
AN ARCHITECTURAL APPROACH FOR THE

INTEGRATION OF WIRELESS SENSOR NETWORKS

WITH CLOUD COMPUTING FOR A SECURE

HEALTHCARE SYSTEM

 By

 NAVEEN RAJ DHANAPAL

 Bachelor of Engineering in Computer Science and

Engineering

 Magna College of Engineering, Anna University

 Chennai, Tamil Nadu, India

2009

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

May, 2012

ii

AN ARCHITECTURAL APPROACH FOR THE

INTEGRATION OF WIRELESS SENSOR NETWORKS

WITH CLOUD COMPUTING FOR A SECURE

HEALTHCARE SYSTEM

 Thesis Approved:

Dr. Johnson P Thomas

 Thesis Adviser

 Dr. Subhask Kak

 Dr. Michel Toulouse

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Taxonomy of Cloud Computing ..3

II. REVIEW OF LITERATURE..7

 2.1 Integrating Cloud Computing and Wireless Sensor Networks7

 2.2 Wireless Sensor Networks in Telemedicine ..8

 2.3 Overview of Healthcare Cloud ..10

 2.4 EHR Security Reference Model ..12

 2.5 WSN in Smart phones Monitoring Humans Health ..14

 2.6 Elliptical Curve Cryptography ...16

 2.7 TESLA Protocol...17

III. PROPOSED APPROACH ...20

 3.1 Problem Statement ...20

 3.2 Proposed Solution ..20

 3.3 Proposed System Architecture ...21

 3.4 Filter-based Healthcare System ...23

 3.5 Lookup Table for Filter System ...25

 3.6 Key Search Algorithm ...26

 3.6.1 Key Search Algorithm Example ...30

 3.7 Priority Ranking Algorithm ...33

 3.7.1 Priority Ranking Algorithm Example ...39

 3.8 Tesla Approach for Sending Secure SMS ...52

iv

Chapter Page

IV. SIMULATION ..54

 4.1 Introduction ..54

 4.2 Cloud Foundry, an Open Source PaaS Deployment Model56

 4.3 Cloud Foundry Architecture ..57

 4.4 EMR Healthcare System Running on Cloud Foundry59

 4.5 Android Emulator ..60

 4.6 Filter Application on Android ..62

 4.7 Priority Ranking Algorithm Simulation ..63

V. CONCLUSION ..66

REFERENCES ..68

v

LIST OF TABLES

Table Page

1. Lookup Table for Filter System ..25

vi

LIST OF FIGURES

Figure Page

1. Layers in the Cloud ...4

2. Cloud Deployment Models ..5

3. Wireless Sensor Networks ...7

4. Current Scenario for Data Collection in Hospital ..9

5. Relationship of EHR, EMR & PHR ..11

6. EHR System Integration Model ...13

7. WSN in Smart Phones Monitoring Patient’s Health ...15

8. TESLA Protocol...19

9. Proposed System Model ..23

10. Filter Architecture ...24

11. Key Search System Model for Filter System ..28

12. Input Graph GO ...30

13. Step 1 - Nodes matching the input keyword A1 ..31

14. Step 2.1 - Construction of New Graph GN ..31

15. Step 2.3 - Construction of New Graph GN with final weights32

16. Step 3 - Final constructed Graph GN with final weights and edges33

17. Priority Ranking System Model for Filter System ...34

18. Input Graph GO ...40

vii

Figure Page

19. Step 1 - Nodes matching the input keyword A1 ..41

20. Step 2.2 - Nodes with initial weight and availability weight41

21. Step 2.3- Nodes with the total weights of availability and specialization42

22. Step 2.4 - Graph G1 with edges ...42

23. Step 2.5 - Graph G1 with edges and its initial weights43

24. Step 2.6 - Constructed Graph G1 with initial weights on edges and total weights

on nodes ..44

25. Step 2.7 - Graph G1 with new weights on edges ...45

26. Step 3 - Final constructed graph G1 with final total weights46

27. Step 7 - Constructed Graph G1 for keyword A1 ..47

28. Step 7 - Constructed Graph G2 for keyword A2 ..48

29. Step 7 - Constructed Graph G3 for keyword A3 ..49

30. Step 8 - Construction of Superimposed Final Graph Gf50

31. Step 9.3 - Constructed Graph Gf with final total weights51

32. Simulated Architecture ...54

 33. Cloud Foundry, an Open Source Deployment Model ..56

 34. Cloud Foundry Architecture ...56

 35 (a). EMR Healthcare Cloud for Hospital (Patient Information)58

 35 (b). EMR Healthcare Cloud for Hospital (Health Record)59

 36. Android Architecture ..60

 37. Android Emulator Simulating Filter App ...61

 38. Simulated Graph ...64

1

CHAPTER I

INTRODUCTION

Existing processes for gathering patients’ health data require a great deal of work

that includes collecting the health data inputs, processing and analysis of the information

collected [1]. These kinds of processes are usually error prone and considered to be slow.

However, today’s biomedical sensor solutions are effective for only an individual

measurement (for example EEG, ECG, PCG and the like) but are not integrated into a

complete body area network, where many sensors work simultaneously collecting

information about an individual patient. Patient mobility also brings in the need for

sensors in biomedical monitoring to become wireless. This creates the need for the

implementation of new biomedical personal wireless networks with a common

architecture and the capacity to handle multiple sensors, monitoring different body

signals, with different healthcare apps running on smart phones [2]. To overcome this,

this work proposes an architecture that integrates wireless sensors that communicate with

the patient’s smart phone and integrates them with the cloud computing paradigm and the

hospital information system. The information is therefore made available in the cloud

where it is processed and accessible to doctors and other medical professionals.

2

Cloud Computing is a commercial extension of computing resources which

provides scalable resources and economic benefits to its users over the internet [3]. It acts

as software and provides data access and storage services which don’t need the

knowledge of the end users physical location and the systems configuration that provides

the computing resources. In Cloud Computing, the users use the web browsers as an

interface [4], while the software and data are stored on the remote servers and hence it is

device independent.

In recent years, many healthcare organizations have started using wireless senor

networks to remotely monitor patient health. Many healthcare organizations and

insurance companies have also started using the electronic medical record (EMR) system

by which the medical records are maintained in a centralized database in the form of an

electronic record and the records are stored in the cloud. Applications deployed on the

cloud for manipulate electronic medical records [5].

The general scope of our work is to propose an architecture to integrate the

healthcare cloud with wireless sensor network (WSN) technology through smart phones.

The healthcare apps on smart phones monitor patients’ health wirelessly providing real-

time updates of the patients’ health condition to the doctors and other medical

professionals via the cloud.

The proposed architecture contains a filter system running on the smart phones,

which takes the patient’s health records from the smart phone apps and compares with a

lookup table, which contains the normal readings of the different health parameters. If the

incoming health readings to the filter are found to be abnormal, then an alert SMS is sent

to the doctors with whom the patient is associated and a copy of the record is also sent to

3

the cloud running an EMR system maintained by the hospital. The patient may be in a

real emergency situation and he may not be aware that he is in danger. The filter

identifies that the patient may be in a serious emergency situation based on the historical

and current values of the sensed data. If the filter determines the situation to be critical, a

consolidated report is sent to the doctor through SMS, along with the location (address)

of the patient, sensed through the GPS sensor running on the smart phone.

Since, the health records have to be confidential and secure, the Health Insurance

Portability and Accountability Act HIPAA [6] defines a set of rules on who has access to

the patient’s health records. In order to comply with the rules and regulations of HIPAA,

whenever there is an emergency alert, the alert SMS is sent only to the authorized and

appropriate medical professionals who can access that patient’s health data. The proposed

key search algorithm helps to find the appropriate medical professionals for different

health abnormalities and ensures that the patient’s abnormal health data is sent only to the

appropriate medical professionals. However, this algorithm works only when there is a

single abnormal input to the filter system. Our work therefore also proposes a priority

ranking algorithm, when multiple historical abnormal data have to be considered. Our

system provides a secure framework whilst providing the benefits of the cloud.

1.1 TAXONOMY OF CLOUD COMPUTING

Cloud Computing can be broadly classified into three different layers [5] based on

the service models and cloud deployment models. They are

4

1. Software as a Service

 This is the top-most layer

in the cloud which allows the users

to use the applications running on

the cloud using a web browser as

an interface rather than installing

the software in the local machine

or in a local data center. Google

Docs is one of the example of the

SaaS service model.

 Figure 1: Layers in the Cloud

2. Platform as a Service

This middle layer in the cloud offers a development platform for the users to

deploy applications in the cloud using different programming languages and the tools

supported by the cloud provider. It provides the users with database management,

security, workflow management, etc. Microsoft’s Azure is an example of PaaS service

model.

3. Infrastructure as a Service

This is the bottom-most layer in the cloud and provides components for the basic

infrastructure such as CPU, memory, networks and storage. It provides the users to host

their own application and store data. Amazon’s Elastic Compute Cloud (EC2) is an

example for an IaaS service model.

Cloud Computing has four different deployment models [5] as follows.

5

1. Public Cloud (External Cloud)

 The cloud infrastructure is offered over the internet to the general public or an

organization and it is owned by the organization providing the cloud services. In this type

of deployment model, the application developer and the customers hold the entire

responsibility for the security. This type of service is provided by Amazon EC2,

Salesforce etc.

2. Private Cloud (Internal Cloud)

 The cloud infrastructure is exclusively operated for a single organization which is

managed by the organization itself or a third party cloud provider. This is mainly for an

organization which has a large number of users and resources. This type of cloud

deployment models is more secure.

3. Community Cloud (Semi-private Cloud)

 The cloud

infrastructure is shared by

several organizations that

seek to share infrastructure

in order to realize some of

the benefits of the cloud. Figure 2: Cloud Deployment Models

This type of cloud is a public cloud which focuses on same domain companies like

government or a banking organization.

6

4. Hybrid Cloud (Integrated Cloud)

 The cloud infrastructure is a combination of all or some of the types of cloud.

This type of cloud gives the organization more flexibility to share and manage resources

between private and public clouds. The organization using this type of cloud keeps all the

sensitive data in their private cloud and less sensitive data in their public cloud.

Chapter II overviews the literature. The proposed system architecture is described

in Chapter III. Chapter IV contains the simulation and results. The conclusion is in

Chapter V.

7

CHAPTER II

REVIEW OF LITERATURE

2.1 INTEGRATING CLOUD COMPUTING AND WIRELESS SENSOR

NETWORKS (WSN)

Cloud computing provides the scalable processing power and variety of

connectable services. The cloud computing paradigm has many characteristics that match

the typical wireless sensor network, which has a lot of motes responsible for sensing and

local preprocessing [9]. Wireless

sensor networks are very limited

in their processing power, battery

life and communication speed

whereas cloud computing

provides the opposite, and is

therefore well suited for long-term

observations and analysis. The

huge amount of data, which a

sensor network delivers, demands Figure 3: Wireless Sensor Network

a powerful and scalable storage and processing infrastructure.

The integration of cloud computing with wireless sensor networks [9], provides:

 Integration of sensor network platforms from different vendors.

 Scalability of data storage and processing power for different kinds of

analysis.

8

 Worldwide access to processing and storage infrastructure.

 Optimization of Resources.

One of the services providing data aggregation in low-power and distributed

wireless environments is TinyDB [10]. Participating motes within the wireless sensor

network run TinyDB on top of TinyOS [11]. TinyDB offers a simple GUI and a Java

API for declaring and executing queries in acquisitioned query languages, similar to

SQL. The ease of use, efficient use of the available processing and battery power is one

of the main advantages of TinyDB.

SPINE [14], a TinyOS-based software framework for body sensor signal

processing applications consists of signal processing components for sensor nodes

running the TinyOS [11] environment and Java components to manage the sensor nodes

from a central coordinator node (star topology). The framework offers a sensor data

classification service that is operated in a distributed fashion on individual sensor nodes

and a base station computer. The approach doesn't consider aspects like scalability and

data security.

2.2 WIRELESS SENSOR NETWORKS IN TELEMEDICINE

The existing system in healthcare involves manual note taking, updating the notes

to the computer and maintaining the records under a unique id assigned to every patient.

Figure 4, shows the process of data collection in healthcare institutions that use manual

note taking [15].

9

Here,

 The hospital nurse collects the patient’s data at the bedside, writing it on a paper

spreadsheet.

Figure 4: Current Scenario for Patient’s Data Collection in Hospitals [15]

 These notes are then typed in data entering terminals.

 The data is transmitted to a database server that organizes indexes and makes it

accessible through a database interface.

 Now the medical staff and the doctors can access this information through an

interface application.

Usually this process is very slow and error prone and there is latency between

data gathering and information accessibility.

Implantable and wear-able monitoring devices such as UbiMon [13] are used to

generate vital patients' data required for clinical decision making. With the UbiMon

architecture [13], the sensors are placed on the subject and it delivers real-time data to the

local processing unit (LPU) via a wireless radio frequency (RF) link. The LPU then

10

processes the incoming data streams and sends it over the wireless networks. The central

server (smart phone) receives the real-time sensor data and stores it to the database, with

which long-term trend analysis on historical data can be conducted. This allows the

prediction and identification of potential life-threatening conditions.

2.3 OVERVIEW OF HEALTHCARE CLOUD

In order to improve the overall productivity and to lower overall IT costs, many

healthcare organization are moving into cloud computing. The core idea for the transition

to cloud computing is to eradicate the traditional healthcare IT where each application

running on different server and management of data were more complex.

We define the concepts [6, 7] of Electronic Health Record (EHR), Electronic

Medical Record (EMR) and Personal Health Record (PHR). EHR and EMR are often

interchangeably in the health science literature [6]. Strictly speaking, both terms have

completely different meanings as given by HIMSS (Health Information and Management

System Society) [8].

Electronic Medical Record (EMR):

EMR is the electronic health information of an individual that is created, gathered

and managed by an individual healthcare center. It is the legal record of what happened to

the patient during the encounter at a healthcare center.

Electronic Health Record (EHR):

EHR is the aggregate of electronic health information of an individual that is

created, gathered and managed cumulatively across more than one healthcare

11

organization. This is a composition of some subsets of EMRs which is created and owned

by the individual.

Personal Health Record (PHR):

PHR is the cumulative electronic health information of an individual that is

initiated and maintained by the

individual himself. An effective PHR

includes a complete medical history

of an individual ranging from the

past till the present from different

sources including EHRs and EMRs,

and control of access to those

medical records is the responsibility

of the individual. Microsoft’s

HealthVault and Google Health are

two examples of PHRs. Figure 5: Relationship of EHR, EMR & PHR

The healthcare cloud is a “patient-centric” view, which offers an open platform

for the patient to collect, store, use and share health information in a controlled manner.

The cloud also offers secure storage and management of the health records for multiple

applications such as disease treatment, lab research, insurance etc.

The common security issues shared by the healthcare cloud applications are

ownership of information, authenticity, non-repudiation, patient consent and

authorization, integrity and confidentiality of data.

12

2.4 EHR SECURITY REFERENCE MODEL

[5] gives a secure EHR security reference model for both the patient’s and

healthcare practitioners. This security reference model consists of three core components

as follows:

1. EHR secure collection and integration

The first core component of this model is the security reference model which is the

collection and integration of EHR data from different sources, which is created and

maintained by the hospital. This step is considered to be the first and most important in

order to securely share its EHRs with other hospitals. The unique key functional

requirement of this component is the EHR integrator. It is responsible for two important

tasks:

1. It verifies various EHRs provided by different healthcare organizations in terms

of authenticity, confidentiality, integrity, and ensuring non-repudiation as well as

HIPAA compliance.

2. It combines and integrates the successfully verified EHR data into a new

composite EHR with a security certificate signed by the integrator.

2. EHR secure storage and access management

The EHR storage and management component is composed of two main entities:

the secure storage server and the access control engine, where the server stores the

encrypted composite EHR data and allows only authorized access and the access control

engine manages a collection of role-based or attribute-based access control policies and

HIPPA compliance policies, and enforces the access control policies to prevent the data

from unauthorized access. Only authorized medical personnel can obtain the access to the

13

authorized portions of the encrypted EHR data through identity and authorization based

decryption mechanisms.

Figure 6: EHR System Integration Model [5]

3. EHR secure usage model

The third component of the EHR security reference model is the secure usage

model that provides source verifiable content access for consumers of EHR data,

including both patients and healthcare practitioners. Thus the two basic functional

building blocks in this component are signature and verification.

Signature:

When the practitioners participating in the consultation of a patient, reach a

medical conclusion regarding the next step in treatment, they sign the medical certificate

of the corresponding EMR with the appropriate signature algorithm. When the portion of

the EMR is used to create an EHR record for that patient regarding this consultation, the

certificate is sent to him alone with the corresponding EHR.

14

Verification:

Consequently, to verify the authenticity of the consultation result made available

in the form of an EHR, the patient can use this medical certificate and practitioners’

digital signature. Note that the privacy of the practitioners can be respected and, the

patient does not need to know the group of practitioners who signed the medical

certification of the consultation results.

2.5 WSN IN SMARTPHONES MONITORING HUMANS HEALTH

In the last two decades, there has been a steady decline in the number of patients

getting admitted and treated in hospitals due to the influence of mobile healthcare. Long-

term monitoring of patients’ physical, physiological, psychological, cognitive, behavioral

process is crucially important for those with chronic diseases [16, 17].

Figure 7, shows an overview of health monitoring architecture with a smart phone

[17] which has links to external wireless sensor devices, such as a blood pressure

monitor, weight scale, etc. to collect periodically health data. These external devices have

sensors, which are Bluetooth enabled. The smart phones running healthcare apps monitor

the wellbeing of the patient and transmit the data to the healthcare Data Server

maintained by the hospital via the internet. The medical personnel access the Data server

via a secure internet connection to monitor the patient’s health remotely.

15

 Figure 7: WSN in Smart Phones Monitoring Patient’s Health [17]

AMON [12] is a wrist-worn WSN medical monitoring system specially designed

for patients with cardiac disease and respiratory problems. This system includes

continuous collection and evaluation of several vital signs and it is connected to the

medical center.

BeTelGeuse ([18], [19]) is a platform for gathering and processing situational

data. BeTelGeuse runs on smart phones and gathers health data from a body area network

over Bluetooth. It transmits the gathered health data to a server for further processing.

The main advantage of BeTelGeuse system is that it can be extended to use new sensors

and it runs on several platforms. BeTelGeuse’s major disadvantage is that the server does

not offer a general architecture for data processing and analysis and also the approach

doesn`t consider major aspects like scalability and data security.

16

2.6 ELLIPTICAL CURVE CRYPTOGRAPHY

In the proposed architecture, we use Elliptical Curve cryptography (ECC), a

public key encryption technique based on elliptic curve theory. This is very fast and more

efficient [20]. ECC generates the keys by the properties of Elliptical Curve (EC) rather

than traditional method of generation as the product of very large prime numbers. Since,

ECC establishes more security with less processing power and battery resource usage; it

is widely used in smart phones for security.

Neal Koblitz and Victor Miller independently proposed Elliptic curve encryption

scheme in 1985. Elliptic curve uses discrete logarithm over finite field [21]. Prime curve

over finite field Zp uses a cubic equation of the form of (1), with a, b satisfying (2).

y2 mod p = (x3 + ax + b)mod p………………..…(1)

Where a, b, x and y takes integer values between 0 to p –1.

 4a3 + 27b2 (mod p) != 0………………………....(2)

The mode of operation of Prime curve over Zp, can be described as follows.

Choose a prime p, curve coefficient a, b, an integer pr and a generator G which is a point

on the curve with x and y coordinate. G is multiplied by pr as indicated in (3) to produce

pu.

pu(x1, y1) = pr ×G(x, y)…………………………..(3)

The private key is pr and the public key can be denoted as (4).

pu(x1, y1),G(x, y), Ep(a,b)…………..……………(4)

In order to encrypt a message M, the message is mask as a point with x and y

coordinate, an integer k is chosen and the cipher text can be computed using formula in

(5).

17

C = k × G(x, y),M(xm, ym) + k × pu(x1, y1).....…. (5)

To decrypt, M is computed from (6) and the mask is reversed to produce the message.

M = M(xm, ym) + k × pu(x1, y1) - pr ×G(x, y)

 = M(xm, ym) + k × pr ×G(x, y) - pr × k × G(x, y)

 = M(xm, ym) …………………………………..(6)

 According to the National Institute of Standards and Technology (NIST)

guideline on security strength [22], Elliptic curve offers keys of smaller size and it more

secure. ECC is light weight and compatible with lower power systems such as smart

phones and PDA’s.

2.7 TESLA PROTOCOL

TESLA (Timed Efficient Stream Loss-tolerant Authentication) is an efficient

protocol with low communication and computation overhead for the generation and

verification of authentication information, which scales to large numbers of receivers and

tolerates packet loss [26]. Tesla provides asymmetric properties in spite of using

symmetric cryptographic functions. It uses the MAC (Message Authentication Code)

function as a security engine which is very suitable for smart phones that have low-

power, processing speed, and storage capabilities.

SENDER:

In this model, the sender composes a stream of data as a message {Mi}. The

sender splits the time into equal intervals. The duration of each time interval is denoted

with Tint, and the initial time for the interval i is Ti. Trivially, we have Ti=T0+i*Tint. In

each interval, the sender may send zero or multiple message. Before sending the first

18

message, the sender determines the interval duration, and the length N of the key chain,

and it picks a random value for KN. The sender constructs a one-way function F: F(k) =

fk(0) using a pseudo-random function F. The key chain’s element is defined as Ki =

F(Ki+1). Now each key can be derived from KN as Ki = F
N-i

(KN), where F
j
(k) = F

j-1
(F(k))

and F
0
(k) = k. Here each key k in the key chain corresponds to one time interval Ij. We

use a second pseudo-random function F’ to derive the key K
`
i = F

`
(Ki) used to compute

the MAC, which needs to be appended to every message sent.

 Figure 8: Tesla protocol for securing the alert SMS sent to the hospital.

The initial authentication packet is sent containing time interval duration Tint, start

time Ti, the length of the key chain N, key disclosure delay d which is the number of

intervals, and key commitment to the key chain Ki (i < j-d where j is the current interval

index). Each key of the key chain is used in a onetime interval, and the number of

19

messages sent per time interval may vary from 0 to many. Each constructed packet

(message) in the time interval Ii will look as follows: {Mj | MAC(K
`
I, Mj) | Ki-d}.

RECEIVER:

When the receiver receives the message Mj, it uses the self-authenticating

key Ki-d disclosed in Mj to determine i. On receiving the disclosed key Ki first, it checks

whether it already knows Ki or a later key Kj (j>i). If Ki is the latest key received by the

receiver, the receiver checks the legitimacy of Ki by verifying for some earlier

key Kv (v<i) that Kv = F
i-v

(Ki). The receiver then computes K'i = F'(Ki) and verifies the

authenticity of packets of interval i and of previous intervals if the receiver did not yet

receive the keys for these intervals.

20

CHAPTER III

PROPOSED APPROACH

3.1 PROBLEM STATEMENT

Existing healthcare systems are paper based which involves manual note taking,

updating the notes to the computer and maintaining the records. These processes are error

prone and it takes time before the data and notes can be accessed by healthcare

professionals. Our goal therefore is to propose a system that will allow a patient to not

come to the hospital, provide error free collection of patient data, and enable fast secure

access to patient as soon as it becomes available. We use sensor networks and the cloud.

The patient therefore does not have to be at the hospital, doctors can read the patient’s

health data as soon as it is available and the information is subject to be less error prone

as the human is not in the chain. Furthermore as the patient is not at the hospital, our goal

is to quickly identify emergency situations so that the necessary help can be sent to the

patient.

3.2 PROPOSED SOLUTION

We have proposed an architecture which integrates wireless sensor networks

running on smart phones, with cloud computing. The health data obtained from the

healthcare apps running on the smart phones needs to processed and based on

abnormality of the data, necessary actions needs to be taken. A copy of the sensor data is

21

sent to the cloud from where the hospital accesses it. The proposed architecture

integrating the smart phones and cloud solves the problem using the proposed filter

system. If there is any abnormality in the health parameter, the smart phone sends an alert

SMS to the healthcare organization. HIPAA [6] defines a set of rules on who has access

to the patient’s health records. Therefore, only authorized medical personnel should

receive the alert SMS sent by the smart phones. The proposed key search and priority

ranking algorithm solves this problem by finding the highest weighted list of medical

personnel to whom the alert SMS needs to be send.

3.3 PROPOSED SYSTEM ARCHITECTURE

For the integration of wireless sensor network with the healthcare cloud, we have

proposed a three-tiered cloud based system. Each smart phone has a filter app and one or

more healthcare apps running on them. All the healthcare apps are tied with the proposed

innovative filter app which receives the healthcare data from different healthcare apps

running on the smart phone. The filter provides patients and healthcare provider’s insight

into physiological and physical health states that are critical to the detection, diagnosis,

treatment and management of ailments.

In particular the proposed architecture has the following:

 A smartphone layer senses the user’s heart rate, blood pressure rate, glucose

monitor, body temperature etc. using the healthcare apps. This layer establishes

communication with the filter layer by sending the sensor data to the filter.

 The filer layer is designed to meet real-time requirements of the applications

running on the smartphones.

22

o The filter layer is based on existing smart phone equipment and provides

resources for limited data storage, caching, and processing power.

o The filter running on the smartphone checks the received data from

healthcare apps with the thresholds of the respective health record using a

lookup table containing different health record and their levels. If there is

any abnormality in the health condition, the smart phone sends the health

record to hospital. It sends the health record through an emergency alert

message (SMS) containing the health parameter and its abnormal value to

the hospital.

o The filter uses elliptical curve, an asymmetric cryptography technique and

sends a copy to the EMR System running on the cloud for the hospitals

reference. Hence the data is encrypted before sending it to the cloud for

security reasons. We used an asymmetric algorithm as they are ideally

suited for real-world use, as the secret key does not have to be shared.

Every user only needs to keep one secret key in secrecy and a collection of

public keys that only need to be protected against being changed. We used

Elliptical Curve because it is light-weight and compatible with lower

power systems such as smart phones and PDA’s.

 The cloud layer can be either a Platform as a Service (PaaS) or an Infrastructure

as a Service (IaaS), where the Electronic Medical Record (EMR) System has been

deployed. This layer has the feature of large storage, extensive computation, and

is used for large-scale computations without real-time constraints.

23

 The data from the cloud layer is accessed by the insurance companies and

hospitals to whom the rights to access the data as per HIPAA [6] compliance

policies is granted. Also the hospital keeps monitoring the health condition of the

patients.

Figure 9: Proposed System Model

3.4 FILTER-BASED HEALTHCARE SYSTEM

 The filter is an application running on the smart phones whose main functionality

is to receive the sensed data (usually blood rate, heart rate, glucose etc.) from the

healthcare apps and stores them in a temporary buffer.

 The filter analyses the received healthcare data with the help of a look-up table,

containing the different health parameter levels and find the severity of the

24

received data. Table 1, gives the lookup table for Heart rate, Blood pressure and

Blood sugar values.

 The smart phone healthcare apps create the xml from the sensor data containing

the patient ID, sex,

age and health

readings. The filter

receives this xml

data from the

healthcare apps.

Figure 10: Filter Architecture

XML DATA:

<HealthRecord>

<Pid> P001 </Pid>

<Age> 45 </Age>

<Sex> Male </Sex>

<HealthProblem> HeartRate </HealthProb>

<Value> 70 bpm </Value>

</HealthRecord>

 If the resulting value is found to be severe, an emergency alert SMS is sent to the

hospital and a copy of the record is encrypted using ECC and sent to the EMR

system running on the cloud. HIPAA [6] defines who should have access to the

patients’ data. The proposed priority ranking algorithm (section 3.7), decides

whom to send the emergency alert message as SMS.

 If the resulting value is found to be normal, encrypt the data using ECC and send

it to the EMR system running on the cloud to get stored.

25

3.5 LOOKUP TABLE FOR FILTER SYSTEM:

 Table 1: Lookup Table for Filter System [23, 24]

The lookup table is a part of the filter app running on the smart phones. The table

contains the actual values of different levels of blood pressure, blood sugar and heart rate.

The main functionality of the lookup table in the filter application is to find whether the

incoming data is normal or abnormal.

26

3.6 KEY SEARCH ALGORITHM:

HIPAA [6] defines that only the healthcare providers, to whom the patient has

given permission to access his health data and health plans, including health insurance

companies, HMOs, company health plans, and certain government programs that pay for

health care, such as Medicare and Medicaid, have rights to access healthcare data. This

ensures that only the relevant healthcare personnel will receive the patient’s health data.

For example, if the sensor data indicate that the heart is about to fail, the data should be

sent to the primary care physician and the cardiologist.

Our proposed approach maintains privacy and security, in that only the

appropriate medical professionals who can help the patient are identified to receive the

data. The proposed key search algorithm is implemented as a part of the filter system

which on receiving the patient’s abnormal data decides to whom to send the data through

an alert SMS.

The filter receives the xml data as shown in (section 3.4) from the healthcare app,

and it extracts the health data that includes the desired health parameter (Blood Pressure,

Blood Sugar, Heart Rate etc.) and its corresponding value from the xml. This health

parameter serves as a keyword, and the keyword with its value is sent to the lookup table.

The lookup table containing all the health parameters with actual and abnormal values

finds the severity of the received value. If the health parameter value is found to be

normal, the data is ignored by the algorithm. If the health parameter value is found to be

abnormal, its corresponding parameter is used as a keyword for the proposed key search

algorithm. Based on the keyword, the algorithm finds the list of doctors to whom the

abnormal data is to be sent.

27

The key search algorithm follows the idea of Google’s page ranking algorithm [25],

which works on webpages as follows,

 Find all pages matching the keywords of the search.

 Rank accordingly using “on the page factors” as keywords.

 Calculate the inbound anchor text.

 Adjust the results by PageRank scores.

As per Google’s page ranking algorithm [25], a graph G = (n, e) is constructed for

every search made by the user on the internet, where n is the set of nodes representing

webpages and e is the edge between two nodes. Every node (webpage) is given an initial

weight. The weights of the nodes change according to the page ranking formula given by,

PR(A) = (1-d) + d(PR(T1)/C(T1) + … + PR(Tn)/C(Tn)) ……………………….(1) [25]

where,

 PR(A) is the PageRank of A,

 PR(Ti) is the PageRank of pages Ti which link to page A,

 C(Ti) is the number of outbound links on page Ti and

 d is the damping factor that is set between 0 and 1 (normally 0.85).

In our proposed system architecture, every filter system receives healthcare

information from the hospital database. Although this information may be sent in XML

format, or some other semi-structured format, we represent it as a graph for our purposes.

The graph GO = (nO, eO) where nO is the set of nodes representing doctors and an edge eO

between two nodes represents a relationship between two doctors. Every node ni is given

an initial weight wni by the hospital’s database server. The hospital’s database server also

28

provides the availability of doctors or healthcare professionals, and specialization of all

the nodes (doctors) in the graph.

Figure 11: Key Search System Model for Filter System

Our proposed key search algorithm works as follows,

Inputs: Abnormal data keywords Am and its value xm. A graph GO = (nO, eO) with n

nodes, a start node ns and other nodes n1,…nm and edges e1,…em that connect the nodes. A

node contains the following attributes: an unique ID DocIDi, the keyword Ai and its value

xi. The start node nS, could represent the primary caretaker.

Outputs: A ranking of the top three nodes from the generated connected sub-graph.

29

STEP 1: Find all nodes (doctors) in the graph matching the keyword Am (represents

abnormal data such as Blood Pressure, Heart Rate, etc.).

STEP 2: Construction of the ranking graph,

STEP 2.1: Construct a new graph GN = (nN, eN) where nN is the set of nodes, and eN is

the set of edges connecting the nodes. Edges are added in step 3. Each node

represents a doctor. The new graph GN must include all the nodes that has the

keyword A, in the graph GO.

STEP 2.2: A weight (wnA) is assigned to the node ni on the graph GN based on the

doctors availability. A high number means the doctor is very busy. This is assigned to

every node.

STEP 2.3: An additional weight (wnS) is added to the node ni, if the node (doctor) is

specialized in the field on which the keyword parameter is. Hence the total weight of

a node ni is wTni = wni + wnA + wnS where, wni is the initial weight of the node ni.

STEP 3: For all the nodes ni in n1,…nm, draw an edge esi, between the start node ns and

node ni where both ns and ni have the same A keyword. At the end of this step, there will

be edges between the start node with keyword A and all the nodes that have the same

keyword.

STEP 4: In the connected graph, rank the nodes with the highest weight first.

STEP 5: The start node in the graph is given the rank 1, and the next two ranks are given

to the next two highest weighted nodes in the connected graph.

The overall complexity can be written as O(M), where M is the total number of

nodes.

30

3.6.1 KEY SEARCH ALGORITHM EXAMPLE:

Inputs

 A directed graph GO = (no,eo)

 A start node ns

 A node contains the following attributes:

o an unique ID DocIDi

o Keyword Ai and its value xi.

Figure 12: Input Graph GO

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w5 = 6

n
s

Go

31

 Input keyword A1:

Figure 13: Step 1 - Nodes matching Input Keyword A1

Construction of the new graph GN ,

 A weight (wAn) is assigned to the node nn on the graph GN based on doctors

availability.

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

n
s

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

wA1 = 3

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

wA2 = 10

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

wA3 = 7

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

wA4 = 6

n
s

32

Figure 14: Step 2.1 - Construction of New Graph GN

 An additional weight (wSn) is added to the node nn, Hence the total weight of a

node nn is wTn = wn + wAn + wSn

Figure 15: Step 2.3 - Construction of New Graph GN with final weights

 Draw an edge esi, between the start node ns and node ni where both ns and ni have

the same input keyword A1.

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

wA1 = 3, wS1 = 5

wT1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

wA2 = 10, wS2 = 6

wT2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

wA3 = 7, wS3 = 5

wT3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

wA4 = 6, wS4 = 7

wT4 = 21

n
s

w
1
 = 5, w

N

A1
 = 3,

w
S1

 = 5

w
T1

 = 5+3+5 =13

33

Figure 16: Step 3 - Final constructed Graph GN with final weights and edges

Ranking: Rank1: Node2 (DocID2), Rank 2: Node4 (DocID4), and Rank3: Node3(DocID3)

This approach works only for a single health parameter with a single value, and

when there are multiple health parameters with multiple input values, the proposed

priority algorithm serves as a solution.

3.7 PRIORITY RANKING ALGORITHM

 The patient may be in an emergency situation, and he may not be aware that he is

in danger. The filter identifies that the patient is in a serious emergency situation based on

the historical and current values of the sensed data. If the filter determines the situation as

critical, a consolidated report is sent to the hospital, along with the location (address) of

the patient, sensed through the GPS sensor running on the smart phone.

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

wA1 = 3, wS1 = 5

wT1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

wA2 = 10, wS2 = 6

wT2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

wA3 = 7, wS3 = 5

wT3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

wA4 = 6, wS4 = 7

wT4 = 21

n
s

34

 Figure 17: Priority Ranking System Model for Filter System

The main idea of this proposed algorithm is that the healthcare data needs to be

confidential, and only the authorized and appropriate healthcare professionals, who are

connected to the patient, can have access to the patient’s health data.

Figure 17, explains how the priority ranking algorithm works in an emergency

situation. The filter stores the health values of the patient for the last n hours (n is

determined by the medical profession), in vector form ([x1, x2,..xn]) where xi is values of

different health parameters. The vector is sent to the lookup table, which eliminates the

normal values and retains the abnormal values in the vector. The GPS sensor gets

activated, and it finds the patient’s location and generates the address. The system then

produces the report containing the consolidated data which is simply a collection of the

data sent by the sensor over the last n hours and the address.

In the Priority Ranking Algorithm, the algorithm constructs a new graph with the

input graph and input keywords with its vectors. A new graph is constructed by taking all

the nodes matching the input keyword and weights on each node are calculated. This

35

process is repeated for all input keywords. If there are n input keywords, then n number

of graphs are constructed and all n graphs are superimposed to get a final connected

graph. Then weights on each node of the final superimposed graph are calculated. The

nodes are then ranked based on the weights calculated on each node with the highest

weight first.

The proposed priority ranking algorithm works as follows,

Inputs: A directed graph GO = (n
o
,e

o
). Each node has an initial weight w

o
i where i is the

node which has a id DocIDi. Each edge has an initial weight w
o

k,m where the edge is a

directed edge between nodes k and m. A node contains the following attributes: an

unique ID DocIDi, multiple keywords Ai…Am and its associated vectors Ai[x1,

x2,..xn]…Ap[y1, y2,…yn] respectively.

Outputs: The top 3 nodes are output.

STEPP 1: Find all nodes (doctors) in the graph matching the keyword Ai (represents

abnormal data such as Blood Pressure, Heart Rate, etc.).

STEP 2: Construction of the graph,

STEP 2.1: Construct a new graph Gi = (n
i
, e

i
).

The graph Gi is constructed as follows:

STEP 2.2: A weight (w
i
An) is assigned to the node nn on the graph Gi based on

doctors availability. A high number means the doctor is very busy. This is

assigned to every node.

STEP 2.3: An additional weight (w
i
Sn) is added to the node nn, if the node (doctor)

is specialized in the field on which the keyword parameter is. Hence the total

weight of a node nn is w
i
Tn = w

i
n + w

i
An + w

i
Sn

36

STEP 2.4: For all the nodes nn in ni,…nm, draw a directed edge e
i
sk, between the

start node ns and node nm where both ns and nm have the same Ai keyword. At the

end of this step, there will be edges between the start node with keyword Ai and

all the nodes that have the same keyword.

STEP 2.5: An initial edge weight w
i
k.m is associated with each edge (k,m). This

weight is a function of the input vector Ai[x1, x2,.. xn] associated with the keyword

Ai.

STEP 2.6: Add all nodes and edges in GO to Gi such that if there is an edge eon in

GO that links a node no in GO that does not exists in Gi, to a node nn in GO that

also exists in Gi, then the directed edge eon and node no are added to Gi such that

e
i
on = (no,nn).

Similarly, if there is an edge eno in GO that links a node nn in GO that exists in Gi

also, to a node no in GO that does not exist in Gi, then the directed edge e
i
no and

node no are added to Gi such that e
i
no = (nn,no).

If there is an edge epq in GO that links a node np in GO that exists in Gi, to a node

nq in GO that also exists in Gi, then the directed edge epq is added to Gi such that

e
i
pq = (np,nq), only if there is no edge connecting np and nq already in Gi.

STEP 2.7: For all initial incoming edges e
i
kj to a node n

i
j, the final weight of the

node is,

 ∑

that is, the weight of the node added to the weight of all the initial incoming

edges.

STEP 2.8 : Assign to each outgoing edge e
i
jk of a node n

i
j a new final weight w

i
j,k

= (w
i
TFj * m) / k, where there are k outgoing edges from the node nj, wTFj is the

37

final weight of node nj that we calculated in the above step 2.7 and m is the

multiplication factor which can be between 0 and 1. It is a probability that a

doctor is selected by the patient.

STEP 3: Calculate the total weights of each node ni in the graph Gi :,

w
i
Totalj = m * w

i
TFj + ∑

where,

 w
i
Totalj is the total weight of the node nj.

 w
i
TFj is the final weight of the node nj in the constructed graph Gi.

 w
i
1j, w

i
2j,…, w

i
kj are the weights of the incoming edges to a node ni in the

constructed graph Gi.

 m is the multiplication factor which can be between 0 and 1. It is a probability

that a doctor is selected by the patient.

STEP 4: In the connected graph Gi, rank the nodes with the highest total weight w
i
Totaln

first.

STEP 5: The start node in the graph is given the rank 1, and the next two ranks are given

to the next two highest weighted nodes in the connected graph Gi.

STEP 5.1: If there is only one keyword given with its input vector, stop at step 5.

However, if multiple keywords are given as inputs, proceed to step 6.

STEP 6: Repeat steps 1 to 5 for all keywords Ai…Am with input vectors Ai[x1, x2, … xn] …

Ap[y1, y2, … yn] respectively. The constructed connected graphs for these keywords will

be Gi, Gj..., Gp taking the same graph GO as input.

38

STEP 7: Now we have multiple graphs {Gi, Gj..., Gp} constructed using different health

parameters of the same patient. Our goal is to find the final list of doctors to whom the

abnormal data needs to be sent.

STEP 8: Construct the final graph GF = (n, e) with the final weights by superimposing the

constructed sub-graphs.

STEP 9: Superimpose the graphs {Gi, Gj,...,Gp}, and construct the final graph GF. The

graphs are superimposed as follows:

STEP 9.1: For all nodes n
i
, n

j
,…,n

p
 of graphs Gi, Gj, …, Gp where DocIDi of node

n
i
 = DocIDi of node n

j
, = DocIDi of node n

k
 …,n

p
i

, create a single node n

f
n with

id DocIDi. In other words, all the nodes with the same id from graphs Gi, Gj, …,

Gp, are merged into a node in graph Gf. The merge includes any nodes which have

not been merged with any other nodes in the final graph Gf.

STEP 9.2: After superimposing the nodes n
i
i, n

j
i,…,n

p
i to n

f
n which has the

identical IDs, calculate the weight of n
f
n. w

f
Tn = w

i
i + w

j
i…w

p
i , where w

i
i, w

j
i

…w
p

i are the total weights w
i
Totali, w

j
Totali,…, w

p
Totali, of nodes n

i
i, n

j
i,…,n

p
i

calculated from their respective graphs.

STEP 9.3: Merge the edges e
i
pq, e

j
pq …. e

p
pq to a single edge e

f
pq, if nodes p and q

exists in all or any of the graphs Gi, Gj, …, Gp. The weight of edge e
f
pq, w

f
pq = w

i
pq

+ w
j
pq + …+ w

p
pq, where w

i
pq, w

j
pq, …, w

p
pq are the weights of edges e

i
pq, e

j
pq ….

e
p

pq calculated from their respective graphs.

STEP 9.4: In the fully constructed final superimposed graph Gf, for all initial

incoming edges e
f
ij to a node n

f
j, the final total weight of the node n

f
j is,

 ∑

39

that is, the weight of the node added to the weight of all incoming edges.

is

obtained from step 9.2

STEP 9.5: Gf is the final graph as a result of superimposing all the graphs {Gi,

Gj,...,Gp} as outlined above.

STEP 10: In the connected graph Gf, rank the nodes with the highest total weight w
f
Totaln

first.

 The start node in the graph is given the rank 1, and the next two ranks are given to the

next two highest weighted nodes in the connected final graph Gf.

The overall complexity can be written as O(Ml), where M is the total number of

nodes, and l is the total number of values in the input vector.

3.7.1 PRIORITY RANKING ALGORITHM EXAMPLE

Inputs:

 A directed graph GO = (n
o
,e

o
)

 A start node ns

 A node contains the following attributes:

o an unique ID DocIDi

o multiple keywords Ai…Am and its associated vectors Ai[x1, x2,..xn]…Ap[y1,

y2,…yn] respectively.

o Each node i has an initial weight w
o

i

o Each edge ek,m has an initial weight w
o

k,m

40

Figure 18: Input Graph GO

 Given input Keyword is A1

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
o
1 = 5

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
o
2 = 7

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
o
3 = 3

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
o
4 = 8

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
o
5 = 6

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
o
6 = 2

n
s

w
o

12
=3

w
o

13
=5

w
o

32
=4

w
o

24
= 6

w
o

26
= 5

w
o

56
=2

Go

w
o

34
=3

w
o

45
=5 w

o

63
= 4

41

Figure 19: Step 1 - Nodes matching the input keyword A1

 Construction of the new graph G1 = (n
1
, e

1
) for keyword A1

Figure 20: Step 2.2 - Nodes with initial weight and availability weight

 Total weight of a node nn is w
1

Tn = w
1
n + w

1
An + w

1
Sn

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w1 = 5

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w2 = 7

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w3 = 3

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w4 = 8

n
s

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1
1 = 5

w
1

A1 = 3

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1
2 = 7

w
i
A2 = 10

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1
3 = 3

w
1

A3 = 7

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1
4 = 8

w
1

A4 = 6

n
s

42

Figure 21: Step 2.3- Nodes with the total weights of availability and specialization

Figure 22: Step 2.4 - Graph G1 with edges

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1
1 = 5

w
1

A1 = 3, w
1
S1 = 5

w
1

T1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1
2 = 7

w
1

A2 = 10, w
1
S2 = 6

w
1

T2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1
3 = 3

w
1

A3 = 7, w
1
S3 = 5

w
1
T3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1
4 = 8

w
1

A4 = 6, w
1
S4 = 7

w
1

T4 = 21

n
s

w
1
= 5, w

A

1

1
 = 3,

w
1

1
 = 5

w
1

T1
 = 5+3+5 =13

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1
1 = 5

w
1

A1 = 3, w
1
S1 = 5

w
1

T1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1
2 = 7

w
1

A2 = 10, w
1
S2 = 6

w
1

T2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1
3 = 3

w
1

A3 = 7, w
1
S3 = 5

w
1

T3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1
4 = 8

w
1

A4 = 6, w
1
S4 = 7

w
1

T4 = 21

n
s

43

 An initial edge weight w
1

k.m is associated with each edge (k,m).

Figure 23: Step 2.5 - Graph G1 with edges and its initial weights

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1
1 = 5

w
1

A1 = 3, w
1
S1 = 5

w
1

T1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1
2 = 7

w
1

A2 = 10, w
1
S2 = 6

w
1

T2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1
3 = 3

w
1

A3 = 7, w
1
S3 = 5

w
1

T3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1
4 = 8

w
1
4 = 6, w

1
S4 = 7

w
1

T4 = 21

n
s

w
1

21
=5

w
1

23
=7

w
1

24
=9

44

Figure 24: Step 2.6 - Constructed Graph G1 with initial weights on edges and

total weights on nodes.

 Final weight of the node is,

 ∑

 - The weight of the node added to the weight of all the initial

incoming edges.
 =

 + w
1

21
 = 13+5 =18

 New final weight on edges, w
i
j,k = (w

i
TFj * m) / k

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1
1 = 5

w
1

A1 = 3, w
1
S1 = 5

w
1

T1 = 13

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1
2 = 7

w
1

A2 = 10, w
1
S2 = 6

w
1

T2 = 23

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1
3 = 3

w
1

A3 = 7, w
1
S3 = 5

w
1

T3 = 15

DocID
4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1
4 = 8

w
1

A4 = 6, w
1
S4 = 7

w
1

T4 = 21

n
s

w
1

21
=5

w
1

23
=7

w
1

24
=9

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1

T6
 = 2

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1

T5
 = 6

w
1

13
=5

w
1

26
= 5

w
1

45
= 5

w
1

63
= 4

w
1

34
=3

45

Figure 25: Step 2.7 - Graph G1 with new weights on edges

 Total weights of each node ni in the graph GN using the formula,

w
i
Totalj = m * w

i
TFj + ∑

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

w
1

T1 = 13, w
1

TF1 =18

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1

T2 = 23

w
1

TF2 = 23

w
1

TF3 = 31

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1

T3 = 15

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1

T4 = 21

w
1

TF4 = 33

n
s

w
i
j,k = (w

i
TFj * m) / k

Example:

w
1
12= (23*0.5)/4

 = 2.9

w
1
23 = 2.9

 w
1

TF6 = 7

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1

T6
 = 2

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1

T5
 = 6

w
1

TF5 = 11

w
1
13 = 9

w
1
26=2.9

w
1

45
 = 16.5

w
1

63
 = 4.5

m = 0.5

w
1
21 = 2.9

w
1

24
=2.9

w
1

34
 = 15.5

46

Figure 26: Step 3 - Final constructed graph G1 with final total weights

 Repeat the same for all keywords Ai…Am with input vectors Ai[x1, x2, … xn] …

Ap[y1, y2, … yn] respectively.

 Superimpose the graphs G1, G2, G3, and construct the final graph Gf.

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
1

TF1 =18

 w
1

Total1 = 11.9

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
1

TF2 = 23

 w
1

Total2 = 11.5

w
1

TF3 = 31

w
1

Total3 = 31.9

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

w
1

TF4 = 33

 w
1

Total4 = 34.9

n
s

w
i
Totalj = m * w

i
TFj + ∑ 𝑤𝑘𝑗

𝑖𝑒𝑘𝑗
𝑖

𝑒 𝑗
𝑖

w
1
23 = 2.9

w
1

TF6 = 9

w
1

Total6 = 9.9

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
1

TF5 = 11

w
1

Total5 = 22

w
1
13 = 9

w
1
26=2.9

w
1

45
 = 16.5

w
1

63
 = 4.5

m = 0.5

w
1
21 = 2.9

w
1

24
=2.9

w
1

34
 = 15.5

w
1

Total1
 = 0.5*18 +2.9

 = 11.9

47

Figure 27: Step 7 - Constructed Graph G1 for keyword A1

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
1

T1 = 11.9

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

 w
1

T2 = 11.5

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
1

T3 = 31

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
1

T4 = 34.9

n
s

w
1
23 = 2.9

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
1

T6 = 9.9

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
1

T5 = 22

w
1
13 = 9

w
1
26=2.9

w
1

45
 = 16.5

w
1

63
 = 4.5

w
1
21 = 2.9

w
1

24
=2.9

w
1

34
 = 15.5

G1

48

Figure 28: Step 7 - Constructed Graph G2 for keyword A2

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
2

T1 = 10

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

w
2

T2 = 15

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

w
2

T3 = 18

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w2
T4 = 14

n
s

w
2
23 = 2.5

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w2
T5 = 12

w
2
13 = 4

w
2

45
 = 6

w
2
21 = 4

w
2

24
=2

w
2

34
 = 5

G2

w
2

35
 = 7

49

Figure 29: Step 7 - Constructed Graph G3 for keyword A3

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
3

T1 =8

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

 w
3

T2 = 12

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
3

T3 = 9

n
s

w
3
23 = 5

DocID
7

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
3

T7 =18

w
3
13 = 2

w
3`

21 = 2

G3

w
3

37
 = 4

50

The Final graph Gf :

Figure 30: Step 8 - Construction of Superimposed Final Graph Gf

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
f
T1 = 29.9

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

 w
f
T2 = 38.5

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f
T3 =58

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
f
T4 = 48.9

n
s

w
f
23 = 10.4

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
f
T6 = 9.9

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f
T5 = 34

w
f
13 = 15

w
f
26=2.9

w
f

45
 = 22.5

w
f

63
 = 4.5

w
f
21 = 8.9

w
f

24
=4.9

w
f

34
 = 20.5

Superimposing identical nodes of G1,G2,G3 And Merging edges Of identical

nodes

w
f

35
 = 7

DocID
7

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f

T7
= 18

w
f

37
 = 4

w
f
T1=w

i
T1+w

j
T1+ w

p
T1

w
f
T1=w

1
T1+w

2
T1+ w

3
T1

11.9 +10 +8 =29.9

w
f
T1 =29.9

w
f
13 = w

i
13+w

j
13+ w

p
13

w
f
13= w

1
13 +w

2
13 + w

3
13

9+4+2 =15

w
f
13=15

51

 In the fully constructed final superimposed graph GF, the final total weight of the

node nfi using the formula,

 ∑

Figure 31: Step 9.3 - Constructed Graph Gf with final total weights

DocID1

A1 – A1[x11, x12,..x1n]

A4 – A4[x41, x42,..x4m]

 w
f
Total1 = 38.8

DocID
2

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A4 – A4[x41, x42,..x4m]

 w
f
Total2 = 38.5

DocID
3

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f
Total3 =87.9

DocID

4

A
1

–

A

1
[x

11
, x

12
,..x

1n
]

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
f
Total4 = 74.3

n
s

w
f
23 = 10.4

DocID
6

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
3

–

A

3
[x

31
, x

32
,..x

3b
]

 w
f
Total6 = 12.8

DocID
5

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f
Total5 = 63.5

w
f
13 = 15

w
f
26=2.9

w
f

45
 = 22.5

w
f

63
 = 4.5

w
f
21 = 8.9

w
f

24
=4.9

w
f

34
 = 20.5

w
f

35
 = 7

DocID
7

A
2

–

A

2
[x

21
, x

22
,..x

2k
]

A
4

–

A

4
[x

41
, x

42
,..x

4m
]

 w
f

Total7 = 22

w
f

37
 = 4

 w
f
Total1=w

f
T1+w

f
21

 29.9+8.9 =38.8

𝑤𝑇𝑜𝑡𝑎𝑙𝑗

𝑓
 𝑤𝑇𝑗

𝑓
 ∑ 𝑤𝑘𝑗

𝑓𝑒𝑘𝑗
𝑓

𝑒
 𝑗
𝑓

Final Graph Gf

52

 In the connected graph Gf, rank the nodes with the highest total weight w
f
Totaln

first.

Ranking: Rank1: Node2 (DocID2), Rank 2: Node3 (DocID3), and Rank3: Node4(DocID4)

Since Node2 (DocID2) is the start node ns, it is given the rank 1, as per the algorithm.

3.8 TESLA APPROACH FOR SENDING SECURE SMS:

SMS transmission in plain text through GSM is not considered to be secure. In

order to maintain confidentiality and data security, we use TESLA (Timed Efficient

Stream Loss-tolerant Authentication) broadcast authentication protocol for the proposed

filter architecture to send secure SMS. Since the key generation for TESLA approach is

dynamic using the pseudo-random function, we don’t need to store the keys. For this

reason, we used the TESLA approach to send secure SMS across the GSM network

rather than using Elliptical Curve Cryptography (ECC), where the public and private key

need to be stored.

SENDER (PATIENT’S SMART PHONE):

In this model, a sender’s (patient) smart phone composes the alert SMS {Mi}. The

sender splits the time into equal intervals. In each interval, the patient’s smart phone may

send zero or multiple SMS. The smart phone sends the initial authentication SMS packet

to the hospital containing, time interval duration, start time, the length of the key chain N,

key disclosure delay and key commitment to the key chain Each key of the key chain is

used in a onetime interval, and the number of SMS sent per time interval may vary from

0 to many.

53

RECEIVER (HOSPITAL):

When the receiver (hospital) receives the alert message Mi, it uses the self-

authenticating key disclosed in Mj to determine i. When the hospital receives the

disclosed key first, it checks whether it already knows the key Ki or a later key Kj (j>i).

If Ki is the latest key received by the hospital, the hospital checks the legitimacy of Ki.

The hospital then computes K'i = F'(Ki) and verifies the authenticity of packets of

interval i and of the previous intervals if the receiver did not yet receive the keys for these

intervals.

By using the TESLA approach, the alert SMS sent to the hospital is authenticated

using an asymmetric cryptography scheme and the transmission of SMS over the GSM

network is achieved in a secure manner.

54

CHAPTER IV

SIMULATION

4.1 INTRODUCTION

The objective of the simulation is to implement parts of the proposed EMR

(Electronic Medical Record) system on the cloud, implement part of the proposed filter

system on android and perform a simple case study on the proposed priority ranking

algorithm. For building the EMR system on the cloud, we used cloud foundry [27], an

open source PaaS (Platform as a Service) which gives an environment to deploy java-

spring based web-applications. We built this EMR system for the hospital to manage their

patients’ health information.

Figure 32: Simulated Architecture

55

Simulation for the filter system was performed on the android emulator on Eclipse

IDE, by developing an android filter app which sends an alert SMS on seeing abnormal

health data. We tested the app by running two instances (one serves as a patient and the

other serves as the hospital) of the emulator and sending alert SMS from one instance to

another. We also simulated the proposed priority ranking algorithm using Java 1.6 on

Eclipse IDE, using some simulated abnormal health data.

4.2 CLOUD FOUNDRY, AN OPEN SOURCE PaaS DEPLOYMENT MODEL

Cloud Foundry is an open-source platform-as-a-service environment offered by

VMware that provides the environment to host multiple languages and frameworks in an

open stack of application software that can run on both outside and inside the firewall

[27, 28]. The main features of Cloud Foundry are: Choice of developer frameworks,

Choice of application infrastructure services, and Choice of clouds

By offering an open architecture in all three dimensions, Cloud Foundry

overcomes major limitations found in today’s PaaS solutions. The distinct property about

Cloud Foundry is the support for the Spring Framework and MySQL, which helps to

deploy Java applications based on the Spring Framework on Cloud Foundry.

56

Figure 33: Cloud Foundry, Open Source Deployment Model [27]

4.3 CLOUD FOUNDRY ARCHITECTURE:

Figure 34: Cloud Foundry Architecture [28]

57

The pieces that make up Cloud Foundry [28] are:

App execution engine: This is the core that runs the application and launches and

manages the Rails, Java, and other language app servers. Scaling up the app, results in

more app execution engines launching an app server with the individual’s code.

Request router: Being the front door to the PaaS, it accepts all the HTTP requests for all

the applications running in the PaaS and routes them to the best app execution engine that

runs the appropriate application code. The hostname used by each application is told to

the request router, and it keeps track of the available app execution engines for each app.

 Cloud controller: The external API used by tools to load/unload apps and control their

environment, including the number of app execution engines that should run each

application is implemented by the cloud controller. It creates the bundles that app

execution engines load to run an application as part of taking in new applications.

Services: Data storage and other functions that can be leveraged by applications are

provided by a set of services. In an analogy with operating systems, these are the device

drivers. Each service consists of: the application implementing the service itself (like

MySQL, MongoDB, redis, etc.) and a Cloud Foundry management layer that establishes

the connections between applications and the service itself.

Health manager: Health manager is responsible for keeping applications alive. It also

ensures that if an app execution engine crashes, then the applications it ran are to be

restarted elsewhere.

All these parts are tied together using a simple message bus, which, among other

things, allows all the servers to find each other.

58

4.4 EMR HEALTHCARE SYSTEM RUNNING ON CLOUD FOUNDRY

The developed EMR Healthcare system for the proposed architecture is a spring

based java web application running on cloud foundry. This EMR system was developed

for the hospital to manage each patient’s profile and electronic medical records (EMR).

This receives the encrypted health data from the patient’s smart phone and the data gets

stored in the cloud. Here, cloud foundry acts as a centralized database to store and

manage a patient’s personal and health information. The following two screenshots

shows the EMR running on cloud foundry.

Figure 35(a). EMR Healthcare Cloud for Hospital (Patient Data)

59

Figure 35(b): EMR Healthcare Cloud for a Hospital (Health Record)

4.5 ANDROID EMULATOR

Android is a software stack for mobile devices that includes an operating system,

middleware and key applications [29].

The main components of the Android architecture are:

1. Applications: Android applications are written in Java. Calendar, email client, SMS

program, graphs, making phone calls, accessing the Web browser, accessing your

contacts list and others are some of the basic applications.

2. Application Framework: Android developers follow a skeleton or framework and can

access all framework APIs and manage phones’ basic functions like resource

allocation, switching between processes or programs, telephone applications, and keeping

track of the phone’s physical location.

60

3. Libraries: This layer consists

of Android libraries written in C

and C++, which are used by various

systems and are exposed to Android

developers via Android Application

framework. Handling different

kinds of data are specified by these

libraries. For example, media,

graphics, 3d, SQLite, web browser

library etc. This layer also includes

the Android Figure 36: Android Architecture [29]

runtime layer with a set of core java libraries and DVM (Dalvik Virtual Machine).

4. Runtime Android: The java libraries require a set of base libraries that are located in

this layer. Every Android application gets its own instance of DVM, which has been

written so that a device can run multiple VMs efficiently.

5. Kernel – Linux: Android’s Memory Management Programs, security settings, power

management software, and several drivers for hardware, file system access; networking

and inter-process-communication are included in this layer. The kernel also acts as an

abstraction layer between hardware and the rest of the software stack.

In order to simulate the proposed filter system, we used Android Development

Tools (ADT), a plugin for the Eclipse IDE that is designed to give one a powerful,

integrated environment in which to build Android applications.

61

4.6 FILTER APPLICATION ON ANDROID:

 The developed filter application running on the android emulator is for the

proposed filter system. It takes the data from the healthcare app running on the emulator

instance and sends it to the lookup table to find the severity level. If the data is abnormal,

an alert SMS is sent to the hospital. Figure 37 shows the developed filter running on

android.

Figure 37: Android App Simulating Filter App

62

The XML data coming into the filter system would be,

<HealthRecord>

<Pid> P001 </Pid>

<Age> 45 </Age>

<Sex> Male </Sex>

<HealthProblem> HeartRate </HealthProb>

<Value> 70 bpm </Value>

</HealthRecord>

The filter has a XML parser which gets all the patient information, and sends it to

EMR system running on cloud, and the filter checks the health parameter. If any

abnormality occurs, it sends an emergency alert to the hospital. Figure 37 shows how the

filter app sends an alert SMS in android emulator.

4.7 PRIORITY RANKING ALGORITHM SIMULATION

The priority ranking algorithm was implemented and a simple case study is presented

below.

EXPERIMENTATION UNITS:

Heart Rate Vector: [40 bpm, 65 bpm, 48 bpm, 70 bpm, 39 bpm]

Blood Sugar Vector: [170 mg, 190 mg, 240 mg, 260 mg, 300 mg]

The simulation was performed with Java 1.6 on Eclipse IDE. First, the input

vector is given to the lookup table running on filter java class, which eliminates the

normal data and takes only the abnormal value and sends it to graph. In Figure 38, graph

GA shows the constructed sub-graph for Heart Rate, and the weights are found by the

simulator after iterating all the nodes in the graph using the priority ranking approach.

Graph GB shows the constructed sub-graph for Blood Sugar, and the weights are found by

the simulator after iterating all the nodes in the graph.

63

In Figure 38, graph GF shows the final graph which is constructed as a result of

super-imposing the first two sub-graphs to find out the weights of each node after

combining the graphs. Based on the resultant graph’s weights, the nodes are ranked for

the filter to find whom to send the alert SMS.

The input vector of abnormal data for Heart Rate is [40 bpm, 48 bpm, 39 bpm]and

the initial weights for the graph having eight doctors are: wi1=3, wi2=2, wi3=1, wi4=4,

wi5=2, wi6=1, wi7=3, and wi8=2.

The Simulation result for the above input is,

Final Weights: wf3=1.20, wf2=1.94, wf5=2.0, wf8=2.40, wf1=2.4, wf6=2.4, wf7=2.80, wf4=6.4,

and wf8=2.

Ranking: RANK 1: Default D1; RANK 2: Doctor D4; and RANK 3: Doctor D7.

The input vector of abnormal data for Blood Sugar is [240 mg, 260 mg, 300 mg]

and the initial weights for the graph having six doctors are, wi1=4, wi2=1, wi3=2, wi4=3,

wi5=4 and wi6=2

The Simulation result for the above input is,

Final Weights: wf6=1.0, wf2=2.0, wf3=2.24, wf4=3.20, wf1=3.20 and wf5=4.0.

Ranking: RANK 1: Default D1; RANK 2: Doctor D5; and RANK 3: Doctor D4

Now, we need to find the final list of doctors, to whom the data needs to be sent.

This is achieved by superimposing the above two graphs, which gives

Final Weights: wf8=2.80, wf7=2.88, wf3=2.88, wf2=3.80, wf6=4.0, wf1=5.6, wf5=5.6 and

wf4=11.20

64

Final Ranking: RANK 1: Default D1; RANK 2: Doctor D4; and RANK 3: Doctor D5

 Figure 38: Simulated Graph

The proposed priority ranking algorithm is simulated with sample Heart Rate and

Blood Sugar values and final ranks determined.

65

CHAPTER V

CONCLUSION

In this thesis, we have proposed a filter-based cloud system architecture for

integrating wireless sensor networks with cloud computing for a secure healthcare

system. Smart phones were considered as the sensor device monitoring the patient’s

health signs. The sensed health data are sent to the cloud, where the hospitals EMR

system running on the cloud manages the patient’s medical records. Whenever there is an

emergency detected in the sensor data, the smart phone, using the filter app, sends the

abnormal data to the hospital through an alert SMS. HIPAA [6] compliance policies

enforces the control to access the patient health data. In order to complement this, the

filter system uses the proposed key search and priority ranking algorithm. These two

algorithms helped to rank the doctors based on the weights and find the list of doctors to

whom the alert SMS needs to be sent. Additionally, we used TESLA [28] approach to

encrypt the alert SMS being sent to the hospital.

The proposed system model is simulated by creating an EMR system for a

hospital using Java Spring web services and deploying it on Cloud foundry, PaaS

environment. The proposed filter system is simulated using the filter app running on the

android emulator sending alert SMS to another emulator instance on detection of

abnormal patient health data. The proposed priority ranking algorithm for finding the list

of doctors to whom the abnormal data is to be sent is implemented using Java 1.6.

66

Our work has left several directions for future work. The smart phone integration

with healthcare cloud for monitoring patient’s vital health information is expected to have

significant impact in the healthcare field. Future work may include real-time

implementation of the proposed approach, and integrating Electronic Health Record

(EHR) and Patient Health Record (PHR) running on healthcare cloud, with the patient’s

smart phone. Extensive research needs to be carried out on integrating healthcare

monitoring sensors within the smart phones itself. Future research needs to be done on

improving and optimizing the proposed ranking algorithms for the filter system. Security

model for the Electronic Medical Record (EMR) for the healthcare organizations and

insurance companies needs to be developed.

67

REFERENCES

[1] Carlos Oberdan Rolim, Fernando Luiz Koch, Carlos Becker Westphall, et al.

“A Cloud Computing Solution for Patient’s Data Collection in Health Care

Institutions”. Second international conference on ETELEMED, pp. 95-99, 2010.

[2] Biomedical wireless sensor network,

http://ibmmsrit2010.wordpress.com/2010/08/26/biomedical-wireless-sensor-

network-in-home-and-health-care-industry-j-v-alamelu-lecturer-s-elavaar-kuzhali-

senior-lecturer-department-of-instrumentation-technology-msrit/. (Date last

accessed August 26
th

 2010)

[3] Jensen. M, Schwenk. J, Gruschka. N, et al. “On Technical Security Issues in

Cloud Computing”. IEEE International Conference on Cloud Computing, pp.

109-116, 2009.

[4] AjayKumar. S, Nachiappan. C, Periyakaruppan. K, et al. “Enhancing Portable

Environment Using Cloud and Grid”. International Conference Signal Processing

Systems, pp. 728-732, 2009.

[5] Zhang. R and Ling. L. “Security Models and Requirements for Healthcare

Application Clouds”. IEEE 3
rd

 International Conference on Cloud Computing,

pp. 268-275, 2010.

http://ibmmsrit2010.wordpress.com/2010/08/26/biomedical-wireless-sensor-network-in-home-and-health-care-industry-j-v-alamelu-lecturer-s-elavaar-kuzhali-senior-lecturer-department-of-instrumentation-technology-msrit/
http://ibmmsrit2010.wordpress.com/2010/08/26/biomedical-wireless-sensor-network-in-home-and-health-care-industry-j-v-alamelu-lecturer-s-elavaar-kuzhali-senior-lecturer-department-of-instrumentation-technology-msrit/
http://ibmmsrit2010.wordpress.com/2010/08/26/biomedical-wireless-sensor-network-in-home-and-health-care-industry-j-v-alamelu-lecturer-s-elavaar-kuzhali-senior-lecturer-department-of-instrumentation-technology-msrit/

68

[6] Summary of the HIPAA Privacy Rules,

http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.p

df (Date last accessed May 2003)

[7] ANSI, ISO/TS 18308 Health Informatics-Requirements for an Electronic

Health Record Architecture, ISO 2003.

[8] D. Garets and M. Davis, A HIMSS Analytics White Paper. Electronic Medical

Records vs. Electronic Health Records: Yes, There Is a Difference. January 26,

2006. http:// www.himssanalytics.org/docs/wp_emr_ehr.pdf

[9] Werner. K and Wolfgang. B. “Combining Cloud Computing and Wireless

Sensor Networks,” proceeding of iiWAS, 2009.

[10] Samuel Madden, J. Franklin, Joseph M Hellerstein, et al."TinyDB: An

Acqusitional Query Processing System for Sensor Networks". ACM Transactions

on Database Systems, Vol 30, Issue 1, 2005.

[11] Philip Levis, et al. "TinyOS: An Operating System for Wireless Sensor

Networks" in Ambient Intelligence, 2005.

[12] U. Anliker et Al., “AMON : a wearable multiparameter medical monitoring

and alert system", IEEE Transactions on Information Technology in Biomedicine,

Vol. 8, Issue 4, pp. 415-427, 2004.

[13] L. Kristof, P. L. Lo Benny, W. P. Ng Jason, T. Surapa, K. Rachel, K. Simon,

G. Hans-werner, S. Morris, W. Oliver, N. Phil, P. Nick, D. Ara, T. Chris,Y.

Guang-zhong, “Medical Healthcare Monitoring with Wearable and Implantable

Sensors,” Proceedings International Conference on Ubiquitous Computing

Ubicomp, 2004.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.himssanalytics.org/docs/wp_emr_ehr.pdf

69

[14] R. Giannantonio, F. Bellifemine, and M. Sgroi, "SPINE - (signal processing

in node environment): A framework for healthcare monitoring applications based

on body sensor networks", http://spine.tilab.com/papers-2008.htm (Date last

accessed December17 2011).

[15] Rolim. C, Koch. F. L, Sekkaki. A, et al. “Telemedicine with Grids and

Wireless Sensors Networks”. International Conference on e-Medical Systems,

IEEE Tunisia Section, 2008.

[16] Medvedev .O, Kobelev. A, Schookin. S, Jatskovsky. M, Markarian. G,

Sergeev. I, “Smart Phone-based Approach for Monitoring Vital Physiological

Parameters in Humans,” IFMBE Proceedings, Volume 14, Part 28, 2007

 [17] GAY. V and LEIJDEKKERS. P, “A Health Monitoring System Using Smart

Phones and Wearable Sensors,” International Journal of ARM, VOL. 8, NO. 2,

June 2007.

[18] Petteri Nurmi, Joonas Kukkonen, and Eemil Lagerspetz, "BeTelGeuse – A

Tool for Bluetooth Data Gathering," Proceedings of the ICST 2nd international

conference on Body area networks, 2007.

[19] Joonas Kukkonen, Eemil Lagerspetz, Petteri Nurmi, et al. "BeTelGeuse: A

Platform for Gathering and Processing Situational Data" IEEE Pervasive

Computing, vol. 8, pp. 49-56, 2009.

[20] Agoyi. M and Seral. D, “SMS SECURITY: AN ASYMMETRIC

ENCRYPTION APPROACH,” Sixth International Conference on Wireless and

Mobile Communications, 2010.

http://spine.tilab.com/papers-2008.htm

70

[21] W. Chou, Elliptic curve cryptography and its applications to Mobile Devices,

University of Maryland, 2003,Technical report

[22] E. Barker and A. Roginsky, Recommendation for the Transitioning of

Cryptographic Algorithms and Key Sizes, NIST SP 800-131, 2010, Technical

Report.

[23] Understanding blood pressure readings,

http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBl

oodPressure/Understanding-Blood-Pressure-

readings_UCM_301764_Article.jsp#.Tsr2BGPNltM (Date last accessed August

26
th

 2010)

[24] Hypoglycemia and hyperglycemia,

http://www.friedmandiabetesinstitute.com/learn_about_diabetes/hypoglycemia_h

yperglycemia/index.html (Date last accessed December17 2011).

[25] Page Rank Explained, http://netsavy.net/Graphics/PageRank.pdf (Date last

accessed November 9
th

 2001)

[26] Perrig. A, Canetti. R, Tygar. J. D., Song. Dawn, “The Tesla Broadcast

Authentication Protocol,” Cryptobytes, Vol. 5, No. 2, 2002.

 [27] Open PaaS, http://blogs.vmware.com/console/2011/04/cloud-foundry-

delivering-on-vmwares-open-paas-strategy.html (Date last accessed April 12

2011).

[28] Cloud Foundry Architecture and Auto-scaling,

http://blog.rightscale.com/2011/04/14/cloud-foundry-architecture-and-auto-

scaling/ (Date last accessed April 14
th

 2011).

http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-readings_UCM_301764_Article.jsp#.Tsr2BGPNltM
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-readings_UCM_301764_Article.jsp#.Tsr2BGPNltM
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-readings_UCM_301764_Article.jsp#.Tsr2BGPNltM
http://www.friedmandiabetesinstitute.com/learn_about_diabetes/hypoglycemia_hyperglycemia/index.html
http://www.friedmandiabetesinstitute.com/learn_about_diabetes/hypoglycemia_hyperglycemia/index.html
http://netsavy.net/Graphics/PageRank.pdf
http://blogs.vmware.com/console/2011/04/cloud-foundry-delivering-on-vmwares-open-paas-strategy.html
http://blogs.vmware.com/console/2011/04/cloud-foundry-delivering-on-vmwares-open-paas-strategy.html

71

[29] Android Architecture, http://blog.zeustek.com/2010/11/11/android-

architecture/ (Date last accessed November 11
th

 2010).

VITA

NAVEEN RAJ DHANAPAL

Candidate for the Degree of

Master of Science

Thesis: AN ARCHITECTURAL APPROACH FOR THE INTEGRATION OF

WIRELESS SENSOR NETWORKS WITH CLOUD COMPUTING FOR A

SECURE HEALTHCARE SYSTEM

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December 2011.

Completed the requirements for the Bachelor of Engineering in Computer

Science and Engineering at Magna College of Engineering - Anna University,

Chennai, Tamil Nadu, India in 2009.

Experience:

Graduate Teaching Assistant for CS 1113-Java Programming at the Department

of Computer Science in fall’11, Oklahoma State University.

 Stillwater, Oklahoma. August 2011 – December 2011

Graduate Assistant at Institute for Teaching and Learning Excellence (ITLE),

Oklahoma State University.

Stillwater, Oklahoma. September 2010 – December 2011

Application Developer - Intern at Rackspace Hosting Inc.

San Antonio, Texas. May 2011 – August 2011

Web Developer for the Department of Zoology, Oklahoma State University.

Stillwater, Oklahoma. September 2010 – January 2011

ADVISER’S APPROVAL: Dr. JOHNSON P THOMAS

Name: NAVEEN RAJ DHANAPAL Date of Degree: May 2012

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AN ARCHITECTURAL APPROACH FOR THE INTEGRATION OF

WIRELESS SENSOR NETWORKS WITH CLOUD COMPUTING FOR

A SECURE HEALTHCARE SYSTEM

Pages in Study: 56 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

The general scope of our work is to propose an architecture to integrate the

healthcare cloud with wireless sensor network (WSN) technology through smart phones.

This will enable monitoring patient health wirelessly with the smart phone devices

providing real-time updates of patient’s health via the cloud to doctors and other medical

professionals. To achieve this, we propose a filter system on a smart phone running

different healthcare apps which monitor and record the patient’s vital signs.

Findings and Conclusions:

The proposed system model is simulated by creating an EMR system for a

hospital using Java Spring web services and deploying it on Cloud foundry, a Platform as

a Service (PaaS) environment. The proposed filter system is simulated using the filter app

running on the android emulator sending alert SMS to another emulator instance on

detection of abnormal patient health data. A priority ranking algorithm for finding the list

of doctors to whom the abnormal data is to be sent, is proposed and implemented using

Java 1.6 on Eclipse IDE.

