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CHAPTER 1 
 
 

  INTRODUCTION 

 

1.1 Motivation  

    Portfolio management is a critical financial task, in which investors try to select an 

optimal portfolio to maximize their profits and minimize the risks. The conventional 

portfolio theory and models which originated from Markowitz have relied mostly on 

mathematic models and included only quantifiable objective variables. In Markowitz 

portfolio theory, he proposed “mean-variance criterion” for selecting an optimal 

portfolio. In other words, when we assume the risk is fixed, it maximizes the rate of 

return; or when we assume the rate of return is fixed, it minimizes the risk.  Because of 

the time and cost requirements, the performance of this mode is not very attractive, and it 

is not broadly accepted by the market. The Langrangian objective function can apply 

differential to obtain weights of portfolio, but differential cannot handle inequality 

constraints. Another tool is quadratic programming method, which needs differential also 

and it can solve the effective and quantifiable problems. However, when the quadratic 

programming tries to seek an efficient portfolio, so many parameters with very wide 

range of values can yield unpractical results [1]. To overcome this shortness, Sharpe 

developed a single index model, which can simplify the portfolio variance of the 

quadratic programming method and determine the weights of efficient portfolio. This 
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method has assumed that the interrelations of returns of stocks are subsequences of 

random factors and market factors, but in this model, the inappropriate selection of index 

will cause misunderstanding.    

 The obvious limitation of above conventional portfolio model includes [4]: 1. 

only linear portfolio problem can be solved. 2. Computer procedures and parameters are 

too complicated and too many assumptions needed. 3. The influence variables for 

portfolio cannot be used flexibly. The characteristic of time series and nonlinear plus 

unpredictable chao systems in the financial market cannot be simulated and achieved by 

any conventional analysis method. Consequently, the research work brings up the genetic 

algorithms to select portfolio. 

1.2 Simple Genetic Algorithms 

 Genetic algorithm was first illustrated by Holland in 1975 [2]. It adopted the 

concept that only the strongest individual survives in an environment from Darwin’s 

natural selection theory. Holland’s algorithm was commonly called simple Genetic 

Algorithm, in which a string of characters is applied to simulate chromosome of living 

things. The fitness value of each chromosome is computed to evaluate its adaptability to 

the environment and determines how many offspring the chromosome will have in next 

generation. Certain operations will be applied on each generation to maintain the variety 

and the creativity of each generation. Thus, the working of the SGA can be summarized 

as Table 1.1: 
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Table 1.1 Simple Genetic Algorithms 

This SGA has the following components [2]: 

  a population of binary strings, 

  a mechanism to encode the solutions as binary strings, 

 control parameters, 

 a fitness function,  

 a selection mechanism , and  

 genetic operators(cross over and mutation) 

The classical GA processes as follows [2]: 

            1 a population of chromosomes (strings) is created. 

            2 the chromosomes are evaluated by a defined fitness function. 

            3 some of the chromosomes are selected for performing genetic operations. 

            4 crossover and mutation are performed according to probabilities. 

Table 1.2 shows a generational cycle of the genetic algorithms with a population 

of four strings with 10 bits each. The fitness function performs a “count the number of 1 

and divide by 10” to normalize the value to the range of (0, 1).  

 

        Algorithm GA; 
        {  
      Initialize population; 
     Generation :=0; 
                    Repeat  

  Generation = Generation +1; 
  Selection (population); 
                          Crossover (population); 
                           Mutate (population); 
                           Until Termination_Criterion; 
          } 
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Table 1.2 Operator of SGA [2] 

In this generational cycle, from Population1, we obtain that the fourth individual 

I4 can generate two offspring, and each of the I2 and the I3 can generate one respectively. 

Then, I1 and I4 form one pair, as well as I2 and I3 from the other pare to perform the 

crossover and mutation operations with the probability of 0.5 and 0.05 respectively, 

which means only one pair is crossovered and only two bits out of 40 are mutated. In 

population3, the pair of I1 and I4 has been actually crossed and in population4, the sixth 

bit of I2 and the first bit of I4 obtain the chance to mutate. 

In a typical SGA, control parameters must be specified before its execution 

including the fixed number of generation which could be a stopping criterion of the 

algorithm. 

 Population 1: 
      Individual         Fitness value 
I1   1010010000           0.3 
I2   1000011111           0.6 
I3   0110101011           0.6 
I4   1111111011           0.9 
 
 Population 2: 
       Individual  
I1   1000011111           0.6 
I2   0110101011           0.6 
I3   1111111011           0.9 
I4   1111111011           0.9 
 
Population 3: 
        Individual 
I1   1000011011            0.5 
I2   0110101011            0.6 
I3   1111111011            0.9 
I4   1111111111            1.0 
 
Population 4: 
         Individual 
I1    1000011011           0.5 
I2    0110111011           0.7 
I3    1111111011           0.9 
I4    0111111111           0.9  
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1.3 Research Overview  

 There have been a great number of the studies that focused on the domain of 

portfolio management or investment strategy using GA related models. Most of these 

researches and models have made great improvements in different aspects of traditional 

genetic algorithms, and their performances in rate of return are tested with various stock 

markets. As different models obtained their investment return pictures within certain time 

periods from different stock markets, the capabilities and performances of these models 

and ideas cannot be decided and compared easily. To obtain the first hand experience of 

how the features and parameters influence the performance of GA, we decided to design 

and implement our own adaptive model to examine the rate of return and other features 

of the actual models carrying different alternations and parameters with uniform market 

data . 

The overall goal of this study can be divided into two sections. 1. Review and 

classify some of the typical research achievements on GA applied in investment domain. 

2. Design and implement a general adaptive GA model in C++, and use the uniform 

history market data to evaluate the performance of selected improvements that have been 

mentioned in literature review section.  

1.4 Contributions 

• Recent developments on GA applying on portfolio investment field are 

classified and compared. 

• A conventional GA model facing financial problems has been implemented in 

object-oriented language (c++), features and parameters of GA can be easily 
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modified. And the model can be redeveloped by users for other financial 

problems, such as option pricing problems.  

• Based on the conventional GA, an Adaptive model is designed and 

implemented for more suitable for the changing environment, and both of the 

models are tested on history market data of a 100 AMEX stock pool. The 

experimental results are analyzed and compared, and a conclusion has been 

drawn.    

1.5 Outlines of the Thesis 

  The remainder of the thesis is organized as follows. Chapter two reviews and 

categories the applications of improved GA in portfolio selection and other financial 

domains.  Chapter three describes the design and architecture of our research model, and 

the programming issues of the model. Finally, Chapter four draws the conclusion by 

studying the experimental results, and also discusses the probability for improvement in 

future work. 
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CHAPTER 2 
 
 

REVIEW OF LITERATURE 

 

2.1 Application of GA in Quantitative Finance   

   As one of the most popular methods in artificial intelligence area, Genetic algorithm 

has been applied to most of the financial, particularly quantitative financial domains 

depending on what the chromosome represents and how the string is coded. The 

applications of GA in this field could be divided into four categories: portfolio 

management [1, 4, 7, 22], investment strategy [8, 11, 13], option pricing [21, 22, 23] and 

financial distress prediction [9, 10, 29], shown in Figure 2.1. The following has briefly 

discussed the application of GA in these four sub-areas. 

 

Figure 2.1Application of GA in QF 

1) In portfolio management, the most common coding mechanism is to use one binary 

bit to represent the decision on one single stock. If ‘1’ is to represent the ‘select’, then 

‘0’ is to represent ‘not select’. There are also some researches which have apply 

GA in QF

Portfolio
management

Investment 
strategy 

Option pricing Prediction of 
financial distress
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natural integers to represent the proportion of that stock in the portfolio, where if the 

value if larger, the amount purchased in bigger [4] [22]. As different chromosome 

stands for different portfolio, the fitness value of each individual will depends on the 

performance of the portfolio it represents.  

2) Other than binary strings that represent the actual portfolio, the strings can also be 

coded as a sequence of trading rules or strategies. An idea of moving averages is 

frequently seen in theses coding methods [8] [13]. For example, If M1, M5, M25, M50 

and M100 represent one certain stock’s average price of last one, five, twenty five, 

fifty, and one hundred days respectively, a map can be built from these five moving 

averages to five numbers, as: 

                               M1    M5    M25   M50    M100 

                               1      2       3      4         5 

          Then one tube of these five numbers, such as (3 4 2 1 5) in buy part can be 

interpreted as:  

                   IF (M25 > M50 > M5 > M1  > M100) , Then Buy; 

  While (5 2 1 4 3) in sell part can be explained as : 

        IF (M100 > M5 > M1 > M50 > M25) , Then Sell; 

          After coding, a pair of tubes in buy part can be picked up from the population to 

perform any GA operator as crossover and mutation, so does pair in sell part.    

3) Genetic algorithms are applied in the option pricing problems, which is one of the 

most complex financial issues. In these researches, the fitness functions of GA’s 

simulation are derived from the Black- Scholes Option pricing model, and the results 
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from GA model are compared with the exact solution yielded by Black-scholes option 

pricing theory [21] [22].  

4) Financial distress prediction is another aspect that the GA can be applied to. The 

researchers from British universities have formed the GA’s chromosome by a list of 

financial ratios [9], such as Gross profit margin, Return on net assets (RONA), 

Current ratio, and so on. The aim is to select the most informative financial ratios that 

can effectively predict the financial distress. A certain number of failed or continuous 

companies are chosen to form a pool for testing. As the principle to select is to 

maximize the contained discriminatory information from these ratios and minimize 

their co-linearity, the fitness value of each chromosome (ratios list) reflects its 

discretionary cutting down its co-linearity [10].  In other researches, not only 

financial ratios are considered as the evaluating criteria of financial distress, but the 

corporate governance features are introduced into the GA chromosome coding [29].   

2.2 Major Improvements in GA  

Portfolio management is an important facet of financial management on which 

genetic algorithms and many other AI methods have been applied on it. Considering the 

limitation and deficiency of the simple genetic algorithm, recent research works have 

focused on the following directions of improvements. In this chapter, we will briefly 

discuss and category some of these studies and improvements.  

� Improvement in crossover and mutation operators [3] [4].  

� Combined GA with other methods [5] [6] [7].  

� Develop User-oriented GA model [8].  

2.2.1 Improved Crossover and Mutation Operators  
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Crossover and mutation are common used operators in GA to keep and increase 

variety to the next generation. In simple GA, the randomly picked pair of chromosomes 

will be subjected to crossover only if a randomly generated number in the range 0 to 1 is 

greater than pc, the predetermined probability of crossover. Otherwise the pair of strings 

remains unchanged. Similar to crossover, mutation is another operator with the role of 

restoring lost genetic information. Also, a probability of mutation, denoted by pm, will 

give the probability that whether a bit will be flipped or not.  

As the selected probabilities of crossover and mutation affect the efficiency  and 

quality of the generation evolvement, improved crossover probability pc and mutation 

probability pm have been proposed as follows [4]. 

 �� � �   k� sin��π/2��f��� – f��/�f��� � f����� ,       f�  �  f���  k�,                                                                            f� �  f���
� (2.1) 

� � �   k! sin��π/2��f��� – f��/�f��� � f����� ,        f �  f���   k",                                                                             f �   f���
�            (2.2)  

favg is the average fitness value in population;  fmax is the highest fitness value of 

the population;  fh is higher fitness value between two individuals which will carry out 

the crossover operation ; f is the fitness value which will carry out the mutation operation.  

In this new improved GA solution, the selected parents who have been randomly 

assigned into groups will form their offspring by generating the specific digit as 

following:    

)()1()()( 211 iPcicPiX −+=   (2.3) 

)()()1()( 212 icPiPciX +−=  (2.4) 

Where P1(i), P2(i) are ith digit of the two selected parents , X1(i), X2(i) are the 

offspring of these two parents , while c is a random number in(0,1). In this improvement, 
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the crossover and mutation probabilities are changed based on the status of the entire 

population, the larger probabilities will be imposed on population whose fitness values 

are less diverse. The new solutions of selection, crossover and mutation can enhance the 

robustness of the new population. 

2.2.2 GA Combined with Other Methods   

 (1) Genetic algorithms in multi-stage asset allocation 

  Single period asset allocation model possesses limitations because its risk is 

inconsistent from time to time. Thus, the multi-stage investment decision model is 

developed to capture dynamic aspects of asset allocation problem [8]. It manages 

portfolio in constantly changing financial markets by periodically relocating and 

rebalancing the portfolio leading to optimal portfolio. 

  In multi-stage asset allocation model, investment decisions are made at each of 

the periods as t = {1, 2, 3,…,T} of the entire planning horizon T. A graphical scenario 

tree can visualize the optimal dynamic balanced investment strategy for asset allocation.  

Two researches from Taiwan have depicted a scenario tree with two scenarios and tree 

time periods as Figure 2.1.  

 

Figure 2.1A Scenario Tree [8] 
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 In this model, the probability of the occurrence of each scenario can be generated by 

historical statistics or any forecasting system. The decision variables are the allocation of 

various selected assets under different scenarios over the planning horizon. These 

decision variables are encoded in a chromosome for GA implementation. Generic 

Algorithm is used as a portfolio optimizer to optimize asset allocation under different 

scenarios over different time periods. 

 (2)Combined GA model with fuzzy set 

 Recently, the traditional methods combining with intelligent methods (such as 

Genetic Algorithm, Genetic Programming.) have been applied to solve investment 

decision problem. Among those approaches, many combine the fuzzy decision with 

Genetic Algorithm, ([6], [7]). The processes of constructing those combining models 

usually include following steps.  First, to earn the maximum return with minimum risk 

rate in portfolio selection, the multiple-objective optimum is described as: 

       Objective 1 :  max E(rp) =  max E(rp) = XTR         ∑
=

=
n

i

iip rxr
1

        (2.5) 

       Objective 2 :  min σ2 (rp) = XT
∑X                                       (2.6) 

 r = (r1, r1,….rn)
T is investment earning rate vector of each stock; 

      R = (R1, R2,…Rn)
T is expect vector of earning rate vector r; 

      X = (x1 , x2, ….xn)
T is investment proportion vector of portfolio; 

      ∑ = (σij)n× n  is the covariance of earning rate vector r,  

            where σij = Cov(ri,rj),  i,j  = 1,2,…,n;  

Then, multiple-objective is converted into the fuzzy multiple-objective decision model: 

 Min ))()1()((),( 222
pp rErXF µσµµ −−=                                              (2.7) 

         s.t   ETX = 1  
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               Xj≥0, j = 1,2,…,n 

    Where:  E(rp) = XTR    and   σ2 (rp) = XT
∑X ; 

                 0 ≤ µ ≤ 1; show that if µ is larger, investment is unwilling to receive risk 

Finally, the optimal solution of Portfolio investment model is obtained by using Genetic 

Algorithm. Use fuzzy chromosome )~( ~,...2~,1 nxxxV =  for fuzzy decision, where each gene 

is a fuzzy set but not a visibility number, and the fuzzy multiple-object function can be 

taken to define the fitness function as (2.8): 

                 )()1()((),(( 222
pp rErXFFit µσµµ −−=                                (2.8) 

At last, the final effective evaluation of each investment portfolio chromosome Xi  can be 

described as follow:     

                   ∑= )),((/)),(()( XiFFitXiFFitXe µµ        (2.9) 

Then, the general GA methods can continue to solve the multiple-objective optimum 

problem based on evaluation function shown above. 

2.2.3 GA on User-oriented Model     

 Some studies focused on developing complex methods based on GA to better 

reflect the financial market, while another way to make these models more practical is to 

consider preference and requirement of investors. Along with this direction, the 

researchers from Hong Kong develop a user-oriented invest decision making model [6]. 

 The major improvement of this user-oriented portfolio selection model is to make 

the portfolio decision according to the user’s preference and recognition. As the fitness 

function serves and represents as the environment of generations evolvement, the 

researchers design a new fitness function, shown as (2.10)  in which there are 5 influence 

variables, and 3), 4) represent the users’ requirement [6]:  
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  1) Sharpe index:    Assesses investment combination performance according to 

the unit risk size of rate of return  

 2) EPS: Earnings per share 

 3) Industrial categories 

 4) Industrial finance capability  

 5) Numbers of stock combine 

      Combining those five influence index, the fitness value of this model is shown as: 

         Fitness function = a* Sharpe index + b*EPS + c* stock combination number 

+d*industrial categories + e* Industrial finance capability  (2.10) 

2.3 The Alternative of GA – GP 

Genetic programming is a very close related AI method, which has been considered to 

belong to GA by some researchers. It has also been used in quantitative finance fields as 

what GA does, such as investment decision [13] [27], financial predictions [15] [16]. In 

normal GP models, the candidate solution is represented as decision trees, while it’s 

represented as a binary or integer strings in GA usually. The principle of evolvement of 

both are very similar, which is reflects the idea that only the best fitted individuals (trees 

in GP) can survived to the next generations. Many applications of GP have been 

combined with neural network and some of which are called Genetic network 

programming. In those models, the GA’s operator such as crossover and mutation are still 

performed, but the evolvement of the candidate solution is in the form of a network [26] 

[28] [32]. As GP or GNP is not our research target, we will not introduce them in detail.  
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CHAPTER 3 
 

ADAPTIVE GA MODEL 

3.1 Conventional GA Model 
 

To study the capabilities of GA in solving real problems, we construct a stock 

selection system and compute the Rate of Return of the portfolio generated by GA model. 

Before the construction of the adaptive GA, the basic conventional GA has been 

developed and applied to the portfolio problem, and has set up the fundamental parts for 

the more complex adaptive GA in the next section.  

In the conventional GA model, the initial population will be generated randomly, 

and the population should evolve towards increasing the fitness function value. Based on 

previous research work, one fitness function will be applied at first, and to yield the best 

returning rate, a few of potential fitness functions might be tested and compared later. 

Also, the length of chromosome and the size of the population will be flexible to adopt 

alternation. A stock pool which includes the history data of 100 major US stocks will be 

used to test the GA model for the portfolio selection.  The design of this conventional GA 

model is shown in Figure 3.1. 

 Transfer the real problem into the form of GA involves the problems of how to 

encode, select parameters and create the evolve environment. Therefore the model of 

research and design component is stated in detail as follows: 

a. Encoding: we use a binary string to represent a chromosome, and each bit 

represents whether the stock will be selected or not. 100 major companies traded 
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in AMEX will be the candidate stocks to be selected, thus the length of the 

chromosome is 100.  

 
Figure   3.1 Design of Conventional GA Model 

b. Selection Mechanism: As the GA population evolves, the chromosomes which 

have better fitness to the environment obtained higher chance to be selected to be 

in the next generation. Then, �# is the probability of the ith chromosome to be 

selected as the parents in the selection process. 

 

                  �# �  $#%&'((�)*�
∑ $#&'((�)*�,*-. ,   / � 1,2,3 … 3435/67 

 
c. Crossover and Mutation: We use Two-point crossover to increase the diversity of 

the population. Both crossover and mutation are operated by a pre-determined 

rate. 

d. Fitness function: As in this research, the goal is to find the optimal portfolio for 

investors, which should include the most valuable stocks for investment. 

According to the financial theory that the price of stock fluctuates around the 

intrinsic value of the stock, which can be simply simulated by the average price 

Initialization of random
population Generation 0 GA 

Operation Generation 100

 

    Training data 

Fitness function 

      Test data 

 

 
 

      ROI Results Evaluation 
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during certain past period, we use the ratio between this average price and the 

price of the purchasing day to represent the investment value. The larger this ratio 

is, the more investment value the stock possesses, because comparing to its 

potential value, the stock seems to be at a relatively low price. In this model, we 

consider this period as 256 days (around 1 calendar year), and the fitness function 

can be presented as following: 

                  stock value ratio:    89 �  :;<=>:?  @ 100%      j = 0,1,2…N (chromosome length) 

                        PAVEj : the  average price of past 256 days of stock  j; 

  P0 :    the stock’s current  price ;  

                  Then, the fitness function of i-th chromosome: 

                 C/DE755�/� �   ∑ :;<=>*
:?*

FG9HI JKL          / � 0,1,2, … , �435/67               

                  N: chromosome length, in this research target, the chromosome length is 100. 

                  N’ : number of selected stock, in fitness value, only the selected stock  added. 

The setting of testing parameters of the conventional GA is shown in Table 3.1. 

Parameters Numeral 

Chromosome Length 100 

Population size 60 

Generation 100 

Crossover  rate 0.65 

Mutation rate 0.05 

Table 3.1Conventional GA Parameters 
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3.2 Construct of Adaptive GA Model 

 In the conventional GA model, the selection of the portfolio will be highly 

influenced by two factors: 1) stock prices of the day that we make the portfolio; 2) the 

average stock prices of the last 256 days, which means that when the GA population 

evolves, it only evolves to fit one constant environment. As in the stock exchange and 

other financial markets, the circumstances are changing very fast and randomly. To place 

the working GA population into a continuously changing environment and select better 

portfolio, we design an adaptive GA model, or called sliding-window GA model. 

3.2.1 Use of History Data 

  In this research, 100 stocks from AMEX will be used as the experimental data to 

test our models.  In the conventional GA model, for each stock, only the purchase-day 

price, and the average price of 255 days before the purchase-day needs to be gathered to 

compute the fitness of this stock and this GA individual (one expecting portfolio), and 

also the price of the selling-day will be obtained to calculate the profit that this stock 

earns in a certain period of time. In adaptive GA, we start gathering the data one year 

before the purchase-day. For example, if we need to make portfolio on the date of Jan-01-

2006, for conventional model, only the price of this day and the average price of the past 

256 trading days (one calendar year) will be considered, and after 100 generations 

calculation and evolvement, the model will yield one best portfolio for this particular day 

(Jan-01-2006). While in the adaptive model, the first considered purchase day will be 

Jan-01-2005, one year before the actual purchase day, and a number of generations will 

be generated based on the price of this day and average price of the past 256 days. Then, 

the GA population will continue to evolve not based on the same data, but based on the 
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GA Start  

GA End 

Profit Calculated 

price of the first day of each month, and the 256-day average price before that, as shown 

in the Figure 3.2. 

     

 

 

 

 

 

 

 

 

Figure 3.2 Data Application of New GA 

 

3.2.2 Two Phase of Evolvement  

     In the Adaptive GA model, the population evolvement process can be divided into two 

consecutive phases. In first phase, the GA performs as a conventional GA, using the same 

segment of data, and evolves a certain number of generations; and the yielded population 

from phase one will be the starting population of phase two. During the second phase, the 

population will only proceed 10 generations with the same segment of data, and then one 

month of new data will be included in, while the data of the earliest month will be 

discarded. As the fitness value of each GA individual will be computed by different data 

segment, the GA population will be evolving in a continuously changing environment, 

Date Price other 
… … … 

1-Jul-06 5.17  
… … … 

1-Jan-06 6.23  
..   

1-Dec-05 5.45  
   

1-Nov-05 7.34  
..   
..   

1-Feb-05 5.12  
..   
..   

1-Feb-04 4.54  
…   
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and should generate the individuals that are more fitting to the new information. The two-

phase process of the sliding window is shown in Figure 3.3. 

                                                                       10 Gen 

                                                                                            10 Gen 

                                40 Generation 

                                                                             

                                    1-Feb-05                                                        ……… 

                                                1-Mar-05 

                                                    1-Apr-05 

                                   Phase 1                   1-May-05              Phase2          1-Jan-06 

Figure 3.3 Two Phase Process of Adaptive GA 

 

3.2.3 Make a Portfolio from the Final Population 

           In the previous work, we usually pick one best–fitted individual from the last 

population of the GA and select the stocks that are resented by ‘1’ in that individual. The 

weakness of this method is obvious because the valuable information in the other 

individuals of the final population will be rejected. Also it is unworkable for a real 

portfolio selection that the number of the selected stocks can possibly vary from very few 

to one hundred.  Thus, to construct a portfolio more efficiently from the last population, 

we accumulate the number of ‘1’, which represents the selection of each one stock, from  

each individual of the entire population for every stock, and select the best 10-15 stocks 

which have the biggest number of  ‘1’s to construct our portfolio. This process is 

illustrated as the Figure 3.4. 

 

 

 
 

Initial 
Population 

 
 

Final 
Population 110 Gens 
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                                                               100 stocks  

                                                                                    

 

 

              60 Individuals 

               

 

 

 

Figure 3.4 Select Portfolio from One Population 

3.3 Programming Models and Method Selection      

In programming model, two class, individual and population are defined in c++ to 

represent the population and the chromosome. In the class of individual, there are 3 pubic 

members and 5 public functions. In the class of population, 5 public members and 10 

public functions are included.  The initial population will be generated by random 

function. The operation of crossover and mutation on each generation also relies on 

randomly generated numbers. In the model development, several key features require 

practical adjustments. 

  

100101011101000100… 
010110101010100101… 
11011.. 0 0100101000… 

 
……………….. 

 
011110100101001010…       

…… 
 
 

……………….. 
000110100101010010… 

 …  .  31   ..   14   .. ..   16 …..        Best 10 selected 
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Table 3.2   Definition of Classes 
 

1) Initiation of the population. 

To randomly generate N chromosome as the original population, the common idea 

would be as following: 

 

 
 
 
 
 
 

Table 3.3 Population Initiation 
 

class Individual { 

 public: 

string   chromosome ;  

int    chromosomeLength ;  

double fitness;  

  

 void init(); 

 Individual() ; 

~Individual() ; 

 double getFitness() ; 

void   setFitness(double fitness) ; 

void  output(); 

}; 

 

class Population { 
   
 public:  

  int generationRandom; 

  int popsize; 

  int chromosomeLength; 

  float aveFitness; 

  vector<Individual > individual;  

 Population(int pop_size ,int chrom_length); 

~Population(); 

 void printPopulation(); 

 void getFitness(float [][10], float[][10], int month); 

 void selection(); 

 void crossover(); 

 void mutation(); 

 int  getLargest(); 

 float get_Profit(float [][10],float[]); 

 void getGenerationRandom(int Generation_random); 

 
 };  

for(i=0; i<=popsize; i++) 

   {      

            individual_a. init(); 

            population.add(individual_a); 

    } 



 
  

 

In real experiments, 

number, if generation time of these individuals are within one second, 

generate exactly same chromosome each single time

 

 
                         
 
 
 
 
 
 
 
 
                          

Figure 3.5
  
To solve this problem, we need to 

divide it into N parts, each of 

population size, as Figure 3.6

 
 
 
 
 

Figure 3.6
 

2) Implementation of selection, crossover and mutation

a. Selection Methods

After decide how to encode 

the second decision to m

determines the principle

offspring for the next 

   Individual 1 :     

   Individual 2 :     

                                       

   Individual 30:    

 

1100101011110001010010100...01011101011101000101010101…010100…...

Individual 1 
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, because of the limitation of the computer generated 

if generation time of these individuals are within one second, 

same chromosome each single time, such as Figure 3.5: 

Figure 3.5    Initiation of First Generation 1 

To solve this problem, we need to generate a long random binary string 

it into N parts, each of which has the chromosome length of N, while N equals t

igure 3.6. 

Figure 3.6 Initiation of First Generation 2 

f selection, crossover and mutation 

Selection Methods 

After decide how to encode the portfolio and initiation of the first generation, 

the second decision to make is how to perform selection. The selection method 

the principle to choose the individuals in the population that will create 

offspring for the next generation, and how many offspring each will produce.

Individual 1 :             

Individual 2 :                                                  

                                       ………… 

Individual 30:     

 1000111010010110001101011

 1000111010010110001101011

1100101011110001010010100...01011101011101000101010101…010100…...

Individual 2 

computer generated random 

if generation time of these individuals are within one second, the program will 

 

string in one time, and 

while N equals to 

portfolio and initiation of the first generation, 

The selection method 

to choose the individuals in the population that will create 

w many offspring each will produce. Since 

1100101011110001010010100...01011101011101000101010101…010100…... 

Individual 3 
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the goal of the selection is to increase the appearance of the fitter individuals in the 

population, the selection has to be well-balanced. Too strong selection will cause 

the highly fit individuals to take over the population and reduce the diversity for 

future generation, while too weak selection causes too slow evolution. 

Two popular methods are implemented and tested in this model. First method 

is Fitness-Proportionate with “Roulette Wheel”, in which each individual is 

assigned a slice of the “roulette wheel”, with the size of the slice being proportional 

to the individual’s fitness. Every time the wheel is spun, the individual under the 

wheel’s marker is selected to be in the pool of parents for the next generation. There 

will be N times of spin, where N is the size of the population. The size of the slice 

for each individual is equal to the probability that one chromosome produces its 

offspring, which is decided by function: �# �  $#%&'((�)#�
∑ $#&'((�)#�,*-.  . This method is shown 

in Table 3.4. 

  

 

 

 

 

 
 
 
 
 
 

Table 3.4 Fitness-Proportionate with “Roulette Wheel” 
 

sub_sum = 0; 
for(i=1; i<=popsize; i++) 
{ 
 individual[i].lower = sub_sum; 

sub_sum += Pi; 
  individual[i].upper= sub_sum; 
 }  
for(i=1; i<= popsize; i++) 
{  

r[i]=(rand()%100)/100.0; 
if (individual[m].lower < r[i] < individual[m].upper ) 

 { 
  select individual[m]; 

} 
}  
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  The other selection method is Tournament selection. In this selection method, two 

individuals are randomly chosen from the population, and again a random number r 

between 0 and 1 is then generated to compare with a predetermined parameter c  

(for example, c= 0.85).  If r < c, the fitter individuals is selected to be a parent; 

otherwise the less fit one is selected. The two are then return to the original 

population and eligible to be selected again. The table 3.5 describes this process as:  

 

 

 

 

 

 

                 Table 3.5 Tournament Selection 
 

b. Crossover  

  After forming a new population by selection process, these new parents are ready 

to be performed the operator of crossover. In our model, a two-point crossover is 

applied to add the diversity of the population. First, N/2 pairs(N is the number of 

individuals) of parents are randomly selected and with probability Pc(typically 0.6-

0.8), each pair performs crossover to generate offspring. In two-point crossover, 

two positions are picked at random again and the segments between them are 

swapped, as shown in Table 3.6. 

 

 

 for(i=1; i<= popsize; i++) 
{ 

r[i]= (rand()%100)/100.0; 
 k  = rand()% popsize; 
 m = rand()% popsize; 
 if (r[i] < c)        
     select    get_larger( individual[k].fitness ,  individual[m].fitness); 

else 
    select    get_smaller( individual[k].fitness ,  individual[m].fitness);  

} 
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Table 3.6.Two-point Crossover  

c. Mutation 

   The mutation operation is very similar to the crossover. By the probability of 

Pm, each bit of the individuals can be operated. As the total number of bits in one 

population is large, the probability Pm is around 0.05, which means 20-40 bits will 

be flipped by each mutation. 

 

 

 

 

 

 
 

 for(i=1; i<= num_pair; i++) 
{ 
 k  = rand()% popsize;                  // No repeated k 
 m = rand()% popsize;                  // No repeated m      
 

r[i]= (rand()%100)/100.0; 
if (r[i] < Pc) 
{ 

                start_point  = rand() % chromosomelength;     
    end_point   = rand() % chromosomelength;                                          
for(j = start_point  ; j<= end_point   ; j++) 

         { 
                      Exchange   individual[k].chromosome[j]    
                                         individual[m].chromosome[j]   ;                         
         } 

} 
} 
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CHAPTER 4 
 

EXPERIMENTAL RESULTS 

 
4.1 Test and Results 
 
 To test and compare the performance of both the conventional and adaptive GA, 

We conducted four series of experiments in different aspects 1) How does the fitness 

value evolves along with the generations; 2) How does the operators affect on the 

performance of GA; 3) The relationship between the price of single stock and the 

investment volume on it; 4) Comparison on Rate of Return with conventional and 

adaptive GA.  

1) Fitness value         Number of generation 

This is the basic functional test of a GA model, and we prefer to know both overall 

performance and best evolving result. Therefore two fitness values need to be 

tested, which is a) average fitness value of population, b) the best individual fitness 

value. Figure 4.1 and Figure 4.2 shows that in both conventional and adaptive GA 

model, the average fitness value increases more smoothly than the best individual 

fitness value, which indicates that the overall fitness of the population moves well. 

The best fitness curve is less stable, showing that the random crossover and 

mutation may cause the unexpected increase and decrease of the best fitness 

individual.   
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2)  Operators       Fitness value 

    Figure 4.3 shows the comparison of the two selection methods. The results 

indicates that the method of Fitness-Proportionate with “Roulette Wheel” works 

better than method of Tournament Selection, which more depends on the 

generation of the random numbers. 

       

Figure 4.1 Conventional GA- Fitness value Vs # of Generation 

 

                 

Figure 4.2 Adaptive GA- Fitness value Vs # of Generation 
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Figure 4.3 Fitness value Vs # of Generation 

3) Comparison on Rate of Return between two type of GA models     

In this section, we run the test five times for both conventional GA and adaptive 

GA respectively, from each of which, 10 stocks were selected, and the overall Rate 

of Return was ranked and compared.  In order to evaluate the performance of the 

models more effectively, the natural Rate of Return of the entire stock pool, which 

means investing equally in each of 100 stocks, was also computed. The result 

shown in Table 4.1 indicates that the adaptive GA performed much better in Rate 

of Return. 

 

 

 

 

 

 

Table 4.1 Results on Rate of Return  
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4) Price of single stock and popularity of one stock    

As the fitness value of each stock is decided by PAVEj/P0, the ratio of the 256-day 

average price of the trading day price, we need to track that how much of the stock 

price trend can affect the popularity of the stock, which is in one population the 

number of individuals that has put the stock as ’select’. If we also consider this 

number of popularity as the amount of hypothetical amount of investment, then a 

potential profit of stock can be computed to testify weather the GA’s decision is 

reasonable or not. Three stocks are chosen to perform this test, each of which has a 

different type of price curve. Figure 4.4.1 - 4.4.3 shows the results of Stock labeled 

‘AAC’, American Campus Communities, indicating that the popularity of this 

stock in one population increases as the evolvement of generations because its price 

decreases. Thus the potential profit goes up along with the GA’s evolvement.  The 

actual selling price of the stock is $0.43, which is on the date of 1-July-2006, half 

of year later. 

 

Figure 4.4.1 Price curve of ‘ACC’ 
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Figure 4.4.2 Popularity of stock of ‘ACC’ as GA evolves. The 
figure shows that by the month of February, the GA has evolved 
40  generations (Figure 3.3), and the popularity of the stock is ‘9’, 
which means there are 9 individuals in the 40th  generation that 
has put ‘1’ on this stock. After 110 generations evolvement (10 
generations each month) , the popularity of the stock rose to ‘40’.  

 

 

Figure 4.4.3 Evolution of potential profit of ‘ACC’. The figure 
shows that if we consider stock’s popularity as hypothetical 
amount of investment, the potential profit increases as the GA 
evolves. 

 

Figure 4.5.1 - 4.5.3 shows the results of Stock labeled ‘DMC’, Document 

Security Systems, indicating that when the price increases sharply, the popularity 

of this stock goes down, meaning that the purchase of this stock is not suggested, 
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and it will not appear in our selected portfolio as well. The Stock labeled ‘ABL’ 

(American Biltrite Inc) has shown more random features of GA. As the price is 

relative stable, the responding popularity suggested by GA is stable with small 

amount of random noise; the hypothetical profit then fluctuates from negative to 

positive, depending on the stock’s selling price, shown in Figure 4.6.1 - 4.6.3.    

 

Figure 4.5.1 Price curve of ‘DMC’  

 

Figure 4.5.2 Popularity of stock ‘DMC’ as GA evolves. The 
figure shows that because of the sharp increase of the stock price, 
the popularity of this stock goes down from ‘42’ to ‘3’ as GA 
evolves, then the stock ‘DMC’ will definitely be rejected from 
our portfolio. 
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Figure 4.5.3 Evolution of potential profit of ‘DMC’. The figure 
has testified the GA’s validity by showing that the potential 
profit of this stock goes down from ‘164.2’ to ‘-5.49’.  
 
 
 

 
 

Figure 4.6.1 Stock price curve of ‘ABL’ 
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Figure 4.6.2 Popularity of stock ‘ABL’ as GA evolves. The figure 
shows that because of the relative stability of price, the popularity 
yielded by GA move randomly up and down, which indicate that 
GA is not perfect in evaluating one single stock.  

 

 

Figure 4.6.3 Evolution of potential profit of ‘ABL’. The figure 
indicates that GA’s theory and model still has its randomness 
and limitation as well.  
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100 stock pool. The experimental results show that the algorithm runs correctly and the 

population moves to the directions of increasing the fitness value. Generally the adaptive 

GA has shown better overall Rate of Return than the conventional GA. When we track 

the popularity of a single stock along with the time period and the generations, we find 

that the popularity of stock increases as the price goes down normally, and vice-versa. 

This shows that the basic idea of the stock selecting has been realized by this adaptive 

GA model. In our future work, improvements and enhancements have to be made in 

following aspects:   

1) The relatively small difference between the 256-day average price and the trading day 

price of stock results in the slower movement of the fitness value, indicating that 

some other fitness functions could be applied and tested.  

2) Since the adaptive GA that we implemented is only to adapt the price change of each 

stock, and make modification of the fitness value of the each individual, but not the 

algorithm itself. The work on this direction should be very interesting and 

challenging.   

3) This GA model can be applied and redeveloped into other financial area, such as 

option pricing and financial distress predicting. 
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improvements on GA in these researches, then design a conventional GA model which 
applies classic GA mechanism to select a portfolio from a 100 AMEX stock pool. 
Because the generations of this conventional GA model only evolves based on one fixed 
data segment, the results it yields are not stable enough for the extremely dynamic 
financial market. In order to keep the populations more dynamically reflecting the current 
market circumstance, we propose an adaptive GA model to improve the convention 
model. The enhanced model will only evolves certain number of generations using one 
segment of history stock data and change to another data segment. We implement both of 
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one same stock pool. The experimental results have shown that the adaptive GA model is 
more reliable and gains higher average Rate of Return.  In addition, alternative GA 
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ROR that the conventional GA because of its longer evolvement circle and better 
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