variable in Analytica ...40

Figure 3.2.5: some grokens and viprocons in Analytica ...40

Figure 3.2.6: Example of a variable in MS VPL ...41

Figure 3.2.7: example of a variable in Tersus ..42

Figure 3.2.8: addition in Alice ..45

Figure 3.2.9: comparison in Alice ...45

Figure 3.2.10: Example of Operation in Analytica ...46

Figure 3.2.11: invalid operation in MS VPL ..46

Figure 3.2.12: Invalid operation in Tersus ...47

Figure 3.2.13: While loop in Alice ...50

Figure 3.2.14: For loop in Alice ..50

Figure 3.2.15: Special library in Analytica ...51

Figure 3.2.16: Indirectness in Analytica. ...52

Figure 3.2.17: If viprocon in MS VPL ..53

Figure 3.2.18: Switch in MS VPL ..53

Figure 3.2.19: Control flow in Tersus ..54

Figure 3.2.20: Setting up input in Alice ...58

Figure 3.2.21: Setting up input in Analytica ..58

Figure 3.2.22: Input in Analytica..59

Figure 3.2.23: Output and Input example in MS VPL ..60

Figure 3.2.24: Text to speech Output in Ms VPL ...60

Figure 3.2.25: Miscellaneous I/O example in MS VPL ..61

Figure 3.2.26: I/Oexamples in Tersus ...62

Figure 3.2.27: More I/Oexamples in Tersus ..62

Figure 3.3.1: Partial view of a UVPL program -1 ...64

Figure 3.3.2: Partial view of a UVPL program -2 ...64

Figure 3.3.3: Instruction boxes ..65

Figure 3.3.4: Hidden comments ...66

Figure 3.3.5: shown comment ...67

Figure 3.3.6: Concealing incoming variables ..68

Figure 3.3.7: Revealing concealed variables ..68

8

Figure 3.3.8: concealing incoming expression and variable ..68

Figure 3.3.9: revealing incoming expression and variable ...69

Figure 3.3.10: docked program ...69

Figure 3.3.11: mouse over to magnify minimized block ..70

Figure 3.3.12: Adding Exception Handling Stub ...70

Figure 3.3.13: Exception handling in UVPL ..71

Figure 3.3.14: Data types in UVPL ...72

Figure 3.3.15: Arithmetic operators..73

Figure 3.3.16: Arithmetic operations in UVPL ...74

Figure 3.3.17: Boolean operators ...75

Figure 3.3.18: Comparison operators ...75

Figure 3.3.19: Iterations in UVPL ...76

Figure 3.3.20: File and standard I/O ..77

Figure 3.3.21: an object in UVPL ..78

Figure 3.3.22: Procedures and functions in UVPL ...79

Figure 3.3.23: Example of an activity (ProcessEmployee) in MS VPL79

Figure 3.3.24: Public non-static method signature ...80

Figure 3.3.25:Public static method signature ...80

Figure 3.3.26: Private static method signature ..80

Figure 4.1.1: Events in Alice ..90

9

LIST OF TABLES

Table 3.1-1: VPLs to select from .. 33

Table 3.2-1: List of Strategies and principles ... 35

Table 3.2-2: Principles related to variables and literals ... 38

Table 3.2-3: Principles related to operations ... 43

Table 3.2-4: Principles related to control flow .. 48

Table 3.2-5: Principles related to I/O ... 56

Table 3.3-1: Variables and literals principles ... 81

Table 3.3-2: Principles for operations .. 82

Table 3.3-3: Principles and Strategies for Control Flows ... 83

Table 3.3-4: Principles for I/O .. 85

Table 4.1.8-1: Test Programs counts ... 99

Table 4.1.9-1: Desirability order .. 100

Table 4.1.9-2: Visual Density .. 100

Table 4.1.9-3: VTVC ratio ... 101

Table 4.1.9-5: Average Connectors per Container ... 101

Table 4.1.9-6: Average Deepest Browsing Level .. 102

10

Chapter I

INTRODUCTION

1.1 Visual Programming Languages

Visual programming languages (VPLs) are the class of programming languages with

which users build programs by manipulating visual objects. The semantics of the program are

thus expressed by graphical tokens as opposed to textual tokens used in textual programming

languages (TPLs), and visual programming constructs as opposed to textual programming

constructs in TPLs.

Integrated development environments such as Microsoft Visual Studio are visual

programming environments (VPEs), and the languages they support for development, such as

Visual C#, are not VPLs, since all the tokens of these languages are textual.

It is important to note that the term visual programming language, as known today,

refers to a hybrid language that lies between a pure TPL and a pure VPL. Pure VPLs might not

be a practical alternative to TPLs.

The main goals of VPLs are defined by Burnett [1]. She states that the three goals of

VPLs are: to make programming easier to understand for audiences other than programmers,

to reduce error proneness when programming and to help users program faster.

11

1.2 Issues of Visual Programming Languages

The most successful of the currently-available VPLs are domain specific; such

languages include LabView, used for industrial automation or instrument control, and

OpenMusic, used for musical composition. The other uses of VPLs generally are limited to

teaching or research. The main issue faced by VPLs is their limited ability to produce a

complex program while preserving a reasonable level of readability and maintainability. These

issues of scale are a result of the presentation of a visual program. Since the program has text

and graphics, it is visually bulkier than a TPL. The fact that most VPLs do not have a static

representation – that is, a complete (unabridged) representation of the program—introduces

readability issues. A high level of abstraction should be attained without sacrificing details that

aid in the understanding of a program, as a whole. Again, because programming in a VPL is

synonymous with manipulating visual objects to build a program, the management of the

screen area poses a problem in building large programs efficiently.

Another concern with VPLs is the visual presentation of proper documentation, so that

it is in line with the graphical nature of VPLs, while at the same time not adding more visual

clutter to the program.

The last issue addressed in Burnett's paper—as well as in this section—is the

readability of VPL programs. For instance, VPLs developed with arrows to direct the flow of

data, or to represent the notion of ‗next statement‘ have the advantage of showing visually

the different segments of a program that could be executed concurrently; however, reading

such programs is often very difficult because of the clutter added by the arrows.

12

1.3 Objectives and limits of this research

The first objective of this research is to analyze the grokens (graphical tokens) and

viprocons (visual programming constructs) of a few selected VPLs in order to identify how

issues related to the scaling up of VPLs are addressed in those languages, and also to identify

weaknesses that preferably should not be part of a VPL.

The second objective is to design a general purpose VPL that could be used for

complex programs, so that these programs can be reviewed and maintained more effectively

than similar programs written in the VPLs analyzed in the first part of this research. The

design of this ―Unified visual programming language‖ or UVPL focuses on the visual features

that could contribute to better scalability in visual programming, by using the analysis that

results from the first objective.

Because this research focuses on the visual aspect of VPLs and its implications on

readability and maintainability rather than on performance, an interpreter or a compiler is not

developed for UVPL.

1.4 The Approach

In an attempt to fulfill the first objective, some popular, general-purpose and domain-

specific VPLs are analyzed. The analysis is based on principles of programming languages and

on strategies used in VPLs. The results of this analysis are used as a starting point to design

the grokens and viprocons of UVPL. The last phase of this research consists of implementing a

test program in each of the selected VPLs and in UVPL in order to gather metrics that allow a

conclusion to be drawn about the goals attained by UVPL.

1.5 Chapters overview

This thesis first presents a review of background and previous work in VPLs relevant to

this study. Then, the methodology adopted to conduct the research—which ranges from the

selection of VPLs used in this research to the comparison techniques of these languages with

UVPL—is described. Following the chapter on methodology, the results chapter presents a

13

comparison between the selected VPLs and UVPL, and the comparison is used to evaluate the

goals achieved by UVPL.

14

Chapter II

REVIEW OF LITERATURE

2.1 Background of VPLs

Margaret Burnett, whose primary research focus is on end-user programming,

presents a thorough description of VPLs and their motivation [1]. To begin with, she explains

the essential differences between TPLs and VPLs. Her major point is that the semantics of a

program in a TPL can be conveyed only through text, whereas in a VPL the semantics of a

program are conveyed at multiple levels, such as text, graphics, color, animation, etc.

In her paper Burnett addresses the history of VPLs by describing the precursory works

related to the development of programming by demonstration and programming via

executable flowcharts. Even though these first attempts seem very interesting, these

languages could not be scaled up for programs of more conventional size, therefore they were

less useful than their TPL counterparts.

Later on, the designs of VPLs took a new direction, and research was oriented towards

domain-specific VPLs. These systems proved to be more successful than the earlier ones, since

the target was a single, specific domain. As a result, it became possible to narrow down the

collection of visual artifacts, operations, data structures, etc. to just those entities that are

needed for a particular domain.

15

In her research Burnett identifies four strategies that could help achieve the most

important goals of VPL research, which are making programming more understandable to non-

programmers, increasing productivity of programmers and increasing correctness of programs.

The four strategies used to achieve these goals are:

Concreteness: getting away from abstractness. An example would be to display

automatically the effects of a program on a variable as the program runs.

Directness: directly manipulating objects. As an example, instead of describing

semantics to be applied to an object, the programmer specifies the semantics by directly

manipulating the object.

Explicitness: directly stating aspects of semantics rather than inferring them. For

instance, using edges in a dataflow to express explicitly the relationships between variables or

actions, or to direct explicitly the flow of data.

Immediate visual feedback: providing a livelier aspect of the programming experience.

As programs are edited, the modifications to variables and objects are displayed

automatically.

In her description of VPLs, Burnett also addresses the issue of abstraction in VPLs. The

ability to reach some level of abstraction remains important, because it plays a major role in

scalability. This statement is not in contradiction to strategy 1, because she refers here to the

use of data and procedural abstraction, rather than the type of abstraction described in

strategy 1. Data and procedural abstraction are possible in VPLs, since several current VPLs

support these concepts. An example of procedural abstraction for VPL would be the ability to

iconify a section of a dataflow. However, there is still room for improvement in this regard.

Among other important issues, Burnett discusses language specification for VPLs (this

subject will be developed later in this chapter) and the cognitive dimension of VPLs, since the

aim of these languages is to improve the programming experience of humans.

16

2.2 VPL Classification System

In 1993, Burnett and Baker proposed a classification system for visual programming

languages [2]. As the literature of VPLs was broadening, they sensed that the development of

a classification system to help researchers find the right material was a necessity. Although a

similar computing reviews system already was designed by the Association for Computing

Machinery (ACM), Burnett and Baker came to the conclusion that this system was not suitable

for classifying VPLs. The ACM computing classification system is a four-level tree; placing VPLs

under classification D3 (Programming Languages) would mean that only one more level could

be added underneath VPLs. But, defining VPLs is more complex, and therefore, more than one

subsection is needed to classify VPLs properly. However, for Burnett and Baker, this limitation

could not satisfactorily classify the work in VPLs. Figure 2.2.1 shows an explanation of the

levels in the ACM computing review system and the limitation for adding VPLs as a level-3 leaf

in the tree, and figure 2.2.2 shows the classification of VPLs that Burnett and Baker proposed.

Figure 2.2.1: Example of adding VPLs to the ACM CR system. Modified from figure 2.2.2

17

Figure 2.2.2: VPLs Classification system [3]

For the purpose of this research Burnett and Baker's classification system is used to

categorize VPLs, even though this classification originally was designed to help researchers

find proper research materials in the VPL areas. A given VPL can be categorized at the same

time under the section VPL II – Language classification (by paradigm or visual representation)

– and also under the section VPL V – Language Purpose. The other sections are engaged more

specifically with visual programming language features than with the taxonomy, and thus

could be disregarded if one‘s purpose is to find some sort of hierarchical taxonomy.

2.3 VPL Grammar

Describing a textual programming language in Backus Naur Form (BNF) is possible

because only one type of relationship is allowed between symbols: the relationship next to

[4]; thus there is no need to define the specific type of relationship. However, formally

18

specifying a VPL is more challenging, since there is more than one relationship that needs

specifically to be added to the grammar.

In 1994, Kim Marriot presented a framework to formally define visual languages—the

constraints multiset grammar (CMG) [4]. He proposed a theoretical foundation to generate a

parser from a grammar describing a visual language. The parser takes as input a multiset of

strings, lines, arcs, circles etc. Marriot states that for visual languages, grammars and parsers

use multisets instead of sequences, because in general, people do not follow the same order

when drawing complex diagrams.

Marriot explains that CMGs differ from traditional string grammars in two ways:

1. String grammars rewrite sequences of tokens, but multiset constraint

grammars rewrite multisets of tokens.

2. String grammars have only one type of relationship, which is ―next to‖, but

multiset constraint grammars have a wider number of relationships, such as

intersection, next to, above, below etc.

Constraints are used in a CMG to define the relationship between components. A CMG

over a computation domain D is defined formally by Marriot as being composed of:

- a set of terminal type symbols, TT

- a set of non-terminal type symbols, TNT

- a distinguished start type symbols, ST ∈ TNT

- a set of productions

The language of the grammar will be the set of all sentences that can be generated

from the start symbol using the productions in the grammar.

Marriott defines that in a constraint multiset grammar, a production is of the form:

S ::= S1,…,Sn  C on S‘1,…,S‘m

where S is a non-terminal symbol that can be rewritten to the multiset of symbols

S1,…,Sn and C is a set of constraints on the attributes of other symbols S‘1,…,S‘m. Marriott

defines the constraints C as elements that enable the encodement of spatial layouts and

relationships between a diagram and its components in the grammar.

Marriott gives the following production example:

P:state ::= Q:circle, T:text

19

where

Q .midpoint = T .midpoint,

2 * Q.radius >= T.height,

2 * Q.radius >= T.width,

P.midpoint = Q.midpoint,

P.radius = Q.radius,

P.name = T.string,

P.kind = normal.

In this production:

- Q .midpoint = T .midpoint constrains the midpoint of the text so that it is the same as

the midpoint of the circle; therefore the text and the circle share a common area.

- 2* Q.radius >= T.height informs that the text height fits in the circle

- 2 * Q.radius >= T.width informs that the text width fits in the circle

It can be deduced that the text is entirely in the circle, and that the text is perfectly

centered in the circle.

- P.midpoint = Q.midpoint the center of the production is the center of the circle.

- P.radius = Q.radius  the radius of the production is the radius of the circle.

- P.name = T.string  the name attribute of the production is the text value of T.

- P.kind = normal  the production is of the type or kind normal.

In his study Marriot unfortunately found out that parsing a sentence to find if it

belongs to the language of a CMG is an undecidable problem because CMGs can emulate two-

counter machines. Indeed, this is based on the fact that the halting problem for two-counter

Turing machines is unsolvable, as proved by Pierce from the Carnegie Melon School of

Computer Science [5].

The details of the formal description of these CMGs are outside the scope of this

research; therefore, this section presents only the result of Marriot's studies. After

investigating CMGs that are cycle free, Marriot came to the conclusion that the complexity of

parsing a cycle-free CMG is not polynomial but exponential, but parsing a fixed deterministic

20

CMG has a polynomial complexity. The analysis of his results determined that the complexity

of CMGs is in between that of string grammars and constraint logic grammars.

The research results presented by Marriott give a sense of the difficulty in formally

specifying a VPL using a grammar, thus, the formal specification of UVPL will not be covered in

this research.

2.4 Cognitive Dimension of VPLs

The primary purpose for the development of VPLs is to provide usability. However,

development of VPLs seldom includes tests to show whether or not a VPL is usable.

T.R.G. Green proposes a method based on cognitive walkthrough to help designers of

VPLs detect the level of usability they have achieved [6]. His paper elaborates on the human

computer interaction (HCI) technique known as cognitive walkthrough. This technique is used

to detect and correct usability problems on a user interface.

Cognitive walkthrough is a tool that was designed originally for testing usability in the

engineering field. Green states the four phases of this approach:

1. Set a goal to be accomplished

2. Search the interface for available actions

3. Select an action that seems likely to make progress toward the goal

4. Perform the action and check to see if progress is made towards the goal.

Green declares that cognitive walkthrough is a good method to evaluate the use of

VPLs for the following reasons:

- The development of a program using a VPL usually is done through a GUI. The

cognitive walkthrough method focuses on a user's ability to figure out how to use

a new UI; therefore, it is beneficial to use a cognitive walkthrough method to test

the usability of VPLs.

- Usually computer scientists do not have a background in cognitive science;

however, the cognitive walkthrough method—unlike other HCI approaches—seems

more easily usable by computer scientists that are not familiar with cognitive

science.

21

In his paper, Green describes a method he calls the WYSIWYT (what you see is what

you test) methodology that he uses to test the VPL Forms/3; this visual language was

developed by Burnett and Ambler in 1991 [9]. Green shows that this method did not yield

good results, and that refining this method with cognitive walkthroughs produced better

results.

Finally, Green concludes that cognitive walkthrough is a method with limitations, since

it cannot evaluate the cost of making an error, for instance. Nevertheless, cognitive

walkthroughs perform faster than pilot analysis or protocol analysis, and the focus of this

method is on specific areas in a subtask, which helps to target specific design issues.

2.5 Short VPL Survey

The following section presents a brief survey of different types of domain specific VPLs.

Alternate Reality Kit (ARK) [7]: implemented in Smalltalk-80, ARK was developed

around 1986 by Randall Smith. It is a virtual world programming environment and can be

classified as a domain-specific VPL, since its sole purpose is to aid in the simulation of the

fundamental laws of nature via a 2D animated environment. ARK is a system developed for a

non-programmer audience that needs to understand the laws of nature, like gravity or friction.

This VPL enables the users to grasp the concepts of physical laws by allowing them to apply

the simulated laws to physical objects via virtual simulation. In ARK, objects are images that

have a position and velocity, and to which forces can be applied. A user manipulates a given

object with another object, a hand, which is controlled using a mouse. ARK allows the user to

simulate the physical laws in their very basics, whereby the full details of reality are not

implemented; instead, the user directly simulates the effect of an action, rather than all the

different small reactions that lead to the final action. Smith gives the example of the

implementation of an electrical switch; the user does not simulate the physical installation of a

button where electrical lines are connecting the switch to the power supply, but the button is

visualized, and pushing it on or off will have a simulated reaction.

In ARK, users interact with the objects through a GUI; they also can create new kinds

of objects and add them to the library of built-in objects in the ARK warehouse.

ARK has three types of users:

22

1. The application level user who typically just runs a simulation

2. The simulation builder who builds a simulation application

3. The lowest level user who builds tools to be used by the simulation builder.

An important issue to point out about ARK is the use of the mouse to operate what is

called the hand object. It has been observed that use of the mouse to operate the hand is not

intuitive, and confuses a lot of users [7]. Indeed, many computer mice have only two buttons

(left and right), yet a hand can grab, pull, push, release etc., which means that the mouse

cannot, in an easy manner simulate all the different capabilities of the physical hand. However

it is very easy to learn the idea behind ARK and its concepts.

Visual Imperative Programming (VIPR)[8]: VIPR was developed at the University of

Colorado by Wayne Citrin. VIPR is not an iconic VPL; instead of text or icons or graphs it uses

nested concentric rings to convey the semantic of a program. From one step of the program to

another, inner rings are being merged while the outermost ring is connected to the state.

Figure 2 shows how VIPR represents an ―if‖ statement.

Figure 2.5.1: static VIPR representation of an if statement [8].

The development of VIPR was motivated by the desire to have an object-oriented

language that is easy to learn and use; therefore, VIPR has all the features of an object-

23

oriented language: inheritance, polymorphism, and dynamic dispatch, to name a few. The

semantics are similar to C++, thus VIPR can be used for low or high level programming.

An expression oriented component, VEX, which is used for lambda calculus, also was

added to VIPR. Lambda calculus is a notation to describe computable functions.

Prograph [9]: developed by Cox and Pietryzkowsky around 1990. Several versions

have been released, and the latest one is Prograph/CPX. It is an object-oriented visual

language that combines visual dataflow specifications with notions such as classes and

objects. Prograph is an imperative language, which is a programming paradigm that describes

computation in terms of statements that change the state of a program and the statements

are executed in a sequential manner. In Prograph, cases and multiplexes are control

structures used to replace explicit iteration by a sophisticated flow control. Prograph also

provides persistent objects that are stored in a database. Methods are built up as

accumulations of cases; each case in a method is a dataflow diagram that describes how the

case should be executed. The diagrams are comprised of inputs, outputs and a set of

operations; these entities are all connected. In Prograph, the order of execution is data-

driven: the edges in a flow diagram indicate the data flow from one operation to another.

Visual TPL [10]: Visual TPL was proposed by Tu, Chen and Cheng, as the result of a

research they conducted. This language is a domain-specific VPL, as its only use is for

transforming data for generating reports. The inputs for a Visual TPL program are tables that

come from a database. This language has four native components: table, helper, aggregation,

and data source. A table component transforms one table into another. The resulting table

typically is the data used in reports. The helper component is a collection of functions used for

transforming data, and the functions are grouped as arithmetic, logical and relational

operations. The aggregation component is another tool for data transformation, and it permits

the programmer to perform aggregates such as averages, counts etc. The last native

component Tu, et al. present in their report is the data source component, which is basically

the component that will connect to a database to provide requested tables. The programmer

also can combine preexisting components to make a composite one. The authors mention that

24

the construction of composite components can be viewed as performing abstraction since the

subcomponents used in a composite component are hidden.

A Visual TPL program is developed using an environment called Visual TPS, and this

environment was designed specifically for Visual TPL. Tu. et al. describe the environment as

having five areas. One area has icons for the native components, and another area is

designated for the composite components; the components from these two areas can be

dragged and dropped into a third area, which is a canvas where a program is built. All the

components dropped on the canvas are linked by connectors that will drive the flow of the

program. The fourth area in the Visual TPS environment is a display for immediate feedback,

allowing the programmer to preview the result. The last area makes the components most

used by the programmer easily accessible. The authors claim that the Visual TPS environment,

which generates reports by designing a graphical data flow program, is easy to use and

intuitive.

2.6 Scaling up Visual Programming Languages

The scalability issue is an important one for the viability of VPLs. Even though using

visual languages can be a very interesting approach for editing a program, their usefulness

has been affected by the inability of these languages to uphold large projects. Burnett and

Baker describe this issue as "how to expand applicability without sacrificing the goals of better

logic expression and understanding" [11].

In their paper, they discuss some issues pertaining to scaling up VPLs and some

possible solutions, described below.

 Static representation of a program, which is the complete representation of a

program at rest, is de facto in traditional TPLs; however for VPLs – and more particularly

interactive VPLs — it can be difficult to represent the entire program statically. Consequently,

the review of a VPL program can be a difficult task. Some ideas that have been proposed

would resolve this issue, but at the price of a VPL partially losing its visual nature. For

instance, Burnett and Baker mention the translation of the program to a textual program for

static representation; however this solution defies the purpose of VPLs, since the result of that

transformation is a textual program. The usefulness of a VPL program representation is

25

measured by evaluating the editability vs. the ability of a VPL to achieve some level of

abstraction to hide excessive visual details.

 Management of Screen real estate is another important problem, because of

the nature of visual languages. It is challenging to edit and display a large visual program if

the ratio of screen size to visual object size is too small. This issue involves how to display a

large enough part of a VPL program to represent a logical block within the program. Burnett

and Baker state that one solution to this problem is the use of scroll bars, but this solution

would need to be coupled with others to be effective.

 Burnett and Baker raise another issue concerning the incorporation of internal

documentation in a VPL; this issue is solved in TPLs by the use of in-line comments ignored by

the compiler. Documentation participates in scalability, because any type of documentation

needs space—whether the documentation is always apparent, or whether the documentation

is a dynamic text, where the text only appears at certain events such as a ‗mouse over‘. Some

VPLs can be, by their nature, self-documenting, which alleviates the need for extra, explicit

documentation; however, for VPLs that do not have implicit documentation, other solutions

have been used. The VPL Forms/3 uses a form of documentation that is neither text, nor does

it use space; rather, visual markers such as, coloring or boxing and lining perform the work of

documentation. Another type of documentation, named ad-hoc documentation, also has been

used; since the purpose of documenting is to help the reader of a program understand it

better, ad-hoc documentation is a technique that tries to achieve this goal by providing an ad-

hoc animation that displays the computation and the intermediate values for a portion of the

program.

 For a modern programmer the use of procedural abstraction is taken for

granted, but in the early days of programming, it was considered as an important step

forward. Similarly for VPLs the ability to reduce a logical portion of a program to an icon is

considered an advanced way to apply procedural abstraction, and is considered a big

contribution to the ability to scale up VPLs.

Jamal and Wenzel, in research on the scalability of LabView, point out that the

criticism that has affected VPLs mostly is the lack of visual abstraction methods [12]. They

explored the scalability of LabView and the abstraction mechanisms present in this language

26

that help in managing large scale programs. Such mechanisms include icons on a diagram to

describe its functionality. Another mechanism is the reuse of a diagram that was previously

iconified.

 Data abstraction—which is the use of user-defined data types—is as important

as procedural abstraction. Burnett, et al. state that this object-oriented feature can contribute

to the problem of VPL scalability [11]; even though data abstraction contributes in achieving a

high level language, it might prevent interactivity. Proper access of a user-defined object is

allowed only through operations defined in the data type of the object; if those operations are

not visual, but rather textual, there is a possibility of losing interactivity or visibility [11].

 In order to address this issue, a VPL that supports data abstraction needs to meet —

according to Burnett and Baker—the following requirement: a VPL that supports data

abstraction should provide a visual process to define a new data type, which also results in a

visual program.

Finally Burnett, et al. discuss the relationship between programming language

efficiency and scaling up a VPL. As most VPLs strive to supply immediate feedback, the need

to provide responsiveness can affect the efficiency of a program, since the program will need

to be translated and executed more often than a program in a language that does not provide

immediate visual feedback.

2.7 Iteration constructs in VPLs

Another important issue in designing VPLs is the design of program control constructs,

such as iteration. The nature of VPLs might make the representations more challenging. The

biggest challenge in VPLs regarding the mechanisms of iteration is how to provide a compact

viprocon with enough information to represent them properly. In the particular case of data

flow VPLs, the issue is how to provide a mechanism for iteration without violating the very

nature of a data flow paradigm. Mosconi and Porta, two researchers from the University of

Pavia in Italy wrote a paper that presents the minimum set of characteristics to implement

iterations in a data flow VPL, and they also show some types of iterations that could be

implemented using the characteristics they defined [13].

27

Mosconi and Porta survey different iteration mechanisms adopted by several data flow

VPLs such as LabView and Prograph, and they argue that some of these mechanisms do not

respect the data-flow paradigm, even though they do contribute to a simplified user

interaction. Mosconi and Porta state that one rule that should be followed in data flow

languages is to avoid cycles; however, they notice that all the VPLs they studied use cycles to

implement the constructs for their iteration. This is why the authors came to the conclusion

that some data flow VPLs do not respect the data flow paradigm. They agreed that using

cycles to represent data flow in iterations works, but they also studied others aspects of the

data flow model to help implement better iterations.

Their studies allowed them to come up with four definitions, three theorems and six

corollaries that describe pure data flow VPLs. Some relevant ones are given below.

Definition 1: A pure, data-driven, data-flow VPL is one that is made up only of nodes

(visual elements representing functions, variables, constants) and links (visual elements

connecting the nodes).

Definition 3: A pure, data flow VPL sub-graph is said to be iterative if there exists a

function A in the sub-graph such that at least one of its inputs derives from an output of

another function B for which, in turn, at least one input derives from an output of A (vice

versa).

Theorem 1: In a pure, data-driven, data flow VPL it is not possible to implement an

iterative behavior unless at least one function in the looped sub-graph receives more than one

link for the same input.

Corollary 1: If a pure, data-driven …, data flow VPL does not allow functions to

receive more than one link for the same input, iterative behaviors can be obtained by

introducing into the language a special element that has two or more inputs and that behaves

in the following way: it fires whenever one of its inputs is available; simply emitting that input

as an output introducing the special element means that the data flow VPL is no longer pure.

With respect to these characteristics and some others that are not quoted here,

Mosconi and Porta described in the remaining part of their paper the implementations of some

iteration constructs that use enabling signals to avoid synchronization issues possible with

inhibitor signals.

28

2.8 Arrays representation in VPLs

Allen Ambler published two papers pertaining to the representation and manipulation

of data structures such as arrays in VPLs. He states that manipulating arrays in textual

languages always has been a difficult task, especially for the non-trained programmer, since

all manipulations have to be done through indexing. A certain level of abstraction in a visual

language definition can allow certain kinds of operations on arrays without the need to index

in any way. In his papers he proposes a different representation of arrays and also describes

their manipulation [14] [15].

In his representation, arrays are represented by cells, and the user can choose to

display scroll bars, since the array could be of any dimension.

Figure 2.8.1 Array of 2 dimensions with scroll bars [14]

Arrays can be split into multiple parts called regions. Formulas or expressions can be

applied to a whole region rather than just a cell, and therefore the user never has to deal with

indexing.

Allen gives a few examples of manipulating arrays using his technique in the VPL

Formulate. For instance, appending two arrays is performed by just providing to the function

the two arrays to append. He also shows how arrays can be partitioned to form new regions

by selecting and dragging borders. He demonstrates how summing a vector or a list could be

done by creating a second vector or list that will carry along the partial sum of the elements,

and thus the last element will contain the sum of the entire array, as shown in figure 2.8.2.

29

Figure 2.8.2: Summing a list in Formulate [14]

However by attempting to solve the Eight Queen problem, Allen concludes that not all

the problems involving arrays can be solved without explicitly indexing the array.

One can come to the conclusion that representing arrays and manipulating them can

be facilitated to some extent by providing the users some functions for the most common

tasks, giving them the ability to build their own functions and providing them the ability to

index the arrays. If the goal is to provide an easier way to manipulate arrays to inexperienced

programmers, the goal can be achieved with built-in functions such as ‗append array‘, ‗sum a

list‘ etc. The experienced programmers who already understand how to manipulate arrays can

use either the built in functions or make up their own, as they most likely will be the users

that will need more than just the built-in functions. Finally, displaying arrays as cells implies

that the programmer probably prefers entering values or formulas into the cells rather than

using indexing. The programmer many times does not know these values, and inserting

formulas into the cells is not an elegant solution; thus, it might be preferable to abstract the

structure of arrays in VPLs in order to better manage the edit area.

30

2.9 Principles of programming languages

In the book Principles of Programming Languages, McLennan aspires to provide

descriptive tools, which he suggests are important for designing programming languages [16].

He insists that these principles are not laws that absolutely have to be followed; also, they are

neither axioms nor a set of formal constraints. Further, some of these principles of

programming languages cannot be applied at the same time because they contradict each

other. Also, some principles may complement each other. It then becomes difficult to know

which principles to adopt. Furthermore, unlike principles such as scientific laws, the principles

of programming languages do not have quantitative measurements yet; therefore, McLennan

suggests making tradeoffs based on qualitative judgments. The principles defined by

McLennan that are used in this research are the following:

- The responsible design principle: find out what users need, not what they want.

- The automation principle: automate mechanical or error-prone activities.

- The syntactic consistency principle: similar things should look similar and different things

different.

- The defense in depth principle: if an error is not caught by one defense, it probably will be

caught by another.

- The information hiding principle: the user has all information needed to use a module and

nothing more; all information needed to implement a module is provided and nothing more.

- The security principle: if a program violates its language definition or intended structure, the

violation should be detected.

- The abstraction principle: avoid anything to be stated more than once.

- The elegance principle: designs look good because they are good.

- The simplicity principle: use a minimum number of concepts, with simple rules for their

combination.

- The impossible error principle: making errors impossible to commit.

- The orthogonality principle: independent functions should be controlled by independent

mechanisms.

- The preservation of information principle: representation of information that user might

know and compiler might need.

31

- The structure principle: the visual form of a program leads the user to visualize its behavior.

- The 0 – 1– ∞ principle: zero, one and infinity are the only reasonable numbers.[16].

32

Chapter III

METHODOLOGY

3.1 VPLs Selection Process

As a starting point, some visual programming languages (VPLs) are selected for a

short survey. The starting list was composed of 43 currently available VPLs; each of these

languages was considered for inclusion in the survey based on the following characteristics:

the language purpose, the availability, the type of support available, the platforms supported

and whether or not it is a teaching tool.

The language purpose is an important criterion, because some languages that are too

specific, such as languages to edit music.

- Because this research in not funded, the availability criterion is used to eliminate

the languages that are not freely available and the languages that do not provide

free support.

- The study is conducted entirely on a Microsoft Windows machine, and so only

languages available on Windows platforms are considered.

- VPLs used as teaching tools might not be good examples for designing a language

for scalable programs; however, they probably have features that can be

considered for helping non-programmers.

33

Applying these criteria, the list of VPLs was reduced to 10, as shown in Table 3.1-1

below.

VPL Purpose availability Platform Support Teaching tool

AgentSheets game Trial Mac / Win yes No

Alice game yes Lin / Mac / Win yes Yes

Analytica spreadsheet Trial Win yes No

Labview testing, control device Trial Win yes No

Lily Web dev. yes Lin / Mac / Win yes No

Microsoft VPL robotics yes Win yes No

PointDragon Web dev yes browser yes No

Simulink /Matlab math Trial Win yes No

Tersus Web dev yes Win / Lin yes No

VisSim hardware testing Trial Win yes No

Table 3.1-1: VPLs to select from

From these remaining VPLs, one from each purpose category was selected arbitrarily,

and the list of VPLs chosen for use in this study was reduced to Alice 2.2, Lumina Analytica

4.2, Microsoft VPL 2.1 and Tersus 1.3.

Alice is a VPL designed for high school and college students. It uses 3D graphics to

teach introductory computing to an audience already familiar with videogames. Programs are

built on a drag and drop interface. The 3D objects that are provided by Alice are used to

create virtual worlds, and the program animates those objects.

Analytica is used to create and manipulate decision models. It is not a teaching tool.

The user creates models by dragging to the work area viprocons (visual programming icons)

that represent decisions, variables, chances, objectives, modules, indices, constants,

functions, and text. The viprocons are connected with arrows that represent the flow of data.

Each node has a definition that can be written with a procedural language very similar to

Pascal. Analytica has 11 system libraries, and the user also can build more libraries.

34

Microsoft Visual Programming Language (MS VPL) is part of Robotics Developer

Studio. It is a dataflow VPL and supports concurrency. MS VPL is designed for novice

programmers, but also can be used by professionals. It is designed mainly for robotics

programming, but also can be used for general purpose programming. The user manipulates

blocks that are connected with arrows. Blocks such as the ―If‖, ―Calculate‖, or ―Case‖, have

expressions similar to C#. Libraries are wrapped around decentralized software services. Users

can create their own services in C#, and can edit the not escape preexisting ones.

Tersus is designed for web application development. It is not a teaching tool. Tersus is

a data flow programming language, and so the blocks in the diagrams need to be connected

with arrows. A Tersus program has a top-down design, and is composed of web services, and

built-in or user-defined components. The Tersus work area is called an ―infinite drawing

board,‖ because the top model represents the system, and the user drills down to specify the

components of the system and the details of those components, and the user can continue to

drill deeper and deeper.

3.2 Analysis of principles for the selected VPLs

A design analysis needs to begin by laying down the principles that should be followed.

For this purpose, a compilation of strategies from Burnett [1], who has focused her research

on visual programming and especially on achieving scalability with VPLs, and principles from

McLennan [16] are compiled in

Table 3.2-1. These strategies and principles are described in sections 2.4 and 2.5 of

this thesis, and are used throughout this section to analyze the grokens and viprocons of the

selected VPLs and later UVPL. The following sections describe the analysis of the categories of

the programming constructs.

35

Table 3.2-1: List of Strategies and principles

DIRECTNESS

EXPLICITNESS

LABELING

PORTABILITY

REGULARITY

RESPONSIBLE DESIGN

IMMEDIATE VIS. FEED.

AUTOMATION

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

ORTHOGONALITY

PRESERVATION OF INFO

STRUCTURE

0 – 1– ∞

Most important Least important

36

3.3 Variables and literals

The analysis of variables in the VPLs selected for this research helps to determine

which languages follow, or do not follow, the identified principles. Some examples related to

variables and literals are given, and the analysis is summarized in Table 3.2-2.

The directness strategy: e.g. naming a variable should be done directly on the groken

rather than by entering the name in a property window, since the name of the variable is part

of the groken.

 The explicitness strategy: e.g. the flow of data should be visually or textually explicit.

Arrows can be used to direct the data flow explicitly. Keywords such as set get or the equal

sign can be used as well to show whether a value is being assigned to a variable or a value is

being retrieved from a variable.

 The labeling principle: e.g. the memory location of a variable is not used to

manipulate it, instead its name is used.

 The portability principle: e.g. the data type of a variable should not be specific to a

subset of machines architecture.

 The regularity principle: e.g. in a language all variables are initialized automatically,

or none of them are initialized automatically.

 The responsible design principle: e.g. it would be irresponsible to design a language

that provides to the user only integers of precision 128 so that a novice programmer will not

have to worry about which precision to use. A responsible approach provides to the user

integers of different precisions.

 The immediate visual feedback principle: e.g. the value of a variable shall be

displayed as the program is being edited, provided no run time value is needed.

 The automation principle: e.g. the declaration of a variable is one of the activities

where errors commonly occur. A common error made by novice programmers is to use a

variable in the code without declaring it. This declaration could be performed automatically.

 The syntactic consistency principle: e.g. the grokens for variables shall all look similar

and they shall look different from other programming constructs.

37

 The defense in depth principle: e.g. if the user can assign a string value to an integer

variable while editing a program, the system should catch that error when an expression uses

that variable.

 The information hiding principle: e.g. for a string variable, the user will be provided all

the string operations the language provides, but the system will hide the operations for

integers.

 The abstraction principle: e.g. two pieces of information are not needed to identify a

variable as being an integer.

 The elegance principle: e.g. this principle is violated if the groken for a variable is a

really complicated geometric figure,. Add more about having choice of a simpler design.

 The simplicity principle: e.g. the concepts should be simple.

 The impossible error principle: e.g. mechanisms such as not allowing a string literal to

be assigned to an integer variable can be implemented to avoid those errors.

 The preservation of information principle: e.g. the user declares a variable to be of a

certain type, and the system keeps track of that type.

 The structure principle: e.g. use of a unidirectional arrow to represent assignment of

the content of a variable to a different variable.

 The 0 – 1– ∞ principle: e.g. the maximum dimensions of arrays should not be limited

to arbitrary numbers such as 4 or 7; the language should either not allow arrays (0), or allow

only arrays of one dimension (1) or allow arrays of any dimension (∞).

38

 ALICE ANALYTICA MS VPL TERSUS

DIRECTNESS

EXPLICITNESS

LABELING

PORTABILITY

REGULARITY

RESPONSIBLE DESIGN

IMMEDIATE VIS. FEED.

AUTOMATION

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY n/a n/a n/a n/a

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

PRESERVATION OF INFO

STRUCTURE

0 – 1– ∞

Table 3.2-2: Principles related to variables and literals

39

Strength and Weaknesses of Variables in Alice

Strengths:

Even though immediate visual feedback – as defined by Burnett – is not provided in

Alice, the user can watch the values of the variables being updated when the program is

running. The data type and the value assigned to the variable are presented visually and

explicitly as shown in Figure 3.2.1.

Figure 3.2.1: Example of a variable in Alice

Figure 3.2.2: Syntactic consistency violation

Figure 3.2.3: Example of a variable with a long name

Weaknesses:

Alice lacks direct manipulation of the variable grokens, leading assignments to be very

cumbersome. One goes through several selection menus to assign to a variable a number, the

value of a different variable, or the value of an expression. In Alice, a variable looks different

when used in an expression than when declared, as shown in Figure 3.2.2. Figure 3.2.3 shows

how variable grokens do not have a fixed size, whereby the icon grows as the name gets

40

longer; this can lead to issues for screen real estate. All numbers in Alice are double precision

floating point.

Strength and Weaknesses of Variables in Analytica

Strengths:

Analytica does not provide typed variables, however the type is deduced when

operations are performed against the variables.

Figure 3.2.4: example of a variable in Analytica

Figure 3.2.5: some grokens and viprocons in Analytica

Weaknesses:

The variable grokens in Analytica as depicted in Figure 3.2.4 are not manipulated

directly; all interactions are effectuated in secondary screens, using a procedural, textual,

language. Some grokens and viprocons, such as variables and modules are very similar to

each other as shown in Figure 3.2.5, and furthermore the user has the option to make them

41

look identical by setting them to the same color. The behavior of the program is not visualized

easily, as values assigned to variables are not shown explicitly.

Strength and Weaknesses of Variables in Microsoft VPL

Strengths:

In MS VPL, regardless of the data type, all variables look the same and are

differentiated from other grokens and viprocons by the color and the object label.

Figure 3.2.6: Example of a variable in MS VPL

Weaknesses:

The variable a groken represents is interchangeable at any point during editing by

simply choosing a different variable from the dropdown, as seen in Figure 3.2.6. On one hand

this feature adds convenience to programming, since on most VPLs changing a variable

requires the groken to be deleted and replaced. But on the other hand this feature can be

error prone.

Strength and Weaknesses of Variables in Tersus

Strengths:

Unlike in MS VPL, variable grokens in Tersus consistently receive data from their left

side and output data through their right side, consequently leading to a simple design. The

declaration of a variable is automated, whereby the user only needs to drag and drop the

groken and starts using it.

42

Figure 3.2.7 shows how the data type is unnecessarily stated twice on the groken;

nevertheless, the data type tags on the variable groken are persistent, which can help during

editing of a program.

Figure 3.2.7: example of a variable in Tersus

3.4 Arithmetic, Boolean, and Comparison Operations

An operation groken accepts operands, and produces a result after some

computation(s) are performed on the operands. The way in which these actions are performed

in Alice, Analytica, MS VPL and Tersus are analyzed in this section, using the same strategies

and principles described earlier in this chapter, and the findings are summarized in Table.

43

 ALICE ANALYTICA MS VPL TERSUS

DIRECTNESS

EXPLICITNESS

LABELING n/a n/a n/a n/a

PORTABILITY

REGULARITY

RESPONSIBLE DESIGN

IMMEDIATE VIS. FEED.

AUTOMATION n/a n/a n/a n/a

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY n/a n/a n/a n/a

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

ORTHOGONALITY

PRESERVATION OF INFO n/a n/a n/a n/a

STRUCTURE

Table 3.2-3: Principles related to operations

To put into context Burnett‘s strategies and McLennan‘s principles, some examples are

provided to relate them to the operations analyzed in this section.

The directness strategy: e.g. arguments should be directly assigned to an operation by

the use of arrows or other directive components.

The explicitness strategy: e.g. the purpose of the operation should be visually explicit;

if it is an addition the operation groken should have the name or the symbol of the operation

in it.

44

The regularity principle: e.g. all operations should accept arguments on a particular

side (such as the left side) and output results from a different side (such as the right side).

The responsible design principle: e.g. the language should not permit a programmer to

rename a built-in operation.

The immediate visual feedback principle: e.g. the result of an operation is displayed as

the program is being edited.

The syntactic consistency principle: e.g. all grokens for categories of operations should

have the same look and feel.

The defense in depth principle: e.g. if the VPL development environment fails to catch

that not enough arguments are given to an operation, this error should be caught later in the

editing process of the program, as the output from the operation is being used in another

operation.

The information hiding principle: e.g. when the user is manipulating string variables,

arithmetic operations should be disabled or hidden from the user.

The abstraction principle: e.g. two sorts of information are not needed to define an

operation – like having the word "addition" and the symbol ―+‖ used in the same groken.

The impossible error principle: e.g. the example provided for the information hiding

principle , reduces the likelihood of programmer error.

The orthogonality principle: e.g. using the addition operation to perform additions and

subtractions would be a lack of orthogonality.

The structure principle: e.g. the use of a unidirectional arrow to represent the result of

an operation being sent to an output argument.

Strength and Weaknesses of Operations in Alice

Strengths:

 Alice has an approach that follows information hiding, whereby the contextual menus

do not display string functions when the variables being manipulated are numbers.

45

Figure 3.2.8: addition in Alice

Figure 3.2.9: comparison in Alice

Weaknesses:

In Alice there is no notion of grokens to represent operations, and thus the operations

are closer to being textual as illustrated in Figure 3.2.8 and Figure 3.2.9. Manipulating

operations is not simple, because the user builds expressions entirely through selection

menus. Floating point division is provided, but integer division is not; this is a direct effect of

the lack of orthogonality in the design of variables, since in Alice all numbers are double

precision floating point numbers.

Strength and Weaknesses of Operations in Analytica

Strengths:

It is not readily apparent that Analytica strongly complies with Burnett‘s strategies and

McLennan‘s principles.

46

Figure 3.2.10: Example of Operation in Analytica

Weaknesses

Similar to VPLs such as MS VPL the user types expressions in a textual, procedural,

language, and thus all operations are textual, as shown in the property form in Figure 3.2.10.

Strength and Weaknesses of Operations in MS VPL

Strengths:

If an operation is adding a string to an integer, an error occurs if the result is being set

as shown in Figure 3.2.11.

Figure 3.2.11: invalid operation in MS VPL

Double click on “adjusted rank”

47

Weaknesses:

In MS VPL, the operations are not iconic – they are textual, and are used like TPL

operations.

Strength and Weaknesses of Operations in Tersus

Strengths:

Tersus operations have dedicated grokens, and in general follow the defense in depth

principle, such as detecting when an integer is being added to a string as shows Figure 3.2.12.

Figure 3.2.12: Invalid operation in Tersus

Weaknesses:

The user has the ability to rename an operation – for example, addition – to

meaningless or misleading names such as ‗division‘, ‗&‘ etc.; this feature gives the user the

freedom to name an operation anything, but on the other hand it can lead to maintainability

issues, if the programmer does not use it responsibly.

3.5 Control Flow

The result of the analysis of the control flow from the selected VPLs is presented in

Table 3.2-4.

48

 ALICE ANALYTICA MS VPL TERSUS

DIRECTNESS

EXPLICITNESS

LABELING n/a n/a n/a n/a

PORTABILITY

REGULARITY n/a n/a n/a n/a

RESPONSIBLE DESIGN

IMMEDIATE VIS. FEED.

AUTOMATION

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

ORTHOGONALITY n/a n/a n/a n/a

PRESERVATION OF INFO

STRUCTURE

Table 3.2-4: Principles related to control flow

What follows are examples of applications of the strategies and principles related to

control flow:

The directness strategy: e.g. "for loop" counters or "while loop" conditions could be

assigned directly to a control flow viprocon by the use of arrows.

The explicitness strategy: e.g. the purpose of a control flow should be visually explicit;

the viprocon should have the name or the symbol of the type of the control flow construct.

The programmer should not have to infer the type of control flow.

49

The responsible design principle: e.g. the language should not permit an instruction

within a loop to jump to any other part of the program except to the statements of the loop or

to the statement right after the loop.

The immediate visual feedback principle: e.g. the language allows the display of the

value of a counter as a "for loop" is unfolding.

The automation principle: e.g. the language should provide the option to increment

counters in iterations automatically.

The syntactic consistency principle: e.g. the viprocons for all control flow should have

a similar look and feel.

The defense in depth principle: e.g. the programming language could generate a

warning if an infinite loop is detected; this could be useful to novice programmers.

The information hiding principle: e.g. a control flow viprocon should not request more

information from the user than is needed to start or stop iterations.

The security principle: e.g. if a loop runs infinitely, all resources could be consumed,

which in turn could lead to security issues.

The abstraction principle: e.g. a conditional loop should be implemented in such a way

that the condition itself is stated only once, either at the beginning of the loop or at the end of

the loop, instead of both at the beginning and at the end, or at the beginning of each case

value.

The impossible error principle: e.g. mechanisms that could detect possible infinite

loops should be encouraged.

The orthogonality principle: this principle is not applicable because, e.g., writing a for

loop as a while loop is not a bad design

The preservation of information principle: e.g. representing a stopping condition in a

"for loop" is an example of preserving information that the user knows and the compiler

needs.

The structure principle: e.g. symbols to represent the beginning and the end of a loop

could be used to add structure in a control flow viprocon.

50

Control flow in Alice

Strengths:

Alice provides a lot of automation, whereby counter variables are created

automatically if the user does not specify any; there is also an option to set automatically a

loop to run infinitely. Figure 3.2.14Figure 3.2.13 illustrates how in Alice the beginning and the

end of a loop can be distinguished visually; indeed, a control flow block is represented by a

distinctly-colored rectangle.

Figure 3.2.13: While loop in Alice

Figure 3.2.14: For loop in Alice

51

Weaknesses:

Figure 3.2.14 shows how in Alice for loops do not decrement, and when incrementing

by (-1) – to perform a decrement – the program halts without throwing an error or returning

any results. Furthermore, in the for loop an existing variable cannot be used as the loop index;

Alice creates that index automatically.

Control flow in Analytica

Strengths:

If the programmer defines the statements to execute in a control flow using

undeclared variables, Analytica creates these variables automatically.

Figure 3.2.15: Special library in Analytica

52

Figure 3.2.16: Indirectness in Analytica.

Replace this image with added function.

Weaknesses:

In Analytica, the control flow viprocons are the same as the function viprocons, and

even though the control flow constructs are considered to be special functions, they cannot be

distinguished from regular functions as shown in Figure 3.2.156. The user never manipulates

directly the control flow viprocons; instead there are additional windows where the indices and

conditions are specified as shown in Figure 3.2.16. Neither control flow nor iteration viprocons

are visually explicit, so the programmer needs to give the viprocons a proper name.

Control Flow in Microsoft Visual Programming Language

Strengths:

The design of control flow in MS VPL has syntactic consistency; those viprocons are

grey in contrast to red and green for variables and data as illustrated in Figure 3.2.18. The

structure of the viprocons helps visualize their behavior for different outcomes.

53

Figure 3.2.17: If viprocon in MS VPL

Figure 3.2.18: Switch in MS VPL

Weaknesses:

Control flow concepts in MS VPL are arguably explicit: for system-provided viprocons

such as the if statement shown in Figure 3.2.17, the purpose of the control flow is explicit, but

for viprocons such as a for loop the type of the control flow has to be inferred.

Control Flow in Tersus

Strengths:

The control flow viprocons are explicit; they are tagged by their names and have a

representation of how the triggers (inputs) could affect the exits (outputs). Loops can be

implemented through a repetitive functionality in Tersus. This feature simplifies for the user

the set up process of loops, however it might be a concept hard to grasp for novice

programmers.

54

Figure 3.2.19: Control flow in Tersus

Weaknesses:

 Unlike many other VPLs, Tersus does not provide viprocons for control flow constructs

such as ―if‖ or ―for…loop‖. Instead, Tersus provides "if, then, else" control flow in the form of

comparisons, and therefore each comparison is a viprocon by itself with "then" and "else"

branches. Loops in general are implemented through recursion. Further, Tersus provides an

―and‖ viprocon – depicted in Figure 3.2.19 – which exits only if all mandatory triggers have

values. Another iteration in Tersus is the ―branch‖ viprocon, which evaluates its inputs and,

based on the values, takes the corresponding exit; this viprocon is similar to a switch. The

other iterations are the ―branch by type‖ viprocon, which evaluates the type of its inputs, and

based on the data type takes the corresponding exit. The input of the ―conditional flow‖

viprocon as depicted in Figure 3.2.19 is transferred to the exit if all required triggers receive

data.

55

3.6 Input / Output

A programming language is not of much value if it does not have functionalities to

process inputs and to produce outputs. I/O functions in VPLs are of as much importance as

operations or control flow, and the result of whether or not they were implemented with

Burnett‘s strategies and McLennan‘s principles are summarized in table 5.

56

 ALICE ANALYTICA MS VPL TERSUS

DIRECTNESS

EXPLICITNESS

LABELING n/a n/a n/a n/a

PORTABILITY n/a

REGULARITY n/a n/a n/a n/a

RESPONSIBLE DESIGN

IMMEDIATE VIS. FEED.

AUTOMATION n/a n/a n/a n/a

SYNTACTIC CONSISTENCY

DEFENSE IN DEPTH

INFORMATION HIDING

SECURITY

ABSTRACTION

ELEGANCE

SIMPLICITY

IMPOSSIBLE ERROR

ORTHOGONALITY n/a n/a n/a n/a

PRESERVATION OF INFO

STRUCTURE

0 – 1– ∞ n/a n/a n/a n/a

Table 3.2-5: Principles related to I/O

As in previous sections, examples of applications of the strategies and principles to the

design of I/O are stated below.

The directness strategy: e.g. the user could connect directly an input variable to an

I/O viprocon.

The explicitness strategy: e.g. reading an input into a variable should be explicit, with

the use of flow arrows or similar mechanisms.

57

The responsible design principle: e.g. the programmer should be limited on the

number of files s/he is allowed to have open at the same time.

The immediate visual feedback principle: e.g. this strategy could be achieved by

visually acknowledging changes to the state of a file, as a programmer is writing code

affecting the file.

The syntactic consistency: e.g. I/O viprocons should look similar.

The defense in depth principle: e.g. if the user neglects to close explicitly a file in the

program, the file should be closed upon exit of the running program by the system.

The information hiding principle: e.g. only the path of a file and the open mode of a

file should be needed to perform an open file operation.

The security principle: e.g. some I/O operations should be subject to file permissions

settings.

The abstraction principle: e.g. the information about the path of a file could be

optional if the file is located in the same folder as the executables of the programs accessing

it.

The preservation of information principle: e.g. the user should provide information of

what needs to be read and where to store it.

The structure principle: e.g. reading from an input should be visualized as information

leaving the input; writing to an output should be visualized as information entering the output.

I/O in Alice

Strengths:

Alice adopts the impossible error principle whereby the user is constrained to build an

I/O operation by picking items from contextual menus as Figure 3.2.20 shows, and those

menus only have items that can be used without causing errors.

58

Figure 3.2.20: Setting up input in Alice

Weaknesses:

Because an Alice program looks like one in a TPL, there is no notion of manipulating

directly an I/O viprocon. Alice 2.2 does not support files I/O, however a user can import music

files; all other I/O is executed through standard input and output.

I/O in Analytica

Strengths:

Analytica uses modal dialog boxes to read information from the user or to display

information to the user as depicted in Figure 3.2.22. Unlike in Alice, files can be handled in

Analytica.

59

 Figure 3.2.21: Setting up input in Analytica

Figure 3.2.22: Input in Analytica

Weaknesses:

Although Analytica supports files handling, there are not any dedicated viprocons to

perform file I/O; instead the user writes code to perform these actions. Analytica does not

follow the syntactic consistency principle, since I/O operations are set up as functions, and

therefore can be difficult to differentiate from other functions. The information hiding principle

is not observed, as Figure 3.2.22 shows; parameters such as units are requested by the

system but are not needed to perform an output.

60

I/O in Microsoft Visual Programming Language

Strengths:

MS VPL has I/O for different data types, including text or numbers as shown in figures

Figure 3.2.23 and Figure 3.2.24. MS VPL supports input from video sources or direct input

from game controllers such as joysticks, as shown in Figure 3.2.25. I/O viprocons have

directness and explicitness, as those are manipulated directly by the programmer, and the

text tag or image explicitly define the nature of the I/O.

Figure 3.2.23: Output and Input example in MS VPL

Figure 3.2.24: Text to speech Output in Ms VPL

61

Figure 3.2.25: Miscellaneous I/O example in MS VPL

Weaknesses:

 MS VPL does not handle natively text file I/O; instead the user needs to implement a

decentralized software service in C# for reading and writing text files.

I/O in Tersus

Strengths:

Tersus VPL has a plethora of I/O viprocons, whereby the program can accept all native

data type data for I/O operations. There are also some specialized I/O operations such as

outputting an image as depicted in Figure 3.2.26, or reading an MS Excel document as shown

in Figure 3.2.27. Tersus does not adopt the impossible error principle. Instead a defense in

depth protocol is implemented; Figure 3.2.27 shows that the program cannot be validated if,

for instance, a boolean variable is provided as the argument for the read file viprocon.

62

Figure 3.2.26: I/Oexamples in Tersus

Figure 3.2.27: More I/Oexamples in Tersus

Weaknesses:

In Tersus, the responsible design principle is not followed; the user is allowed to

change the name of a viprocon to an improper name.

63

3.7 Unified Visual Programming Language – UVPL

The analysis of the four selected VPLs is used as a basis to design the unified visual

programming language (UVPL). The design of UVPL is inspired by the programming constructs

in Alice, Analytica, MS VPL and Tersus. As a result, some elements in UVPL are similar to the

ones in those languages. Nevertheless, different features are added to facilitate the

programming task, ensuring that enterprise-sized programs can be developed with UVPL, all

the while keeping in mind factors that could affect scalability. UVPL is intended to be a genera-

purpose, object–oriented, visual programming language.

It has been noticed that the design of a VPL goes hand-in-hand with its development

environment. For this reason, the design of UVPL is comprised of elements that are related to

the development environment – programming features – and elements that define the

language – programming constructs.

3.7.1 UVPL Programming Features

UVPL Development Environment Layout

The programming environment has a panel layout design to use more efficiently

screen space but also to facilitate the viewing of a program. Initially only one panel is available

to the user; as that panel fills up a scroll bar appears to enable viewing of items that do not fit

on the screen. Subsequently, the user can opt to use more than one panel. By choosing to do

so, the part of the program that cannot be viewed without scrolling is pushed automatically

into the additional panel (s). Only the right-most and left-most panels have a vertical scrolling

bar at that point: the left-most panel can only scroll up, and the right-most panel can only

scroll down. Scrolling affects all the panels as the program moves as a whole. A program in

UVPL is read in top-down, left-to-right order. Figure 3.3.1 and Figure 3.3.2 illustrate an

example of the partial view of a program in a 3-panel layout.

64

Figure 3.3.1: Partial view of a UVPL program -1

Figure 3.3.2: Partial view of a UVPL program -2

65

Sequentiality

In flow-graph-based VPLs such as MS VPL or Tersus, programming constructs need to

be connected to propagate values or to represent explicitly the execution sequences of a

program. The static representation of large programs in those languages is similar to a

gigantic graph, and they can be difficult to view and understand. To alleviate this issue, the

programmer can choose a modular programming approach, keeping each module a reasonable

size. However one needs to be careful in adopting an ‗extreme‘ modular approach, because if

the modules are very small, as the program grows larger it will, at some point, become as

difficult to understand as an un-modularized program that performs the same tasks. To this

effect, UVPL has a different approach and combines the boxing effect of Alice, the top-down

approach of Tersus, the notion of instruction found in TPLs, and a minimal use of connecting

elements such as arrows in flow graphs. The result is what we call an ―instruction box‖. Figure

3.3.3 shows an example of a box with two nested instruction boxes, and an instruction without

any nesting. An instruction box contains a single instruction or a sequence of instruction boxes

each containing a single instruction. Within an outer instruction box, the nested boxes are

always in a single columnar arrangement. Apart from allowing a visual separation for the

instructions, these boxes can be used for other purposes described later in this section.

Figure 3.3.3: Instruction boxes

Comments

A well-written or well-built program – in the case of VPLs – clearly informs the

reviewer what the program is doing. Adding comments to a well-built program provides more

66

information; for instance a comment for a mathematical expression can explain why that

particular formula was chosen over others. This additional information provided by comments

is very useful when programs are being reviewed, and therefore can influence its scalability.

However, when it comes to the design of VPLs, one need to pay particular attention to the

implementation of comments. Indeed, while in a TPL, a comment can take as little space as an

instruction, following that same approach for VPLs like Alice causes comments to occupy much

needed screen space. MS VPL solves this issue by allowing comments to be minimized to an

icon; unfortunately those comments in MS VPL are not attached to any part of the program

diagram. In UVPL a different approach is taken; comments are interactive and are displayed

only if the user chooses so. A comment can be added to an instruction box or to a sequence of

instruction boxes if they first are nested into another instruction box. The border of the outer-

most box then becomes a red line as shown in Figure 3.3.4. On a mouse-over of the red line,

the comment appears in a call-out box as Figure 3.3.5 depicts. In this way, comments never

use space permanently, and even when hidden the red line informs the reader about the

presence of comments for a particular instruction box.

Figure 3.3.4: Hidden comments

67

Figure 3.3.5: shown comment

Concealing / Revealing Expressions

For better management of screen real estate, UVPL adds the concealment of

expressions to save screen space. Expressions are built as trees, and at each operation level,

the user can choose to conceal the incoming branches to that operation, whether the incoming

branches are just variables or expressions. In Figure 3.3.6, concealment occurs at a point

where there are incoming branches, and the result of the addition is itself an input to the

multiplication. In this case, everything before the addition is concealed, and the expression is

reduced to what is depicted in Figure 3.3.7. In Figure 3.3.8, the user chooses to conceal at the

division; in this case, everything except the division is concealed, as Figure 3.3.9 depicts. The

user also can conceal several levels in the same expression with a single click. The concealing

and revealing expressions allow the user to choose how much they want to see.

68

Figure 3.3.6: Concealing incoming variables

Figure 3.3.7: Revealing concealed variables

Figure 3.3.8: concealing incoming expression and variable

69

Figure 3.3.9: revealing incoming expression and variable

Docking

Docking is another concept that is added to UVPL for better management of screen

real estate. Docking a program is an option that can be turned on or off in the Edit menu.

When a program is in docking mode, blocks in the program are minimized to icon size as

Figure 3.3.10 shows. A mouse over a minimized block magnifies it; Figure 3.3.11 pictures an

example. Docking allows the programmer to have a better overall view of the program, and a

block that is of interest can be magnified for a close up view.

Figure 3.3.10: docked program

70

Figure 3.3.11: mouse over to magnify minimized block

Exception Handling

Unlike most visual languages, UVPL incorporates exception handling mechanisms.

After a method is built, the user can add exceptions. First, the user right-clicks on the

viprocon of the method in which exceptions need to be handled, and then chooses ―add

Exception‖ from the menu. This action adds a button with the symbol E! to the method‘s

viprocon, as shown in Figure 3.3.13: Exception handling in UVPL2. Additionally, a tab labeled

using the name of the corresponding method with the symbol E! appended to it is created.

Initially, this tab is not visible; to open that newly created tab the user clicks on the E! button

in the method‘s viprocon, as figure Figure 3.3.12: Adding Exception Handling Stub3 shows.

Figure 3.3.12: Adding Exception Handling Stub

71

The newly created tab contains in dock mode a read-only representation of the

corresponding method‘s code. Into that tab, the programmer adds exception handling code

under any block of instruction boxes, as Figure 3.3.13: Exception handling in UVPL depicts.

Having method code in one tab, and exception handling for that method in a different

tab allows a clear separation of the algorithmic code from the exception handling code.

Figure 3.3.13: Exception handling in UVPL

3.7.2 UVPL Programming Constructs

Variables and Literals

Variables in UVPL are similar to variables in Alice and Tersus, where the type of the

variable is attached to the groken. At any point in a UVPL program, the type of a variable is

always known, as Figure 3.3.14 shows. In contrast to Alice and Tersus, UVPL has more native

data types:

72

- Integers: they are by default int and can be set via a right click to tinyint (1 byte),

smallint (2 bytes), int (4 bytes), or long (8 bytes).

- Floating point numbers: they are by default single precision, but can be set via

 a right click to single or double precision.

- String.

- Boolean.

- Object.

Figure 3.3.14: Data types in UVPL

Arithmetic Operators

The grokens for arithmetic operators shown in Figure 3.3.15 can take more than two

operands for inputs, allowing expressions to be more compact.

For additions and multiplications, the orders in which operands are added or multiplied

do not affect the result, and therefore the user can add as many operands as necessary to the

same groken.

73

For subtractions, divisions and modulus, it is important to know the minuend and the

dividend, and thus these two terms are connected to the groken through a red, single-dotted,

connecting line, as represented in Figure 3.3.16. For a division operation with more than two

arguments, the dividend is divided first by any of the divisors and the quotient of that

operation is in turn divided by any remaining divisors until no more divisors are left. The key

in this operation is that as long as a dividend is identified, the divisors are applied one by one

in any order to the quotients. This same rule applies for a subtraction operation. However, for

a modulo operation the order in which the divisors are applied to the remainder is important;

therefore they are used from top to bottom.

If the user decides to change the minuend or the dividend to a different argument,

s/he needs to drag the red dot to the desired argument. At that point the selected minuend or

dividend has a red, single-dotted, connecting line and the previous selection is turned to a

black line without the red dot. The selected minuend and dividend is put always automatically

at the top.

Assignment to a variable is represented simply by an arrow.

Setting the value of a cell array, or getting the value from a cell array is performed by

using the get and set grokens represented in Figure 3.3.16.

Figure 3.3.15: Arithmetic operators

74

Figure 3.3.16: Arithmetic operations in UVPL

Boolean and comparison operators

The Boolean operators AND, OR and NOT are represented by logic gates symbols.

They accept Boolean values and return a Boolean value. To fulfill the syntactic consistency

principle, all operators have the same look and feel, and are manipulated in the same way.

75

Figure 3.3.17: Boolean operators

Figure 3.3.18: Comparison operators

Control Flow

Aside from the switch viprocon, which is designed based on the one in MS VPL, the

iteration viprocon designs are not based on the selected VPLs for the following reasons: Alice

does not have dedicated viprocons that can be manipulated directly by the user for iterations;

Analytica iterations are in fact textual; and Tersus does not have traditional iteration

76

constructs. In Tersus for instance, the if statement is combined with the result of a

comparison. Instead of having a single if…then…else viprocon, Tersus has for each type of

comparison a different viprocon representing an if…then…else. The other control flow

viprocons in Tersus are branching by data type of a variable, and branching by value, the

latter being basically a switch.

UVPL has four different iteration viprocons; Figure 3.3.19 has a representation for

each. The viprocons have a box where the user builds the condition that is evaluated to decide

how to branch or how to loop. There are three variants of the for loop viprocon:

- The first one is a for<variable>from<starting value>,to<last value>,by<increment>.

- The second variant is a for each<arrIndex>in<array>.

- The last variant is a for each<arrIndex>,in<array>, key<condition>.

Figure 3.3.19: Iterations in UVPL

77

Input / Output

UVPL has standard I/O and file I/O as Figure 3.3.20 shows. The design of the I/O is

based on the viprocons of Tersus file I/O. Among the selected VPLs, Tersus alone handles

different types of files; furthermore, the dedicated I/O viprocons of Tersus explicitly represent

their purpose and are manipulated directly by the user.

Figure 3.3.20: File and standard I/O

3.7.3 Object-Oriented UVPL

UVPL is not a fully object-oriented language, because it does not have OO features

such as inheritance or packages. However a UVPL program is constructed with classes defining

78

objects. An object is represented like a variable with the type attached to its groken, as shown

in Figure 3.3.21.

Figure 3.3.21: an object in UVPL

Methods, shown in Figure 3.3.22, are represented as viprocons to allow direct

manipulation and reuse when the method needs to be invoked more than once. A

unidirectional arrow is used to pass variables into the method by value; a bidirectional arrow is

used to pass variables by reference. The visual design of methods is based on that of activities

in MS VPL. An activity is a viprocon that symbolizes a method. Figure 3.3.23 shows an

example of an activity, ProcessEmployee, in MS VPL. But because UVPL is an object-oriented

language, its methods have more capabilities than those in MS VPL. Indeed, UVPL methods

can be public or private, static or not and can accept arguments by value or by reference.

Furthermore, all arguments passed are visually represented, allowing a reviewer to have more

information about the method, all the while abstracting the details of what the method is

doing.

79

Figure 3.3.22: Procedures and functions in UVPL

Figure 3.3.23: Example of an activity (ProcessEmployee) in MS VPL

A public method, as depicted in Figure 3.3.24, has a slot where the groken for the

object that is referenced is dropped. In this example, My_BookObj is an instance of the class

Book; the user invokes the public method Search_word, to search a given word within the

object My_BookObj.

80

In a public static method, as shown in Figure 3.3.25, the slot contains no groken, but

instead is hatched to symbolize inaccessibly. However, when invoked outside the host class,

the hatched slot will have the host class name.

Figure 3.3.26 represents a private static method; the background of the viprocon is

hatched as well as the object slot.

Figure 3.3.24: Public non-static method signature

Figure 3.3.25:Public static method signature

Figure 3.3.26: Private static method signature

81

3.7.4 Principles analysis of UVPL

Variables and literals

The table 3.3-1 summarizes the strategies and principles for variables and literals

present in UVPL in comparison to those present in the selected VPLs.

 ALICE ANALYTICA MS VPL TERSUS UVPL

DIRECTNESS
EXPLICITNESS
LABELING
PORTABILITY
REGULARITY
RESPONSIBLE DESIGN
IMMEDIATE VIS. FEED.

AUTOMATION
SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH

INFORMATION HIDING
SECURITY n/a n/a n/a n/a n/a

ABSTRACTION
ELEGANCE
SIMPLICITY
IMPOSSIBLE ERROR !
ORTHOGONALITY n/a n/a n/a n/a n/a

PRESERVATION OF INFO
STRUCTURE
0 – 1– ∞

Table 3.3-1: Variables and literals principles

Strengths:

UVPL respects the automation principle for declaration and data type assignment,

through which the user just drags, drops and names the groken to start using it. Unlike most

VPLs, regarding variables, UVPL adopts a responsible design: the language provides different

precisions for integers and floats. In UVPL, the variable groken will be resized automatically as

the name grows, but to avoid having really long grokens — as in Alice – the names of the

variables are constrained to be no longer than 25 characters.

The variable design in UVPL addresses the lack of direct manipulation found in Alice,

Analytica and MS VPL, as well as the violation of responsible design, simplicity and elegance

principles.

82

Weaknesses:

UVPL does not provide immediate visual feedback. This VPL strategy, proposed by

Burnett, has not been considered for UVPL as a tradeoff for less disruption during the edit of a

visual program, but also for better efficiency. As Burnett, et al. mentioned, the need to

provide responsiveness can affect the efficiency of a program.

Table 3.2-2 represents principles and strategies of UVPL and the selected VPLs used in

this research.

 ALICE ANALYTICA MS VPL TERSUS UVPL

DIRECTNESS
EXPLICITNESS
LABELING n/a n/a n/a n/a n/a

PORTABILITY
REGULARITY
RESPONSIBLE DESIGN
IMMEDIATE VIS. FEED.

AUTOMATION n/a n/a n/a n/a n/a

SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH

INFORMATION HIDING
SECURITY n/a n/a n/a n/a n/a

ABSTRACTION
ELEGANCE ?
SIMPLICITY
IMPOSSIBLE ERROR
ORTHOGONALITY
PRESERVATION OF INFO n/a n/a n/a n/a n/a

STRUCTURE
0 – 1– ∞ n/a n/a n/a n/a n/a

Table 3.3-2: Principles for operations

Strengths:

The function of an operation always is represented explicitly on the groken. The

operations in UVPL are designed with syntactic consistency at different levels. UVPL is not

designed with defense in depth mechanisms; instead, the impossible error principle is

implemented.

83

Weaknesses:

By choosing a design in which the user does not type expressions as in a TPL, the

expressions in UVPL tend to occupy more space than in the other selected VPLs. Nevertheless

this choice was necessary to allow direct manipulation of operations, less abstraction and

better reviewing of visual programs. To overcome the screen space issue, UVPL introduces the

concealing and revealing of expressions described in section 0.

Iteration

Table 3.3-3 is a summary of the principles present in UVPL in comparison to the

selected VPLs.

 ALICE ANALYTICA MS VPL TERSUS UVPL

DIRECTNESS
EXPLICITNESS
LABELING n/a n/a n/a n/a n/a

PORTABILITY
REGULARITY n/a n/a n/a n/a n/a

RESPONSIBLE DESIGN
IMMEDIATE VIS. FEED.

AUTOMATION

SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH
INFORMATION HIDING
SECURITY
ABSTRACTION
ELEGANCE
SIMPLICITY
IMPOSSIBLE ERROR
ORTHOGONALITY n/a n/a n/a n/a n/a

PRESERVATION OF INFO
STRUCTURE
0 – 1– ∞ n/a n/a n/a n/a n/a

Table 3.3-3: Principles and Strategies for Control Flows

Strengths:

Elements such as counters and conditional statements are part of the iteration

viprocons; this visual information clearly indicates the type of the control flow and the

84

expected behavior. The responsible design principle has been respected since the programmer

does not have the ability to change the keyword of the viprocons (e.g. If, For, While).

UVPL implements a soft version of the impossible error and defense in depth

principles:

1. Impossible error: for a while loop the compiler checks and issues a warning if the

value(s) of the variable(s) that define whether or not the loop continues are not being

modified in some fashion.

2. Defense in depth: if a program segment is looping for a fairly large number of

times, the system will issue a warning to caution the user about the possibility of an infinite

loop. A default number is used to set off the warning; however the user has the option to set

different numbers for different loops.

None of these measures can prevent completely issues such as infinite loops, but they

can contribute to avoiding them. Because infinite loops cannot be avoided completely, it can

be concluded that UVPL has only some level of security.

Weaknesses:

For control flow UVPL does not provide immediate visual feedback or automation such

as automatically creating undeclared counter variables used in the control flow viprocons.

85

Input / Output

Table 3.3-4 presents the principles followed in UVPL in contrast with the ones followed

in the selected VPLs, regarding I/O.

 ALICE ANALYTICA MS VPL TERSUS UVPL

DIRECTNESS
EXPLICITNESS
LABELING n/a n/a n/a n/a n/a

PORTABILITY n/a
REGULARITY n/a n/a n/a n/a n/a

RESPONSIBLE DESIGN
IMMEDIATE VIS. FEED.

AUTOMATION n/a n/a n/a n/a n/a

SYNTACTIC CONSISTENCY
DEFENSE IN DEPTH

INFORMATION HIDING
SECURITY
ABSTRACTION
ELEGANCE
SIMPLICITY
IMPOSSIBLE ERROR
ORTHOGONALITY n/a n/a n/a n/a n/a

PRESERVATION OF INFO
STRUCTURE
0 – 1– ∞ n/a n/a n/a n/a n/a

Table 3.3-4: Principles for I/O

Strengths:

Unlike Tersus, the user is not allowed to change the name of the I/O viprocon. The

visual structure of the viprocons helps in visualizing their behaviors; for instance, in UVPL a

write viprocon has in and out parameters symbolized by arrows to show the flow of data.

Weaknesses:

UVPL does not have as many file I/O operations as Tersus; for instance, UVPL does not

have XML parsing or PDF file generation.

86

Chapter IV

TESTING

4.1 Program Tests

The analysis of the selected VPLs using principles defined by McLennan, and strategies

defined by Burnett, helped identify the strengths and weaknesses of the selected VPLs. The

result of this analysis was the basis on which UVPL was designed, by avoiding – where

possible –the weaknesses and by incorporating the strengths identified by the analysis of the

VPLs.

The next phase of this research involves implementing a test program in each

language, i.e. in the selected VPLs and UVPL. A quantitative analysis is performed, whereas

various metrics are computed for each implementation. These metrics are used to determine

how UVPL measures against the selected VPLs in achieving scalability.

A specific test program is designed, because most standard test programs used in

research focus on the performance of the languages rather than on the scalability of the

language. No standard test program for comparing programming languages for scalability is

yet available.

87

It is important to note that benchmarking programming languages is a difficult task.

Indeed, the ideal way to achieve this task is to implement the test program using the exact

same algorithm in each language. However, every programmer has her/his own programming

style, which means that there are multiple ways to implement an algorithm. Furthermore,

programming languages are designed differently, and this implies that it might be more

appropriate to use a particular construct in one language, but in another language a different

construct is more suitable to serve the same purpose.

Taking into account these facts about the difficulty of conducting benchmarks on

programming languages, a few rules are drawn to conduct this step of the research to obtain

meaningful results:

- All programs are implemented by the same person; this insures that the same

programming style is kept across the different implementations.

- Programs are implemented using programming constructs or data types that best

fit the language. In other words, the programmer is not required to build an

abstract data type if the language does not provide it, just so that s/he can use

the same data types used in other implementations.

- If a language does not provide a necessary feature – for instance, the capability to

read a file – the programmer uses workarounds rather than eliminating the

language.

The idea behind the designed test program is to perform simple yet common tasks.

The test program ensures that, where possible, the following actions are performed:

- Use of objects such as primary data types and data structures

- Value assignments

- Execution of arithmetic, comparison and Boolean operations

- Use of iterations and conditional jumps

- Use of libraries such as math or string libraries

88

- Create and invoke methods

- Create and instantiate classes

- Perform I/O operations

- Handle exceptions

- Comment code

The program reads and stores the records from a file of employee data in an array or

a list. The file has five records and each record has five fields concerning an employee:

- ID

- last name

- first name

- the number of hours worked in a given month

- pay rate

The program also should read and store the records from a file containing data for five

states, where each state‘s record contains:

- ID

- name

- tax rate as a percentage

- minimum wage.

For each employee, the first and last names should be displayed, and then the user is

asked the name of the state used to compute the wages of that employee. If the pay rate of

the employee is less than or equal to zero, an exception should be thrown. If the pay rate of

the employee is less than the state‘s minimum wage, then the state‘s minimum wage should

89

be used in place of the pay rate to compute the wage. The wage is computed using the

following formula:

hours worked * pay rate – hours worked * pay rate * state‘s tax rate / 100

The result is rounded to the nearest integer value and displayed to the user of the

program.

The subsequent sections of this chapter aim at describing and discussing the

implementation of the test program in the different selected languages and in UVPL.

4.1.1 Program Test in Alice 2.2

Classes in Alice are represented by animals, people and other 3D objects that move,

spin or react to the mouse, and thus are not necessarily suitable to create, for example, an

employee object. Each Alice program has a class ―world‖; some of the properties of this class

are ―atmosphereColor‖ and ―fogStyle‖. The ―world‖ class basically defines the environment in

which the 3D objects interact. The programmer can define more properties, methods or

functions.

 The test program is implemented in Alice with workarounds, because Alice 2.2 does

not support file I/O. Instead of reading a file, the program‘s specifications are modified to read

the fields of the records one by one through a dialog box. Alice 2.2 does not have error

handling mechanisms either; in this test program, the execution of the program is stopped

after an error message is displayed to the user. The test program is implemented with 4

methods and 2 functions added to the ―world‖ class.

- Method MainEntry is the equivalent of a Java or C main static method that

specifies where the execution of a program should start. Alice does not have this

concept, but to specify where the program should start executing, the programmer

needs to create an event, as shown in Figure 4.1.1: Events in Alice.

90

Figure 4.1.1: Events in Alice

- Method ReadEmps prompts the user to enter the different fields for the employee

records.

- Method ReadStates prompts the user to enter the different fields for the state

records.

- Method DisplayResults takes as input 3 arrays of the same size, used to simulate a

3-dimensional array, and displays the content of the rows of the arrays. This

method is called in the MainEntry method to display the first name, last name and

computed wage of employees.

- Function GetStateTax returns the tax percentage of a given state.

- Function GetStateMinWage returns the state minimum wage of a given state.

4.1.2 Program Test in Lumina Analytica 4.2

Similar to Alice, the implementation of the program in Analytica is performed with

workarounds. File I/O in Analytica is provided only for the paid professional edition. For the

freely-available version of Analytica used in this research, the records of employees and states

are provided as initialized values to the program, instead of a file. These values are used to

simulate the content of a file, and thus records are read one by one using the ―spliText "

function provided by Analytica. In turn, each record is split again to capture the different fields

of an employee or state record. Analytica is not an object-oriented VPL, and thus no classes

are created, and the program is procedural. Variables in Analytica are defined such that the

definition of the variable itself is either a piece of textual code or values; the use of these

91

variables triggers the execution of the code if it is present in the definition. The result of the

computation is used instead of the variables. In other words, variables are manipulated like

functions when they have code as their definition.

The program is implemented with 7 Analytica variable grokens, and 1 function viprocon

- The variable Employees contains all the employee records as in a text file

- The variable States contains all the state records as in a text file

- The variable EmpRecs holds the employee records; it is a result of the "spliText"

function on the Employees.

- The variable StateRecs holds the state records.

- The variable EmpFields holds the fields of a given employee; it is the result of the

"spliText" function on a row in EmpRecs. This variable takes as input an index.

- The variable StateFields holds the fields of a given state; it is the result of the

"spliText" function on a row in StateRecs.

- The variable Display calls in a loop the procedure ComputendDisplay.

- The procedure ComputeandDisplay is called with an employee variable, with

StateRecs and with StateFields. This procedure performs all the processing and

rounds the value of the employee's wages.

4.1.3 Program Test in Microsoft VPL 2.1

The implementation of the test program in MS VPL encompasses most of the

programming features listed earlier. Because MS VPL is not an object-oriented language, the

program is built solely with procedure-like objects, called activities. The Diagram holds the

entire data-flow that represents the program. Only activities have input and output pins to

receive input data and send result data. MS VPL does not provide text file I/O; however the

platform allows a programmer to create easily decentralized software services (DSS) to

perform tasks that are not part of the language as provided. In fact most of the library items

92

in MS VPL are DSS. DSS items are lightweight, state-oriented, service models, and they can

be modified effortlessly by the programmer. Therefore, in this test, a DSS item is created to

read text files. There are no exception handling mechanisms in MS VPL; the programmer

needs to validate the data and branch to the end of the data-flow in order to stop the

execution of the program, should a catchable error be detected.

The test program is implemented with 5 activities:

- The GetListOfRecords activity returns a list of records from a file; the input is the

pathname of the file.

- The GetStateInfo activity parses and returns the tax and the minimum wage of a

state, given a list of states and the index of a given state in that list.

- The GetEmpInfo activity parses and returns the hours, pay rate, last name, and

first name of an employee, given an employee record.

- The CompSalary activity computes and returns a salary given the hours, a pay

rate, a state‘s minimum wage and a tax rate.

- The ProcessEmployee activity accepts as input a list of employees, a list of states,

and the index of the employee to process. It extracts from its input only the data

needed to compute the wage of the employee. In return the activity provides a

formatted string of the processed employee data and the calculated wage.

- In the main Diagram the files of employee and state data are read, and the

records are stored in a list – MS VPL does not provide arrays. Those lists are used

to process all the employees. For each employee, the result is displayed.

4.1.4 Program Test in Tersus 1.3

The Tersus VPL is not object-oriented; however, the user can use systems to group

logically method-like entities called actions. Tersus does not provide exceptions handling

mechanisms, and thus the programmer needs to handle properly any possible exceptions that

can occur in the program. There are not any mechanisms for adding comments in a Tersus

93

program. A solution could be to use a text literal groken to add comments; however those

comments will not be tied logically to any portion of the diagram.

The test program in Tersus is implemented with 7 actions:

- The GetAState action takes as inputs the path of the file of state data and a state

ID; the action returns the minimum wage and the tax rate percentage of that

state.

- The GetAnEmployee action takes as inputs the path for the file of employee data

and the ID of the employee to process. This action returns the last name, the first

name, the hours worked, and the pay rate of the employee.

- MakeACaption is an action that is used to format the output question used in the

UI for a user of the program, given a last name and a first name.

- The AskState action generates an interactive webpage to capture the answer from

the user, when the user is asked the state to be used to process an employee.

- The ComputeEmpSalary action returns a computed salary given a number of hours

worked, a pay rate, and a tax rate percentage.

- The OneRound action calls GetAnEmployee, asks the user which state to use for

processing, decides which pay rate to use, calls ComputeEmpSalary and displays

to the user the computed salary for a given employee.

- ProcessAllEmployee calls in a repetitive mode – which is how Tersus VPL performs

loops – the action OneRound.

4.1.5 Program Test in UVPL

 The test program in UVPL is implemented, but is neither compiled nor

executed because only the language specifications have been defined in this research. The

definition of this language allows the manipulating primitive and non-primitive data structures

the use of various types of operations and libraries, and the performance of I/O operations as

94

well as conditional jumps and iterations. UVPL also provides the means to add comments

within the program.

UVPL has some features of object-oriented programming: data abstraction,

encapsulation and modularity. The test program in UVPL is represented with 3 classes, and 21

methods.

- The class Employee has properties EmpID, LastName, FirstName, Hours, Payrate

and Salary. Each property has an accessor and a mutator. The class Employee also

has a method Compute_Salary to calculate the salary of an employee object.

- The class State has properties StateID, StateName, Tax and Minwage; and each

property has an accessor and a mutator.

- The class Main is a static class, and has 4 methods:

o LoadEmployees is a method that takes as input the pathname for a file of

employee data and loads into an objects array representing employees.

o LoadStates takes as input the pathname for a file of state data and loads

into an array objects representing states.

o Process1Emp takes as input an employee object and processes it by

gathering information to compute salary and by calling Compute_Salary

for that employee. This method returns the modified employee object.

o ProcessAllEmps calls in a loop Process1Emp for each employee object in

the array.

4.1.6 Analysis of the Program Tests

This step of the research allows hands-on interaction with the selected VPLs, and that

permits further identification of features not provided in those languages.

None of the visual languages selected provide exceptions handling mechanisms. This

feature is important to the ability to scale up a program. When a language does not provide a

95

way to handle run-time errors, the programmer needs to perform more validations for possible

run-time errors such as division by zero, and also needs to provide appropriate responses.

However this practice leads to adding to the program code that is not part of the algorithm. As

a result, there is no separation of the algorithmic code from the error handling code, which

tends to add avoidable complexity to the program.

Commenting is another programming element that is provided neither in Analytica nor

Tersus; on the other hand, Alice and MS VPL provide a means for adding comments.

Nonetheless, comments in MS VPL lack structure, because a particular comment does not

belong to any part in an MS VPL diagram.

File I/O is not implemented in most of those VPLs probably because the use of those

languages generally excludes the need of reading from files or writing to files. The approach

taken by Tersus is to provide different viprocons for reading and writing files of different

formats; so Tersus has viprocons to read and write text files, to load a CSV text or an Excel

sheet into a Tersus table, to parse an XML document or serialize a data structure as an XML

document, to create or parse a JSON, to concatenate PDFs, etc.

VPLs usually allow modular programming, but they seldom provide OOP features.

Among the selected VPLs, only Alice provides a simplistic version of OO programming, by

focusing more on the concepts of objects in a story-telling context. Nowadays, OOP plays an

important role in scalable computing. OOP allows reuse of objects and a better way to modify

programs, since the visibility of methods in classes can be limited and modifying one object

does not necessarily affect another object. OOP contributes as well in maintaining programs,

because again classes can be maintained separately.

4.1.7 VPL Metrics for the Test Programs

The test programs in the four selected VPLs and in UVPL are evaluated and compared

using the following metrics:

- The program volume

- The program visual density

- The ratio of vocabulary to total visual components

96

- The average number of connectors per container

- The average deepest browsing level.

These metrics are computed using operands, operators, connectors and containers

further defined as followed:

 Any labels – textual or graphical – in a groken or a viprocon that can be edited by the

programmer are counted as operators because they either convey a piece of information about

the type or can be considered to carry the same weight as a comment. However if a label in a

groken or a viprocon cannot be edited by the programmer, it is not counted as part of the

language. For instance, programs in Analytica have additional property windows to define

further the attributes of an object; in those windows there are labels such as Unit or Definition

that cannot be edited by the user. These labels are part of the UI, not the language.

An instance of a class is counted as an operand. The methods of a class are counted

as operators.

An arrow is an operator, and arrows serving different purposes or arrows with different

labels are counted individually.

A groken can be an operator and an operand at the same time; this happens in cases

where the groken is an operand but information such as the type of the operand is embedded

in the same groken.

Any declared variables that are not used in the program are not counted as part of the

program.

A container is counted as a pair of parenthesis, thus as an operator.

In compound statements, each atomic entity is counted; however a user-entered

string is counted as one operand – from opening to closing string markers – and as one

operator for comments – from opening to closing comment markers.

Uniqueness is at the module level; i.e. a global variable is counted once throughout

the program, and a local variable is counted once within its scope. By doing so, variables of

the same name in different methods are counted once in each method.

Pieces of code that can be disabled, such as found in Alice, are not counted.

97

Variables that are part of a function‘s signature are counted as operands. In the

particular case of Analytica, variables that have literals as their value are counted as

operands, and variables that have executable code as their value are counted as operators.

The VPL metrics listed earlier are described as followed:

- The program volume corresponds to the number of screens necessary to visualize

the entire program, under the default settings of the system. The visual elements

are neither maximized nor minimized; and those elements also are neither

magnified nor reduced. This metric is used primarily in this research to compute

other metrics. The program volume by itself is not an accurate measurement for

comparing the size of the implementation of the same algorithm in different VPLs.

- The visual density is the average number of visual components per screen. It is

the total number of components in a VPL divided by the program volume.

Compared to the program volume, it gives a more accurate indication of the

density of a program. A high value could be an indication that the program

produced is very dense; such programs are difficult to review because they have a

high concentration of visual elements, and the user may find it difficult to navigate

through the program. A low value could be an indication that the program

produced is very sparse; such programs also can be difficult to review because the

user needs to flip between many screens.

- The vocabulary is the count of distinct operators and operands. The vocabulary

size by itself is not a useful metric, because its meaning or importance is relative

to the size of the program.

- The ratio of vocabulary to total visual components indicates the level of a VPL. The

lower the ratio, the more frequently operators and operands are repeated in the

program. Low-level languages have, in general, a small vocabulary and programs

98

written in those languages are, in general, harder to understand. A high ratio is a

sign that the language has too much visual abstraction.

- The average number of connectors per container is used to get an insight into the

visual complexity of a visual program. The higher this value is, the more

connectors a container has. The total number of connectors is not used because

this metric by itself cannot reflect the visual complexity.

- The average deepest browsing level is the depths to which the user must go on

average to visualize parts of a visual program. If a program is symbolized as

multiple sets of Russian nesting dolls, each doll and its contents being a subset of

the program, this metric would correspond to the average number of Russian dolls

to open to get to any given doll. This metric is important because it reflects how

much of a program is visually abstracted to the viewer. The lowest average is one

– meaning there is no need to browse any deeper – and there is no upper bound.

4.1.8 Test Programs Counts

The counts of operators, operands, connectors and containers are gathered from the

implementations of the test algorithm in Alice, MS VPL, Tersus and Analytica, as well as from

the representation of the test algorithm in UVPL. Table 4.1.8-1 shows the corresponding

counts for each language.

99

Alice Ms VPL Tersus Analytica UVPL

Total number of operators N1 391 369 389 276 480

Total number of operands N2 198 176 30 152 245

number of distinct operators n1 125 113 171 127 185

number of distinct operands n2 87 90 29 85 94

Vocabulary n1 + n2 212 203 200 212 279

Total Program components N1+

N2 589 545 419 428 725

Total # of containers 23 19 24 25 136

Total # of connectors 0 156 85 6 86

Program volume 6 7 7 14 28

Table 4.1.8-1: Test Programs counts

4.1.9 VPL Metrics Values for the Test Programs

Each metric is used to evaluate how UVPL performs compared to the selected VPLs.

This analysis is based on a single algorithm. An analysis based on multiple algorithms would

give a more complete picture, but is beyond the scope of the current research. Nevertheless,

this short analysis gives an insight of how UVPL could perform on small programs, and the

result of the analysis could be used further to extrapolate how UVPL may perform on

enterprise-size programs.

The results presented below are ordered from less desirable to more desirable, using

the scheme shown in Table 4.1.9-1.

100

More desirable

Less Desirable

Table 4.1.9-1: Desirability order

Visual Density

In reference to Table 4.1.9-2, Tersus has a better performance. This result is

important because it indicates that a program in Tersus may be easier to review. The high

value for Alice points out that the program in Alice is dense. The low value for UVPL is

explained by the fact that UVPL is an object-oriented language, and thus has more structures

since the programmer defines classes and methods. Because the test program is relatively

small, most of the features in UVPL are not used to its advantage. However, as programs

become larger and more complex, one can predict that the UVPL program volume value will

improve relative to the program volume values of the selected VPLs.

Alice UVPL Analytica MS VPL Tersus

Visual density 98.17 25.89 30.57 77.86 59.86

Table 4.1.9-2: Visual Density

The Vocabulary to total visual components ratio (VTVC)

This ratio should be neither too high nor too low. A reasonable level of abstraction is

important in achieving scalability, especially considering that the reviewer of a VPL might not

be a seasoned programmer who can understand in a timely manner programs with very high

abstraction levels.

As illustrated in Table 4.1.9-3, the values for all the languages are very close, Tersus

and Analytica being respectively at the lowest and highest extremities, and UVPL lying in the

101

middle. Given that the ratios lie at neither extreme, it can be concluded that all the VPLs

including UVPL have adequate vocabulary to components ratios.

Tersus Ms VPL UVPL Alice Analytica

vocabulary to visual components 0.36 0.37 0.38 0.48 0.49

Table 4.1.9-3: VTVC ratio

Average number of connectors per container

A low average is desirable, because a program with too many connectors is, in

general, difficult to view.

Alice has a value of zero, as shown in Table 4.1.9-5, because this VPL does not use

connectors to direct the execution flow of a program. The MS VPL test program has a lot of

connectors and could be the hardest to review and this is reflected here by its value.

Ms VPL Tersus UVPL Analytica Alice

average # of connectors per container 8.21 3.54 0.63 0.24 0

Table 4.1.9-5: Average Connectors per Container

Average deepest browsing level

On one hand, average deepest browsing levels that are close or equal to one are not

desirable because that VPL may not support iconization for abstraction purposes. On the other

hand, averages that are too high are not desirable either, because the program becomes then

difficult to review.

Table 4.1.9-6 shows that, as expected, Tersus has the deepest browsing level since

the user-interface is designed in such a way that the user needs to drill down to view details of

any objects.

102

Alice Tersus Ms VPL UVPL Analytica

avg deepest browsing level 1 2.43 2.14 1.43 2

Table 4.1.9-6: Average Deepest Browsing Level

As a summary, UVPL has:

- One of the worst program visual densities, because it is too sparse.

- An acceptable value for the vocabulary to total visual components ratio.

- An acceptable average for the connectors per container value.

- One of the best average deepest browsing levels.

These values are in accordance with the experience of the tester.

103

Chapter V

CONCLUSION

5.1 Findings

The objectives of this research have been to propose a visual language – UVPL— that

could fulfill the need for a general-purpose, object-oriented, scalable, visual, programming

language. The larger family of programming languages is the general-purpose one. This group

of programming languages is dominated largely by TPLs. General-purpose programming

languages are more popular because they can solve a wider range of problems. Unfortunately

general-purpose VPLs have not had their breakthrough yet, thus the need for more research in

this area. In that same line of thought, visual languages need to be designed with more

object-oriented features to achieve scalable programs.

For this purpose, an analysis of the grokens and viprocons of Alice, Analytica, MS VPL

and Tersus has been conducted. The results of that analysis were used as a basis to design

UVPL, which is built upon the strengths of those languages, all the while avoiding their

weaknesses. The focus of this research has been on the visual aspects of UVPL and its

development environment that affect scalability of visual programs in general. New elements –

non-existent in the selected VPLs – were introduced to ease the review and maintenance of

UVPL programs and to address scalability issues.

104

To validate the result of the proposed programming language, UVPL, it has been

compared to the selected VPLs using:

- A qualitative analysis: VPL strategies from Burnett and programming language

principles from McLennan.

- A quantitative analysis: metrics relevant to scalability issues.

The result of the qualitative analysis shows the strengths and weaknesses of UVPL.

Strengths:

UVPL has automation for the declaration of variable grokens and adopts a responsible

design approach for handling integers and floats: the language provides different precisions.

The variable grokens can be resized to better manage screen real estate. UVPL allows direct

manipulation of operations, less abstraction and better reviewing of visual programs. To

overcome the screen space issue, UVPL introduces the ability to conceal and reveal

expressions; this permits the user to confine an expression to a smaller space (concealing)

and view part or all the expression as needed (revealing). Elements such as counters and

conditional statements are embedded within the iteration viprocons to better indicate the type

of the control flow and its expected behavior. The flow of data into and out of an iteration

viprocon or a method is symbolized by arrows. The flow of control is symbolized by

consecutive instruction boxes, top to bottom.

The strengths of UVPL work together for better scalability of the programs from the

perspective of a novice programmer.

Weaknesses:

For variables and flow controls, UVPL does not provide immediate visual feedback

during the editing of a program. This feature can provide responsiveness but it might have an

effect on the efficiency of the editing process. In UVPL, the user does not type expressions; as

a result, expressions in UVPL tend to occupy more space than in the other selected VPLs, but

this weakness is offset by the ability to conceal or reveal expressions. UVPL does not have as

many file I/O operations as Tersus; for instance, UVPL does not have XML parsing or PDF file

generation.

105

The qualitative analysis of UVPL is rather subjective. Because this analysis cannot be

used alone to determine whether or not UVPL has attained its objectives, a quantitative

analysis was used in parallel. This analysis produced metrics used to rank UVPL and the

selected VPLs. The following paragraphs present the results of that analysis.

The program visual density value of UVPL compared poorly to those of the selected

VPLs; the test program in UVPL is too sparse compared to the implementations in the other

languages. Paradoxically, this result is a good one for UVPL to some extent: UVPL is an object-

oriented language, and thus harbors mechanisms to construct a well-modularized program.

When building relatively small visual programs such as toy programs, the UVPL program will

have more structures – and might be spread across more screens – than the same program in

its counterparts. These structures are accessors, mutators and other methods for each class.

They add volume to the program, but are necessary to follow an object-oriented approach. As

the program is scaled up, the visual density metric is expected to improve for UVPL, which

indicates that UVPL might be more suitable for large programs.

UVPL has an acceptable value for the vocabulary to total visual components ratio. This

metric is used to determine the level of abstraction of a VPL. , Too much abstraction can be a

drawback for a novice programmer, as the program might be harder to understand. The ratio

value for UVPL implies that it has an adequate level of abstraction.

UVPL has an acceptable average for the connectors per container value. Compared to

Tersus or MS VPL, a program implemented in UVPL is expected to be easier to decipher

because it has fewer arrows. This is comparable to complex flow charts, which are difficult to

understand because the reader needs to follow many connecting arrows between objects to

understand the flow of the program.

UVPL has one of the best average deepest browsing levels. This metric signifies that

the test program in UVPL is viewed more easily than a program in Alice, Tersus and MS VPL.

Indeed, the user needs on average fewer clicks to reach any point of the program.

106

5.2 Goals achieved

The goals of this research were to propose a programming language that is visual,

general-purpose, object-oriented and scalable. This section evaluates each of these goals.

UVPL is a visual language, but not a purely visual language. As mentioned in previous

chapters, a purely visual language is not practical. Such languages are represented entirely

with visual elements or symbols other than textual symbols, and thus virtually do not need a

keyboard for implementing programs. Purely textual languages are languages entirely

represented with textual symbols. On the scale between visual and textual languages, UVPL is

closer to a purely visual language, because most of a program is constructed with grokens

(graphical tokens) and viprocons (visual programming constructs). Textual symbols are

needed only when naming a structure or assigning a literal value.

UVPL is a general-purpose language. UVPL is considered to be more general-purpose

than Tersus or MS VPL, for instance, that are for web development and robotics, respectively.

These languages are specifically designed for a single domain; web development or robotics

problems are solved more easily with those domain-specific VPLs. Tersus and MS VPL are not

the appropriate choices to solve decision-support problems; those would be better solved by

VPLs such as Analytica or UVPL. Native libraries of the domain-specific languages usually have

specialized functions to fit the nature of the language. If the programmer is allowed to build

user-defined libraries, they generally are built on top of the specialized native libraries.

However, in a general-purpose language, the native libraries are a support to solve a wide

range of problems, and the user has more flexibility when building user-defined libraries.

UVPL is an object-oriented language. Even though UVPL is not a fully object-oriented

language, the programs are built with classes, objects and their members. A UVPL object can

be instantiated, and UVPL has abstraction and encapsulation. However, UVPL was not

developed with inheritance and polymorphism. These features could be added to the language

later. Novice programmers might not have a strong need for inheritance and polymorphism.

Because UVPL is a visual, general-purpose, object-oriented language, it should have

the capabilities to produce scalable programs.

107

5.3 Halstead measurements

In a first attempt to gather quantitative measurements, Halstead complexity measures

were used [17]. Even though this method was developed in 1977, it still is used by institutions

such as the Metric Data Program of NASA and by Verifysoft Technology, a German company

specializing in software testing [18-19]. In a nutshell, Halstead metrics are based on the fact

that algorithms are made up of operands and operators only, and that it is possible to identify

those operands and operators in the implementation of an algorithm in any language.

Halstead states that the operators and operands are defined as symbols or combinations of

symbols. Some of the measurable properties defined by Halstead are:

η1  The number of distinct operators

η2  the number of distinct operands

N1  the total number of operators

N2  the total number of operands

These measurable properties are used to compute metrics such as the program length

(V = (N1+N2) Log2(η1+ η2)) and the estimated number of delivered bugs (B = V / 3000).

However Halstead complexity measures were developed at a time when computer

programs were purely textual. Using these metrics on visual programs gives results that do

not reflect or take into account the visual aspects of VPLs, and thus are not suitable to

evaluate visual programs quantitatively. More research needs to be conducted to develop a set

of standard metrics more appropriate for VPLs.

5.4 Future works

UVPL has not been specified formally in a grammar, because the research area of VPL

grammars is still in its infancy. Research conducted by Marriot on constraints multiset

grammars (CMG) give a sense of the difficulty in formally specifying a VPL using a grammar.

This field of study needs to be more developed for VPLs to be defined properly in this way.

As mentioned earlier, this research focuses on the design of the visual aspects of

UVPL. For this language to be fully functional, its design – as well as a compiler or an

interpreter –needs to be implemented as well.

108

Since UVPL is a general-purpose VPL, it will need to be delivered with enough libraries

such as math, text processing, regular expressions, database, security, etc. Concepts such as

the sharing of libraries between different users could be introduced to allow the libraries of

UVPL to grow faster.

The results of this research were validated using a single test program. To obtain a

more accurate result, it will be necessary to implement in UVPL and the selected VPLs several

test algorithms solving a large variety of problems. This will insure a more statistically

accurate assessment of UVPL.

As stated in previous chapters, VPLs are tightly coupled to their development

environment; thus testing their usability should be performed with human subjects. Such tests

can be conducted using methods such as the cognitive walkthrough; this human/computer

interaction (HCI) technique was proposed by T.R.G. Green and is used to help designers of

VPLs detect the level of usability they have achieved [6] and correct usability problems on a

user interface.

Is unifying currently-popular VPLs the best approach to design a general-purpose,

object-oriented, scalable, visual, programming language? UVPL certainly achieved its goals for

being a visual programming language that is general-purpose and object-oriented. However a

more definite conclusion shall be made once UVPL is fully implemented and functional, once

UVPL is tested using a statistical approach and once the UVPL user-interface is tested as well.

109

REFERENCES

[1] M. Burnett, Visual Programming. New York, 1999.

[2] M. M. Burnett and M. J. Baker, "A Classification System for Visual Programming

Languages," Oregon State University1993.
[3] ACM. (1998, 04/04/2010). The 1998 ACM Computing Classification System —

Association for Computing Machinery. Available:
http://www.acm.org/about/class/ccs98-html

[4] K. Marriott, "Constraint multiset grammars," in Visual Languages, 1994. Proceedings.,
IEEE Symposium on, 1994, pp. 118-125.

[5] B. C. Pierce, "Bounded quantification is undecidable," presented at the Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
Albuquerque, New Mexico, United States, 1992.

[6] T. R. G. Green and M. Petre, "Usability Analysis of Visual Programming Environments:
A [`]Cognitive Dimensions' Framework," Journal of Visual Languages & Computing,
vol. 7, pp. 131-174, 1996.

[7] R. B. Smith, "Experiences with the alternate reality kit: an example of the tension

between literalism and magic," presented at the Proceedings of the SIGCHI/GI
conference on Human factors in computing systems and graphics interface, Toronto,

Ontario, Canada, 1987.
[8] M. D. Wayne Citrin, Benjamin Zorn, "The Design of a Completely Visual Object-

Oriented Programming Language," Visual Object-Oriented Programming, 1994.
[9] P. T. Cox, et al., "Prograph: a step towards liberating programming from textual

conditioning," in Visual Languages, 1989., IEEE Workshop on, 1989, pp. 150-156.
[10] T. Pin-Ying, et al., "A Visual Programming Language for Data Transformation," in

Computer Science and its Applications, 2008. CSA '08. International Symposium on,
2008, pp. 96-101.

[11] M. J. B. Margaret M. Burnett, Carisa Bohus, Paul Carlson, Sherry Yang, Pieter van Zee,
"Scaling Up Visual Programming Languages," Computer 0018-9162, vol. 28, pp. 45-
54, 1995.

[12] R. Jamal and L. Wenzel, "The applicability of the visual programming language
LabVIEW to large real-world applications," in Visual Languages, Proceedings., 11th
IEEE International Symposium on, 1995, pp. 99-106.

[13] M. M. M. a. M. Porta, "Iteration constructs in data-flow visual programming languages
" Computer Languages, vol. 26, pp. 67-104, 2001.

[14] A. Ambler, "The Formulate Visual Programming Language : Representing Structured
Data," Dr. Dobb's journal, vol. 24, pp. 21-29, 1999.

[15] J. L. Leopold and A. L. Ambler, "A User Interface for the Visualization and Manipulation
of Arrays," presented at the Proceedings of the 1996 IEEE Symposium on Visual
Languages, 1996.

[16] B. J. MacLennan, "Principles of Programming Languages: Design, Evaluation, and
Implementation," ed New York: Oxford University Press, 1999, p. 509.

[17] M. H. Halstead, "Elements of Software Science," ed Amsterdam: Elsevier Science Inc.

New York, NY, USA, 1977, p. 128.
[18] J. Long. (2008, NASA IV&V Facility Metrics Data Program - HALSTEAD METRICS: .

Available: http://mdp.ivv.nasa.gov/halstead_metrics.html
[19] (2007, March 30th). Verifysoft → Halstead Metrics. Available:

http://www.verifysoft.com/en_halstead_metrics.html

http://www.acm.org/about/class/ccs98-html
http://mdp.ivv.nasa.gov/halstead_metrics.html
http://www.verifysoft.com/en_halstead_metrics.html

110

APPPENDICES

Appendix A: Program test in Alice

111

112

113

114

115

116

117

118

119

Appendix B: Program test in MS VPL

120

121

122

123

124

125

126

Appendix C: Program test in Tersus

127

128

129

130

131

132

133

134

Appendix D: Program test in Analytica

135

136

137

138

139

140

Appendix E: Program test in UVPL

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

VITA

Seynabou Dieng

Candidate for the Degree of

Master of Science

Thesis: A PROPOSED UNIFIED VISUAL PROGRAMMING LANGUAGE

Major Field: Computer Science

Biographical: Born in Dakar, Sénégal on February 12th, 1978. The daughter of Khadijhatou

Seck and the late Papa Amath Dieng.

Education: Graduated from Yalla Suur En high school, Dakar, Sénégal with a Baccalauréat with
honors in 1998. Received a Technical Diploma in Informatics from Cheikh Anta Diop
University –ESP, Dakar, Sénégal in 2000. Received a Bachelor of Science degree in

Computer science from Oklahoma State University, Stillwater, Oklahoma in May 2005.
Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in November, 2010.

Experience: Employed as a programmer analyst at MAERSK Sealand in Dakar, Sénégal from
November 2000 to July 2001. Employed as a Database Analyst at Site Specific
Technology in Stillwater, Oklahoma from July 2003 to August 2010. Employed as a
System Analyst II at Sprint Nextel in Overland Park, Kansas from August 2010.

Professional Memberships: None.

2

Name: Seynabou Dieng Date of Degree: December, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A PROPOSED UNIFIED VISUAL PROGRAMMING LANGUAGE

Pages in Study: 171 Candidate for the Degree of Master of Science
Major Field: Computer Science

Scope and Method of Study: this study aimed at contributing to the area of visual

programming languages, by proposing the framework for a visual programming

language (VPL) that is the unification of the best features of four existing VPLs. This
unified VPL, or UVPL, is designed to better achieve scalability, which is lacking – in
general – in current VPLs. The design of UVPL is based on the analysis of four existing
VPLs. This study also aimed at providing a short survey of the four selected VPLs.

Findings and Conclusions: the design of UVPL succeeded in being a programming language
that is general-purpose and object-oriented. However, UVPL as well as its development
environment needs to be implemented for further, more concrete testing and
comparison.

 Dr. Blayne Mayfield

	LIST OF FIGURES
	LIST OF TABLES
	Chapter I
	INTRODUCTION
	1.1 Visual Programming Languages
	1.2 Issues of Visual Programming Languages
	1.3 Objectives and limits of this research
	1.4 The Approach
	1.5 Chapters overview

	Chapter II
	REVIEW OF LITERATURE
	2
	2.1 Background of VPLs
	2.2 VPL Classification System
	2.3 VPL Grammar
	2.4 Cognitive Dimension of VPLs
	2.5 Short VPL Survey
	2.6 Scaling up Visual Programming Languages
	2.7 Iteration constructs in VPLs
	2.8 Arrays representation in VPLs
	2.9 Principles of programming languages

	Chapter III
	METHODOLOGY
	3
	3.1 VPLs Selection Process
	3.2 Analysis of principles for the selected VPLs
	3.3 Variables and literals
	3.4 Arithmetic, Boolean, and Comparison Operations
	3.5 Control Flow
	3.6 Input / Output
	3
	3.1
	3.2
	3.7 Unified Visual Programming Language – UVPL
	3.7.1 UVPL Programming Features
	3.7.2 UVPL Programming Constructs
	3.7.3 Object-Oriented UVPL
	3.7.4 Principles analysis of UVPL

	Chapter IV
	TESTING
	4
	4.1 Program Tests
	4.1.1 Program Test in Alice 2.2
	4.1.2 Program Test in Lumina Analytica 4.2
	4.1.3 Program Test in Microsoft VPL 2.1
	4.1.4 Program Test in Tersus 1.3
	4.1.5 Program Test in UVPL
	4.1.6 Analysis of the Program Tests
	4.1.7 VPL Metrics for the Test Programs
	4.1.8 Test Programs Counts
	4.1.9 VPL Metrics Values for the Test Programs

	Chapter V
	CONCLUSION
	5
	5.1 Findings
	5.2 Goals achieved
	5.3 Halstead measurements
	5.4 Future works

	REFERENCES
	APPPENDICES
	Appendix A: Program test in Alice
	Appendix B: Program test in MS VPL
	Appendix C: Program test in Tersus
	Appendix D: Program test in Analytica
	Appendix E: Program test in UVPL

	VITA

