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CHAPTER I

INTRODUCTION

Unraveling the mechanisms that regulate the expression of genes is a major

challenge in biology. An important task in this challenge is to identify regulatory

elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription

factors. These binding sites are short DNA segments which are called motifs.

Transcription factors are proteins that bind to DNA, typically upstream from and close to

the transcription start site of a gene, and regulate the expression of that gene by activating

or inhibiting the transcription machinery. Pattern discovery in DNA sequences is one of

the most challenging problems in both molecular biology and computer science. In its

simplest form, the problem can be formulated as follows: given a set of sequences, find

an unknown pattern that occurs in at least q sequences of the set. If a pattern m letters

long appears exactly in every sequence, a simple enumeration of all m-letter patterns that

appear in the sequences gives the solution. However, things are not that easy with DNA

sequences because patterns include mutations, insertions or deletions of nucleotides and

usually do not occur exactly. Thus, while approximate occurrences of a single pattern can

be still found efficiently, searching for all the 4m (4 for four nucleotide bases in DNA

{adenine (A), cytosine (C), guanine (G), thymine (T)}) possible patterns becomes

quickly time consuming and infeasible for large values of m (Staden, 1989; Tompa,

1999), even if we allow only mutations. In recent years, several algorithms have been
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developed for finding transcription factor binding sites in DNA sequences. In this survey

thesis, at first we present some information from biology that will help understanding the

motif finding problem, then we present a list of algorithms that have been developed for

finding motifs in DNA sequences, we describe some of these algorithms in detail, next

we present some results that have been obtained using the software developed from these

algorithms, then we present performance comparisons of some of these algorithms and

finally we present a discussion on the motif finding algorithms.

1.1. Gene Structure and Expression

Some information on gene structure and expression will be very useful for

understanding the motif finding problem. A good source of information on this subject is

the book “Molecular Biology of the Cell” by Alberts et al. (2002). Here we present a

brief introduction to gene structure and expression.

1.1.1. Structure of gene

The gene is the fundamental unit of inherited information in DNA, and is defined

as a section of base sequences that is used as a template for the copying process called

transcription. Genes carry the necessary information to encode particular protein

structures. Genes comprise only a fraction of all DNA carried on the chromosomes.

Although some of the extragenic sequences function as regulatory elements for the

control of gene expression, a role has yet to be assigned to the extensive stretches of non-

coding DNA sequences in the genomes of higher organisms. It has been conjectured that

these sections of the genome participate in the higher order structure of chromosomes, or
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they may interact with the cytoskeletal components to localize certain regions of DNA to

specific nuclear locations. In higher organisms, most protein-coding gene sequences are

unexpectedly interrupted by stretches of non-coding sequences, called introns. Intronic

sequences often contribute more to the overall length of a gene than do the coding

regions, called exons. Regulatory sequences that make up the promoter and include the

TATA box occur close to the site where transcription starts. A TATA box is a DNA

sequence found in the promoter region of most genes. It is the binding site of either

transcription factors or histones and is involved in the process of transcription by RNA

polymerase. It has the core DNA sequence 5'-TATAA-3', which is usually followed by

three or more adenine bases and has been highly conserved through evolution. The

promoter region contains the binding sites for the transcription factor proteins that start

up transcription. Moreover, the region upstream of the transcription start contains many

binding sites for transcription factors that act as activators and repressors of gene

expression (although some transcription factors can bind outside this region). Enhancer

sequences are located at variable distances from the gene.

1.1.2. Gene expression

The main idea in gene expression is that every gene contains the information to

produce a protein, which is a linear arrangement of amino acids. There are 20 types of

amino acids used in proteins. Thus, a sequence of {A, C, G, T} in DNA is converted to a

sequence in the amino acid alphabet. Gene expression begins with the binding of multiple

protein factors, known as transcription factors, to enhancer and promoter sequences. The

mechanism is slightly different for prokaryotic and eukaryotic organisms. Prokaryotes
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lack a nucleus in their cells and their genome is floating around somewhere in the cell,

while eukaryotes have a nucleus in which the genome is contained. The basic mechanism

of gene expression can be divided into two stages, transcription and translation. In the

first stage, DNA is transcribed to produce RNA (ribonucleic acid) and in the second stage

the RNA is translated to produce a protein. The main difference between RNA and DNA

is that RNA is usually a single stranded molecule and DNA is double stranded, and the

nucleotides present in RNA are {A, C, G, U} where Thymine (T) used in DNA is

replaced by Uracil (U). This intermediary RNA is known as messenger RNA (mRNA).

1.1.2.1. Transcription

In gene expression, the most important mechanism for determining whether or not

a protein will be produced is the control of transcription initiation (Lodish et al., 2000).

Transcription means the assembly of ribonucleotides into a single strand of mRNA. The

sequence of this strand of mRNA is dictated by the order of the nucleotides in the part of

the gene that is transcribed. The transcription process involves several components

including a double stranded DNA, an enzyme RNA polymerase, transcription factors and

the four ribonucleoside triphosphates ATP, CTP, GTP and UTP. Transcription process is

initiated by the binding of several transcription factors to regulatory sites in the DNA,

usually located in the promoter region of the gene. Transcription factor proteins bind each

other to form a complex that associates with RNA polymerase. This association enables

the binding of RNA polymerase to a specific site in the promoter. Together, the complex

of transcription factors and the RNA polymerase unravel the DNA and separate both

strands. Subsequently, the RNA polymerase proceeds down on one strand while it builds
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up a strand of mRNA complementary to the DNA. In this process, ribonucleoside

triphosphates are incorporated, with a DNA strand A being matched to a U in the mRNA,

C to G, G to C and T to A, producing an mRNA chain. This process continues, with the

RNA polymerase shifting along the DNA, until it reaches a terminator site - a region of

sequence that leads to the RNA polymerase being thrown off, ending transcription. Later

the mRNA is processed, transported out of the nucleus (in eukaryotes) and translated into

protein.

1.1.2.2. Translation

The mRNA that has been transcribed from the DNA is converted to a protein,

requiring some kind of rules for translating from one alphabet to the other. The form this

takes is that every three bases in the transcribed mRNA correspond to a particular amino

acid, and it is called the genetic code. These triplets of bases are called codons, and the

code is non-overlapping with no space or pause symbols, so a sequence of three bases

would correspond to exactly one amino acid and a sequence of six bases would

correspond to exactly two amino acids. There are 64 possible values that a codon can

assume, 61 of which correspond to an amino acid. The remaining three (UAA, UAG,

UGA) codes are for chain termination. Note that for a given sequence of bases, there are

three possible ways to divide it into a sequence of trinucleotides, by shifting the

boundaries between codons over by one base. These are called reading frames, the frame

that corresponds to how the sequence is actually read is called an open reading frame.

The main molecules involved in translation are:

mRNA: contains the information from the DNA to be translated.
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tRNA: transfer RNA, which holds the key to the code. Each tRNA associates a

specific codon with a specific amino acid, so if the relevant tRNA binds to each

codon there will be a linear arrangement of the required amino acid sequence.

Ribosome: a complex enzyme that facilitates the translation process. It moves

along the mRNA, binding tRNAs to the appropriate codons and picking off each

tRNA's amino acid to add on to the developing amino acid sequence.

1.1.3. Transcription factors

Transcription factors are proteins that bind to regulatory sequences on DNA

thereby modifying the rate of transcription of a gene. Some transcription factors bind

directly to specific sequences in the DNA (promoters, enhancers), others bind to each

other. Most of them bind both to the DNA as well as to other transcription factors. The

transcription rate can be positively or negatively affected by the action of transcription

factors. When the transcription factor significantly decreases the transcription of a gene,

it is called a repressor. On the other hand, if the transcription factor increases

transcription it is called an activator. In some cases when only one of the transcription

factors binds, there is no activation but the presence of two or more transcription factors

activates the transcription of a certain gene.

1.1.4. Promoters

Promoters are the sites on DNA where transcription factor proteins bind.

Eukaryotic promoters reside immediately upstream (5' ~30-200 base pairs (bp)) of the

coding region of a gene. Key sequences of the promoter structure comprise a variety of
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binding sites, where RNA polymerase (RNAP), transcription factors, and other regulators

of transcription bind to DNA. Promoters function not only to bind RNA polymerase and

transcription factors, but also specify the places and times that transcription can occur

from that gene. In additon, different promoters have different combinations of factor

binding sites. In general, these sites can be moved around or even flipped into the

opposite orientation and there will still be promoter activity. Promoters can be basal or

core promoter and upstream promoter. The basal promoter is located within 40 bp

upstream of the transcription start site, while the upstream promoter may extend over as

many as 200 bp farther upstream. Basal promoter contains the TATA box. All protein

coding genes contain basal promoter, while the upstream promoter whose structure and

associated binding factors differ from gene to gene.

1.2. DNA Motifs

1.2.1. Definition and occurrence of DNA motifs

A DNA motif is a nucleic acid sequence pattern that has, or is conjectured to

have, some biological significance. Normally, the pattern is fairly short (5 to 20 bp long)

and is known to recur in different genes or several times within a gene (Rombauts et al.,

2003). DNA motifs are often associated with structural motifs found in proteins. Motifs

can occur on both strands of DNA. Transcription factors indeed bind directly on the

double-stranded DNA; therefore, motif detection software should take this fact into

account. Sequences could have zero, one, or multiple copies of a motif.
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1.2.2. Special types of motifs:

Palindromic Motifs: Palindromic motifs are a special type of transcription factor binding

site from a computational point of view. This kind of motif is a subsequence that is

exactly the same as its own reverse complement. e.g., CACGTG.

Gapped or Spaced dyads: A second class of special motifs is gapped motifs or spaced

dyads. Such a motif consists of two smaller conserved sites separated by a gap or spacer.

The spacer occurs in the middle of the motif because the transcription factors bind as a

dimmer. This means that the transcription factor is made out of two subunits that have

two separate contact points with the DNA sequence. The parts where the transcription

factor binds to the DNA are conserved but are typically rather small (3-5 bp). These two

contact points are separated by a non-conserved gap or spacer. This gap is mostly of fixed

length but might be slightly variable.

1.2.3. The motif finding problem

Given a set of DNA sequences (promoter region), the motif finding problem is the

task of detecting overrepresented motifs that are good candidates for being transcription

factor binding sites. It is assumed that co-expression of genes frequently arises from

transcriptional co-regulation. As co-regulated genes are known to share some similarities

in their regulatory mechanism, possibly at transcriptional level, their promoter regions

might contain some common motifs that are binding sites for transcriptional regulators. A

sensible approach to detect these regulatory elements is to search for statistically

overrepresented motifs in the promoter region of such a set of co-expressed genes. A
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statistically overrepresented motif means a motif that occurs more often than one would

expect by chance.
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CHAPTER II

MOTIF DISCOVERY ALGORITHMS

Any algorithm whose goal is to discover novel regulatory elements takes as input

a set of regulatory regions of genes, many of which are suspected to contain a common

regulatory element. There are many possible sources for such co-regulated genes,

including expression microarray experiments, gene knockout experiments, and functional

classes from the literature.

Currently, there are four major classes of methods for motif discovery algorithms.

1. String-based methods – mostly rely on counting and comparing oligonucleotide

frequencies.

2. Probabilistic sequence models – the model parameters are estimated using

maximum-likelihood or Bayesian inference. Most of the algorithms based on

these methods try to deduce the motifs by considering the regulatory regions of

several co-regulated genes from a single genome. These algorithms search for

overrepresented motifs in this collection of regulatory regions.

3. Phylogenetic footprinting - an approach of deducing motifs by considering

orthologous regulatory regions of a single gene from several species (Tagle et al.

1988). The simple premise underlying phylogenetic footprinting is that selective

pressure causes functional elements to evolve at a slower rate than non-functional
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sequences. This means that usually well conserved sites among a set of

orthologous regulatory regions are excellent candidates for functional regulatory

elements or motifs.

4. Algorithms based on phylogenetic footprinting and probabilistic sequence models

– this method uses phylogenetic footprinting and probabilistic sequence models in

the same algorithm.

In Table 1, we present a list of motif discovery algorithms and then we describe

some of the algorithms that are most frequently used for motif discovery.

Table 1. Some motif discovery algorithms.

Algorithm name Operating principle

based on

Reference

Galas et al., 1985 Enumeration Galas et al., 1985

Mengeritsky and Smith , 1987 Enumeration Mengeritsky and Smith, 1987

Staden, 1989 Enumeration Staden, 1989

EM Expectation Maximization Lawrence and Reilly, 1990

WordUP Enumeration Pesole et al., 1992

Gibbs Sampler Gibbs Lawrence et al., 1993

MACAW Gibbs Liu, 1994

MEME Expectation Maximization Bailey and Elkan, 1995

AlignACE Gibbs Roth et al., 1998

Oligo-Analysis Enumeration van Helden et al., 1998

Consensus Weight Matrix Hertz and Stormo, 1999

Dyad-Analysis Enumeration van Helden et al., 2000

Winnower Graph Pevzner and Sze, 2000

ANN-Spec Gibbs Workman and Stormo, 2000

SMILE Suffixtree Marsan and Sagot, 2000
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Verbumculus Suffixtree Apostolico et al., 2000

MobyDick Dictionary Bussemaker et al., 2000

YMF Enumeration Sinha and Tompa, 2000

Bioprospector Gibbs Liu et al., 2001

Co-Bind Gibbs GuhaThakurta and Stormo, 2001

ITB Enumeration Kielbasa et al., 2001

Weeder Enumeration Pavesi et al., 2001

MotifSampler Gibbs Thijs et al., 2001

MITRA Prefixtree/Graph Eskin and Pevzner, 2002

Projection Hashing Buhler and Tompa, 2002

Footprinter Dynamic Programming Blanchette and Tompa (2002)

MOPAC Enumeration Ganesh et al., 2003

DMotif Enumeration Sinha, 2003

LOGOS Expectation Maximization Xing et al., 2004

EC Genetic Fogel et al., 2004

GLAM Gibbs Frith et al., 2004

Improbizer Expectation Maximization Ao et al., 2004

QuickScore Consensus Regnier and Denise, 2004

SeSiMCMC Gibbs Favorov et al., 2004

PhyloGibbs Gibbs Siddharthan et al., 2005

GIMF Expectation Maximization Qi, et al., 2005

MaMF Enumeration Hon and Jain, 2006
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2.1. Algorithms Developed from String-Based Approach

The most intuitive approach to extract a consensus pattern for a binding site or

motif is a string-based approach, where typically overrepresentation is measured by

exhaustive enumeration of all oligonucleotides. The observed number of occurrences of a

given motif is compared with the expected number of occurrences. The expected number

of occurrences and the statistical significance of a motif can be estimated in many ways.

2.1.1. Oligo-Analysis

Oligo-Analysis was developed by van Helden et al. (1998). This algorithm is a

simple and fast method allowing the isolation of motifs for transcription factors from

families of co-regulated genes, with results illustrated in yeast (Saccharomyces

cerevisiae). Although conceptually simple, their algorithm proved efficient for extracting,

from most of the yeast regulatory families analyzed, the upstream regulatory sequences

which had been previously found by experimental analysis. Furthermore, putative new

regulatory sites were predicted within upstream regions of several regulons. The method

is based on the detection of over-represented oligonucleotides. A specificity of this

approach is to define the statistical significance of a site based on tables of

oligonucleotide frequencies observed in all non-coding sequences from the yeast genome.

The authors claim that in contrast with heuristic methods, this oligonucleotide analysis is

rigorous and exhaustive. However, its range of detection is limited to relatively simple

patterns which include short motifs with highly conserved core.
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Methodology used in developing the algorithm:

Constitution of regulatory families. The essential criterion for the constitution of a

regulatory family is that all member genes have to show a common regulatory response.

Families can be defined as a regulon, i.e., a set of genes controlled by common regulator,

or as a stimulon, which is a set of genes whose transcription responds to a common

environmental stimulus. When one builds regulatory families, one should avoid including

pairs of structurally related upstream sequences which would strongly bias the

probabilistic calculation. Another situation to avoid would be a pair of highly similar

upstream regions due to a recent duplication event.

Definition of regulatory region limits. In yeast, regulatory elements are found almost

exclusively upstream from the promoter. One would be tempted to consider as putative

regulatory sequence the region located between the transcription start and the immediate

upstream coding sequence. In eukaryotes, and particularly in yeast, the transcription start

can hardly be predicted on the sole basis of the sequence. Its position is only reliable in

the few experimentally determined promoters. Using the end of the immediate upstream

Open Reading Frame (ORF) as the upstream limit of a regulatory region is not very

satisfactory either. On the other hand, there is no reason a priori to discard the possibility

that a coding sequence would simultaneously exert some regulatory action on a neighbor

ORF. In order to determine the optimal size for the upstream region, the authors analyzed

the position of the 308 yeast regulatory sites from TRANSFAC (a database for

transcription factor) database. The vast majority (99%) of these sites are located within a

800 bp range. Consequently, the authors considered in their analysis the sequence

comprised between coordinates –1 and –800 bp upstream from the ORF start.
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After having retrieved the set of upstream sequences from the regulatory family,

the numbers of occurrences of all oligonucleotides of the selected size are counted. This

count takes into consideration multiple occurrences within the same upstream sequence.

The number of occurrences of each oligonucleotide across the regulatory family is then

compared to its expected value.

Calculation of expected oligonucleotide frequencies. The authors considered several

factors for calculating expected oligonucleotide frequencies. First, the yeast genome is

characterized by a sensitive bias in favor of A-T versus G-C bases (frequency of A =

frequency of T = 0.31; frequency of G = frequency of C = 0.19). Moreover, nucleotide

succession is not random, and some oligonucleotides are clearly over-represented,

noticeably the poly (A), poly (T) and poly (AT) chains. An additional bias results from

the fact that oligonucleotides are differentially represented in coding versus non-coding

sequences. A specific expected frequency thus has to be used for each oligonucleotide

sequence. One way to calculate the expected oligonucleotide frequencies is to use the

frequency observed in the collection of all 800 bp upstream regions from the yeast

genome. But there is no reason to systematically restrict the analysis to this precise

length, and in fact, the user can select the length of the sequences to analyze. The authors

took the biologically defined set of all non-coding sequences from the genome to

evaluate the expected frequencies. They built tables showing for each possible

oligonucleotide (b), the frequency observed throughout all non-coding segments of the

whole yeast genome (Fnc{b}), and this for all sizes between one and nine. These

frequencies were then used to estimate the oligonucleotide-specific expected frequencies
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(Fe{b}):

Fe{b} = Fnc{b}

These expected frequencies were used to calculate the number of expected occurrences

for each oligonucleotide in the set of upstream sequences from the regulatory family:

E(occ{b}) = Fe{b} × 2 × ∑
=

S

i 1

( Li – w+1) = Fe{b}×T

where E(occ{b}) is the expected number of occurrences for the oligonucleotide b; w is

the oligonucleotide length; S is the number of sequences in the set; Li is the length of the

ith sequence of the set and T represents the total number of possible matching positions

for a pattern of length w across both strands of the sequence set. The factor 2 stands for

the fact that we sum the occurrences on both DNA strands, since in their model the action

of regulatory sites is orientation insensitive. Since in their case all upstream sequences

have the same length (L), T can be simplified as follows:

T = 2 × S × (L – w + 1).

For the statistical significance test they determine the probabilities of observing exactly n

occurrences of the oligonucleotide b and also the probability of observing n or more

occurrences of the oligonucleotide b.

Later, van Helden et al. (2000) extended their method to find spaced dyads, motifs

consisting of two small conserved boxes separated by a fixed spacer. The spacer can be

different for distinct motifs, therefore, the spacer length is systematically varied between

0 and 16. The significance of this type of motif can be computed based on the combined

score of the two conserved parts in the input data or based on the estimated complete

dyad frequency from a background data set.
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The greatest shortcomings of the algorithm of van Helden et al. (1998) is that

there are no variations allowed within an oligonucleotide. Tompa (1999) addressed this

problem when he proposed an exact method to find short motifs in DNA sequences. The

algorithm is described below.

2.1.2. Algorithm by Tompa (1999)

Tompa (1999) applied this algorithm particularly to the ribosome binding site

problem. Tompa took into account both the absolute number of occurrences and the

background distribution and created a table that, for each k-mer (sequence of length k) ,s

records the number sN of sequences containing an occurrence of ,s where an occurrence

allows for a small, fixed number c of substitution residues in .s Then a reasonable

measure of s as a motif would be based on how unlikely it is to have sN occurrences if

the sequences were drawn at random according to the background distribution. The

statistical significance test for motif occurrences used and described by Tompa is as

follows. Let X be a single random sequence of the specified length L, with residues drawn

randomly and independently from the background distribution, or alternatively generated

by a Markov chain according to the background dinucleotide distribution. Suppose that

sp is the probability that X contains at least one occurrence of the k-mer ,s allowing for c

substitutions. Under the reasonable assumption that N sequences are independent, the

expected number containing at least one occurrence of s is sNp , and its standard

deviation is ))1(( ss pNp − . Therefore, the associated z -score is

sM = ( sN – sNp )/ ))1(( ss pNp − ,
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where sM is the number of standard deviations by which the observed value sN exceeds

its expectation, and is sometimes called the “ z -score”, “normal deviate”, or deviation in

standard units. The random quantity of sM is asymptotically normally distributed, and

normalized to have mean 0 and standard deviation 1, making it suitable for comparing

different motifs .s Tompa proposed an efficient algorithm to estimate sp from a set of

background sequences based on a Markov chain.

2.1.3. YMF

YMF (Yeast Motif Finder) algorithm was developed by Sinha and Tompa (2000).

YMF is summarized as follows. The inputs to the algorithm are a set of upstream

sequences, the number of non-spacer characters in the motifs to be enumerated, and the

transition matrix for an order m Markov chain constructed from the full complement of

upstream sequences of Saccharomyces cerevisiae.

The algorithm first makes a pass over the input sequences, tabulating the number

sN of occurrences of each motif s in either orientation. For each motif s for which sN >

0, it computes )( sXE and ),( sXσ where sX is a random variable representing the

number of occurrences of the motif s in ,X )( sXE and )( sXσ are its mean and standard

deviations, respectively. It then computes the z -score sz using the following formula: sz

= )(/))(( sss XXEN σ− and outputs the motifs sorted by z -score.

For a single motif ,s the running time to compute sz is O(c2k2), where k is the number of

non-spacer characters in ,s and c is the number of possible instantiations of R, Y, S, and

W symbols in .s Where R represents adenine or guanine, Y represents thymine or
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cytosine, S represents guanine or cytosine, and W represents adenine or thymine based on

the Nomenclature Committee of the International Union of Biochemistry for

nomenclature for incompletely specified bases in nucleic acid sequences. Because the

number of motifs is exponential in k, this enumerative method can be applied only for

modest values of k. However, the dependence on genome size is linear, so that the

method scales very well to large genomes.

Moreover, the O(c2k2) time z -score computation does not need to be computed for most

of the motifs. A very significant reduction in running time is by the following

optimization: the dominant part of the motif’s z -score computation is the variance

calculation. Also sz can be bounded by the expression

sz ≤ ))()((/))(( 2
ssss XEXEXEN −− ,

since .)()()( 22
sss XEXEX −≥σ Hence, before computing ),( sXσ ),( sXE is computed

and sz ≤ ))()((/))(( 2
ssss XEXEXEN −− is used to examine if it may be worthwhile to

go into the variance computation. This expression is compared to the lowest z-score

among the top ranking motifs discovered so far. If not, the variance computation for s is

aborted, and the next motif is examined. A similar bounding technique is used to

optimize the variance computation itself. The authors claim that these two optimizations

reduce the running time of the algorithm drastically.
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2.2. Algorithms Based on Probabilistic Approach

2.2.1. AlignACE

AlignACE (Aligns Nucleic Acid Conserved Elements) was developed by Roth et al.

(1998). It is a Gibbs sampling algorithm that returns a series of motifs as weight matrices

that are over-represented in the input set of DNA sequences. In this algorithm, a motif is

defined as the characteristic base-frequency patterns of the most information-rich

columns of a set of aligned sites. Gibbs sampling algorithm has been used to find motifs

in protein sequences by several other research groups (Lawrence et al., 1993; Liu et al.,

1995; Neuwald et al., 1995;). AlignACE differs from this method in the following ways.

1. The motif model was changed so that the base frequencies for non-site sequence

were fixed according to the source genome (62% A+T in the case of S.

cerevisiae).

2. Both strands of the input sequence are simultaneously considered at each step of

the algorithm and overlapping sites are not allowed even if the sites are on

opposite strands.

3. Simultaneous multiple motif searching was replaced by an approach in which

single motifs were found and iteratively masked. The masking is done by

determining the most-information-rich column in each motif, mapping that

column back to the input sequences, and placing a marker at each of those

positions. The sampler is then reinitialized to find another motif with the

stipulation that no sites contain a masking marker may be resampled. Such sites

may, however, be added to any found motif at the end of sampling so that the

AlignACE output includes all relevant sites for each output motif. In the case of a
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very strong motif, it is possible for the motif to have one of its positions masked

and yet still retain enough information in its other positions for a variant of the

original motif to be found.

4. The near-optimum sampling method used by AlignACE is different from that

used by Neuwald et al. (1995). Since a number of upstream regions in S.

cerevisiae are nearly identical, AlignACE also includes the option to purge very

similar input sequence before sampling. A Smith-Waterman algorithm (Smith and

Waterman, 1981) is used to find such sets of repeated sequences, all but one of

which are then removed from consideration. The cutoffs used for this are such

that at least 60% sequence identity is required for a sequence to be purged.

Scoring. The MAP (maximum a priori log likelihood) score is used by AlignACE to

judge different motifs sampled during the course of the algorithm. A crude, but useful

approximation is given by the formula N log R, where N is the number of aligned sites

and R is the degree of over-representation of the motif in the input sequence. In other

words, if a site matching a given motif is expected to occur once every kilobase

according to background genomic mononucleotide frequencies, and ten sites are observed

in 2 kb of input sequence, then R = 5. The general properties of MAP score can be

summarized by stating that all of the following lead to higher scores for otherwise similar

motifs: (1) greater number of aligned sites; (2) more tightly conserved motifs; (3) less

total input sequence; (4) more tightly packed information-rich positions; and (5)

enrichment of the motif with nucleotides that are less prevalent in the genome.
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2.2.2. Original Gibbs Sampler for motif finding

The Original Gibbs Sampler for Motif Finding was developed by Lawrence et al.

(1993). The authors of this algorithm did not apply it to DNA sequence but applied to

protein sequence in the original article. Since one of the original assumptions of this

algorithm was that there exists at least one instance of a motif in every sequence, the

method is sometimes called the “site sampler”. Gibbs is a Markov Chain Monte Carlo

(MCMC) approach: “Markov-Chain”, since the results from every step depends only on

the results of the preceding one like in Expectation Maximization (EM). “Monte-Carlo”,

since the way to select the next step is not deterministic but rather based on sampling, i.e.,

random-numbers.

The statistical background of MCMC methods is explained in the book by Jun S.

Liu (Liu, 2001) and that of Gibbs Sampling in the article (Liu, 1995). In this algorithm it

is assumed that we are given a set of N sequences S1, …,SN and that we seek within each

sequence mutually similar segments of specified width W. The algorithm maintains two

evolving data structures. The first is the pattern description, in the form of a probabilistic

model of residue frequencies for each position i from 1 to W, and consisting of the

variables qi,1, …,qi,20. This pattern description is accompanied by an analogous

probabilistic description of the “background frequencies” p1, …,p20 with which residues

occur in sites not described by the pattern. The second data structure, constituting the

alignment, is a set of positions ak, for k from 1 to N, for the common pattern within the

sequences. The objective will be to identify the “best”, defined as the most probable,

common pattern. This pattern is obtained by locating the alignment that maximizes the

ratio of the corresponding pattern probability to background probability.
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The algorithm is initialized by choosing random starting positions within the

various sequences. It then proceeds through many iterations to execute the following two

steps of the Gibbs sampler: (1) Predictive update step. One of the N sequences, z, is

chosen either at random or in specified order. The pattern description qi,j and background

frequencies pj are then calculated, as described below, from the current positions ak in all

sequences excluding z.

(2) Sampling step. Every possible segment of width W within sequence z is considered as

a possible instance of the pattern. The probabilities Qx of generating each segment x

according to the current pattern probabilities qi,j are calculated, as are the probabilities Px

of generating these segments by the background probabilities pj. The weight Ax = Qx/Px is

assigned to segment x, and with each segment so weighted, a random one is selected

(segment x is chosen with probability Ax/∑ jAj, where the sum is taken over all possible

segments). Its position then becomes the new az. This simple iterative procedure

constitutes the basic algorithm. The central idea is that the more accurate the pattern

description constructed in step 1, the more accurate determination of its location in step 2,

and vice versa. Given random position ak, in step 2 the pattern description qi,j will tend to

favor no particular segment. Once some correct ak have been selected by chance,

however, the qi,j begin to reflect, even though imperfectly, a pattern extant within other

sequences. This process tends to recruit further correct ak, which in turn improve the

discriminating power of the evolving pattern.

An aspect of the algorithm alluded to in step 1 above concerns the calculation of

the qi,j from the current set of ak. For the ith position of the pattern we have N – 1

observed amino acids, because sequence z has been excluded; let ci,j be the count of
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amino acid j in this position. Bayesian statistical analysis suggests that, for the purpose of

pattern estimation, these ci,j’s should be supplemented with residue-dependent

“pseudocounts” bj to yield pattern probabilities qi,j = (ci,j + bj)/(N – 1 + B), where B is the

sum of the bj. The pj are calculated analogously, with the corresponding counts taken

over all non-pattern positions.

After normalization, Ax gives the probability that the pattern in sequence z belongs

at position x. The algorithm finds the most probable alignment by selecting a set of ak’s

that maximizes the product of this ratio. Equivalently, one may maximize F, the sum of

the logarithms of these ratios. In the notation developed above, F is given by the formula
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where the ci,j and qi,j are calculated from the complete alignment of the sequences.

2.2.3. MotifSampler

MotifSampler was developed by Thijs et al. (2001). This algorithm is a

modification of the original Gibbs Sampling algorithm by Lawrence et al. (1993)

described above. A probabilistic framework is used to estimate the expected number of

copies of a motif in a sequence. In this algorithm the authors also introduce the use of a

higher order background model based on a Markov chain. They describe the

incorporation of these modifications in the Gibbs Sampling algorithm to find the

parameters and have successfully tested their implementation on different data sets of

intergenic sequences.

Finding multiple copies. The basic assumption in the gene expressions studies is that co-

expressed genes are co-regulated, but it is expected that only a subset of the co-expressed
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genes are actually co-regulated. When searching for possible regulatory elements in such

a set of sequences, this idea has to be taken into account. It is important to have an

algorithm that can distinguish between sequences in which there is motif and the ones in

which there is not. In higher organisms, regulatory elements can have several copies to

increase the influence of the element in the process of transcriptional regulation. In this

algorithm, the probabilistic sequence model is reformulated in such a way that makes it

possible to estimate the number of copies of the motif in the sequence. The number of

copies of a motif in each sequence is represented by creating a new missing value Qk, the

number of copies of the motif in Sk: Qk varies between 0 and Cmax, where Cmax is a user

defined parameter to set the maximal number of copies of motifs in a sequence.

The motif model is defined as follows. The motif is represented by a position probability

matrix θw:

Motif θw = [ ] ,4 w
b
iq ×

where w is the fixed length of the motif and b
iq denotes the probability of position for

base b ∈{A, C, G, T} and i ∈{1,2, …, w}. The background model is represented by Bm,

with m the order of the model. Using Qk and Bayes’ theorem the following equation is

written to calculate the probability ck ,γ of finding c copies of the motif in sequence Sk

given the motif and background model: ck ,γ = P(Qk = c|Sk, θw, Bm), which describes a

discrete probability distribution. The parameters are estimated in each iteration of the

algorithm. Finally, the expected number of copies of the motif in sequence Sk is

calculated as

E(Qk) = ∑
=

max

1
, .
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Background model. The second modification is the use of a higher order background

model. This background model is developed based on a Markov process of order m. This

means that the probability of the nucleotide bl at position l in the sequence depends on the

m previous bases in the sequence. Such a model is described with a transition matrix.

Given a background model of order m, Bm, the probability of sequence S being generated

by the background model can be written as:

` ∏
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It is important to note that the background model can be either constructed from the

original sequence data or from an independent data set. The latter approach is the more

sensible one if the independent data set is carefully created.

The algorithm. Both modifications described above have been included in the iterative

procedure of the Gibbs sampling algorithm. First the number of copies is sampled

according to the distribution Γ. In the next step the motif model is updated based on the

current alignment vector and the probability distribution of the motif positions is re-

estimated. An alignment vector is then selected by sampling according to this updated

distribution Γ. Given the new alignment vector one can re-estimate the distribution Γ.

The description of the algorithm is as follows:

1. Select or compute the background model Bm.

2. Compute the probability o
xP for all segments x of length W in every sequence.

Since the background model is fixed, it is not necessary to recalculate these values

in each iteration.

3. Initialization of the alignment vector A = {Ak|k = 1…N} and the weighting factors
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Γ = {Γk|k = 1…N}: Ak = {ak,1,…,ak,C) and Γk = { γk,1,…, γk,C}

4. Sample each Qk from the corresponding distribution Γk .

5. For each sequence Sz, z =1,…,N

(a) Create subsets Ŝ = { Ŝi|i ≠ z} and Â = {Âi|i ≠ z}, with Âi = {ai,1,…,ai,Qi}

(b) Calculate θw and θo based on Ŝ and Â.

(c) Assign to each segment x from Az the weight Wx = Px/
o

xP

Px = P(x|θw), o
xP = P(x|Bm)

(d) Sample new position az from probability distribution Wx.

(e) Update the distribution Γz.

6. Repeat from 4 until convergence is reached.

2.2.4. WEEDER

WEEDER was developed by Pavesi et al. (2001). The authors claim that the

WEEDER algorithm as “almost” exact. That is, they start from an exact algorithm based

on suffix trees, where the time needed to find the occurrences of a pattern depends on the

number of its valid occurrences in the sequences, rather than the size of the sequences

themselves. Then instead of reducing the number of patterns to be searched, they speed

up the algorithm by narrowing down the set of valid occurrences for each pattern. To

achieve this they impose a restriction on the location of mismatches.

Suffix trees. A suffix tree is a data structure that exposes the internal structure of a string

in a very deep and meaningful way. A suffix tree Τ for an n-character string S = 1s … ns

is a rooted directed tree with exactly n leaves numbered 1 to n. Each internal node, other

than the root, has at least two children. Each edge is labeled with a nonempty substring of
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S. Two edges leaving the same node cannot have labels beginning with the same

character. For any leaf I, the concatenation of the edge labels on the path from the root to

leaf I exactly spells the suffix of S starting at position I, that is, it spells out is … ns .

The algorithm. Given a set of k sequences on the alphabet∑= {A, C, G, T}, find all

( ),eM patterns, that is patterns of length M that occur with at most e mutations in at least

q sequences of the set. Let us suppose that it finds on the tree the endpoints of paths

corresponding to the occurrences of a pattern p = p1…pm in the sequences, that is, all the

paths that spell words within distance e from p, with m < .M Also, they have associated

with each path the distance (number of mismatches) from p of the corresponding

substring. If p is valid, that is, occurs in at least q sequences (at least q bit are set in the

resulting bit string), they try and expand it by one symbol. For each character b ∈{A, C,

G, T}, they match b against the next symbol on each path. If a path ends just before a

node T of the tree, they match b against the first symbol on each edge leaving T.

Whenever they encounter a mismatch, they increase the previous error along the path by

one. Otherwise, the error remains unchanged. If the new error is greater than e, they

discard the path. Once all paths have been checked, the surviving ones represent the

approximate occurrences of p′ = p1..pmb. If p′ occurs in at least q sequences, and is

shorter than ,M they expand it as well; otherwise, they continue with p and the next

character in ∑ . The algorithm starts with the empty pattern from the root of the tree, and

recursively expands it. That is, it matches the first symbol on each edge leaving the root

against A. If A occurs in at least q sequences, it is expanded to AA. If also AA is valid,

they move on to AAA, and so on. If it is not valid, they proceed with C, looking for

occurrences of AC. Notice that in this method patterns do not have to occur exactly in the
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sequences. For every valid pattern, they have to follow at most )N different paths in the

tree, where N is the overall length of the k sequences. For every word of length M

spelled by a path in the tree (since the tree has N leaves, they are at most )N , there are at

most eeie

i

M
i MΣ≤−Σ∑ =

)1()(
1

different patterns within distance .e The overall time

complexity of the algorithm is thus )( kNM eeΣΟ , where the additional k factor is needed

to OR the bit strings. The algorithm is therefore exponential in the number of mutations

allowed, and no longer in the length of the patterns. The main drawback, however, is that

every pattern of length e satisfies the input constraints, since every other pattern of length

e found in the tree is a valid occurrence for it. That is, the algorithm has at least 4 e valid

patterns of length e to expand, always starting with 4 e paths (or ,N if N < 4 e ). Thus, the

method works well only for small values of .e

To apply the algorithm also to longer patterns with higher values of e one could

reduce the number of patterns that have to be searched, for example those that occur

exactly in the sequences, by checking that at least one path has error zero. The approach

these authors chose, however, is different. Instead of reducing the set of patterns that

have to be searched, they restrict the number of paths that have to be followed for each

pattern. That is, they narrow down the set of valid occurrences.

The authors gave the following example. If one wants to find patterns of length 16

that occur with at most 4 errors. The search for each pattern will start with 44 paths.

Among these paths, 34 will spell words at distance four from the pattern, and are thus

very unlikely to lead to a valid occurrence. The idea is to “weed out” all these paths.
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They also weed out paths with error three and two, considering only paths with at most

one mismatch.

They implemented this method in the algorithm by determining dynamically the

error threshold according to the pattern length. They fix an initial error ratio .ε Given a

pattern p, a path is valid if the distance from p of the word spelled by the path is not

greater than  pε , where p is the length of the pattern. If in the above example, ε =

0.25, and all paths of length four with error greater than one are eliminated. When one

expands p by one symbol, the error threshold is set to  1+pε . The result is that, for

every pattern p = p1…pm, valid occurrences are words 1+is … mis + occurring in the

sequences for which:

 jssppdmj jiij ε≤∈=∀ +++ )..,..(},...,1{ 111

where )..,..( 111 jiij ssppd +++ is the number of mismatches between jpp +11 .. and si+1..si+j.

That is, si+1..si+m is a valid occurrence for p if it is a valid occurrence for all its prefixes

{p1, p1p2,…,p1p2…pm-1}. In other words, we can see p as composed of  mε blocks. The

i-th block starts at position  )1(.1 −iε of the pattern. Every occurrence of p must present at

most one mismatch in the first block, at most two mismatches in the first two blocks, and

so on. Now, the maximum number of paths that might correspond to a pattern of length m

in the tree is O   ).( 1
mm εε

ε ∑ The time complexity is thus reduced to O   ),( 1 kNee ∑ε

where M is the length of the longest pattern found, and e =  mε . Since the error

threshold is now determined dynamically, one no longer have to provide the algorithm

with exact values for the pattern length and the maximum number of mutations.
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2.2.5. ANN-Spec

ANN-Spec was developed by Workman and Stormo (2000). ANN-Spec is a

machine learning algorithm. This algorithm makes use of Artificial Neural Network and a

Gibbs sampling method to define the Specificity of a DNA-binding protein. ANN-Spec

searches for the parameters of a simple network (or weight matrix) that will maximize the

specificity for binding sequences of a positive set compared to a background sequence

set.

The neural network used in this method is a sparsely encoded perceptron with one

processing unit. Perceptrons are linear discriminant functions which can be used to

estimate posterior probability distribution. The weights of the perceptron are initialized to

represent a randomly sampled site in the sequences. Then the following steps are repeated

until a fixed number of iterations is reached:

Motif Sampling Step. The weighted sum of the perceptron’s inputs for a substring j, hj,

could be read as a binding energy or probability for fixation or collision of two

molecules, namely the transcription factor and the particular sequence j. Thus, the

probability hj is not used directly as in Gibbs sampling. Instead, the exp(hj) is used. This

results in a weight for every substring from which k sites are sampled.

Weight Update Step. The objective is the log-likelihood of the selected sites. A weight e

is applied and specified as:

∆Ω = η(∂U*/∂Ω) – λΩ,

where Ω is the weight vector, η is the learning rate or step size, λ is the decay rate and U*

is the objective. Therefore, the change is the log-likelihood from the sampled sites (the
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new weight) divided by the old weight which is corrected by the learning rate and decay

rate. The training time scales linearly with the input data N.

2.2.6. MITRA

MITRA (Mismatch Tree Algorithm) was developed by Eskin and Pevzner (2002).

This algorithm uses a mismatch tree data structure to split the space of all possible

patterns into disjoint subspaces that start with a given prefix. By splitting the pattern

space, MITRA keeps reducing the pattern discovery into smaller sub-problems similarly

to the SPELLER algorithm (Sagot, 1998). MITRA also takes advantage of the pairwise

similarity between instances. These similarities can be used to construct a graph where

each vertex is an l-mer in the sample and there is an edge if the two l-mers are similar

(e.g., differ in no more than 2d positions). An ( ), dl – k pattern will correspond to a

clique of size k in this graph. This type of approach is the basis of the WINNOWER

algorithm (Pevzner and Sze, 2000). In fact, the authors show that they can impose

stronger conditions on the graph for the existence of a pattern than simply a clique of size

k.

Splitting pattern space. MITRA splits the space of all possible patterns into disjoint

subspaces corresponding to patterns that start with a given prefix. A pattern is called

weak if it has less than k ( ), dl -neighbors in the sample. A subspace is called weak if all

patterns in this subspace are weak. For most of the subspaces, one can quickly conclude

that they are weak and save time by not searching the subspaces exhaustively. For

example, if one is looking for patterns of length l we would first split the space of all l-

mers into 4 disjoint subspaces. The first subspace would be the space of all l-mers
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starting with A, the second subspace would be the space of all l-mers starting with C, etc.

The authors further employ strategies for determining whether the subspace contains a

( ), dl – k pattern. If it can be ruled out that a subspace contains such a pattern, one stops

searching in this subspace and release the memory slot. If one cannot rule out that a

subspace contains such a pattern, this subspace is again splitted on the next symbol and

the process is repeated. The key ingredient of MITRA is the method to rule out whether a

subspace contains a ( ), dl – k pattern.

Mismatch tree data structure. Mismatch trees are similar to the suffix trees and tries that

have a long history of applications to string matching problems (Gusfield, 1997). The

paths from the root to the leaves in a mismatch tree represent not only the substrings in

the data (like in suffix trees and tries), but also all neighbors of these substrings with upto

k mismatches. The data structure is a variation of the sparse prediction trees from Eskin et

al. (2000). A mismatch tree is a rooted tree where each internal node has 4 branches, each

labeled with a symbol in {A, C, G, T}. The maximum depth of the tree is l. Each node in

the mismatch tree corresponds to the subspace of patterns ρ with a fixed prefix (defined

by the path from the root to the node) and contains pointers to all l-mers instances from

the sample that are within d mismatches from a pattern P∈ρ (valid l-mers). The tree is

initialized to contain only a root node and is explored in a depth first fashion over the

course of the algorithm.

MITRA starts with examining the root node of the mismatch that corresponds to

the space of all patterns. When examining a node, MITRA tries to prove that it

corresponds to a weak subspace. If one can not prove it, the node’s children are expanded

and each of them is examined. This corresponds to splitting the pattern subspace into 4
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separate parts. Whenever, one reaches a node corresponding to a weak subspace, it is

necessary to backtrack, thus effectively eliminating the subtree rooted at that node from

the search. The intuition is that many of the nodes correspond to weak subspaces and can

be ruled out. This allows avoiding searching much of the pattern space that would be

searched in Sample Driven Approach (SDA). If one reaches depth l, the l-mer

corresponding to the path from the root to the leaf corresponds to an ( ), dl – k pattern

and the pointers from this node correspond to the instances of this pattern. In practice, it

is not need to explicitly maintain the mismatch tree in memory since one ‘virtually’

traverses the mismatch tree in the depth first fashion.

MITRA keeps track of all valid l-mers at each node in the tree (i.e., instances of

patterns from the subspace of patterns that correspond to the node). An l-mer is valid for

a node if its prefix matches the prefix of the node with at most d mismatches. The set of

valid l-mers for a node is a subset of the set of valid l-mers for the parent of the node.

MITRA efficiently generates the set of valid l-mers for a node by keeping track of the

number of mismatches between each valid l-mer and the prefix of the node. For a valid l-

mer in the parent of a node, there are two cases. Either the position corresponding to the

branch to the child matches the l-mer, or the position corresponding to the branch to the

child does not match the l-mer. In the first case, the l-mer is still valid for the child. In the

second case, the count of mismatches for that l-mer increases. If the mismatch count

exceeds the threshold d, the l-mer is not passed on to the child. Thus a child node’s set of

valid l-mer is simply the set of valid l-mers of the parent that either match the label of the

branch to the child or are still within an acceptable number of mismatches of the prefix.
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The algorithm. At first examine the root node that corresponds to the set ρ of all 4l l-mers

of length l. This node points to all l-mers in the sample. Then examine the first child, A.

This child points to all of the l-mers in the sample that have prefix A (with 0 mismatches)

and to all of the l-mers in the sample that have a different prefix (with 1 mismatch).

Continue with a depth first search and test every node to see if it corresponds to a weak

subspace. If yes, backtrack since there is no ( ), dl – k pattern in this subspace. If depth l

is reached, then the node corresponds to an ( ), dl – k pattern. Then compute the score of

the pattern and output the pattern along with the score if it is above some threshold that is

considered interesting. Since we are finished with this pattern, backtrack in the tree,

collapse the current node, and expand the next node. Since the only expanded nodes are

along the current search path, there is a maximum of l stored nodes in the tree (counting

the root node) which bounds the memory usage of the algorithm. Unlike in the SDA

algorithm, one does not need to keep all of the patterns in a large table.

2.2.7. BioProspector

BioProspector was developed by Liu et al. (2001). It is an algorithm for finding

sequence motifs from a set of DNA sequences. It takes the following input parameters:

1. A file with N DNA sequences in which the motifs are to be found.

2. A file containing sequences or probabilities characterizing the background

nucleotide distribution.

3. The widths of the two motif blocks w1 and w2, and their gap range, [gL, gM]. In the

case when a one-block motif is of interest, one can set w2, gL and gM to 0.

4. Whether each sequence has at least one copy of the motif.
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5. Whether the motif could occur in both DNA strands.

6. Whether the motif has a palindromic pattern, in which case w1 must be equal to

w2, and BioProspector checks both DNA strands automatically.

At the end, BioProspector outputs the following results:

1. The motif score, significance value, and the number of aligned segments.

2. A regular expression of the motif consensus and degenerate, as well as a

probability matrix expression of the motif.

3. The number of segments each input sequence contributes to the motif, the starting

position and sequence of each segment.

Bioprospector uses a Gibbs sampling strategy. It examines the upstream region of genes

in the same gene expression pattern group and looks for regulatory sequence motifs. It

differs from the original Gibbs sampler in the following points:

1. It uses zero to third-order Markov background models whose parameters are

either given by the users or estimated from a specified sequence file.

2. The significance of each motif is judged based on a motif score distribution

estimated by a Monte Carlo method.

3. It allows for the modeling of gapped motifs and motifs with palindromic patterns.

2.3. Algorithm Based on Phylogenetic Footprinting

In this category we describe an algorithm named Footprinter, which was

developed by Blanchette and Tompa (2002). The basic method of this algorithm is

dynamic programming. The inputs to the algorithm are n homologous sequences S1, S2,

… ,Sn, the phylogenetic tree T relating them, the length k of the motifs sought, and the
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maximum parsimony score d allowed. The algorithm proceeds from the leaves of T to its

root. At each node u of T, it computes a table Wu containing 4k entries, one for each

possible k-mer. For each such k-mer s, let Wu[s] be the best parsimony score that can be

achieved for the subtree of T rooted at u, if the ancestral sequence at u was forced to be s.

Let C(u) denote the set of children of u, and h(s, t) denote the number of positions at

which k-mers s and t differ, and let ∑ = {A, C, G, T}. The table Wu is computed

according to the following recurrence:

Wu[s] = 0, if u is a leaf and s is a substring of Su.

Wu[s] = ,∞+ if u is a leaf and s is not a substring of Su.

Wu[s] = ∑
∈ )(uCv

kt ∑∈
min Wv[t] + h(s, t), if u is not a leaf.

A straightforward implementation of this recurrence computes all W tables in time

O(nk(42k + l)), where l is the average length of the input sequences S1, S2, …, Sn. The

main term nk42k in this expression comes from the fact that for each of the O(n) edges

(u,v) of T, for each of 4k possible values of s labeling u, and for each of the 4k values of t

labeling v, the recurrence calls for the computation of h(s, t).

If r is the root of T, each entry of Wr that is at most d gives rise to one or more

solutions to be reported. For each such entry, the corresponding k-mers of the n input

sequences can be recovered by retracing the recurrence from the root back to the leaves.

By maintaining appropriate pointers that reflect the computation of the W tables, the set

of solutions can be recovered in time linear in its size. In non-repititive biological

sequences the number of solutions is usually small (when d is small), and the time to

enumerate them is negligible compared to the time to compute the W tables.
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The 42k factor in the complexity of the algorithm as described makes it impractical

to use for most interesting values of k. Blanchette et al. (2002) show how various

algorithmic optimizations can reduce the running time of this algorithm to O(nk

min(l(3k)d/2, 4k + l)). It can be noticed that the running time is proportional to nl, which is

the total length of all the input sequences. This means that the algorithm’s performance

scales well as the number of species or length of all motifs provided is increased.

Although the running time is exponential in either d/2 or k (depending on which of

l(3k)d/2, 4k + l is the lesser), in practice both of these parameters are quite small: typical

values in the experiments reported by the authors were k = 10 and d = 3.

2.4. Algorithm Based on Phylogenetic Footprinting and Gibbs Sampling Strategies

In this category we describe an algorithm named PhyloGibbs, developed by

Siddharthan et al. (2005). This algorithm combines the motif finding strategies of

phylogenetic footprinting and Gibbs sampling into one integrated Bayesian framework.

PhyloGibbs runs on arbitrary collections of multiple local sequence alignments of

orthologous sequences. The algorithm searches over all arrangements in which an

arbitrary number of binding sites for an arbitrary number of transcription factors can be

assigned to the multiple sequence alignments. These binding site configurations are

scored by a Bayesian probabilistic model that treats aligned sequences by a model for the

evolution of binding sites and background intergenic DNA. This model takes the

phylogenetic relationship between the species in the alignment explicitly into account.

The algorithm uses simulated annealing and Monte Carlo Markov chain sampling to

rigorously assign posterior probabilities to all binding sites that it reports.
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CHAPTER III

RESULTS

Here we present some results that have been obtained in the literature using some

of the algorithms described above.

3.1. Oligo-Analysis

van Helden et al. (1998) tested their Oligo-Analysis algorithm for genes

controlling metabolism in yeast. They selected these genes because yeast metabolism has

been widely studied and provides numerous examples of known regulons. In many cases,

the transcriptional factor involved in the common response as well as its binding site is

known. These families of co-regulated genes provide ideal datasets to calibrate the

method, which, in a further step, could be extended to families whose regulatory elements

are unknown. The authors built several families on the basis of the co-regulation of

genes. They did not take in consideration the content of the upstream regions of these

genes during developing these groups. The important findings of their analyses are as

follows.

Clusters of overlapping hexanucleotides generally reveal wider regulatory sequences.

For each gene family, they extracted the set of 800 bp upstream sequences, and

performed an hexanucleotide analysis. All hexanucleotides with a significance coefficient

higher than zero were retained. With the chosen threshold, very few sequences were
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retained, which was about ten per family, out of 2080 possible hexanucleotide pairs.

Highly significant patterns generally appear clustered with a few additional overlapping

hexanucleotides that have a weaker significance coefficient. For example, the most

salient hexanucleotide of the MET family was CACGTG (significance coefficient = 7.0),

was grouped with two strongly overlapping sequences: TCACGT (significance

coefficient = 6.1) and GTCACG (significance coefficient = 0.7). In most families, the

overlapping clusters reflect the fact that the recognition domain of the transcriptional

factor is wider than six nucleotides. The maximum significance indicates the most

conserved core that usually corresponds to the bases directly interacting with the

transcriptional factor.

Oligonucleotide size. In most families, the simple hexanucleotide analysis of the 800 bp

upstream regions allowed them to detect the regulatory sequences previously found by

means of experimental analysis. Analysis performed with different oligonucleotide sizes

generally revealed the same patterns with different significance indices. A higher

statistical significance only indicates a stronger over-representation, which does not

necessarily correspond to a functional requirement on size.

Multiple clusters revealed either multiple sites or single site variability. Several clusters

generally appear from each family. In some cases, multiple clusters correspond to distinct

regulatory sites. This is clearly the case in the MET family, where two independent

clusters are detected, the former forming the pattern GTCACGTG, corresponding to the

binding site for the transcription factor Gbf1p-Met4p-Met28p complex, and the second

revealing the site AAAACTGTGG, recognized by Met31p and Met32p. Alternatively,

clusters can be structurally related, and represent variants of the same binding site, as in
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PHO family, where one cluster forms the pattern GCACGTGGG, shown to bind Pho4p

with high affinity, and another cluster defines the low affinity consensus GCACGTTTT

for this same transcription factor.

Unknown sites revealed by oligonucleotide analysis. Some additional hexanucleotides

were identified within each family besides those belonging to known regulatory

sequences. Based on the results for known sites, one can infer that the ideal unknown site

should appear as a cluster of overlapping hexanucleotides with a core showing a high

significance coefficient. They observed several unknown patterns extracted from the

hexanucleotide analysis fit with these criteria, and are good candidates as new regulatory

sequences.

3.2. YMF

Sinha and Tompa (2002) discussed the results of validation experiments in which

YMF was used to identify candidate binding sites in 23 well studied regulons of S.

cerevisiae.

For 18 of these regulons YMF succeeded in reporting the known binding site consensus

for the regulon’s principal transcription factor. The study was carried out using the SCPD

(The Promoter Database of Saccharomyces cerevisiae) database (Zhu and Zhang, 1999).

The SCPD database has a collection of transcription factors and the genes regulated by

each factor. Each such set of genes comprises a regulon. For each gene in a regulon, the

database lists the experimentally determined binding sites of the transcription factor, and

in many cases the consensus sequence of the binding sites in the regulon is also given.

The success of YMF was assessed by comparing the top motifs reported with the known

consensus for the regulon. The program was run three times on each regulon, to find
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motifs of length 6, 7, and 8, respectively. For length 6 motifs, a maximum of 11 spacers

in the middle was allowed. For lengths 7 and 8, the motif model did not include spacers.

In all runs, a maximum of 2 degenerate symbols (R, Y, S, or W) was allowed in the

candidate motifs.

For 15 of the 23 regulons, the top motif reported (for one or more value of the

motif length parameter) was a match. For 14 of the 15 regulons, there was a match with

Pmax less than 0.1, the exception being MATa2. In another regulon, MCM1, the top

ranking motifs (for length 6) were variants of the poly-A element (any motif that can be

instantiated to a string of all A’s, e.g., AAAAWAAA), and the first non-polyA motif, at

rank 11 with Pmax = 0.01, was CCSNNNNAGG, similar to the known consensus

CCNNNWWRGG. For the regulon RAP1, the top motif reported (for length 7) is

GCAYGTG, which matches part of the Inositol/Choline Response Element (ICRE) with

consensus SCAYRTGAARW. The 23 regulons represent the typical input for a motif-

finder – they are of varying sizes (3 to 38 genes) and have a variety of known binding

sites (length 5 to 10, with few to many spacers or degenerate symbols). The results thus

demonstrate the applicability of the method on a variety of data sets. In most cases, a

match was found in the top three motifs for multiple values of l, indicating that the

performance is not crucially dependent on prior knowledge of the motif length. In some

cases, YMF found a match even though the known consensus of the binding site does not

conform to the motif model YMF uses. For instance, the regulon SCB has the sequence

CNCGAAA as its binding site consensus, with an ‘N’ that is not in the middle.

Nevertheless, a very similar motif CACGAAA was reported. Similarly, for HAP1

(consensus CGGNNNTANCGG), the motif SGGNNNNNNSGG was discovered.



43

The regulon ABF1 is an example of a case where multiple occurrences of the

binding site are found in the same promoter region. Of the 19 genes in this regulon, 8

have two or more occurrences of the motif TCRNNNNNNACG in their promoter region.

There are a total 36 occurrences of the motif, giving it a very high z-score of 10.07. If

each of the 19 genes had only one occurrence of the motif, for a total of 19 occurrences,

the z-score would have been about 4.03, which is rather low, meaning that the motif

would not have been reported as significant.

In addition to their validation experiments, they also used YMF for gene families

in the functional and mutant phenotype catalogues of S. cerevisiae from the MIPS

database, where YMF reported many promising novel transcription factor binding sites.

3.3. AlignACE

When used to search upstream of apparently coregulated genes, AlignACE finds

motifs that often correspond to the DNA binding preferences of transcription factors.

Roth et al. (1998) used AlignACE to analyze whole genome mRNA expression data.

They applied it to three extensively studied regulatory systems in Saccharomyces

cerevisiae: galactose response, heat shock, and mating type. Galactose response data

yielded the known binding site Gal4, and six of nine genes known to be induced by

galactose. Heat shock data yielded the cell-cycle activation motif, which is known to

mediate cell-cycle dependent activation, and a set of genes coding for all four

nucleosomal proteins. Mating type α and a data yielded all of the four relevant DNA

motifs and most of the known a- and α-specific genes.
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Hughes et al. (2000) presented a more detailed study of the effectiveness of

AlignACE as applied to a variety of groups of genes in Saccharomyces cerevisiae

genome. Details of the results are as follows.

The input sets of genes. A total of 248 groups of genes were examined, including 135

from the database at the Munich Information Center for Protein Sequences, 17 groups

from the Yeast Protein Database, and 96 groups from Saccharomyces Genome Database.

They considered only groups of six or more genes. The number of genes in each of these

groups ranged from minimum of six to as many as 707, with an average of 42 genes per

group. Runs of AlignACE on the upstream regions of these groups of genes produced

3311 motifs.

Motif measures. To reduce the set of 3311 motifs under consideration, they devised two

motif measures: one related to group specificity, the other to positional bias. The group

specificity score gauges how well a given motif targets the upstream regions of the genes

used to find it relative to the upstream regions of all the genes in the genome. The

positional bias score indicates the degree to which a motif tends to be preferentially

positioned in a particular distance range upstream of the translation start.

Motif clustering. AlignACE generated many examples of identical or very similar

motifs. This occurs when the same motif is found from AlignACE runs on overlapping or

related groups of ORFs and also when multiple similar examples of a very strong motif

are returned from a single AlignACE run. To automatically group very similar motifs

together, they used a hierarchical clustering technique based on an algorithm which they

named CompareACE.
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Highly group-specific motifs. In order to present only the strongest of the great number of

motifs found, they chose a MAP score cutoff of 10.0, which reduced the set of motifs

under consideration to 1234. While largely arbitrary, this threshold did not lead to the

rejection of any of the best examples of known cis-regulatory elements. To focus on the

most selective motifs, they chose a cutoff of 10-10 for the group specificity score. A total

of 54 highly specific motifs fulfilled both criteria and were grouped into 25 distinct motif

clusters.

Known motifs. Assignment of AlignACE motifs to known cis-regulatory elements from

the literature is an ideal application for the algorithm CompareACE. However, the

authors did not use this algorithm, because databases of known transcription factor

binding sites are still incomplete. The main criterion used to identify an AlignACE motif

as a known cis-regulatory element was that the AlignACE motif matched the literature

consensus and was found upstream of an appropriate set of genes. For motifs with

numerous annotated, well-defined binding sites, this criterion allowed them to easily

make the assignment. In cases involving very few known sites, the criterion used was

whether the top genomic sites for the AlignACE motif included a significant fraction of

the sites verified in the literature. They were able to identify the following 16 known

motifs from among the 25 highly specific motif clusters: Rap1p, Gcn4p, the heat shock

element (HSE), the Cbf1p-Met4p-Met28p complex, the Hap2p-Hap3p-Hap4p complex,

Lys14p, the MluI cell-cycle box (MCB), the stress response element (STRE), the

Met21p-Met32p complex, Leu3p, Oaf1p, the carbon source responsive element (CSRE),

Pho4p, Ste12p, and Pdr3p.
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Unknown motifs. In addition to the known motifs, the authors were able to find many

unknown motifs using AlignACE. Three highly specific motifs were found to be

associated with ribosomal proteins. One of these, the Rap1p motif, is well known. The

other two motifs are primarily associated with small and large ribosomal subunits. These

findings are especially interesting since the transcriptional regulation of a number of

ribosomal proteins has been studied in detail, and the known Rap1p and Abf1p sites,

along with a T-rich region, are generally found to be sufficient to explain their

transcriptional control (Goncalves et al., 1995).

3.4. MotifSampler

G-box sequences. To validate the motif sampler the authors constructed two data sets:

one with a known regulatory element involved in light regulation in plants, G-box and

one of so-called random sequences in which no G-box is reported. The G-box data set

consists of 33 sequences selected from PlantCARE (Rombauts et al., 1999) containing

500 bp upstream of the translation start. This data set is well suited to give a proof of

concept and to test the performance of the motif sampler, since the consensus of the motif

and also the positions of the motif in the sequences are known. The random set consisted

of 87 sequences of 500 bp. This set was used to introduce noise to the test set. The

authors show the results of two different tests. The first test shows the influence of the

number of copies and the second test illustrates the improvement due to the use of a

higher-order background model when noise is added to the data set.

First they experimented with 33 G-box sequences together with 10 sequences from the

random set. This set was used to test the influence of the number of copies. When the
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number of copies is set to 1, a more conserved motif will be found, but a number of

occurrences will be missed. Increasing the number of copies will allow to better locate

the true number of copies of a motif but more noise is introduced to the initial model and

the final model will be more degenerate. The results shown were based on parameter

settings to search for a motif of length 8 bp that can have either 1 or 4 copies using third-

order background model with Arabidopsis. In both cases a motif was found with a

consensus resembling the G-box consensus CACGTG. These motifs are also the motifs

with the highest scores.

Secondly, they tested the influence of noise on the performance of the motif

sampler. Noise is due to the presence of upstream sequences that do not contain the

motif. To introduce noise in the data set they added in several consecutive tests each time

10 extra sequences, in which no G-box is reported, to the G-box data set. They tested

several configurations to see how the noise influences the performance of the motif

sampler. They used three different background models. The number of times the G-box

was detected decreased when more noise was added to the original set of 33 G-box

sequences. This influence was more dramatic for the single nucleotide background model

than the third-order background model.

Microarray experiments. They also used the motif sampler to find motifs in clusters of

co-expressed genes identified from microarray experiment. As a test case, they used the

data from Reymond et al. (2000), where the gene expression in response to mechanical

wounding was measured. Messanger RNA (mRNA) was extracted from leaves at 8 time

points up to 24 hours after the wounding and an expression profile was constructed. To

find the groups of co-expressed genes they used a clustering algorithm. They found 8
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small clusters of co-expressed genes. To analyze the clusters they selected the sequence

500 bp upstream of translation start for every gene present in one of the clusters. They

looked for 10 different motifs of length 8 and 12 bp. To distinguish between stable motifs

and motifs that are found just by chance, they repeated each experiment 10 times. The

results using the third-order background model using Arabidopsis gave the most

promising results. Four of the clusters contained only 3 genes and they did not find any

interesting motif in these small clusters. The most interesting motifs were only detected

in the clusters containing more than 3 genes. Table 2 gives an overview of the most

important results. The consensus sequences are a compilation of the consensus sequences

of length 8 and 12 bp. Only the relevant part of the consensus is displayed. Together with

the consensus the number of times the consensus was found in 10 runs is indicated. The

most frequent motifs are shown in Table 2.

To assign a functional interpretation to the motifs, the consensus of the motifs was

compared with the entries described in PlantCARE. Several interesting motifs were

found: methyl jasmonate (MeJa) responsive elements, elicitor-responsive elements and

the abcissic acid response element (ABRE). It is not surprising to find these elements in

gene promoters induced by wounding, because there is a clear cross-talk between the

different signal pathways leading to inducible defense gene expression (Birkenmeier and

Ryan, 1998). Depending on the nature of a particular aggressor (wounding/insects, fungi,

bacteria, virus) the plant is able to fine-tune the induction of defense genes either by

employing a single signal molecule or by a combination of the 3 regulators jasmonic acid

(JA), ethylene and salicylic acid (SA). In the third and fourth cluster there are also some

strong motifs found that do not have a corresponding motif in PlantCARE.
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Table 2. Results of the motif search in 4 clusters for the third-order background model. In

the second column the consensus of the motifs found is given and the third column

contains the number of times this motif was found in the 10 runs. The corresponding

motif in PlantCARE is given in column four and a short explanation of the described

motif is given in column five.

Cluster Consensus Runs PlantCARE Function

1

(11 sequences)

TAArTAAGTCAC

ATTCAAATTT

CTTCTTCGATCT

7/10

8/10

5/10

TGAGTCA

CGTCA

ATACAAAT

TTCGACC

tissue specific GCN4-motif

MeJa responsive element

element associated to GCN4-motif

elicitor responsive element

2

(sequences)

TTGACyCGy

mACGTCACCT

5/10

7/10

TGACG

(T)TGAC(C)

CGTCA

ACGT

MeJa responsive element

Elicitor responsive element

MeJa-responsive element

Abcissic acid response element

3

(5 sequences)

WATATATmTT

TCTwCnTC

ATAAATAkGCnT

5/10

9/10

7/10

TATATA

TCTCCCT

-

TATA-box like element

TCCC-motif, light response element

-

4

(5 sequences)

YTGACCGTCCsA

CAGGTGG

GCCTymTT

AGAATCAAT

9/10

5/10

8/10

6/10

CCGTCC

CCGTCC

TGACG

CGTCA

CACGTG

ACGT

-

-

Meristem specific activation of H4 gene

Light or elicitor responsive element

MeJa responsive element

MeJa responsive element

Light responsive element

Abcissic acid response element

-

-
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3.5. BioProspector

The authors used BioProspector to test three sets of data. The first set consisted of

60 non-coding sequences that were shown to physically interact with the S. cerevisiae

telomere-binding protein Rap1p. DNA associated with Rap1p were identified by

chromatin immunoprecipitation (IP) and purification of DNA fragments enriched by the

IP, followed by labeling and hybridization of purified fragments to DNA microarrays

containing all of the yeast intergenic regions. The binding site for RAP1 is well

characterized, and although published determinations differ slightly in length and

consensus, they all agree on the core site RMAYCCR. The sequences analyzed ranged in

length from 163 to 1339 bp, and some do not contain the RAP1-binding motif, while

others contained multiple copies of it. Three runs of BioProspector were performed, using

the input sequence, a zero-order, and a third-order Markov model estimated from the

yeast intergenic region to represent the background, respectively. For each sequence, both

the forward and the complementary strands were examined. The authors chose M = 200

for an accurate approximation of the motif score distribution, although M = 40 usually

gives a reasonable estimate. To examine the performance of threshold sampler on the

original data, they let it run 250 times and recorded the motif score and consensus of

each.

The second data set contained 136 σA-dependent promoter sequence (mostly at

positions [-100, 15]) from Bacillus subtilis. Each sequence has one RNA polymerase-

binding motif on the forward strand, otherwise known as the TATA box. This is a two-

block motif: the first block with consensus TTGACA mostly occurs at position -35, and
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the second block with consensus TATAAT mostly occurs at position -12. BioProspector

performed motif finding on this data with a specified gap range of [15, 20].

The third data set consisted of 18 Escherichia coli sequences of length 105 which

are known to contain CRP-binding sites. CRP is a prokaryotic dimeric DNA-binding

protein that binds to adjacent DNA major grooves in a palindromic pattern. One-block

motif models using both EM or Gibbs sampling have been applied to this data and

yielded satisfactory results, although both mispredicted one or two sites. The authors ran

BioProspector on this data to search for a palindromic two-block motif.

The results were as follows.

RAP1 site: background Markov dependency and motif score distribution. The 200 motif

scores obtained from the 200 generated sequence sets were approximated by a normal

distribution, no matter how the background model was estimated. When using the

background model estimated from Fin, none of the reported motifs agree with the

published RAP1 consensus. When using an independent background model estimated

from yeast intergenic region, most of the high-scoring motifs are correct, although there

are some high-scoring false positive motifs. When using a third-order Markov

background model estimated from yeast intergenic region, the distributions of true

positive and false positive motifs separate very well. At scores above 305, all the 9 motifs

reported contain a consensus of ACACCCA which agrees with the published result.

TATA-box: two-block motifs. Among the 136 B. subtilis sequences containing the two-

block TATA-box motif, BioProspector correctly found 70% of the sites and accurately

identified the motif consensus as TTGACA, TATAAT. This motif is not very well

conserved; many of the missed sites are significantly different from the consensus. For
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example, the following four missed sites are so variable that the sites predicted by

BioProspector match with the consensus better:

Correct site Site found

ald AAGAAT TACACT TTTCCA TAAAAA

cspB TTGTTT TGGAGT ATTACT TATTTT

menE AATACA GATGAT TTGAGA TCTTTT

odhA TTGTGA CAAATT TTTACT TAGAAT

For the following three sequences, besides finding the correct sites, BioProspector also

found a second site closely matching the consensus. In fact, the second site of the

sequence veg matches exactly with the TATA-box consensus, which is even better than

the correct site.

Correct site Site found

abrB TTGACG TAGTCT CTGACT TACAAT

veg TTGACA TACAAT TTGACA TATAAT

φ105 TTTACA TACAAT TTGACG TACAAT

CRP site: palindrome motifs. Footprint experiments identified 24 CRP-binding sites in

the 18 sequences. However, the aligned segments are not very conserved, especially at

the ending positions. EM and Gibbs sampling with one-block motif model succeeded in

finding most of the sites, although both mispredicted one or two sites. With a two-block

palindromic motif model, all the sites found by BioProspector are correct. The base shifts

of the starting position of the first block were caused by specification of a shorter block
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width and a flexible gap between the two blocks. The resulting probability matrix shows

a much more conserved motif with a consensus of WTGTGAWM.



54

CHAPTER IV

COMPARISONS OF SOME MOTIF FINDING ALGORITHMS

Although users may appreciate guidance concerning which motif discovery

algorithm to choose, there are no accepted criteria to predict when one such algorithm

will be more successful than another. Tompa et al. (2005) compared 13 algorithms:

AlignACE, ANN-Spec, Consensus, GLAM, Improbizer, MEME, MITRA, MotifSampler,

oligo/dyad analysis, QuickScore, SeSiMCMC, Weeder and YMF.

For motifs, the authors used TRANSFAC database to choose real transcription factors,

their known binding sites, and the positions and orientations of those binding sites. Each

such transcription factor gave one data set of sequences. Each such data set consisted of

one of three different types of background sequence, with the transcription factor’s

known binding sites planted at their known positions and orientations. The three types

were (1) the binding sites’ real promoter sequences (called ‘real’ hereafter), (2) randomly

chosen promoter sequences from the same genome (called ‘generic’), and (3) sequences

generated by a Markov chain of order 3 (called ‘markov’). The process for selecting

transcription factors and binding sites from TRANSFAC was as follows: They selected

only transcription factors for which TRANSFAC also lists a binding site consensus

sequence. For each factor, they removed duplicate instances of the same binding site,

removed binding sites missing sequence or position information, removed binding sites
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whose position was annotated with respect to anything other than transcription or

translation start site, removed binding sites whose position was less than -3,000 bp or

greater than 0, and removed sequences with two reported binding sites contradicting each

other in sequence and position. Any factor with fewer than five remaining binding sites in

a single species was then discarded. This resulted in 52 data sets. Six of the data sets are

from fly, 26 from human, 12 from mouse and 8 from yeast. As negative controls, they

added 4 additional data sets of type markov containing no planted binding sites, and

added 2 of them to the fly collection and 2 of them to the yeast collection. For each

species, about one-third of its data sets were of each of the types real, generic, and

markov. To 31 of the 38 data sets of type generic or markov, they added 1 to 4 additional

sequences with no planted binding sites, so that each input sequence contains 0 or more

planted binding sites. The number of sequences per data set varied from 1 to 35 with

mean 7, and the individual sequence length per data set varied from 500 bp to 3000 bp.

The total size of each data set varied from 1 to 70 kb with mean 8 kb. The number of

planted binding sites per data set varied from 0 to 76 with mean 9. The data sets are

available as a benchmark at the assessment web site http://bio.cs.washington.edu/

assessment.

The authors used several statistics to compare the accuracy of the 13 tools they

used in this study. Data revealed that the absolute measures of correctness of these

programs were low. For example, site sensitivity was at most 0.22 and correlation

coefficient was at most 0.20. The authors warn that this should not be taken as an

indictment of computational methods for prediction of regulatory element, for a very

great number of reasons. Most importantly, the underlying biology of regulatory
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mechanisms is very incompletely understood. We lack an absolute standard against

which to measure the correctness of tools. The assessment allowed no comparative

sequence analysis among species, a powerful method for the prediction of regulatory

elements. The assessment allowed no exploitation, except possibly in the data sets of type

real, of the fact that the binding sites of multiple transcription factors often occur in close

proximity to each other. The assessment depended on TRANSFAC as its standard for the

true binding sites; any such database is fallible and biased. Many of the binding sites

cataloged in TRANSFAC are usually long: 35 of the sites used in this assessment were

each 31 to 71 bp in length. This may reflect lack of precision in the experimental method

used, with the true binding site actually a shorter subsequence of the cataloged site. Such

long cataloged sites have a detrimental effect on measured sensitivity, both at the

nucleotide and site levels. The assessment allowed only one known motif for each data

set, despite the fact that 18 data sets of type real are likely to have binding sites for

multiple transcription factors. In addition, in comparing the performance of tools, one

must keep in mind the fact that predicted set of motif instances was subject to human

choices of parameters and pre- and post-processing.

The results of the comparison experiments showed that the tool Weeder

outperformed the other tools in most domains and by most measures in this assessment.

The authors believe that some part of Weeder’s success is due to judicious choices

regarding when to predict no motif in a data set: Weeder was run in a “cautious mode”,

where only the strongest motifs were reported. A few small exceptions to Weeder’s

domination were that the SeSiMCMC did somewhat better on the fly data set and the

MEME3 and YMF did somewhat better on the mouse data sets.
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The authors mention that biologists would be well advised to use a few

complementary tools in combination rather than relying on a single one and to pursue the

top few predicted motifs of each rather than the single most significant motif. They also

mention that one of the surprises resulting from this assessment was the realization that

the design of a good assessment was itself far from straightforward. Constructing

representative data sets, when we do not understand the full truth about transcription

factor binding sites, was problematic from the outset. Choosing the most appropriate

statistics for evaluating the correctness of predictions was also challenging. This was

particularly the case in light of the reality that different tools may predict zero, one or

more significant motifs on a given data set, and that real promoter sequences may indeed

contain binding sites for zero, one or more distinct transcription factors.
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CHAPTER V

DISCUSSION

Despite considerable efforts to date, prediction of regulatory elements remains a

complex challenge for biologists and computer scientists. A commonly accepted

assumption in biology is that co-regulated genes share similarities in their regulatory

mechanism. These similarities at transcriptional level imply that the promoter regions of

the genes might contain consensus motifs recognized by the same regulatory proteins

(transcription factors). In the upstream regions of such sets of co-regulated genes, the

common consensus motifs are statistically overrepresented as compared to their

frequency in a background set (of non-coregulated genes). Several methods to search for

overrepresented motifs in the upstream region of a set of co-regulated genes have been

developed and tested. The weak point of these algorithms is that they tend to be sensitive

to the noise. Noise is due to the presence of upstream sequences in the data set that do not

contain the motif. Another source of noise comes from the large size of the upstream

sequences of the selected genes as compared to the small size of the motifs. Parts of the

sequences not containing a motif can indeed be considered as noise. Therefore, it is

important to have a motif detection algorithm that can cope with this noise and

discriminate between motifs that are overrepresented by chance and motifs that are

biologically functional. Some of the motif finding algorithms such as (MEME and
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AlignACE) use simple background model based on the frequency of the nucleotides A,

C, G, and T in the data set to represent an intergenic sequence. However, a background

model solely based on single nucleotide frequencies poorly reflects the complex structure

of genomes sequences. To overcome this problem some algorithms such as

BioProspector (Liu et al., 2001) uses zero to third-order Markov background model.

Considering the fact that little is known about most transcription factors and their

target binding sites, even in well studied organisms, computational tools designed for the

discovery of novel regulatory elements, where nothing is assumed a priori of the

transcription factor or its preferred binding sites will have advantage over other tools. For

these tools, usually a user provides a collection of regulatory regions of genes that are

believed to be co-regulated, the computational tool identifies the overrepresented motifs.

As we have seen in the result section of this thesis, all the methods were able to

correctly detect the motifs that have been previously detected by laboratory experimental

approaches. In addition some algorithms were able to find novel motifs. However, most

of these motif finding algorithms have been shown to work successfully in yeast and

other lower organisms, but perform significantly worse in higher organisms as Tompa et

al. (2005) reported in their recent paper on the comparison of motif finding algorithms.

Hon and Jain (2006) take this fact into consideration and develop a deterministic motif

finding algorithm with application to the human genome.

Although the biology of the regulatory mechanism is still poorly understood,

motif discovery algorithm should include most available biological information. Over the

past several years, many tools have been developed for motif discovery. We agree with

Tompa et al. (2005) as they have suggested from the outcome of their assessment of the
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several motif finding tools that biologists should use a few complementary tools in

combination rather than relying on a single one and pursue the top few predicted motifs

of each rather than the single most significant motif.
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APPENDIX

GLOSSARY OF TERMS USED

Codon – Any group of three consecutive nucleotide bases in a given mRNA molecule

that, by its composition and sequence, specifies either a particular amino-acid residue in

the polypeptide chain synthesized by translation of that mRNA, or signals the beginning

or the end of the message.

Enhancer – A eukaryotic control element that can increase expression of a gene.

Enhancers may be located some distance from the gene and may be either upstream or

downstream.

Exon - Those portions of genomic DNA sequence which will be represented in the final,

mature mRNA.

Genome - The total genetic content contained in a haploid set of chromosomes in

eukaryotes, in a single chromosome in bacteria, or in the DNA or RNA of viruses.

Intron – Those portions of genomic DNA which are transcribed (and thus present in the

primary transcript) but which are later spliced out. They thus are not present in the mature

mRNA.

mRNA (messenger RNA) - an RNA which contains sequences coding for a protein.

Oligonucleotide – Any molecule that contains a small number (two to about ten) of

nucleotide units connected by phosphodiester linkages between the 3′ position on the

glycose moiety of one nucleotide unit and the 5′ position on the glycose moiety of the

adjacent one.
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Promoter - The first few hundred nucleotides of DNA "upstream" (on the 5′ side) of a

gene, which control the transcription of that gene. The promoter is part of the 5′ flanking

DNA, i.e., it is not transcribed into RNA, but without the promoter, the gene is not

functional.

Regulon - A set of genes controlled by a common regulator.

Ribosome - A cellular particle which is involved in the translation of mRNAs to make

proteins. Ribosomes are a complex consisting of ribosomal RNAs (rRNA) and several

proteins.

Stimulon - A set of genes whose transcription responds to a common environmental

stimulus.

ORF (Open Reading Frame) – A series of codon triplets, deduced from a DNA sequence,

that include a 5′ initiation codon running through a termination codon, and representing a

putative or known gene.

TATA box - A TATA box (also called Goldberg-Hogness box) is a DNA sequence found

in the promoter region of most genes. It is the binding site of either transcription factors

or histones and is involved in the process of transcription by RNA polymerase. It has the

core DNA sequence 5′-TATAA-3′, which is usually followed by three or more adenine

bases highly conserved through evolution.
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