MODIFIED MCLAREN-MARSAGLIA PSEUDO-
RANDOM NUMBER GENERATOR AND

STOCHASTIC KEY AGREEMENT

By
RICHARD LLOYD CHURCHILL
Bachelor of Science in Chemistry and Philosophy
Oklahoma State University
Stillwater, Oklahoma

1980

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2011

MODIFIED MCLAREN-MARSAGLIA PSEUDO-
RANDOM NUMBER GENERATOR AND

STOCHASTIC KEY AGREEMENT

Thesis Approved:

Dr. H. K. Dai

Thesis Adviser

Dr. John P. Chandler

Dr. Douglas Heisterkamp

Dr. Mark E. Payton

Dean of the Graduate College

TABLE OF CONTENTS

Chapter Page

I INTRODUGCTION ...ttt e e e e e e e e e e e e e s s e s s st eeeeeeaaaaaaaaeaaassesssaannnnnssnnnnsees 1
Some Basics Regarding Cryptographic Systems and Their Goalscccccce...... 1
Session Keys and Public Key ENCryplion...........ouuuuuiiiiiiiiiiieeeeeeeeeeeeeeennn e 3
Bennett and Brassard Key Agreement and Continuing Researchccccccee... 5
Issues and Goals in Cryptology and RandomnessScccovvvvvviveviiiiiiiiiiieieee e 8
Pseudo-Random Number Generators (PRNGS).........uuuuuiiiiiiniiiieeeiicceeeeeeiiiiiin 9
PeriOdIC GENEIALOISeeiiiiiiiiiiee ettt e e e e e e e e e e e e e e bbb ee s 10
APEIOTIC GENEIALOISciiiiiieeieiittit e e e e e e e et e et et atb b e e e e e e e e e e e e e aeeeeeeesseennnnns 11
Evaluating GENEIALOrS.......ccoiiiiiieeeieiiiiees s e e e e e e e e e et s e e e e e e e e e e eaaeeeeeeessnnnnnns 13
BST AIS 20 ..ottt rraaaaaaaaaeaaaaaaaaaaans 13
FIPS PUDBlICAtION 140 ...ttt r e e e e e e e e e e as 16
IEEE Standards 1363coouuiiiiiiiiiiiee ettt e e e e e e e e e e e e e nab s 17
Other TESE SOMWAIEeeiiiiiiiiiiii et 17
The Problem AJAreSSEeduuuueuiiiieie e s 19
Some Existing Alternatives Based Upon Mathematical Problems....................... 20
Zero-Knowledge Proofs and Key Agreement ProtoColsccccceeeeeiiiiiiiiiiiiiinns 28

[I. A SURVEY OF STREAM CIPHERSooiiiiiiiiiiii e 33
Y1 L=T= T (T O] o 1= £ PPUPUPOR 37
Introduction to a Brief Survey of Modern Stream Ciphers..........ccccceviiiiieneeeeinnnne. 39
Vernam Ciphers and ONe-Time Padscccooeeiieieiiiiiieeiecisss e e e e e e 40
Electro-Mechanical CIPRers............uuueeii e 44
Digital Stream CIPNEIS e e e e e e e e eaees 45
Linear-Feedback Shift Registers (LFSR)........ccooiiiiiiiiiiiiiiciieie e 46
[T T= Y= TR 0] a] o] 1= Y 48
LFSR Based Stream CIPNErs ... 50
Geffe Generator and Correlation ... 51
e (ST SR C = L= = (o PP 53
L= T o1 0o SR =T a1 = 1o 53
StOP-ANU-GO GENEIALOIS ...evvviiiiiiiiiee e e e ettt e e e e e e e e e e e eeeeeeeneean s 54
Decimating and Shrinking GEeNEratorS..........ccoeeeeeeeeiiiiieeeees e e e e 55
Multispeed INNer-Product GENEIAOruuuvuuiiieeiee e 56
Gollmann Cascade GENEIALONoiviiiiiiiiiiiii ettt 56
Summation and Threshold GeNeratorsS...........ccccvive e 57
Feedback with Carry Shift Registers (FCSR)..........ovvvviiiiiiiiiiiiiiieeee e 57
Nonlinear-Feedback Shift Registers (NFSR)........cooouiiiiiiiiiiiiiiieeeeeeeeeceeeeeiiiiias 59
N TSRO PPPPPPPPPPP 60
S A U PPEEPRURRPPPPR 61
Yo (=T o 0 PP 62

Complexity-Theoretic Stream CIPhErScoovvviiiiiiiieie e 63
Linear Congruential GENEIALOIS..........uuuuuuuiiiieee e e eeeeeeeeeeeeiiiiiiee e e e e e e e e e e e eeeeeeeeenes 64

l1l. MIXING AND MATCHING USING A MCLAREN-MARSAGLIA THEME ...66
The McLaren-Marsaglia AlgorithM...........uueeiiiiiiiei e 67
Cryptanalysis of McLaren-Marsagliacoouuuiiiiiiiiiiiie 68
The Bays-Durham GENEIALOruuuuuuuiiiiiiee e e e eeeeeeeeeeeeeeeats s s e e e e e e e e e eeeaeeeaenne 72
Modifying McLaren-MarSaghia ..o 73
Bit-SIECTIONceiiiiiiiiie it 77
Some CryptographiC CONSIAEIAtIONSoiiiiieieeeeiie e e e eeeeeeeeees 89
Further Modifications of the McLaren-Marsaglia Mechanismcccceeee. 93
DeterminisStic APEIOTICITY......cveeeiiiiiiiiiie ettt e e e e e e e e e e e eeeeeneeees 98
V. KEY AGREEMENT ..ottt ettt 105
Themes ANd GOAIS.........uuiiiiiiiiiiiie e 105
The Basic Scheme: Walk-through ... 108
The Basic Protocol A: Formal DesCriptioN.........ccccoeiiieeeeiieieieeeevve e 111
Observations Regarding ProtOCOI Aeueeiiiiiiieeeeeeeeeeee e 112
=011 [o TSP 123
V. ANALYSIS AND CONCLUSION ...oiiiiiiieiiieeeeeecciiiiiit e e e e e e e 127
Apparent Randomness of the Produced Bit-Streamccccccceiiiiinniiiiinnns 130
CoNfIdENIAlILYcceeiieeeeeee e —————— 132
Brute Force Time ReQUINEMENTSccviiiiiiiiiiiiiiee et 143
USING they SQUANE TeST....ciiiiiiieeeeeiiei e e e e e e e e e e e e eeeeaeennnnes 150
Meet-IN-the-MIddIEuuiiiiiiii s 151
Differential CryptanalySIS.......ccoouiii i 156
Man in the MIddIE...........uuuiiiiii e 157
(DT STS (o o S [T SO 158
Performance RESUILSoooiie s 161
REFERENGCES ..ottt ettt e e e e e e e e as 164
APPENDICES ...ttt ettt ettt e e e e e e e e e e e e e e e e e 179

LIST OF TABLES

Table Page

Correlation in the Geffe generatorccoovii i 51
Correlation and the XOR OPEIratioNccouiiiiiiiiiiiiiiiiie e 52
Probability a value is absent fronV based on size &f and bits per entry 77
Growth of number of candidate input string pairs

Assumingn bits of output and input strings oA DitScccoevvvvviiiiiiciiiiiee e 80

A slice through the state table in BitBlendOpt()..........cooiiiiiiiiiiiiiiiiii e 96

LIST OF FIGURES

Figure Page
A Linear Feedback Shift REQISIENuuuuiiiiiiiiii e 46
Galois configuration of aN LFSR ..o 47
Example of a Feedback with Carry Shift Register (FCSR)cccoovveiiiiiiiiiiiiiiiiiiiins 58
Generalized structure of the aperiodic generators usedccccoeeeeeeeeeveveeeeviinnnnns 113
Injection of material fronaxr into PRNGB andCcoouviiiiiiiiiiiiinneeeeeeeee, 115
The relationship betwednrp andbXrp ..., 116
Processing diXrpto OBtaiNML..........uuueiiiii e 117
Generation of bit strinlgfrom bit-stringm, using gernator/PRNG 121
Flow of operations and data in Protocol B..............uuuuuiiiiiiiiiien 123
Electronic Codebook (ECB) Mode Encryption and Decryptionc.cceeeeeee. 179
Cipher Block Chaining (CBC) Mode Encryption and Decryption.............ccccccuu... 181
Cipher Feedback (CFB) Mode Encryption and Decryptioncccevvvvveevvvvvvnnnnns 182
Output Feedback (OFB) Mode Encryption and Decryption..........cccoeeeeeeeeeeeeeeeennnns 184
Counter (CTR or CM) Mode Encryption and Decryption..........ccccceeeveeeeeeeeeeeeeennen. 185

Vi

CHAPTER |

INTRODUCTION

The intent of this thesis is to provide a description and implementatia scheme whereby two
parties may agree upon a set of random binary digits, which may be used forrapipiog
purposes, and which provides sufficient security in the process of agretrmegard the result
as reasonably cryptographically strong. The difficulty in providing aamgwoach to solving

this problem warrants some justification, as well as a discussiohyoit ¢ difficult.

Some Basics Regarding Cryptographic Systems and Their Goals

Cryptographic systems are a critical part of the overall modermityeenvironment. While
encryption algorithms, or ciphers, have a long history in communications, they play an
increasingly critical role in modern communications. This increaselra ascribed to the
importance of telecommunications networks, such as the Internet, abe#&gr Metcalfe’'s Law
[1]. This “rule of thumb” states that the value of a telecommuboiesinetwork increases
proportionally to the square of the number of compatible items attached/aribus
formulations of this “law” substitute terms such as “user” anditdsv for “compatible items.”
But, as a rule of thumb and a description of the ability of networks tease in value as they
grow, along with increasing the value of attached items, these adtéonaiulations are
interchangeable according to circumstance. This increase in vaduecotiails the need to

protect the items information attached cryptographically.

1

The fundamental goals of cryptographic systems are confidentialggyritytand availability [2].
Confidentiality assures that information is known only to those trustédtw Integrity assures
that it is not inappropriately altered. Availability assures thediitbe accessed when needed.
By extension, more refined cases of each may be identified, such as aatteensiod non-
repudiation. Authentication includes such concerns as assurance tieg argiwho or what
they claim to be. Non-repudiation deals with assurance that those who hdleslhiaformation,
or more importantly originated it or agreed to it, cannot later deny having dore seeking to
achieve the latter two goals, confidentiality plays a critical ré&ecrets” play a role in assuring
availability by preventing unauthorized destruction or alterationfofnmation, as well as

assurance of origin.

Cryptographic mechanisms and protocols rely heavily upon the difficulty sEogeor
predicting numbers, passwords or pass phrases. In defining protocols and mes;ithese
numbers are often specified as being secret and in many cases rartsa.rahndom numbers
play a large number of pivotal roles in cryptographic protocols, inwuas keys for encryption
and decryption, nonces, initialization vectors and more. Many passwordssanghpases being
used to generate numbers that hopefully display good apparent randomness.ick qrelat
numbers rarely are truly random, as they are generated by pseddoaraumber generators
(PRNGSs), or using chaotic processes related to user actions. Thuscissmf generating
numbers that are either truly random or sufficiently apparently so is dhe oéntral problems
of cryptographic systems. In many cases, these random numbers must bend@mredmanner
for the cryptographic protocols to work correctly. Such is the cébhesassion keys, which may

be used to encrypt the bulk of communications between two parties.

Cryptographic keys play a central role in security, as was firstidedalearly by Auguste

Kerckhoffs [3] [4] and further described by Claude Shannon [5]. In briefutfdamental

principles he laid out are that in communication using ciphers the @pstem must be assumed

to be known, and therefore the security of the system rests in the kdys use

Session Keys and Public Key Encryption

A session key is a key used to allow the parties participating in a conationito efficiently
encrypt and decrypt the traffic of that communication. Such communicatiergpically
conducted using a symmetric cipher. A symmetric cipher is one that assti key to both
encrypt plaintext and decrypt the resultant ciphertext. Since bogattieipants must have
copies of this key to communicate, yet the key must be kept secret fonteats of the
exchanges to be secure from unauthorized parties, the participants veusbime means by

which to either agree upon or communicate the session key among them.

Historically, there have been many approaches to deal with the proideses by session keys,
but the present state of cryptographic art uses a specific clapsefscto facilitate such
exchanges. These are public key cryptosystems. Such systems rely dhradgibrat are
assumed to be difficult to reverse. They use separate but relatetblencrypt and decrypt
messages. Due to the nature of their underlying mathematical probhenasgorithms are
generally slow, when compared to symmetric key ciphers, and are thusgtablesreplacements
for symmetric key systems where performance is an issue. Thisadally the case when

extended communications will occur or are voluminous, and when data streamgéred.

The relationship between the keys of key pairs in a public key systenkey called public, the
other private, is that each member of a pair may be used to reverse endoypts mate: The

public key will decrypt messages encrypted with the private key, and tagepkiey will decrypt
messages encrypted using the public key. Further, it is assumed that thougis dre kkerived

from the same material, the private key cannot be easily deduced from likkekeyb

The assumption of difficulty is often referred to as the Diffie-Helirmasumption or conjecture,
which is related to the Diffie-Hellman problem. This was developedatioalto the
development of the Diffie-Hellman key exchange [6][7][8] (which disedsn greater detail later
in this chapter). The Diffie-Hellman problem is simple. Given a larggerg (called the
generator) and large prinme such thag is primitive modn (in simple terms, all integers in the
interval [1,n) can be expressed as integral powery)oh pair of valueg® modn andg” modhn,
determineg® modn, whenx andy are not known. The assumption or conjecture is that this is a
difficult problem to solve for the selected generator used by the public key sistem in
question. While the problem itself is applicable only to mathembtibaked public key systems
that utilize exponentiation, the conjecture, when generalized to matbhs+based public key
systems, is common to all such systems that are presumed secure. lhégmatiatl problem
upon which a system is based is subsequently found to be less difficult than pyehatiesed,

the system is correspondingly weakened.

An example of presumed difficulty less than at first believed is theeEliféliman key exchange
protocol, which is based on the discrete logarithm problem. While Diffibrdalis still
believed to be secure if the keys are properly selected, the selectieagpimore critical than
at first believed, and significant efforts and progress at solvswyetee logarithm problems has

been made [9][10].

Another public key system is the ubiquitous RSA [11], developed by RiveshiSand

Adelman. Itis based on the difficulty of determining the prime factorsrgflasge numbers.

While the factorization problem is still considered hard, the evesasig power of computers,
combined with the development of massively parallel attack schemeamrtamially eroded the
effective strength of keys of shorter length. Where 512-bit RSArkaylst once have sufficed,

the European Union recommended that after 1998 only keys of 1024 bits and longer should be

used. Further, R.D. Silverman of RSA Laboratories stated in 2000 [12], “We do eotliblat

any public key size specified today should be used to protect something whose genore
than 20 years.” Of particular concern should be the development of aithagimr quantum
computing platforms by Peter Shor. It provides a means of computing the priors sc
numbers in polynomial time [13]. While quantum computing remains formative, ergirtr
term in this algorithm grows with increases in the size of the numberféactoeed, we must
anticipate that these problems will eventually be resolved, rendeBAgrReffective for
cryptographic purposes. Even if these problems are not completely teswidethe error term
in Shor’s algorithm cannot be tightly limited, any decrease in thelsspace that may result

from its application will still constitute a potentially cripplinggakening of the RSA protocol.

This conclusion should be extended to all mathematically based systessafér to assume
that there will always be a better mathematician, and computing poweways increase. A
compounding problem is that discovery of a faster way to solve any of thesenwatilenot
necessarily be made public, as it may be to the advantage of the discvkesys the
development secret. This is clearly demonstrated by the sale of GenigamaEnachines to
other nations by the victorious Allies following World War 11, without thecligner that the

Allies had broken the Enigma cipher system [14].

Bennett and Brassard Key Agreement and Continuing Research

In 1984, Bennett and Brassard published a paper [15] proposing means by which two parties
could perform a series of communications whereby they would agree on assedahrbits
securely. The claim that these could then be used as a one-time padiguUifsed in chapter 2)

for encryption was significant, as a correctly implemented OTP systagravably perfect [5].

The Bennett-Brassard system utilizes a dedicated optical fibanehbetween the two
correspondents, plus a public side-channel. Both ends of this channel musppecdegith a

polarizing filter that can be switched between orientations rapidly, ssntlam number

generator. One end (Alice’s) is equipped with a photo emitter capadieitbing single photons.
The other is equipped with a detector capable of detecting individual phdtbos and Bob

first agree which of the possible polarizations of photons representyti’'s and which 0's.
Alice starts the process by sending a stream of individual photons, eadkqubto one of the
agreed orientations randomly, with Alice recording the orientations. Bob igsesitiom
number generator to “guess” the orientation of each incoming photon. As thssigepressed
as an orientation of the polarizing filter he possesses, Bob will eittesst dephoton, having
guessed right, or not, having guessed wrong. Bob records both his guesses ancwhethtner

received a photon corresponding to that guess.

After Alice has sent some agreed number of photons, Bob sends Alice hisqaegséhe
orientations of the photons. As Alice knows the orientations of the photansiseonfirms
which guesses were correct. Additional steps allow Alice and Bob torodhiit bits (referred
to as qubits in a quantum mechanical application) were in fact recmuettly, and that nobody

was attempting to eavesdrop on the process.

Due to the properties of polarized photons (as sent over the dedicated chamsehethe is
provably secure against passive eavesdropping on that channel, since anymesaifrhose
photons by an eavesdropper will perturb the results, while passive eavéasglicgmot

determine the orientation of the photons.

While the scheme is not without problems, such as the need for the dedicai@idibpt
channel, it is interesting both because it was the first effective uamyptographic protocol
proposed, and it does not rely upon a mathematical problem that is assumbdribtbesolve.
While it might be broken via a radically improved understanding of quantum behdkers

present understanding of these behaviors preclude a successful break.

The Bennett-Brassard scheme, as well as subsequent quantum cryptogousalg, highlights
some currents in modern cryptography. One current is the continuing effort togoeyauic

stronger, more secure means of communicating sensitive information. Aisatieimportance,
the value, and the difficulty, of two parties being able to agree upon fraadom numbers that

may be used in establishing cryptographically secure communications.

Regarding the first current, the previously mentioned efforts to &sif ways to solve the
mathematical problems underlying public key systems, the on-going criysiartargeting
current symmetric ciphers, and the efforts to develop newer, strongeilloseste at least a
perception of risk and a desire to mitigate such risk before it becastmistial. An
examination of the Advanced Encryption Standard (AES) competition and cagtemalysis of

its winner helps clarify the issue.

In 1997, the U.S. National Institute of Standards and Technology (NIST) announced a
competition for a replacement for the Data Encryption Standard (B&Byved later in the year
by a request for submissions. By mid-1998, fifteen proposals were subimiNésT, and then
to the public for analysis. From these, five finalists were seleatieh limited numbers and
types of corrections to the proposals to deal with flaws identified ifirft@ound. From the
finalists, the Rijndael algorithm was selected in 2000 as the new AE&falgoiSince then, the
AES cipher has been subject to continuing cryptanalysis, with improvemneartalytical

techniques gaining steadily, if slowly [16][17].

The second current includes the effort to develop communications schemdsideagjuantum
mechanical phenomena in order to achieve security. The Bennett-Brasgarshapwas the first
entrant in the quantum field. Subsequent proposals exploit phenomena such as quantum
entanglement. While some progress has been made in this realm, thége signdicant

problems, not least the potential for statutory restrictions.

A further illustration of the second current is the number and varietRNfI3 that have been
and continue to be developed. These developments are in no small part due tdeheswith

existing generators, including performance issues and exploitabk flaw

Issues and Goals in Cryptology and Randomness

If the pseudo-random number generator (PRNG) used in a cryptographiatmplis well
designed, correctly implemented and properly used, there is generalgnificant loss in
security due to its substitution for a random number generator (RNG). Therpsololr the
cryptographer are to determine when the use of a PRNG is appramdesafe, which PRNG to

use and how to use it safely.

Where “true” random numbers are required in the absence of a suitabl@tearandom number
generator (RNG), chaotic processes, based upon user input device eveinténgnare typically
used. But, these are incapable of generating large volumes of randenaim& hey are at best
expedients for limited cases, such as providing the seed for a RRNEB is then used to

generate longer sequences of pseudo-random values.

Techniques utilizing physical phenomena continue to be developed, and improve thé@ene
rates that can be achieved. Yet, the problem for most applicatinaseegeneration of large
guantities of numbers that are sufficiently apparently random, and traus€seby software

means alone, and thus by PRNGs.

By use of the adjective “secure” for a pseudo-random number, a cryptotegiss a number
that, when taken as a member of a sequence generated by a PRNG, digjliays cer
characteristics relative to the sequence and its place in that segdepending on the
application to which the number will be applied. Ideally, it should be impogsilletermine the
value of any element of such a sequence, even if given the algorithm used &begenelus all
elements of the sequence preceding and following it, but not the seatkarfghe generator that

8

produced the sequence. It should even be impossible to determine any element of tloe seque

given the state of the generator immediately after it was generated.

Such goals are extremely difficult to achieve, and when achieved may be tosiegpim one or
more senses, to be practical for a given application. Fortunately, appédations for random
values in cryptology require ideal characteristics. Thus, ciypisik are left with the problem of

developing or selecting PRNGs that are suitable for varied apptisadind environments.

From the degree to which a PRNG achieves the ideal characteistite,sve draw the
distinction between “strong” generators and “weak” generators, and mustitethhe problem
of determining the relative strength of different generators. “Cryapucally strong”

generators are those that most nearly attain the ideal goals.

Pseudo-Random Number Generators (PRNGs)

Due to the close relationship between PRNGs and synchronous stream sijpttersphers are
dealt with in the brief survey found in Chapter Il: Many synchrontesus ciphers utilize
PRNGs, generally in complex combinations, as the sources of the runningdmeysyood”
PRNG (meaning “cryptographically strong”) can be used as a basisforchronous stream
cipher. For purposes of the implementation contained in this thesidicpP&NGs are used as
feeds for mixing algorithms. But, as the mechanism described is d@elatl mixing process
that uses multiple PRNGs as sources, as well as an RNG as a sowise ofhe basic process is
in reality agnostic regarding the constituent PRNGs used in any impktioertf the scheme, so
long as those PRNGs satisfy the requirements for the level oftgdoue achieved, and all
parties involved have identical implementations. It is thereforeopgpte to be cognizant of the
types and varieties of PRNGs (and implicitly stream ciphers) alailad well as their relative

advantages and drawbacks.

The study of PRNGs, both for purposes of developing better ones and identifywgaknesses
of existing ones, is the stuff of the intelligence and security agemoessdathe world that seek to
read others’ communications or keep their own nations’ secure, as wedidesraa, corporations
and interested individuals, including criminals. While researciplmgded a number of PRNGs
that are to varying degrees considered cryptographically strong, all Binas¥all into either of
two categories, both of which entail very real problems. The vastityajoe periodic, which
means that the output stream eventually repeats itself in a fixethpzftfexed length. Such
repetitive sequences are sometimes called linear recurdioosntrast, aperiodic generators do

not repeat in a fixed, recurring pattern, even though subsequences wilitrécegular intervals.

Periodic Generators

The most common forms of PRNGs are periodic. Such generators fairly rapictyastate that
serves as the entry-point into a cycle that is repeated ad infinitumy 8t in such a state. In
general, the length of the cycle a generator may achieve dependse thiethe internal state
of the generator. For a given internal state size, and barring extgrats, the size of that state
sets an upper bound for the length of the cycle that may be achievecheBetationships
between state size and cycle length, and cycle length and cryptograghgtisaire not
monotonically increasing functions. Some generators can fall into detgiogcles that are far
shorter than might be expected based on the size of the internal statthe(@seussion of non-

linear feedback shift registers in Chapter Il for additionalwdision of this problem.)

Some PRNGs with very large internal states and long periods are t@mieacryptographic
terms, than other PRNGs with shorter periods. For example, consider thefddseMersenne
Twister (MT) and Blum-Blum-Shub (BBS) PRNGs. The MT generator isptixewlly fast in
operation, and has an exceptionally long period. Yet, it is cryptographicallky vits internal

state can be determined easily, given a sample of several hundreditvasgdputs, since each

10

successive output reveals a distinct portion of the internal $tdte generator, and that state
changes substantially only once every 624 32-bit outputs. In large pact pearmance
constraints, almost all implementations of the BBS generator haveismgernal states and
shorter periods than the MT generator, yet they are cryptogragtstahger. This is because
only a small fraction of the internal state is ever seen in the outpatrs and these portions are
in a sense “disjoint,” the internal state of the generator lmibgtantially altered with each

output. (Both the MT and BBS generators will be discussed in gresterid Chapter 11.)

The presence of a repeating cycle of outputs is a flaw in PRNGs for imligadions. Like the
MT generator, many PRNGs are subject to effective cryptanalysis g relatively small sample
of consecutive outputs, as so much information about the internal state eh#dratgr may be
derived from those outputs. Even for cryptographically strong genertuersheer volume of
outputs required for some applications (encrypted video, for example)xinayst a PRNG’s
cycle. Once the cycle has been exhausted, it may not be necessary tonddternmternal state,
or even the generator used. Also, since any repeating cycle cantbe aéi®a linear recursion,
and a linear feedback register generated from that recursiorprididuce the recursion, even
discovery of subsequences by an attacker may render a generator conthr¢8eseChapter I

for a discussion of the Berlekamp-Massey algorithm.)

Aperiodic Generators

The less studied class of PRNGs is comprised of aperiodic generatersiost easily
recognized members of this class are based upon irrational numbers. eAsuimbers cannot be
expressed as simple fractions, they have infinite, non-repeating sesjoéddgits in the
fractional portion of their representation, regardless of the integer ised to express them.
While techniques exist for the calculation of arbitrary segmerttsediractional portion of some

irrational numbers, the space and time required becomes large as thef tndatigits decreases.

11

Thus, though it may be possible to calculate vast numbers of digits in suchrntlaawvelume

and time demands of many cryptographic applications can make thiciitglra

A newer group of members of this class are based upon the structure afrgsiads. Quasi-
crystals are similar to crystals in that they have a distinattsire displaying many of the
characteristics of crystals, but they lack the precise, regutanel of true crystals. The small
variations in structure can be used as a source for non-repeatisgo$@ades (think of drawing
a line across a quasi-crystal’s face, then measuring the distanmre$sive “closest” atoms to
that line, from the line), or as a computational model (determining the satapa@s).
Therefore, quasi-crystals can, at least theoretically, providetanfangth sequences of non-
repeating values. Practical considerations, however, intervene.s &ustatual quasi-crystal has
limited dimensions (however vast these may be in terms of the numbenms iatvolved), the
state and precision of a computational model of a quasi-crystal willthmgequence to a
repeating cycle, once the computational state duplicates any prior sthieci@asing the state
size or numerical precision of the model eventually limits the pwdityi of the approach in any

case.

Thus, both of these groups still encounter the same fundamental pro#i#resal computing
environments are finite. And as with conventional PRNGs, computer environmeats fiaite
number of possible states. The number of theoretically possible stsitaplig far larger than
for most well-studied conventional PRNGs. Therefore, absent externglomgata system
enters a state previously entered, it will proceed to the samét gtatered following the prior

occurrence of that state, and computation of the desired sequenceemtilladly fail.

It is should be evident that in order to achieve effective aperiodicitlyputirunning afoul the

limitations of cost, space, etc., a PRNG must utilize some form of ektarmtbm or chaotic

12

stimulus. Means by which such external stimuli may be injected into a RRING& discussed

in Chapters lll and IV.

Evaluating Generators

Regardless of the specific PRNG in question, some means of evgltistrength of that
PRNG is needed. How can it be determined whether it is effective attiegesequences that
are sufficiently apparently random to justify treating them as randone?e Ttust be some
means of determining success, and more importantly to identify failime grbwing importance
of the Internet and the commerce it supports has forced governments amhgoual agencies,
as well as standards bodies, to address this question publicly. Whilenataons have produced
or adopted standards or specifications, it is reasonable to linti¢goto a few from major
industrial nations or duly recognized standards bodies. Such standestdsravide descriptions
of their requirements, include testing procedures that are redgcopabistent and thorough, and

help in defining goals further.

Three specifications for evaluating PRNG are considered heree @tethe U.S. Federal
Information Processing Standard (FIPS) publication 140-2 [18], Institikctrical and
Electronics Engineers (IEEE) specification 1363, and Bundesamtctirr8eit in der
Informationstechnik (BSI) AIS 20, version 1 [19]. The National InstitateScience and

Technology (NIST) is another source of information regarding tesssuite

BSI AIS 20

The Bundesamt fur Sicherheit in der Informationstechnik (BSI — Gers&ederal Office for
Information Security) has published a set of requirements for four slatgdeterministic random
number generators [19]. While other standards and specifications .exiBtRS 140-2), the
problem is often finding an understandable description of the clagsifiststem, and of the
means of testing proposed algorithms’ compliance with the requiremdmsBSI “Application

13

Notes and Interpretation of the Scheme,” AIS 20, version one, “Functiorabges and
evaluation methodology for deterministic random number generators,” provides suc

descriptions.

In this and other standards, a PRNG is defined by a 5-($R, ¢,, p,) comprised of a finite
set of generator stat€S), a set of possible outpu(R) , a state functiofp :S— S), an

output function(y : S— R) and a probability metric of the random distribution of the seed

(Pa)-

This application note defines four classes of deterministic random nuetenatprs: K1, K2,
K3 and K4. (For our purposes, deterministic random number generators arallygosgieudo-
random number generators, and we will use the latter term, though quotatioims lnnde
either.) Membership in any class implies membership in the next lovest elah the K4 class
being the “strongest” in cryptographic terms. Thus, any K4 class genisra member of K3,

and recursively K2 and K1.

Without delving into the detailed requirements for each class, theduiittye requirements for

these classes are as follows.

K1 — There is a high probability that disjoint subsequences of the outpum strea

distinct.
K2 — The output must pass the tests specified in the AIS 20 document.

K3 — The entropy of the seed probability metric must be adequately high,ranstibe
“practically impossible” for an attacker to determine the predecesd successor
outputs of any subsequence of outputs shorter than the cycle of the gegeranothe

defining tuple, but not the state of the generator at any point in the subsequenc

14

K4 —“It must be practically impossible for an adversary to work out thaepessor
random number.t from knowledge of the internal state $he adversary's assumed
attack potential depends here on the strength of mechanism. Even using the most
advanced know-how currently available, the probability of guessing (redliza
reasonable partial exhaustion) may at most be negligibly greateif thavere not
known. It is assumed that the adversary knows the defining 5-tuple.” (Theeatiethe
requirement regarding predecessor internal states will besdied later, in conjunction
with Vernam ciphers, One-Time-Pads and Claude Shannon’s work.) Thevebidct
this is, “Protection against reconstruction of old random numbers from a kne#maint

state.”

BSI AIS 20, version 1, specifies the tests for randomness that spsisbed to satisfy the
requirement for membership in the K2 class. These are labeledolgthf5. Basic

descriptions of these tests are as follows.

T1 — monobit test — the number of one-valued bits, in 20,000 bits of output, is in the

range (9654, 10346), and the number of zero-valued bits is in the same range.

T2 — poker test — the values of four-bit groups (nybbles) are near equallyutiestr

T3 —run test — the numbers of runs of ones, or of zeroes, of various length&hfall w

statistically acceptable ranges.

T4 —long run test — no runs of 34 bits in length or longer occur.

T5 — autocorrelation test — there can be no consistent correlatiorebdiwealues at

regular intervals.

These tests must not be regarded as “complete” in any sense, but serasiaset that provides

reasonable assurance of the ability of a PRNG to produce output sexjoemuelerate length

15

that display reasonably apparently random characteristics, ang Haiséquirement for the K2

class of generators. Source code in C for these tests is contained iniA@end

FIPS Publication 140

The U.S. government has a long-established standards agency, the Natitotd bisStandards
and Technology (NIST), which, among many other standards, has published a geieingfs
Federal Information Processing Standards (FIPS). NIST’s FIPS pudlid&#O series,
comprised of versions 140-1, 140-2 and 140-3 (Draft), is the U.S. Federal standassiaddhe
security of cryptographic modules, including PRNGs. As does the BSI AIS 20icgutémif, the
series defines security levels and requirements for meeting thetraBer than addressing
PRNGs only, the FIPS 140 series addresses a much broader range of topiingifRtRNGs.
Specifically, Annex C: Approved Random Number Generators (Draft), July 2%, R&s a total
of six deterministic random number generators that have been approved. Naenonirigic
ones are listed. No specific tests for validation of PRNGs are givemebdistussion of their
use is important in understanding why the problem of designing or selecting RRbiEsal to

cryptographic systems.

Relative to the requirements of the FIPS publication 140 series, thehdkSthe Cryptographic
Module Validation Program (CMVP), which performs testing on cryptogcaplodules as a
means of assuring users of the characteristics and strength of safhadrardware modules.
The CMVP is a function of the NIST’'s Computer Security Division, ComputaurBg&esource
Center (CSRC). The CMVP utilizes accredited test laborataritest the performance of

characteristics of modules, rather than providing test suites.

What guidance the NIST, in the form of the CSRC, provides is reference to bjgplica
international standards: ISO/IEC19790 and ISO/IEC 24759, which were derivedIP&M140-1

and 140-2. The whole is thus circular, and not as supportive of self-testimghdse desired.

16

IEEE Standards 1363

The Institute of Electrical and Electronics Engineers (IEEE) is aredited international
standards body, and as such has forayed into the field on many fronts, both sponsoditgise
and conferences with associated proceedings. The primary standardseateibgltpEE
regarding security and encryption are the IEEE 1363 specification family, cechpbEEEE
1363-2000 IEEE Standard Specifications for Public Key Cryptography andl1&&¥a-2004
Standard Specifications for Public Key Cryptography — Amendment 1, Adalifl@chniques.
Continuing efforts include proposed standards IEEE P1363.1 Draft Standard forkaybl
Cryptographic Techniques Based on Hard Problems over Lattices, IEX®.R Draft Standard
for Specifications for Password-based Public Key Cryptographic ieetsand IEEE P1363.3

Draft Standard for Indentity-based Public Key Cryptography Using Pairing.

While these standards deal with numerous public-key crypto-syssgmcifying protocols and
algorithms, virtually all of which require use of either random val@iearalom number
generators, they are largely silent on the issues pertaining to suchtges)eelying on other
sources for such issues. It is perhaps an indication of the diffichi¢ @vierall problem of
random number and pseudo-random number generators that the issue is deferreddorotser
Still, these standards are interesting from many perspectives, riedlpey their discussions of
and reliance upon “hard problems.” Despite the interesting charackersef$tandards, and their
dependence upon quality random numbers, they are not particularly usefulgozsant

problem.

Other Test Software

Test suites for the quality of a sequence of pseudo-random outputs arenptablsince the fact
that all pseudo-random generators are deterministic, but the “good” ordssafficient

complexity that any correlations that may exist in their output stresagse difficult to identify,

17

and thus to test for. The problem for those developing tests for any problendlibe simple

and clearly understood set (such as those identified and tested for in th@ ®I§ suite) is thus
to identify potential correlations, probabilistic skewing, etc., anglde tests for them, without
necessarily knowing whether any generator may display the hypothesized problkeamy ¥ech

problem, once identified, may present an exploitable opening in some humbeeEtges.

Considerable and on-going academic and practical study of the proldegrodaced a
substantial body of literature. Working groups sponsored by governmental agantigbute to

this body on a regular basis.

The National Institute for Science and Technology (NIST) maintairs$ aflicommercial”
PRNG test batteries, but with the caveat that these are not endoid&siTbyThese are the

following.

The pLab Project — a Web site maintained by Peter Hellekalek ofriilversity of
Salzberg, with a test suite maintained by Richard Simard of the Witywef

Montreal.

The Information Security Research Centre — a project maintained by &tiorm

Security Institute of the Queensland University of Technology.

The Information Security Research Centre (Crypt-X) — a subproject iftrenation
Security Institute of the Queensland University of Technology thas det
“black box” testing of random number generators (viewed as stream g¢jphers

block ciphers and key generators.

The DIEHARD Test Suite — a test suite and project maintained bigl&IState
University, and a direct ancestor of the DIEHARDER test suitecfwisi not

listed by NIST).

18

FIPS 140-2 — dealt with above.

ENT — a project of John Walker, Fourmilab, Switzerland.

Any of these may be appropriate as a source of more complete and forimgldeatrandom or
pseudo-random number generator’s output, but are regarded as beyond the pmesewhsch

focuses on the mixing and selection methods described in Chapter IV.

The Problem Addressed

The inspiration for this thesis is the Bennett-Brassard protocol,ratieedelief that problems
presently regarded as hard may prove less so in the future. RelyingreftBRrassard does
upon quantum physical properties and specialized hardware, its wide-sprezmémaltion is
presently problematic. In particular, the problems of generating indiithadbns and detecting
them at great distances with sufficient consistency to allow agree@médong strings of random
bits are consequential. Single mode optical fibers of sufficient gualieliably carry individual
photons over distances of thousands of miles do not at present exist, andydeatamot been
laid in sufficient numbers to afford dedicated two-party links for angmmgful population.
Similarly, the equipment necessary to reliably produce single photwedling in the right
direction to pass through a polarizing filter and then down an opticali$ilsemmon and
affordable. Neither is the equipment to reliably detect individual photbhss, the question
addressed here is whether and how at least some of the qualities found in BerssateBrey
be achieved without resorting to quantum phenomena and putatively hard mathlematic

problems.

The scheme described and implemented here utilizes a set of PRN@edawith a selection
and mixing process, applied to a string of random bits shared by two or more paggeet
upon a shorter string of bit values, with the property that the mechanisns impectodicity into
the selection and mixing process. As the overall scheme is indifferentR&RMEs used,

19

Chapter Il is a survey of stream ciphers. This is appropriate sipeeially for synchronous
stream ciphers, we may regard stream cipher algorithms as being PRN&jger@ examines
bit selection and mixing functions based on the McLaren-Marsaglia PRK€se functions
provide the basis for the overall schemes selection and mixing functioapteCh/ describes
the implementation of the scheme, with explanations of the components amaténaations.

Chapter V deals with the questions of performance, and with the segfuthty scheme.

Some Existing Alternatives Based Upon Mathematical Problems

As noted at several points in this thesis, key agreement protocols {niéchntly includes key
exchange or transmission protocols) already exist. They aralcelknents in the existing

cryptographic landscape. But, what are they? And, why look for an alternative?

As previously discussed in lesser detail, the Diffie-Hellman [l Key agreement protocol was
the first publicly developed and discussed key-exchange protocol, ancerstieéitbasis of or
useable in several other key-exchange protocols. Its securdgad lon the presumed difficulty
of calculating discrete logarithms. As it is so central to theldpreent of several protocols, and
illustrates some of the problems the protocol presented in this titesigpts to address, it is

worth a longer, more detailed discussion.

The Diffie-Hellman protocol is as follows.

By prior arrangement, Alice and Bob select two numbeasidg, such thah is a large prime,
andg (called the generator) is primitive mad These numbers need not be kept secret. When

Alice and Bob need an agreed secretlkdahey do the following.

1. Alice chooses random integercomputesK = g* modn, and sendX to Bob, while Bob
chooses random integgrcomputesy = g modn, and send¥ to Alice. Bothx andy

should be ‘large.’

20

2. Alice computek = Y*modn, and Bob computdg = X’ modn.

Sincen is prime andj is primitive modn, we have

k =Y*modn=g* modn= g modn=g* modn= X*modn=Kk'

The presumed security derives from the problem of calculating discretgHogmrbase, which
is related to the problem of factoring large integers, hence the regquirémt be large. Since
an eavesdropper will at most knowg, X, andY, but neithex nory, the protocol is believed
secure against eavesdropping, absent efficient means to deterroietedisyarithms base

But, a successful guess of eitlxar y will produce k, compromising the communications.

Analysis [20] has shown that not only muadte both large and primey € 1) / 2 must also be
prime. While this assures that the Pohlig-Hellman algorithm [20hat revealx ory, it also
limits the number of primes that may be used, as the selectivis 6fmited by the Sophie
Germain primes. Whether this is an exploitable fact remains an open questgimebuhe fact
that the distribution of primes becomes progressively sparser amongsrasgaagnitude
increases, further thinning of eligible primes cannot be regarded ay Whohless. Even with
selection of g that is primitive modh, problems arise, as this reveals low-order bitsaridy
[21]. As a resultg may be selected based upon its generation of a large subsedtbier than

being primitive.

An additional problem [21] is that if an attacker can cause any lev@®frbthe selection
processes for the integersindy used by Alice and Bob, the discrete logarithm problem can be

simplified, thus weakening the system.

One of the reasons the Diffie-Hellman protocol is not used widely feekehange is that it
provides no authentication, and is thus susceptible to a man-in-thesrattittk. If an attacker

can intercepX andY and substitute his own values for these, he is in a position to readfiall tra

21

between Alice and Bob. Even if he is quickly detected, the informatiordgliet@rcepted may
prove damaging. Authentication can be added to the protocol, but involves ugédichtss,

which add their own problems to the overall scheme.

Knapsack problems as a basis for public key systems were firstexX|ght least publically) by
Merkle and Hellman [22][23], and extended to include authentication by SfthirThe

problem is based upon a super-increasing series. That is, theSserseper-increasing if for
any elementss € S;s > lezlsj . Given a sum of members §fit is easy to solve the problem

of which elements of are elements of the sum. (This is the easy knapsack problem.) At the
same time, it is possible to construct a non-super-increasing setissdtilhincreasing, from the
super-increasing series, such that the two series have the same solaéoron¥uper-
increasing series problem is much harder. The pair of series compegeailk with the super-
increasing series being the private key, and the non-super-increasasgtisenpublic key.
Unfortunately, though the mathematics is interesting, the solution istiie &mnapsack problem
has been successfully attacked, and by several cryptographers, asrizaimsan the theme.
Schneier [25] discusses many of these attacks and variants in soilh¢hge&dore the details are

left to that resource.

The most common public-key system in current usage is the RSA key exchatagelpivhich
is a member of the broad family of RSA protocols. Developed by Rivest, Shradnikdleman
[11], it relies upon the difficulty of factoring very large numbers intar thenstituent primes.

The core concepts of the mechanism are as follows.

To generate keys, select two large primesdg, and calculata = pgandg = (p— 1)@ — 1).
Select an integer valwee the encryption exponent, such that gcdjf = 1, then calculatd, the

unique decryption exponent, using the extended Euclidean Algorithm. (The irdegeisare

22

multiplicative inverses of each other mgdsincedemod ¢ = 1.) The public key ia ande, and

the secret key is andd.

The ciphertext of a plaintext message (treated as a number in the rangen[@l]) is obtained
by computingn® modn =c. The plaintext message is obtained from the ciphertext by computing

c¢dmodn=m.

As noted elsewhere, the strength of this system has continually eroded, tHoaggtitibeen
broken: the problem is one of increasing computational power. There is ayprdidegh. As
stated by Schneier [25], “It ionjecturedhat the security of RSA depends on the problem of
factoring large numbers.” There is, at present no proof that feationzs required, only the
present understanding of the problem which indicates that this is so. Asughgwoted, Shor’s
algorithm [26], or some other advance in factoring may yet prove a ser@hlermp for RSA’s
security. In any case, the RSA algorithm tends to be very slow, partjoutaeh using long

keys, which are also presumably the more secure ones.

Menezes, van Oorschot and Vanstone [21] address one way in which thiedaotoblem might
be avoided. Any method that can demMéirectly frome andn would significantly simplify

factoringn. Whether such a method may be discovered is an open question.

Another problem discussed in [21] is “unconcealed” messages, whiclefined as messages
that encrypt to themselvesn=m® modn. Two easily identified cases of this are wineaquals
0 or 1. Other unconcealed messages are more difficult to identify befdretmal are dependent
uponp, g, d ande. The number of such messages can be computed exactly as«{d¢cdE 1) +
1)(gcde - 1,9— 1) + 1). Fortunately, this number tends to be small, with random oresrpatl
does require that ciphertexts be compared with the plaintext in orgegsent sending any
unconcealed messages. A convenient way to deal with unconcealed misssagdd a random

nonce and re-encrypt.

23

Other potential problems discussed in [21] include those related tbvatgls ford or e (when
sending identical or similar messages to more than one recipient) nsaesalhge spaces, and

common modulus issues.

In particular, a common modulus creates an opportunity for more efficetatization of a
modulus. If multiple key-pairs use the same modulus, obtainindjdhee as a pair from any
one of the individuals using that modulus simplifies factoring that modulus. U$ieg,the

public €) encryption exponent and modulus yields the private key compdnent

Additional issues addressed include the recommendations thatférertie betweep andg not

be small (since thep =~ q and p = \/ﬁ), and that botlp andq be “strong” primesgis strong

if p— 1 has a large prime factqip + 1 has a large prime factor, and 1 has a large prime

factor).

Pohlig and Hellman [27][20] developed an asymmetric cipher systens thait actually a public
key system. Both members of a key pair must remain secret. As withtR&lkes on the
property thaC = P° modn andP = C* modn, wheree andd are inverse relative to a selected
modulus P is the plaintext an@ is the ciphertext. Its security will be broken if an efficient
means for calculating = logsC modn can be found, though some security remains so long as

remains secret, as an attacker must determbefore launching such an attack.

While Pohlig-Hellman is an alternative to the scheme developed angskstin this thesis, it is
slow by comparison, suffering the same order of performance as RSA encrytibite e may
be selected to minimize the number of operations to be perfodniesicorresponding
decryption exponent, is unlikely to share that characteristic, andguise more operations in
the decryption than in the encryption.) It may also be viewed as an adjllmeing either a
form of super-encryption of portions of the data-stream used to agree uponra tando
sequence, or as a means performing periodic re-keying.

24

Rabin public key encryption [28] is a “provably” secure system, sirare #xists a proof that, for
a passive eavesdropper, the recovery of plaintext from a given cipheexitivalent to

factoring. Itisn’t, however, based upon the factoring problem. Rathebaséd on the problem
of finding square roots modufo= pg, wherep andq are large primes congruent to 3 mod 4. The
primesp andq are the private key, whileis the public key. Note that this dispenses with the
encryption and decryption exponents used in RSA, but at the cost of a more ceaplicat
decryption mechanism. A secondary problem is that it cannot be used tpte@andom bit

strings, since decryption produces a set of four candidate solutions. Is¢hef eeamessage that

is a random bit string, there is no way to determine which is correct, akessvn marker is
added to the original message. Therefore, this system is not disaus$sedih its original form,

here, but in a modified form developed by Williams [29] that addsasse deficiency.

In the Rabin-Williams public key systepandq are again large primes, but now we have that

p=3mod8 andq=7mod8. Also,N =pg. The revised scheme uses the Jacobi

symbol/function, and is also provably equivalent to factoring. Several otli@ntgshave been
developed, but all suffer from one serious problem. They all fall to a chosetexiattack.
Thus, they cannot be used in any situation where an attacker can seleztshgerto be

encrypted, such as when they are used in digital signatures.

ElGamal [30][31] is yet another eponymous public key system. It @tidise problem of
discrete logarithms in a finite field. Select a large pnon@nd two random numbegsandyx,

both less thap, and calculatg = g modp. The public key iy, g andp, while the private key is
the public key plug. To encrypt a message(which is in the range [— 1]), select a random
k relatively prime tp — 1. Compute = g“ modp andb = y*m modp. The ciphertext ia andb,
which are each of the same lengtlp@ndm. The plaintext is recovered as=b/a modp. As
Schneier [25] notes, this is Diffie-Hellman, but wythdded to the key via the multiplication by
v

25

While the schemes discussed thus far are generally problems involving etigtioein one

form or another, other approaches have been proposed. Robert McEliece [33)etteel
scheme based on Goppa codes, which are a class of error-correction codeshe/dlcheme has
several advantages, and is one of the earliest publically proposed mytdigskems, it is rarely
used due to the size of the public keys required, and more recently duattatke that have
been developed against it. The public key is &g n matrixG = SG’P, whereSis ak by k non-
singular matrix, G’ & by n generator matrix for a Goppa code correctly upewors, and P is an
n by n permutation matrix. The private key is the three mat&& andP. Encryption with

the public key of message of n bits is accomplished by calculating- mG + z, wherec is the
resulting ciphertext, anglis a randonm bit vector with a Hamming distance relativemf t or
fewer bits. Decryption is accomplished by calculatimguch thatn’G has a Hamming distance

of t or less with respect &P?, using the Goppa decoding algorithm, then calculatimgm’S™.

While this is much faster than RSA and several other public key systenmylilic key for a
minimal secure key pair is*bits, and ciphertexts are twice as long as their corresponding
plaintexts. At first, there were unsubstantiated claims of ssittettacks against McEliece
[33], though the veracity of the claims are suspect, as they include no sappoosk claims.
However, subsequent efforts have proven more effective, with the bektladtag a parallel
attack requiring no communications between nodes developed by Bernstein, Lang&esd P
[34], involving a work factor of only abouf®2 While this attack is against the original
parameters published by McEliece, it must be expected that subsequekst agi#nst the later

versions will follow at some point.

The problems with encryption based on error correcting codes lies in thiediathe encrypted
material must contain sufficient information to both convey the messad allow detection and

correction of the “errors” in the ciphertext. Such problems are disdugsChabaud [35].

26

Yet another direction that has been explored involves the use of digohgtemials in finite
fields. Koblitz [36] and Miller [37] independently proposed system based Uiguiical curves

that fall into this category, and a great deal of work has ensued.

Elliptical curves have the advantage of being relatively fast algajtbat also have problems.
As this topic is very rich and complex, a full discussion is beyond the pes®e. Interested
readers are urged to reference Rosing [38] for an accessiblae(if discussion of the
implementation, performance and problems elliptic curve cryptograpliie somewhat more
recent Hankerson, Menezes and Vanstone [39] for further informatialetaled search of

current literature is also recommended, as developments are nearaatinu

Other polynomial-based systems have been developed outside the argtioteties.
Kravitz-Reed [40], Muller-Nobauer [41][42] (using Dickson polynomjaLidl- Muller [43][44]

and LUC (by Smith andLennon) [45][46] are examples.

Note that in all the above schemes, the cryptanalytic problem faced byaukeats a single
problem that is presumed to be “hard,” and thus to impart cryptographictbtréndghe case of
the Rabin public key system, the proof of strength is really just a prodhéhptoblem is as
difficult as a problem for which there is no proof of difficulty. While anwlbiof these problems
may ultimately be proven to be as hard as presumed, this cannot be counted upona pdosdnt
that a problem is in fact hard, its use in a cryptosystem is an exampleDiffibdiellman
assumption, and thus suspect. The history of cryptology is, if anything, a lsfgsumed

hard problems being found less difficult than thought.

Of a different form are public key systems based upon finite automatonsedsdem developed
by Tao Renji [47][48][49][50]. The strength of these systems is basedip@noblem of
factoring two composed finite automatons. As such automatons may be imgdras matrix

operations, compaosition are relatively straightforward and result in reablegoperations. As

27

discussed by Reniji, if one of the automatons is non-linear, but afedyatveak form
(possessing a weak inverse), composition with another automaton, even a keasuwits in an

automaton without an inverse.

The keys for such systems are large, when compared to RSA keys ofteripgrable security,
and this makes the approach unsuitable for some applications, but the opesatignsose keys
are generally much faster than RSA encryption and decryption. But, asfitdtdibf factoring
composed automatons is presumed, rather than proven, concerns about the vdiigityplicit
Diffie-Hellman assumption remain, and it remains worth considerindgpamésgms that do not

incorporate such an assumption in the arguments for their cryptogstigmgth.

Zero-Knowledge Proofs and Key Agreement Protocols

Of interest in many applications is the problem of how one participant inversation can
prove knowledge of some fact without revealing the substance of thatlaexample where

this is the case is as follows.

One party (Alice) has information a second party (Bob) wants, but Mants to be paid for that
information. Rather than risking not being paid by revealing the informatiBok before she is
paid, Alice insists on being paid first. Bob is concerned that payment mighade, then

nothing revealed by Alice as she does not possess that informationfofiédre insists on proof
that Alice actually possesses the information first. For exampéXe, let us assume Alice has an
account with a business news service that allows her to see sttEKiprieal-time, while Bob

can only see them with a 30 minute delay. Alice is willing to sharadeaunt access with Bob

if he pays her for that access. Bob can get Alice to prove she has sucbuam by asking her

guestions that she can answer correctly, in a timely manner fahly has the access she claims.

Bob asks Alice the exact bid and ask prices for a set of stocks atspews over the course of
a trading day. If Alice has the access she claims, she will be aleled®sb the required

28

information effectively immediately upon receipt of the queries. &uabthen compare the times
the responses were sent to the time the queries were sent, and tlesl nepoes to the actual
prices he sees 30 minutes after the query/response pair. If Bols sebe&s with volatile prices,
and Alice is always right, sending the information upon receipteofjtiery, she probably has the
access she claims. The more times she is correct, the more certaimethas the access
claimed. However, if she is significantly wrong at all, or is off in teahtime by a meaningful

amount, it indicates that she does not have the claimed access.

Note that in the above process, knowledge is passed by Alice to Bob, bubnuoiaitndn
regarding her account password. The information she passes to Bob is obtaigéeius
password to her account, but contains nothing derived from her password. Tipuscéss is

zero-knowledge with regard to the password Alice is using.

Zero-knowledge proofs serve very useful purposes other than as descrimdxarmple above.
One of these is authentication of identity without revealing persoftahiation. Another related
use is proof of possessing a password without actually transmittingstwaqyd. This latter
category is of interest here, as these techniques leads to psdtovafireement among two or

more parties upon a secure key, though these are not, in a strict senkepugedge proofs.

As pointed out by Schneier [25], an unfortunate fact of zero-knowledge fadentity is that
they are susceptible to man-in-the-middle attacks. The procsisspile. If Mallory wishes to
convince Bob that she is Alice, she places herself where she canphsdlteaffic between
Alice and Bob. When Bob asks Alice a question using the protocol, Mallorgeptsrthe
guestion, but passes it on to Alice, posing as Bob. Alice answers the questibtallang again
intercepts the message, and passes it to Bob, posing as Alice. As thel paitbooes, Mallory
repeats this process as necessary, until Bob is satisfied tbathalk correctly proven her

identity. Mallory has no idea what Alice knows, but Bob is now convinced thabiMad Alice,

29

and Mallory is free to exploit the deception. The same appliesatedgbrotocols, provided
Mallory can successfully interpose herself between the corresgendére primary exception is
in key agreement protocols, where, unless Mallory is able to breakdhgoted traffic, or as in
the case of Diffie-Hellman based systems substitute her own expamémt#\lice’s and Bob's,
she will have convinced one or both that she is the other, but remain unable tioer¢raffic

using the resulting keys.

Zero-knowledge key agreement protocols are not, in the strictest, smmo-knowledge proofs
[21], in that they exchange information derived from the passwords or ottexiatzaused in
arriving at an agreed key. However, the information is generally ieumffig abstracted, through
hashing, modular arithmetic, etc., that this material is at leastrpedsy difficult to determine
from the exchanged information. Still these protocols provide an aliernatihe material

presented in Chapter IV.

Bellovin and Merritt [51][52] presented several methods foe@iglg upon a secret key based

upon a shared password. Some of these proved weak, but those that were not were developed
further, expanding to include client-server environments. The basicsiflaone party to

encrypt a public key that is “ephemeral” (meaning it will be used amlthe present key

negotiation, or “once”) using the shared password. This is encrypted ephpuoi#ic key is sent

to the second party, who decrypts the public key using the shared password. Th#i¢aohea

negotiate a session key using the ephemeral key pair.

This approach strengthens more usual public key schemes by making thergpipeivic key
public in no sense. Thus, any cryptanalysis must start with breaking the emcofttie
ephemeral. Once that is accomplished, an attack upon the ephemeral pulzic &esnmence.

This has the advantage of increasing the effective cost of breakikgytlexchange process by

30

ensuring that the initial cost of cracking the password-based encrgplidgaves the problem of

breaking a new public key each time the protocol is invoked.

The liabilities of these protocols include the costs of repeatedbrgeng public/private key
pairs, and of the actual operation of the public key protocol in negotiatinggbiers key.
Further, the problem of the Diffie-Hellman conjecture remains titly trivial solution to the
public key system used is found, breaking the password-based encryptiorakgsahies the
whole protocol. Conversely, so long as an effective attack against the kmybpeotocol is non-
trivial, the cost of a continuing attack upon communications between tHertwwre) parties

may remain effectively prohibitive, relative to the value to bevedrfrom the attack.

Jablon [53][54] developed a scheme called “Simple Password Exponérti&lxchange,” or
SPEKE. This is essentially Diffie-Hellman key exchange, but witly#imeratog derived from
a previously agreed password and a large, randomly selected safémpeaméng a prime such
that 2 + 1 is also a prime) via a hash function. Since the parties to the exchérugrive the
same key if and only if they use the same password, a key verificationgbretiba@llow the two

to determine that they indeed share the password used.

As this scheme requires an attacker to know the gengratothe password and prime used to
generatey, which are not public information, it offers a layer of protection nagemein the
purely public key Diffie-Hellman protocol, but onges discovered by whatever means, any
effective attack on Diffie-Hellman will also break this protocoheTusers of this protocol also

have the overhead of the Diffie-Hellman protocol as an inherent coshgfthsi scheme.

Unfortunately for general application of SPEKE, a U.S. patent (6226383) was fesiablon on

May 1, 2001.

It is interesting to note that Blum, Feldman and Micali [55] proved that &sttep who share a
common random sequence of bits possess enough information for a non-interastive ze

31

knowledge proof of identity: communication during the proof is unidirectiorat) fklice to
Bob, after which Bob knows Alice is who she claims to be. Their protocol id basa a three-
color coloring of a graph using information derived from the shared matehidibrtunately, full

exploration of their protocol is well beyond the scope of this thesis.

One way to understand the validity of such a scheme is to consider a vaptlfiesi zero-
knowledge proof of identity based upon two parties sharing a One-time Pad. eAsSkoeneeds
to prove she is who she is to Bob. As the two share a One-time Pad, she couldenzly
message to Bob that is intelligible, once decrypted. So long as Bob beliyddice has a
copy of the pad, the fact that he is able to decrypt an intelligible geessaufficient proof of
identity. This is not zero-knowledge in the sense that Alice haslex¥ a portion of the pad to
Bob (who already knows it), and a third party who can obtain a copy of the plaintext can
determine the key material used. (Thus Alice cannot send Bob a messagéixbd in content,
or very predictable.) However, it is in the sense that she has nalagvee remainder of the
pad she and Bob share. A stronger approach is for Alice to send Bob a randonmetyiptgd
with the One-time Pad. Bob must be able to identify the plaintext agttdmwhich would
require additional interaction, but for the fact that the One-time Padlpeosuch material.
Thus, if Alice wishes to prove her identity to Bob to within a«2) / 2 probability, she can
XOR the firstn bits from the One-time Pad she shares with Bob with themiait$ of that pad,
and send the result to Bob. Upon receipt of tHiit string, Bob XOR’s it with the firat bits
from his pad. If the result equals the nexits from his pad, he is correspondingly certain that

Alice in fact is Alice.

Again, this is not a substitute for Blum-Feldman-Micali, or any comparabtequi, but should
demonstrate clearly that shared secrets composed of some number of raagwavitié strong,

non-interactive proof of identity.

32

CHAPTER I

A SURVEY OF STREAM CIPHERS

Ciphers may be classified in a number of ways. The most direct approashviitahow the
keys are handled, then addresses the ways the keys and plaintexts tm@mave at a ciphertext.
This avoids the problems of trying to classify them based upon algorithms, avhicbmplicated
by the fact that different algorithms can arrive at the same rdSoittexample, any cipher, using
any number Pseudo-Random Number Generators (PRNGS), that yields angepepdriodic
output sequence of key material is logically equivalent to someakiFeedback Shift Register
(LFSR) of equal linear complexity. (This fact is discussed inwation with LFSRs later in this

chapter.)

The most basic divide between classes of cipher systems is that betwesrkey systems and
public key systems. Secret key systems are also often called syerkeg systems, since the
same key is used both to encrypt a plaintext message and to decrgsultieg ciphertext.

Thus, the algorithms used for encryption and decryption are easily réegsilen the secret
key. The security messages encrypted by symmetric key systerasrgiiely upon the strength
of the algorithm and the keys being kept secret, shared only by trusted pastigs paties who
must be able to decrypt a given message must have a copy of the key usedtdlencry

message, the agreement upon a key, whether by negotiation, physical delisagyotrer

33

means, in a manner that maintains the secrecy of the key, is one aittaém®blems of secret

key cipher systems.

Public key systems are markedly different from symmetric keymgstand not entirely public,
despite the name. They utilize algorithms that are reversibiedetsyption would be
impossible), but not easily so with the same key. Rather, they utilize keygal algorithms
that utilize both members of a key pair to complete an encryption/decryptien So long as
the “private” member of a pair cannot practically be derived from thbligy member of the
pair, the public key may be made reasonably freely available to anyome to he
“complementary” nature of the key pairs, either may be used to encrypsagaeashich can then
be relatively easily decrypted using the other member of the pair. Teysublic key can then
used to securely send messages to parties holding the correspondingkpyivagonly the
parties able to use the private key will be able to easily deciptesages encrypted using the
public key. The reverse is not the case. Messages encrypted using tteekagyvaust be
presumed easily deciphered by anyone, since the public key is expected tobkrmytiiedge.
But, so long as the private key is held only by those who “should” have it, theisesuhessage
that can be trusted to be from such a “proper” private key holder. Due podperty, in many
digital signature protocols, a public key is contained as plaintext irighal dignature
associated with the signed and encrypted message, so that the signgtioecannhenticated and
thus the message. For publicly accessible documents, the encrypteddeaiaseed not be the
entire body of the document. It may be a suitably secure message digestegeinem the

document signed using the system.

If two parties each have distinct key pairs, and publish their régpgctblic keys, secure
bidirectional communication can be achieved by means of double encryption. Anexdhs

is the following. Alice wishes to send Bob a message, and wants to be sietthatl know

34

that the message could only have been sent by her, as well as that only Bob cam ideSble
has Bob’s public key, and has the necessary tools to use that public kel},ssshaging a key
pair of her own for this public key system. As the two have shared theic gaips (the
mechanism of such sharing is unimportant for this discussion), she knows Badocogot
messages encrypted using her private key, as well as being able {ut dezsgages encrypted
using his public key. Therefore, she encrypts her message using her @wadteek encrypts
that ciphertext again using Bob’s public key. She then sends the doubly encryp¢etekipgb
Bob, and tells him that it is from her, and the order in which she used thmctiee keys to
encrypt the message. Bob then decrypts the ciphertext using his peyatedn decrypts the
result using Alice’s public key. Assuming both Alice and Bob have beemisudareful, and
nobody has obtained either’s private keys by nefarious means, Bob will know thafioaly

could have sent the message, and only he could have decrypted it.

As wonderful as this sounds, public key systems are not used for routine coationric They
are too slow in operation for rapid, high volume communications, much less fordhighev
real-time communications. Instead, symmetric key systems aréausghd majority of
communications, as they are typically “cheaper” in terms of time amg$sing requirements.
Public key systems are typically used to agree upon or exchange thésessiein” keys used
for the bulk of communications, as well as for digital signatures and stath are much lower

volume activities.

Secret/symmetric key systems may be divided into two broad cetggalock ciphers and
stream ciphers. The simplest way to differentiate between the pee has to do with the size of
the data elements each encrypts. Block ciphers typically deal wetitlieagth blocks of data
that are comparatively large, compared to stream ciphers. Thesednechksely less than 64

bits in length, and generally of some power of two in size. Two commonly used lpjbekscare

35

the algorithms defined by the Data Encryption Standard (DES) and Advanced Emcrypti
Standard (AES), and the International Data Encryption Algorithm (IDEA),iwinse 64-bit, 128-
bit and 64-bit blocks respectively. In contrast, stream ciphers typd=dl with bits, or small,

individual tokens, such as bytes, in the communications medium they are used in.

A second distinguishing characteristic is often described in ternma@f Block cipher
algorithms operating in Electronic Codebook (ECB) mode are not concernetievidtmporal
ordering or sequence of the material enciphered. They perform thi@tnaasgorithm using the
secret key to encrypt or decrypt blocks, without regard to any otheksbihat have been or will
be encrypted using the same key. Neither are they primarily conceithe@alitime
requirements. While efficiency and speed of encryption and decryptiom@poetant
considerations, emphasis is on exploiting large block sizes and keys to achima des
characteristics, such as uniform probability distribution and diffusionteffé&lock ordering
effects are imposed by operating modes superimposed on top of the balsicifher
transformation. (See Appendix A for a discussion of block cipher modes.) @aly w
encryption modes involving feedback, counter behavior and the like are tiseckis strong

sense of ordering, with resultant effects in the contents of the ciphelideks produced.

Stream ciphers are designed to deal with data streams that are oftentlgleedered, and, when
intended for use in applications that require real-time behaviodeaigned to support the
necessary data rates with the available computational resouncasthé names of the two

classes of stream ciphers explicitly address their synchronizationitresha

The distinction between block and stream ciphers isn’t always cléack &phers are
sometimes used as the bases of stream ciphers. In Counter Modesé€Mppendix A) a block

cipher transform is used as a pseudo-random number generator (RRId@Erate a running

36

key, resulting in a synchronous stream cipher. Cipher Feedback (G&B)uaput Feedback
(OFB) modes use a block cipher to construct self-synchronized strghensci Conversely, self-
synchronizing stream ciphers in many ways resemble block ciphers run@f@ior OFB
mode, though they usually operate on much smaller blocks. (See the follovaiungsiis for the

distinction between synchronous and self-synchronizing stream ciphers.)

The greatest differences between block ciphers and stream cipheeearat the extremes of the
two classes of ciphers. The most fundamental of these is that streans ampplicitly entail

some form of memory, while block cipher algorithms do not. This can be sdenfacts that
stream ciphers use a keystream generator, successive outputs fgemeteor are derived from
the key plus the state of the generator at the start of a cycle, thesstptlated during or at the
end of the cycle, and the state of the generator is retained for hgeniext cycle. As stated
above, a block cipher algorithm only performs a transform on a block, based upon the key,
retaining no state information (except perhaps a fixed key schedivediom the key)

between successive iterations. Any memory associated with a blockisiplneartifact of the

operating mode in which the transform is used.

Stream Ciphers

Stream ciphers may be divided into two distinct classes. The first ¢éyy@eajes a keystream,
which is then logically combined (usually by an exclusive-or (XOR)) thighplaintext bits or
bytes in sequence. The second uses previously generated ciphertextacdiss pf generating
the keystream used to encrypt subsequent plaintext. These amedr&feais synchronous and
self-synchronizing stream ciphers, respectively. The reason fordimienclature involves the
fact that, since the keystream of a synchronous stream cipher istgdried@pendently of the
plaintext encrypted with it, the sender and recipient must have theacte® copies of the

cipher algorithm synchronized in order for decryption to be successfulnekhstate of a

37

synchronous stream cipher is in a sense “closed,” and entirely determinedrbsnttiate prior
state of the cipher algorithm, regardless of the prior plaintextomtrast, for a self-
synchronizing stream cipher, the next state is determined by the prioinstatling the effects

from prior ciphertext generated, plus the data element being encrypted.

One way to see the difference between a synchronous and a self-synchropiengsciia the

following sets of functional definitions [21]. A synchronous stream cipherlbrealescribed as

follows.
Gi+l = f (Gi ’ k)’
z =g(o;,k),
¢ =h(z,m).

Here,oo is the initial state (as determined by K@yf the next state functiog, thei-th element of
the keystream produced by the generator fungjon thei-th plaintext symbol, and thei-th

ciphertext symbol. Self-synchronizing stream ciphers can be descritmtbas f

0; =(C1,Cpiase-Cs)s
z =9g(o;,k),
¢ =h(z,m).

The symbols here have the same meaning as before, exceptth@t:,C.i+1,...,G1) is the initial
state, which may or may not be secret. The material composing thesitaitéals often referred
to as an Initialization Vector (1V). IVs arise frequently in crypagmic systems, including in

various block cipher modes, hash functions and authentication protocols.

Since each element of the keystream is determined by thd pifdrertext symbols plus the key
k, we can see that, even if symbols are inserted into or deleted frossagaetream, the
keystream generatgrwill resynchronize aftetr correct ciphertext symbols are received in proper

order.

38

It is worth reinforcing the fact that we are dealing with two distkeys: the formal key and the
keystream or “running key” constructed by the keystream generatoboffosynchronous and
self-synchronizing ciphers, any keystream generated is effecthelyroduct of a PRNG. In
fact, any PRNG may be used as a keystream generator, or as a componentCafmeesely,
stream ciphers may be used as PRNGs, or as components, in both cryptographic and non-

cryptographic applications.

Another important observation regarding stream ciphers is that whilerthimg key resulting
from operation of a strong stream cipher and a specific initializatipmiag be used for a
significant span of time, re-use of the initialization key is typicalvery bad idea. Such re-use
results in the re-use of the same sequence of keystream bits or @yghertexts encrypted with
the same running key sequences can be XOR’ed together to produce an X®Rlahtexts,
which represents a vast simplification of the problem for an attatke&comparison, a key for a
block cipher may typically be used repeatedly, for extended periods, so longrasithesed is

not one that acts as a stream cipher.

Introduction to a Brief Survey of Modern Stream Ciphers

As the bulk of this thesis revolves around PRNGs used as stream ciphexitearate
implementation’s effectiveness must depend in part on the PRNGedadliti¥e recognize the
relationship between stream ciphers and PRNGs, and will here brieffyrexaeveral stream
ciphers, including some that are poor ciphers, but good PRNGs in terms cdéitanwdomness.
We will not examine any prior to the Vernam cipher, which may be regardbd fist

“modern” stream cipher, as it was expressly developed for use in aatbatattronic
telecommunication, and many stream ciphers are in fact Vernam cipmgrspecific PRNGs as

keystream generators, or components thereof.

39

While an understanding of the means and methods of cryptanalysis is impar&amdlyzing
cipher systems, regardless of the type, mention and description ofcspagtianalytic attacks
and processes will be limited to points where they are of specificshtasethe field is both
broad and deep. For a survey of ciphers it is more important to know thatra Bgst&nown
weaknesses than to know the details of them in depth. The details of such amatteft to the
references cited, which deal with them in much greater depth than is apgrdgrie, as well as
specifically to Bruce SchneierApplied Cryptographywhich served as the initial source for

much of the following material.

Vernam Ciphers and One-Time Pads

Gilbert S. Vernam, working for AT&T during World War |, developed a scheme for
automatically encrypting the Baudot character codes for use in theuhent teletype systems.
In its more generalized forms, this scheme and the descendant ciphers nhis baare. In
practical terms, we can consider all synchronous stream ciphers tort@envaphers, and all

self-synchronizing stream ciphers as Vernam ciphers with feedback.

In its original form, a specialized teletype machine with a paperégoker was used to logically
combine, character by character, messages typed on the machine, with a kegdonta paper
tape mounted in the reader, in an operation that is effectively an XOReduieof this was a
ciphertext, which was transmitted over the TTY system to a recipier@¢arded on a paper tape
which could later be fed into a teletype machine for transmission. Upoptretepending on the
equipment at the receiving station, either of two scheme could be st first, the receiving
teletype machine could, if equipped with a paper tape reader and a copy of thpekgerform
the inverse operation to produce the plaintext. In the second, a paper tapétbepsiphertext
could be produced. This tape could then be fed into a combiner, equipped witheathigreand

key tape, which could then perform the inverse operation using the key tape teepheduc

40

plaintext. As the key tape could be made as long as desired, within the liprigstidal
usability, with arbitrary key contents, the result was a relatingyst, automated system that
required little knowledge and effort on the part of the operators. Indeedetypaeoperators did
not need to be involved in the encryption and decryption processes at all, therehging the

security of the system if they were excluded.

This system is extremely general, and adaptable to any bit- or toketedrsystem of
communication. As such, it is regarded as one of the most important developmibatkistory
of cryptography. However, it suffers from serious flaws. The most importdmesé is that if
the key is not random, displaying some structure that can be predictettheokdly is re-used, so
that different ciphertexts generated with the same key segment magnpared and analyzed,
the result is a weak cipher. In cases where the logical combiningtiopas an XOR, it is easy

to describe the process by which a Vernam cipher may be broken.

If two ciphertexts encrypted with the same key are aligned withaegpthe key, then XORed,

the result is an XOR of the two plaintexts. Where characténgitwo plaintexts match, in terms
of relative position in the respective streams, the result id.a T y* (chi-square) test may be

used to determine whether a trial alignment is correct. Once ¢imer&lnt has been determined,
many of the cryptanalytic tools that are effective against oldgrghphabetic ciphers are
effective, but “educated guesses” can radically simplify the processinyy selecting a small
number of words that have a high probability of appearing in either ciphahextXOR'’ing
these in successive positions in the XOR of the two ciphertexts, ataigacnent will result in
plaintext. This process is easily automated. The more ciphertexts tfatrdaising the same

key segment, the more rapid and effective the process becomes.

Captain (later Major General) Joseph Mauborgne, U.S. Army Signal Cogrspbserved that, if

the Vernam cipher key tape was random, and of equal or greater length thamtiestpkthe

41

resulting ciphertext would be difficult or impossible to break if thg were never re-used.
Though it was not called such at the time, this specific implementatibe dernam cipher

became known as the One-Time Pad system, or simply OTP.

Claude Shannon’s 1949 paper on cryptography [5] deals with the problems ofalygitaof
OTP, as well as the more general questions of the relationships bdyedlock and plaintext
lengths and the overall cryptographic strength of any cipher system.t patiex he proved
several things, including that a properly implemented OTP is unbieadad thus perfect.
Further, any perfect cipher system must be a homologue of OTP. The resuigéon a properly
implemented OTP are that the key is secret, random, as long as the plagtekre-used, and

destroyed upon use.

In the absence of the OTP key used to encipher a plaintext, all possible Haohtetal or
shorter length as the ciphertext are equally as probable solutiomsngea solution is possible,
regardless of the cryptanalytic methods used. It is also impossiidtarmine whether a
specific plaintext corresponds to a specific ciphertext with anybriyjabeyond whether the
plaintext is of equal or shorter length, absent additional explicit evédariing the two. Given
these facts, if an innocuous text of the same length as a cipherteéairisdeand both the actual
plaintext and OTP key destroyed, there is no way to prove that the innocuouagexdt the

plaintext, absent other definitive evidence.

The effect of encrypting a byte with OTP is the same as randomlyisglene of 256 mono-
alphabetic substitution ciphers and applying it to the plaintext bytee biyte values must range
from 0x00 to OxFF (8 bit hexadecimal 0 to FF, using standard C notation). This poimthis wo
reinforcing. There are onl@® = 256 possible cipher key bytes for byte encryption using the
XOR encryption function, and one of these (0x00) leaves the plaintext uncharigeds avery

small number when compared with t8&8—1mono-alphabetic substitution ciphers that are

42

possible with random mapping. This is true of all Vernam ciphersitieathe XOR operation as
the combining function for the plaintext and keystream. The same problemsappdither
simple combining functions, such as byte-wise addition or subtraction modulo 25k thghis
not a problem in correctly implemented OTP systems, for non-OTP Veiiphprs, the result is
a much simplified process of guessing the keystream bytes when multiglegegencrypted

using the same keystream segment are available.

The primary problems with OTP are not cryptanalytic in nature. Thdgpgistical and
operational. OTP requires an amount of key material equal to the amountiotdrbé
encrypted. The key material must be truly random, and never reused. Thatkaglmust be
distributed in an absolutely secure manner, and completely, irreyaisstroyed upon use. A
requirement for simultaneous, bidirectional communication compounds tisédabproblem,

and loss of synchronization can cause significant problems.

While storage media, including flash drives, Digital Video Discs and@l® Discs, now offer
simple means of storing and transporting massive amounts of data, theteosigkruction of
such media can be problematic, as well as expensive, as even small fragreentsiof
material may be sufficient to decrypt portions of ciphertexts that magrbbarrassing.” This
can be seen via the VENONA program, which was a joint effort among é¥estern allies to
extract information from masses of Soviet OTP traffic. Despieralow yield, the insights

gained were reckoned as well worth the decades of effort spent.

The success of the VENONA program is useful in illustrating the diffafutorrectly
implementing and operating an OTP system over long periods of time. Tlessofthe
VENONA program became possible when the Soviets were forced to take &hiorimperating
their OTP system due to logistical problems, including the difficultyeokgating and

distributing large volumes of random key material.

43

Apart from other logistical problems, the physical transport of such meaigsents a significant
risk, when an adversary possesses high motivation and ample resources. pitel{leehigh
capacities of modern media, encryption of high-resolution video streahrapidly exhaust key

material regardless of the media used for distribution.

Electro-Mechanical Ciphers

The Twentieth Century also saw the development of electro-mechamicgbton technology.
Two inventions in particular deserve note: the Enigma and Lorenz machiogsw@&e used by
the Germans during World War Il, were successfully broken by Alliediogelte services, and

are exemplars of the problems associated with such systems.

While there are significant differences in the rotors used in thashines, as well as other rotor-
based equipment, the basic structure is the same. Each rotoreha$ elactrical contacts on one
side that are connected in an arbitrary or random pattern to contacts dmethsid# of the rotor.
Thus, the connections through the rotors change as the rotors are relttiee to the
surrounding hardware. When a series of such rotors are used, and theypmedeadgy rotated
as plaintext is enciphered, the combinatorial effects can be qu@jée I¥et, the basic operation is
the same. At any given moment prior to an input key being pressed, thes @ffrdtively
embody one mono-alphabetic substitution cipher. Pressing an input key seleotsabponding
ciphertext or plaintext character, and upon release reconfigureddheystem to select another

mono-alphabetic cipher for use in encrypting the next input character.

Both the Enigma and Lorenz systems exhibit a fundamental problem with rotdrdbesto-
mechanical cipher systems. While a rotor may embody any arbitrary@eiractions between
the opposite sides of the rotor, the rotors are themselves staticsde@ee a rotor has been
manufactured, the mapping is fixed. While it is possible to produce setersf tfeat implement

all possible mappings, this isn’t practical. Rotors are bulky and expendines, the number of

44

different rotors tends to be small, and the internal mappings of the patdrof the “secret”
required to maintain security. Using the rotors in series (or with tredaztanplication of
bidirectional traversal, as in the Enigma machines), with diffesiag rates for the rotors and
regular changes to the rotors in the working set and their order irethabsplicates the

encryption achieved.

The lack of flexibility in mechanical devices is a serious lighiliThe World War 1l Allies’
success in breaking both the Enigma and Lorenz machines used by the Germanstrders
the liabilities of such devices. In particular, the breaking of both oé ttipher machines
demonstrates of the validity of Kerckhoffs’ principle that theusiéy of a cipher system must

depend on the secrecy of the keys used, rather on the secrecy of the mechanism.

In the end, the flexibility that may be achieved in digital systems, anduarly in software-
based digital systems, has turned cipher development away fromelglaiflexible electro-

mechanical systems.

Digital Stream Ciphers

Digital stream cipher systems gain a considerable advantageaweal and mechanical systems
in the fact that digital processing allows a much wider range of apesatvith substantially

lower risk of error. While many digital stream ciphers retairibmam cipher's XOR operation
as the combining function (and thus are in fact instances of Vernam ciph#rsherattendant
limitation on character mappings, the potential for generating very good pssauion
keystreams is a substantial advantage over the earlier eteettanical systems, as well as the
original Vernam cipher with looped paper tapes. As a result, thereoar several decades and

untold thousands of man-hours of research on digital ciphers, including diggtn ciphers.

45

Linear Feedback Shift Register (LFSR)

One of the most common and useful mechanisms in cryptography is the linear fedifback s

register, or LSFR. The technique is perhaps best described in conjunctiordigitineam.

£ 1+ — output bit
Y Y Y * x{v

e M P D TN

U NPARAN VAR VAN

A Linear Feedback Shift Register

The crossed circle represents the bit-wise logical exclusi@¢@R) operation.

The operation of an LFSR is simple. Specific bits in the register agndesd “taps.” When the
LFSR is pumped for a bit value, the bits corresponding to the taps are sampXdRed
together to produce a new bit. The register is then shifted in vematiegction specified, and the
new bit inserted at the end opposite the shift direction. The output is titghstend opposite

the inserted bit.

An LFSR will have a maximal period only under specific conditions. Thets®eof taps is

critical to achieving this goal.

If the LFSR register is treated as an array of coefficients ofympulial in the Galois field
GF(2), plus an implicit 1, and the taps correspond to the non-zero coe$ficfenprimitive
polynomial of degree, wheren is the length of the shift register, the resulting LFSR willeha

maximal period equal td'2- 1. For the present purposes, we may regard a primitive polynomial

as a polynomial that is irreducible (meaning it has no real facthvides X2 +1, and does not

dividex® + 1 for anyd that divides 2— 1.

46

LFSRs are easily implemented in hardware. In software, they can be slowie62B]agives
the following sample in C for an LFSR for the polynonigd) = x> + X’ + X° +x3 +x° + x + 1.

(This matches the above figure and the following discussion regardiaig GESRS.)

int LFSRQ
{

static unsigned long ShiftRegister = 1;
/* Anything but 0. */
ShiftRegister = (C C (shiftregister >> 31)
(ShiftRegister >> 6)
(ShiftRegister >> 4)
(ShiftRegister >> 2)
(ShiftRegister >> 1)
(shiftRegister))

& 0x00000001) << 31)

| (shiftRegister >> 1);

return ShiftRegister & 0x00000001;

>>>>>

C code for a software-based LFSR

As can be readily seen, this is considerable of work for a single bit of odiperte are two
relatively simple ways this can be at least partially rectifiThe first is to use what is called the
“Galois configuration” for implementing the LFSR, as illustratedh®yfbllowing diagram and

code sample.

AP 1 » output bit
P ¢ &

Galois configuration of an LFSR

<‘_
L—>

A

Here is a code sample, based on Schneier's example.

int Galois_LFSR(Q)

{
static unsigned Tong ShiftRegister = 1;
retval = 0;

47

if (ShiftRegister & 0x00000001)

ShiftRegister = ((ShiftRegister >> 1)
A 0x80000057)| 0x80000000;
retval = 1;

else _ _
ShiftRegister >>= 1;

return retval;

This is still considerable work to produce a single bit. But, as mRING2 and stream ciphers
utilize two or more LFSRs, implementing Galois configurations in pauwadle speed the process,
particularly if all the parallel LFSRs use the same primitive paryial. They can also be
implemented to support differing tap vectors for each, and even differigthfe at some cost in

performance. (This is done in the implementation presented in Appendix C.)

Linear Complexity

The concept of linear complexity arises directly from the study of LF8Rrgors. Any finite
generator (meaning a generator with a fixed, finite number of inteatas$will produce a finite,
repeating output stream. Regardless of the length of the period, the tnatgon epresents a
linear recursion. Thus, for any finite generator, it is possibleristouct an LFSR that exactly
duplicates the output behavior of the generator. This can be seen inithease of a generator

with period ofp bits being mimicked by a shift regisebits long, with a single tap at bit 1.

The linear complexity of a generator is the length of the short&dRItRat can produce the same
output stream. The concept is useful in determining whether a generator may be
cryptographically useful, but is not a determining factor. A high linear aodtylis necessary

for a cryptographically strong generator, but having a high linear cortypigfar from being

proof of strength. On the other hand, a low linear complexity is sure indidadiba generator is

48

cryptographically weak. A common example, noted by Rueppel [56] and others [R8], is

following sequence.

Z l. -=0.101001000@0001..

i=1 10 j:ll

This sequence has unbounded linear complexity, since it has no period, and thube&annot
generated by an LFSR, but is not cryptographically strong. It is too prediadalok the pattern

is discerned, and the occurrence of 1's is far too sparse for most appéicat

Part of the importance of the linear complexity of a generator i# thetiermines how easily the
cipher can be broken by the Berlekamp-Massey algorithm. [57] If a genleaata linear
complexity ofL, this algorithm can generate the coefficients of an LFSR thatluglicate the
behavior of the generator, giveh 2onsecutive bits, in order, of the output sequence generated

by it.

It should be apparent that the period of a generator will limit itsrice@aplexity. For a maximal
LFSR of lengtm, n =L, but for any LFSR the length of that LFSR is the upper bound for its
linear complexity. Thus, a good cryptographic generator must have both a longaperinidh
linear complexity. These two characteristics must be coupled witrdadlquirement: that
without knowledge of the current state, yet with knowledge of the prior outpattacker must

not be able to guess the value of the next bit output with greater probuaiity.5.

Other research into cryptographic complexity has produced interestingsaful results. The
maximum order complexity of a sequence, as defined by Jansen and Boekisetig8Egngth of

the minimal feedback shift register (of any type, not just linear dhastan produce the
sequence. For random sequences of lemdtie expected maximum order complexity will be
approximately 2g n. Jansen and Boekee also presented a linear-time algorithm for computing
this value.

49

The Ziv-Lempel complexity measure [59] quantifies the rate of appea of new patterns
within sequences, and may well prove to be a good test of the overall rees$oai sequences.
But, this approach had limited implications in the analysis of lirearrsions with regard to

producing corresponding generators into the 1990s.

Further development of these and other algorithms along the lines BEtlekamp-Massey
algorithm, must be expected to yield progressively stronger tools fatacalysis of linear
recursions generated by any type of shift register, linear or non-lindaramy other means.
Still, Berlekamp-Massey remains a powerful and useful tool. #eat recursions can be

reduced to an LFSR by it, and it thus serves as a good initial tool in the cryptsi0dlfyRNGs.

As a consequence of this discussion, it should be seen that streamttighprsduce linear
recursions will likely suffer increasing vulnerability to analyitigdiacks. Therefore, practical

means of introducing meaningful aperiodicity into keystreams is ofasitrg interest.

LFSR Based Stream Ciphers

As noted, any PRNG can be used to generate the keystream for a Vernanaoiglasrsuch will
generally bear the name of the PRNG used. Combining PRNGs to produce norefinksy or
simply to complicate matters, is a frequently used approach. Given theiofiaplementation,
that they are easily altered or tapped at points other than the dgtantjaut, and that they are
able to replicate the behavior of any generator producing a lineasi@t, LFSRs are frequently
used in such composite systems, despite the fact that a single LFSRtardtsength, is

almost axiomatically a cryptographically weak PRNG.

The manner of composition of constituent PRNGs is important. ThexXasiple given below is

used to illustrate this fact, while others will be discussed mor#ybrie

50

Geffe Generator and Correlation

This is a simple multiplexer scheme using three LFSRs. It is aladiaray tale. The Geffe
generator [60] consists of two LFSRs used as feeds to a multiphxé a third LFSR is used

as the selector, yielding a non-linear output mechanism.

If the feed LFSRs, designatédandB, yield bitsa andb respectively, and the selector generator

Syields bits, the oupub is given by the equation = (A a)® (—s A b).

While this may appear effective in obfuscating the feed generators, matideatf the time the
output will bea, but that whe is the outputa equals half of the time. The same is true of the

output relative td. This can be seen in the following table.

o
Q
1
o
1
o

0

P RPPRPPFPOOOOO
PP OORRFROO|p
PORORORO|s
PP OORrRORO
444 44TTH
AT T A AAAA

Correlation in the Geffe generator
This means that there is a high correlation between the feeds amdphg as describe by E.L.
Key [61], and by Zeng, et al. [62][63] An attacker can isolate efdext generator for attack. If
the tap sequences are known, an unsuccessful guess at the state will po8wagaof
agreement with the output stream, while a successful guess will pradatzeof agreement of
0.75. The feed generators can be attacked in sequence, which then reaé|suthef the
selector. This can then be attacked any number of ways, depending on the@gasedatas

shown by Zeng, et al., as well as via the Berlekamp-Massey algorithm.

Generalizing the Geffe generator does not improve matters much.nWithenerators anth n

generators (or a single generator clockdd attimes the rate of the others) used to select which

51

fill generator will provide the final output (essentially implementingi#éo-1 multiplexer), the
outputs of each fill generator will correlate with the final output ate of (1h) + 0.5, since each

fill generator will produce 1/ output bits, but will otherwise match the output bit half the time.

This behavior serves as a good introduction to the problem of correlatibtg eorrelation
immunity. As can be seen with the Geffe generator, what may seem to becéimee§cheme of
mixing two or more generators can have unfortunate characteristiesehaat readily apparent

to an inexperienced person.

It is worth noting that, apart from the fact that it is easily rébkrsthe XOR operation is
commonly used in cryptography due to its lack of strong correlation betweenliidual inputs

and the result. This can be seen in the following table.

a b C adb®c=x a=x b=x c=X
0 0 0 0 T T T
0 0 1 1 F F T
0 1 0 1 F T F
0 1 1 0 T F F
1 0 0 1 T F F
1 0 1 0 F T F
1 1 0 0 F F T
1 1 1 1 T T T

Correlation and the XOR operation

Despite the positive characteristics of the XOR operation, it nilidiesused with care, as it
does not in itself protect against correlation attacks, nor guatasigteénear complexity, as will

be seen below.

The problem of selecting a combining function is far from simple. Correlatiomnity is not a
matter of “it is or it isn’t,” but of degree. A combining function is consadeo bem-th order
correlation immune if, for all subsets of tmrandom variableaif less tham), the output of the
combining function of variables (including then random ones) is statistically independent of

them random variables. [56]

52

Unfortunately, as Rueppel [56] explains in great detail, high cowalatimunity also tends to
reduce the linear complexity of a generator. If we define the non-linear orageokrator as

the maximum number of ternmsappearing in the algebraic expression of the combining function,
and recognize that the linear complexity of the aggregate genenadigrto increase with higher
non-linear order, we can see that high degrees of correlation immurdtjoteeduce the linear
complexity of the aggregate. In fact, if the generator output is balaasesapy ones as zeroes),

the non-linear order of the generator must be less than or equahte- 1, for I<m< (n - 2).

A partial solution to this trade-off is to incorporate memory into the comdpiftinction, which
tends to obscure correlations between component generators and the aggrggatoy
spreading the effects of component variables over more outputs. illt@gemtually lead to the
discussion of Feedback with Carry Shift Registers (FCSR), whichpoaie memory in the

form of additive carries.

Pless Generator

This generator [64] uses eight LFSRs to drive four JK flip-flopsn@@s non-linear combiners,
and interleaves the resulting bits in an attempt to avoid exploitatitve dethavior of flip-flops:
the output identifies both the input and the next output. As this falls lcaldivide-and-conquer
attack (exploiting the interleaving) [65] and a correlation atfé6k it demonstrates that mere

multiplication of LSFRs does not necessarily increase the strendta tégulting generator.

Jennings Generator

A markedly different approach [67][68][69], this generator combines twdRisl-8sed laterally
instead of sequentially, plus a multiplexer and a filter/mapping functiorebetane LFSR and
the multiplexer inputs. The other LFSR provides the selector/addréssféeehe multiplexer.
One bit is selected by the multiplexer for each cycle. As each LSFRkedldhe tap-bits of
both are modified and the result shifted, so that the input and addressybggudicantly with

53

time. This shows that complexity does not afford security, as it fallsthosbmeet-in-the-middle

consistency attack [70], and a linear consistency attack [62][71].

Stop-and-Go Generators

There are several generators that use one or more of a set of &$8Rans of controlling the
clocking of other LFSRs in the set. The simplest is the Beth-Pipprahd-go generator [72]
which uses the first generator to clock the second, the output of wi{€Red with the output
from the third. The first and third LFSRs are clocked by the same signspit®the otherwise
good characteristics of the XOR used to generate the final output, ijéstsioba correlation

attack by Zeng, et al. [63]

The Alternating Stop-and-Go generator [73] also uses three LFSRs, wistbenof different
lengths, with the clocking of the second and third controlled by the first. Whentjna from
the first is a one, the second LFSR is clocked; when it is zero, the thiodtkged. The final
output is the XOR of the output of the second and third generators. WHriei$ a correlation
attack against this generator, it is not very effective, as thelaton is weak, so that the
generator remains relatively sound, and has been proposed for use in aherssah recently as

2009 [74].

The Bilateral Stop-and-Go generator [62] uses only two LFSRs of ithe Isagth, but they

interact with regard to clocking. When either LFSR vyields a one at tiamgl a zero at+ 1, its

mate is not clocked at+ 2. The output is the XOR of the two LFSRs. Analysis of this generator
has concluded that the linear complexity is roughly its period. In the aboxened paper,

Zeng, et al. stated that “... no evident key redundancy has been observed istéms"sy
Unfortunately, from a software perspective this is not a very usefidrgtor. While physically
simple, it can be slow in software when compared to many alternadiveso the need to handle

clocking of the two LFSRs separately.

54

Decimating and Shrinking Generators

Another approach involves discarding portions of the output of an LFSR in orderdeat the
pattern produced by the underlying LFSR. Such generators, using single b8Rdso be
referred to as self-decimating. Generators of this type have been prtyydRaeppel [75] and
by Chambers and Gollman [76]. An inherent problem with this approach is¢hasultant
output streams are still linear recursions, and thus still subjecialysis using the Berlekamp-
Massey algorithm, if sufficient portions of the keystream can betéhlavhile the periods of the

generators are effectively shortened by the discarding process.

The basic approach in self-decimating generators is to use some pbtte state of the LFSR

to control how the LFSR is clocked. When the function applied to the stide & zero, the

LFSR is clocked some number of timel}, €lse it is clocked a different number of timkks (

While the shortening of the period is important, the selectiehanidk relative to the LFSR used
is especially important. H, k, p (the period of the LFSR) and the output sequence of the LFSR
are pathologically related, and there exist integarslj such thatd + jk = p, and the function

used to clock the LFSR vyield®ccurrences al clocking and of k, the period of the generator
will be reduced by(d — 1) +j(k — 1) bits, with result that the linear complexity of the decimating
generator may be significantly less than that of the LFSR. The probligmisoth self-

decimating generators were amply revealed by Zeng, et al. [63].

Generalization of this leads to the shrinking approach. These schemesltyge bhFSRs.
Here, the set of LFSRs is clocked, and the output from one generatdnget sfigenerators as
determined by some function) is used to determine whether the output of anothatay€oe
subset) will be used as the output of the aggregate, resulting in taedigoof roughly half the
possible outputs. Generators of this type have been proposed by Coppersmith amGros

[77][78], and a self-shrinking, single LFSR variant by Meier [79].

55

Shrinking generators have a problem with regard to their output rétihe gating LFSR
produces a sequence of zeroes, which indicate the output of the other is toroediistaoutput
will be generated by the aggregate generator. Thus, there may belsefatbstantial gaps in

the stream’s timing.

The self-shrinking generator uses successive output bits from a skfgie Lf the first of a pair
of bits is a zero, the second is discarded, and two more bits genenatéite @rocess repeated
until the first bit of the pair is a one. If the first bit is a one, tlese is used as the output. As
the concept is not restricted to use of LFSRs, it should be noted that if i gfetie PRNG is

even, the period of the self-shrinking generator will be roughly halbfitae PRNG used.

Multispeed Inner-Product Generator

A generator with a similar motivation to the self-decimating geaesabut moving in the
opposite direct with regard to use of bits was propose by Massey and R@&pp&dther than
clocking some number of time and skipping most of those bits, two LFSRs dtecchica given
frequency and d times that frequency, respectively, the results AND&UXOR’ed. Zeng, et
al. [63], demonstrated that this was not very effective, as the instatalof the generator can be
determined fronm; + n, + log.d bits of the output, wheng andn, are the lengths of the two

LFSRs, andl the frequency multiple used.

Gollmann Cascade Generator

This generator is related to the stop-and-go generators. It uséssa$&iFSRs to modify the
clocking of successive LFSRs, and is related to the Stop-and-Go ges.eiRtoposed by
Gollman [81][82], the linear complexity can be quite high, but as the numbéntarglay of the

generators creates a complex implementation in software, they afametest here.

56

Summation and Threshold Generators

Threshold generators operate on the assumption that a large number ofdedegenerators
can obfuscate the operation of the individual generators [83]. If an odd nahgmsrerators,
each with relatively prime lengths and using primitive polynomials, lbneed to “vote” on the
output result, the output will be whichever value (ones or zeroes) was pidnutiee majority of
the component generators. The problem is that the fact of “voting” mearisetiteatvill be
correlation between the output and a majority of the LFSRs for each outpWihbi, as Schneier
observes [25], the generator effectively leaks information aboubtin@onent LFSRs with each

output bit.

The summation generator, proposed by Rueppel [56][84] couples two LFSRs. The camgut at
given time is the sum of the outputs of the two LFSRs, plus the “carry”tirerprior sum. It has
been shown that this is equivalent to a feedback with carry shifteegiad can be analyzed as
such [85], as well as being subject to correlation attacks [86H8]7][More generators could
easily be used and their outputs summed, but these remain feedback wighicaregisters built

by other means.

Feedback with Carry Shift Register (FCSR)

Feedback Shift Registers are not constrained to only use linear feedliaslathXOR of the
feedback bits [21][25]. A very natural extension of the approadteiEeedback with Carry Shift
Register. In this mechanism, the feedback bits are summed with theupnidingded by 2 (the
“carry” register), to produce a new sum, and use the lowest ordsutyit{od 2) as the “re-fill”

bit for the shift register.

57

A 4

32 1 —> output bit

SUM mod 2

SUM

AAAA
»i

SUM /2
Example of a Feedback with Carry Shift Register (FCS) [25]

Since the carry register would otherwise overflow, there must bastlge bits in the carry

register fort taps.

FCSR registers are distinguished from LFSRs in several regardscothe use of the carry
register in place of the XOR of tap bits. Among these is the shorteried p#ative to the
internal states — some states that are otherwise plausible may n@wendbe cycle of the
FCSR. While some of these states may occur, they do not occur within théngepgele of the
generator. They occur only during an initial series of iterations wieeRESR has yet to settle

into its cycle.

Perhaps the worst characteristic of FCSRs is that not all istiéiges will produce a maximum
length cycle [21][25]. It is even possible, for some FCSRs, to csgatgions where the output
degenerates to a short, fixed string, as well illustrated in two erarglSchneier. Thus, there
is a problem with “weak keys,” such as sometimes found in block ciphers,igibfenade far
worse when “disastrous” initial states are selected, as againatedstry Schneier's examples,

which devolve rapidly to constant streams of ones.

The maximum period for a FCSR will lpe- 1, withq as determined by the following equation, if

the valueg is prime, and has a primitive root of 2.

q=2*q, +2%q, +2%q, +...+2"q, -1

58

where the assorteg] are the tap numbers, up through

FCSRs are susceptible to many of the analytical tools availahiesagFSRs, with some
adaptation [89][85][90][91], including a modified form of the Berlekamasky algorithm,
though the analysis may need to be delayed until the FCSRs involved have enteregdehéing
cycles. At worst, the Berlekamp-Massey algorithm may be used to pradi€®R that is
functionally equivalent to a given FCSR, once the initial extra-cycliputsthave been excluded.
(This LFSR may be very long!) Many varieties of LFSR-based gensmtast in corresponding

forms based either only upon FCSRs, or an intermingling of FCSRs and LFSRs.
Nonlinear-Feedback Shift Registers (NFSR)

The feedback functions used with shift registers need not be limited tcaXi@Rdditive carry
functions [21][25]. Any function on the binary field is suitable, so lonthagsesulting
implementation produces a suitable output sequence. Thus, if we considgirrénege of

Boolean functions on variables, whera is the length of a shift register, we have a much richer
vocabulary of feedback shift registers available than described hyF8fand FCSR classes,

and enter the realm of the Non-linear Feedback Shift RegisteRNFIShe number of Boolean
functions ofn variables is quite large for any lamgeand is given bybooleangn) = 2%, As large

as this number is, for large the only functions of interest are those that produce a balanced
output stream. This is a much smaller number than all possible Boolean functionarable,

but is still quite large.

balanced _booleangn) = (22 j

n-1

The same problem arises with NFSRs as with FCSRs, in that they ardiffioult to analyze,

and are prone to producing undesirable behaviors, such as short periods or oatysant

59

streams, when poorly designed or are initialized with weak keys. f&ti#lny PRNG or stream
cipher using one or more LFSRs, there is a corresponding design using NFSRe &bisn, and
the resulting implementations remain subject to analysis withéhel&mp-Massey algorithm

(though the result may be an extremely long LFSR) and others.

As with all deterministic algorithms, the upper bound on the period of any MFSRvheren is
the number of bits in the internal state. In the case of LFSRs, thislength of the shift
register. In FCSRs it includes the state of the carry mechanism. délitipaal state information
in an NFSR would also apply, but without altering the upper bound relative ta¢hef she

internal state.
A5

The A5 cipher family [92] was one of the most widely used ciphers fsniliue to its use in the
GSM digital cellular telephone standard. The grouping is not due teeirttfeatures across the

A5 ciphers, but their application domain in GSM phone systems.

There are two stream ciphers in the family: A5/1 and A5/2. (There ish@$0ASUMI cipher
that is often referred to as A5/3, though this is technically a block cpitenot within the

present scope.) Both A5/1 and A5/2 are relatively weak, with A5/2 rcpairecularly so [93].

A5/1 is constructed using three LFSRs of lengths 19, 22 and 23, and polyndfniats’ + x*° +
1, + X%+ 1 and® + x* + x° + X’ + 1, respectively, though in reversed order from the
previous discussion of LFSRs. The outputs of the three are XOR’ed to produceptite Asta
complication, clocking of the three LSFRs is not synchronized. Rather, bisa@d110 in the
respective LFSRs are used to control clocking. Individual LFSRdauleed whenever the
clocking bit agrees with one or more of the other clocking bits. Thus, A&/$tgp-and-Go
generator, though it uses tapping points other than the outputs of the LFSRisdbthe
clocking.

60

The key length of the A5/1 is 54 bits, while the internal state is 64 Hbitis. nfTust be regarded as
an unfortunately short key, as there is a very effective attack thaegagrformed in real-time
[94]. Known plaintext attacks are also effective, and for older GSM phayoexcol flaws can be

exploited to great effect [95].

Ab/2 is constructed from four LFSRs, but is so weak that it is breakabtal-time with

inexpensive equipment [95].

SEAL

The Self-optimized Encryption Algorithm, or SEAL, was developed by a wedirdegl
cryptanalyst named Don Coppersmith, along with Phillip Rogaway [96][973. pltented, with

the patent rights held by IBM.

A cipher being developed by a respected cryptanalyst is often a good sign. Inghissesms
to be a very good sign, but not quite good enough. Coppersmith has since helped o develo
Scream [98], which is described as “a more secure SEAL,” in the paper itwvasedescribed.

Both borrow much from block ciphers.

SEAL is highly optimized for software implementation, and has the madkethtage that it
actually defines a function family, so that individual outputs may be leéécldirectly, rather
than in sequence. This makes SEAL at least somewhat useful as daigharage media, since
individual 32-bit portions of file of up to 64 Kbytes may be decrypted dyredtlis also useful in
environments where occasional messages are lost in transmissiothasistae of the cipher

need not be stored, only the key and the value

SEAL also has the reputation of being the fastest reasonably-streag stipher available, being
able to encipher and decipher at a rate of better than two bits per CP@yadtglkon modern 32-

bit processors.

61

SEAL incorporates three tables, called R, S, and T (of 256, 256 and 512 32ib# eath), and
uses the Secure Hash Algorithm (SHA) to massage the 160-bit key heffil tTable T is in
practical terms an S-box. It also requires several registers,mpadd#ional up to 64 Kbytes of
memory, so despite being efficient in software, it requires enough spadeetieadite many

space-constrained applications for which it is not practical.

Cryptanalysis has not fully broken SEAL, but bgthand correlation attacks have made progress
against it [99][100]. Much of this progress is explicitly due to #stricted size of tabl€, as
three iterations of transforms using T produce a range of 6hpyo8sible values, rather than the

more desirable®.
Scream

As noted in the discussion of SEAL, Scream [98] borrows heavily from blpblers, and
particularly from the Advanced Encryption Standard (AES). Scream axist® iforms, both of
which have round functions based on AES, but modified for 64-bit blocks, rather thart 128-bi
ones. They differ in the S-boxes used. Scream-F uses the AES S-boxes ds &fiaam uses

S-boxes that are derived from the key.

Apart from the AES features, the structure of Scream is quite stmiBEAL. It uses a 128-bit
key, with a 128-bit nonce, and is almost as efficient as SEAL in termsrafdtsf encryption

and decryption.
WAKE

David Wheeler's Word Auto Key Encryption cipher [101] is, for obvious resstalled WAKE.
It is a stream cipher with feedback, driven by a relatively simple PRid@ucing 32-bit blocks.
Thus, it achieves a very high encryption rate. However, it borrows greatiyblock cipher

concepts, particularly in its use of an S-box.

62

The S-box is constructed from the key, and is composed of 256 32-bit entries, withhtt-hi
order bytes consisting of all possible 8-bit values. Construction of o & ill-defined by
Wheeler, but can be performed as the implementer chooses, in any casenusaasonably
good PRNG or source of random data, provided the highest-order bytes of the entagiuispl

required characteristic.

The remainder of the structure is composed of a set of four 32-biersgisith four instances of

a mixing function defined as follows.
Z=M(XY) =((X+Yy) >>8) DS, s

Here, ‘a>> D" is a right shift ofa by b places, andS,.y»ss’ indicates the contents of the S-box

at the position indicated by the lowest order eight bits+y.
The encryption and update cycle is as follows.

CG=p®D,
A.=M(A,c),
B..=M(B,A.,),
Ci+1 =M (Ci , B|+1)1
D, =M(D;,Cy)

The simplicity and speed of the cipher are its downfall, as it is vidieeta both chosen plaintext
and chosen ciphertext attacks [21][25]. Also, the feedback meohanmst designed to provide

the self-synchronization found in some stream ciphers.
Complexity-Theoretic Stream Ciphers

Rather than limit the design of stream ciphers to simple mechanisangedrin depth, these
ciphers seek to use what are believed to be “hard” problems as the bgsisdi@tors. They can

also be referred to as “number theoretic” generators, as they ufileteare believed to be hard

63

to solve number theoretical problems as their basis. Several have begeediesith four being
listed by Schneier [25]: Shamir's PRNG [102], the Blum-Micali gater [103], RSA [104][105]
and Blum-Blum-Shub (BBS) [106]. All four of these are based on the use efddange
numbers, and three (Shamir's, RSA and BBS) are related closely enough to dedegar

variations on the RSA theme.

These last three use large prinpeandg, just as the RSA public key cipher system does, but with
slight changes, or with no changes at all, as in Shamir's and RSA PRNG. @B®&se¢hap
andq be congruent to B10d4, and rather than using the equatiap= x* modN (whereN = pq)

uses.1 = x> modN, with the lowest-order bit being used as the output.

BBS has a number of interesting properties, not least of which is thabisghle to compute
directly, rather than sequentially. Further, it can be shown that for a givg(iddN)) bits are
indistinguishable from random. But, more importantly, these Ig(Ig(N)) kétsigpredictable in

sequence both forward and backward, making BBS a particularly good cryjtticgPiRNG.
Congruential Generators

A very common PRNG that must be addressed, despite being unsuitable as aaplitog
PRNG or as a stream cipher, was introduced by Lehmer [107]. Lineaueatigl generators
(LCG) are simple, fast and ubiquitous for non-critical applicatidXisLCGs are described by

the recursion

X;,; = (aX; +b)modm,

whereX; is thei-th value in the sequence, aamd andm are constants.

Selection of the constarsisb andmis critical. If chosen correctly, the LCG will have a range
from 0 tom— 1 and a period ah. Such LCGs are said to be maximal period generators. Knuth
[108] spends considerable space discussing the selection of these conslahts reader is

64

recommended to read that discussion if interested in LCGs. But, as S¢dbjgpmints out,
LCGs are predictable. In his words, “Unfortunately, linear congrueggiarators cannot be

used for cryptography; they are predictable.”

Schneier [25], as well as Menezes, van Oorschot and Vanstone [21miezous papers on the
cryptanalysis of LCGs, and also of closely related generatdrpar@cular interesting is Joan
Boyar’s cryptanalysis [109][110] of quadratic and cubic generatorshwiaize the following

forms.
X, = (@X? +bX, +c)modm,andX,,, = (aX®+bX? +cX, +d)modm.

Others extended Boyar’s methods to polynomial congruential generatorid [1[113].

Discarding low-order bits does not materially improve matters. [114]

The only conclusion that may be safely drawn about congruential generatggstagaphic
applications is that they should not be used in any critical applicagpiring any level of

security.

65

CHAPTER Il

MIXING AND MATCHING USING A MCLAREN-MARSAGLIA THEME

While it is easy to design an algorithm to produce what one believes tgdoel #RNG, the fact
is that it is very easy to be wrong. In some cases, the problem with acsgec#rator is that an
implementer uses it in a situation for which it was never intended, ani$ thitsiited. A good
example of this is a generator proposed by McLaren and Marsaglia in 1965914 5]
subsequently discussed by Donald Knuth [108] under the name Algorithm dlalddrithm has
a very simple structure, and allows the integration of two PRNGs into a gemggeator. Given
Knuth’s discussion of the algorithm, some implementers believed (andusitd believe) it
would disrupt the underlying patterns inherent in both component generatlalisgyse
composite generator that is cryptographically strong. While the cosdefgresting, and very
useful in many applications, implementation of the algorithm as desdréseproven unsuitable

for cryptographic applications, as will be discussed in detail later.

Attempts have been made to modify the concept, primarily by altering ththevaentral feature
of the mechanism (a shuffling array) is managed. But, certain of the peobitimthe approach
remain after such changes. Itis contended here that the concept’sifedyetographic
applications is not fundamental to the concept of shuffling, which may be vieveeidas of
non-linear combining operation. The specific implementation isseak ne four related,

cryptanalytically exploitable flaws. To varying degrees, thesdgmabmay be ameliorated by

66

appropriate changes in implementation, and generalizations of certagtsaspthe mechanism.
As one of these altered forms is exploited in the key-agreememhsghvesented here, it is

necessary to first discuss the algorithm and why it is cryptograjyheak.

The McLaren-Marsaglia Algorithm

As described by Knuth [108], the algorithm uses three objects: two tnsa@produce
sequencesX,> and ¥,,>, and a shuffling tabl¥ of k entries. The mechanism is initialized by
filling V with the firstk values from X,>. We quote Knuth’s description of the algorithm
directly as follows, noting that the valoeused references a linear congruential PRNG being
used to generate thé&/' s> sequence.
“ML1. [GenerateX, Y] SetX andY to the next members of the sequencég<and <>,
respectively.

M2. [Extractj] Setj < kY/m, wheremis the modulus used in the sequen¥g><that
is,] is a random value, 9 <k, determined by.

M3. [Exchange] Output[j] and then se¥[j] < X.”
Subsequently, Knuth stated the following.

“On intuitive grounds, it appears safe to predict that the sequendeeably applying
Algorithm M will satisfy virtuallyanyone’srequirements for randomness in a computer-
generated sequence, because the relationship between nearby teemitguhhas

been almost entirely obliterated. Furthermore, the time required to getlesasequence
is only slightly more than twice as long as it takes to generate therssgX,> alone.”

The problem with intuition is that it is sometimes wrong. In the ptesstance, relying upon
Knuth'’s first statement has led some to rely upon this intuitive vietweofMcLaren-Marsaglia
algorithm as useful in cryptography. This is not the case, as was well sha@ratlgs T. Retter
[116][117]. The algorithm was never intended for such use, as showndrigimal paper by
McLaren and Marsaglia [115]. Still, the algorithm is relativefjcednt, as per Knuth’'s second
statement, and the fundamental concept has distinct merits. If weéhaesluffling array as

being akin to non-linear combining functions, and generalize on that basissahaf ikbmbining

67

two PRNGs using a non-linear combiner is useful, and is discussed at tetiggHallowing

sections.

(Note that from this point forward we will drop the subscripted <X,> and <> as
unnecessary and potentially confusing. Alsgr><and > may be used synonymously for the

generators used to produsendy, as well as the sequence the generator produces.)

Cryptanalysis of McLaren-Marsaglia

There are at least four flaws in McLaren-Marsaglia generatioes used for cryptographic
purposes. These flaws are closely related. Three were effgeaimbited by Charles Retter in
his key-search attack [117]. The first flaw is that all outpunfthe composite generator are
unaltered outputs fromX>, asV contains only values generated B¢>= The re-ordering of the
<X> generator outputs leaves those values unaltered, and they réemtifiable as outputs from
<X>, and <> only. In terms such as discussed in Chapter Il, there is a completetmorrela
between the output of a McLaren-Marsaglia generator and the outpu¥figenerator, if we

ignore the re-ordering. As a resulX><may be cryptanalyzed separately froir<

The second flaw, as per Retter [116], is that the average numbeabbiterof the composite
generator between the point when a specific element fdrris<placed irl and its appearance

in the output stream will be roughty So long as the size ¥f(which isk) is significantly

smaller tharR, the range of values elements X><may assume, this is an exploitable feature of
the composite generator, since for the overall distribution of individua¢sah <K> will

otherwise be one occurrence peralues.

The third flaw is that the initial contentsdf once replaced by new values, have no bearing on
subsequent outputs. The entrinised to provide the next output of the composite generator is
solely determined by¥>, and the contents of that entry are replaced. Thus, even if we ohose t
initialize V with truly random values, the effects of these initial valuesampletely lost once

68

all k entries inV have been updated over the course of repeated invocations. If we contrast this
with what would happen were we to exclusive-or (XOR) the freshly genetatet the

contents of the entry M, we can see in this case that the initial contents of V persideit,ef

rather than disappearing. The effect of this one change on Rettaegyigsignificant, as it

would be necessary to guess the contentsasf well as the state of th&>generator. Notice,
though, that if an attacker has a list of outputs from the compositeateménese were entries in

V, and thus strong clues to the stat®/ @it the start of the sequence, particularly for small values

of k.

The fourth flaw is an implementation issue, rather than a conceptual omg. ifffdementations
of McLaren-Marsaglia use a mixing array of 32-bit values. Thighedual effect of limiting
the number of elements in th&X>sequence that may be stored/iand making individual
elements in that sequence clearly distinguishable in their ermas within the X> sequence.
On the former point, given a shuffling array of 32 bit entries, in most appheat is impractical
to provide a shuffling array sufficiently large as to contain more tlsanadl fraction of all
possible 32-bit values. For example i 2'°, there can be no more thalf 22*2 = 222 of all
possible 32-bit values M. Assuming a uniform distribution of output values frokr<any
given value will only occur, on average once evéfoRtputs from X> and the composite
McLaren-Marsaglia generator. Thus, as illustrated below in exaniRetigr’'s attack, it is
relatively easy to generate trial output sequencesXsrand determine whether the guess it
represents is a good candidate as a solutionXor <Jsing smaller values in the shuffling array
doesn’t necessarily solve this problem, as Retter illustrateatthisk against an implementation
using 8-bit values, and a shuffling array not much smaller than 256 entries. ifldan be seen
that the size of the shuffling array relative to the range of valuesyitcontain is an important

consideration, also as discussed below.

69

To understand how these problems interact, consider a sequenoé 22 32-bit values such

that no 32-bit value occurs more than oncelir.<If we take this sequence, concatenate copies
repeatedly any number of times, and then apply a special “permutation” oestwfibtain the
sequence 8>, such that given a value at positian the original, unshuffled sequence, that value
is displaced to the “right” some random number of positions and the avesatgcdment isl
whered is small relative to %, with elements that would be shifted past the end of the sequence
wrapped around to the start, then rotate the whole sequ&x@random number of places, the
result may seem reasonably random. However, we can still determimatharalignment of

segments in this sequence to the original sequefkee <

The way this alignment can be determined is simple. We select savaomme location inS>
then find that value in the original sequender< We align 9> to <S> using that pair of
locations as indices, and shiff=xleft one position. We then examine the distances from the
values in 9> to their nearest occurrences i8> Since we know thah is small relative to
|<T>| = 22 if no distances are negative, théfr<and <S> are aligned. If any nearest distances
are negative, we shift the alignment df><in that direction byd| + 1 positions, wheré||is the
absolute value of largest negative distance. We can then verify the etighynagain checking
the displacements from the occurrence of a valudinte the nearest occurrence i8> as

aligned. If none of the distances is negativies 4s properly aligned relative taSe.

The process just described is in essence Retter’s attack [116)jd1ch first isolates theX>
sequence, and thus the generator producing it, for cryptanalysis. WhilésRigseription starts
with the assumption that a McLaren-Marsaglia generator is begtagenerate a stream
cipher, and includes a known-plaintext attack as the starting point, aigenaus starting point
is that the output sequence is known, as this conforms with a strong form khéféscaxiom:
everything is known, except the key (in this case the state/seedMttiaeen-Marsaglia

generator). Retter’'s cryptanalysis of the McLaren-Maraaginerator also differs from the

70

alignment problem described in that only a portion 8%k (the size oV), and the generators
for <X> and <> are known, and the average delay between insertion of a valiéantbits

output from the composite generator is as well.

Retter's demonstration of the attack is based on a simplified model, wikdXtheequence being
byte values, rather than 32-bits or larger. Despite a shuffling sizeyf 100 entries, and a long
maximum delay, the fact that the table size is smaller than the odivglues bytes may assume,
resulting in the average delay from a value’s insertion to its agpeain the output stream being
equal tok, the correlation between a correct key/seed guess and averagestdelays very

strong.

In Retter’s attack, a random seed for tiée><generator is selected, and a sequence of outputs
generated based on that seed. These values are then checked against arkpl®isequence
from <S>, If there are no or few appearances of the generated values in the, sesrgatect
another random seed, generate a sequence of outputs using it, and try Hyziwis€ the
delays between the appearances of values in the trial sequence aodctimeence in the output
stream are determined and averaged. If the average is near tisizimkldhe guess is close,
and can be refined. If the average is large, approaétih@ new seed and trial sequence is
again generated, and the process repeated. This attack closesutiom feolthe state of the
<X> generator rapidly, when compared to a brute force attabk ©¢> and &>, as it is

bounded by the state size of thé=<generator alone.

Note that the key for a stream cipher and the state are not necedsatilyal in size. The key is
used to initialize the mechanism, but there may be additional initializataterial that is not part
of the key, yet may be changed as a result of the ciphers operation ovelntiRetter’s

published form of his attack, the key and state are synonymous, but this need not e.the ca

71

The time required for Retter’s attack varies with the resourcebleithe size of the sample
output from the McLaren-Marsaglia generator, the period and complexity eKthgenerator,

andk. Cryptanalysis of the¥> sequence can then be done separately.
The Bays-Durham Generator

The McLaren-Marsaglia generator is not the only shuffling algorithmmddiately following his
description and discussion of McLaren-Marsaglia, Knuth [108] presenalgorithm developed

by Bays and Durham [118], titling it “Algorithm B.” We shall follow Knutfsscription.

Like the McLaren-Marsaglia generator, the Bays-Durham gendnatmporates a shuffling array
V. However, utilization of this shuffling vector is different from McLaMarsaglia, as it uses

the same PRNG to both fill shuffling arrsiyand to select entries Whfor output.

In operation (assuming the<z generator is a linear congruential generator) the Bays-Durham
generator is initialized by filling the shuffling arr&(of k entries) with the firsk outputs from

the <X> generator, and setting generator, and settiimgthe nextK + 1) output. Indexis then

calculated as = _kY/ mj, wheremis the modulus of theX> generator. Set equal toV[j].

Pump the X> generator for a value and 34i] to that value. OutpuX.

For non-cryptographic applications, this is a very good PRNG. As only one PRbifuiised,
and the overhead of indexing the shuffling array is low (comparable tafdotMarsaglia), it is

faster than McLaren-Marsaglia, assuming the saXyegenerator is used for both.

For cryptographic purposes (a use for which it was never intended), thimelppuffers the
same liabilities with regard to the size and contents of the shuffliag tirat McLaren-Marsaglia
does, but adds a new liability in that the output at any given point tells aralysiawhat

shuffling array entry will provide the next output.

72

For the purposes of this thesis, the Bays-Durham approach does not offan¢hepportunities
for injection of aperiodicity, nor of non-linear combining functions, as deed/cLaren-
Marsaglia scheme. It is therefore noted as considered, and not didouttsrdthough it might

be used as part of a constituent generator for the protocols discus$egpiar@V.
Modifying McLaren-Marsaglia

Various suggestions have been made as to how the McLaren-Marggpgbach may be
improved, in the cryptographic sense or otherwise. A proposal by Tyanev, PatkbVganeva
[119] is an example. As noted in the previous section, one of the basidrflivesMcLaren-
Marsaglia approach is that the outputs of the composite generator ars ofithet x>

generator, another is the size of the shuffling array relativeetoainge of values the outputs may
assume, and a third is the unaltered passage of inputs Kerthrough the mechanism to the
output stream. To varying degrees, such modifications address these probdeimzresting as
many of these are, they complicate the cryptanalysis of a Mchaesaglia generator only by
increments. Indeed, the first of two modifications by Tyanev, et al. [11®lynehanges the way
the <> sequence is used to access the shuffling atragich does nothing to complicate
Retter’'s attack. Thus, in order to rehabilitate the McLaren-&dgiesconcept, other

modifications may appropriately be examined.

Perhaps the most serious flaw of McLaren-Marsaglia in many impletioarstés the size of the
shuffling array relative to the range of output values. Even with schemédm#hatwo or more
entries inV together, the size of the shuffling array strongly affects teagtn of the result. For
example, if we assume the output function selects three entries in thimglaufayV (each
entry being 32-bits long) and performs a hashing operation using the content® @rities,
assuming that there are no repetitions of valu&s ifk = 64, we can still have at most’64

262,144 different values as possible outputs for any invocation, assuming no collisions.

73

Significant as this number is, it is still a small fraction of theyeaof values a 32-bit integer may

assume.

With such considerations, it appears prudent to find other ways to ia¢cheagvailable range of
outputs fromV, at any point in the period of the composite generator, relative to the faailbe o
possible outputs. Fortunately, there is a simple approach that accompiishiestyptographic

applications, and two considerations lead in the same direction.

First, it can be seen that the effectiveness of Retter’'s dfta¢kderives from the difference in
expected delays in the appearance of values in the output stream, gimgrgwesses as to the
state of the X> generator, and correct or near-correct guesses. (A “near cguesst is one

that corresponds to the state of the generator near the point in teacénr which we are
making a guess.) This difference derives from the valuksonflR. As Retter showed, with=
100 andrR = 256, good guesses result in delays averdgitegations after insertion, and bad ones

in delays averaging/2. But, if k > R/2,this attack cannot readily differentiate between good

and bad guesses.

Second, whereas many implementations of the McLaren-Marsaghitlahg treat the output
from the <X> generator as a stream of 32-bit or larger values, Retter [116]Hid/Bchneier

[25] implementV as an array of bytes, while Knuth [108] does not discuss the size of files ent
in V at all. We are not bound by the implementation of e generator to any specific size of
elements irV, provided we are not dealing with floating point values, or with valuesrthst
conform to some non-uniform distribution. We can treat tke stream as we choose, as bits,
nybbles, bytes, etc., and remain fully in the spirit of McLaren-Marsaglne interpretation of a
bit or group of bits is, after all, completely arbitrary. Thus, we nmest #X> as a bit stream, and

impose any organization on it we choose.

74

An example of how we can do this is treating the outputs fromXhegenerator as groups of
bytes which can be regrouped as we choose. Thus, where we might havekéh@sérdue to
space constraints when dealing with a shuffling array of 32-bit valueguiet use the same
space for an array of bytes whére 1024. While one effect is unfortunate — it takes 40 bits to
independently index four bytes — there are positive effects in termsiaigleiith Retter’s

attack. A 256-entry array of 32-bit values can contain at nfd2*2= 2* of all possible 32-bit
values. On the other hand, a 1024-entry array of random bytes will contain ageaoEfour of

each of the possible values. Since the probability of a specific byte lvaing absent from a
byte-array of this size i§(2° —1)/2°)'9** = 0.018173 there is a small but reasonable

probability that any possible 32-bit value may be produced by randomly selectirentries and
concatenating them to produce a 32-bit value. This is the approach used bgr§2bhevho
presents the algorithm using a table Bf=28192 entries, with the recommendation “... the larger

the better.”

Viewed as a byte-stream, the output will tend to contain occurrences ofpeasiiple byte value,
on average, once per 256 bytes output. This means that the average delaybitiaay\arong
guess of the seed of th>generator will display an average delayrRf = 128 bytes, as
predicted by Retter, but the average delay before the appearance of aniearsugyand an
arbitrary point in the output stream will also be 128 bytes. We cannot redffilgndiiate
between any two bytes of the same value and their point of origin irXtheyte sequence,
unless there is an uneven distribution of the value in that sequence tltatineisrge gaps
between clusters of occurrences. While a statistical anafytsie distribution of byte values in
the <X> sequence and the output stream may well yield positive restiygnig to isolate the
<X> generator, increasing the number of entrieg will tend to reduce the effectiveness of this
approach by decreasing the probability tatill become seriously depleted with respect to any

byte value.

75

Here is an implementation of the byte-based construction of 32-bit outpilt&,w1024.

unsigned long XnQ); // generator for <x>
unsigned Tong Yn4(int *in); // generator for <Y>, mod’ed to provide four
// indices in the range 0 to 1023, inclusive

unsigned char v[1024]; // the byte-structured shuffling array
unsigned long BitMatchStream()
{
int indices[4]; // for the indices used
int 1; // a counter
unsigned long fill; // used to re-fill v slots
unsigned long out = 0; // for the result
Yn4(indices);
i1l = XxnQ;
for (i =0; 1 < 4; i++)
{
out = (out << 8) | (unsigned Tong) (v[indices[ill);
V[indices[i]] = (unsigned char) (fi11l & 0x000000ffL);
i1l = fi11 >> 8;
3
return out;
3

Byte-based McLaren-Marsaglia with 32-bit outputs

Some of the flaws of the McLaren-Marsaglia scheme remain eNithis approach. In
particular, the contents d do not contribute meaningful added complexity in terms of the size
of the internal state that must be determined for the compositeatmeA correct guess of the
states of the X> and &> generators at any point will eventually, once the initial conteris of
have been replaced, allow determination of the new conteltsaoid lead to a complete
solution. Fortunately, the opportunities for modifying the McLaren-Méissagechanism have

not been exhausted, as will be discussed later.

As a 1024-byte shuffling array is too large for some applications, trebngt data stream as
a stream of even smaller units may be considered, though at the cost of adutitibieans in
indexing elements iN. Treating the X> sequence as a stream of 4-bit nybbles is usef\, as
may require less space while decreasing the probability that amgrbilue is not present W

This effect may be seen in the following table. Note that even ifibgétions are used to store

76

the nybbles iV, a 256-entry table of nybbles would occupy the same space as a 256-entry byte
table, with a dramatic reduction in the probability that any given value weudthdent, but

require twice the number of indexing bits.\

The following table offers a comparison between shuffling arrays whih ad 8-bit entries. As
with prior discussionsy is the shuffling array (viewed her as a set of valdeis)the size oV in

entries, and
P(xgV) = ((2b — 1)/2b)k

is the probability that a particulbrbit value is not present M. As can be seen, for a given table
size (relative to the entry size) the smaller entry size offsliglatly lower probability that a
value will be absent frorx for even small array sizes. This advantage increases widagiog

table size (again relative to the entry size).

bits/entry
8 k 256 512 1024 2048 4096
P(xzV) 3.67E-01 1.35E-01 1.82E-02 3.30E-04 1.09E-07
4 k 16 32 64 128 256

P(xg¢V) 3.561E-01 1.268E-01 1.608E-02 2.584E-04 6.68E-08

Probability a value x is absent from
V based on size of V and bits per entry

Bit-Selection

When the X> input stream is treated purely as a bit-stream, the problem of indexiogpés
acute. Something as simple as a 32-bit bit-wise shuffling array would appequire a total of
40 bits of indexing material to produce a byte of output. The bits to be used saus¢ al
assembled into the required size blocks, and bit positiovigefilled from <X>. An alternative
to indexing is an idea from Bennett and Brassard. In their proposed sareageskeing upon a

One-Time Pad using quantum phenomena, they use a system of bit-matching. When a random

77

bit (encoded as a single polarized photon) sent by Alice is correcdgeni¢via the photon’s
polarization) by Bob, the value of that bit is used as a bit in the keyrsbeimg generated.

There are several ways this type of bit-matching may be adaptes poesent problem.

The first method is to treat both thi¥><and <> sequences as bit-streams, and do the same bit-
match operation as used in the Bennett-Brassard paper: correspondinghieitsvio bit-streams
that match in value are used in the output stream. Another is to agairothes¢duences as bit-
streams, and select the bit values X¥»<orresponding to 1-bits in¥& for the output stream
(though the same effect is obtained if we select bit valueXxbased on 0 bits in¥). Other
selection and output functions are also applicable. All such methods have msamtheffect,
though selecting different bits, and thus generating different outputnstreéaach requires, on
average, the use of twods sequence bits, and twd'x sequence bits to generate one output bit.

A code sample illustrating how this may be done is presented here.

unsigned long XnQ); // generator for <X>
unsigned long Yn(Q); // generator for <Y>

unsigned long BitMatchStream2()

{
static unsigned long xyMask = 0;
static unsigned long xBuff = 0;
static unsigned long yBuff = 0;
unsigned long oBuff = 0;
int oCnt = 0;
unsigned long val = 0;
while (oCnt < 32) // while needing more bits for output ...
if (xymask == 0) // indicates buffers are empty
xBuff = XnQ); // refill buffs, set bit select at first
bit
yBuff = vynQ);
xyMask = 0x80000000;
}

val = xBuff & xyMask; // grab a bit in <X> stream

if ((yBuff & xyMask) == val) // check for a bit match and do
// the following if matched

{
oBuff = (oBuff << 1) | ((val '=0) 21 : 0);
oCnt++;
xyMask = xyMask >> 1;

78

3
oCnt = 0;

return oBuff;

Bit selection from <X> based on matching <Y> bits

This technique does not match the McLaren-Marsaglia structnoe, wie do not have a shuffling
array. Thus, for a single pass through te sequence, the bits output are in the same order they
were in within X>. This must be regarded as a liability, since an attacker would havdyroug

half the bits in some segment ofxin their correct order, given a sample of the resulting output
stream. The number of complete bit sequences figmtkat could yield a given sample is large,
especially given the fact that, though the length of the segment from \Wkishrnple’s bits were
extracted will be unknown, the length will tend towards twice the numbersahltihe sample,
particularly as the sample size increases. The number of possible Birstring pairs that

could generate a knownbit bit-stream is given by the following, wheas the number of

corresponding bit sequences.

C=2 :] 9i-n

Note that there is an assumed ordering of the two strings, which is epggdpr the
cryptographic environment. Thus, if striAg= 0110 and = 0101, we do not regard this as
being the same & = 0101 andB’ = 0110, even though the result is the same for both string
pairs. In the cryptanalysis of any such implementation in a PRNG, the soliticesespective

strings are highly relevant.

While the summation is infinite, in practical terms an attacker wouldieecned only with the

region where is near 8. Still, this is not very helpful to an attacker. Consider the fallgw

79

case. A bit-matching process yields the 4-bit pattern 0101. If we know thatthigenerated
from a pair of 8-bit sequences, the above equation tells us that there are

8 I
{4]28‘4 = (%}2‘2 70*16=1120

8-bit string pairs that could have generated this four-bit patterm ilkgeases, the ratio of
potential generating pairs to the number of valdésah assume increases rapidly, though

certainly not as rapidly ag”2which is the number of possible-Bit pairs, ignoring matches.

One of the possibleX> generating streams is 00110011. Since any 0-bit is indistinguishable
from any other, as is any 1-bit from any other 1-bit, we are left with 1€r€iff patterns selecting
the known bits that would produce that pattern, and, even if we know the souroe \pate¢he

one used, no means by which to conclude which bits were in fact used in the output. Such a

determination requires knowledge of thé=bit-stream that was used.

The following table illustrates the combinatorial growth rate fon-&it output stream, assuming
only 2n bit input streams (as in the 2n case in the above summation formula) were used to
generate the output. Note that the righ-hand shows the relative growoh ttagdactorial piece

of the problem set — the distribution of the selected bits within the ids

n 27 (2")((2n)Y/(n1)?) (2n)l/(n1)*2"
4 256 1120 4.375
8 65536 3294720 50.273
16 4.29E+09 3.939E+13 9171.759
32 1.84E+19 7.871E+27 4.27E+08
64 3.4E+38 4.418E+56 1.3E+18

Growth of number of candidate input string pairs,
assuming n bits of output and input strings of 2n bits.

Stirling’s approximation for large factorials is also usefwldnderstanding the relative growth

rates, and is given here.

80

From this it can be clearly seen that the number of corresponding striagngagases rapidly,
with increasingn, since we can substitute this approximation into the formula for corresponding
string pairs. For the casembits generated fromrzbit strings, we have the following

approximation for the factorial portion of the formula.

In! (%(Zj] 27zn(2j

This gives us the following approximation for the number of correspondingsinngs of &

bits, yielding an output string ofbits, wheren is large.

2n 2n 3n
(o

n) Jm Jm

A useful observation here is that if the sequeneésand <> are random bit-streams, the bits
output by the above algorithm will also be random. If these bits-streameoaeced by PRNGs,
but they are bit-wise apparently random (meaning that there is no praetaas by which to
accurately predict whether the next bit to be generated will be a @ ex@ept to know the state
of the PRNG at that point in the sequence, even with knowledge of all ppatgthe output
from the bit-matching algorithm will likewise be bit-wise apparerdihdom. We can then
reasonably conclude that if the generators ¥ &nd <> are both “good” (meaning bit-wise
apparently random, satisfying various tests of randomness, etc.) and inceféreedo not
produce the same output stream nor cycle period, and there is no internal refabenseen

their separate outputs), successful cryptanalysis of the outpaitrstrom the bit-matching

81

process, in order to determine upcoming bits in their correct positionseaighmable likelihood,

should require that both generators be solved.

With a standard McLaren-Marsaglia implementation using byte orrlargges invV andk
significantly less thaiR/ 2 R being the range of possible values for entrieg, iandk the table
size), the fact that a correct solution fot><yields a rolling window of possible outputs, solving
<Y> may be unnecessary, as the probability of a correct prediction of the rmxtwilitbe

related to 1 k, rather than 1R, as would be the case for a truly random output.

There is a potential downside to this scheme. If we consider caseastiv@eriods of X> and
<Y> differ, the composite period will be equal to the least commonptau{iLCM) of the two
periods. Given a very large LCM (such as when the periods of the two genearatoglatively
prime), we should anticipate all bits in th&>sequence to be eventually used in the composite
output stream, or at least the vast majority being present. Sincesrgegive, the bits will be
ordered, there may well be a way to exploit the ordering of the bits to tegxirike original
sequence produced by <X>. This must be regarded as a potentially seniotsfteng some
mechanism to further obscure the ordering of the bits, though at present weadtiaiypate this

being exploitable.

There is an alternative to straight bit-matching that uses the sarmoept as a means of virtual
indexing, and partially shuffles the bits obtained frad»<and more closely conforms to the
McLaren-Marsaglia model. In this approack>=<and <> are still treated as bit-streams, but the
<X> bits are used to refill locations in a bit-table that servas asile bits from &> are used to

select bits irV for output. A code sample follows, illustrating this technique.

unsigned long XnQ); // generator for <X>
unsigned long Yn(Q); // generator for <Y>

unsigned long BitMatchshuffle()

{
static unsigned long iFlag
static unsigned long XxMask

false;
0;

82

static
static

unsigned Tlong
unsigned Tong
static unsigned long
static unsigned long
unsigned long

int

unsigned long

if (iFlag == false)
{

xBuff
yMask
yBuff
VArray
oBuff
oCnt
val

QOO OOOO

// init shuffling array if not already done

VArray = Xn(Q);
iFlag = true;
3
while (oCnt < 32) // until enough bits are gathered ...
{
if (xmask == 0) // refill <X> buffer if spent & set selector
{
xBuff = Xn(Q);
xMask = 0x80000000;
}
if (ymask == 0) // refill <y> buffer if spent & set selector
{
yBuff = vyn(Q);
yMask = 0x80000000;
}
val = vArray & yMask; // grab a shuffling array bit value
if ((yBuff & yMask) == val) // if <Y> bit matches, copy bit to
output
// and update accordingly
{
oBuff = (oBuff << 1) | ((val !'=0) ? 1 : 0);
ocnt++;
vArray = (vArray & !yMask) | ((xBuff & xmask) ? yMask : 0);
xMask = xMask >> 1;
}
yMask = yMask >> 1; // shift to next mask bit
}
oCnt = 0;

return oBuff;

Bit-matching via a shuffling array

Here, the output stream is a bit-wise “permutation” X 4n much the same way that the

original form of McLaren-Marsaglia shuffles th&>to produce a “permutation” ob&, with

two important exceptions. First, a bit inserted into the table is eslgd for possible output

once per cycle through the table, which may prove to be a flaw. Secvurid,imfitialized with

random bit values, the effects of these bits will tend to persispast their replacement Wi

83

these bits, and the subsequent statésare important elements in the overall state and output

cycle of the composite generator.

The persistence of effect can be seen by considering a single bit position, effelcthef

changing the value of that bit. Given an initializatiorvpif we change one bit froma 1 to a 0,

we will change the point of insertion of the next output bit value frém by either changing

from insertion of that bit at that position to not inserting it, or from noertitn to insertion. In

the former case (non-insertion), the bit value will be inserted &tragdaint in the process, likely

in a different position iV, and its effect in the output stream is thus displaced, as well asghe bit
it and its successor values in that position will be tested against ffemls the latter case
(insertion), the same argument applies, with the bit value féémbeing inserted in a different
position, along with the resultant change in bits fror® # and the position’s (i) successor

values will be tested against.

The distribution of bits from the source strearX¥xinto the permuted output stream follows a
reasonably consistent pattern. Since the point of comparison in a shufftipggtibits returns

to the same location only once evi&rgomparisons, normal operation of the process will force a
minimum shift that averagd®2 positions in the output stream, and the probability that the bit
will be output as a result of any given test of its position (and vadubg shuffling array is 0.5,

assuming the ¥ bit-stream is random.

Since all the bits fromX> appear in the output stream of this shuffling algorithm, it would seem
that an attacker is given a substantial edge in determidrg ¥his is not the case. An attacker
faces the problem that any two bits of the same value are indistinguisluablesgch other, and
averages are just that — averages. An attacker cannottedsitgether a particular bit value in

the output stream originated from any given point in tke iput sequence. Depending on how

many bits are output between the point a bit is placed in the shufflingaandaits first

84

examination as a potential bit-match, the first possible appearart bfttmay be anywhere

from being the very next tobits later, and there is ho guarantee it will be output in that interval.

The probability distribution for any number of bits from zer& to1 being output before a bit
position can be re-tested against the n&&t sequence bit for use as output is given by the
binomial distribution. Fok = 32, the average number of bits output before the same position is
retested is 15.5, and the probability that some number of bits outside the 1ratmé 8vill be
output before a given bit is first examined is better than 0.47, but therg ia 0l probability

that the bit will appear at that point in that cycle through testingithént)/. If a larger bit-

vector is used (say= 64), both the separation between placement of a Witimd its first test,

and the number of bits that may be output between tests of thé/iiténease.

The probability that a given bit is the first bit output afterntgertion into the shuffling table is
simple, when assuming randorX><and <>, and is the probability that no other bit is used as
output before it is. Since the probability that the contents of any giveadition will be used as
output is 0.5 (assuming randoni>) for a table ok bits that bit position in questions probability
of use as next output source in the first cycle through the table (folldinéngyior use/insertion)
is 0.5 * 0.5 = 0.5. For each successive pass, the probability decreases by a factby sif €h

probability that the position will provide the next output bit value by theviotig.
> 1

Calculation of the probability of an individual bit\hhaving a specific delay in the output
sequence greater than zero is non-trivial. The calculation involvegdrderies and binary
distributions over large sequences. For example, if we want to know the prghibbtilia bit will
appear in the output stream the second time it is tested, and-th thi¢ (< k) output after its

initial insertion intoV, with k bits in the shuffling array, we end up determining the probability

85

for all distributions of — 1 bits output in 2(— 1) trials, times the probability that the position is
not used in the first pass, times the probability that it is used in¢bade The overall

probability is, then, a summation of an infinite series of such calculations.

How effective this approach may be in countering Retter’s attaclatedeo the same question
with regard to other output unit sizes. In Schneier’s words [25], “... thebilggdetter,” when

it comes to the dimensions \éf We expect that for large shuffling tables the effectiveness will
tend to decline with increasing valueskpfvhenk > R. In the case of bit-shuffling, it might well
prove that an analysis of local “bit density,” meaning the ratio ofridsO&s in segments of%>
and the output, will provide an effective means of attack, since theofdtis to 0's will inV at

any given time will tend to be reflected in the output sequence.

It must be recognized that true bit-wise sampling of the conteMssad slow process. For every
n bits of output from the composite generatobjt replacements i, and an average ohdit-
tests, must be performed. A tabular approach can speed this sometrateitlus the following

code sample, and introduces a step in the development of more complex mixing methods

unsigned long Xn(Q);
unsigned long Yn(Q);

int bits[16][16] = {

t, o, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 0, 0},
0, 1, o0, 1, 0, 1, o0, 1, ©0, 1, o0, 1, O, 1, O, 1},
0, o0, 2, 1, 0, 0, 2, 1, ©O0, 0, 2, 1, 0, O, 2, 1},
t*, 1, 1, 3 o0, 1, 1, 3, 0, 1, 1, 3, O, 1, 1, 3},
{0, 0, 01 0’ 41 2’ 21 11 01 01 0’ 01 41 21 2, 1}’
{01 1, 01 1’ 21 5’ 11 31 01 11 0’ 11 25 51 1, 3}’
{01 0, 21 1’ 21 1’ 61 31 01 01 2’ 11 25 11 6, 3}’
{01 1, 11 3’ 11 3’ 31 71 01 11 1’ 31 15 31 3, 7}’
t, o, o, 0, 0, 0, O, O, 8, 4, 4, 2, 4, 2, 2, 1},
0, 1, o0, 1, ©O0, 1, o, 1, 4, 9, 2, 5, 2, 5, 1, 3},
t, o, 2, 1, 0, 0, 2, 1, 4, 2,10, 5, 2, 1, 6, 3},
t, 1, 1, 3 o0, 1, 1, 3, 2, 5, 5,11, 1, 3, 3, 7},
{01 0, 01 0’ 41 2’ 21 11 41 21 2’ 11 125 61 6, 3}’
{01 1, 01 1’ 21 5’ 11 31 21 51 1’ 31 65 131 3, 7}’
{01 0, 21 1’ 21 1’ 61 31 21 11 6’ 31 65 31 14, 7}’
{01 1, 11 3’ 11 3’ 31 71 11 31 3’ 71 31 71 7, 15}};
int shifts[16][16] = {

{41 3, 31 2’ 31 2’ 21 11 31 21 2’ 11 25 11 1, 0}’
{31 4, 21 3’ 21 3’ 11 21 21 31 1’ 21 15 21 0, 1}’
3, 2, 4, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, O, 2, 1},

86

153
143}
13}
12}
11}
10}

9}

8}

oINS ITETANN—O

11
10
9
8
9
8

QOO INSTFTITANNAO
— -
ANVVOOVVVOTTFTFTITNNAHO

unsigned long bitSpigot()

Vi

static unsigned long

static int

flag

e o o
o
]]
Il
P TN o
mC O YO
o Q. Q.
QI O Il @
I [a] [a]
OvoVvoo
-4 S5 5 5 >
-4 0o v v v
33 3333
onmoooOQ
PPN
S 3 0 Wun
O o0QQO0E &
()} (o)}
c c
o o
— —
(o)) (o)) (<))
c c c
o o o
— — —
© o o
v (% [
c c c
(o] (@) (o))
o— o— o—
w4+ nLun
ccCccCcccocc
S 35'— 35'r
OUVULUOUULUU
= A s S =
L i e i i et
@ © T [© ©
Lo o ol e
n unuununununuon

outval;

unsigned long

if (flag == 0)

= —1;

flag

V = XnQ;

while (outBuffDepth < 32)

k, 1;

i, 7,

unsigned long temp = 0;

unsigned long

if (bitQueueDepth < 4)

bitQueue |= (((unsigned long Tong) Xn())

<< (32 - bitQueueDepth));

bitQueueDepth += 32;

87

}

if (mskQueueDepth == 0)

{

mskQueue = Yn(Q;

mskQueueDepth = 32;
V=(> 28) | (v << 4); // rotates V.
i =V & 0x0000000fL;
mskQueue = (mskQueue >> 28) // rotates mskQueue

| (mskQueue << 4);

mskQueueDepth -= 4; // bits are “spent”
j = mskQueue & 0x0000000fL;
k = (unsigned long) ((bitQueue & 0xf000000000000000L) >> 60);

1= A5

outBuff = (outBuff << shifts[i]l[j])
| (Cunsigned Tlong Tong) bits[i][jl1);
outBuffbDepth += (unsigned long long) shifts[i]l[j];

V = (v & (OxfffffffoL | 1)) | set[1]1[i];

bitQueue = bitQueue << shifts[i][j];
bitQueueDepth -= shifts[i][j];

outval = (unsigned Tong) (outQueue & OxffffffffL);
outBuff = outBuff >> 32;
outBuffpepth = outBuffDepth - 32;

return outval;

Table-based bit-wise shuffling

Note how the sampling has been revised. The low-order nybMésafsed afte¥ has been
rotated, rather than keeping explicit track of the current locatidh illso, as we place groups
of up to four bits in the output buffer at a time, we will regularly push up te thits above the
region in the output buffer that will be used for the imminent output. Since virear® sample
as we wish iV, given the McLaren-Marsaglia model, this makes no objectionabérdiite,
and improves the shuffling process, since such “over buffered” bitsengin in the output

buffer for extended periods.

There are several things that may be done to increase the occurrendecira sfich over-

buffering. By increasing the dimensions of the arrays used, and the askparateger of bits

88

operated on per cycle of the loop, and also by constructing first bytes, tHesufimats from

bytes, the over-buffering, and thus the shuffling effects can be increased.

Some Cryptographic Considerations

One serious liability remains incompletely addressed at this poive.data units output by the
composite generator, whether bits, bytes or other constructs, remainclitputs from the X>
generator, though shuffled. However indistinguishable any one bit or byte iafoother of
the same value may be, the obfuscation of te gutput is purely a result of localized shuffling.
In the case of bit shuffling, the probability of a bit's appearance atssicegoints in the output
stream is not smoothly decreasing. It displays regions of relativelyrtpgbteability which only
tend to fade, but remain present, spaced at rokgh®intervals. This cannot be regarded as
fully satisfactory, from a security standpoint. The redeeming quadti#e bit-wise McLaren-
Marsaglia scheme in this regard are that the permutatiorsififéged in scope, being effected
and varied over the full cycle of thérx< generator while the DES permutations are limited to
within each 64-bit cipher block, and it is at least pseudo-random as detiyittee ¥>
generator while the DES permutation is static. The fact remaihdftthere are as yet unknown
means to exploit the one-to-one mapping of bits from their original locatidhe <X> sequence
to their positions in the composite generator’s output that are faateatbrute force attack, and

thus to “break” the generator, discovery of such means must be presumed tollgv@rtua

By analogy, we can view thexs sequence of a McLaren-Marsaglia generator as a plaintext to be
encrypted, the ¥> sequence as the key used to perform that encryption, and the intervening
mechanism being the cipher algorithm. As such, we can analyze some of the paftiteans

McLaren-Marsaglia approach using cryptographic concepts.

A basic objective of cipher design is to provide a mechanism that, wiigresable, forces an

attacker to perform a brute force attack on the cipher key, when tryingctoacciphertext. The

89

size of the key-space and the degree to which an attacker is foymedaion either random or
systematic trials of possible keys in that key-space play a subbtale in determining the
ultimate strength of a cipher. Thus, it is necessary to understand ttiekeffesize has on cipher
strength, as well as how and when an attacker may conclude that a ciplesteséh
successfully decrypted, and the key used in its encryption found. For this, thptadricaicity
distance” is useful, even though it was originally developed as a tosdonining the
comparative strength of ciphers, to determine when one could reasonadlyde a

cryptanalytic attack had been successful.

Unicity distance was defined by Claude Shannon in one of the most importars @agrewritten
on cryptography [5]. In it he laid out the theoretical foundation of sexphers, and proved that
the only perfect cipher systems are One-time Pads (OTP) or homologues.ofrQmi8 paper,

he defined the unicity distance of a ciphertext as the ratio of the entrtpy kdy to the
redundancy of the underlying plaintext. The definition of unicity dist@ce

_ H(keyspacg
=

U

where,U is the unicity distancdeyspacehe size of the key-spadd(keyspacgthe entropy of a

randomly selected key, amithe redundancy of the plaintext.

A common illustration of the meaning of these terms, and of unicity distance)ESeas an
example. In DES, the effective key length is 56 bits. (It's specificagionterms of eight 8-bit
bytes, including a leading parity bit in each byte that is othergiswed.) If the key-space is
assumed to contain no weak keys, there Erpdssible keys, and the entropy of that key-space is
H(k) =1g(2°°) = 56. In English plaintext, there are 26 letters. Ignoring punctuation,

capitalization, white-space, etc., the amount of data carried in andundidharacter ik (26) =

4.7. Analysis of textual material in English reveals that thergemwerally only about 1.5 bits

90

worth of real information conveyed per character, so tratdly — 1.5 = 3.2. Thus, the unicity

distance for English plaintext encrypted with DES is 86 / 3.2 = 17.5. This means that in

order to determine whether a ciphertext of an English plaintext has beectlgatecrypted using
a particular key, an attacker ordinarily must decipher at least 17.5 @ranactth of plaintext.
As DES uses a 64-bit cipher block, this means that decryption of thres bloglciphertext that
produces a meaningful English plaintext is generally sufficient to conclatéhthcorrect key

has been found.

If the <Y> sequence is assumed to be random, and we treat it as a key encryptixeg, thbike

noting that the X> sequence, if also random, has a redundancy of zero, we see that the entropy of
<Y> is equal to its length in bits, and the limit of U as D approaches z@fmity. We would

thus expect the encryption of th&>to approach the strength of OTP, or equal it; effectively, the
output is random. This is not the case when e and <> sequences are generated by

PRNGs.

At best, we can view the seeds of the two generators as the collective Key mutual
encryption of the two sequences, and the redundancy of the “encryptedahastdeing non-
zero but small, if the PRNGs used are “good.” If we assume the redundancyuofpthebit-
stream is 1 per bit, and the entropy equals the initial state (setb@) admposite generator, then
the unicity distance of the generator is equal to the size of the cahd@rds plus any other
random material used to initialize the McLaren-Marsaglia meshanWhile the assumption that
the bit-wise redundancy of the output equals 1 is purely a guess, it sbaabk one for many
types of PRNGs. Since PRNGs are deterministic, every bit output by a RRisGnidicator of

its internal state, and thus every bit output reveals information dimirnternal state of the
generator. If a PRNG is designed such that every bit of the seed iefusrary bit of the output

stream, each output reveals information about all bits of the ihstata. Viewed as a mapping,

91

any PRNG maps one seed to one output sequence. It is reasonable to beliereathgbod”
PRNG, the point at which the mapping can be identified requires at $eiastrgy bits of output as
are contained in the seed. Thus, we may well expect that the best wagasénthe unicity

distance of a PRNG is to increase the effective size of the seed.

A standard goal in the design of block ciphers is that, given any key, a chargesifigle bit in
the plaintext enciphered using that key should result in a 0.5 probabilitgdlorbd in the
resulting ciphertext block changing as well. The same is soughinfbe-$it changes in keys.
This diffusion of the effect of single bit changes, in both the plaintektize key used, is part of
what gives the better block ciphers their strength. Understanding vghg thésirable is

relatively simple.

Consider a cipher that does not behave like this. Rather, a single bi¢ chamier the key or
the plaintext will result in only a single bit change in the ciphé&rté&s a result, it is possible to
analyze groups of ciphertexts with regard to the differences, arbyhgain at least some
information about the keys and underlying plaintexts associated witkr@gts. Where single
bit differences are found, it is reasonable to suspect that #ithplaintext or the key may differ
by a single bit. Thus, if one message can be cracked, the other shoyléb#asil This is the
basis of differential cryptanalysis, wherein patterns of diffees resulting from bit-changes in
keys and plaintexts are analyzed and used to help in breaking ciphertexts favnibee
complex patterns of changes occur in many block ciphers, when the prolsatalitigt-level
differences in ciphertexts, relative to single bit changes in plairdext&eys, are not uniformly

very near 0.5, the potential for an effective differential analytaslaexists.

From this, it should be evident that part of the problem with the commorofaitme McLaren-
Marsaglia scheme, when viewed as a means of encipheringtheequence by¥> based

shuffling lies in the fact that the bits irXs are not altered, just displaced. The same is true of all

92

the indexed shuffling approaches down to the bit level, though considerabigtsiia the
cryptographic sense) may be obtained by finer-grain decomposition aktheequence and
increasek. Only when we get to the bit-matching-with-shuffling do we see individuplipbit
probabilities changing based upon individual bit changes inXheand &> sequences, or the

initial contents.

If a single bit in the bit-wise shuffling table is changed, the effeto insert or delete a bit from
the output sequence. While this may not appear to be much of a change, thiscftifiing
subsequent bits has the effect of altering, on a 0.5 probability basig/ules in all bit-positions
that follow the insertion or deletion. The same is true of singléhbitges in the X> and ¥>
sequences. Still, it would be better if, rather than changes asdomititéit-positions, more

pervasive changes were induced.

Further Modification of the McLaren-Marsaglia Mechanism

In the table-based, bit-wise approach to we can see that there is ho pag@sharwhy we must
select bits for output frod based on bit-matching except to preserve the permutation character
of McLaren-Marsaglia. The number and values of bits selected Vilt$jg and shiftd][]

arrays could as easily be arranged in a random manner. Likewisdstmsited intd/ from
thesef][] array can be arbitrary. There is also no reason, apart fronpéoe sequired, not to

view thebitd[][], shiftd][] and sef][] arrays as slices through larger, three-dimensional arrays, to
view V as part of a more complex internal state, and to use the cont&has afidexing material

for the third dimension for these arrays. The contents of these threesitimal arrays can then
be filled with arbitrary values selected and arranged to obfuscatedilieluial indices used.

With such an implementation, the tabular-bit-matching form of the McLararsdglia algorithm
can be viewed as a special case of this more general form. Thdrigllovde sample illustrates

this approach.

93

#define
#define
#define
#define
#define

OBITS_MASK
SBITS_MASK
SBITS_SHFT
NBITS_MASK
NBITS_SHFT

0x007f
0x0380
7
0xfc00
10

// the following is a place-holder as the full array is large.

unsigned short SFrame[64][16][16];

// the following are place-holders for the fill and index generators

unsigned long Xn(void);
unsigned long Yn(void);

unsigned Tong bitBlendopt()

{

unsigned long

static
static
static
static
static
static
static

retval = 0;

unsigned long long state = OLL;
unsigned Tong long xQ = OL;

int

XBits = 0;

unsigned Tong long yQ = OL;

int

yBits = 0;

unsigned long long oQ = OL;

int

oBits = OL;

// some temporary variables to hold

unsigned long
unsigned long
unsigned long

unsigned long
unsigned long
unsigned long
unsigned long

if (state == OLL)

{
state = (unsigned long Tong) Yn(Q)
A (unsigned long Tong) XnQ);
state = state << 32;
state |= (unsigned long long) Yn(Q)
| Cunsigned long Tong) Xn(Q);
%

// Toop until we have enough output bits

while (oBits < 32)

{
if
{
}

if
{

(xBits < 4)

tState = OL;
txQ OL;
tyQ = OL;

temp;
tout;
tshft;
tstat;

// for 6 of 64 bits, state
// for 4 bits, fill buffer
// for 4 bits, index buffer

// for SFrame entry used

// bits to insert in output
// # bits to be 1inserted

// new state bits

// initialize the state if needed.

// ensure we have enough fill bits

xQ |= ((unsigned Tong Tong) Xn()) << xBits;

XBits += 32;

(yBits < 4)

// ensure we have enough index bits

yQ |= ((unsigned Tong Tong) Yn()) << yBits;

yBits += 32;

94

// grab 6 state bits, plus 4 fill and 4 index bits

tState = (unsigned Tong) (state & Ox3fLL);

txQ = (unsigned Tong) (xQ & OxfLL);

tyQ = (unsigned Tong) (yQ & OxfLL);

temp = (unsigned long) SFrame[tState] [txQ][tyQ];
tout = temp & OBITS_MASK;

tshft = (temp & SBITS_MASK) >> SBITS_SHFT;

tstat = (temp & NBITS_MASK) >> NBITS_SHFT;

// shift output queue to make room for new bits then append them

0Q = (0Q << tshft) | (unsigned Tong long) tout;
oBits += tshft;

// note: only 5 state bits modified, and a shift of only 3, which
// helps propagate bit diffusion

state = (state & OxffffffffffffffdoLL)
A (unsigned long long) ((SFrame[tState][txQ][tyQ]
& NBITS_MASK) >> NBITS_SHFT);
state = (state << 61) | (state >> 3);

// shift 'expended' fill & index bits off the ends of queues

XQ = XQ >> 4; // note: could shift/sub min(4, outbits)
XBits -= 4; // rather than a fixed 4 bits
yQ = yQ >> 4;
yBits -= 4;
3
retval = (unsigned Tong) (0Q & OxffffffffLL);
oQ = oQ >> 32;
oBits -= 32;

return retval;

C code for the BitBlendOpt() function
Analysis of this scheme is difficult, since, with arbitrary or random skthree values in the
SFramebitd][][], SFrameshiftd][][] and SFramesef][][] arrays (which are notional in the above
code, and referred to hs, shiftsandsetarrays in the following discussion) associated with the
state, > and &> indices means that there is no necessary logical or mathalmatationship
between any of the indices and the values selected using them. A sirapléiustrates the

issues.

Consider aits array that contains four-bit values, anshiftsarray that contains a value of 4 in
all locations, so that it may essentially be ignored. If we consider tnesdice-wise, based on

95

the first index (which will correspond t8tatevalue above), and require that each column and
each row contain one instance of each possible four-bit value, we chiaistes anytxQ value

that might be used, any four-bit value may be obtained based upty®@thaue. This means

that analysis of the output stream to determine ¥reand <> streams, and from them the states
of the associated generators, will likely be difficult. Within the bitray there will be 1024
occurrences of each nybble value. Requiring that, fob@®$yQ pair, the list of values indexed
by tStatemust contain equal numbers of each possible value (thus, four instanaeh of the

16 values), it can be seen that there will be 1024 instances of each vakilei®array. Given

an output nybble, plus a guess regarding the asstdiate tyQ value that generated it, there are
64 different combinations aStateand eithetxQ or tyQ that could have yielded that output

nybble.

If we view a slice through thiits array based upon a given valua®fate we have a

row/column permutation of the following array, the contents of which aredbeiaal.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0,0 1.2 3 4 5 6 7 8 9 A B C D E F
111 2 3 4 5 6 7 8 9 A B C D E F O
212 3 4 5 6 7 8 9 A B C D E F 0 1
33 45 6 7 8 9 A B C D E F 0 1 2
4/4 5 6 7 8 9 A B C D E F 0 1 2 3
5/ 6 7 8 9 A B C D E F 0 1 2 3 4
6|6 7 8 9 A B C D E F O 1 2 3 4 5
717 8 9 A B C D E F O 1 2 3 4 5 6
88 9 A B C D E F O 1 2 3 4 5 6 7
99 A B C D E F O 1 2 3 4 5 6 7 8
AlA B C D E F O 1 2 3 4 5 6 7 8 9
B|/B C D E F O 1 2 3 45 6 7 8 9 A
c(,c bpeE F O1 2 3 456 7 8 9 A B
b|jp E F O 1 2 3 45 6 7 8 9 A B C
E|lE F 0 1 2 3 4 5 6 7 8 9 A B C D
FIF 01 2 3 4 5 6 7 8 9 A B C D E

A slice through the state table in BitBlendOpt()

96

By a row/column permutation we mean that the rows may be re-arranged in anyoddiie
columns likewise rearranged, and the resulting array will retainrdpegy that each row and

column contains one each of all possible 4-bit values.

If we re-label the row and column indices with letters, we can recoting&zarray as essentially a
form of Vigenére cipher tableau. This would ordinarily be regarded as véradthe standard
Vigenere cipher is remarkably weak: cipher keys used in clas8genere ciphers are relatively
short sequences of characters, yielding to straight-forward crypsetdgt exploits the key
length. However, there are also similarities between this andhth@SBoxstructures in many

block ciphers.

The classic Vigeneére cipher suffers from the standard problems of nohamstrieam ciphers.
Encrypting plaintexts with significant redundancy, using short keys taatfeen words or
phrases and the absence of diffusion in the resulting ciphertext alloipletdtms of attack.
The present case is markedly different. We can view eithethekrthe &> sequence as the
key, and the other as the plaintext to be encrypted with it. Assuminggiiesetors are
reasonably good, with long periods, the redundancy of the “plaintext” witvaeand the key-
length long. When we add the further complication of the state data to thegymasilting in
use of many distinct tableaus, we may expect the result to be moraltitfiattack than a

classical Vigeneére cipher.

If we consider only the key length, initially, treatingf><as the key, the entropy of the key will
be related to the size of the elements6t and its period. Again assuming that=<is random,
with 32-bit elements and d%period,H(keyspacke= 2*. Using an estimate @ = 1 as before,

for the redundancy of our pseudo-randoXr<we haveJ = 2°” as an upper bound for a single
tableau, and would be exact forx<if it were a random sequence &f 32-bit values repeated.

The actual unicity distance when using pseudo-randémand <> and a single tableau would

97

be on the order of the size of the internal states of the two PRNGs, and, widitienaf the
internal state oBitBlendOpt would likely include some number of bits worth of that state to
account for the multiple tableaus of thErame which would, as per Kerckhoffs’ principle, be

presumed known by an attacker.

Deterministic Aperiodicity

As one of the intrinsic problems with most PRNGs is that they are botimasitic and
periodic, and the available means of generating aperiodic sequencestack iirs worth
considering the applicability of the revised McLaren-Marsagligegggors to the problem of
providing aperiodic generators. The standard computational source fiodapsequences is
found in the realm of irrational numbers, while a more recent area of atipiohas involved the

geometry of quasi-crystals. Both have their drawbacks.

Quasi-crystals are intriguing in that they display the charattariof crystals without displaying
the precise structure and symmetries of true crystals. Theatot@ic distances within the
structure vary in non-repeating ways that resemble in some waysidnadreof irrational
numbers. While we regard the issues surrounding use of computationalgddeaives based
on quasi-crystal structures as beyond the necessary scope of this thesite that the problems
are similar to the use of irrational numbers: high-precision matiensae required, and the
process is computationally intensive. Irrational numbers, and the subsetiofial numbers
comprised of transcendental numbers, are more readily understood, andrgufiitihe

following discussion.

It is possible to generate a reasonably apparently random sequence tingselsaitable
irrational number, and applying a simple algebraic function to it tha¢mesthe irrationality of
the result. Historically, the problem with this has been the computbtestarces required to

produce any significant number of digits, and the easy with which erroesisan The history of

98

the computation ot serves as an excellent example of these problems. While the number of
digits that have been computed has passed the billion digit mark, thisdeesiedly non-trivial
feat. Further, until recently, it was generally necessary to comippigoa digits of such

numbers in order to compute any specific digit. For high-volume applicatiaisegpensive

processes are not suitable.

Some developments in the means of computing at least some irrational nuaveers h
significantly improved the situation with regard to the computatiomstl cWork published in
1997 by Bailey, Borwein and Plouffe [120] showed that a class of irrationddersroan be
computed in polynomially logarithmic space and polynomial time. Membehisaflaiss are of

the following form.

wherep andq are polynomials with integer coefficientsa positive integer, arfithe base.

Intriguingly, one of the members of this clasg,isvith the following form.

d 1(4 2 1 1 j
r=y ||
—~16\8i+1 8+4 8+5 8 +6

where 16 is the base.

Even more interesting is that with this formulation it is possibttopute individual digits of ,
and other members of this class, without computing all prior, higher-ordes. digdie
computation requirements for theh digit, basédo for members of this class are given by Bailey,

et al. [120], as follows.

space=log°® (d).

99

time=0O(d log®® (d)).

While this represents a significant improvement over previous podsiin terms of time and
space, for very high values dfthe time and space required are still significant. Thus, while the
approach must be regarded as far more interesting and useful for purpgseerating aperiodic

sequences, means of efficiently using such sequences are desirable.

It can be seen that if we were to replace tke sequence in a standard McLaren-Marsaglia
generator with successive segments of an irrational number, the regalttiegtor would
produce an aperiodic output stream. This would not obviate the problem posetldrisR
attack, though. It would remain effective, since, given the irrational nunsieer, an attacker
would need only selectand proceed. Likewise, replacing thé><generator with an irrational
number digit stream changes the output sequence, but not the problemX>Tten<still be
solved for independently from¥ss, though the time and space requirements for the attack scale
with the algorithm used to calculate the irrational number if tre sequence is based upon an
irrational. In fact, there is no obvious benefit gained from selecting andaisiecpnd,
unrelated, irrational number, so that bodr<and <> are aperiodic. All the benefits of
aperiodicity to be had are obtained with use of just one irrational numtiex context of one of

the generators.

The revised forms of the McLaren-Marsaglia algorithm can be used, leasvileé straight-
forward bit-matching algorithm, providing either th&><or <Y> generator with aperiodicity. In
each case, the output becomes aperiodic, though the efficiency of theheseroational
numbers digit sequence varies. With the straight-forward bitmmatscheme, only half the bits
would be used, and so for very long sequences generated, the computationaleasstsriester
than if every bit is used. Thus, it appears that, unless the computatehean be further

reduced, or only short sequences need be generated, this is not a vergl pigtaach.

100

TheBitMatchShuffle(algorithm makes more efficient use of thé<sequence than does either
of the BitMatchStream(nlgorithms, but not of the¥s sequence. ThuBjtMatchShuffle()s

more appropriate for use in generating aperiodic sequences usingtianairsequence
generating algorithm, but only as th¥>generator. ThBitSpigot()form of this generator is the
more efficient, and thus is preferableBitMatchShuffle()but with the same limitation.
BitBlendOpt()can also yield good results, but since the @nd <> generators are treated in an
essentially identical manner, it makes no difference which is ingyied via an irrational
number technique, though, again, using that technique for both likely adds not imprbireme

terms of aperiodicity, just computational cost.

Another method of injecting aperiodicity via irrational number digit seceeigcpractical with
theBitBlendOpt()scheme. If we added a mechanism for inserting some number of bits from the
irrational digit stream into either the<s or <Y> sequence on a periodic basis, a number of

benefits accrue.

#define OBITS_MASK 0x007f
#define SBITS_MASK 0x0380
#define SBITS_SHFT 7
#define NBITS_MASK 0xfc00
#define NBITS_SHFT 10
#define INTERVAL 4

// the following is a place-holder as the full array is large.

unsigned short SFrame[64][16][16];

// the following are place-holders for the fill and index generators
unsigned long Xn(void);

unsigned long Yn(void);

unsigned char Ir(void); // returns single bit from irrational seq.
unsigned Tong bitBlendAperiodic()

{

unsigned long retval = 0;

static unsigned long Tong state = OLL;
static unsigned long Tong xQ = OL;

static int XBits = 0;
static unsigned Tong long yQ = OL;

static int yBits = 0;
static unsigned Tong long oQ = OL;

static int oBits = OL;
static int intr = INTERVAL;

101

// some temporary variables to hold

unsigned lon

g tState = OL;

for 6 bits of state

unsigned long txQ = OL; // for 4 bits of X buffer
unsigned long tyQ = OL; // for 4 bits of Y buffer
unsigned long temp; // for SFrame entry used
unsigned long tout; // bits to insert in output
unsigned long tshft; // num bits to be inserted
unsigned long tstat; // new state bits
if (state == OLL) // initialize the state if needed.
{
state = (unsigned long Tong) Yn(Q)
A (unsigned long Tong) XnQ);
state = state << 32;
state |= (unsigned long Tong) Yn(Q)
| (unsigned long Tong) Xn(Q);
3

// Tloop unti

1 we have enough output bits

while (oBits < 32)
{
if (xBits < 4) // ensure we have enough fill bits
{
XQ |= ((unsigned Tong Tong) Xn()) << xBits;
XBits += 32;
}
if (yBits < 4) // ensure we have enough index bits
{
yQ |= ((unsigned Tong Tong) Yn()) << yBits;
yBits += 32;
}
if (intr == 0)
xQ |= ((Cunsigned Tong Tong) Ir()) << xBits);
XBits++;
intr = INTERVAL;
}
else 1intr--;

// grab 6 state bits, plus 4 fill and 4 index bits

tState
txQ
yQ

temp
tout
tshft
tstat

// shift

oQ = (oQ
OBits +=

// note:
// helps

(unsigned Tong) (state & Ox3fLL);

(unsigned long) (xQ & OxfLL);
(unsigned long) (yQ & OxfLL);

(unsigned long) SFrame[tState] [txQ][tyQ];

temp & OBITS_MASK;

(temp & SBITS_MASK) >> SBITS_SHFT;
(temp & NBITS_MASK) >> NBITS_SHFT;

output queue to make room for new bits then append them

<< tshft) | (unsigned Tong long) tout;

tshft;

only 5 state bits modified, and a shift of only 3, which

propagate bit diffusion

102

state = (state & OxffffffffffffffdoLL)
A (unsigned long long) ((SFrame[tState][txQ][tyQ]
& NBITS_MASK) >> NBITS_SHFT);
state = (state << 61) | (state >> 3);

// shift 'expended' fill & index bits off the end of their queues

XQ = XQ >> 4; // note: could shift/sub min(4, outbits)
XBits -= 4; // rather than a fixed 4 bits
yQ = yQ >> 4;
yBits -= 4;
3
retval = (unsigned Tong) (oQ & OxffffffffLL);
oQ = oQ >> 32;
oBits -= 32;

return retval;

C code for bitBlendAperiodic()
Insertion of the extra bit into thexsz sequence will alter the alignment of thé<and ¥>
sequences relative to each other, and result in bit-aligned operatiorogkth# generator, rather
than word-aligned operation. The two component generators will have theitsowtprd-
aligned once per 32 bit-insertions, but the overall alignment kiftl @ontinually throughout the
operation of the composite generator. Also, the inserted bits will hatiauiag effects upon
the bit-values irstate and the period of theXe sequence is artificially extended by the inserted

bits. Finally, the output sequence that results is aperiodic.

Such an insertion technique can be applied to some of the other methods discugs=8it-I
matching schemes, buffering of the input streams can accommodate ttezlibgsr but
knowledge of the generators used, and a successful guess regardingsheseddor the
conventional generators, leaves less analysis to be performed BigBléemdAperiodic() since
the produced sequence is largely a matter of single bit shifts gfem@gating sequence relative
to the other, and the injected bits from the irrational sequence are imeheditermined from

the output sequence relative to the un-injected sequence component geegquaioces.

103

The exceptions to simple bit-injection are the techniques that mwolly dicing the x>
sequence into smaller multi-bit blocks and placing them into a shuffling @aiganized as a
multiple of R entries. In those cases, the injection is simpler if done on the badéntcally
sized blocks, rather than bit-wise. However, the lack of diffusion obtain¢destatevariable
of theBitBlendAperiodic(technigue means that the output stream remains largely a periodi
sequence of raw outputs from the periodic PRNG used as<thgenerator, with irregularly
inserted aperiodic components. It is difficult to regard this as a raflusibs to the problem of

aperiodicity.

It should be noted that they basic structure of the McLaren-Maasaggiiants need not be altered
to incorporate such aperiodicity. The insertion of the irrational t@&st material can be done
within the componentX> or <y> generators, since the fundamental structure of McLaren-
Marsaglia and its variants is equally adaptable to any suitable componerdtges. If handled
this way, a straight-forward XOR of a standard PRNG's output with iéioinal digit stream
might be considered, too. The result would, for all variants, be aperiodicnahit teonceal the
outputs from both the standard PRNG and the irrational bit-streamyijhsiny combiner

function, but still suffers from the full cost of generating the irratiortadtoeam.

104

CHAPTER IV

KEY AGREEMENT

Having explored some of the possible variants of the McLaren-Maasgaierator scheme, we
return to one of the initial questions asked: Can we replicagastt$ome of the hypothesized
strengths of the Bennett-Brassard key agreement process withdng mtyguantum phenomena,
or even on mathematically “hard” problems? We start with the assumpditaihéhtwo parties
share some information that is secret, held only by the two correspondentsgtaatddast one
correspondent has a true, hardware-based random number generator. Véa wiksttribe a
process, based in large part on some of the McLaren-Marsaglia vaesottbed in the previous
chapter, by which the correspondents can agree upon a set of bits, and désasssdiated

security/confidentiality issues associated with this scheme.

Themes and Goals

As discussed in Chapter |, the Bennett-Brassard quantum mechanics-haagrekenent
protocol is a major inspiration for the present effort, as is the proptesed by the Diffie-
Hellman conjecture. The Diffie-Hellman conjecture is the assumptasept in many proofs of
security that the mathematical problem a particular algorithm edb@sis difficult to solve, and
cannot be reliably solved in a time-frame that would imply unaccepiakla using the

algorithm or protocol. Typical examples are the assumption thatrivlgbitively difficult to

105

factor very large integers into their prime factors, and that Swele logarithm of a very large

number in an arbitrary base is very difficult to calculate.

With regard to the Bennett-Brassard protocol (see Chapter | for &edetascription), problems
include the difficulty and cost of providing a dedicated optical fiber coiomebetween two
remote points, let alone a network of such connections, the ability to genegiepbotons
polarized to the desired orientations and to detect individual photons aténer’s end of a
fiber, loss of photons over long distances due to defects and impuritiedilvethetc. Still,
however theoretical parts of the scheme remain, a protocol that allowmtties to securely
agree upon a string of random bits suitable for use as One-Time Pad (9 TR3tkeal is both
brilliant in conception and inspirational, particularly since the padtplaces no reliance upon

any form of Diffie-Hellman conjecture about a mathematical problem.

The inspiration derived from the Bennett-Brassard protocol is easilyatadd. Personal
experience tends to demonstrate that for any problem, if theree@sabhe way to solve the
problem, then there are likely others. Thus, the question is raised mbigitiesecure means of
agreeing upon a set of bits, without relying on a mathematical problem grasumed to be

hard or quantum phenomena, can be developed.

Also as discussed in Chapter I, “secure” is a relative term. Whiléhieosetical sense the
Bennett-Brassard protocol is perfectly secure, when fully implemengqutaittical
implementation may be a different matter, particularly as the probleetiably generating,
transmitting and detecting single photons remains a serious challengd.in@nBads (OTP) are
provably perfectly secure, yet of sufficient difficulty in pradtigse to warrant the continued use
of systems that are less than perfect. Even systems designed by highlydigeale and
experienced professionals can contain flaws that take years afiartalidentify and exploit.

Thus, as a first effort, it is too much to expect a flawless systerefbne, for the present effort,

106

perfection will not be expected, but a very low probability of successjuligsing the state of
the mechanisms, coupled with a degree of complexity in analysis thattpresabvious easily

exploitable internal flaws, may be regarded as success.

The examination of variations based loosely on the McLaren-Marsaglidgsgndom number
generator (PRNG) served as a means to identify components that dfféekibility and
extendibility. Two forms of one of the examined variations are used indpeg®d protocols

discussed and implemented here.

The bit_blend scheme, wherein the McLaren-Marsaglia mixing arrajnigrpreted as a state

vector for selection of an arbitrary mixing function for combining thet&from the two

component generators of th¥z and ¥,> bit-sequences, is used in two distinct ways. In the
first, used in the\, B andC generators of the protocols described below, conventional PRNGs are
used to provide theX;> and ¥,> bit-sequences. In the second way,Dhgenerator discussed
below, the X,> and <> sequences are derived from the random bit-string that is the sole
communication between the two parties to the key agreement within sentae protocol. The
derivation of the bit-strings finally used as input®tes performed using the outputs of theB

andC generators, in a manner intended to create a combinatorial problefficést

complexity to make cryptanalysis, in an effort to determine the initiehding state of the

process, difficult enough to warrant the appellation “secure” for the lbpevaess.

Two additional processes are used in the overall process. First, whBenttett-Brassard
protocol discards roughly half the initially transmitted random bits @nsequence of the
guessing process in its first phase, here we apply the bit-matchiregpmiscussed in the
previous chapter as a means of increasing the combinatorial complexiypt@inalyzing the

proposed protocols. Second, we utilize a portion of the random bits transmitiptto i

107

aperiodicity into the scheme, in an effort to preclude use of suchawte Berlekamp-Massey

algorithm to produce linear feedback shift register (LFSR) an&togsmponents of the scheme.

The Basic Scheme: Walk-through

To start the process, the two parties to the key-agreement processardi Bob, have identical
sets of PRNGSA, B, C andD (the mechanisms being public knowledge), and identical initial
states for these generators and the overall mechanism (whiclesmenpd to be a secret jointly
held by Alice and Bob, and agreed upon by a mechanism outside the scope ofub&atic
The structure of the component generators is oBitidendOpt()type previously discussed.

Alice also has a true random number generator (RNG).

Alice and Bob decide they need a shared, secure, random bit-stringriccoseucting a

confidential exchange. They proceed as follows.

Alice generates a 32 bit long string of random bitsising her RNG. Using her saved copy of
the initial state of the PRN®&, she generates a 32 bit long value uéiramd calls i, then saves
the new state oA. While keeping a copy affor later, she XOR'’s tha andr bit strings together
to produce bit stringxr. Alice sends a copy @ixr to Bob, and saves the new statéofNotice
thata acts as a Vernam cipher key with respect tr inversely that acts as an OTP cipher key

for a.

When Bob receiveaxr from Alice, he initializes his copy of thewith the identical copy of the
initial state he shared with Alice, then generates his own copyeaf &and saves the new state of
A for later, just as Alice did. Bob then XOR'’s his copyafith the copy ofxr he received

from Alice to obtain a copy of.

As Alice and Bob now both have identical copies of strirthey both take the lowest-order 15

bits of r and insert them into thexx bit buffer of their respective initial states of the PRBIG

108

Thus, the modified states of the two copie8dield by Alice and Bob are still identical. They
then take the next lowest-order 14 bitg ahd insert these bits into th&>bit buffer of their
copies of PRNGC. Again, as the modifications are identical, the resulting statédeartical.

Notice that both B and C now have had true random data injected into ttesr sta

Using her RNG, Alice now generates a random 1024 bit long bit string and gajland saves a
copy for later. Using her now modified initial state of geneBi@he generates the 1024 bit
long bit stringb. She XOR'’s bit stringy with bit stringrp to produce bit stringxrp, which she
sends to Bob. Again, we have that the string pair acts as cipher kegsHartker. The strinig

is a Vernam cipher key with respectrpy whilerp is an OTP cipher key with respectito

Upon receivingoxrp from Alice, Bob uses his modified initial state of gener&8tw generate his

own copy ofb. Bob XOR'’s this copy olb with his copy ofbxrpto obtain a copy afp.

As Alice and Bob now share exact copies of the initial states of gersafas modified above)

andD, and have exact copiesroandrp, they both proceed as follows.

Both Alice and Bob initialize their copies of generdafowith their shared, modified initial state
for that generator, and generate a 1024 bit long bit string which theyc)dabeh save the new
state ofC for later communications. They both create an empty bit stjigen perform a bit-
by-bit comparison of with rp. When corresponding bits cmandrp are equal, they append that
bit value to bit stringn, repeating the process for all bitsciandrp. At the end of this process,
they will have identical copies of bit strimy They then truncate to a multiple of eight bits in
length, yielding a set of full bytes. Next, they take the highest-order bisefromr and use
these as an integer value. They add four to this value, and count backwantsijpaytes from
the end ofn. If there are still at least four bytes to the “right” of this posi{they haven't
backed up past the startraf, they remove four bytes from starting at this position, and insert

these bits to theX> bit buffer of their saved new saved stateé,aind each saves this again

109

revised state for the next round. Notice again that random mdtasi&leen injected into the

state ofA, just as such material was injected into the statBsapidC earlier.

Both Alice and Bob will now use their identical copiesroés the source for thexs and ¥>
input sequences to tiiegenerator, starting at index 0 for th&<input and the other end for the
<Y> input, stopping when the indices meet in the middle. This is truly randderiad, and thus
the output fronD will be random. They load their stored, identical initial statd3 ahd proceed
as described above, appending the output bytes to an initially emptyrigjkstind saving the

ending state oD for later communications.

Alice and Bob now have identical new statesXpB, C andD, and identical byte strinds

Thus, they are free to use the agreed-upon bit dtrasgthey may choose, while being able to
repeat the process (using freshly generated random bit strimgs..., andrp’, rp”, ...) to
generate additional random bit stridgsk”, ..., as needed. The new states,d, C andD,
saved at the end of each invocation of the protocol, are not purely the profideterministic
processes upon a finite state, since random material obtainedydoregdrived from the andrp
bit strings was either injected into the input streams (in thes @dge B andC, thereby randomly
modifying their states during invocation of these generators) or prthadentirety of the input
streams (as is the case widhresulting in corresponding random alterations to the stdd. of
Thus, so long as the succesgivandrp bit strings fed into the protocol are random, and the
modified states of the mechanism’s components are correctly save@bétmwecations, the
resulting sequence of states will be aperiodic, as will the secgiganerated bx, B andC. The
output fromD is, again, effectively random, given the random material fed to it as both inpu

streams.

As discussed further below, the preprocessingarfdrp to generatexr andbxrp by Alice is not

strictly necessary. An alternate version of the protocol elimitbiggreprocessing by having

110

Alice generate thaxr andbxrp random bit strings directly, and sending these to Bob, whereupon

both Alice treats them in the same manner as described above by Bob.

The Basic Protocol A: Formal Description

Let us assume that the correspondents, Alice and Bob, have agreed upon N@ea dgriRithms

of theBitBlend()type (designated, B andC) and their initial seeds, are kept secret. They have
also agreed upon a stream-based bit-matching algokMthamd upon an algorithm based on
BitBlendOpt() referred to aBitBlendRan()which will be described in more detail later) and
designated, with its initial state also secret. Alice also has a non-deterimiRbIG,

designatedR. The exchange and agreement process is as follows in Protocol A.

Protocol A

1. Alice generates a block of 32 bits (designafeaind a block of 1024 bits (designatedl
usingR, her non-deterministic random number generator.

2. Alice pumps PRNGA\ for a 32-bit pseudo-random valagand XORs this witin,
generated in step 1 to produce the 32-bit bpakthen sendaxr to Bob.

3. Alice inserts the lowest-order 15 bits fran(bits 17 through 31) into theQ buffer of B.

4. Alice pumpsB for a 1024-bit pseudo-random bit stringKORs this withrp to produce
the 1024-bit strindpxrp, and sends this to Bob.

5. When Bob receiveaxr, he pumps his copy @ to obtaina, then XORs this witlaxr to
obtain the bit block.

6. Bob inserts the lowest-order 15 bits fronmto thexQ buffer of his copy 0B, then
pumps his copy dB to produce his own copy of the 1024-bit string

7. When Bob receivelxrp, he XORs this withb to obtainrp.

8. Both Alice and Bob insert bits 3 through 16 (14 bits) ofto thexQ buffer of their

respective copies @@, and pump these to obtain matching 1024-bit strings

111

10.

11.

12.

Both Alice and Bob use their copiesMfto do a bit-match selection of bits usingnd
rp, producing the bit-stringy, which they truncate to a length bf _m/8J bytes. (Note
that this may be an odd number of bytes.)

If 1 >12, Alice and Bob use bits 0 to 2 pfas integep) to select four bytes from

(viewed as a byte array) startingngt — (0 + 4)], remove them frorm and insert them

into thexQ buffers of their respective copiesAfelse no action is taken.

Both Alice and Bob split their copies ofin half, and using the first haltI(IZJ bytes)
into D as the<X> bit-sequence fab, with nybbles flipped in order within bytes, and the
second half (I /2—‘ bytes) in reverse nibble order as thébit-sequence fdb. D is

pumped untikX> is exhausted to yield the bit-blokka block of agreed bits.
Alice and Bob repeat steps 1 through 11 until they have as many bits of agreeal mate

as required.

Observations Regarding Protocol A

While the walk-through of a prior section may be sufficient to understam@rocess, it is a

complicated process, with many components that are not themselves simpesofite

additional explanations of the various components used, and their interactigiImavhile

more detailed analysis will follow in Chapter V.

The composite generatoksB andC were developed in Chapter IV specifically to provide means

by which aperiodicity could be injected into what might otherwise have beery peradic

components of the scheme. A diagram, in generalized form, of these geneegttyes oh use

here, in order to clarify how the aperiodicity is injected via thiessetgenerators, and such a

diagram is presented now.

112

a V4 e state \
I ~
rd />
<X> »| <X> buffer
<Y>p—»{ <Y> buffer [
T iy Output >
B

Generalized structure of the aperiodic generators used

Ignoring for the moment the componets? andy, we observe that two component generators,
<X> and &>, along with the mechanism state, provide input to an indexing furictidrich
selects entries in two tables. One table provides the output from an inwoafitine mechanism,
while the other is used to modify the state. If bottr and <> are periodic, deterministic
PRNGs, the overall mechanism will be periodic. From the discussioroincpapters, we
understand that this may be regarded as a weakness, since variousabals,tbe Berlekamp-
Massey algorithm, allow an attacker to eventually generate an LtieSBxactly replicates the
output of the mechanism, given a sufficient sample of outputs. (We recogouzght both that
this LFSR may be extraordinarily long, and that we must anticipate ugerabfe advanced and

powerful tools that would produce more useful results more quickly than Banekassey.)

Due to the construction of these generators, there are three paunisiatve can easily inject
additional material into the mechanism. The three points where élyidenaccomplished are
indicated by the boxes labelegl s andy. In the cases af andg, simply inserting bits into the

buffers for the component PRNGX>and <> will result in overall aperiodicity for the

113

mechanism, though we are also free to apply any kind of mixing function to thepuadce
injection. However, it is simple, and quite effective in achieving apertgdio simply inject

bits at eitherx or # on a regular basis.

While yindicates that we may also inject material intostadecomponent, the means of
injection is not into a stream of bits. Instead we must replace lstateor perform some form
of hashing of the injected material with the state, in order to obtantethe=d effect. As the goal
is to simply inject aperiodicity, any one of the three locations has iitsirimrt we need use only
one. The one selected in the discussions in Chapter Il was at the peled lakand merely

insert the injected material into the bit-stream.

Selection of this point (into theXs bit-stream atx) and this method for injecting material into
the mechanism provides one additional useful feature to the mechanismigmheat of bits
between the X> and <> inputs will be shifted relative to each other each time material is
injected into (or we might say “appended to”) the buffer holding outputs fXsm ¥hile we
will not discuss the benefits of this in detail, we note thdtatna manipulation of the relative

periods of > and <> with respect to each other.

The mechanism as described is used to implement the PRNBZndC of the protocol. A

further change is introduced in PRNICof the protocol. In that generator, we dispense
completely with the X> and &> component PRNGs, and use random material derived from the
bit-stringr as inputs. Since this material is random, there is no need to imjeapariodic

material ate, S or 3, and therefore none is injected.

Returning now to the protocol itself, the random bit-stritgused to inject aperiodicity into the
B andC PRNGs, and indirectly into th® PRNG, all three of which conform to the structure
described above. But, as we wish to maintain good cryptographic strengthithesanot be

communicated as plaintext. Thdsis used to generate a Vernam cipher &ewhich encrypts

114

as the ciphertexdxr. And, as previously noted, we can also regead being encrypted by the
random bit string. Three bits of are used to select 32 bits fram(providedm s long enough)
to be used to inject aperiodicity inkoin a subsequent iteration of the cycle. We can visualize

this via the following diagram.

From Alice: axr
) 4 r
D .
ANV ”
a A '
15 bits
A > » B
14 bits
» C
v 3 bits used later for indexing

into bit-string m.

Injection of material from axr into PRNGs B and C.

In the above diagrana, r andaxr are shown as being composed of 4 bytes each, but we could as
easily scale these string lengths to any desired length, to eitleeupaar scale down the
mechanism, allocating bits for injection and indexing as required by theietbsiiale. The

point is thatB andC are made aperiodic by these injections, regardless of scaler srace

random bit string, and thus aperiodic.

The processing of bit-strindsandrp by Alice to generate the bit-stritxrp is straight-forward,
as is the processing bfandbxrp by Bob to extract thgp Alice generated using her non-
deterministic RNQR. The second operation is merely undoes the first, so that both Alice and
Bob have the same bit-strimg, with which to continue the process. This is illustrated by the

following diagram.

115

p

NSNS EEEEEE NN EEEEEE
)4 bxrp
g}—ﬂIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
N

b

NSNS EEE NN NN EEEEEE

bxrp

NSNS EEEEEE NN EEEEEE
) 4 rp
é}—ﬂIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
N

b

NSNS EEE NN NN EEEEEE

The relationship between b, rp and bxrp.

The above diagram is trivial, but should be recognized as a standard Vgrham & is useful
to recognize also that the trio of bit-stringsrp andbxrp, are such that an XOR of any two
produces the third. The same is true of the bits-stengandaxr. These facts are the basis of

the adaptation of Protocol A into Protocol B.

As will be discussed in the following section regarding Protocol B, the whygete of Alice
sending the bit-stringxrp to Bob is so they can both end up with matching bit-stripge/hich
they can then further process to eventually agree upon bit-ktrihgus, it doesn't really matter
whether Alice generatep or bxrp using her hardware RNG. If she skips the pre-processing of
rp to obtainbxrp, and instead generates a randodrp, then follows Bob'’s steps in the procedure
to generatep, there is no practical difference in the result, thought he actiegddits will

differ. The agreed bit-string will still be random and stillessgd upon by both Alice and Bob. By
the same reasoning, whether Alice generates a random bitrstoing random bit-stringxr

makes no difference in the result, so long as she produces the satniadpitthat Bob will

generate fronaxr.

116

The further processing of the bits in bit-stripggets more complicated to visualize. The bit-
matching process used in the protocol discards some number of bitpftombtain bit-string

m. Assuming PRNQ produces an essentially random bit-strinthe process will, on average,
discard half the bits irp. But, that is only an average. Since it is more convenient to deal with
groups of bits, such as bytes (8-bit octets) or 32-bit quadlets (4 bytes)nsorber of bits, from

0 to 7, with be discarded from, so as to yield a string of bytes. While we could miro an

even multiple of 16 bits, at this point, planning as we are to use what is kfvisg from each
end, it is useful to remember that instead processing from the ends andinijsagrossible

“odd” middle byte adds a small factor of uncertainty to the process, andaintyeis what we

want to inflict upon any attacker. The following diagram illustrétesprocessing dixrp to

obtain bit-stringm.

bxrp
B (I IIIIIIIIILI |
v b b 4
[|——->€9
p 4
C [|
\ 4
vy ¢ bit
[>
match
\ 4
(I |
> 4
m

A 4
LE1T 1101]

Processing of bxrp to obtain m.

117

As may be seen in the above diagram, the processing of the lipitpimses the outputs from
PRNGSsB (bit-stringb)andC (bit-string c) directly. The states of those two generators were
altered as a result of the processing of bit-staxig in the manner previously describe, by
injection of the bits from bit-string/block as previously shown. Also, it can be seen that bits are
extracted following the bit-matching process for use in alteringttite sf PRNGA. None of the

bits so used are used for any other purpose.

As the bits extracted fromp are random (and therefore aperiodic), and selected after the bit-
matching process applied usily and match the amount of materialAis <X> sequence
required to generate the nexblock, successiva blocks are an aperiodic sequence, and are in
fact random. The sequence is thus encrypted with a Vernam cipher that possessess siriea
of the characteristics of OTP, as bit-stranjas unbounded linear complexity. While there is a
very small probability thatn will not contain sufficient material to re-seAdthe probability is
believed sufficiently small, and sufficiently difficult to det@t the routine operation of the
scheme, as to be secure, despite the fact that it means that émeryption is not a true
homologue of OTP. Part of the confidence in this lies in the factht@atistributions of
probabilities for all possible lengths i given thab andrp are 1024 bits in length, means that
there will likely be many thousands of iterations of the cycle beferbabkup PRN@ will be
invoked. Outside the occurrence of that eventattrencryption is very OTP-like, as it involves

a random key-stream.

Assuming random behavior in the bit strityghe probabilities of the various possible lengths of
min bits is found via the binomial distribution. On averagsyill contain 512 bits, ignoring

truncation to byte bounds, and the probability that there will be 96 bits or femerthe order of

614x1077.

118

While theB PRNG/generator is not random, it is aperiodic due to the injection oftthiedn

the random bit string, at the start of each cycle, and thus has an unbounded linear complexity.
Further, the state @& at the point before generatibgbut after insertion of bits from is

effectively a randomly selected state out Bfssible stateB could have been initialized in.

Still the encryption ofp must be regarded as inadequate for its immediate use as the agreed bit
sequence, at this point, since direct use of these bits would allow dvagptanalysis of thé

bit string. (We choose to assume the worst: that, if we applied noosmddiithyers of protection

to the process, an attacker would eventually obtain samples of matctprandk bit strings, a
match between plaintextp) and ciphertextixrp) would reveal the Vernam cipher key).)
Therefore, we apply the additional major steps of bit-matching to discard ydaihbf the bits

in rp (using theC generator ani bit-matcher to obtaim), extracting (in the vast majority of
cases) 32 bits from tha sequence for use in tihegenerator (the bits extracted fromare not

used further in deriving the agreed bit strinig the present cycle), and finally performing a bit-

blending operation on the bitsim usingD, to arrive at an agreed bit-strikg

The bit-matching process, usittge bit-stringc that PRNGC generates, discards half of the bits
in rp, on average. Unfortunately, the bit-matching process means thaisthérigh correlation
between the resulting bite)(and the output of generat@r All the remaining bits itm match

bits in thec bit-sequence, largely in order. But, several factors obscurathiBdm an attacker.

First, the attacker does not see it string in unencrypted, unprocessed form, since it is
transmitted encrypted by bit stritbg As previously observed, bit stribgs, until the bit string
produced using it is known to the attacker, effectively encrypted withRa(€ificerp is random),
even asp is in turn encrypted by the Vernam cipher keyThis is believed to severely limit an
attacker’s ability to cryptanalyze it by forward analysis, pot#ytia brute force methods only,

as per Shannon [5], one guess is as good as another, in the absence of cogebvatatine.

119

We can also view the situation with regard to bit-stdmgversely. Bits irc are selected at

random by the bits irp, or bits in stringp with random values are selected pseudo-randomly by
bits in stringc. Further, as shown in the previous chapter, the number of bit-sequendbgtairs
can produce the same matched bits displays factorial growth as the numiesobjeicted to

the matching process increases.

Another complicating factor is the bits from bit strinignjected into thexQ buffer of C (holding
output fromC’'s <X> generator). As these bits are random, they introduce aperiodicity,int

with the result tha€, like B, has unbounded linear complexity.

Finally, there are the matched bits either discarded as insuffioiennstruct a full byte or
extracted for use iA. If the number of matching bits between stringsdrp are not congruent

to 0 mod 8,m| mod 8 bits will be discarded at the end of the matching process asngppéasi

of a complete byte. If, after the extra bits at the end lbve been discarded and the re-seeding
bits to be used witA have been removed, the length of the modified strifggan odd number

of bytes long, a further eight bits will be discarded from the middle ahtsieing. These are
never seen outside the operation of the protocol, so that an attacker wilbmowkether any

were thus discarded, nor are their precise origins within bit sting

Extraction of the bits to be injected into th@enerator is performed using the highest order bits
in r (bits 0 through 2). Since this extraction occurs after the matching priweb#ts extracted
from rp are not consecutive np, or are at least extremely unlikely to be consecutive. Coupled
with the randomized point of extraction fram an attacker is left with the problem of
determining both the values of the bits extracted and their origihswyit, and further increases
the spurious solutions that must eventually be recognized as such before aelefiyptianalytic

solution can be accepted.

120

An attacker may simply guess the values of bits used in the/ceasseding processes, but this is
a brute force attack. While a brute force attack with a complexity’ aa@not be regarded as
particularly difficult, its multiplicative effect on any hypothesizéthek on other parts of the

scheme faster than brute force is likely to be significant.

One issue, previously mentioned, with regard to the extraction of the bésrigtted intdA is
that there is no guarantee that there will be enough bitdanprovide the required bits at the
location specified by the bits from The fact thaf has a defined but randomly re-seed&d <
generator means that the deficiencies will be made up by that gepnanatdurther that the state
of the <X> generator is at least marginally relevant to the cryptasatfshe overall scheme,
though far less so than other constituent generators. The entropy of thatgénseed and

state are not wholly lost to the overall scheme, however margin#feits.

The final step in the process is the bit-blending of the two halves of whaingofm. As the
two halves are derived from an aperiodic stream of bits, the blending pwidegeld a bit
string that is aperiodic and has an unbounded linear complexity. On avheage]d will be
about 232 bits (or 29 bytes) for every 1056 bits of random material tibedfollowing diagram

completes the illustration of the overall process.

m
I I O [

D [
k

—> T,]

Generation of bit-string k from bit-string m, using generator/PRNG D

121

This last step uses the reduced bit-strimgvhich is the product of first discarding half of the bits
in bit-stringrp, then trimming to arrive at an even byte length. Now, due to the fachéhfnal
reduction using generatbr operates on bytes, a further bytarofay be discarded from the
middle, ifmis not an even number of bytes in length. And, we again note that, sinds ithe b

the trimmedm are random, the output frowill also be random.

The entire process described in Protocol A is deterministic. Yetygethe data processed is
random, the effect of the process is to map a pair of random bit-striagdrf) to another,

shorter bit-stringK) while preserving the randomness of the bit-strings that served as input.

It is again observed that Protocol A can be modified to achieve the sanfiewithout the pre-
processing performed by Alice in steps 1 through 4. This is a direct rethdtfact that andrp

are random bit strings.

In any correct implementation of OTP cryptography, the strength of trensgerives from the
fact that a random bit value XOR’ed with a non-random bit value resutsandom bit value.
The ciphertext produced is an encryption of all possible plaintexts eathe length, with equal
probability. XOR’ing the ciphertext with the plaintext produces the maigiandom key.
Changing the perspective slightly, if we treat the plaintext as a Veripdrer key used to encrypt
a random bit-string, XOR’ing the plaintext “key” with the ciphertextjuaes the random bit-

string.

If Ris used to generasxr andbxrp directly, both Alice and Bob can treat both in the same
manner, starting with Bob’s handlingafr in step 5 of Protocol A. This change results
in the flow of operations illustrated in the following diagram, which irgegg the pieces

presented above.

122

v axr
L1l
v -
E}—N .
A
» A4 —{11T1]
a
L bxrp
B T T T]
v b Y
LTI |——>€9
P) 4
Ly ¢ (I IIIIILI]
\ 4
v € :
LTI »| Dl
match
\ 4
EEEEEE L
m) 4
EEEEEE n
Py
|—>é|:|:|:|:|

Flow of operations and data in Protocol B

Formal description of Protocol B must be provided, and follows here.

Protocol B

1. Alice generates a random bit string of laits, of 32 bits, and a random bit stribgrp, of

1024 bits, using random number gener&oand sends these to Bob.

123

. Alice and Bob pump their respective copie®\dab obtaina, then XOR this withaxr to
obtain the bit-string.

They insert the lowest-order 15 bits frorimto their respectiv&Q buffers of their copies
of B.

Both pump their copies & to obtainb, and XOR this wittbxrp to obtainrp.

They insert bits 3 through 16 (14 bits)rahto thexQ buffer of their copie€, and pump
these copies df to obtain matching 1024-bit blocks

They useM to do a bit-match selection of bits usimgndrp, producingm, which they
truncate as in Protocol A.

Provided there are at least 12 bytemjrithey use bits 0 through 2 ofas integeo, to
select 32 bits, starting afl — (0 + 4)]. These bits are removed fromand inserted into
thexQ buffer of their respective copies Af Otherwise, they use th€ backup
generator foA to satisfy the requirements for pumping that PRNG.

Both Alice and Bob split their copies ofin half as in Protocol A, and feed the first half
into D as the X> sequence stream, and the second half asheseguence strean is
pumped until the X> and %> sequences are exhausted (they meet in the middigtof
yield the bit string.

. Alice and Bob repeat steps 1 through 8 until they have as many bits of agyeed ke

material as they require.

Note that in step 1 of Protocol B it isn’t necessary that Aliceegee the random bits faxr and

bxrp. “Generate” can be loosely interpreted as “selects,” with complstddm to use random

bit strings from any sources she chooses. The sole requirement iethatjtiences selected

must be random.

As for the use made of the end product of the process (bit-Kjritiee Alice and Bob may make

any use of it they wish that requires agreement on a set of randomHigsnay be as session

124

keys, message IDs, or anything else desired and appropriate actoritiagecurity

requirements of the application, and the relative strength of thetcenstsX> and <>

sequence generators used\jmB andC. This includes use &fas a Vernam cipher key-stream, as
a block cipher session key, or as updates to the “counter” when using bloakcoiphter mode.
(See Appendix A regarding counter mode.) Such applications will be subjectrégtitements
and restrictions described in Chapter I, and according to the to-be-detertrémegthsof the

protocols described here. Discussion of the strength of these protodeltiwith in Chapter V.

Issues Not Covered or Briefly So

A number of issues regarding the above protocols are not dealt with in this abcum@ng
these are the means by which the transmission abthendbxrp bit-sequences from Alice to
Bob occurs, including how assurance of successful receipt may be obtathedyathe initial

seeds or states for the various components come into possession of the cangspond

As far distribution is concerned, we can simply assume distribution of tla atitte, or a set of
initial states allowing re-initialization at some prescribedrvals. While the volume of material
that may be distributed and used as OTP key material is now much dgnaatar the past (on the
order of terabytes, with distribution via a disk drive, at present) iraaltideo applications must
still be recognized as capable of consuming that OTP materiaht making such distribution
impractical. Repeated such distributions create security probleimsiriotvn right, while single
distributions are less risky. As the presented mechanism alloltgmeaeplenishment of
agreed random bit strings, if it proves sufficiently secure, it will tendihimize that original

material problem relative to the long-term operating costs.

Another issue not covered is the selection of the component generators td,ld®eysad some

basic observations. The protocols above are not inherently tied to anycdpB&NIGS in roles as

125

the <X> and ¥> generators of\, B andC. Any PRNGs that satisfy the requirements of the

target applications may be used.

The overall performance of the protocols is highly dependent upon the camsB®RNGS, and
how those PRNGs are implemented. While the core mechanisms arehekkficient, and their
performance is discussed in Chapter V, the performance of an implemeatatiese protocols
will tend to be dominated by the performance of the constituent PRNGsyfatyi if these are
slow. For example, use of software-based Blum-Blum-Shub (BBS) gerseoata single
processor will yield very slow performance relative to highly paraddlhardware
implementations of efficient generators such is LFSRs. Such coat#iiehs are discussed only

briefly in the following chapter.

Finally, though an implementation of Protocol B is provided in Appendix C (les®tuisite
RNG R, which must be a hardware solution), this is provided primarily as bhaddor the
overall scheme, and thus does not use particularly strong PRNGs asieahgéinerators. That
implementation is used to verify correctness, not as an in any sense ‘onghuiaplementation,
just as the explicit integer values used in the above protocol descriptgrise altered in any

extrapolation of the overall scheme.

126

CHAPTER V

ANALYSIS AND CONCLUSION

In cryptography, there is no point to proposing an algorithm, protocol or anythingigteut
offering some analysis of how that proposal addresses a cryptographenprdble to the
character of cryptanalysis, which is as much an art as a science, reisaimaly tyro in the field
can be regarded as conclusive, particularly as even the best effateasoned expert can miss
salient points that may prove fatal to scheme [14][25]. Only when a rigimounal proof is

given can a conclusion be reached, rather than an inference.

Claude Shannon'’s proof [5] that a One-Time Pad (OTP) provides perfegp@maiyg a rare
exception to the general rule that cryptographic systems do not have rigosotssof strength.
Many cryptographic algorithms for which any type of proof exists rely upobDitfie-Hellman
conjecture as a fundamental premise. If that conjecture can be shosvfatsebin any such

instance, the proof is refuted, and the algorithm may well prove to be weak

Shannon’s proof of OTP’s strength is a major reason for the structure pfdsent scheme.
Rather than rely upon a conjecture that some of the various aspectsaifehe constitute
“hard” problems, it is believed that incorporating a problem that is demabhstmpossible is a
better approach and will lead to a stronger argument for the schereagist even in the

absence of a formal proof of the security of the system as a whole.

127

The “hard” problems relied upon by many cryptographic systems are based chredegiven
unlimited time and resources. Such problems include the factoring of vgeynkambers,
determining discrete logarithms, etc., as previously discussed. Tdesadt been proven to be
impractically hard. They are simply presumed to be so, based upon the presesiamaing of
these problems. In contrast, OTP is provably impossible to break, given @ coplementation

and proper operation.

Use of an OTP-like construct in the protocol does not imbue the protocolexititiion. In OTP
ciphers, the attacker can never say with certainty whether a partioggéogram used a
particular OTP key if the key and the plaintext are destroyed as reédpyitbe implementation
described by Shannon. In the present proposal, we must assume, as per a strong form of
Kerckhoffs’ principle [3][4], that an attacker will eventuallgdw both theaxr andbxrp bit-
strings transmitted as well as the resulting bit stkingSee Chapter IV for descriptions of these
and other portions of the protocol.) The random bit sequence used tokderiatent within any
copy ofbxrp, and is derivable froraxrp if the derived bit-string is also known. Likewise, the
material latent within thexr bit-string may potentially be derived from the agreed bit-string. The
cryptanalytic question is therefore whether an attacker possessiegstiastantial clues
regarding the state (or key) to the agreement mechanism can deristathditom those bit

strings in a way that compromises the scheme, given reasonably aaltilgpasources and time.

Thus it may be seen that we cannot claim strength of mechanism simplgdsenting that, like
OTP, we start with random bit-stringgindrp (or axr andbxrp, in the case of Protocol B), and
therefore are perfectly secure. Rather, we can say we have a firmtfonddaparts of the
scheme, but must show that this security is not fatally compromised by letinenés of the
system, and must justify claims of security in the remainder of tihensyat least within the

limits of the author’s knowledge and experience.

128

To claim at least some strength, we must show that the element of Shasroohthat applies is
the entropy continually injected by use of random sequences, and that, coupled with the
combinatorial problems posed by the scheme, this entropy is not wasted, thatdluof g
problem left an attacker remains sufficiently intractableafsufficiently long period between re-

keying, that there is an acceptable level of risk associatbdhetscheme.

Note the distinction between re-seeding and re-keying. Re-seedingi®tess by which we
inject new, random material into the various composite generatorst as e normal operation
of the mechanisms. Re-keying is the replacement of substantial poftibesowerall state
outside normal operation. Re-seeding is a continuing regenerative gratdssntended to
make a cryptanalyst’s problem of identifying the mechanisms internalnstae difficult by
removing periodicity, and occurs within the operation of the protocol. Redkést least with
complete state replacement) forces the cryptanalyst to stafrowvescratch, and occurs outside

the operation of the protocol.

Having said all this, it is important to reinforce one truth with réga cryptography: it is
exceedingly easy to be wrong. Two highly relevant quotes are worth offerang Hee first is
from David Kahn [14].

“Few false ideas have more firmly gripped the minds of so many ietligen than the
one that, if they just tried, they could invent a cipher that no one caeddt.br

The second quote is from Bruce Schneier [25], the first sentence of wkicbia to be known
as “Schneier’s Law.” The latter two sentences are of particellwrance here.
“Anyone, from the most clueless amateur to the best cryptographer, caracreate
algorithm that he himself can’t break. It is not even hard. What is hamrehbiing an
algorithm that no one else can break, even after years of analysis. Anéytheyio
prove that is to subject the algorithm to years of analysis by the pp&ignaphers
around.”

Given the time and resource constraints of a thesis, this protocol Haesenatubjected to the

years of analysis by the seasoned cryptographers who might provaritdeivorth or

129

worthlessness. It is the intention of the author that it will be sulzhfdtefar more extensive

analysis, above and beyond anything the author is presently capable of.

What is believed of the presented protocol by the author is thaiimposed of parts that have
merits, as well as flaws, that the flaws of the individual comportevis been, to the best of the
author’s ability, addressed by the other parts, but not that the scheméhate is therefore
sound, cryptographically strong and secure as a result. Rather, it iebehavit demonstrates
some methods of worth, and that these may be further refined and developed, divéaethe
inherent difficulty of cryptography, and of designing good algorithms and pitsfake author
will be pleased if any part of this protocol is carried forward imtidbep, stronger solutions in the
future, and thrilled if it is shown to be robust with minimal changes. Bupr#sent problem is
to show that care and good thought has gone into an idea and its implementatiort,taed tha

result is worthy of further study.

Apparent Randomness of the Produced Bit-Stream

The first consideration to be addressed is whether the scheme is cdpidieering what it is
intended to provide: an agreed upon string of apparently random bits shared by twve or m
parties, wherein the apparent randomness is sufficient to afford seshefleecurity from their
use. That two parties will, given identical initial states and algost end the processes
described with agreement upon strings of bits is here regarded as thaeit iermal proof. The
processes described here are deterministic. Apart from re-keyingyddhnaess incorporated in
the scheme is shared completely, leaving no window for divergence apart ftem &yglts or
external interference, both of which lie largely beyond the scope of this.t{&&-keying is a
separate process not dealt with in depth here.) This leaves the moéstizat is meant by

“apparently random.”

130

In the present instance, by “apparently random” we mean that, taken byliselfireed upon
bit-stringk produced is such that given any prefixate cannot predict with much greater than
0.5 probability of being correct the next bit in the sequence, and given amyddkffive cannot
infer with much greater than 0.5 probability of being correct the value oftttiabimmediately
preceded that suffix. In other words, we must show that we cannot distikgrosha truly

random sequence of bits. The demonstration of this is in two parts.

The first is via testing multiple output strings from the algorithmgisin implementation of the
BSI AIS 20 test suite. While numerous other test packages could have begheudedision
was to limit testing to a single, well-understood package. If this¢aot passed, no amount of
theoretical argument can substitute for the failure. The outpuesces from 10 runs of 64

blocks all passed, giving reasonable assurance of at least mipjpaaéat randomness.

The second part of showing the result is apparently random, given random spatgd in
theory. It can be summarized in a single statement: The resultingrgtksis random, provided
the input strings andrp (or axr andbxrp) are random, precisely becalkss derived from them.

This is a very unsatisfactory assertion without some support. An iaf@noof is as follows.

Theaxr andbxrp bit-strings may be regarded as either random bit strings in theirighatr(in

the case of Protocol B) or as the product of the exclusive or (XOR) of a ratdogs of bits

with pseudo-random bit-strings of equal length (in the case of Protocol #Aper®Shannon [5],

the XOR operation preserves entropy. Thereforeandbxrp preserve entropy, or randomness,
regardless of which protocol applies. The first step of the prooedsothaxr andbxrpis an

XOR of the output from a PRNG with the subject string. As the irikabndbxrp strings are
random, the results preserve entropy and are putatively random. (In the Bas®@adl A, at this
point we have recoveredandrp, which were random in the first place.) In the next step dealing

with therp string, the output of yet another PRNG is used to select bits based upoanalue

131

position, yielding then bit-string. As the value of each individual bitrinis random, and its
selection or non-selection as output from this step is determined by tieeofahat bit, the result
is again random. Alternatively, we can view the process as using tlirerpit® randomly select
bits inb, which is itself a random process and logically identical to ustegselect bits in the
random stringp. In the third step of processing, now dealing witlyet another composite
PRNG is used, with the bit-string used to provide its feeds. As these bita are random, the
output bit-string), which is the result of selecting four-bit values based upon thods, fegh

equal probability for any bit in the output being a one or a zero, is itsEldM.

However random the resulting bit-strikgs, given randonaxr andbxrp, the system is
deterministic relative to both the state of the mechanisms and the ififngse is an important
distinction to be drawn here. So long as the result of a sequence of opefepends solely on
the initial input and state, which are random, and any change to the inpateaesults in an
uniform probability of change in the output (each bit in the output has a 0.5 fitglmdb

changing), the result of the process is apparently ranbolarihe process itself is deterministic.

One way to think of this is with regard to a periodic PRNG. If the skgsdch a PRNG is
randomly selected, with uniform probability for all bits, we have in effeleicted a random point
in the output sequence of the PRNG via the random selection of the iaiigal sissuming a
sufficiently long period with good apparent randomness, any portion of the PRN@s ou
sequence thus selected, taken in isolation, is effectively randomdgdavis no longer than the
seed, while the cycle generated by the PRNG is not random sincetérimided by the
algorithm. The entropy of the output sequence declines as the output seqoesa=es in length
past the length of the seed. This is why cryptanalysis is possibieri-OTP systems. Only in
OTP and its homologues is cryptanalysis impossible, and only because énprogserved,
never decreasing, throughout. Therefore, we must understand the processemlibdie

protocols and the implementation not as an encryption process, but as aisyrthestillation

132

process, whereby a pair of random input streams are used to generi bits aipparently

random in behavior.

Confidentiality

The next question that must be addressed is whether the result affofule usafidentiality

when the initial state of the mechanism is secret. This isdanthe difficult question to answer.
Again, by Kerckhoffs’ criteria, we must presume that communications arearexhiby an
attacker, and thus the attacker will have copies cfxih@ndbxrp bit-strings. Using a strong
interpretation of Kerckhoffs’ principle, we assume not only thaateandbxrp bit-strings are
known by an attacker, but also tkbit-strings that result from processiagr andbxrp
sequences, and that the real task of the attacker is to determimiethal state, or key, of the
mechanism associated with a givea/bxrp/k triplet. Once an attacker has determined the state,
the subsequent output strings can be determined by the attacker upon reegjpenfialxr and
bxrp strings. Therefore, as per Kerckhoffs, the confidentiality of thesymust derive not from
the secrecy of the scheme, but from the key, which is in this case thestaitéabf the

mechanism, and the difficulty of deriving the key from the input and outputrioi¢;s.

The most vexing problem in the analysis of any cryptographic scheme tisetigpes of attacks
that may be developed in response to a new algorithm cannot be readily prediapach K
attacks can be analyzed with regard to the scheme being examined, but notruakdgwet-to-
be-developed ones. There are many extant attacks in literature, thoagbpltbability of any
one to a particular scheme varies dramatically from extremelgtigtico wholly pointless. This
fact has contributed significantly to the design of the scheme preséiitedntent has been to
rely only upon simple mechanisms that are relatively easy to analyze ardradevoid of
reliance on any form of Diffie-Hellman conjecture, or even upon matherhagieeations, as

practical.

133

The most basic form of attack, brute force, must be discussed when analyzargographic
system. Correlation issues must be considered when a scheme entaitypleey between
component PRNGs. Periodicity, specifically with regard to the Berlebdagsey algorithm,
must be addressed when dealing with deterministic systems of PRNGgemiffieattacks must
also be considered, as non-uniform probabilities associated with the dredfeamn algorithm, or

resulting from the composition of the data structures used, can be effetdihal to a system.

Some forms of analysis and attack are avoided by the fact thatrbisascipher systemper se
There is no encryption of a plaintext to form a ciphertext. The progesseéntially a decryption
process that derives the output strkfgom the random input strings, based upon the secret key,
which is the initial state of the mechanism. In particular, the atthing process, in discarding
roughly half of all bits irrp, is not reversible so thgh can be definitively derived frog even
though cryptanalysis may well allow eventual determination of the ttat maps andrp tok.

The scheme provides means by which two correspondents may agree tripanad apparently
random bits in what is intended to be a secure manner. Ciphers are usacctmfidentiality
through obfuscation of the plaintext encrypted. Plaintext generally inctep@ame degree of
redundancy in the message itself: the components of the plaintdrttieekach other in ways that
help to ensure the understandability of that plaintext by its intendigiergc Also, a cipher
system must provide means, some inverse function, utilizing either aetsimkey or a member
of a key set, to decipher the ciphertext and recover the originalg@daimessage. Here, we wish

to preclude such inverse operations as far as is practical.

In certain senses, there is a “messagegl &ndbxrp together, and ultimatelk; which is derived
from them) embedded within the material transmitted by Alice to Bob. Thatso redundancy,
in that a significant number of bits are discarded fbomp (and derivatively fromp) as it is
processed to determitke These discarded bits are redundant in a different sense than extra

information contained in ordinary plaintexts. Their contribution to ttiegk is their non-

134

participation, obscuring the point of origin of the bits withikup, that are used to generate the
output stringk. Their non-participation also helps to determine the length ahthiéstring.
This being the case, it should be possible to determine the unicity disfaheeencrypted

“messagek.

Given the definitionlJ = H (keyspack D, whereU is unicity distanceti(keyspacgthe
entropy of the keyspace aBdthe redundancy of the plaintext in bits per character, we can
observe certain facts. First, the “alphabetk.ahe putative plaintext, is binary digits. Second,
H(keyspackis non-zero for any keyspace that is non-empty if individual keys aeteel

randomly.

The third observation is more complex, but critical to the analysis. Wlaaove is referred to

as the redundancy of the message, the meanings of both “redundant” and “messadpe’
understood clearly. Obviously, the bit-string the message Alice wants Bob to receive, as well
as possess herself. But, Alice does not select any sgecHather, in using randonfrp (or
axr/bxrp), she randomly selects one of the possible outputs from the mechanism, given the

124 !
current state. This means that there are putatiE(Qg) distinct possible outputs from which
i=0

Alice is randomly selecting for eachp block.

As regards redundancy knit is simplest to consider more typical messages. In human
languages, particularly in their written form, much of the matedaVeyed, is in excess of the
minimum required to convey meaning, but is present in part to reduceudtykigd improve
understandability. This gives us such things as the distinctions betese/ords “to,” “too” and

“two,” as well as the difference between the definite artidle™&and the indefinite articles “a”
and “an.” This is constructive redundancy in the sense that the exagasaitidn helps to

confirm the meaning of the text by a human reader. It also provides “aid and ¢amfort

135

cryptanalysts by reducing the range of distinct, meaningful messagesaghberancoded in a

given number of characters in a “human” language.

In the case of thk bit-string discussed here, there is no constructive redundancy. i3 nere
redundancy of any kind. Each bit is independent of the others. Changing any onedasdha
message, and depending on the use makiecah completely alter the results. For examplle, if
is used as a session key for a symmetric cipher, such as AES, the ciplestikixig from that
single bit change will be substantially different from that produtleout that change ik So, if
we consideD in the definition of unicity distance relative to tkbit-string,D = 0. Taking this
view ofk, the limit asD approaches zero in the above framing of unicity distance is infinity, for

any non-zero constahi(keyspacg

The next question is then, “What is the valuél(feyspacg” In part, the answer to that is
simple. If the initial state is randofd(keyspack=n, wheren is the number of binary digits in

the key (for binary keys) or lgtkeyspack making the problem determining what constitutes the
key, and thus its length. That depends orr thie-string, the implementations and states of the
generators used as constituent8 @indC, the state vectors of th& C andD generators, as well

as what of that material is secret, what known.

Note that the states PRN&s constituent generator are not considered in this, nor Sttte
vector ofAitself. This requires explanation. As the probability that bingtn will be shorter
than the re-seeding threshold is very low, 32 bits extracted from bitestring will usually be
used in lieu of the output of one & constituent generators (th&>generator), the output
from A (the bit-stringa) is in fact random. Thus, bit striragr is random with regard to both bit
stringsa andr. By this we mean that, sincés random, and theXs input string to PRNQ@\ is

also random (making the output from PRKR®@andom), and the bit-wise XOR of bit strings

136

andr preserves the entropy of both, bit strag retains the entropy of both bit strings, and thus

is as random as either.

Without some additional information regarding thend the re-seeding 32-bt re-seeding bit string
taken fromrp, there appears to be no effective means wheagbgan be cryptanalyzed more
rapidly than simply guessing what bit stringhay be. Even if th& composite generator's&
generator were invoked with some regularity, the problem of cryptanapyssies to remain
difficult, though aggregate state of PRMGvould start to contribute in a more conventional
sense to the effective key length. Fortunately, invocatidXisofX> generator has been found to

be very rare.

From such considerations, it is believed important to any alternatplerimentation of the

overall scheme presented that varies the lengths of the variesigrigs that the probability of

not re-seediné frommremain low, and that the number of re-seeding bits equal the length of
This will likely mean tha®\ does not play a direct role kt(keyspack when considering the
cryptanalysis obxrp andk. An attacker need not cryptanalyaea, only guess the effects on the
states of th® andC generators, or, if the mechanism proves weaker than intended, derive the

values obtained froraxr based on cryptanalysis lokrp andk.

This may be considered a flaw in the system, but it is believed thatstridptinue to inject
entropy into the system with each cycle, at least until a solutids\, f© andD has been found.

At that point, with the re-seeding bits fArevealed before the next cycle, the process of breaking
A can begin with good effect. It is therefore believed justifiable thatigh the state & is part

of the key material for the overall system, it can and should excluoieddetermining the

effective key length in determining the unicity distance with redpdwotrp andk, if for no other

reason than an abundance of caution in that determination.

137

Unfortunately, such analysis is not very revealing with regard to thalbegyptographic
strength of the agreement scheme. Unicity distance is an indication of hdwnraterial must
be successfully decrypted in order to be certain that the key used is tt key: With the
assumption that an attacker will eventually obtain significant sesygdltheaxr, bxrp andk bit-
strings, the fact that the function that tak&sandbxrp to k, given some specific initial state,
means that we must expect that, with unlimited time and resources, &erattdiceventually be
able to determine the initial state from a sufficiently large s#tesfe bit-strings. But, under the
specified assumptions, this unbounded value indicates that, if all é&misto be reasonably

secure, a certain amount of uncertainty remains for quite some time $olatipn process.

Having raised the question of redundancy, and observed that there is redundanbyripliiie
string transmitted by Alice to Bob, we must account for this reladivhe Unicity distance in
some manner. The problem with incorporating this redundancy in the calcigatian though
we may regardxrp as a message, it is ciphertext, not plaintext, and as much of it will ubeally
discarded, the redundancy is not constructive in the sense of making theexplastringk more

easily understandable. Therefore it believed that it plays no fadtoe Unicity distance.

The distribution of lengths dfdepends directly on four factors. The first is the selection process
from rp using theC generator in the bit-matching process. Assuming the process is random, with
a 0.5 probability for selection of any one bit, the resulting bit-strimgll display lengths that
conform to the binomial distribution. At this point, the second and third factors oo play.

The process of selecting the re-seeding bitg\feamoves some number of bits (32 bits, in the
present implementation) if the total lengthnofs above a threshold. This process requires (for

the sake of simplicity in the presented implementation)rthiaé truncated to a length congruent

to 0 mod 8. Thus, 32 bits, plus 0 to 7 bits are discarded or otherwise removed at this point
Finally, the bit blending that occurs as the final step requiresn(&wasimplicity) that only an

even number of bytes from tihebit-string be used in generatikg This results in “discarding”

138

either 0 or 8 bits. Any exact calculation of the average |k| must adootim:se factors, but we
are left with the fact that it is only an average, and that we wlilsse a “binomial like”

distribution of lengths, predominantly about the mean.

If we examine carefully the contribution discarded bits make to theityeatithe scheme, we
return to the following equation, first introduced in Chapter Ill, which giventimeber of

possible ordered bit-string pairs that could produce a specific bit-strieggihn.

C=2 :] 9i-n

Now we are dealing with a specific instance. We know the actual leoigins compared input
strings, and the length of the resulting matched-bit string, and so are inog cetn a

summation over all possible input string lengths. Therefore, we can calt@aeact number of
ordered input string pairs that can produce the same result, ignoring foorttenirthat bits will

be removed frorm.

c (1P Dmerm
" ml

If there are matched bits that are omitted due to an incomplete byte at thettedhatching

process, the result is a little more complicated, as we have theifglow
_ Irpl=Im|
C = 2 :

whereo is the number of omitted matching bits, ants now the matched bits the attacker “sees”

as output from the matching process. Initially, an attacker will know nefteerumber nor the

139

values of the bits that matched but were discarded, though he may subsedghentiuess
them, or learn their values as a result of analysis. Thereforeaakeatwill have to deal with a
number of other possibilities, due to the additional bit omissions. The abovieaquay
becomes, in most cases, the following, once we have also accounted for the 32aloitsdefdr

use in PRNGA.

|rp |)
C ~ 2IFIOI 2KkH-3
P2K320 T 21k | +32+0

wherek is the agreed bits string, ands an integer in the range [0, 15]. (Note that the “+3” in
the exponent above accounts for the eight possible placements of the &gbandiflacements of
the 32 bits that are removed for use in PRAIGAIso, the calculated number of complementary
string pairs is no-longer exact, since repetitive patterns in thenrediere the 32 bits extracted
for use in PRNGA can produce the same results regardless of the exact segmene@jtrac
Now, an attacker does not initially know how many matches are noteapgdsn bit-string,

plus the very probable 32 bits used in re-seedirand the maximum number has increased from
7 to 15. Initially, the attacker knovks and thus its length. The number of possiple bit-string
pairs that could have creatkds thus the sum of cases whereanges from 0 to 15. As for the
placement of the excluded bits, he initially knows roughly where 8 bits maybleaweremoved
from the middle ofn, where any of the 0 to 7 “odd” bits were (at the end of the otherwise
matching bits), and the 8 places where the 32 bits injected wre originally inm (as a block

from the last 8 bytes an).

The overall probability distribution fok||is messy, thanks to the threshold question. For lengths
below the threshold for extraction of re-seeding bits, the tail functiainédbinomial distribution
is useful. Because it really matters little where and whetherezalogt from zero to seven bits are

discarded for processing, we can sum the probabilities of individuahkeofym prior to discard,

140

in blocks of 16 bit lengths. For example, the probability kliatan empty string is given by the
tail of the binomial distribution from O to 15 bits over a 0 to 1024 bit domain. Tapility
thatk is 8 bits in length is the tail probability from 0 to 31 bits minus the talbaiility from O to

7 bits, etc, up to the threshold. At the threshold and above there will be aoreddiet of
probabilities associated with four bytes removed for lengths greatetitdahreshold. Still these
disjoint probability domains can be calculated in a reasonably straighttbmanner, despite the

overlap. It just takes time and high-precision computations, when |rp|és larg

Trials using the actual implementation presented produces inforniagéiprover very large
numbers of blocks, may be expected to approximate the theoretical prgluhisitibution. Such
trials were run, with 1,000,000 1,056-bit blocks (bit striagsandbxrp combined) processed in
two separate runs. The average observed for these combined runs was 28s3p&ridylock

processed.

Consider now the combinatorial problem of the system in generalized tEonany given bit-
stringk produced by the mechanism with initial stgteve would expect that there would be, on
average r|Irp| / K| separate/rp bit-string pairs that would map to théit-string generated, since

the mechanism embodies a many-to-one mapping. In other words, we can thaekaf it
function f : GJMP* 5 GX wheresis the state of the mechanism at the start of a cycle, and
thus |s]| is the size of that state in binary digits,@nid the set {0, 1}. For a fixed initial stase
the mapping function becomes’ : GI**! — GX. Further, sincé& varies freely with each cycle,

given the results of two successive cycles concatenated withaificgi®mn of the boundaries

between the successikéit-strings, it is not possible to definitively state where the boueslari
between differenk sequences lie without knowledge of the initial state, even when theadybp
axr andbxrp bit-strings are known. Therefore, depending on hovk thits are used, it may not

be possible to isolate axr, bxrp, k triplet for analysis without knowledge sf

141

This consideration does not lead to a claim of additional strength, bebtmiton that we are in
reality determining a “lower bound” on the cryptographic strength (or “fifieudiy of reaching a
cryptanalytic solution”) of the proposed scheme, given the assumptionsegaading its use.
The most important of these are that the initial state of the mieahan its first invocation is
random, as are thérp or axr/bxrp bit-string pairs used as inputs, depending on the protocol used.
With the extreme interpretation of Kerckhoffs’ criteria, and tlseilteng assumptions regarding
analysis of the scheme, we believe a sounder argument for what stresigimeési can be made
thereby. We therefore assume that, given a set of plausible solutidrsskaown sequence of
communications and products, the spurious solutions will over time bea&tied as inconsistent
with subsequent products, resulting in increasing confidence in those thaat,rdaspite the
uncertainty imposed by an attacker not knowing the boundaries between sedcesgigs

generated.

Restating the above for clarity, since in practical applicatiaoregtacker cannot expect to know
the boundaries between succesgigequences relative to the correspondiagdrp sequences
communicated, an attacker must continually guess at the boundaries, oirdethennitial state
for the cycle so as to determine the boundaries. The number of plaugililenscht the start of
cryptanalysis will be significantly greater thamxrbxrp| / k| due to the combination of this
uncertainty and the random characters ahdrp. But, we choose not to claim additional
strength for the scheme based upon this, in order to derive what we reggabds eonservative
conclusion. It is believed that the system is bounded by the sixiglexrp, k triple, and that the
system can be no weaker than the difficulty of solvingaftrandc bit-strings used (and thus the
statesA, B andC) plus the contents of the state vectobofor a single/rp/k triple, as carried
forward through attacks on subsequent triples, barring some unfortunate andradeyaified

flaw in the scheme or the implementation presented.

142

Returning at last to the questiontfkeystrear and to reiterate the point, for purposes of
determining the entropy of the keyspace with regard to cryptanafy$ie derivation ok fromr
andrp, we regard the key of the presented scheme to be comprised of the cbstaies the
constituent generators of tBeandC generators, plus the state vector80€ andD generators,

plusr from the current cycle of the mechanism.

While the constituent generators are explicitly given for the presenementation, these are
mere examples, and are easily replaced. Selection of LFSRs for thieimiemtation is solely

due to their linear complexity being well understood.

Brute Force Time Requirements

While it is extraordinarily brazen to claim that a brute fortacktis the only means by which a
system may be successfully cryptanalyzed, no analysis of a cryptagsapbkime can ignore the
question of what such an attack would entail. If a brute force attackssffiotently expensive
in terms of time and resources as to be impractical, given the schagmpéitation domain, the

system must be regarded as insecure from the start.

What constitutes an inadequate problem from the perspective of someoneogsi brute
force attack changes with time due to improved tools and the resourceblaviailan attacker.
This can be seen in the history of the Data Encryption Standard (DES), andigte de a viable
block cipher in critical security applications [121]. DES was segotestially inadequate even
during the adoption process [25], as the effective 56-bit key length wasmetyed to constitute
a long-term difficult problem. Reviewers anticipated the development sy of sufficient
power and flexibility to render such a short key ineffective. Thanks trigp#re construction of
the DES Cracker by the Electronic Frontiers Foundation (EFF) [121] xibéx&ation was proven
correct. While the full breadth and depth of such developments cannot be@asigeh, some

assumptions must be made for analysis to be meaningful.

143

At present, the potential of quantum computing is still largely unknown. Anitlgoior

quickly factoring very large numbers into their constituent primes hasgseposed [26]. This
should be regarded as a cautionary warning for cryptographic systémedyttta presumably
very hard mathematical problems, and thus entail the Diffie-Hellmanatorge even though
there are arguments that the algorithm involves sufficient compoundingesmsrto render it
ineffective. Even if such counter-arguments are true, it should be reedghé if the algorithm
merely reduces the search space in factoring large numbers, it valiatigtweaken all systems
that rely upon factorization being a hard problem. The present scheme stag<mie-Time
Pad(OTP)-like approach. In OTP there is no mathematical relationstwwgen plaintext, key
and ciphertext that may be exploited directly. Absent such a potentiallytekfganathematical
relationship, our assumption is that, while quantum computers may radicaase the power
of computing systems, and thus decrease the time required to conduat tiblsite force
attack, there will be no algorithmic solution to the fundamental probletreadritropy of random
data streams that collapse the computational complexity from exponengidl.eénpowers of 2,
when dealing with collections random bit values, where brute force attarks polynomial

time or better.

This is much like the Diffie-Hellman Conjecture used in the proofs oftthagth of many
cryptographic systems, implicitly or explicitly. The differen@slin the fact that while the
associated mathematical problems of such schemes are presumed to be harrQ/EBly
impossible of solution when correctly implemented [5]. We therefore regigadae upon the
entropy of the inputs as reasonable cause to believe that quantum computdrafevas yet not
fully realized) will speed the process of performing brute for@ekdt possibly radically, but not

provide a solution to the problem of the entropy in random key materiates st

Again, with the assumption that the mixing tables used in PRNBsC andD, the attacker has

theaxr, bxrp andk bit-strings for one complete cycle (including the bounds ofidhidus an

144

arbitrary number of additional, contiguous samples of the three bit-sttiviggyh not necessarily
the bounds of the additioniabit-strings), and the taps used for the component generators, the
state vectors i\, B, C andD may be treated as the key in the specific instance, when we
temporarily ignore the states of the component generators. As such, washaaay bits of
secret key as there are bits in these state vectors (256 bitsjicardsfully guessing these
contents will “solve” the given instance of the scheme. The problem fottdoker is to
determine the plausible keys that associate the kiaswandbxrp bit-strings with the knowk
output bit-string, then eliminate the spurious keys (keys that appearkpbmbare not in fact

the key used) until the actual key is revealed.

Remembering the decision to deal withs key material (for calculation purposes) rather fhan
in its totality, we have 224 bits of key material to consider, having repBtdits with 32.
Taken at face value, this is a reasonably long key, and a brute-fordeugitaica random key of

this length can be expected to take a very long time, unless attackedetydagparallel.

To illustrate the time required to solve for the key, let us assumevéha@ive access t3°2

systems that can each te¥t &f these values per second. This means that it would t&ke??

= 2" seconds to try all possible keys. There are 60 * 60 * 24 * 365 = 31,536,000 seconds in
most years. This is less thafi,2he smallest integer power of two greater than the number of
seconds in a year. Usin§ 2s the number of seconds in a year, it would take 2° = 2'%°

years to try all possible keys. As the age of the universe is estintabe about*2years, it

would take over 2°/ 2** = 2" times that span to test all possible keys, given the above systems

and assumptions.

In more practical terms, we would have a 0.5 probability of successfulbgiggethe key. Even
if we increase the systems t and the number of trials per second by eacli%dt result is

still 2% times the present age of the universe to reach a 0.5 probability césucce

145

If we now reincorporate the states of the constituent generat@safwtC, and deal with those
explicitly as LFSRs, those four constituent generators have linearedtigd oflLg;, Lss, Lca
andLc,, (assumind.g = Lg; + Lpy, €tc.) which may be summed and treated simply. a&dding
this complexity to the above, we see that a brute force attack wll 2ntimes more time to
achieve a 0.5 probability of success. By selecting constituents suthidhattleast 229, we can
surpass the estimated number of atoms in the universe (excluding dark timatte the present

age of the universe as the time required to reach that 0.5 probabilitytidisol

The ability to easily expand the size of the keyspace by incorporatingtaenstienerators of
any desired linear complexity was deliberately designed into the scherti@t an implementer
can easily control the risk associated with the scheme by varyinigelae tomplexity of the

constituent generators, as well as the frequency of re-keying.

With regard to elimination of spurious keys, we should expect the followidgsitribe the

problem for a givemxr/bxrp/k triplet.
Keys, oy~ 2" kevspas K
purious f

whereKeyspuriousiS the approximate number of spurious keys, lfletyspacpandk are as
already discussed. While this in itself does not guarantee any advagisgst an attacker (an
attack might be found that efficiently eliminates spurious keys irmatelg), to the extent that an
attack does not eliminate all spurious keys an attacker is |lé&ftihatproblem of eliminating them
via additional operations. Thus, again, it is believed that the abiliggr@ssively scale up the
keyspace by increasing the linear complexity of component generatoromilirmplementers to
scale alternative implementations to the threats faced and thtivitgnsdi the use made of the

agreed upon bit-strings.

146

The first problem with these calculations is that we do not know whatdtmical and scientific
advances may eventually come from quantum computing, from continuing developments in mor
conventional technologies, or from as yet unimagined technologies. Nor do wehat@btute

force attack is the best form of attack. Indeed it is unlikely thewtbuld be the case. What we

can say with confidence is that they scheme is not trivially weakresttect to a brute force

attack.

Two closely related questions need to be addressed: “Is it necesdsaghdtee full key at one
time?” and “Can the key be attacked in parts?” Whether the key can bd &mlvn parts is

related to the meet-in-the-middle attack, which is discussed latés, dliroader question than
addressed by that attack alone. Here we are concerned not with an attsepgdrates the

phases of the process, but attempts to attack the contents of thvestate of the B, C and D
PRNGs in “slices,” since we use only a small portion of each state iagsing nybble pairs

from the <X> and <> bit-sequences in each phase. The potential also exists in the presented
implementation due to the fact that the respective phases of thegirtteeact through the
passage of information frobxrp through those phases to the output stkingithout all parts of

the key being explicitly involved within all of the phases.

There is interaction between tAeB andC PRNGs via the “cross pollination” that uses thut-
string to inject aperiodicity into th® andC PRNGs, and bits fromp (as filtered by the bit-
matching process usir@ to inject aperiodicity into PRN®. We have previously recognized
thatA may be cryptanalyzed independenthBadndC. Having removed PRN@ from
consideration as intrinsic to security with regard to brute foreelat(though we retain its state
as secret), we limit ourselves to consideringBh€ andD PRNGs. We believe the answers to
the two questions are yes and no, respectively — with regard Bp @hendD PRNGs, and with
certain caveats. The reason lies in the operation @ tenerator, and the order in which the

results of the bit-matching process are fed ito

147

Note thatD is distinct in this scheme in that it has ho component generators, ard iastepts

the reducedn string as its feeds for botlXx and <>, operating from opposite endsrof It is
otherwise the same, using the commnddmableandsTablepair to select both an output and a state
update value. ThéTableitself is constructed to ensure that, given random feed values from the
<X> and &> sequences, there is an equal probability for all possible 4-bit nybble valbe
produced. Also, the state update values obtaineddfiahleare 14 bits in length, with one and
only one occurrence of each in the frame. It is this last point that is afubarinterest here. At
each point in the process of derivikfrom bxrp, any single bit change in the result of a step is
carried forward. A single bit changebmwill have the effect of “flipping” a bit imp and vice

versa. Any single bit change arwill insert or delete a bit im, as will any single bit change in

rp. Whenmis fed intoD, this carry-forward of bit deltas becomes important, as the shifting of
the alignment of bits within bytes of will be reflected in all succeeding bytes. With the tail of
m being fed intd in reverse order, all such changes are automatically reflectbd state

update value obtained from te&able All subsequent blending afiin D thus reflectsll single

bit changes in every stage of the process, while retaining equal pitybatdutput on a per-bit
basis, thereby achieving diffusion of effect similar to that sought in lgiptlers. Only in cases
where a bit delta is in a deleted tailmf{or not incorporated intm due to an incomplete byte at
the end) will such a change have no immediate effect. Only in cases ofdeéelieing in the
possible incomplete byte at the end of procesgingill the effect be lost entirely. Otherwise,

the effects of the single bit delta will be carried forward into thegasing of all subsequent

blocks.

A second relevant observation here is that there is vast freedonebhetaadk. Given the 64-
bit state vector, we can safely observe that there®adiff2rent possible mappings fromto k
given a random state of PRNIG On a per-nybble basis, any of the 256 possible combinations of

two arbitrary nybbles frorm can produce the same output nybble, and any output nybbtam

148

be the product of any pair of values of nybbles fronn both cases with the specific
combinations depending on the state vector bits used. Thus, it is believée thgblle-wise
approach to teasing out a solution for PRB@neaning the contents of its state vector) only
produces the set of plausible solutions, which is effectively the samattacking the D as a

whole.

A third observation returns to the combinatorial problem presented by thetbitingaprocess
that producedn, as discussed in the previous chapter. The number of different paiiagd gtr
andc that could produce any givembit-string is vast, and compounded by the deletions for re-

seeding?, which may occur at any of eight starting pointsin

Finally we return to the fact thgt is random, and as such encryipiserfectly ... at least until

the corresponding bit-string is known.

The combination of these facts means that, any guess as to the Btatechfding constituent
generators) produces a result that is essentially meaningtessitva correct guess with regard to
the states of andD. Whetherrp (in Protocol A) otbxrp (in Protocol B) is the initial random
bit-string doesn’t matter. Shannon’s analysis of OTP applies, and thepmrdeng bit-string

can be viewed as encrypting any string of bits of equal length.

With a guess as to the full stateBafindC, the resultrf) remains essentially meaningless,
without a plausible guess regarding the state vectDr wfith the 64 bits of that vector defining

one of 2* possible mappings fromto k.

Thus the one severable point in the process of a brute force attackwesibéte state @f and

the combined states Bf C and D.

149

Using the y-Square Test

One of the most ubiquitous classical tools in cryptanalysig;-thguare test, has broad
applications beyond cryptography. In cryptanalysis, it provides a means dfyidgrdeviations
from the distribution that would be expected from a set of what would preferalvigidpendent
random variables. In the present implementation, and the scheme geddrglizarying the
lengths of the, rp, re-seeding strings, and constituent generators, the whole of thestiisul
depends upon the random values input, eitheraasirp or axr andbxrp. As truly random input
streams will not diverge from the expected essentially equi-disorbat output values over long
periods, the test isn’t relevant. It will only yield an indication @ivitlosely a particular sub-
sequence of random bits conformed to anticipated random behavior. Thereforbeveeibleas

no practical application in the cryptanalysis of the scheme.

To claim this, it must be shown in some manner that the results will notdssl imaan
exploitable way. While we can justifiably assert that the product of edngpiwo strings, one
random and the other pseudo-random, via bit-wise XOR is in turn random, when evenerf
substitution, even when the substitution is based upon a random/pseudo-random strivey pai
must show by some means that the resulting substitution produces equi-prebalbte

Unfortunately, this must be done by inspection, here.

If we examine th@Tableused byA, B, C andD closely, we can see that the table as a whole is
regularly structured, with an equal number of occurrences of each of the sixés#igoutput
nybbles present. Further, if we select any one of the three variables asedds thdTable we
see that the 2D slice through the 3D table thereby selected is alfarlsegtructured, with equal
numbers of occurrences of the possible output values. Selecting any hedraféxing

variables results in a 1D column, row or line through the 3D frame, with equaknsiof each

of the possible outputs. Finally, we can pick any three values for indexingeetiths if we

150

change either of the four-bit indices we must change one of the othexsindiobtain the same
value. The “odd” case is that of the six-bit index obtained from the statery In this case, a
change of from 1 to 15 in the value of this index requires one of the othesitmicieange in
order to obtain the same value as with the original three indices. Thasigiot obvious that
this structure and behavior guarantees uniform distribution of outpusyaiven uniform
distributions of input values, it does. For any two random 4-bit indiceslirable there is an

equal probability for every possible 4-bit result.

Meet-in-the-Middle

As mentioned earlier, an attack that might be effective, since tiectlisteps in the scheme
operate with distinct PRNGs and separate initial states or keys foRRM@s, is the meet-in-
the-middle attack. In this type of attack, the idea is to work from both enoiteptaand
ciphertext, simultaneously, working towards a common point between these When that
mid-point is reached from either end, the resulting partial solutiobe@ompared against a
catalog of partial solutions from the other end. If a matching partigi@omatch is found, the
key produced from the two partial keys is a plausible solution. As thegatapartial solutions
from each end grows, the probability that a match, and thus a plausibledtibrsolvill be found

increases more rapidly than one might expect.

Where this attack is effective, the improvement in solution probabgitives from the “birthday

phenomenon.”

The meet-in-the-middle approach works in cases when there is a point nctjgtien process
where either different keys are used at either side of the point, oeytteelkedule is divided in a
way that has a similar effect with respect to a single key. Thikastavhy double encryption

(use of either two passes of the same cipher or two different ciphgzguence, with separate

151

keys for each pass) does not offer a significant improvement in the btodragicryptions, even

when the combined keys are twice as long as the keys used by the individual aipher

It is believed that, provided the periods of faandB generators are very long, starting from the
axr/bxrp strings is not very productive, due to the fact that these bit-striagsatogous to an
OTP cryptogram. In the case of PRA(he <X> bit-string is random, so that any possible value
of length | is equally likely. If the period of PRNBis Z**®bits or greater (assuming no
injection of random material from bit-strimj and is otherwise “well behaved” as per statistical
tests of apparent randomness, we may reasonably expect all possiblet 1/8R4ebito appear at
some point in the generator’s cycle, with a high probability that eaclapytar once in 1024-bit
aligned blocks. Using 32 independent, parallel LFSRs (as is the cas@iasbnt
implementation), this cycle length can be approached or passed by usingdffe8Rsts or
longer. The present implementation supports LFSRs of this length, and easilpexpanded to
support arbitrary length LFSRs. In such a situation, we know of no way to discern blplausi
solution forrp (as derived fronbxrp andb), and thus fob, since no matter what either bit-string
was in reality, the other of thexrp/ b pair can still causep to take on any possible 1024-bit

value.

If the periods of thé andB PRNGs are short, relative to the range of binary valuesahdrp
bit-strings may assume, the situation changes. For example, if the periodBaioimposite
generator is less or equal t§%2— 1 bits, there will be less than the full range 8f*2inique
1024 bit values in the cyclemight otherwise have, at least with alignmentptdn repeated
iterations of the cycle. As the period decreases, the number of posdildgovmay assume
(viewed as a binary number) decreases accordingly. Thus, care mustnbe hksure that the

period of theB generator is longer thaf2wherely| is the length ob in bits.

152

The picture also changes if we consider cryptanalysis of multqpfebit-strings. While the
insertion of the 15 random bits into one of the component generators of B’s camtsbut
complicates matters by shifting the alignment of the sub-generattivataftream relative to the
other component generator, the number of different points in the overall legchady be

reached is limited to'2for eachbxrp string processed.

Estimates of the complexity of the problem for an attacker will veggitty, depending on the
generators used to implement BlandC PRNGs and their periods, as well as the
implementation of thé generator. Taken in isolation, though, a reasonable estimate may be
arrived at. Consider the implementation of @hgenerator in Appendix C. As the sub-
component LFSR generators’ shift registers are all of 31 bits long, tieep@dividually are %

— 1 bits. “Ganged” 32 across as they are, the equivalent of a genethtarperiod of 32 —

1). While the linear complexity is straightforward to estimateat 31 = 992, which is shorter
than fp| in the presented implementation, it is still long enough that, with the regjeletion of
the re-seeding material, there will not be a sequence of twickdhathe <X> side of the
composite to apply the Berlekamp-Massey algorithm to. Further, as tiged in the bit

matching process, the resultimgs random in any case.

As this stage is a many-to-one mapping process, working backwards thraugioliliematic.
There will always be multiple plausible solutions. As seen in Ch8ptle bit-matching process
involves a factorial scaled problem, which is in this case compounded wittiontd and
incidental deletions of bits from the process. Given a guess regadingritribution of the state
vector ofC to a given nybble aih we still must have good guess for the contributions of the
constituent generators, and are then left with the problems of guessingamyvbits ofm this
may have yielded, if any, and their relative positiominin short, there is at best only marginal
necessary synchronization between the value and position of arhiaimd the sequential states

C went through to produce it from. Thus, working forward from rp through the matching

153

process is expected to be the far easier process, since the walmesministic, once a guess is

made regarding the state©f

In order have a meet-in-the-middle attack we must now work backward freih the
assumption that the attacker kndwyand its length, as per the strong form of Kerckhoffs’
criteria. Though we don't face the same sort of problem as is posed byttrywogk backwards
through the bit-matching process, we still have the complication of deatim@wany-to-one
mapping process in reverse. In this case, we know whenéviro of the indices used in

obtaining a nybble df came from, but we don’'t know what those indices were, nor which index

came from which half ofn.

Given any known output string them string used to produce it had to kig' ¢ bytes in length at
minimum. From thisk] / 4 nybble index pairs are extracted. Except when the two indices are
equal, we again note that we do not know which hatfiech came from. That means that,
when trying to work backwards through the final stage, we have (15 / 16) hits@rtainty for
each nybble ok, or 15 bits of uncertainty for each eight bytek.inNe regard this as a “self-
inflicted wound” of sorts in the cryptanalytic process on top of the fundanmmotakem of
guessing the indices used in the first place. For that part of themprabkekey material in
guestion is the internal state vectomDpfwhich is 64 bits in length, six bits of which are used for
indexing. The other eight bits used for indexing are fn@mvhich is what an attacker is
attempting to determine. This means the attacker is left to guéssrgtiible pair that, along

with the state material, was used to derive a nyble in

For every four bit nybble value i there are 1024 index triples that could have produced it,
since there 16,384 entries in wheable as well as theTable and equal numbers of each nybble
value in it. With a guess at the state vectors six bit contribution, g 16 different ways to

obtain that nybble based upon the other two indices, which is equivalent to dridultieof

154

uncertainty per nybble &fon top of the six bits from the guess regarding the contents of the state
vector. This adds up to 10.9375 bits of uncertainty for each nybkjevimen working

backwards, or, for the approximate average case of 29 byite834.375 bits worth of

uncertainty. This exceeds the number of bits in the state vedobyb570.375 bits. Thus,
piecemeal guessing regarding the inputs to and st&leappears very inefficient. The degree to
which such a process can be made more efficient, or exploiting the incofitjgsithiat will tend

to arise with incompatible combinations of indices after the statenjeas$ rotated back to its

initial alignment, is yet to be determined.

An alternative to this approach is to guess the initial contente aitate vector db, then

determine the pairs of%> and &> sequence nybbles required to produce the a given nybble of
k. Since for any 6-bit fragment 8fs state vector used there are 16 plausible input nybble pairs
that would produce the same result, we hav&4&? m bit-strings (ignoring the end-ordering
discussed previously) that are consistent with any guess of thestat@lector contents Bf,

each yielding a different ending state. This appears to mean that teasgairements for

storing candidate solutions will rapidly become unwieldy, since f@#4possible initial states of

D to store the corresponding candidate strings would require spac¢&fauch candidates,
assuming 29 bytes ik If we are dealing with an implementation whar@& andC have very

long periods, the “middle” would appear to be problematic in its own right.

While we expect that a more efficient approach to this back-analy$ie last stage of the
process to exist, it is quite possible that forward analysis (wofkdngbxrp to k) rather than a

meet-in-the-middle attack, will be substantially simpler, and nikedyIto produce results.

Still, a method not included in the present implementation that mightemeler a meet-in-the-
middle attack to expensive is quite simple. We could, if we chose, adufalkiwing the

generation of the complete a, b, ¢ and k bit-strings where the state vestarsgd are XOR’ed

155

with the state vector of the next generator to be used. Thus, once we hadegieraard
extracted, we would XOR the A’s state vector with thatBf After generation o, we would
likewise XORB's state vector int€'s, thenC's into D's and finallyD’s back intoA’s. This
would spread the effect of key material and input strings mordyatil®ughout the whole
process, likely denying an attacker the ability to separate thespinesenanner that would allow
a meet-in-the-middle attack. But, while this might help improve thetaesis of the scheme to
attack, particularly a meet-in-the-middle attack, it is not incamadabé that it could introduces
weaknesses. As we are exploring alternatives, and wish to examifffettigeness of the

components and phases as presented here, that idea is left for fulanehrese

Differential Cryptanalysis

This form of attack is based upon a careful examination of the behavipheftexts based upon
chosen plaintexts, following the composition process through the respectivds of a cipher
algorithm, using a given key. It is a form of chosen plaintext attack, wreelmsithe attacker
finds some means to induce the target to encrypt plaintexts with desiredipsopsing the same

key.

An attacker starts by selecting a set pairs of plaintexts, alagiag fixed differences. When
encrypting these plaintexts with the same key, the attacker exattmnleshavior of the
encryption process, round by round. In this process, the attacker will be alsliecio di
differences in the resulting ciphertexts, as well as commonalitiexsiates with the differences
selected in the plaintexts, via which he can assign probabilities tcndees for any pair of
plaintexts possessing only those targeted differences. After some numbeh afessage pairs,

dependent upon the cipher used, the attacker will be able to determimy tnsek.

For this attack to work against the present scheme, we musttiegitahat we are dealing with

an encryption process, and tkas in effect a ciphertext. For purposes of argument, this is not

156

difficult to stipulate. But, the attacker must be able to identifynmais and ciphertexts which
pair-wise display specific differences, when encrypted using the lsyneSince the key changes
for each cycle through the process, and Alice is presumed to have a true ramdoen
generator or access to reliable source of such, the attackerdsifiticea first problem. How
does he get the requisite plaintext/ciphertext pairs, with the regfiet differences in the
plaintexts, all using the same key? That the attacker can and wifidaltlto accept as a
stipulation. Being able to subvert use of Alice’s RNG or source of randomges®sea level of
trust by Alice, or access to Alice’s equipment, that makes a diffelattack seem a wasted
effort. Likewise, inducing Alice to start all exchanges with theeskey/initial state is difficult
to envision. As Bob will have updated his key after any cycle, the next cyclkawitl produce
agreed material, as synchronization between Alice’s and Bob’s coples mithanism and

states will have been lost, giving both a sure indication that something is.wrong

Man in the Middle

In this attack, and attacker places himself logically betweere Alncl Bob, and impersonates
each to the other, thereby becoming the conduit by which the two communicate. If done
effectively, this attack can strip all confidentiality from the commatmons between Alice and

Bob, as neither is aware that they are not communicating directly with deeh ot

As the present scheme assumes that Alice and Bob share identicalafdpiinitial state, any
exchange between them that does not use that shared secret mateisahrdstdrent bit-strings
being produced by each. An attacker is not assumed in this attack to be grigyitotmation.
If he passes communicated information along unaltered he has accomplistied, met is
become merely an eavesdropper. If he alteraxher bxrp bit-string, Bob will produce a

different bit sequence than Alice. When Alice and Bob try to communicate thgingliffering

157

bit sequences, the result will be gibberish to both, making it cleasdhagthing is wrong, while

the attacker remains in the dark about the messages encryptethasiiMergenk bit-strings.

To be effective, the man in the middle must be able to get Alice and Bobitotiadstates that
he knows, whether this is a pair he creates for both, or separate phasctavith Alice and Bob
individually. Under such circumstances, virtually any system is broken, gstams based upon
entangled pairs of sub-atomic particles, in the latter case. Tlais, #ige problem from which

the loss of security arises is far worse than a flaw in therszhe

Design Issues

While the implementation presented here relies upon several leesthdck shift registers

(LFSR), there is nothing in the scheme that mandates that the component &Rh&s

composite PRNGA, B andC must be of any particular type. However, as any linear recurrence
can be replicated by an LFSR, it is deemed sufficient to base ardlylsésstate upon LFSRs,

and upon the size of the state of the scheme as implemented with them.

The first consideration with regard to any implementation is whetheradgqats to thed, B and

C PRNGs may be implemented as LFSRs, regardless of the actuamnempation of those
PRNGs. In the absence of the injected aperiodicity for all thrseeé composite PRNGs, such
analysis is straightforward. Despite the mixing mechanism (which maigwed as a non-linear
combiner) present in all three of the composite PRNGs and ARNG&y would naturally
produce linear recursions, being deterministic, and thus would be subjectyisawith the
Berlekamp-Massey algorithm, yielding an LFSR replicating the behawd output. With the
injection of random bits into the state vectors at regular intenetgrgtion of a linear

recurrence is avoided, but the issue must be dealt with in greatitthdeidhat.

The present implementation, which is intended as an example and as afooljealysis, uses
LSFRs exclusively as the component generatoré,fBrandC. The manner in which these

158

components are combined varies by the lengths of the individual LFSRs. pwopeliscussion,
the linear complexity. of any of these (the taps selected for being a primitive polynomial) is its
length, and the Berlekamp-Massey algorithm will yield an equivalESR_of length., given 2

bits of sequential output. From this it should be apparent that the highieetrecomplexity of

the constituent LFSRs the better for the cryptographic strength system. Coupled with the
discussion regarding meet-in-the-middle attacks, we favor linegulegities greater than 2048,

and would implement the scheme thus for real-world applications.

As also noted in the discussion of meet-in-the-middle attacks, a feans®lered but not
implemented is successive XOR’ing of state vectors, #amB to C to D and back t@\, in
order to distribute the effects of the re-seeding bits more broadiygiout the phases and the
resulting agreed bits. This was not done in order to gain a better tandéang of any flaws in
the main operations of the scheme, once it has been submitted to a much broadee.audie
Identification of specific flaws in these phases will significaagist in any subsequent
development of the scheme, particularly with regard to correcting wessaniesthe overall

scheme that may result from those flaws.

Other possible changes include increasing the lengths aktlgt-string, and the number of bits
extracted from then bit-string for re-seeding th& generator. While this would reduce the
eventual number of agreed bits per cycle, the increased number ofrtatisdriihus available to
re-seed andC would serve to increase the disruption in the output sequenceB fmoniC.
Additional bits might also be used to directly alter the state vector &/hether and how much
such changes might improve the scheme are open questions, but it can be observeddénat num
of bits injected, and their randomness, serve to select from among @dgsilp targets” in the
otherwise strictly periodic cycle of the composite generator with theaigmment of bits from
<X>and &>. An increase in the number of bits injected will almost certainprove the

preservation of entropy between cycles processing successigadbxrp input string pairs.

159

Changing the point in the initial, unmodifiaabit-string where the re-seeding bits foare
extracted, so that the tail of the full bytes of matched bits will havera immediate effect,
within the cycle in which they arise, rather than during the processihg ofext blocks of input

data, may be worthwhile.

Another idea that was considered but not incorporated is to retain ttselecied bits inp

during the bit-matching process between bit-strmgadrp. This can be easily accomplished by
adding one more table to the bit-matching process. Thusit§ from a nybble matched, 4+

bits would be appended to embit string. Performing a bit-blending operation similar to the
present operation @, but usingn andm’, the longer of which would provide the re-seeding bits
for A and the shorter (after removal of the bits for re-seefjrdptermining the maximum length
of the resulting, would serve to increase the output ratio of agreed bits to input bits. It would
lose what is believed to be the very positive effect of the foldinigeoh bit-string as is presently

performed irD.

A second idea for using the non-matched Imtsas above) is to perform some hash function on
these bits to obtain a number of bits that would be used to directly altdatherectors of some
or all of theA, B, C andD PRNGs. Good hash functions can be slow, and as such lead to the
exclusion of the idea from the presented scheme and implementation. aeeation of the

state vectors would increase the discontinuity between succeskpagions of the affected
PRNGs, and likely help in maintaining entropy across multiple cyclesh &abange has been

deferred until an examination of suitable hash functions can be pedforme

While one of the minor objectives in the design of the presented protocols @adchantation
was a simple enough process to remain fast, while hopefully remainingablson
cryptographically strong, the fact that the process is as fasisgsdte performance results in the

following section) means that increasing the number of phases can be considered.

160

Performance Results

No analysis of an algorithm can avoid certain erogirtests regarding performance and
repeatability, and any algorithm intending to proglsequences with a high degree of
apparent randomness must deal with the verificaifdhe apparent randomness of the

output. Such testing has been performed on theemgntation presented here.

In terms of performance, on a PC running Micro¥ditdows 7 ©, Home Basic, with a
1.6 GHz Atom processor and 1 GB of RAM, 1000 rymecessing 1000 blocks per run,
required five minutes, 21 seconds, including fi@ &nd system overhead in processing
batch file commands, and produced an average 862%ytes of output per block

processed.

Another run totaling the processing of one millldacks was conducted on the same
system, using different keys from those in thengririal above, to again test the average

number of outputs per run. The average was foorte 29.360 bytes per run.

In terms of repeatability, multiple runs startinghwthe same key and input data were
performed to determine whether the outputs rematoedistent. The manner of the
testing was as follows. A key file was generated] an input file of 64 blocks produced.
The algorithm was run on the input file and theilsssaved, along with the resulting
updated key file. The input file was split in halhd the algorithm run on the first half,
using the previously generated initial key. Theutes were saved, along with the
updated key. The algorithm was run on the secaifdibing the updated key from
processing the first half. The results at the @fnithis pass were compared with the

previously generated results for processing alhlédks, as well as the updated key file

161

from processing all blocks. These were found techalentically in content. The input
data was quartered, and processing repeated imkkaer on the quarters, with
comparisons of results and updated keys at miceadgoints. These were again found
to match. This process was repeated with cuttiegriput file into eighths and
sixteenths, comparing intermediate results and idyse applicable, and all producing

the expected identical results.

For ten runs each from the two above reference@sgs using the same initial keys and
input files for corresponding runs, the result$ettiént systems were compared. These

were found to be identical.

Subjecting the outputs from ten runs, each onrdistnput files of 64 blocks and distinct

keys, to the BSI AIS 20 test suite produced pafsed| ten files.

Two sets of five runs each on 64 blocks were paréal, with matching input files pairs
per run but different key files, and the five regilk pairs XOR’ed, then the resulting

files tested using the BSI AIS 20 test suite. fAd files passed.

Five runs each on two different sets of 64 blotdsf{iwith identical keys pair-wise
between batches, were performed and the resultsetiBgether and tested with the

BSI AIS 20 test suite. All five of these files pad.

From the above empirical testing, we conclude titvtalgorithm is consistent and
repeatable, and with random keys and input strgaottuce good apparently random

results, within the limits of the BSI AIS 20 tesiite’s limitations.

162

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Shapiro, C. and Varian, H.Rnformation RulesHarvard Business Press, 1999,

ISBN 087584863X.

Bishop, M. and Venkatramaanayya, S.I&roduction to Computer Securjty

Pearson Education, Inc., 2005.

Kerckoff, Auguste, “La cryptographie militaries]ournal des Sciences

Militaires, vol. IX, Jan. 1883, pages 5-83.

Kerckoff, Auguste, “La cryptographie militaries]ournal des Sciences

Militaires, vol. IX, Feb. 1883, pages 161-191.

Shannon, Claude. "Communication Theory of Secrecy Syst&el'System

Technical Journaglvol.28(4), 1949, pp. 656 — 715.

Diffie, Whitfield, and Hellman, Martin E., “New Directions in Cryptogty,”

IEEE Transactions on Information Theowmpol. 22, Nov. 1976, pp. 644 — 654.

Hellman, M. E., Diffie, W., and Merkle, R. C., “Cryptographic Apparatus and

Method,”U.S. Patent #4,200,77@9 April 1980.

Hellman, M.E., Diffie, W., and Merkle, R.C., ““Cryptographic Apparatus and

Method,” Canada Patent #1,121,486 April 1982.

163

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

den Boer, B., “Diffie-Hellman is as strong as discrete log for aepdimes,”

Crypto 88, Lecture Notes in Computer Science &p8inger-Verlag, 1988.

Boney, D., and Lipton, R. J., “Algorithms for black-box fields and their
application to cryptographyAdvances in Cryptography, CRYPTO 96, Lecture

Notes in Computer Science 10Bpringer-Verlag, 1996, pp. 283 — 297.

Rivest, R., Shamir, A. and Adleman, L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM 21 (2)

1978, pp 120 — 126.

Various Authors, “Trust and Security Challenges in Cyberspaasi Brussels

Workshop, 7-8 Dec 2000.

Shor, Peter W., "Polynomial-Time Algorithms for Prime Factorratind
Discrete Logarithms on a Quantum Comput&tAM J. Comput26 (5), 1997,

pp. 1484-15009.

Kahn, David,The Codebreakers: The Comprehensive History of Secret

Communicationssecond edition, Scribner, 1996.

Bennett, C. H., and Brassard, G., “Quantum Cryptography: Public key
distribution and coin tossingProceedings of the IEEE International conference

on Computers, Systems and Signal Proces8iaggalore, 1984, p. 175.

Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D. and Whiting,
D.,"Improved Cryptanalysis of Rijndael,” Fast Software Encryption, 2000, pp.

213 - 230.

164

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Biryukom, A. and Khovratovich, D., “Related-key Cryptanalysis of the Full

AES-192 and AES-256 fttp://eprint.iacr.org/2009/317

“Security Requirements for Cryptographic Modules,” Federal Infaana
Processing Standard 140-2, National Institute of Standards and Teghrizdog

2, 2002.

Schindler, W., “Functionality Classes and Evaluation Methodology f
Deterministic Random Number Generators: AlS 20,” version 1, Bundesamt fir

Sicherheit in der Informationstechnik, Dec. 2, 1999.

Pohlig, S.C., and Hellman, M.E., “An Improved Algorithm for Computing
Logarithms in GH§) and Its Cryptographic SignificancdEEE Transactions on

Information Theoryv. 24, n. 1, Jan 1978, pp. 106 — 111.

Menezes, A. J., van Oorschot, P. C. and Vanstone, SaAdbook of Applied

Cryptography CRC Press, 1997.

Merkle, R.C. and Hellman, M.E., “Hiding Information and Signatures in
Trapdoor Knapsacks|EEE Transactions on Information Theory 24, n 5,

Sep. 1978, pp. 525 - 530.

Hellman, M.E., “The Mathematics of Public-Key Cryptograpi8cientific

American v. 241, n. 8, Aug. 1979, pp. 146 — 157.

Shamir, A., “A Fast Sighature Scheme,” MIT Laboratory for Computer Seienc
Technical Memorandum, MIT/LCS/TM-107, Massachusetts Institute of

Technology, July 1978.

165

[25] Schneier, B.Applied Cryptography: Protocols, Algorithms, and Source Code in

C, second edition, John Wiley & Sons, Inc., 1996.

[26] Shor, P., "Algorithms for Quantum Computation: Discrete Logarithms and
Factoring," Proceedings 35th Annual Symposium on Foundations of Computer

Science (1994), pp. 124 — 134.

[27] Hellman, M.E. and Pohlig, S.C., “Exponentiation Cryptographic Apparatus and

Method,” U.S. Patent #4,424,414, 3 Jan. 1984.

[28] Rabin, M.O., “Digital Signatures and Public-Key Functions as Intosects
Factorizations,” MIT Laboratory for Computer Science, Technical Repor

MIT/LCS/TR-212, Jan 1979.

[29] Williams, E.A., “A Modification fo the RSA Public-Key Encryption Procegltr
IEEE Transactions on Information TheokylT-26, n. 6, Nov. 1980, pp. 726 —

729.

[30] ElGamal, T., “A Public-Key Cryptosystem and a Signature SchenmexdBas
Discrete Logarithms,Advances in Cryptology: Proceedings of CRYPTQ 84

Springer-Verlag, 1985, pp. 10 — 18.

[31] ElGamal, T., “A Public-Key Cryptosystem and a Signature SchenmedRas
Discrete Logarithms,/EEE Transactions on Information Theory IT-31, n.4,

1985, pp. 469 — 472.

[32] McEliece, R.J., “A Public-Key Crytosystem Based on Algebraic @pdi
Theory,” Deep Space Network Progress Report 42 — 44, Jet Propulsion

Laboratory, California Institute of Technology, 1978, pp. 114 — 116.

166

[33] Korzhik, V.1. and Turkin, A.l., “Cryptanalysis of McEliece’'s Publi@K
Cryptosystem,’Advances in Cryptology — EUROCRYPT '91 Proceedings

Springer-Verlag, 1991, pp. 68 — 70.

[34] Bernstein, D.J., Lange, T. and Peters, C., "Attacking and Defending thiebte
Cryptosystem,Proceedings of the 2nd International Workshop on Post-
Quantum Cryptographyecture Notes In Computer Science 5299, 2008, pp. 31

—46.

[35] Chabaud, F, “On the Security of Some Cryptosystems Based on Error-Correcting
Codes,"Advances in Cryptology, EUROCRYPT ‘94 ProceediSgsinger-

Verlag, 1995, pp. 131 — 139.

[36] Koblitz, N., “Elliptic Curve CryptosystemsNMathematics of Computatiom. 48,

n. 177, 1987, pp. 203 — 209.

[37] Miller, V.S., “Use of Elliptic Curves in CryptographyXdvances in Cryptology

— CRYPTO '85 ProceedingSpringer-Verlag, 1986, pp. 417 — 426.

[38] Rosing, M. Implementing Elliptic Curve CryptographManning Publications,
1998.
[39] Hankerson, D., Menezes, A.J. and VanstoneG@ide to Elliptic Curve

Cryptography Springer, 2004.

[40] Kravitz, D. and Reed, I., “Extensions of RSA Cryptostructure: A Galois

Approach,”Electronics Lettersv. 18, n. 6, March 1982, pp. 255 — 256.

[41] Muller, W.B. and Nobauer, W., “Some Remarks on Public-Key Cryptography,”

Studia Scientiarum Mathematicarum Hungarieal6, 1981, pp. 71-76.

167

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Mdller, W.B. and N6bauer, W., “Cryptanalysis of the Dickson Scheme,”
Andvances in Cryptology - EUROCRYPT '85 ProceediBganger-Verlag,

1986, pp. 50 — 61.

Mdller, W.B., “Polynomial Functions in Modern Cryptology;ontributions to
General Algebra 3: Proceedings of the Vienna Conferevienna: Holder-

Pichler-Tempsky, 1985, pp. 7 — 32.

Lidl, R. and Mdller, W.B., “Permutation Polynomials in RSA-Cryptosyst&ém
Advances in Cryptology: Proceedings of CryptoBlg@num Press, 1984, pp. 293

—301.

Smith, P., “LUC Public-Key EncryptionPr. Dobb’s Journa) v. 18, n. 1, Jan.

1993, pp 44 — 49.

Smith, P. and Lennon, M., “LUC: A New Public Key SysteRrbdceedings of
the Ninth International Conference on Information Security, IFIP/sec,1993

North Holland: Elsevier Science Publishers, 1993, pp. 91 — 111.

Reniji, T. and Shihua, C., “A Finite Automaton Public Key Cryptosystem and

Digital Signatures,’Chinese Journal of Computenss 8, 1985, pp. 401 — 409.

Renji, T. and Shihua, C., “Two Varieties of Finite Automaton Public Key
Cryptosystems and Digital Signaturdgurnal of Computer Science and

Technologyv. 1, 1986, pp. 9 — 18.

Renji, T. and Shihua, C., “An Implementation of Indentity-based Cryptosgstem
and Signature Schemes by Finite Automaton Public Key Cryptosystems,”

CHINACRYPT '92Bejing Science Press, 1992, pp. 87 — 104.

168

[50] Reniji, T. and Shihua, C., “Note on Finite Automaton Public Key
Cryptosystems,CHINACRYPT '94Xidian, China, 11 — 15 Nov. 1994, pp. 76 —

80.

[51] Bellovin, S.M. and Merritt, M., “Encrypted Key Exchange: Password8as
Protocols Secure Against Dictionary AttackBrbceedings of the1992 IEEE

Symposium on Security and PrivatiyjEE, May 1992, p. 72ff.

[52] Bellovin, S.M. and Merritt, M., “,Proceedings of the®JACM Conference on

Computer and Communications SecyrACM Press, 1993, pp. 244 — 250.

[53] Jablon, D., “Strong Password-Only Authenticated Key Excham@miputer

Communication Review (ACM SIGCOMM) 26, 896, pp. 5 — 26.

[54] Jablon, D., “Extended Password Key Exchange Protocols Immune to Dictionary
Attack,” Proceedings of the Sixth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET-ICE 'QIBEE Computer

Society, 1997, pp. 248 — 255.

[55] Blum, M., Feldman, P. and Micali, S., “Non-Interactive Zero-Knowledge and It
Applications,”STOC '88 Proceedings of the twentieth annual ACM symposium

on Theory of computingACM, 1988, pp. 103 — 112.
[56] Rueppel, R.A.Analysis and Design of Stream Ciphe8gringer-Verlag, 1986.

[57] Massey, J.L., “Shift-Register Synthesis and BCH DecodiitEE Transactions

on Information Theory. IT-15, n. 1, Jan. 1969, pp 122 — 127.

169

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Jansen, C.J.A, and Boekee, D.E., “The shortest feedback shift reupstesirn
generate a given sequencagdvances in Cryptography — EUROCRYPT '89

(LNCS 435)Springer-Verlag, 1990, pp. 90 — 99.

Ziv, J. and Lempel, A., “On the complexity of finite sequencesfE

Transactions on Information Theqrg2, 1976, pp. 75 — 81.

Geffe, P.R., “How to Protect Data With Ciphers That are Realig kaBreak,”

Electronics v. 46, n. 1, Jan. 1973, pp. 99 — 101.

Key, E.L., “An Analysis of the Structure and Complexity of Nonlinear Binary
Sequence Generator$ZEE Transactions on Information Theowy IT-22, n. 6,

Nov. 1976, pp. 732 — 736.

Zeng, K.C., Yang, C.-H. and Rao, T.R.N., “On the Linear Consistency Test
(LCT) in Cryptanalysis with ApplicationsAdvances in Cryptology — Crypto '89

ProceedingsSpringer-Verlag, 1990, pp. 164 — 174.

Zeng, K.C., Yang, C.-H., Wei, D.-Y. and Rao, T.R.N., “Pseudorandom Bit
Generators in Stream-Cipher CryptographigEE Computerv. 24, n. 2, Feb.

1991, pp. 8 — 17.

Pless, V.S., “Encryption Schemes for Computer ConfidentialiBEE

Transactions on Computing. C-26, n. 11, Nov. 1977, pp. 1133 — 1136.

Rubin, F, “Decrypting a Stream Cipher Based on J-K Flip-FIdE&EE

Transactions on Computing. C-28, n. 7, Jul. 1979, pp. 483 — 487.

Siegenthaler, T., “Decrypting a Class of Stream Ciphers Using @&ph&nly,”

IEEE Transactions on Computing C-34, Jan. 1985, pp. 81 — 85.

170

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Jennings, S.M., “A Special Class of Binary Sequences,” Ph.D. Disseytat

University of London, 1980.

Jennings, S.M., “Multiplexed Sequences: Some Properties of the Minimum
Polynomial,”Lecture Notes in Computer Science 149; Cryptography:
Proceedings of the Workshop on Cryptogra@ygringer-Verlag, 1983, pp. 189 —

206.

Jennings, S.M., “Autocorrelation Function of the Multiplexed SequeheEE

Proceedingsv 131, n. 2, Apr. 1984, pp. 169-172.

Anderson, R.J., “Solving a Class of Stream Ciph&syptologig v. 14, n. 3,

Jul. 1990, pp. 285 — 288.

Dawson, E. and Clark, A., “Cryptanalysis of Universal Logic Sequénces,
Advances in Cryptology — EUROCRYPT '93 ProceediSgsinger-Verlag, pre-

print, publication date unknown.

Beth, T., and Piper, F.C., “The Stop-and-Go Generatatyances in
Cryptography: Proceedings of EUROCRYPT 8gringer-Verlag, 1984, pp. 88 —

92.

Gunther, C.G., “Alternating Step Generators Controlled by De Bruijn
Sequences Advances in Cryptology — EUROCRYPT '87 ProceediSgsnger-

Verlag, 1988, pp. 5 — 14.

Strobel, D., “Side Channel Analysis Attacks on Stream Cipherastéds Thesis,

Ruhr-Universitat Bochum, Mar. 2009.

171

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Rueppel, R.A., “When Shift Registers Clock ThemselvAdyances in

Cryptology — EUROCRYPT '87 Proceedingpinger-Verlag, 1987, pp. 53 — 64.

Chambers, W.G. and Gollman, D., “Generators for Sequences with Near-
Maximal Linear EquivalenceJEEE Proceedingsv. 135, pt. E, n. 1, Jan. 1988,

pp. 67 — 69.

Coppersmith, D. and Grossman, E., “Generators for Certain Alternating Groups
of Applications to Cryptography 3IAM Journal on Applied Mathematjos 29,

n. 4, Dec. 1975, pp. 624 — 627.

Coppersmith, D., Krawczyk, H. and Mansour, Y., “The Shrinking Generator,”
Advances in Cryptology — CRYPTO '93 Proceediggsinger-Verlag, 1994, pp.

22 - 39.

Meier, W., “On the Security of the IDEA Block CipheAtlvances in Cryptology

— EUROCRYPT 93 Proceedindg3pringer-Verlag, 1994, pp. 371 — 385.

Massey, J.L. and Rueppel, R.A. “Linear Ciphers and Random Sequence
Generators with Multiple ClocksAdvances in Cryptology: Proceedings of

EUROCRYPT 84Springer-Verlag, 1985, pp. 74 — 87.

Gollman, D., “Kaskadenschaltungen taktgesteuerter Schreiberegsste

Pseudozufallszahlengeneratoren,” Ph.D. dissertation, Universitat Linz, 1983.

Chambers, W.G. and Gollman, D., “Lock-In Effect in Cascades of Clock-
Controlled Shift RegistersAdvances in Cryptology - EUROCRYPT '88

ProceedingsSpringer-Verlag, 1988, pp. 331 — 343.

172

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Bruer, J.0O., “On Pseudo Random Sequences as Crypto Genetocgédings
of the International Zurich Seminar on Digital Communicatj@witzerland,

1984.

Rueppel, R.A., “Correlation Immunity and the Summation Combiralyances

in Cryptology — EUROCRYPT '8%pringer-Verlag, 1986, pp. 260 — 272.

Klapper, A. and Goresky, M., “2-adic Shift Registefsast Software
Encryption, Cambridge Security Workshop ProceediBgsinger-Verlag, 1994,

pp. 174 — 178.

Meier, W. and Staffelbach, O., “Correlation Properties of Combinehs wi
Memory in Stream CiphersAdvances in Cryptography — EUROCRYPT '90

PoceedingsSpringer-Verlag, 1991, pp. 204 — 213.

Meier, W. and Staffelbach, O., “Correlation Properties of Combinehs wi

Memory in Stream CiphersJournal of Crytologyv. 5, n. 1, 1992, pp. 67 — 86..

Mihajlevic, M.J. and Golic, J.D., “Convergence of a Bayesian iter&rror-
Correction Procedure to a Noisy Shift Register SequeAasances in
Cryptology — EUROCRYPT '92 Proceedin§gringer-Verlag, 1993, pp 124 —

137.

Goresky, M. and Klapper, A., “Feedback Registes Based on Ramifiesixte
of the 2-adic NumbersAdvances in Cryptology — EUROCRYPT '94

ProceedingsSpringer-Verlag, 1995, unknown.

Klapper, A. and Goresky, M., “Feedback with Carry Shift Registers dnite F
Fields,”K.U. Leuven Workshop on Cryptographic Algorithi@pringer-Verlag,

1995.

173

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Klapper, A. and Goresky, M., “Large Period Nearly de Bruijn FCSR Sequénces
Advances in Cryptology — EUROCRYPT '95 Proceedi8gsinger-Verlag,

1995, pp 263 — 273.

Xu, S.B, He, D.K. and Wang, X.M., “An Implementation of the GSM General
Data Encryption Algorithm A5, CHINACRYPT '94Xadian, China, 11 — 15

Nov. 1994, pp. 287 — 291.

Anderson, R.J., “On Fibonacci Keystream Generat#t4). Leuven Workshop

on Cryptographic AlgorithmsSpringer-Verlag, unknown.

Gueneysu, T., Kasper, T., Novotny, M., Paar, C. and Rupp, A., "Cryptanalysis
with COPACOBANA". Transactions on Computers, 57, Nov. 2008, pp. 1498 —

1513.

Barkan, E., Biham, E. and Keller, N., "Instant Ciphertext-Only Cryptarsabfsi

GSM Encrypted CommunicationCrypto 2003 2003, pp. 600 — 616.

Coppersmith, D. and Rogaway, P., “SOFTWARE EFFICIENT
PSEUDORANDOM FUNCTION AND THE USE THEREOF FOR

ENCRYPTION,” U.S. Patent 5,454,039, 26 Sept., 1995.

Coppersmith, D. and Rogaway, P., “COMPUTER READABLE DEVICE
IMPLEMENTING A SOFTWARE-EFFICIENT PSEUDORANDOM

FUNCTION ENCRYPTION,” U.S. Patent 5,675,652, 7 Oct., 1997.

Halevi, S., Coppersmith, D. and Jutla, C., “Scream: a software-affgtieam

cipher,” IBM T.J. Watson Research Center, June 5, 2002.

174

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Handschuh, H. and Gilbert, H,y 2 Cryptanalysis of the SEAL Encryption

Algorithm,” Fast Software Encryption, FSE '97, LNAS97, pp. 1 — 12.

Fluhrer, S.R., “Cryptanalysis of the SEAL 3.0 Psuedorandom Function Family

Lecture Notes in Computer Science, 20882. 2355/2002, 2002, pp. 333 — 334.

Wheeler, D.J., “A Bulk Data Encryption Algorithniast Software Encryption,
Cambridge Security Workshop Proceedirfggringer-Verlag, 1994, pp. 127 —

134.

Shamir, A., “On the Generation of Cryptographically Strong Pseudo-Random
Sequences 'ecture Notes in Computer Science 621i@&ernational Colloquium

on Automata, Languages, and Programmiigring Verlag, 1981.

Blum, M. and Micali, S., “How to Generate Cryptogrphically-Strong Sequences
of Pseudo-Random BitsSIAM Journal of Computing. 13, n. 4, Nov. 1984,

pp. 850 — 864.

Alexi, W, Chor, B.-Z., Goldreich, O., and Schnorr, C.P., “RSA and Rabin
Functions: Certain Parts Are as Hard as the Whlmteedings of the 35

IEEE Symposium on the Foundations of Computer Sgié884, pp. 449 — 457/

Alexi, W, Chor, B.-Z., Goldreich, O., and Schnorr, C.P., “RSA and Rabin
Functions: Certain Parts Are as Hard as the Wh&8E&M Journal on

Computingv. 17, n. 2, April 1988, pp. 194 — 209.

Blum, L., Blum, M. and Shub, M., “A Simple Unpredictable Pseudo-Random
Number Generator SIAM Journal on Computering. 15, n. 2, 1986, pp. 364 —

383.

175

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[115]

[116]

[117]

Lehmer, D., “Mathematical Methods in Large-Scale Computing Units,”
Proceedings of the"2Symposium on Large-Scale Digital Calculating Machines

Harvard University Press, 1951, pp. 141 — 146.

Knuth, Donald E.The Art of Computer Programming: Seminumerical

Algorithms second edition, Addison-Wesley, 1981.

Plumstead, J. Boyar, “Inferring a sequence generated by a linear corgruenc
Proceedings of the IEEE ¥3Annual Symposium on Foundations of Computer

Science1982, pp. 153 — 159.

Plumstead, J. Boyar, “Inferring a sequence generated by a linear caegiuen

Advances in Cryptology — Proceedings of Cryptq B283, pp. 317 — 319.

Lagarias, J.C. and Reed, J., “Unique Extrapolation of Polynomial Reces&

SIAM Journal on Computing. 17, n. 2, April 1988, pp. 342 — 362.

Krawczyk, H., “How to Predict Congruential Generatéwivances in

Cryptology — CRYTO '89 Proceedingyringer-Verlag, 1990, pp. 138 — 153.

Krawczyk, H., “How to Predict Congruential Generatdgurnal of Algorithms

v. 13, n. 4, December 1992, pp. 527 — 545.

MacLaren M. D. and Marsaglia G., Uniform Random Number Generators,

Journal of the Association for Computing Machinery, vol. 12, N 1, Jan. 1965.

Retter, Charles T., “Cryptanalysis of a McLaren-Marsagl&tesn,”

Cryptologia volume 8, number 2, April 1984, pages 97-108.

Retter, Charles T., “A Key-search Attack on McLaren-Maia&gystems,”

Cryptologia, volume 9, number 2, April 1985, pages 114-130.

176

[118]

[119]

[120]

[121]

[122]

Bays, C. and Durham, S.D., “Improving a Poor Random Number Generator,”
ACM Transactions on Mathematical Software2, n. 1, March 1976, pp. 59 —

64.

Tyanev, D., Petkova Y., Tyaneva A., "New Elements in the Method of McLaren-

Marsaglia,"Conference Proceedings of TEHNONAV 202, p. 402 — 404.

Bailey, D., Borwein, P. and Plouffe, S., “On the rapid computation of various
polylogarithmic constantdylathematics of Computatiorol. 66, no. 218, April

1997, pp. 903 — 913.

Gilmore, J.Cracking DES: Secrets of Encryption Research, Wiretap Politics &

Chip Design Electronic Frontiers Foundation, 1998.

“DES MODES OF OPERATION,” Federal Information Processing Stangh,
National Institute of Standards and Technology, Dec. 2, 1980, revised Nov. 20,

1981.

177

APPPENDICES

APPENDIX A - BLOCK CIPHER MODES

For detailed discussions of block ciphers modes, see [122][21] and [25]

Symmetric block ciphers (referred to here as block cipheedypically defined in terms of a

binary bit-block sizen, a keyspac& (we are not concerned with the length of a key), an
encryption functionE :V, x K =V, (whereV, is a bit vector of bits), and a decryption
function D :V, x K =V, , such thaD(E(M, k), k) =M =E(D(M, K), k), whereM is ann-bit

block, andk € K. For a given ke, if any two plaintext blocks are equal, the resulting
ciphertext blocks will be equal, and vice versa, since for thak kieg encryption and decryption

functions define one-to-one mappings between plaintext blocks and cipheotsk. bl

Plaintext, Plaintext, Plaintext;
CITT]TITT] CITITTTT] CLITTITT]
A
Encryption Encryption Encryption
key = “Function key = “Finction key = “Function
T T ERERANEN T TTT)
Ciphertext, Ciphertext, Ciphertexts
Ciphertext, Ciphertext, Ciphertexts
CITTTTTT] CITTTTTT] CITTTTTT]
A
Decryption Decryption Decryption
key = “Function key —» “Finction key = “Function
EENRARNN T T [T T
Plaintext, Plaintext; Plaintext;

Electornic Codebook (ECB) Mode Encryption and Decryption

178

Encryption of multiple blocks in a single message (whether text, an imaggthing else) using
only the plaintext broken intoe-bit blocks and the kelyis said to be performed ehectronic
codebook (ECB) mode. While this is certainly a legitimate way to encrypessage or a file, it
is broadly agreed that it is not a good idea. One reason for this is the-@me mapping
between plaintext and ciphertext. If two blocks in a long plaintext argatihe, the resulting
ciphertext blocks will be the same. This is particularly noticeahlenvencrypting certain types
of diagrams and images. In many cases, the nature of the diagram eléabg identifiable in
the encrypted message or file when the ciphertext is viewed as ieitanemage of the correct
dimensions. And, there is worse that can happen. Suppose Mike is in a positiodiict @
man-in-the-middle attack, and further is able to obtain the plasmtexresponding to any
ciphertext Alice wishes to send to Bob. It may well be possible for Mike tarege the
ciphertext blocks, insert duplicates of some blocks and delete othersaammamthat will allow
him to completely change the meaning of the message Bob will decrypt, withing taknow
the key used by Alice to encrypt the plaintext. If Mike does not have aocislaintexts, he
can still garble the message, by inserting or deleting ciphertext blocks|las replacing
blocks. In the former case, Bob may have no way of knowing that the message pts deoigt
what Alice intended, while in the latter case Alice and Bob may dduigeatre dealing with a

man in the middle, or conclude that there is a problem with the communicationsmweduch.

To deal with some of the problems that may arise when using ECB mode emgrigjisio
common to superimpose operating modes on top of the encryption and decryption functions.
Many operating modes have been developed, but some are more common than others. Four,

including ECB mode, are defined in FIPS 81 [122].

One common mode is cipher-block chaining (CBC) mode. In this mode, encryptdrated
by XOR’ing the first plaintext block with an initialization vector jlof equal length. This IV

may be secret, if the correspondents wish, but is typically not &.sé@tre result of this XOR

179

operation is then encrypted using a session key, thus producing the first gighlertke. This is
then XOR’ed with the next plaintext block, the result of which is encrypted tise session key
to produce the second ciphertext block. The process is repeated, withpbactegt block being
XOR’ed with the next plaintext block. The following diagram illages both the encryption

process and the decryption process.

Plaintext, Plaintext, Plaintext;
CITTTTITT] CITTTTT] CITTTTITT]
Initialization Vector (IV): ¥) 4) 4
(ITTTTTTIT T > »
v A
Encryption Encryption Encryption
key —> Function key —» Function key —» Function
v \ 4) 4
[TTTH (ITTTTTITH CCITITTT]
Ciphertext, Ciphertext, Ciphertexts;
= XOR
Ciphertext; Ciphertext, Ciphertexts
CITTTTITT] CITTTTT] CITTTTITT]
2 A
Decryption Decryption Decryption
key = “Function keY = “Function key = “Function
Initialization Vector (IV) ¥) 4) 4
I —p > >
v A) 4
Djf]jjj Djihjjj LTI
Plaintext, Plaintext, Plaintext;

Cipher-block Chaining (CBC) Mode Encryption and Decryption

This approach has several advantages over ECB mode. First, eaclexffiieck is the product
of encrypting more than just a plaintext block, incorporating the previousragphblock into
each block encryption. Thus, there is a greatly reduced risk thatdimtept blocks that are
identical will produce the same ciphertext. Also, even if Mike hassadoghe corresponding
plaintext, he cannot rearrange the ciphertext blocks to alter the meaigpddintext, since
rearrangement will result in both the moved block and the one following it (intsairiginal

and new locations) being indecipherable.

180

In CBC mode, even if a packet is garbled due to problems in a communicationsknetvee
“clean” ciphertext blocks start to arrive, decryption can continnegghe first undamaged
ciphertext block received will allow successful decryption of the ripkiectext block, if it too is

undamaged.

One drawback of CBC mode is that random read/write access in a CBGenwglpted file is
problematic. Changes in any one ciphertext block are propagated througleedidsng blocks.
If the plaintext of a single block must be changed, all subsequent blocks ire timei$i first be
decrypted. They must then re-encrypted serially starting from thedathrck’s ciphertext.
Also, bit errors in communication that result in framing errorsragedverable without trial and

error in re-establishing the correct framing following the lots bits

Another commonly used mode is cipher feedback (CFB) mode, which is illustrated in the

following diagram.

Initialization Vector (IV):

v v
Encryption Encryption Encryption
keY = “Function key = Function key = “Function
Plaintext,) 4 Plaintext,) 4 Plaintext;) 4
(ITTTTTIT 1 (ITTTTTIT > (ITTTTT T —>»1
v A v
EEERANEE T TTT T
Ciphertext, Ciphertext, Ciphertexts

Initialization Vector (IV)

\ 4
Encryption Encryption Encryption
key Function key Function key Function
) 4 Ciphertext;) 4 Ciphertext,) 4 Ciphertexts
< EEEEEEEE <« OTTITT1 (e 111

\ 4 ‘E:Dj \ 4

CITTTTTT] CITT] CITTTTTT]

Plaintext; Plaintext, Plaintext;

Cipher Feedback (CFB) Mode Encryption and Decryption

181

Careful examination of CFB mode reveals that it converts a symrb&idk cipher into a self-
synchronized stream cipher. Note also that the decryption functionuseubtsince use of it
would not produce identical results for XOR'ing with the current cipheltieck to yield the

plaintext.

Like CBC mode, alteration of the decrypted plaintext via insertionsjaedeand rearrangements
are prevented byte CFB mode. But, CFB mode also allows real-time communigatien, s
decryption of a ciphertext block can begin without having received the cenpddek. This is at

the cost of losing the diffusion of plaintext bits within the resulting eteleblocks,

As with CBC mode, CFB mode is not suitable in cases where random readbegts to an
encrypted file is required, as again, changes to any one ciphertext bloclopdbpte through all

succeeding blocks.

Output feedback (OFB) mode converts a symmetric block cipher into a synchronoumstrea
cipher running key (key-stream) generator, as can be seen in theiafthe encryption and

decryption processes on the next page. This is a straight-forward Veiptan

As may be seen in that diagram, an IV is used, but the output for the encryptien\éfis used
directly as portion of a synchronous stream cipher running key, and is Gistof¢he encryption
function to produce the next block of running key bits/bytes. Again, this modessitaiile
where random read-write access within an encrypted file is reqbuethis time because one
must generate the running key from the IV to the output block used to ermrypotk to be

edited.

Notice that, like CFB mode, both encryption and decryption in OFP mode use tjjatienc
function of the block cipher, since the processes must produce the same ragrstrg&m in
order to maintain the symmetry of encryption and decryption. Further, andsails CFB mode,
there is no diffusion of the plaintext within the individual ciphertext kdoc

182

Initialization Vector (1V)

, v v
Encryption Encryption Encryption
key = Function key = “Function key = “Function
Plaintext,) 4 Plaintext,) 4 Plaintext;) 4
(ITTTTTT > (TTTITTTTF»1 (ITTITTTT >
A A A
[T T [T T T T
Ciphertext, Ciphertext, Ciphertexts
Initialization Vector (1V)
, v v
Encryption Encryption Encryption
key —> " Function key —> Function key —» Function
Ciphertext;)4 Ciphertext,)4 Ciphertexts) 4
CITTTTT T >y (TTTITTTTF>1 (ITTITTTT >
A A A
TTTOTTT EENRANEE EENRANEE
Plaintext, Plaintext, Plaintext;

Output Feedback (OFB) Mode Encryption and Decryption

Counter mode (either CTR or CM) is yet another mode that converts a block cipher into a
synchronous stream cipher key generator. The result is agairgatstoaward VVernam cipher.
As may be seen in the diagram on the next page, the key is used to encryfitarhis been
combined with a running count, here shown as the funmyywheren is the block number in
both the plaintext and the resulting ciphertext. Ordin#fily=n. But, this is not necessarily the
case. All that is required is that both Alice and Bob be able to easigrate the valugn), so as

to maintain synchronization. The functiboan as easily produce a pseudo random sequence.

So long as a user can easily geneii@efor arbitraryn, without computing all prior values, CTR
mode can be used to encrypt files requiring read-write access, thouglbimsedeletion of
material still represents a problem. Also, there is consideflaklbility in how the 1V (also
sometimes called a nonce) and the counter value may be combined. If the seimlefgths

equals, the block length, they can be concatenated. Or, they may be added, XOR’ed,

183

subtracted, hashed, or any other agreed operation yielding the requisite ntibitser thus, as

in the diagram, we can simply view a functignV, xV, —V, , whereo andp are the lengths

of the IV and counter bit-blocks, respectively. We can themiige f(n)) to indicate the nonce

used in generating the running key for bloosf both the plaintext and ciphertext.

Initialization Vector (IV)

gV, f(1)) gV, f(2) g1V, f()
Encryption Encryption Encryption
key = “Function keY = “Function keY = “Function
Plaintext,) 4 Plaintext,) 4 Plaintexts) 4
(TTTTTT T (ITTTTTITI>»T ITTTTT T
\ 4 \ 4 \ 4
CITTITTIT] CITTITTIT] CITTITTIT]
Ciphertext; Ciphertext, Ciphertexts
gav,f(1) gV, f(2) gV, /()
key —» Encryption key —» Encryption key — > Encryption
Function Function Function
Ciphertext;) 4 Ciphertext,) 4 Ciphertexts) 4
LIIITTTIT > LTI TTTIT > LIITITTTIT >
\ 4 \ 4 \ 4
CITTITTT] CITTTTTT] CITTTTTT]
Plaintext; Plaintext, Plaintext;

Counter (CTR or CM) Mode Encryption and Decryption

Both OFB and CTR modes allow pre-computation of running key sequences, and thghklgre hi
suitable for real-time applications, so long as the average dataf theeencrypted traffic does

not exceed the ability to compute the running key ahead of need.

For block ciphers, the use of the secret key depends upon the mode used. In the inadeis tha
fact stream ciphers, the same problem as with stream cipher keys pegiaitiating
communications with the same key results in use of a running key that betiesaine point in

its cycle as a prior initialization with that key. This is ayMead idea, as discussed in the context

184

of Vernam ciphers. If an attacker XOR'’s two message segment$eradpyith the same
running key, the result is the XOR of the two plaintexts. It is ingobito remember, though, the
distinction between the key used to initialize the cipher and the running kepliee algorithm
produces. It is the re-initiation with the same key that is the problemomniitwed
communication using the same running key, but continued from the last state of the cipher

algorithm.

For “pure” block cipher modes such as ECB and CBC modes (and not CFB, OFBy Gthro
modes that are effectively stream ciphers), a key may be dequeided one is cautious about
such re-use. For example, if two plaintexts contain identical first bkoudksre encrypted with
the same key the first ciphertexts blocks with also be identicak wiihicontinue for CBC as
long as the successive plaintext blocks are identical, but will endheitfirst non-matching
plaintext blocks. For ECB the situation is, as previously stated) marcse, as identical

plaintext blocks encrypt identically, regardless of position, when usingthe key.

For OFB and CTR, all identical blocks in the same positions in thetg@kis will encrypt
identically, when using the same key. The situation is more complex whaSRhe encryption
of any block depends upon the prior block. Thus, the second and successiverofive
consecutive identical plaintext blocks (in content and placement) wilgridentically, when

using the same key.

Excluding ECB, it is possible to generalize the observations abgaslieg CFB, OFB and CTR
to block cipher modes that produce stream ciphers: key re-use is not a goassices|g the
case with Vernam ciphers generally. But, this must be understoodhm aére-use in the form
of re-initialization of the cipher state. Provided the cycle of tining key generated using a
given cipher key is not exhausted, continued use of the running key from tstataseached is

not a problem, in and of itself.

185

Appendix B: Test Code

The following pages contain the C language souode ¢or the Bundesamt fur
Sicherheit in der Informationstechnik BSI AIS 28ttef random behavior. The file is a

“free standing” source file in that it requires additional header files than the standard C
library headers specified in the source file itself

186

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

BSI_test_suite.cpp

This file contains the source code for an implementation of the required
tests enumerated and described in the following document.

Bundesamt fur Sicherheit in der Informationstechnik (BSI):
Application Notes and Interpretation of the Scheme (AIS),
AIS 20, Version 1,
2 December, 1999.

This test suite is essentially stripped of most error detection code, so
as to improve the clarity of the source code. Equally, efficiency is some-
what sacrificed for clarity. While this set of tests is stated to be man-
datory by the BSI, it should not be taken as a definitive test suite. Other
organizations, standards and specifications exist and differ from this set
of test. Many have good rationales. Still, as a mandatory set, these tests
serve as a sound basis for evaluating the apparent randomness of any pseudo-
random number generator.

Compilation and 1linking of this file, and the naming of the resultant
executable 1is operating system and user dependent. As such, the user is
Teft to perform such actions. However, this file has been compiled and run
on both windows and Unix systems, and functioned correctly in all cases.
Thus, no significant difficulties are foreseen in creating the executable,
and ensuring that it does in fact execute.

187

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//

To use the executable generated by compilation of this file, at a command
Tine prompt, in a directory from which the executable can be executed, enter
the following command Tline.

<executable_name> <input_file_name> <output_file_name>

where <executable_name is the name of the executable file as per the user
determination, <input_file_name> is the name (including any required path
specification) of the input file of random outputs from a generator, con-
taining at Teast 20,000 bits, or 2,500 bytes, in binary format, with big-
endian ordering, and <output_file_name> is the name (including any required
path specification) of the file that will contain the results, in ASCII
text characters, of the tests on the input file.

Elegence would dictate that separate tests should be broken out into
separate functions, but it is regarded as unnecessary for this simple a
program.

Being a very simple program, we need Tittle by way of IO libraries and
functions.

#include <stdio.h>

// We need to define a few constants symbolically for readability, etc.

188

#define BIT_COUNT 20000 // the required number of bits to test

#define NYBBLE_COUNT 5000 // BIT_COUNT / 4

#define BYTE_COUNT 2500 // BIT_COUNT / 8

#define BITS_BYTES 8 // number of bits per byte
//

// int main (int argc, char *argv[])
// This is where all the work is done.

int main (int argc, char *argv[])

{
int 1;
int js
int k;
int ohe_cnt = 0;
int zero_cnt = 0;
char C;
char ac[20000];
FILE *ipf;
FILE *opf;

// To start, we have to convert the file containing the binary stream of
// generator outputs to a more manageable format for conducting the BSI
// required tests. We can perform the mono-bit test concurrently, and
// do so here. Technically, we don't need to count zeroes, but we do so
// as a check against the count of ones. As previously noted, error

189

// detection is almost non-existent. The input file is assumed to be
// of the correct Tength.

ipf = fopen(argv[1l], "rb");
for (i =0, j = 0; i < BYTE_COUNT; i++, j += 8)
{

// get a byte

c = getc(ipf);

// Cycle through the bits, converting to char values.
// We assume a big-endian orientation throughout.

for (k = 0; k < BITS_BYTES; k++, ¢ = ¢ << 1)

{

if ((c & 0x80) == 0x80)

{
ac[(§ + k)] = 0x01;
one_cnt++;

3

else

{
ac[(j + k)] = 0x00;
zero_cnt++;

3

190

// The mono-bit test has been completed, so write the results to the
// output file.

fprintf(opf, "Test 1 : Mono-bit test : %d ones and %d zeroes.\n",
ohe_cnt, zero_cnt);
fprintf(opf, " Passing range is 9654 < # ones < 10346.\n");

if ((9654 < one_cnt) && (one_cnt < 10346))
fprintf(opf, " Test passed\n\n');
else
fprintf(opf, " Test FAILED\n\n");

// Now, perform the bit-run test. Both the bit-run and Tong-run tests can
// be performed concurrently, which we do here. For readability, the run
// count array entry 0 is unused, allowing the number of runs of 1 to 5

// bits to be counted in entries with the corresponding index. Entry 6

// will contain the count of all runs of 6 or more bits, and entry 7 the
// number of runs of 34 bits and Tonger.

int run;
int run_cnt[8] = {0, O, O, O, O, O, O, O};
char current;

191

for (i =1, run = 1, current = ac[0]; i < BIT_COUNT; i++)
{
if (ac[i] == current)
run++;
else

{
if (run <= 5)
run_cnt[run]++;
else

{

run_cnt[6]++;

if (run >= 34)
run_cnt[7]++;

run = 1;
current = ac[i];

// Whatever the last bit was, it is part of a run, so we need to account
// for 1it.

if (run <= 5)
run_cnt[run]++;

192

else

{
run_cnt[6]++;
if (run >= 34)
run_cnt[7]++;
}

// Now we write the results of the run test.

fprintf(opf, "Test 3 : Run test --\n");
fprintf(opf, " Run length occurences upper
fprintf(opf, " 1 %4d 2267
run_cnt[1]);
if (2267 <= run_cnt[1l]) && (run_cnt[1l] <= 2733))
fprintf(opf, "passed\n");
else
fprintf(opf, "FAILED\n");

fprintf(opf, " Run length occurences upper
fprintf(opf, " 2 %4d 1079
run_cnt[2]);
if ((1079 <= run_cnt[2]) && (run_cnt[2] <= 1421))
fprintf(opf, "passed\n");
else
fprintf(opf, "FAILED\n");

193

Tower\n");
2733",

Tower\n");
1421",

fprintf(opf, " Run Tength occurences
fprintf(opf, " 3 %4d
run_cnt[3]);
if ((502 <= run_cnt[3]) && (run_cnt[3] <= 748))
fprintf(opf, "passed\n');
else
fprintf(opf, "FAILED\n");

fprintf(opf, " Run Tength occurences
fprintf(opf, " 4 %4d
run_cnt[4]);
if ((233 <= run_cnt[4]) & & (run_cnt[4] <= 402))
fprintf(opf, "passed\n");
else
fprintf(opf, "FAILED\n");

fprintf(opf, " Run Tength occurences
fprintf(opf, " 5 %4d
run_cnt[5]);
if ((90 <= run_cnt[1l]) && (run_cnt[5] <= 223))
fprintf(opf, "passed\n');
else
fprintf(opf, "FAILED\n");

fprintf(opf, " Run length occurences

194

upper
502

upper
233

upper
90

upper

Tower\n");
748",

Tower\n");
402",

Tower\n");
223",

Tower\n'");

fprintf(opf, " 6+ %6d 90 223",
run_cnt[6]);
if ((90 <= run_cnt[6]) && (run_cnt[6] <= 223))
fprintf(opf, "passed\n");
else
fprintf(opf, "FAILED\n");

// The long-run test fails if there are any runs of 34 bits or Tonger.

fprintf(opf, "Long run tests: %d 34+ bit runs occurred.\n", run_cnt[7]);
if (run_cnt[7] == 0)

fprintf(opf, " Test passed.\n");
else

fprintf(opf, " Test FAILED.\n");

// The poker test examines nybble values, checking for any skewing in the
// distribution of values.

int nybble;
int values[1l6] = {O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 0O%};
double chi = 0.0;

for (i = 0; i < NYBBLE_COUNT; i += 4)

{
nybble = (ac[i] << 3) + (ac[i + 1] << 2) + (ac[i + 2] << 1) + ac[i + 3];
values[nybble]++;

195

for (i = 0; i < 16; i++)
chi = ((double) values[i]) * ((double) values[i]);

chi = (chi * (16.0 / 5000.0)) - 5000.0;
// Write the poker test results.

fprintf(opf, "Test 2 : Poker test : chi = %f.\n", chi);
fprintf(opf, " valid range is 1.03 < chi < 57.4.\n");

if ((1.03 < chi) && (chi < 57.4))
fprintf(opf, " Test passed\n\n');
else
fprintf(opf, " Test FAILED\n\n");

// The autocorrelation test is the most time-consuming, as it involves 5000
// iternations of an inner loop, for each of 5000 iternations of its outer

// loop, each with 5000 iterations of the inner loop, or 25,000,000 passes

// through the inner Toop. Each iteration of the outer loop constitutes a

// test pass, and failure of any of the 'outer' iternations represents a

// failure of the test as a whole.

int tau;
int sum;

196

int tau_flag = 0;

for (tau = 1; tau <= 5000; tau++)

{
sum = 0;
for (i =0; i < 5000; i++)
{
sum += (ac[i] A ac[(i + taw]);
}
if ((2326 < sum) && (sum < 2674))
{
tau_flag = -1;
fprintf(opf, "Autocorrelation test FAILED for tau = %d\n", tau);
}
}

if (tau_flag == 0)
fprintf(opf, "Autocorrelation test passed.\n");

fclose(opf);

return 0;

197

Appendix C: Key Agreement Code.

The following pages contain the C language code for an implementation of the key agreement
Protocol B. The code is broken into three files: agree.c, polyLFSR.h and tables.h.

198

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

agree.c
This file is the base for the key agreement scheme of Protocol B. It is
designed to process a sequence of 1056 bit blocks, stored as binary data in

in input file, to produce a result string, based upon the state stored in a
second input file. The output string of bits, plus the ending state of the
generator, are written to files. The usage is as follows.

agree n <in> <out> <in_state> <out_state>
where
n is the number of 1056 bit / 132 byte blocks to be processed
<in> is the name of the file containing those blocks
<out> is the name of the file to write agreed bits/bytes to
<in_state> 1is the initial state file
<out_state> is the end state file
The executable uses material from tables.h and polyLFSR.h. Therefore,
to build the executable, place those two files in the same directory with

agree.c, and use the following command on a Unix or Linux system.

gcc -o agree agree.c

#include <stdio.h>

199

#include <stdlib.h>

#include "tables.h"
#include "polyLFSR.h"

#define ASIZE 4
#define BSIZE 128

// The following declarations Tay out the memory required to support the four

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

composite generators: A, B, C and D. The first three of these are "full"
generators, in that they have two separate input generators (these are their
"constituent" generators) used as the <Xn> and <Yn> sequence sources in the
McLaren-Marsaglia generators they are loosely based on. Thus there are bit
queues (?xQ and ?yQ) for each, along with a counter to keep track of how
many unused bits remain in these queues. The D generator is the exception.
It is identical in operation to the other three except that the <Xn> and
<Yn> generators are replaced with the matched bit sequence generaged from rp
and the output from C.

Implementation in C is strightforward, but a C++ implementation, wherein
each of the generators could be implemented as instances of appropriate
classes, would be simple, too. Implementation of these memory declarations
could also have been done using struct typedefs, but the intent is to expose
as much of the structure as possible as clearly as possible.

Note that while it is necessary to keep track of the number of bits in the
<Xn> and <yn> buffers, this is not the case with the current position 1in

the state vector, as it is rotated left with each nybble generated, and thus

200

// is auto-aligned.

unsigned Tong Tong AxQ = OLL; // the <Xn> buffer

int AxQbits = 0; // the number of bits therein
unsigned Tong Tong AyQ = 0OLL; // the <yn> buffer

int AyQbits = 0; // the number of bits in that buffer

unsigned Tong Tong Astate = OLL; // the state of the A composite generator

unsigned long long BxQ = OLL;
int BxQbits = 0;
unsigned long long ByQ = OLL;
int ByQbits = 0;

unsigned long long Bstate = OLL;

unsigned long long CxQ = OLL;
int CxQbits = 0;
unsigned Tong Tong CyQ = OLL;
int CyQbits = 0;

unsigned long long Cstate = OLL;
unsigned long long Dstate = OLL;

// The following data declarations are in a sense excessive. The b_array and
// c_array are never used at the same time, and thus could easily be merged so
// as to reuse the space. or even omitted, if we chose to implement the rp

// extraction and bit matching slightly differently. Wwe are erring on the side

201

// of clerity and ease of debugging in all such cases.

// The data areas themselves are self-explanatory. work_array[] is used to

// hold axr at first, then bxrp. As bxrp is long, and subject to much

// processing, each of the B and C output strings used are stored, as are other
// working arrays. The r_array and a_array are used to process axr, and are

// handled similarly, though processing is in only one "layer."

unsigned char work_array[BSIZE]; // for storing axr, bxrp and rp

unsigned char a_array[ASIZE]; // the output from A

unsigned char r_array[ASIZE]; //

unsigned char b_array[BSIzE]; // the output from B

unsigned char c_array[BSIzE]; // the output from C

unsigned char match_array[BSIZE]; // matched bits after application of
// matching process on rp and c

unsigned char k_array[BSIZE]; // the final output string

//

// void ping(int i)

//

// This function is used in debugging, and provides a very simple way to

// show progress. It can be ignored ...
void ping(int 1)

202

printf("PING: %d\n", 1i);

return;
}
//
// void usage()
//
// This function simply displays the usage data to stdout.

void usage()

{
printf("Usage:\n agree n <in> <out> <in_state> <out_state>\n");
printf("where\n n - the number blocks to be processed\n");
printf(" <in> - 1is the name of the input file\n");
printf(" <out> - is the name of the output file\n");
printf(" <in_state> 1is the initial state file\n");
printf(" <out_state> is the end state file\n");
return;
}
//
// int loadstate(FILE *fp)
//
// This function extracts the state information for the A, B, C and D

203

// generators, including the bit buffers for the A, B and C generators. As
// some compilers have problems with reading long long using any of the scanf()
// functions, the unsigned Tong long items are stored in the file as pairs of

// unsigned Tongs in hexadecimal format.

int ToadState(FILE *fp)

{

int retCode = 0;
unsigned long a, b;

fscanf(fp, "%1x %1x %x\n", &a, &b,
AXQ = ((Cunsigned long long) a) <<
fscanf(fp, "%1x %1x %x\n", &a, &b,
AyQ = ((Cunsigned Tong Tong) a) <<
fscanf(fp, "%1x %1x\n", &a, &b);

Astate = (((unsigned long long) a)

fscanf(fp, "%1x %1x %x\n", &a, &b,
BXxQ = (((Cunsigned long Tong) a) <<
fscanf(fp, "%1x %1x %x\n", &a, &b,
ByQ = (((unsigned long Tong) a) <<
fscanf(fp, "%1x %1x\n", &a, &b);

Bstate = (((Cunsigned long long) a)

fscanf(fp, "%1x %1x %x\n", &a, &b,
CcxQ = (((unsigned Tong long) a) <<

&AXQbits);

32) | ((unsigned long Tong) b);
&AyQbits);

32) | ((unsigned Tong Tong) b);
<< 32) | (Cunsigned Tong long) b);
&BxQbits);

32) | ((unsigned long Tong) b);
&ByQbits);

32) | ((unsigned Tong Tong) b);

<< 32) | (Cunsigned Tong long) b);
&CxQbits);

32) | ((unsigned Tong Tong) b);

204

//

fscanf(fp, "%1x %1x %x\n", &a, &b, &CyQbits);

CyQ = ((Cunsigned Tong long) a) << 32) | ((unsigned long Tong) b);
fscanf(fp, "%1x %1x\n", &a, &b);

Cstate = (((unsigned Tong long) a) << 32) | ((Cunsigned long long) b);

fscanf(fp, "%1x %1x\n", &a, &b);
Dstate = (((unsigned long Tong) a) << 32) | ((unsigned Tong long) b);

return retcCode;

// int intialize(FILE *fp)

int initialize(FILE * fp)

{

int retCode;

if ((retCode = loadstate(fp)) == 0)

{
if ((retCode = loadGenerators(fp)) != 0)
printf("Could not load generators.\n");
3
else

printf("Could not load state.\n");

205

//
//
//
//
//
//
//
//
//
//
//
//
//

int get_data(FILE *fp, unsigned char

{

return retcCode;

int get_data(FILE *fp, unsigned char *a, unsigned char *b)

This function gets a block of data for processing, and assumes certain
facts regarding the structure of the data to be read and stored. It assumes
that the target arrays are of sufficient size, and that there are two such
targets, with sizes ASIZE and BSIZE.

The data to be reach is assumed to be binary in nature, not ASCII text,
though there is nothing to preclude that.

The return value indicates whether an error occurred in reading the data
via a value of 0 returned for no errors, and -1 for an error. Error testing
is limited to an EOF. Note that the j counter/index will be 128 only if the
expected number of bytes have been read.

JO%

*a, unsigned char *b)

int i = 0; // counter/index for the first array
int j = 0; // counter/index for the second array
int c; // target for getc(fp), which returns an int.

// For ASIZE bytes, read from the input file into the a[] array, bailing if
// an EOF is encountered.

206

while (i < ASIZE)

{
if ((c = fgetc(fp)) == EOF) break;
*(a + i) = (unsigned char) c;
i++;

}

// only if the first ASIZE bytes were successfully read, read BSIZE bytes
// into the b[] array, again bailing if an EOF is encountered.

if (i == ASIZE)
{
while (j < BSIZE)
{
if ((c = fgetc(fp)) == EOF) break;
*(b + j) = (unsigned char) c;
J++s
ks

// return the correct return value/code: 0 if the data was read correctly,
// or -1 if not.

return ((j == BSIZE) ? 0 : -1);

207

//

// unsigned long myRand(unsigned Tlong *rx) (void),

// unsigned long *ry) (void),

// unsigned long long *xQ,

// int *xQbits,

// unsigned long long *yQ,

// int *yQbits,

// unsigned long long *state)

//

// This function "pumps" the composite generator defined by the parameters

// passed, it is designed so that the <Xn>
// function maintains the xQ, yQ, and stat

and <yYn> may be of any type. The
e. The value generated is returned.

// The dTable and sTable arrays used are assumed to be within scope and

// defined as required. (see tables.h)

unsigned Tong myRand(unsigned long (%
unsigned long (*
unsigned Tong long
int
unsigned long long
int
unsigned Tong long

int i =0; // the cou

rx) (void),
ry) (void),

*XxQ,
*xQbits,
*yQ,
*yQbits,
*state)

nter

208

int jj, kk, 11; // indices for accessing dTable/sTable entries
unsigned long v; // a temporary value returned by a PRNG
unsigned long outval = 0; // where we put what is generated and returned

while (i < 8)

{

if (*xQbits <= 4)

{
v =0rxX)0;
*XQ = *xQ | (((unsigned long long) v) << *xQbits);
*xQbits += 32;

b

if (*yQbits <= 4)

{
v=0ry)O;
*yQ = *yQ | (((unsigned long long) v) << *yQbits);
*yQbits += 32;

h

jj = (int) (*state & Ox3FLL);
*state = (*state >> 4) | (*state << 60);

kk = (int) (*xQ & 0x0000000FLL);
*xQ = (*xQ >> 4);
*xQbits = *xQbits - 4;

209

11 = (int) (*yQ & 0x0000000FLL);
*yQ = (¥*yQ >> 4);
*yQbits = *yQbits - 4;

outval = (outval << 4) | ((Cunsigned long) (dTable[jj]l[kk][11] & OxO0F));
*state A= ((unsigned long long) sTable[jj]l[kk]J[11]) & Ox3FFFLL;

i++;

}

return outval;
}
//
// int fi11_a(Q)
//
// This function fills the a array, using the A composite generator. We

// perform a 'manual' insertion from the unsigned long A produces in order to
// ensure that implementations on Bit-Endian and Little-Endian processors still
// behave the same.

int fi11_aQ
{

unsigned long val;

210

val = myRand(genAx, genAy, &AxQ, &AxQbits, &AyQ, &AyQbits, &Astate);

a_array[0]
a_array[1]
a_array[2]

(unsigned char) ((val >> 24) & OxFFL);
(unsigned char) ((val >> 16) & OxFFL);
(unsigned char) ((val >> 8) & OxFFL);

a_array[3] = (unsigned char) (val & OXFFL);
return 0;
}
//
// int fil1l_bc(Q
//
// This function uses the B and C composite generators to fill the contents

// of the b and c byte arrays, which will be used to first perform a Vernam
// decipher of the bxrp bit sequence, then to do the bit matching process
// between rp and c.

int fill_bcQ

{
unsigned long 1ii;
unsigned long val;

// we deal with blocks of four bytes in a "Big-endian" manner, manually, to
// ensure compatibility between different processors with different
// -endianism.

211

for (i1 0; ii < 128; 1ii += 4)

{
val = myRand(&genBx, &genBy, &BxQ, &BxQbits, &ByQ, &ByQbits, &Bstate);
b_array[iil] = (unsigned char) ((val >> 24) & OxFFL);
b_array[ii + 1] = (unsigned char) ((val >> 16) & OxFFL);
b_array[ii + 2] = (unsigned char) ((val >> 8) & OxFFL);
b_array[ii + 3] = (unsigned char) (val & OXFFL);
}
for (ii = 0; i1 < 128; ii += 4)
{
val = myRand(&genCx, &genCy, &CxQ, &CxQbits, &CyQ, &CyQbits, &Cstate);
c_array[ii] = (unsigned char) ((val >> 24) & OXFFL);
c_array[ii + 1] = (unsigned char) ((val >> 16) & OXFFL);
c_array[ii + 2] = (unsigned char) ((val >> 8) & OXFFL);
c_array[ii + 3] = (unsigned char) (val & OXFFL);
}
return 0;
}
//

o
¥

// int skew_bc(unsigned char *aa)

212

//
//
//
//
//
//
//
//
//
//
//
//

int skew_bc(unsigned char

{

This function inserts the requisite bits from the characcter string at
aa into the <Xn> bit buffers for the B and C composite generators. The Tow
order 15 bits are inserted into B's buffer, and the next higher 14 bits into
C's buffer. The net effect, if the contents of aa are random, is to make
B and C aperiodic. 1In addition, the outputs of the <Xn> and <Yn> generators
of the two are shifted relative to each other, so that only once every 32
cycles (in the case of B), or every 16 (in the case of C), do the save bit
generators (the individual LFSRs) align pair-wise, between <Xn> and <yYn>.
at each such occurrence, the bits from each are "out of phase" relative to
their previous alignment. The highest order three bits are returned, and
are used in subsequent aperiodization of A.

o

n‘aa)

unsigned long long 1ii OLL;

= (((unsigned Tong long) aa[0]) << 24)
| ((Cunsigned Tong Tong) aal[l]) << 16)
| ((Cunsigned Tong Tong) aal[2]) << 8)
| (unsigned Tong Tong) aal3];

i

BXxQ |= ((((unsigned long long) 1ii) && OxO07FFFLL) << BxQbits);
BxQbits += 15;

cxQ |= ((((Cunsigned Tong Tong) ii) >> 15) && Ox03FFFLL) << CxQbits);

213

//

CxQbits += 14;

return (int) ((aa[0] >> 29) & 0x00000007);

//int skew_a(unsigned char *ca,

//
//
//
//

int n,
int bias)

This function inserts 32 bits from the matched bit array into the AxQ

// bit buffer, ensuring the desired aperiodicity of the A generator. If there
// are not enough bits,

int skew_a(unsigned char *ca,

int n,
int bias)

int ii = 0;
int jj = 0;
unsigned long skew = 0;

// look back from the end of the matched bit buffer by 4 + bias, which

// effectively means we'll extract bits starting at ca[n - (4 + bias)]
// ... if at all.

214

ii = n - (4 + bias);

if (i > 4) // only extract and skew if there are at Teast 96 bits
{

skew = (unsigned long) calii];

skew = (skew << 8) + (unsigned Tong) calii + 1];

skew = (skew << 8) + (unsigned Tong) calii + 2];

skew = (skew << 8) + (unsigned Tong) calii + 3];

for (jj = 1i; 33 < (n - 4); jj++)
{
cal[jjl = cal(G] + DI;

AXQ = AXQ | (((Cunsigned Tong long) skew) << AxQbits);
AXQbits += 32;

return ((ii >4) ?2 (n - 4) : n);

//

// void vernam_crypt(unsigned char me[], ke[], unsigned int n)

//

// This function performs a simple Vernam cipher encrypt/decrypt. Wwhich 1is
// performed is determined by the contents of me[]. If it contains a plaintext

215

// the operation is encryption. If it is a ciphertext, it is a decryption.

// Whereas typical Vernam ciphers (other than OTP) would use the PRNG key-
// generator directly, use of arrays allows more generality, including OTP

// encryption and decryption.

// No error checking is performed on the Tength of the key (ke[]) and

// message (me[]).

void vernam_crypt(unsigned char *me, // message to be [en|de]crypted.
unsigned char *ke, // key to be used.
unsigned int n) // number of bytes in the input arrays.
{
int ii; // an index.

// [En|De]lcryption is a simple, incremental XOR of the two arrays, with the
// resulting [plain|cipher]text placed in me[].

for (i1 = 0; i1 < n; ii++)

{
*(me + ii) A= *(ke + 11);
}
return;
}
//

// int crp_match(unsigned char rp], c[], ma[], int n)

216

//
//
//
//
//
//
//
//
//
//
//
//

This function performs a bit-match process between the c[] and rp[]
arrays to reduce the number of bits to be used in subsequent steps.

As rp[] will contain the random bitstream to be massaged into the agreed
random bits and c[] the output of a PRNG, the process may be viewed altern-
atively as either randomly selecting pseudo-random bits (in c[]), or as
pseudo-randomly selecting random bits (in rp[]). 1In either view, the result
is placed in ma[], and may be regarded as random.

The match[][] array is structured to contain the number of bits that
match in the two nybbles used as indices into the array in the low-order
nybble of the entries, while the high nybble of each entry ccntains the
matching bit values packed to the right.

int crp_match(unsigned char rp[], // random byte stream.

unsigned char c[], // byte stream from PRNG C().
unsigned char mal], // output array of matching bits/bytes.
unsigned int n) // number of bytes in c[] and rp[].

// Match data array contains the number of bits that match in the indices
// of each entry, in the Tow-order nybble, and the bits that match, packed
// to the right, in the high-order bits.

static unsigned char match[16][16] = {
{0x04, 0x03, 0x03, 0x02, 0x03, 0x02, 0x02, 0x01,
0x03, 0x02, 0x02, 0x01, 0x02, 0x01l, 0x01, 0x00},
{0x03, 0x14, 0x02, 0x13, 0x02, O0x13, 0x01, 0Ox12,

217

0x02,
{0x03,
0x02,
{0x02,
0x01,
{0x03,
0x02,
{0x02,
0x01,
{0x02,
0x01,
{0x01,
0x00,
{0x03,
0x84,
{0x02,
0x43,
{0x02,
0x43,
{0x01,
0x22,
{0x02,
0x43,
{0x01,
0x22,
{0x01,

0x13,
0x02,
0x01,
0x13,
0x12,
0x02,
0x01,
0x13,
0x12,
0x01,
0x00,
0x12,
0x11,
0x02,
0x43,
0x13,
0x94,
0x01,
0x22,
0x12,
0x00,
0x01,
0x22,
0x12,
0x53,
0x00,

0x01,
0x24,
0x23,
0x13,
0x12,
0x02,
0x01,
0x01,
0x00,
0x23,
0x22,
0x12,
0x11,
0x02,
0x43,
0x01,
0x22,
0x23,
0xA4,
0x12,
0x53,
0x01,
0x22,
0x00,
0Ox11,
0x22,

0x12,
0x13,
0x12,
0x34,
0x33,
0x01,
0x00,
0x12,
0x11,
0x12,
0x11,
0x33,
0x32,
0x01,
0x22,
0x12,
0x53,
0x12,
0x53,
0x33,
OxB4,
0x00,
0x11,
0x11,
0x32,
0x11,

0x01,
0x02,
0x01,
0x01,
0x00,
0x44,
0x43,
0x23,
0x22,
0x23,
0x22,
0x12,
0Ox11,
0x02,
0x43,
0x01,
0x22,
0x01,
0x22,
0x00,
0Ox11,
0x43,
0xc4,
0x22,
0x63,
0x22,

0x12,
0x01,
0x00,
0x12,
0x11,
0x23,
0x22,
0x54,
0x53,
0x12,
0x11,
0x33,
0x32,
0x01,
0x22,
0x12,
0x53,
0x00,
0x11,
0x11,
0x32,
0x22,
0x63,
0x22,
0xD4,
0x11,

0x00,
0x23,
0x22,
0x12,
0Ox11,
0x23,
0x22,
0x12,
0Ox11,
0x64,
0x63,
0x33,
0x32,
0x01,
0x22,
0x00,
0Ox11,
0x22,
0x63,
0Ox11,
0x32,
0x22,
0x63,
0Ox11,
0x32,
0x63,

218

Ox11},
0x12,
0x11},
0x33,
0x32},
0x12,
0x11},
0x33,
0x32},
0x33,
0x32}%,
0x74,
0x73}%,
0x00,
0x11},
0Ox11,
0x32},
0Ox11,
0x32}%,
0x32,
0x73}%,
0Ox11,
0x32}%,
0x32,
0x73}%,
0x32,

0x22, 0x11l, 0Ox63, 0x32, 0x63, 0x32, OxE4, O0x73},
{0x00, Ox11, Ox11l, Ox32, Ox11l, O0x32, 0x32, 0x73,
0x11, 0x32, 0x32, 0x73, 0x32, 0x73, 0x73, OxF4}

}s

int
int
int
unsigned 1int
unsigned 1int
unsigned int
unsigned int
unsigned 1int

i1;
bits = 0;
cnt = 0;
33s
kk;
11;
mm;
out = 0;

for (ii = 0; i1 < n; ii++)

{

//
//
//
//
//
//
//
//

an index into the input arrays.
number of matching bits buffered.
number of matching bytes.

index into match[] from c[].

index into match[] from m[].
number of matched bits, this test.
matched bits, this try.

buffer for bits not yet grouped.

// Do a bit-match selection between the bytes in c and those in rp.
// note that can do the nybble-wise matching either low-nybble-first

// or high-nybble-first.

The ordering used here is Tow-nybble-first,

// which achieves a Timited mixing of the output bits. This in itself
// is not significant, but coupled with other swizzling operations it

// increases the uncertainty of relationship between an output bit from
// the aggregate process and any given bit in the input, which is the

// bxrp array.
// For each nybble, extract corresponding bits from the current bytes
// of c and rp, then use these values of indices into the match table.

219

// The byte extracted contains the number of matching bits in the two
// indices in the Tow-order nybble, and the values of the matching bits
// packed to the right in the high-order nybble. The bits obtained are
// appended to the out buffer, and the number of bits in the buffer

// is updated.

jj = (unsigned int) (c[ii] & OxO0F);

kk = (unsigned int) (rp[ii] & OxOF);

11 = (unsigned int) (match[jj]l[kk] & OxOF);

mm = (unsigned int) ((match[jj][kk] >> 4) & OxO0F);

out = ((out << 11) | mm);

bits += 11;

jj = (unsigned int) ((c[ii] >> 4) & O0x0F);

kk = (unsigned int) ((rp[ii] >> 4) & O0xO0F);

11 = (unsigned int) (match[jj]l[kk] & OxOF);

mm = (unsigned int) ((match[jj]l[kk] >> 4) & OxO0F);

out = ((out << 11) | mm);

bits += 11;

// If there are enough bits for a byte in the buffer, copy these to the
// target array (ma), increment the byte count, update the bit count,
// and shift the buffer to account for the bits removed.

// Note that if any bits are pushed into the buffer further than the

// right-most eight bits, such bits will remain in the buffer. Thus,
// additional scrambling will occur if such bits are eventually placed

220

// in the output array. Such bits may in fact be discarded, along with
// any other bits that were insufficient to form a byte when teh last
// nybble has been porcessed.

if (bits >= 8)

{
ma[cnt] = (unsigned char) (out & OxFF);
out = (out >> 8);
bits = bits - 8;
cnt++;
h

// Return the full count of bytes generated through the bit-matching.

return cnt;

//
// int mk_blend(unsigned long long *s, unsigned char m[], k[], int n)

//

// This function performs the blending operation between the opposing ends
// of the matched bits array. The process starts at the ends and works towards
// the middle.

int mk_blend(unsigned long long *s, // state for the mixing process.

221

int
int
int
int
int

unsigned char *m,
unsigned char *k,
unsigned 1int n)

i1 = 0;

jj =n - 1;
aa;

bb;

cc;

unsigned long temp;

// matched bits from prior step.
// the output array.
// number of bytes in m[].

// 'Teft' index into m[].

// 'right' index into m[].

// first index into t[] and d[].
// second index into t[] and d[].
// third index into t[] and d[].
// temp for modifying state *s.

// We only deal with even numbers of bytes. If m[] contains an odd number
// of bytes, the end-test for the operational loop will stop before it

// process the middle byte, since m[] is processed from the ends towards
// the middle, and the end-test 1is satisfied if ii == jj.

for

{

G i1 < jjs di++, 3i--)

// Extract the needed indices for the first nybble

aa = (m[ii] >> 4) & OxOF;
bb = m[jj] & OxOF;
cc = *s & Ox3F;

k[ii] = (dTable[aa][bb][cc] & OxO0F);

// adjust the state vector

222

temp = (((unsigned Tong long) sTable[aa][bb][cc]) & Ox3FFFLL);

*s = ((*s >> 4) & OxOFFFFFFFFFFFFFFFLL)
| ((*s << 28) & 0xF000000000000000LL);
*s A= temp;

// extract the indices for the second nybble

aa = m[ii] & OxOF;
bb = (m[jj] >> 4) & OxOF;
cc = *s & Ox3F;

k[ii] |= ((dTable[aa][bb][cc] & Ox0F) << 4);
// adjust the state vector again

temp = (((unsigned Tong long) sTable[aa][bb][cc]) & Ox3FFFLL);

*s = ((*s >> 4) & OxOFFFFFFFFFFFFFFFLL)
| ((*s << 28) & 0OxF000000000000000LL);
s A= temp;
3
return (n >> 1);
}
//

// void write_output(FILE *fp, unsigned char *k, int n)

223

//
// This function writes teh agreed bits (as binary bytes) to the output
// file. It is very simple, and requires very little explanation.

void write_output(FILE *fp, unsigned char *k, int n)

{
int ii;
for (i = 0; ii < n; ii+4)
{
putc(C*(k + ii), fp);
}
return;
}
//
// int saveState(FILE *fp)
//
// This function deals with saving the states of the composite generators,

// with regard to the buffered bits and the bit counts, as well as the state
// vectors, but uses the saveGenerators() function in polyLFSR to save the
// shift registers themselves.

int saveState(FILE *fp)
{

224

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

II%X

"%X

"%X

II%X

II%X

"%X

"%X

II%X

II%X

%X %x\n",

%X %x\n",

%x\n",

%X %x\n",

%X %x\n",

%x\n",

%X %x\n",

%X %x\n",

%x\n'"",

(unsigned
(unsigned
AXQbits);
(unsigned
(unsigned
AyQbits);
(unsigned
(unsigned

(unsigned
(unsigned
BxQbits);
(unsigned
(unsigned
ByQbits);
(unsigned
(unsigned

(unsigned
(unsigned
CxQbits);
(unsigned
(unsigned
CyQbits);
(unsigned
(unsigned

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

Tong)
Tong)

((AxQ >>
(AxQ

((AyQ >>
(AyQ

((Astate
(Astate

((BxQ >>
(BxQ

((AyQ >>
(BYQ

((Bstate
(Bstate

((cxQ >>
(CxQ

((CyQ >>
(¢yQ

((Cstate
(Cstate

225

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

>> 32) & OXFFFFFFFFL),
& OXFFFFFFFFL));

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

>> 32) & OxFFFFFFFFL),
& OXFFFFFFFFL));

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

32) & OXFFFFFFFFL),
& OXFFFFFFFFL),

>> 32) & OXFFFFFFFFL),
& OXFFFFFFFFL));

fprintf(fp, "%x %x\n",

(unsigned long) ((Dstate >> 32) & OXFFFFFFFFL),

(unsigned long) (Dstate

& OXFFFFFFFFL));

saveGenerators(fp);
return 0;
}
//
// int main(int argc, char *argv[])
//
// This 1is the driving function of the process. Five command 1line argu-
// ments are required to run the program, as described above in usage().
// The basic operation of main is performed in a loop which tests for an

// end of the input file by reading an input line, as well as testing for the
// exhaustion of the count passed in command Tine.

int main(int argc, char *argv[])

{
int
int
int

FILE
FILE

n=0;
blocks

//
//
//
//
//
//

Byte counts.

Number of blocks.

Distance in bytes from end, matched
bits to extract A skew bits.

Pointer to material input file.

Pointer to agreed key output file.

226

FILE *isft; // Pointer to input state file.
FILE *ost; // Pointer to output state file.

// need to set up file io and the number of blocks to process

if (argc != 6)

{
printf("Invalid command 1ine.\n");
usage();
goto myExit;

}

blocks = atoi(argv[1l]);

ipf = fopen(argv[2], "rb");

opf = fopen(argv[3], "wb");

isf = fopen(argv([4], "r");

osf = fopen(argv[5], "w");

if (@pf == (FILE *) NULL) || (opf == (FILE *) NULL)
|| (isf == (FILE *) NULL) || (osf == (FILE *) NULL))

{

printf("one of the required files could not be opened.\n");

usage(Q);
goto myLongExit;

227

// must have the initial state, so load it and intialize the process to
// that agreed state.

if (initialize(isf) = 0)

{ goto myLOngEXit;
}
while ((get_data(ipf, r_array, work_array) == 0) && (blocks-- > 0))
// { printf("axr = %02x %02x %02x %02x\n", r_array[0], r_array[1l], r_array[2], r_array[3]);
fi11_aQ;
// printf("a = %02x %02x %02x %02x\n", a_array[0], a_array[1l], a_array[2], a_array[3]);
vernam_crypt(r_array, a_array, 4);
// printf("r = %02x %02x %02x %02x\n", r_array[0], r_array[1l], r_array[2], r_array[3]);

bias = skew_bc(work_array);
fi11_bcQ;

vernam_crypt(work_array, b_array, 128);

228

S
1l

crp_match(work_array, c_array, match_array, 128);
skew_a(work_array, n, bias);

S
1l

mk_blend(&Dstate, match_array, k_array, n);

write_output(opf, k_array, (n / 2));

// since we intend to use the revised state of the agreement process 1in

// subsequent agreement processes, we must save the revised state. IF we
// were to take security seriously, we might consider using a suitable tool
// to destroy the key file initially Toaded, but as this 1is a didactic

// implementation, and we may also be concerned about verifying the data
// received was correct, this is not done here.

saveState(osf);

// regardless of whether the process was completed, we will be polite and
// close any open files.

myLongEXit:
if (isf !'= (FILE *
if (osf != (FILE *
if (ipf !'= (FILE *
if (opf != (FILE *

NULL) fclose(isf);
NULL) fclose(osf);
NULL) fclose(ipf);
NULL) fclose(opf);

A P S

229

myEXit:
return 0;

230

//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

polyLFSR.h
Contained herein are components necessary for the Toading and saving of
the overall state of the application, and specifically what may be regarded

as the 'key', which changes

This file contains the definitions of the Galois configuration LFSRs
used as the constituent PRNGs of the A, B and C generators in Protocols
A and B. As implemented, these are "banks" of 32 LFSRs, all of the Galois
configuration, which can be operated in parallel, providing significantly
more bits per cycle than via a single LFSR. LFSRs of lengths up to 64 are
supported by the code, though only the g2 and g5 generators below use long
polynomials/shift registers.

Several changes may be made to improve the efficiency of the generators
with regard to Toading and saving state and operation. Carrying a
'"Tength' value, so that we avoid unnecessary reads and writes, as well as
not continuing the update process past the end of the polynomial, for
example, would help overall efficiency.

While the polynomials are defined herein, and are thus 'static', there
is no requirement that this be so for the protocols supported. The poly-
nomials could as easily be regarded as "key material" to be determined upon
initial establishment of the ends of the exchange (meaning giving the
initial states to Alice and Bob). This would involve an expansion of the
saved state and additional initialization code, but does not represent a
significant problem.

231

// set the maximum size of the various tables used by the ganged Galois config-
// uration LFSRs.

#define MAX_BITS 64

// For each of the six ganged Galois LFSR sets, the taps are provided for
// verification of the polynomials.

// 31,3 31,6 31,9,5,1 31,10,6,5,2,1

// 35,11,9,7,6,1 35,11,10,6,5,1 35,11,10,7,6,4 35,11,10,9,6,4
// 35,10,8,7,4,3 35,10,9,1 35,11,6,5 35,11,8,5

// 35,9,6,2 35,10,4,3 35,10,7,3 35,10,8,7,4,3

// 36,9,7,1 37,9,7,6,5,1 36,12,8,4,2,1 36,13,9,6

// 37,6,4,1 37,9,2,1 37,10,5,4 37,11,6,1

// 38,6,5,1 38,9,8,5,4,1 38,11,5,2 38,11,6,4

// 39,4 39,9,8,5,4,1 39,10,9,5,2,1 39,11,9,2,1

// Three tables are used for each ganged set of LFSRs. The first will contain
// the actual bits in the virtualized shift registers, the second the bits

// corresponding to the taps of the LFSRs, and the third a set of masks used
// to remove extraneous 1l's from the first table at initialization. This

// removal should not be necessary, in normal operation of the generators, but
// which the state file is creeated their use simplifies the process of

// ensuring that there are no extraneous bits present, and thereby helps 1in

// verification of the correctness of the processes involved.

232

// Start of the g0 specification

unsigned
unsigned

unsigned

Tong gOBits[MAX_BITS];
Tong g0Taps [MAX_BITS]
0x00000000uT, 0Ox3C40EDC7ul,
0x03852A5Ccul, 0x343042E6ul,
0x00912044ul, 0x2948D477ul,
0x00002000u1, 0x00001000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x0000F000uT, 0x00000FO00uT,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
b

Tong gOMask [MAX_BITS]
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,

{

0x10082223ul,
Ox5F285980ul,
0x17c70202ul,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x000000FOQuT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

{

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,

233

0x80870000uT,
0x0A83C000ul,
0x0F300134ul,
0x00000000uT,
0x00000000uT,
0x00000000u',
0x00000000u',
0xF0000000uT,
O0xOFFFO000uT,
0x0000000Ful,
0x00000000u',
0x00000000uT,
0x00000000uT,
0x00000000u',
0x00000000u',
0x00000000ul

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

//
//

//
//
//
//
//
//
//

00
04
08
12
16
20
24
28
32
36

03
07
11
15
19
23
27
31
35
39

unsigned 1int

//

//
//
//
//
//
//
//
//

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OxOFFFFFFFul,
O0x0000FFFFuTl,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

};

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OxOFFFFFFFuT,
0x00000FFFul,
0x00000000ul,
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000uT,
0x00000000ul,

gOHere = 0;

Start of the gl specification

36,9,4,3
37,9,2,1
38,9,3,2

32,11,5,2
33,9,8,3
34,10,8,5
35,9,8,5
36,10,6,1
37,10,6,5,2,1
38,10,9,6,5,4

39,10,7,6,5,3,2,1 39,10,9,5,4,3

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXOFFFFFFFul,
0x000000FFul,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXOFFFFFFFuT,
0x0000000Ful,
0x00000000ul,
0x00000000ul,
0x00000000ul,
0x00000000ul,
0x00000000ul,
0x00000000ul

32,11,10,7,6,2 32,12,11,6,5,3

33,10,7,3
34,11,7,2
35,10,9,1
36,11

37,11,9,7,6,2

38,11,8,5
39,11,7,1

234

33,11,5,2
34,12,8,7,5,1
35,11,10,9
36,12,6,5
37,11,10,9,5,4
38,12,9,8,7,4
39,11,9,5,4,3,2,1

unsigned
unsigned

unsigned

Tong glBits[MAX_BITS];
Tong glTaps[MAX_BITS]
0x00000000uT, 0x08924c0Bul,
0x00008155ul, 0xC9p4156Dul,
0x0C940030ul, 0x84878BD5ul,
0x10101010u1, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0xF0000000uT, OxOFO00000uT,
0x0000F000uT, 0x00000F00uT,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
0x00000000uT, 0x00000000ul,
};

Tong glMask [MAX_BITS]
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul,

{
0x61280E89ul,

0x30005648uT,
0x2243454cul,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00F00000uT,
0x000000FO0uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

{

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,

235

0x9600808Dul,
0x2230021Aul,
0x71212323ul,
0x00000000u',
0x00000000u',
0x00000000uT,
0x00000000uT,
0x00000000u',
0x000F0000ul,
0x0000000FuT,
0x00000000uT,
0x00000000u',
0x00000000u',
0x00000000uT,
0x00000000uT,
0x00000000u

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

//
//
//
//
//
//

03
07
11
15
19
23
27
31
35
39
43
47
51
55
59
63

OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul,
OXFFFFFFFFul, OXOFFFFFFFul, OXOOFFFFFFul, OxOOOFFFFFul,
0x0000FFFFul, 0x00000FFFul, 0x000000FFul, 0x0000000Ful,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000uT, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000ul, 0x00000000ul, 0x00000000ul, 0x00000000ul

}s;

unsigned 1int

// Start of the

// 32,22,2,1
// 36,25

// 40,38,21,19
// 44,43,18,17
// 48,47,21,20
// 52,49

// 56,55,35,34
// 60,59

unsigned long

glHere = 0;

g2 specification

33,20 34,27,2,1
37,5,4,3,2,1 38,6,5,1
41,38 42,41,20,19
45,44,42,41 46,45,26,25
49,40 50,49,24,23
53,52,38,37 54,53,18,17
57,50 58,39

61,60,46,45 62,61,6,5

g2Bits[MAX_BITS];

35,33
39,35
43,42,38,37
47,42
51,50,36,35
55,31
59,58,38,37
63,62

236

unsigned

unsigned

Tong g2Taps [MAX_BITS]

0x00000000uT,
0x04000000ul,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x40208000ul,
0x00002000u',
0x00000000uT,
0x80000000uT,
0x08001000ul,
0x00804000ul,
0x000c0000uT,
0x00008000uT,
0x00000c00ul,
0x00000080ul,
0x0000000CuT,

};

0xA6000000uT,
0x06000002ul,
0x00000000uT,
0x00000000uT,
0x00080200uT,
0x00808000ul,
0x08020000ul,
0x00000000uT,
0x50000000uT,
0x04000410ul,
0x00640000ul,
0x00060004uT,
0x00006800uT,
0x00000600uT,
0x00000040ul,
0x00000006uT,

Tong g2Mask [MAX_BITS]

OXFFFFFFFFul,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

{
0xA4000000uT,

0x02000002ul,
0x00000000uT,
0x00000000uT,
0x00080200uT,
0x80000000uT,
0x00020000uT,
0x00000000uT,
0x20000080uT,
0x02D00410ul,
0x00350000ul,
0x00020004uT,
0x00003040uT,
0x00000200uT,
0x00000030ul,
0x00000003uT,

{

OXFFFFFFFFul,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

237

0x04000000uT,
0x00000000u',
0x00000000u',
0x00000000uT,
0x00A00000uT,
0x00002000ul,
0x20000000u',
0x00000100uT,
0x11001080uT,
0x01100020ul,
0x00180000ul,
0x00018000uT,
0x00001000uT,
0x00000180ul,
0x00000010ul,
0x00000001ul

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,

// 00
// 04
// 08
// 12
// 16
// 20
// 24
// 28
// 32
// 36
// 40
// 44
// 48
// 52
// 56
// 60

03
07
11
15
19
23
27
31
35
39
43
47
51
55
59
63

OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFul, OXFFFFFFFFuT,
OXFFFFFFFFul, OX7FFFFFFFul, Ox3FFFFFFFul, OX1FFFFFFFul,
OxOFFFFFFFul, OxO07FFFFFFul, OxO3FFFFFFul, OXxOlFFFFFFul,
OxO0FFFFFFul, Ox007FFFFFul, Ox003FFFFFul, OxO00lFFFFFul,
Ox000FFFFFul, O0x0007FFFFul, Ox0003FFFFul, OxO001lFFFFul,
0x0000FFFFul, 0x00007FFFul, O0x00003FFFul, OxO0001lFFFul,
0x00000FFFuTl, 0x000007FFul, 0x000003FFul, Ox000001FFul,
0x000000FFuTl, 0x0000007Ful, 0x0000003Ful, 0x0000001Ful,
0x0000000FuTl, 0x00000007ul, 0x00000003ul, 0x00000001ul
1

unsigned 1int g2Here = 0;
// Start of the g3 specification

// 31,8,6,2 31,9,3,1 31,9,5,1 31,9,8,4

// 31,10,5,3,2,1 3110,7,5,3,1 31,10,7,6,5,2 31,10,9,1

// 31,10,9,7,4,2 31,10,9,8,5,3 31,10,9,8,6,3 31,10,9,8,7,1
// 31,11,2,1 31,11,7,5,4,3 31,11,7,6,5,3 31,11,9,1

// 31,11,9,6,5,4 31,11,9,7 31,11,4,3 31,10,9,6,3,2
// 3110,8,7,2,1 31,10,8,6,5,4 31,10,8,5,4,3 31,10,6,5,2,1
// 31,9,8,7,4,1 31,9,8,4,3,2 31,9,7,6,4,1 31,9,5,4

// 31,8,7,5 31,8,5,3,2,1 31,6,4,2 31,3
unsigned long g3Bits[MAX_BITS];
unsigned long g3Taps[MAX_BITS] = {

0x00000000uT, 0x6D1909A4ul, 0x8A881946ul, 0x4C663245ul, // 00 - 03

238

unsigned

0x1084A6F2ul,
0x90700ECCuT,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,

}s;

0x2E46871cul,
0x71F1DOFOQuT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

Tong g3Mask [MAX_BITS]

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFul,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFuT,
0x00000000uT,

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
0x00000000uT,

0x82229522ul,
OxOFFO1FOOuT,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000uT,
0x00000000ul,
0x00000000ul,
0x00000000uT,

{
OXFFFFFFFFul,

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
0x00000000uT,

239

0x069648A8ul,
0x000FEOOQuT,
0x00000000ul,
0x00000000ul,
0x00000000u',
0x00000000uT,
OXFFFFFFFFuT,
0x00000000ul,
0x00000000uT,
0x00000000u',
0x00000000ul,
0x00000000ul,
0x00000000uT,
0x00000000u',
0x00000000ul

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
0x00000000u',

// 04
// 08
/] 12
// 16
// 20
// 24
// 28

07
11
15
19
23
27
31

0x00000000u1, 0x00000000ul, 0x00000000uTl, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000uTl, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000uTl, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000uTl, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000uT, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000uTl, 0x00000000ul,
0x00000000u1, 0x00000000uTl, 0x00000000uT, 0x00000000uT
s

unsigned 1int g3Here = 0;

// Start of the g4 specification

// 31,3 31,6 31,9,5,1 31,10,6,5,2,1
// 35,11,9,7,6,1 35,11,10,6,5,1 35,11,10,7,6,4 35,11,10,9,6,4
// 35,10,8,7,4,3 35,10,9,1 35,11,6,5 35,11,8,5

// 35,9,6,2 35,10,4,3 35,10,7,3 35,10,8,7,4,3
// 36,9,7,1 37,9,7,6,5,1 36,12,8,4,2,1 36,13,9,6

// 37,6,4,1 37,9,2,1 37,10,5,4 37,11,6,1

// 38,6,5,1 38,9,8,5,4,1 38,11,5,2 38,11,6,4

// 39,4 39,9,8,5,4,1 39,10,9,5,2,1 39,11,9,2,1
unsigned long g4Bits[MAX_BITS];

unsigned long g4Taps[MAX_BITS] = {

0x00000000ul1, Ox3C40EDC7ul, 0x10082223ul, 0x80870000ul, // 00 - 03
0x03852A5Cul, 0x343042E6ul, Ox5F285980ul, 0x0A83c0O00ul, // 04 - 07
0x00912044ul, 0x2948D477ul, 0x17Cc70202ul, O0xOF300134ul, // 08 - 11

240

unsigned

0x00002000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x0000F000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000u',
0x00000000uT,
0x00000000uT,

};

0x00001000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000FO00uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

Tong g4Mask [MAX_BITS]

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXOFFFFFFFuT,
0X0000FFFFuT,
0x00000000uT,

OXFFFFFFFFUT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFUT,
OXFFFFFFFFUT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFUT,
OXOFFFFFFFuT,
0x00000FFFul,
0x00000000uT,

0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x000000FO0uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,
0x00000000uT,

{

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXOFFFFFFFuT,
0x000000FFu1,
0x00000000uT,

241

0x00000000uT,
0x00000000uT,
0x00000000u',
0x00000000u',
0xF0000000uT,
O0xOFFFO000uT,
0x0000000Ful,
0x00000000u',
0x00000000uT,
0x00000000uT,
0x00000000u',
0x00000000u',
0x00000000ul

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXOFFFFFFFuT,
0x0000000FuT,
0x00000000u',

//
//
//
//
//
//

15
19
23
27
31
35
39

0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul,
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000uT
s

unsigned 1int g4Here = 0;

// Start of the

// 32,22,2,1 33,20 34,27,2,1 35,33

// 36,25 37,5,4,3,2,1 38,6,5,1 39,35

// 40,38,21,19 41,38 42,41,20,19 43,42,38,37

// 44,43,18,17 45,44,42,41 46,45,26,25 47,42

// 48,47,21,20 49,40 50,49,24,23 51,50,36,35

// 52,49 53,52,38,37 54,53,18,17 55,31

// 56,55,35,34 57,50 58,39 59,58,38,37

// 60,59 61,60,46,45 62,61,6,5 63,62

unsigned long g5Bits[MAX_BITS];

unsigned Tong g5Taps[MAX_BITS] = {
0x00000000u1, 0xA6000000ul, 0xA4000000ul, 0x04000000ul, // 00
0x04000000u1, 0x06000002ul, 0x02000002ul, 0x00000000ul, // 04
0x00000000u1, 0x00000000uTl, 0x00000000ul, 0x00000000ul, // 08
0x00000000u1, 0x00000000ul, 0x00000000ul, 0x00000000ul, // 12
0x00000000u1, 0x00080200ul, 0x00080200ul, 0x00A00000ul, // 16

g5 specification

242

03
07
11
15
19

unsigned

0x40208000uT,
0x00002000uT,
0x00000000uT,
0x80000000u',
0x08001000uT,
0x00804000uT,
0x000c0000ul,
0x00008000ul,
0x00000c00uT,
0x00000080uT,
0x0000000Cul,

}s;

0x00808000uT,
0x08020000uT,
0x00000000uT,
0x50000000u',
0x04000410uT,
0x00640000uT,
0x00060004ul,
0x00006800ul,
0x00000600uT,
0x00000040uT,
0x00000006uT,

Tong g5Mask [MAX_BITS]

OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXFFFFFFFFuT,
OXOFFFFFFFuT,
OXO0FFFFFFuT,
0x000FFFFFul,
0X0000FFFFuT,

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFEFFFul,
OXFFFFFFFFul,
OX7FFFFFFFul,
O0x07FFEFFFul,
0x007FFFFFul,
0x0007FFFFul,
0x00007FFFul,

0x80000000uT,
0x00020000uT,
0x00000000uT,
0x20000080ul,
0x02D00410uT,
0x00350000uT,
0x00020004ul,
0x00003040ul,
0x00000200uT,
0x00000030uT,
0x00000003ul,

{
OXFFFFFFFFul,

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
Ox3FFFFFFFul,
Ox03FFFFFFul,
Ox003FFFFFul,
0x0003FFFFuT,
0x00003FFFul,

243

0x00002000uT,
0x20000000uT,
0x00000100ul,
0x11001080ul,
0x01100020uT,
0x00180000uT,
0x00018000ul,
0x00001000ul,
0x00000180uT,
0x00000010uT,
0x00000001ul

OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OXFFFFFFFFul,
OX1FFFFFFFul,
O0x01FFFFFFul,
Ox001FFFFFul,
0x0001FFFFul,
0x00001FFFul,

//
//

20
24
28
32
36
40
44
48
52
56
60

23
27
31
35
39
43
47
51
55
59
63

0x00000FFFul, 0x000007FFul, 0x000003FFul, O0x000001FFul,
0x000000FFul, 0x0000007Ful, 0x0000003Ful, 0x0000001Ful,
0x0000000Ful, 0x00000007ul, 0x00000003ul, 0x00000001ul

};
unsigned int g5Here = 0;
//
// unsigned long galois32(unsigned long *bits,
// unsigned long *taps,
// unsigned int *here)
// This function "operates" the ganged LFSRs of each six generators above,
// when passed the appropriate pointers. The '*bits' pointer indicates where
// the contents of the virtualized shift registers may be found, the '*taps'
// pointer where the tap masks are to be found, and '*here' points to where the
// current index to the "lowest order" bits of the LFSRs may be found.
// As the operation rotates throw the bits storage area, rather than doing
// an actual shift of the bits in the "registers", the cost of moving all that
// data is avoided.
// It was decided NOT to provide a struct typedef corresponding to the

//
//

ganged generators, primarily to avoid the confusion that sometimes arises
during a cursory reay of code that relies heavily upon such typedefs.

unsigned long galois32(unsigned long *bits,

unsigned long *taps,
unsigned int “*here)

244

unsigned 1int i; // a counter
unsigned long out; // stores the output value(s)

out = bits[*here]; // get the output for this cycle

// loop through the bit fields that correspond to the bit positions in the
// individual LFSRs. again, this could be made more efficient by using the
// actual Tength of the Tongest of the LFSRs, which would necessarily be

// passed as another parameter, unless we were to create a struct typedef
// corresponding to the component generators.

for (i = 1; i < MAX_BITS; i++)

{
bits[((*here + i) % MAX_BITS)] A= (out & taps[il);

// clear the just used output bit field to avoid extraneous (and thus
// erroneous) feedback into the generator, and update the current location
// in the LFSRs.

bits[*here] = 0OUL;
*here = (*here + 1) % MAX_BITS;

// return the output bits.

return out;

245

//
//
//
//
//
//
//
//
//
//
//
//
//
//

// pointers.

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Tong
Tong
Tong
Tong
Tong
Tong

genAx ()
genAy ()
genBx()
genBy O
gencx()
genCy ()

These six functions are provided as "hooks" to the appropriate component
PRNGs for the
to simplify the calls to the component generators within agree.c, where they
are passed, via pointers to them, to the code that pumps the composite
generators.
added complication of passing parameters to the functions referenced via

A, B and C composite generators. The reason for their use is

Such references and calls can be confusing enough without the

unsigned long genAx()

{

return galois32(gOBits, gOTaps, &gOHere);

unsigned Tong genAy()

{

return galois32(glBits, glTaps, &glHere);

246

unsigned long genBx()

{
return galois32(g2Bits, g2Taps, &g2Here);
}
unsigned long genBy()
{
return galois32(g3Bits, g3Taps, &g3Here);
}
unsigned Tong gencx()
{
return galois32(g4Bits, g4Taps, &gdHere);
}
unsigned long gencCy()
{
return galois32(g5Bits, g5Taps, &g5Here);
}
//
// int loadGenerators(FILE *fp)
// This function performs a straightforward load of the state stored in

// the file indicated by '*fp'. The data in that file is stored as six columns

247

//
//
//
//
//
//
//
//
//
//
//
//

of unsigned longs in hexadecimal format, with each column representing one
of the six component generators to be restored. As the data is stored with
the Towest order bit fields in position zero, no accounting need be kept of
where in the operation of the generators processing was halted prior to
storing the state.

Note that it would be simple to insert values into the file to indicate
how many bits the longest LFSR contains, and to load the generators appro-
priately. A malloc() could then be used to allocate as much space as needed
for the generators. 1In a more general implementation, this would be fully
appropriate, but would unnecessarily complicate the present example. The
same types of observations can be made regarding the taps and masks. Again,
to simplify the present example, such generalizations were not implemented.

int ToadGenerators(FILE *fp)

{

int i; // a counter/index
int retCode = 0; // return code for detecting faults

// Toop through the 1ines of the state file, filling in the bit field array
// that is the current state of the LFSRs.

for (i = 0; i < MAX_BITS; i++)
{

// read one value from each of the six columns of data

fscanf(fp, "%1x %1x %1x %1x %1x %1x",

248

//

&g0OBits[i], &glBits[i], &g2Bits[i],
&g3Bits[i], &g4Bits[i], &g5Bits[i]);

// mask out any stray ones, thereby removing bits that might cause

//
//

goBits[i] &
glBits[i] &
g2Bits[i] &
g3Bits[i] &
g4Bits[i] &
g5Bits[i] &

gOHere
glHere
g2Here
g3Here
g4Here
g5Here

return

erroneous feedback in any of the LFSRs.
it is better to be safe.

gOmask[i];
glmask[i];
g2Mask[i];
g3Mask[i];
g4mask[i];
g5Mask[i];

retCode;

this is redundant, but

249

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

int saveGenerators(FILE *fp)

This function saves the current state of the six constituent ganged
LFSRs. The file writing process is performed in such a way that it is not
necessary to know the alignment of the LFSRs as they rotated (rather than
being shifted) through the 'g#Bits[]' storage area.

As described above, the ganged LFSRs are stored as columns in the file
indicated by '*fp', as ASCII hexadecimal unsigned Tongs.

The process here 1is generalized to account for the fact that the g0 and
gl ganged generators will operate at a different pace from the other four.
In particular, as the g0 generator will be very infrequently pumped, and the
gl generator only once per cycle, while the other four will be pumped 32
times per cycle, means that in most cases there will be an increasing dis-
parity between the current Tocation within the g0 and gl generators. The
disparity between the g2 through g5 generators is more irregular.

As the g2 through g5 generators will be pumped the same number of times
per cycle, barring incorporation explicitly stated LSFR lengths, i2 through
15 COULD be condensed into a single index, but have not been in anticipation
of the 1incorporation of said explicit LFSR lengths, along with other planned
revisions. The loss of efficiency is deemed inconsequential, and preserves
the opportunity to use the code in other applications where the number of
iterations may vary among all of the generators.

int saveGenerators(FILE *fp)

{

int i, 10, i1, i2, i3, i4, i5; // a counter and indices
int retCode = 0; // for capturing errors

250

// set the initial values of the indices.

i0
i3

gOHere; il
g3Here; i4

glHere; 12
g4Here; 1i5

g2Here;
g5Here;

// loop through the entire bits table, writing the corresponding positions
// (relative to current locations) as a row in the output file.

for (i = 0; i < MAX_BITS; i++)

{
fprintf(fp, "%1Ix %Ix %I1x %Ix %Ix %Ix\n",
gOBits[i0], glBits[il], g2Bits[i2],
g3Bits[i3], g4Bits[i4], g5Bits[i5]);
// update the indices.
i0 = (A0 + 1) % MAX_BITS;
il = (i1l + 1) % MAX_BITS;
i2 = (i2 + 1) % MAX_BITS;
i3 = (i3 + 1) % MAX_BITS;
i4 = (i4 + 1) % MAX_BITS;
i5 = (i5 + 1) % MAX_BITS;
3

return retcCode;

251

252

//

// tables.h
//
// This file contains the dTable and sTable 3D arrays used by the specific

// implementation of the bitBlend function in its two forms in agree.c. The
// dTable is constructed so that any given pair of <X> and <Y> sequence nybble
// inputs will display an equal probability of yielding any possible 4-bit

// output value, with the actual value determined by the third index, obtained
// from the state bit-field for the generator used. The sTable 1is constructed
// so that every combination of index values produces a unique 14-bit modifier
// for use in updating the state bit-field of the generator used.

unsigned char dTable[64][16][16] = {
{ {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0Ox0Oa, 0xOb, 0xOc, 0x0d, Ox0Oe, O0xO0f%},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, O0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, O0x0d, OxOe, O0xOf, 0x00, Ox01, 0x02},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},

253

{0x06, 0x07, 0x08, 0x09, 0Ox0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, O0x06},
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x09, O0x0a, OxOb, Ox0c, Ox0d, OxOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}%,
{0x0a, 0x0Ob, 0xOc, 0x0d, O0x0e, 0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, Ox0e, OxOf, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, O0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0d, O0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0a, 0xOb, 0Ox0c, 0x0d, OxOe}
b
{ {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, O0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0x0Oc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,

254

0xO0b,
{0x04,
0x0c,
{0x05,
0x0d,
{0x06,
0xOe,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
{0x0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,

0x0c,
0x05,
0xo0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,

0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,

0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,

0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,

0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,

0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,

255

0x02},
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0x0f,
0x07}%,
0x00,
0x08}%,
0x01,
0x09},
0x02,
0x0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,

0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxOf}

{ {0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, Ox0Ob, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, O0x01l, Ox02, Ox03},
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, 0Ox0e, 0OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04%,
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, OxOc, 0OxO0d,
0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0Ox04, 0Ox05},
{0x07, 0x08, 0x09, 0x0a, OxOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0Ox00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x0a, O0x0Ob, 0x0c, O0x0d, OxOe, O0xOf, 0x00, O0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, 0x0e, OxO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, O0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0d, O0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},

256

{0x0e, OxOf,
0x06, 0x07,
{0x0f, 0x00,
0x07, 0x08,
{0x00, 0x01,
0x08, 0x09,
{0x01, 0x02,
0x09, 0xO0a,
b
{ {0x03, 0x04,
0x0b, 0xOc,
{0x04, 0xO05,
0x0c, 0xo0d,
{0x05, 0x06,
0x0d, 0xOe,
{0x06, 0x07,
0Ox0e, OxOf,
{0x07, 0x08,
0x0f, 0x00,
{0x08, 0x09,
0x00, 0x01,
{0x09, OxOa,
0x01, 0x02,
{0x0a, O0xOb,
0x02, 0x03,
{0x0b, 0xOc,

0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,

0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,

0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,

0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,

0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,

0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,

0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0xOe,

0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,

0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,

0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,

257

0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00}

0x0a,
0x02}%,
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0xO0f,
0x07%},
0x00,
0x08},
0x01,
0x09},
0x02,

0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,
0x09,
{0x02,
0x0a,
b,
{ {0x04,
0x0c,
{0x05,
0xo0d,
{0x06,
0x0e,
{0x07,
0xO0f,
{0x08,
0x00,

0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,

0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,

0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,

0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,

0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,

0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,

0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,

0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,

0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,

0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,

0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,

0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,

258

0Ox0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00},
0x09,
0x01}

0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0x0f,
0x07}%,

{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0Ox00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x0a, O0x0Ob, O0x0c, O0x0d, OxOe, O0xOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0d, 0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb, 0xOc},
{0x0e, Ox0f, 0x00, O0x01, 0Ox02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, OxOe, OxOf},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, 0xOb, 0xOc, 0x0d, Ox0Oe, O0xOf, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, Ox0Ob, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%}
3,
{ {0x05, 0x06, 0x07, 0x08, 0x09, 0Ox0a, 0x0Ob, OxOc,
0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04},
{0x06, 0x07, 0x08, 0x09, O0x0a, O0xOb, 0x0Oc, 0OxO0d,

259

0x0e,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
{0x0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,
0x09,
{0x02,
0x0a,
{0x03,

0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,

0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,

0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,

0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,

0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,

0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,

260

0x05}%,
0x0e,
0x06},
0x0f,
0x073%,
0x00,
0x08},
0x01,
0x09},
0x02,
Ox0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00},
0x09,
0x01},
0x0a,

0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, Ox0e, OxOf, 0x00, O0x01l, Ox02, Ox03}

{0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, 0x06},
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},
{0x09, O0x0a, OxOb, Ox0Oc, Ox0d, O0xOe, OxO0f, 0xO00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08%,
{0x0a, O0xOb, 0x0Oc, 0x0d, O0x0e, O0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, Ox0e, OxOf, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, O0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0d, O0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0e, O0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d},
{0x0f, 0x00, O0x01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},

261

{0x01,
0x09,
{0x02,
0x0a,
{0x03,
0xO0b,
{0x04,
0x0c,
{0x05,
0x0d,
b,
{ {0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
{0x0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,

0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,

0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,

0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,

0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,

0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,

0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,

0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,

0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,

0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,

0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,

0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,

0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,

262

0x08,
0x00},
0x09,
0x01},
0x0a,
0x02},
0x0b,
0x03},
0x0c,
0x04}

0x0e,
0x06},
0x0f,
0x07}%,
0x00,
0x08}%,
0x01,
0x09},
0x02,
0x0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,

0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,
0x09,
{0x02,
0x0a,
{0x03,
0xO0b,
{0x04,
0x0c,
{0x05,
0x0d,
{0x06,
0x0e,

{ {0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
{0x0b,
0x03,

0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,

0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,

0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,

0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,

0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,

0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,

0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,

0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,

0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,

0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,

0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,

0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,

263

0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00},
0x09,
0x01},
0x0a,
0x02}%,
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%

0xO0f,
0x07}%,
0x00,
0x08}%,
0x01,
0x09},
0x02,
Ox0a}l,

{0x0c, 0x0d, Ox0e, 0xO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0d, O0x0e, OxO0f, 0x00, Ox01l, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0f, 0x00, 0x01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, O0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0x0Oc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, Ox0c, O0x0d, OxOe, O0xOf, 0x00, Ox01, 0x02},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, O0x05, O0x06}

1,
{ {0x09, O0x0a, OxOb, OxOc, 0x0d, 0x0O0e, O0xO0f, 0x00,

264

0x01,
{0x0a,
0x02,
{0x0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,
0x09,
{0x02,
0x0a,
{0x03,
0x0b,
{0x04,
0x0c,
{0x05,
0x0d,
{0x06,

0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0xo0d,
0x06,
0x0e,
0x07,

0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,

0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,

0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,

0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,

0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,

265

0x08}%,
0x01,
0x09},
0x02,
0x0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00},
0x09,
0x01},
0x0a,
0x02},
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,

0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x07, 0x08, 0x09, 0x0a, OxOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, O0x05, 0x06},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}

{ {O0x0a, OxOb, 0xOc, 0x0d, OxOe, OxOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb},
{0x0d, 0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb, 0xOc},
{0x0e, Ox0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, OxOe, OxOf},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, 0xOb, 0xOc, 0x0d, Ox0Oe, OxOf, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, Ox0Ob, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,

266

{0x04,
0x0c,
{0x05,
0x0d,
{0x06,
0x0e,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
b
{ {0xO0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,

0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,

0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,

0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,

0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,

0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,

0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,

0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,

0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,

0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,

0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,

0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,

0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,

267

0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0x0f,
0x07}%,
0x00,
0x08}

0x02,
Ox0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,

0x09,
{0x02,
0x0a,
{0x03,
0xO0b,
{0x04,
0x0c,
{0x05,
0x0d,
{0x06,
0xOe,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
b,
{ {0xO0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,

0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0xo0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,

0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,

0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,

0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,

0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,

0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,

0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,

0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,

0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,

0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,

0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,

0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,

268

0x00},
0x09,
0x01},
0x0a,
0x02},
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0x0f,
0x07}%,
0x00,
0x08}%,
0x01,
0x09}

0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d},

{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, OxOe, OxOf},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, 0xOb, 0xOc, 0x0d, Ox0Oe, O0xOf, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, OxOb, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, O0x01l, O0x02, Ox03},
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, 0Ox0e, 0OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04}%,
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, O0xOc, 0OxO0d,
0x0e, Ox0f, 0x00, Ox01, 0x02, 0x03, O0x04, 0Ox05},
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0O0e, 0xO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x0a, O0x0Ob, O0x0c, O0x0d, OxOe, OxOf, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}

269

{0x0d,
0x05,
{0x0e,
0x06,
{0x0f,
0x07,
{0x00,
0x08,
{0x01,
0x09,
{0x02,
0x0a,
{0x03,
0xO0b,
{0x04,
0x0c,
{0x05,
0x0d,
{0x06,
0x0e,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,

0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,

0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,

0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,

0x01,
0x09,
0x02,
0x0a,
0x03,
0xO0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,

0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,

0x03,
0x0b,
0x04,
0x0c,
0x05,
0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,

270

0x04,
0x0c},
0x05,
0x0d},
0x06,
0x0e},
0x07,
0x0f},
0x08,
0x00},
0x09,
0x01},
0x0a,
0x02}%,
0x0b,
0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0xO0f,
0x07%},
0x00,

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x0a, O0x0Ob, 0xOc, 0x0d, 0x0e, 0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, Ox0e, OxOf, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb}
s
{ {0x0e, O0xO0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0f, 0x00, 0x01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, 0x0Oc, 0x0d, Ox0Oe, OxO0f, O0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, Ox0c, O0x0d, OxOe, O0xOf, 0x00, Ox01, 0x02},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0O0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,

271

{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x0a, O0x0Ob, O0x0c, O0x0d, OxOe, O0xOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa, O0xOb},
{0x0d, 0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc}
3,
{ {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, OxOe, OxOf},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf, 0x00},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, OxOb, Ox0c, 0x0d, OxOe, OxO0f, O0x00, Ox01},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, O0x0a, OxOb,

272

0x0c,
{0x05,
0xo0d,
{0x06,
0x0e,
{0x07,
0xO0f,
{0x08,
0x00,
{0x09,
0x01,
{0x0a,
0x02,
{0x0b,
0x03,
{0x0c,
0x04,
{0x0d,
0x05,
{0x0e,
0x06,
b
{ {OxOf,
0x07,
{0x0e,
0x06,

0x0d,
0x06,
0x0e,
0x07,
0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,

0x0e,
0x06,
0x0d,
0x05,

0x0e,
0x07,
0xO0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,

0x0d,
0x05,
0x0c,
0x04,

0x0f,
0x08,
0x00,
0x09,
0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,

0x0c,
0x04,
0x0b,
0x03,

0x00,
0x09,
0x01,
0x0a,
0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,

0x0b,
0x03,
0x0a,
0x02,

0x01,
0x0a,
0x02,
0xO0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0xO0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,

0x0a,
0x02,
0x09,
0x01,

0x02,
0x0b,
0x03,
0x0c,
0x04,
0x0d,
0x05,
0x0e,
0x06,
0x0f,
0x07,
0x00,
0x08,
0x01,
0x09,
0x02,
0x0a,
0x03,
0x0b,
0x04,
0x0c,

0x09,
0x01,
0x08,
0x00,

273

0x03},
0x0c,
0x04}%,
0x0d,
0x05}%,
0x0e,
0x06},
0x0f,
0x07%,
0x00,
0x08},
0x01,
0x09},
0x02,
Ox0a},
0x03,
0x0b},
0x04,
0x0c},
0x05,
0x0d}

0x08,
0x00},
0x07,
0x0f},

{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, OxO01,
0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0c, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, O0x00, OxO0f, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, OxOc,
0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0O0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

274

{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0Ox01}

{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0Ox00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, O0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0OxO01,
0x00, Ox0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, 0OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, O0x00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc,

275

0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, OxO0f, Ox0e, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, O0xOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00}
b
{ {0x0d, 0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxO0f, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0Ox05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0x0Oc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,

276

{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0e, 0Ox0d,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, OxOc,
0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0O0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, O0x0f, Ox0e, O0x0d, OxOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, O0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf}

{ {0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, O0xOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

277

}s
{

0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,

{0x0b,
0x03,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x0a,
0x02,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,

0x09,
0x01,

0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,

0x08,
0x00,

0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,

0x07,
0x0f,

0x0b, 0xOa,
0x02, 0x01,
O0x0a, 0x09,
0x01, 0xO00,
0x09, 0x08,
0x00, OxOf,
0x08, 0x07,
0x0f, OxOe,
0x07, 0x06,
0x0e, 0xO0d,
0x06, 0xO05,
0x0d, 0xOc,
0x05, 0x04,
0x0c, 0xOb,
0x04, 0x03,
0x0b, 0xOa,
0x03, 0x02,
0Ox0a, 0x09,
0x02, 0xO01,
0x09, 0x08,
0x01, 0x00,
0x08, 0x07,
0x00, OxOf,

0x06, 0xO05,
0x0e, 0xO0d,

278

0x09},
0x00,
0x08},
0x0f,
0x073%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e}

0x04,
0x0c},

{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, O0xOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, OxO0f, Ox0e, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, O0xOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},

279

{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxOf, OxOe, OxOd}

{ {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0e, 0Ox0d, O0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, O0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, Ox0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,

280

0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, O0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, O0xOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, Ox00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01l, 0x00, OxOf, OxOe, Ox0d, OxOc}
s
{ {0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, O0xOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0OxO01,
0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, OxOa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0c, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06}%,
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0e, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc,
0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,

281

{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, O0x0e, 0x0d, OxOc, OxOb, O0x0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},
{0x0d, 0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0OxO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb}
3,
{ {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09}%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0x0Oc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, Ox0f, OxOe,

282

0x0d,
{0x04,
0x0c,
{0x03,
0x0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,

0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,

0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,

0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,

0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

283

0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0Ox0a}

{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0O0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0O0e, O0x0d, OxOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, O0xOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d, 0xOc},

284

{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
b,
{ {0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,

0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,

0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

285

0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09}

0xO0f,
0x07%},
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,

0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0x0f,
b
{ {0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,

0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,

0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,

0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,

0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,

0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,

0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,

286

0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0Ox0a},
0x01,
0x09},
0x00,
0x08}

0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},

{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, O0xOb, O0x0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0Ox0d, OxOc, OxOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0OxO01,
0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07}
b
{ {0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0e, 0Ox0d,
0x0c, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,

287

0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,

0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,

0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,

0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,

0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,

0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,

0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,

288

0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,
0x08},
0xO0f,
0x07%},
0x0e,

0x0d, 0x0c, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06}

{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0Ox06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},
{0x0d, 0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0Ox05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09}%,

289

{0x07,
0x0f,
{0x06,
0xOe,
{0x05,
0x0d,
{0x04,
0x0c,
b
{ {0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,

0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,

0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,

0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,

0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,

0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,

290

0x00,
0x08}%,
0xO0f,
0x07}%,
0x0e,
0x06},
0x0d,
0x05%

0x0b,
0x03},
0x0a,
0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,

0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
b,
{ {0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,

0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,

0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,

0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,

0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0Ox0a,
0x02,
0x09,
0x01,

0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,

0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,

0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,

0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,

291

0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,
0x08}%,
0x0f,
0x07%},
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}

0x0a,
0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},

{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0Ox05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, O0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0e, 0OxO0d,
0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}
3,
{ {0x00, Ox0f, OxOe, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,

292

0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0x0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,

0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0xo0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,

0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,

0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,

0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,

0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,

0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

293

0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0x0a},
0x01,
0x09},
0x00,
0x08}%,
0x0f,
0x07}%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,

Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02}

{ {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},
{0x0f, 0x00, 0x01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0d, O0x0Oe, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, Ox0e, OxOf, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, 0xOb, 0x0c, 0x0d, O0x0e, 0OxO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, Ox0Oc, Ox0d, O0xOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08%,
{0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, O0x05, O0x06},
{0x06, 0x07, 0x08, 0x09, 0Ox0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,

294

{0x05,
0x0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
b,
{ {0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,

0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,

0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,

0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,

0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,

295

0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00}

0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0x0a},
0x01,

0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,

{ {0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,

0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,

0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,

0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,

0x07, 0x08,
0x0e, OxOf,
0x06, 0x07,
0x0d, 0xOe,
0x05, 0x06,
0x0c, 0xo0d,
0x04, 0xO05,
0x0b, 0xOc,
0x03, 0x04,
Ox0a, 0xOb,
0x02, 0x03,
0x09, OxOa,
0x01, 0x02,
0x08, 0x09,
0x00, 0xO01,
0x07, 0x08,
0x0f, 0x00,

0x07, 0x08,
0x0f, 0x00,
0x06, 0x07,
0Ox0e, OxOf,
0x05, 0x06,
0x0d, 0xOe,
0x04, 0xO05,
0x0c, 0xo0d,

296

0x09},
0x00,
0x08},
0x0f,
0x07%},
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01}

0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},

{0x0e, OxOf,
0x06, 0x07,
{0x0d, O0xOe,
0x05, 0x06,
{0x0c, 0x0d,
0x04, 0xO05,
{0x0b, 0xOc,
0x03, 0x04,
{0x0a, O0xOb,
0x02, 0x03,
{0x09, OxOa,
0x01, 0x02,
{0x08, 0x09,
0x00, 0Ox01,
{0x07, 0x08,
0x0f, 0x00,
{0x06, 0x07,
Ox0e, OxOf,
{0x05, 0x06,
0x0d, 0xOe,
{0x04, 0xO05,
0x0c, 0xo0d,
{0x03, 0x04,
0x0b, 0xOc,

1,
{ {0x03, 0x04,

0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x05,

0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,

0x06,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,

0x07,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,

0x08,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,

0x09,

297

0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,
0x08},
0x0f,
0x073%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}

0x0a,

0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0x0f,
{0x06,

0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,

0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,

0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

298

0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0x0a},
0x01,
0x09},
0x00,
0x08}%,
0x0f,
0x07}%,
0x0e,
0x06},
0x0d,

0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x04, 0x05, O0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb,
0x0c, 0x0d, O0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03}

{ {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, O0x01l, Ox02, Ox03},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, OxOb, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf, 0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, OxOe, OxOf},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, O0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d},
{0x0d, 0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, O0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,

299

{0x0a, O0x0Ob, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, Ox0Oc, Ox0d, OxOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08%,
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, 0x06},
{0x06, 0x07, 0x08, 0x09, O0x0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb, 0xOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0x04}
b
{ {0x05, 0x06, 0x07, 0x08, 0x09, 0x0O0a, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, O0x0d, OxOe, O0xOf, 0x00, Ox01, 0x02},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, Ox0Oe, O0xO0f},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

300

0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, 0Ox0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0d, O0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0Ox03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, Ox0e, OxOf, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0xOb, 0xOc, 0x0d, O0x0e, 0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, Ox0Oc, Ox0d, OxOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, 0Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, 0x0Oc, 0OxO0d,
Ox0e, 0x0f, 0x00, 0x01, 0x02, 0x03, O0x04, 0x05}
3,
{ {0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, 0x0Oc, 0Ox0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,

301

{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,

0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0xo0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0xo0d,
0x05,
0x0c,
0x04,

0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,

302

0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0x0a},
0x01,
0x09},
0x00,
0x08}%,
0xO0f,
0x07}%,
0x0e,
0x06}

{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,

0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,

0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,

0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,

0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,

0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,

303

0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,

0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0x0Ob, 0x0Oc, 0x0d, O0x0e, O0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, Ox0Oc, Ox0d, OxOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}
s
{ {0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, 0x06},
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, Ox0c, O0x0d, OxOe, OxOf, 0x00, Ox01, 0x02},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, O0x0Oc, 0x0d, Ox0Oe, OxO0f, O0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},

304

{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, O0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d},
{0x0d, 0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0x0Ob, O0x0Oc, O0x0d, OxOe, OxOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0Ox00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}
3,
{ {0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0e, O0x0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, 0x0Oc, 0OxO0d,
0x0e, Ox0f, 0x00, Ox01, 0x02, 0x03, O0x04, 0Ox05},
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,

305

0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
b
{ {0x0a,
0x02,
{0x09,
0x01,

0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,

0x0b,
0x03,
0x0a,
0x02,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x0c,
0x04,
0x0b,
0x03,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,

0x0d,
0x05,
0x0c,
0x04,

0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,

0x0e,
0x06,
0x0d,
0x05,

0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,

0xO0f,
0x07,
0x0e,
0x06,

0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x00,
0x08,
0x0f,
0x07,

306

0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09}

0x01,
0x09}%,
0x00,
0x08}%,

{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, O0x06},
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, 0x0Oc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, O0x0Oa, OxOb, OxOc,
0x0d, Ox0e, Ox0f, 0x00, 0x01l, 0x02, Ox03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, O0x0a, OxOb,
0x0c, 0x0d, 0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03%,
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, Ox0c, O0x0d, OxOe, OxOf, 0x00, Ox01, 0x02},
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
Ox0a, OxOb, 0x0Oc, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0a, OxOb, O0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},
{0x0f, 0x00, 0x01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, O0xOe},
{0x0e, O0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0d, O0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},

307

{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0OxOa}

{ {0x0b, Ox0Oc, 0x0d, Ox0e, OxO0f, 0x00, 0x01l, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0x0Ob, 0x0c, 0x0d, 0x0e, O0xO0f, 0x00, OxO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, Ox0c, Ox0d, OxOe, OxO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, Ox0a, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, O0xOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x06, 0x07, 0x08, 0x09, O0x0a, O0xOb, 0x0Oc, 0OxO0d,
0x0e, OxO0f, 0x00, Ox01, 0x02, 0x03, 0x04, 0Ox05},
{0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb, OxOc,
0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04}%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, O0x01l, O0x02, Ox03},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, OxOb, Ox0c, 0x0d, OxOe, OxOf, O0x00, Ox01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, 0xOb, 0xOc, 0x0d, Ox0Oe, O0xO0f, 0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

308

0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, Ox0Oe, O0xO0f%},
{0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, Ox0f, 0x00, O0x01, Ox02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0d, 0x0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb}
b
{ {0x0c, 0Ox0d, O0xOe, OxOf, O0x00, O0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, 0xOb},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0x0Ob, 0x0c, O0x0d, OxOe, O0xOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0Ox00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, OxOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, OxOc, 0OxO0d,
0x0e, Ox0f, 0x00, Ox01, 0x02, 0x03, O0x04, 0Ox05},
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04%,

309

{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,

{ {0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,

0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,

0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,

0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,

0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0xOe,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,

0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,

310

0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c}

0x04,
0x0c},
0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,

0x01,
{0x08,
0x00,
{0x07,
0x0f,
{0x06,
0xOe,
{0x05,
0x0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
b,
{ {0xOe,
0x06,

0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0xo0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,

0xO0f,
0x07,

0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x00,
0x08,

0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,

0x01,
0x09,

0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,

0x02,
0x0a,

0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,

0x03,
0x0b,

0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x04,
0x0c,

311

0x08}%,
0x0f,
0x07}%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d?}

0x05,
0x0d},

{0x0d, 0x0e, Ox0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, O0x0Ob, O0x0c, O0x0d, OxOe, O0xOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, Ox0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0e, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}%,
{0x07, 0x08, 0x09, 0x0a, OxOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, 0x01l, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x06, 0x07, 0x08, 0x09, O0x0a, O0xOb, O0xOc, 0OxO0d,
0x0e, Ox0f, 0x00, Ox01, 0x02, 0x03, O0x04, 0Ox05},
{0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, O0xOb, OxOc,
0x0d, Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04%,
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, 0x01l, O0x02, Ox03},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02%,
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0Ox0a, Ox0Ob, Ox0c, 0x0d, OxOe, OxO0f, Ox00, Ox01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, OxOf, 0x00%},

312

{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, 0xO0f%},
{0x0f, 0x00, 0Ox01, O0x02, Ox03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, OxOe}

{ {0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, Ox0Oa, OxOb, 0xOc, 0x0d, 0xOe},
{0x0e, Ox0f, 0x00, O0x01, Ox02, 0x03, 0x04, 0xO05,
0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc, 0x0d},
{0x0d, 0x0e, 0OxO0f, 0x00, 0x01, 0x02, 0x03, 0Ox04,
0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb, 0xOc},
{0x0c, 0x0d, Ox0e, OxO0f, Ox00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0Oa, O0xOb},
{0x0b, 0x0c, 0x0d, 0x0e, 0xO0f, 0x00, 0x01l, 0Ox02,
0x03, 0x04, 0x05, O0x06, 0x07, 0x08, 0x09, OxOa}l,
{0x0a, 0x0Ob, O0x0Oc, O0x0d, OxOe, OxOf, 0x00, 0xO01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09},
{0x09, O0x0a, OxOb, 0x0Oc, 0x0d, O0x0e, 0xO0f, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08%,
{0x08, 0x09, Ox0a, OxOb, OxOc, 0x0d, Ox0Oe, OxOf,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07},
{0x07, 0x08, 0x09, 0x0a, OxOb, 0xOc, 0x0d, OxOe,
0x0f, 0x00, O0x01, 0x02, 0x03, 0x04, 0Ox05, 0x06},
{0x06, 0x07, 0x08, 0x09, Ox0a, O0xOb, O0xOc, 0OxO0d,
0Ox0e, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05%,
{0x05, 0x06, 0x07, 0x08, 0x09, O0x0a, O0xOb, OxOc,

313

0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02, 0x03, 0x04},
{0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0a, OxOb,
0x0c, 0x0d, Ox0e, OxO0f, 0x00, O0x01l, O0x02, Ox03},
{0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, OxOa,
0x0b, 0x0c, 0x0d, Ox0Oe, OxO0f, 0x00, 0x01, 0x02}%,
{0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0a, OxOb, Ox0c, 0x0d, OxOe, OxOf, Ox00, Ox01},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, Ox0Oa, O0xOb, 0xOc, 0x0d, Ox0Oe, OxO0f, 0x00},
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, Ox0a, OxOb, 0xOc, 0x0d, Ox0Oe, OxOf}
s
{ {0x0f, Ox0e, 0x0d, OxOc, OxOb, O0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0Ox06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, OxOa}l,

314

{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, O0x01, 0x00, OxO0f, OxOe,
0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, 0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0e, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, Ox01l}
3,
{ {0x0e, 0x0d, 0x0Oc, OxOb, Ox0Oa, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, Ox00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

315

0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0xOe,
{0x05,
0x0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,

0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0xo0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,

0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,

0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,

0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,

316

0x0c},
0x03,
0x0b},
0x02,
0Ox0a},
0x01,
0x09},
0x00,
0x08}%,
0x0f,
0x07}%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02},
0x09,
0x01},
0x08,
0x00}

{0x0d, 0x0c, OxOb, 0Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, 0OxOa},
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, OxO01,
0x00, Ox0f, Ox0e, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0c, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, O0x00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, OxOc,
0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},

317

{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, OxOc, OxOb, O0x0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf}
3,
{ {0x0c, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0Ox00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, OxO01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09}%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, 0OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, Ox0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, O0x00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc,

318

0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, OxO0f, Ox0e, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, O0xOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, 0x0Oc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe}
b
{ {0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, 0x0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,

319

{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0e, 0Ox0d,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, OxOc,
0x0Ob, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0O0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, O0x0f, Ox0e, O0x0d, OxOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05,
0x04, 0x03, 0x02, 0x01, 0x00, Ox0f, OxOe, OxO0d}
b
{ {0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,

320

0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,
0xo0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,

0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,

0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,

0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,

0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,

321

0x09},
0x00,
0x08},
0x0f,
0x07%},
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0xO0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,

0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, Ox0d, 0xOc}

{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, O0xOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, Ox06, 0x05, 0x04, 0x03%,
{0x01, 0x00, OxO0f, Ox0e, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, O0xOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},

322

{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxOf, OxOe, 0x0d, OxOc, OxOb}
b
{ {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0e, 0Ox0d, O0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, O0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,
{0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, O0xOb, Ox0a, 0x09,

323

0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, O0xOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0Ox00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, O0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, OxOc, OxOb, OxOa}
3,
{ {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0c, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06}%,
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0e, 0x0d, OxOc,
0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}%,

324

{0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, O0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, O0x0e, 0x0d, OxOc, OxOb, O0x0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},
{0x0d, 0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0OxO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09}
3,
{ {0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0x0Oc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, Ox0f, OxOe,

325

0x0d,
{0x04,
0x0c,
{0x03,
0x0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,

0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,

0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,

0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,

0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,

0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,

326

0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02},
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
0x0a},
0x01,

0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0xO00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, O0x09, 0x08}

{ {0x05, 0x04, 0x03, 0x02, 0x01, 0x00, Ox0f, OxOe,
0x0d, 0x0c, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0O0e, 0x0d, OxOc,
0Ox0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04%,
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03}%,
{0x01, 0x00, Ox0f, Ox0O0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0O0e, O0x0d, OxOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, O0x0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, 0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},

327

{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
b,
{ {0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,

0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,

0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,

0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,

0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,

0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,

0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,

0xO0f,
0x07,
0x0e,
0x06,
0xo0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

328

0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,
0x08}%,
0x0f,
0x07}

0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,

0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, O0x0Ob, 0Ox0a, 0x09, 0x08, 0x07, 0x06, 0Ox05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxOd, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0x0d, O0xOc, OxOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0e, 0Ox0d, O0xOc, OxOb, Ox0Oa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0Ox00,
0x0f, Ox0Oe, 0x0d, O0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, O0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0c, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06}

{ {0x03, 0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, OxO0f, Ox0Oe, Ox0d, O0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},

329

{0x0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, O0xOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01l, Ox00, OxOf},
{0x0d, 0x0c, OxOb, 0x0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0xO05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d, 0xOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, O0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, OxO0f, Ox0Oe, 0Ox0d, OxOc, OxOb, 0OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0OxO01,
0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, OxOa, 0x09},
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0Oe, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08%,
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07},
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, Ox00, OxOf, Ox0Oe, 0OxOd,
0x0c, O0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05}

1,
{ {0x02, 0x01, 0x00, Ox0f, Ox0Oe, 0x0d, O0xOc, OxOb,

330

0x0a,
{0x01,
0x09,
{0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,
0x02,
{0x09,
0x01,
{0x08,
0x00,
{0x07,
0xO0f,
{0x06,
0x0e,
{0x05,

0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,

0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,

0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,

0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,

0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,

0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,

331

0x03},
0x0a,
0x02}%,
0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,
0x0b},
0x02,
Ox0a},
0x01,
0x09},
0x00,
0x08},
0xO0f,
0x07%},
0x0e,

0x0d, 0x0Oc, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0OxO0d,
0x0c, O0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05}%,
{0x03, 0x02, 0x01, O0x00, OxOf, OxOe, 0x0d, OxOc,
0xOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04}

{ {0x01, 0x00, OxOf, Ox0Oe, Ox0d, OxOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02},
{0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, Ox0a, 0x09,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01},
{0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0Oa, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00},
{0x0e, 0x0d, O0xOc, OxOb, Ox0a, 0x09, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf},
{0x0d, 0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06,
0x05, 0x04, 0x03, 0x02, 0x01l, 0x00, OxOf, OxOe},
{0x0c, O0x0Ob, Ox0a, 0x09, 0x08, 0x07, 0x06, 0Ox05,
0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0Ox0d},
{0x0b, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03, 0x02, 0x01, 0x00, OxOf, OxOe, Ox0d, OxOc},
{0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, 0xOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, 0OxOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09}%,

332

{0x07,
0x0f,
{0x06,
0xOe,
{0x05,
0x0d,
{0x04,
0x0c,
{0x03,
0xO0b,
{0x02,
0x0a,
b
{ {0x00,
0x08,
{0x0f,
0x07,
{0x0e,
0x06,
{0x0d,
0x05,
{0x0c,
0x04,
{0x0b,
0x03,
{0x0a,

0x06,
0x0e,
0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,

0xO0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0x0b,
0x03,
0x0a,
0x02,
0x09,

0x05,
0x0d,
0x04,
0x0c,
0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,

0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,

0x04,
0x0c,
0x03,
0x0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,

0x0d,
0x05,
0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,

0x03,
0xO0b,
0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,

0x0c,
0x04,
0xO0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,

0x02,
0x0a,
0x01,
0x09,
0x00,
0x08,
0xO0f,
0x07,
0x0e,
0x06,
0xo0d,
0x05,

0x0b,
0x03,
0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0xO0f,
0x06,
0x0e,
0x05,

0x01,
0x09,
0x00,
0x08,
0x0f,
0x07,
0x0e,
0x06,
0x0d,
0x05,
0x0c,
0x04,

0x0a,
0x02,
0x09,
0x01,
0x08,
0x00,
0x07,
0x0f,
0x06,
0x0e,
0x05,
0x0d,
0x04,

333

0x00,
0x08}%,
0xO0f,
0x07}%,
0x0e,
0x06},
0x0d,
0x05}%,
0x0c,
0x04}%,
0x0b,
0x03}

0x09,
0x01},
0x08,
0x00},
0x07,
0x0f},
0x06,
0x0e},
0x05,
0x0d},
0x04,
0x0c},
0x03,

0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, 0xOc, OxOb},
{0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02,
0x01, 0x00, Ox0f, OxOe, 0x0d, O0xOc, OxOb, OxOa}l,
{0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0OxO01,
0x00, OxO0f, Ox0Oe, 0x0d, OxOc, OxOb, Ox0Oa, 0x09%,
{0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0f, Ox0e, 0x0d, OxOc, OxOb, Ox0a, 0x09, 0x08},
{0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxOf,
0Ox0e, 0x0d, 0xOc, OxOb, Ox0Oa, 0x09, 0x08, 0x07%,
{0x05, 0x04, 0x03, 0x02, 0x01, 0x00, OxO0f, OxOe,
0x0d, 0x0Oc, 0xOb, Ox0Oa, 0x09, 0x08, 0x07, 0x06},
{0x04, 0x03, 0x02, 0x01, O0x00, OxOf, Ox0e, 0OxOd,
0x0c, OxOb, Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05%,
{0x03, 0x02, 0x01, 0x00, OxO0f, Ox0Oe, 0x0d, OxOc,
0x0b, Ox0Oa, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04},
{0x02, 0x01, 0x00, OxO0f, OxOe, 0x0d, OxOc, OxOb,
Ox0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03%,
{0x01, 0x00, Ox0f, Ox0e, 0x0d, 0xOc, OxOb, OxOa,
0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02}
3
};

unsigned short sTable[64][16][16] = {
{ {Ox1llae, Ox1f51, O0x030f, 0x084f, 0x2d5b, Ox3c6f, Oxlac5, Ox2e5c,
0x296a, 0x0a9b, Ox0aa7, Oxldca, Oxlfac, Ox1ld51, Ox2ccl, OxOb2e},
{0x1659, O0x0a3e, 0x3bl6, Ox2bbb, 0x1l6fc, 0x16f7, 0x32e2, Ox37ff,

334

0x10a8,
{0x27b5,
0x0d77,
{0x06c2,
0x2845,
{0x2b76,
0x351e,
{0x3ccf,
Ox3cal,
{0x2a53,
0x17d7,
{0x0e9c,
0x0087,
{0x18df,
0x13f2,
{0x27cl,
Ox0bff,
{0x37e0,
0x2778,
{0x1798,
OxOeae,
{0x32dd,
0x236f,
{0x3947,
0x3654,
{0x0525,

Ox3abf,
0x148b,
0x1824,
0x0f5f,
0Ox3a7a,
0x2b0d,
0x39d5,
0x3cc9,
0x24a9,
0x3937,
0x182e,
0x3a03,
0x268d,
0Ox2cc7,
0x136e,
0x0f32,
0x168d,
0x220e,
0x301a,
0x25d9,
0x1f09,
0x1474,
0x1b80,
0x0ba4,
Ox2ae3,
0x069e,

0x25f8,
0x0032,
0x2695,
0x2a45,
0x2387,
0x344a,
0x1654,
0x03ab,
0x2d77,
0x249f,
0x2cbl,
0x346a,
0x25ce,
0x2d10,
Ox1lfae,
0x0551,
0x0451,
0x39b1,
Ox1lde?,
0x0d76,
0x318c,
0x2071,
0x2614,
Ox3fec,
0x21e8,
0x1086,

0x147f,
0x35f0,
0x0bcf,
0x3cf6,
0x0c78,
0x1b40,
0x1274,
0x3f1f,
0x0189,
0x34eb,
0x1491,
0x2b60,
Ox2ebd,
0x1e49,
0x27f5,
Ox2efd,
0x0669,
0x03c4,
0x024f,
0x2f72,
0x2002,
0x2247,
0x2cf5,
0Ox2ba4,
0x2114,
0x3d0b,

0x351c,
0x18da,
0x0bba,
0x1292,
0x07be,
0x348c,
0x3745,
0x0325,
0x0354,
0x1783,
0x2284,
0x37c7,
0x147a,
0x2da8,
0x0afo,
0x3f4f,
0x0173,
0x02f7,
0x14a0,
0x0854,
0x2218,
Ox3be3,
0x3e99,
0x0a5c,
0x311b,
0x2c63,

0x2272,
0x17c3,
0x0b1f,
0x0aeb,
0x07ef,
0x3f7c,
OxlefO,
0x334a,
0x34c3,
0x2540,
0x00aa,
0x10a7,
0x0c5f,
Oxlae3,
0x1571,
0x09fe,
0x1130,
0x13a5,
Ox2ce8,
0x3115,
0x19bb,
0x3cd9,
0x1035,
0Ox3c4c,
Ox0ac7,
0x2a40,

335

0x2646,
0x1152,
0x050e,
0x01d7,
0x0129,
0x214f,
0x115c,
0x059b,
0x1691,
0x3a5d,
0x2b09,
0x3db4,
0x025b,
0x2896,
0x1a00,
0x380f,
0x082b,
Ox3e2d,
0x3651,
0x16d8,
Oxla5a,
0x2c51,
0x398a,
0x1b29,
Ox1le54,
0x3aa4,

0x2d30},
0x2852,
0x3ch8},
Ox3eaf,
0x30d4},
0x135e,
0x2482%,
0x3416,
0x061b},
0x12cf,
0x104f},
0x39bf,
0x2b8d},
0x1b25,
0Ox2c3e},
0x0fel,
0x0635},
0Ox3dda,
0x338c},
0x3f91,
0x3748}%,
0x3160,
0x33cf},
0x1913,
0x19fb},
0x3eb6b,

}s
{

0x1730,
{0x3a72,
0x027c,

{0x1daa,
0x0498,
{0x3f1d,
0x2075,
{0x338e,
0x24a7,
{0x3754,
0x0ae0,
{0x17a8,
0x1cOc,
{0x2035,
0x346b,
{0x2560,
0x0088,
{0x08ec,
Oxla4dc,
{0x170e,
0x3733,
{0x0bb0,
0x3fc3,
{0x2ae0,
0x004f,

Ox2cle,
0x00ab,
0x0ccd,

Ox2dca,
0x1165,
0x2023,
0x3fcc,
0x01cO0,
0x277f,
0x2b11l,
0x260e,
0x2f91,
0x2b81,
0x38fa,
0x13e4,
0x069f,
0x3835,
0x0a7b,
0x3f11,
Ox1eb9,
0x2a0b,
0x0a99,
0x1c33,
0x0829,
0x1077,

0Ox24ed,
0x2fb6,
0x3439,

0x3bdf,
0x028c,
Ox2ec?2,
Ox1fde,
0x3b2e,
Ox3adc,
0x34b7,
0x3563,
0x14f4,
0x22c1,
0Ox2ad6,
0x0e46,
0x2d8c,
0x30f5,
0x1673,
0x2587,
0x1d10,
0x15c6,
0x0dd9,
0x3725,
0x187e,
0x08f0,

0x05e4,
0x2381,
0x332f,

0Ox3ce6,
0x2196,
0x3339,
Oxled9,
0x04c1,
Ox31lef,
0x0738,
0x1c7b,
Ox1cf4,
0x30fe,
0x02ed,
0x1f5b,
0x3884,
0x2be9,
0x2d67,
0x2678,
0x0c5a,
0x122f,
0Ox2ceb,
0x272a,
0x37cd,
0x1f39,

0x14e3,
0x0f25,
0x1874,

0x1679,
0x174a,
0x2233,
Oxle2f,
0x3035,
0x015d,
0x29fb,
0x383a,
0x0218,
0x0742,
0x2827,
0x2e83,
0x1f36,
Ox11la6,
0x181b,
0x00b8,
0x3al9,
0x18a7,
0Ox1c8a,
Oxlecf,
0x30de,
0x1244,

0x29f7,
0x14b9,
Ox1led8,

0x10e9,
0x2953,
0x3370,
0x1f5e,
0x1270,
0x0e8b,
0x1342,
0x0ddo,
0x357f,
0x065a,
0x02c4,
0x29a5,
0x2dfO0,
Ox3eeb,
0x3172,
0x0623,
0x0cc3,
0x00de,
0x3735,
0x2322,
0x346d,
0x392a,

336

0x08ba,
0x1289,
0x3ca0,

0x35ee,
0x204f,
0x25e2,
Ox3abd,
0x0e7c,
0Ox2c5f,
Oxlca?,
0x0366,
0x120d,
0x27b3,
0x1bb5,
0x0fof,
0x034a,
0x1719,
0x3cd6,
Oxlead,
Ox1l1lfa,
0x0184,
0x0a5f,
0x0133,
0x1b03,
0x0b12,

0x1722%,
Ox2e8e,
0x0624%

0x01da,
0x3513},
0x10°f5,
0x0449}%,
0x0e83,
0x0178}%,
0x37eb,
0x3c3d},
0x072d,
0x197b},
0x3da5,
0x1863},
0x02aa,
0x1708},
0Ox1c25,
0x00b1},
0x2f81,
0x3dbd},
0x1a83,
0x134d},
0x028b,
0x37b8},

b,
{

{0x3b4f,
0x1973,
{0x3ee4,
0x2324,
{0x330e,
0x269f,
{0x1764,
0x0b8b,
{0x19f1,
0Ox0a2d,

{0x3e0d,
0x2564,
{0x3220,
0x34c8,
{0x22dc,
0x2d8b,
{0x240e,
0x1804,
{0x22cO0,
0x1967,
{0x2c22,
0x127e,
{0x0a77,
0x10b8,
{0x3d9a,

0x1803,
0x256e,
0x3517,
0x3458,
0x1663,
0x22bd,
Ox26da,
0x0296,
0x2940,
0x04a1l,

0x33f3,
0x148a,
0x3990,
0x32ce,
0x30e2,
0x2c5b,
0x062f,
0x08b2,
0x00438,
0x204b,
0x0fe3,
0x1d40,
Ox11leb6,
0x2279,
0x0e43,

0x25f6,
0x3bf7,
Ox1fd1l,
0x39d1,
0x13f7,
0x3028,
0x3ffc,
0x3953,
0x22b6,
0x2d40,

0x222a,
Ox2a7e,
Ox2ce?2,
0x2a74,
0x3b83,
Ox2fde,
0x17c6,
0x33f5,
Oxlalc,
0x0ee4,
0x3df7,
0x0937,
0x0176,
0x0ab5,
0x2d91,

0Ox3a2c,
0x1e60,
0x08e2,
0Ox1lal3,
0x10b3,
0x27bc,
0x1699,
0x056¢c,
0x01a0,
0x3fdo,

Oxlee4,
0x386b,
0x3071,
0x39cO0,
0x0ee3,
0x0c37,
0x0671,
0x376c¢c,
Oxladd,
0x2236,
0x1d77,
0x077b,
0x0bdO,
0x0389,
0x2f8f,

0x35dd,
0x0603,
0x210c,
0x08aa,
0Ox3eba,
Ox2e5a,
0x02d5,
0x3a91,
0x23b0,
0x0900,

0x0cdb,
0x3636,
Oxla5e,
0x070d,
0x1c09,
0x0ad2,
0x2901,
0x0d33,
0x3c7a,
0x1246,
0x332e,
0x1781,
0x0156,
0x0884,
0x06bb,

0x0fcf,
0x29d6,
0x28b7,
0x00b3,
0x16d3,
0x2bb2,
0x1696,
0x3f9e,
0x3c29,
0x36e2,

0x17ab,
0x3cd5,
0x1593,
0x25e7,
0x3a06,
0x362a,
0x1b51,
0x074a,
0x0led,
0x0593,
Ox2dle,
0x33da,
0x152c,
Ox1leb5,
0x3378,

337

0x0fc5,
0x3683,
0x00d2,
0x28e7,
0x0625,
0Ox2e3c,
Ox3eac,
0x166a,
0x1a82,
0x2a91,

0x2a8e,
0x3024,
0x26¢6,
0x1229,
0x04f2,
0x0bal,
0x0b63,
0x180d,
0x026a,
0x08a5,
0x0ccl,
0x3d7c,
0x1c29,
0x2472,
Ox3bfe,

0x1c02,
Ox1f1f},
0x0f2e,
0x2634}%,
0x1178,
0x1340},
0x3b59,
0x26a8},
0x1187,
0x3c49}

0x0ab6,
0x3b23},
0x3b85,
0x08df},
0x0605,
0x18c8},
0x35a9,
0x2b32},
0x319c,
0x2eb9},
0Ox2e81,
0x132d},
0x02c5,
0x253e},
0x1421,

},
{

0x2a9c,
{0x2684,
0x01ba,
{0x06be,
0x28e9,
{0x3e87,
0x3e70,
{0x21fe,
0x296f,
{0x0cda,
0x3692,
{0x3b70,
0x10e6,
{0x12ec,
0x0081,
{0x147e,
0x3541,

{0x0d79,
0x0df8,
{0x03e7,
0x30d0,
{0x048b,
0x2dc3,
{0x32df,
0x2032,

0x0bdb,
0x2f57,
0x0ffc,
0x004c,
0x1920,
0x0a01,
0x328b,
Ox2e6d,
0x2446,
0x2a24,
0x298e,
0x0963,
0x1174,
0x3clf,
0x0338,
0x3e82,
0x375b,

ox1f2d,
0x11a0,
0x3b22,
0x3b8e,
Ox1161,
0x29d5,
0x3f99,
0x0f0e,

0x0d7e,
0x3061,
0x271d,
0x227a,
Ox1fbf,
0x32c1,
0x1260,
0x3cf5,
0x1428,
0x2019,
0x3432,
0x1172,
0x0770,
0x0bld,
0x3bd8,
0x1286,
0x0300,

0x3ch2,
0x247e,
0x031e,
0x0c03,
0x0901,
Ox1fa6,
0x1276,
0x2358,

0x37ef,
0Ox3ac9,
0x3ab9,
0x3635,
0x3d4c,
Ox21lee,
0x2fc4,
0x0bb7,
0x241f,
0x20db,
0x3597,
0x2549,
0x13f5,
0x12d0,
0x08a6,
0x142a,
0x2099,

0x02d9,
0x2d35,
Ox1fce,
0x22fc,
0x0139,
0x37a6,
0x1f13,
0x3554,

Ox3ccd,
0x08a9,
0x0482,
0x3ef9,
0x3b8d,
Ox38ae,
0x04d1,
0x160a,
0x016b,
0x140c,
0x28f0,
0x0447,
0x188b,
0x009b,
0x039c,
0x01le7,
0x023e,

Ox0fff,
0x14bf,
0x0192,
0x0e2c,
0x232e,
Ox1leb,
0x3c7d,
0x362d,

0x35a7,
0x379b,
0x2ef0,
0x0843,
0x22cf,
0x239f,
0x34ca,
0x222b,
0x318a,
Oxlelb,
0x3b4e,
0x33c8,
0x3182,
0x184c,
0x3b01,
0x3c64,
0x1b7d,

0x28a6,
0x209c,
0x39dc,
0x2820,
Oxlaal,
0x0abc,
0x18ba,
0x3509,

338

Ox3e5e,
0x212b,
0x3ff3,
0x0f34,
0x1d50,
0x2908,
0x0bd5,
0x3f0b,
0x18f6,
0x1cO05,
0x1f8a,
0x38a4,
0Ox1lal9,
0x0013,
0x125c,
Oxlcal,
0x13f6,

Ox1ldal,
0x28e5,
0x11b3,
0x2115,
0x0615,
0x25d0,
0x2996,
0x39da,

0x34b9},
0x37e4,
0x13c2},
0x0leb,
0x3433},
0x32fa,
0x105b},
0x07ce,
0x204c},
0x2d20,
0Ox126d},
0x01a3,
0x0334},
0x2296,
0x0e01},
0x0e53,
0x084d}

0x3c09,
0x177c},
0x310b,
0x1222}%,
0x0830,
0x3b9d},
0x2815,
0x03fa},

{0x3a3a,
0x3b8b,
{0x2e8a,
0x272c,
{0x1420,
Ox0faa,
{0x1lef7,
0x3c9a,
{0x3210,
0x3333,
{0x39e7,
0x3fd8,
{0x10e0,
0x2c62,
{0x32c8,
0x265b,
{0x3e92,
0x2184,
{0x071e,
0x0124,
{0x3849,
Ox12da,
{0x206f,
0Ox1cl7,

1,
{ {0x261a,

0x0b2c,
0x0231,
0x02e3,
0x2b89,
0x200f,
0x39fa,
0x3b64,
0x04da,
0x0cca,
0x0571,
0x2420,
0x0f76,
0x1b10,
0x2f56,
0x31b4,
0x1597,
0x26d9,
0x2b2f,
0x3856,
Ox1ch4,
0x0051,
0x056e,
0x0945,
0x1258,

0x3béd,

0x1525,
Ox1bdl,
0x2a37,
0x3deb,
0x0910,
0x1224,
0x29f1,
0Ox15ce,
0x1d03,
Ox1ldfe,
0x09a1l,
0x223e,
0x3180,
0x199f,
0x04d2,
0x32ec,
0Ox3c42,
0x0f1lc,
0x29cb,
0x1732,
0x0eal,
0x2db4,
0x0839,
0x169a,

0x033d,

0x3319,
0x2dc8,
0x3790,
0x3ffd,
0x3958,
0x1d9e,
0x2f9a,
0Ox1la4l,
0x0d8b,
Ox11la7,
0x2258,
0x33de,
0x3476,
0x1969,
0x06bc,
0x0981,
0x2c8a,
0x28b1,
0x2b6b,
0x0193,
0x3eba,
0x3f72,
0x0037,
0x0045,

0x35d9,

Ox3cfe,
0x3246,
0x18cc,
0Ox1c54,
OxObec,
0x3b84,
0x1821,
0x31dd,
0x3cd8,
0x0596,
0x38d7,
0x023d,
0x23df,
0x0278,
0x283b,
0x0e97,
0x1438,
Ox3ede,
0x141a,
0x3cbe,
0x0dof,
0x2874,
0Ox1d6b,
0x3c47,

0x345d,
0x1df3,
0x3ab0,
Ox2e44,
0Ox0aab,
0x0977,
0x2c7b,
Oxle4da,
0x18e6,
0x17d4,
Oxllec,
Ox1c41,
0x3343,
0x1882,
0x3a9f,
Ox3adl,
0x20a5,
0x2b08,
0x1ab1,
0x2b67,
0x35b8,
0x20c5,
Ox2a5a,
Oxlafl,

0x0b09, 0x330a,

339

0x016d,
Ox3acd,
0x2572,
0x359a,
0Ox1ale,
0x28eb,
0x2310,
0x337a,
0x314f,
Ox3bbe,
0x07d6,
0x34fa,
0x23de,
0x2462,
0x2a68,
0x18c2,
0x33b3,
0x0c2f,
0x2110,
0x0873,
0x1f08,
Ox3ecd,
0x0b88,
0x15cO0,

0x1b8b,

0x3d24,
Ox3e3c},
0x2990,
0Ox2aab},
0x233c,
0x1364}%,
0x30e0,
0x3948}%,
Oxlaab,
0x1071},
0Ox2e41,
Ox1bf2},
0x1681,
0x1563},
0x27c4,
Ox1f7a},
0x13ef,
0x3891},
0x28c8,
0x04ab6},
0x2209,
0x2d6d},
0x322a,
Ox1f4e}

0x2da5,

Ox1b6f,
{0x3641,
0x2961,
{0x0a60,
0x0fad,
{0x3134,
Oxleéce,
{0x0009,
0x1b30,
{0x29d7,
0x3586,
{0x0720,
0x217d,
{0x350d,
0x003b,
{0x38d6,
0x06f9,
{0x3396,
0x3f8e,
{0x03e0,
0x34f8,
{0x2c5d,
0x134b,
{0x2207,
Ox1ffe,
{0x2a47,

0x06a0,
0Ox1d41,
0x05ec,
0x28fc,
0x0cc8,
0x04bb,
0x1892,
0x253f,
0x1476,
0x09ea,
0x0812,
0x0065,
0x109b,
0x1b65,
0x163c,
0x3949,
0x0633,
0x309b,
0x0930,
0x2960,
0x1d00,
0x12f0,
Oxlec9,
0x066d,
0x38c5,
0x368f,

0x1818,
0x133f,
0Ox3cea,
0x0e91,
0x1182,
0x20b2,
Ox2fab,
0x14f0,
0x390e,
0x3025,
0x3a8d,
0x104d,
0x269a,
0x0c9b,
0x1271,
Ox1fed,
0x0e20,
0x0096,
0x2d0a,
0x3bf9,
0x1570,
Oxleec,
0x3938,
0x30ac,
0x1f80,
0x11f4,

0x3b4d,
0x29c9,
0x06e0,
0x1848,
Ox1dfd,
0x173b,
Ox2féd,
0x26fa,
0x0b6a,
Ox1lle7,
0x1009,
0x123c,
0x0b17,
0x2c64,
0x0d48,
0x21df,
0x108c,
0x3713,
0x3fe7,
0x0ff7,
0x3915,
0x2622,
0x3e9c,
0x3aeb,
0x114b,
0x1f20,

0x20eb,
0x26d3,
0x01ff,
0x28bd,
0x17de,
0x059d,
0x33bc,
0x0595,
0Ox1e28,
0x3a71,
0x1d18,
0x26dd,
0x0e02,
0x2e0a,
0x2663,
0x1435,
0x213b,
0x0579,
0x0344,
0x39bb,
0x1502,
Oxladc,
0x3259,
0x2d97,
0x23fc,
0x25c4,

0x174e,
0x2012,
0x1b91,
0x3f36,
0x3fb7,
0x39d9,
0x2784,
0x0e7f,
0x0eb5,
0x33f0,
0x1105,
0x07d9,
0x18a8,
0x2a72,
0x2f93,
0x0364,
0x1934,
0x34a4,
0x2ba3,
0x34dc,
0x264f,
0x0dbb,
0x1c60,
0x0c73,
0x3f28,
0x3cba,

340

0x3f69,
0x3588,
0x14f8,
0x0758,
0x35fa,
0x30ec,
Ox2cda,
0x00al,
Ox116f,
0x1a50,
0x3274,
0x0613,
Ox1fa3,
0x1f34,
0x132e,
0x2318,
Ox2aad,
0x0a4f,
0x13e9,
0x3c60,
0x02d6,
0x340e,
0x0666,
0x08e3,
0x1d88,
0x3522,

0x3eb5},
0x335f,
0x2559},
0x254e,
0x1b9d},
Ox2alb,
0x01bd},
0x38d5,
0x19fd},
0x0e2e,
0x0e38%,
0Ox1fc7,
0x185d},
0x02af,
0x04cd},
0x0ecO,
0x16bd},
0x0871,
0x39a4},
0x12d9,
0x3969},
0x3a86,
0x3el8},
0x1802,
0x0e74},
0x07b6,

0x3dc8,
{0x3138,
0x0a98,
{0x0dcb,
0x2e58,
b
{ {O0x2dce,
0x0f0b,
{0x1711,
0x18e4,
{0x08e0,
0x0a3b,
{0x1c90,
0x2470,
{0x0e9e,
0x0359,
{0x2cfO,
0x13b0,
{0x0a75,
0x04ac,
{0x3ebb,
0x141f,
{0x245f,
0x360f,
{0x3eec,
0x0aa9,

0x272b,
0x3fb2,
0x2ab9,
0x3b9c,
0x278b,

0x0788,
0x0885,
0x1c94,
0x2f2b,
0x2771,
0x30be,
0x1669,
Oxle5a,
0x34f5,
0x0532,
Ox1fdc,
0x37e8,
0x0813,
0x1a89,
0x0d82,
0x08e9,
0x0665,
0x0232,
0x0ad9,
0x31c8,

Ox2dcb,
0x3dbl,
0x20b5,
0x22ab,
Ox1ldef,

0x091f,
0x00e5,
0x396e,
0x35bb,
0x04d5,
Oxlad2,
0x34d8,
0x280e,
0x12eb,
0x0e2d,
Oxla2d,
0Ox2a3a,
0x24c9,
0x25f7,
0x0f2c,
0x3bf3,
0x1017,
0x318f,
0x38dc,
0x2629,

0Ox3ael,
0x086d,
0x2a8c,
0x1190,
0x32e5,

0Ox3af2,
0x3f21,
0x0809,
0x07eb,
0x3c35,
0x2f66,
0x3301,
0x0710,
0x0fe2,
0x290a,
0x04c9,
0x11e0,
0x3626,
0x1993,
0x39ec,
0x1396,
0x2259,
0x1962,
0x10d0,
0x3766,

0x351a,
0x386¢,
0x203b,
0x2045,
0x2d70,

Ox1dff,
0x03a6,
0x1b19,
0x1504,
0x3482,
0Ox2cbe,
0Ox1laa8,
0x3429,
0x34b2,
0x10e3,
0x014c,
0x0d45,
0x1a53,
0x3b8a,
0x19b9,
0x22cd,
0x39c3,
0x0502,
0x0f7c,
0x388c,

0x0827,
0x0284,
Ox1lfc4,
0x07c3,
0x3795,

Ox26ea,
0x113e,
0x229a,
0x05d2,
0x0822,
0x0d90,
0x17ba,
0x04ed,
0x14fd,
0x0a35,
0x0ced,
0x310f,
0x1fdo,
0x113a,
0x0b6b,
0x054e,
0x3038,
0x38ee,
0x380a,
Ox1lel6,

341

0x382e,
0x0960,
0x03ea,
0x19c8,
Ox1lc4f,

0x36a3,
0x0916,
0x08cf,
0x3c73,
0x1112,
0x251b,
0x37bd,
Ox2ef9,
Ox2acd,
0x0ed6,
0x1f12,
0x29d1,
0x186a,
0x3d6a,
0x0a97,
0x3529,
0x2fbb,
0x2da9,
0x2b62,
0x0c7a,

0x2c37%,
0x1d78,
0x15b0},
0x3be7,
0x1723}

0x1859,
0x1531},
0x20e0,
0x0cd8},
0x1f05,
0x2773%,
0x2876,
0x24bc},
0x16e5,
0x3e02},
0x26f0,
0x0462},
0x0fbc,
Ox3eel},
0x046f,
0Ox2a8d},
0x044f,
0x110b},
0x2329,
0x081b},

3,
{

{0x03f9,
0x21ch6,
{0x1c89,
0x0375,
{0x0074,
0x251f,
{0x3317,
0x3e7a,
{0x3630,
0x2375,
{0x0af7,
0x1d05,

{Ox11lac,
0x3ce7?,
{0x1f03,
0x249e,
{0x3d5c,
0x0e05,
{0x1fba,
0x2503,
{0x3d97,
0x1150,
{0x1b37,
0x0f03,
{0x21cd,

0x1c32,
0x3206,
0x0b70,
0x2392,
0x3f27,
Ox3cac,
0x0953,
0x286f,
0x37d6,
0x31led,
0x0a59,
Ox14ac,

0x39e6,
0x3787,
0x0103,
0x311a,
0x2f59,
0x2b0c,
0x3297,
0x228f,
0Ox1la9a,
0x2c4b,
0x3566,
0x0f14,
0x39f5,

0Ox2c7f,
0x0cdc,
0x2216,
0x10c5,
0Ox1ch9,
0x00be,
0x3c71,
0x0fbO0,
0x3716,
0x19b7,
0x0f20,
0x2240,

0x1016,
0x17dd,
0x32d8,
Ox111f,
0x28e4,
0x2blb,
0x1445,
0x13bf,
0x2f08,
0x0406,
0x099f,
0x0f19,
0x3348,

0x3601,
0x193b,
0x2d93,
0x061f,
0x1b98,
Ox1c36,
0x167e,
0x2c21,
0x2a35,
0x0391,
0Ox211a,
0x09ff,

0x1bd9,
0x3f04,
0x30b6,
0x0322,
0x2bdb,
Ox1lc7f,
0x00fd,
0x3b5c,
0x125b,
0x26c8,
0x036¢c,
Ox1lcdl,
0x16f9,

Ox2eac,
0x0e41,
0x0070,
0x32e9,
0x2e26,
0x237e,
0x095e,
0x2be0,
0x056f,
0x08b9,
0x2f2e,
0x0b4a,

Ox2eab,
0x1a60,
0x040a,
0x3d0a,
0x22f3,
0x3d17,
0x0fcO,
0x30f2,
0x2106,
0x1896,
0x11d1,
0x07f1,

0x0béd,
0x04ef,
0x11bO0,
0x29f6,
0x3cbh9,
0x17c4,
0x130a,
0x36f4,
0x0d8e,
0x020c,
0x2ddb,
0x26f8,
Oxla2f,

0x2804,
0x068a,
0x2167,
0x3c43,
0x2199,
0x30e9,
0x0f16,
0x377f,
0x1bcO,
0x205b,
0x0456,
0x3d57,
0x0a71,

342

Oxlec5,
Ox14el,
0x365d,
0Ox2ed3,
Ox1le7d,
0x0182,
0x0ab6b,
0x1063,
0x0752,
0x2193,
0x165a,
0x1236,

0x09b9,
0x038e,
0Ox0ela,
0x2205,
0Ox0a4da,
0x2533,
0x08fe,
0x2869,
0x034c,
0x139e,
0x3758,
0x02f9,
0x3572,

0x3451,
0x00b0},
0x1204,
0x0d6e},
0x0cb7,
0x3515},
0x0d75,
0x12493%,
0x01f2,
0x2f70},
0x0bbf,
0x06e9}

0x255a,
0Ox0aa2},
0x32d5,
0x12d6},
0x19b3,
0x3c31},
0x07e0,
0x20e4},
0x002a,
0x2d3f},
0Ox3deb,
0x03a7},
0x371b,

Ox12dc,
{0x2a21,
Oxled3,
{0x070c,
0x3373,
{0x0f78,
0x1403,
{0x0b31,
0x09db,
{0x2db6,
0x3b52,
{0x2840,
0x1f0b,
{0x0d11,
0x1949,
{0x2d44,
0x2bcf,
{0x3bel,
0x3a84,
b,
{ {0x2068,
0x2b56,
{0x1537,
0x2f16,
{0x1dfb,
0x382f,

0x365f,
0x29bf,
0x096d,
0x22d5,
0x03bc,
0x32eb,
0x2f55,
0x03eb,
0x03fd,
0x1703,
0x069b,
0x1c81,
0x33d8,
0x3c38,
0x309c,
0x3050,
0x28db,
0x1b16,
0x035b,

0x1094,
0x228b,
0x23b9,
0x19df,
0x3153,
0x2556,

0x192c,
0x3846,
0x3b39,
0x336d,
0x36fe,
0x10c9,
0x393e,
0x03f3,
0x355e,
0x1879,
0x2728,
0x27c7,
0x33be,
0x131a,
0x097c,
0x36c¢f,
0x23f8,
0x21b6,
0x1004,

0x3c3f,
0x0130,
0x3e88,
0Ox3aea,
0x3971,
0x0e03,

0x12bc,
Ox0dle,
0x2fb8,
0x154d,
0x26c0,
0x3489,
0x3ba4,
0x0elf,
0x0400,
0x06f7,
0x2281,
0x1393,
0x2366,
0x22fd,
0x05a8,
0x1079,
0x0011,
0x2fa9,
0x2f0a,

Ox2de3,
0x02a0,
0x0f70,
0x0b2b,
0x046e,
0x129e,

0x0b84,
0x3d1f,
0x01f5,
0x234c,
0x3834,
0x202b,
0x0a4d,
0x0c5b,
0x0d52,
0x3168,
0x1f1d,
0Ox1bcl,
0x1295,
0x1dof,
Ox2ed4,
0x16¢cb,
0x0ca6,
0x2775,
0x2450,

0x0561,
0x2e0d,
0x2bf8,
0x0a39,
0x3f4d,
0x3662,

0x2277,
0x080d,
0x377a,
0x3570,
0x251d,
0x366c¢,
0x0007,
0Ox06a2,
0x34df,
0x2c95,
0x045b,
0x3627,
0x2595,
0x0f15,
0x3ddé6,
0x39ab,
Ox1ddb,
Oxlab2,
0x2d57,

0Ox2fda,
0x1a57,
0Ox3acb,
0x001a,
Ox1cba,
0x10af,

343

0x1a9c,
0x150d,
0x137a,
0x39e2,
0x3ddf,
0x054d,
0x21f8,
Ox1bal,
Oxlaeb,
0x0250,
Ox2ef3,
0x0el3,
Ox1bc2,
0x053d,
0x06d7,
Ox1bbb,
Oxle7e,
0x2aa0,
0x2b18,

0x1923,
0x3824,
0x3cc4,
0x2a60,
0x2017,
0x1c9c,

0x3d7d},
0x0ef4,
Oxled6},
0x06af,
0x3chd},
0x044c,
Ox1lbed},
0x38d2,
Ox3bld},
0x2ab5,
0x23b8},
0x2c80,
0x2293}%,
0x2915,
0x18ad},
0x26e7,
0x3f6b},
0x3858,
0x343c}

0x319d,
0x0b9e},
0x171b,
0x3b51}%,
0x13d8,
0x0664},

{0x0a93,
0x0897,
{0x1147,
0x1158,
{0x0ecd,
0x1040,
{0x0750,
0x0fb8,
{0x15d8,
0x3354,
{0x343a,
0x1639,
{0x3db0,
0x2d48,
{0x1ceO,
0x3431,
{0x12a8,
Ox11df,
{0x0ceO,
0x0f3f,
{0x04a7,
Ox3ebf,
{0x06e4,
0x0938,
{0x0afb,
0x1698,

0x0c17,
0Ox37a5,
0x1d23,
Ox1f4b,
0x22a3,
0x2619,
0x18f5,
0x01fa,
0x2a9a,
0x1232,
0x2c73,
0x215e,
0x2b19,
0Ox3ae9,
0x2a08,
Ox2cc4,
0Ox2c3a,
0x3ad6,
0x12hb9,
0Ox1e30,
0x0a45,
0x2436,
0x2793,
0x0117,
Ox3ca5,
0x21a9,

Ox1c12,
0x276d,
0x39f0,
0x0a43,
0x270e,
Ox2cfb,
Ox2e4f,
0x2b9e,
0x204e,
0x1e01,
0Ox3dal,
0x0536,
0x130f,
0x3183,
0x037e,
0x285e,
Ox1bc7,
0x25a4,
0x33db,
0x28al,
0x0cea,
0x2624,
0x19a4,
0x1b61,
0x18c5,
0x1b34,

0x2c69,
0x356c¢,
0x0682,
0x3005,
0x3dbb,
0x1252,
0x2998,
Ox1cf3,
0x06eb,
0x24d4,
0x0859,
0x193f,
0x0895,
0x2345,
0x32da,
0x1a85,
0x2309,
0x0068,
0x0eb8,
0x0a56,
0x33b2,
0x13el,
0x0658,
0x00f6,
0x0b9d,
0x1241,

0x368d,
0x0a2c,
0x1310,
0x0320,
Ox1bab6,
0x2854,
Ox17ec,
0x3756,
0x15e9,
Ox2ell,
0x36ed,
0x09ee,
0Ox1le77,
0x0801,
Ox14ec,
0x2826,
0x2d09,
0x3fe3,
0x25e6,
0x358c,
0x0a24,
Ox1lc2c,
0x3bb5,
0x2121,
0x1788,
0x2034,

0x237b,
0x2d22,
0x089a,
0x23e8,
0x396c,
0x0dc2,
0x2615,
0x39d8,
0x24d7,
0x1171,
0x24f3,
0x08da,
0x036f,
0x388f,
0x0988,
0x1237,
0x01cf,
0x344f,
0x0bb6e,
0x107b,
0x3e29,
0x2fc7,
Ox1f5f,
0x0f8d,
Ox3e8f,
0x13c1,

344

0x2673,
0x3b65,
0Ox23ac,
0x01le3,
0x14a2,
0x0c28,
0x33d2,
Ox1ldac,
0x05f4,
0x3a25,
0x3232,
0x137f,
0Ox3ac7,
0x00fa,
0x3302,
0x386d,
0x2c29,
0x3a8f,
0x0c33,
0x3780,
0x0033,
0x3dba,
0x1667,
Ox1c4b,
0x03fc,
0x2578,

0x0145,
0x010c},
0x09b8,
0x1d55}%,
0x259e,
0x1b56}%,
0x0d5a,
0x01f1},
0x20f5,
0x2031},
0x2ch0,
0x2c03},
0x3bcO,
0x2478%,
0x3e85,
0x1bb8},
0x3ff9,
0x051a},
0Ox3ce5,
0x3d4d},
0x2f64,
0x36d9},
0x3bb0,
0x3d04},
Ox2abf,
0x25a9}

{0x03ae,
0x2d52,
{0x3689,
0x3c37,
{0x3603,
0x2c45,
{0x17cc,
0x01al,
{0x1d36,
Ox1l4da,
{0x2010,
0x1308,
{0x1486,
Ox2cbe,
{0x2bac,
0x255b,
{0x07a6,
0x24c3,
{0x1e90,
0x0a61,
{0x0fe0,
0Ox2a4a,
{0x3537,
0x38c9,
{0x2a05,

0x19bc,
0x2ff4,
0x23ba,
0x3562,
0x345e,
0x13eb,
0x2e18,
OxOfef,
0Ox2ae2,
0x240c,
0x020f,
0x3b30,
0x0941,
0x065c,
0x0c5c,
0x2554,
0x1f73,
0x19ab,
0x0a9a,
Oxle2d,
0x2cbf,
0x1099,
0x279f,
0x23ed,
0x3253,

0x3c97,
0x1901,
0x3364,
0x225a,
Ox2fdf,
0x320f,
0x3f88,
0Ox1lal7,
0x1c19,
0x00bc,
0x3b14,
0x3f10,
0x3580,
0x30ef,
Ox1lbae,
0x151e,
0x197f,
0x3c91,
0x1155,
0x0714,
0x31al,
0x086b,
0x2364,
0x0987,
0x2a26,

0x23cf,
Ox3fea,
0x1ab66,
0x34dd,
0x1508,
Oxlebe,
0x315b,
0x27b2,
0x0ebf,
0Ox2e31,
0x27b4,
0x32c5,
0x0acO,
0x0ef1,
0x13c6,
0x2bO0b,
0x257e,
0x3116,
0x31c7,
0x1c08,
0x0706,
0x2951,
0x2404,
0x3a3l,
Ox12df,

0x0d9b,
0x3f64,
0x0095,
0x292c,
0x1350,
0x0531,
0x3775,
0x2571,
0x0c8c,
0x0108,
0x10b0,
0x3332,
0x1217,
0x3568,
0x147c,
Ox15fa,
0x09%4c,
0x38e4,
0x3170,
0x283c,
0x255e,
0x1484,
0x30ae,
0x2212,
0x3042,

0x30a6,
0x0f9b,
0x0c8e,
0x1287,
0x1894,
0x37f8,
Ox1bba,
0x0168,
Ox2ccd,
0x0al7,
0x2829,
0x14e0,
0x1049,
0x0b11,
0x12cO0,
0x0281,
0x02b5,
Ox2caf,
0x1813,
0x2bd4,
0x1dd7,
0x3819,
0x33f9,
0x3386,
0x1059,

345

0x3793,
0x3667,
0x1e66,
0x3ff4,
0x2b65,
Oxlec?2,
0x36d0,
0x2c9f,
Ox2ac5,
0x2e8b,
0x13ba,
0x13e7,
0x26d2,
0x27b0,
0x21c7,
0x1592,
0x1a65,
0x2401,
0x0e2f,
0x0ed4,
0x1197,
0x047e,
0x02c2,
Ox1def,
0x2173,

0x0dfb,
0x313e},
0x18d5,
0x3f62},
0x21cbh,
0x2802},
0x3462,
0x1f70},
0x3311,
0x25fd},
0x1595,
0x39f1},
0x34c5,
0x2c30},
0x231e,
0x33fb},
0x0177,
0x2362},
0x2f76,
0x36bb},
0x29el,
0x041d},
0x32ea,
0x3201},
Ox2fe5,

Ox2eff, 0x13af, 0x303b, Oxlcfc, 0x3244, 0x0397, O0x1l52e, OxObfb},
{0x3822, 0x28ae, 0x15f3, 0x1l2e7, 0x12c6, 0x0c25, Ox0Oae7, 0x3217,
0x2a84, 0x3a33, 0x0fa0, Ox2dee, 0x032e, 0x0Oda2, 0xOfc2, 0x0cl3},
{0x280a, 0x2267, 0Ox2df5, Ox0d5f, Ox046c, 0x1022, 0x2437, 0x0547,
0x2bc6, 0x3208, 0x1c59, Ox1fc8, 0x3fal, 0x313d, OxOfea, 0x1977},
{0x18ef, 0x1b38, 0x0746, 0x15a9, 0x3327, 0x39b3, Ox145e, 0x129d,
0x1b68, 0x1262, 0x0358, 0x3174, Oxle7a, 0x3el6, 0x096a, O0x1b84}
s
{ {0x0b00, 0x035a, Oxlc6e, 0x1744, 0x17c8, OxObab, Ox3dee, 0x31b2,
0x292d, 0x19c5, 0x16b2, 0x23f4, 0x1754, Ox2ede, Ox2dcl, OxOea4d},
{0x2122, 0x08e8, 0Ox0e5c, 0x3155, 0x247d, Oxlal5, 0x3687, 0x0df5,
0x0a38, 0x09af, OxO0ff6, 0x03al, 0x04fb, O0xOfde, 0x1ld74, Oxld7e},
{0x01c7, 0x124f, 0x3622, 0x3e3b, 0x0a52, 0x1494, 0x28a9, 0x0e9f,
0x238f, 0x105e, Ox0cf8, 0x3047, 0x30c4, 0x2e38, 0x0le4, 0x2b85},
{0Ox1de5, 0x0d35, 0x1210, 0x1478, 0x3ad9, 0x28de, 0x2f1l7, 0x225d,
0Ox2bc5, 0x3e61, 0x0e94, 0x18fa, 0x2685, 0x0648, 0x2379, Ox2bff},
{0x01d4, 0x15b3, 0x1le96, 0x3f58, 0x1370, 0x3722, 0x0776, 0x3952,
0x258d, 0x3222, 0x0ccO, 0x2131, 0x32f4, 0x1564, 0xOcd4, 0x0857},
{0x2a28, 0x1858, 0x1d21l, 0x1940, 0x0e07, 0x29b3, 0x08b3, 0x299c,
0x0b74, 0x1d26, 0x0d31, O0x0f77, 0x337f, O0x3f8b, OxOede, 0x038a},
{0x3c54, 0x185a, 0x300b, 0x3e63, O0xOeff, 0x3173, 0x3582, Oxlb2e,
0x107f, 0x3471, Ox0aa3, 0x270c, 0x2d84, 0x3181, 0x270b, 0x262f},
{0x2c40, Oxladl, 0x088e, 0x2435, Ox2cce, Ox2b0f, 0x3902, Ox2c31,
0x2c81, 0x22db, 0x38a0, O0x27af, 0x3956, O0x19ff, 0x0249, 0x24b0},
{Oxled2, 0x248a, Ox2adf, 0x2e59, 0x3749, 0x0a64, 0x20cl, Ox2eb7,
Ox2cal, 0x0372, 0x1l67a, Ox2cff, 0x038f, 0x2800, Ox07ca, O0x0c4d},

346

b,
{

{0x1380,
0x3bd6,
{0x2463,
0x3278,
{0x1689,
0x38c4,
{0x1bfb,
0x1dd9,
{Ox1ladf,
Ox3blc,
{0x3d54,
0x3031,
{0x2f79,
0x3d8d,

{0x0084,
Oxleae,
{0x35b4,
0x1847,
{0x0dfc,
0x15f4,
{0x10b1,
0x132c,
{0x3acO0,
0x1373,
{0x2476,

0x31a3,
0x22c3,
0x3e8b,
Ox0Oale,
0x3003,
0x246b),
0x0546,
0x23ca,
Ox2eeb,
0x06cO0,
0x03e8,
0Ox1c26,
0Ox2al2,
0x395b,

0x267b,
Oxlee8,
0x2c42,
0x1288,
0x0308,
0x066c,
0x3e64,
0x191b,
0x0411,
0x3995,
Ox2chd,

0x141b,
0x0326,
0x199a,
0x0e5e,
0x2924,
0x2129,
0x0Obfe,
0x0cbe,
Ox2ble,
0x136d,
0x3277,
0x17d1,
Ox2eee,
0x2d9d,

0x296d,
0x2d18,
0x04dc,
0x0511,
0x0905,
0x3a66,
0x0560,
0x2c72,
0x16a6,
0x0e9b,
0x1117,

0x3128,
Ox2fe7,
0x342f,
Oxlefc,
0x0097,
0x1f9a,
0x0d7d,
0x2d45,
0x2527,
0x39el,
0x3cf1,
0x1911,
0x12c7,
0x3841,

Ox2cee,
0x33d0,
0x08ad,
0x27d6,
0x0505,
0x0a23,
0Ox16lc,
0x126f,
0x2966,
0Ox3a5c,
0x2243,

0x08fa,
0x0935,
0x2542,
0x0e76,
0x2d69,
0x0fed,
0Ox2da4,
Ox0Oace,
0x3955,
0x376a,
0x2903,
0x34d1,
Ox1la2,
0x0634,

0x35cc,
0x0ebc,
0x19ba,
Ox3eca,
0x0e9a,
0x3cbf,
0x26d8,
0x0728,
0x2580,
0x0c31,
0x1068,

0x1415,
0x06ec,
0x2b22,
Ox2e5d,
0x0d1b,
0x0465,
0x2635,
0x0d41,
0x0c96,
0x36¢3,
0x1239,
0x0bdé6,
0x234a,
0Ox3e54,

0x2720,
0x3357,
0x0172,
0x0bcO,
0x0290,
0x1771,
0x221b,
0x0f9a,
0x007f,
0x2f32,
0x0bce,

347

0x372b,
0x1702,
0Ox3clc,
0x2f21,
0x268b,
Ox2b4e,
0x02eb,
0x26c5,
0x219d,
0x0523,
0x0ch2,
0x02d3,
0x0072,
0x3b9e,

0x1843,
0x2632,
0x2523,
0x1e79,
0x1033,
0x2204,
0Ox1cf8,
Oxleda,
0x2b30,
0x0311,
0x2d59,

0x0f90,
0x34ed},
0x1167,
0x280c},
0x169c,
0x0f40},
0x0be?7,
0x3d20},
Ox3eal,
0x1006},
0x0d19,
0x34ba},
0x0e0a,
Ox1c61}

0x2378,
0x2e2b},
0x1185,
0x0dc6},
0x1e05,
Ox26ee},
0x0f4a,
0x2c2b},
0Ox1c2b,
0x1b70},
0x363b,

},
{

Ox2ee?,
{0x0711,
0x0089,
{0x1850,
0x30cb,
{0x2b90,
0x21f9,
{0x34b0,
0x2591,
{0x2aa7,
0x23e7,
{0x0ce4,
Ox1da5,
{0Ox16ee,
0x09c2,
{0x3c75,
Ox14bc,
{0x2a4c,
Ox2fef,
{0x11do0,
0x334f,

{0x3ef3,
Ox1labc,
{0x2d9a,
0x11f8,

0x0545,
Oxlalb,
0x36ab,
0x2643,
0x31a7,
0x3dao,
0x09bc,
0Ox261c,
0x2535,
0x3e07,
0x2977,
0x2303,
0x1947,
0Ox11ldd,
0x26d1,
0x2567,
0x36a8,
0x2e60,
Ox3eef,
0x382c,
0x2f7e,

0x1828,
0x127b,
0x080a,
Ox2aac,

0x3e00,
0x1506,
0x370d,
0x2174,
0x0195,
0x3853,
0x1228,
0x33e4,
0x366b),
0x22ae,
0x1439,
0x0fe61,
0x2494,
0x1026,
0x19fa,
0x2227,
0x07f8,
Oxle3a,
Ox1lfaf,
0x1dd1,
0x0a82,

0x2e87,
0x3f7d,
0x0980,
0x3655,

0Ox1feO,
0x2e57,
0x2356,
0x10cf,
0x2b48,
0Ox17ce,
0x1f87,
0x29f3,
0x27a0,
0x3604,
0x0f51,
0x05a0,
0x2e79,
0Ox0fal,
0x238c,
0x3d49,
Oxlald,
0x3638,
0x0cl11,
0x0ba?7,
0x36c1,

0x35d1,
0x10c3,
0x0104,
0Ox13e6,

0x35d2,
0x0d42,
0x0f81,
Ox1bde,
0x0692,
0x2433,
0x266f,
0x34e2,
0x1bc9,
0x04de,
0x0ce8,
0x1964,
0x3fc5,
0x1f69,
0x1b9e,
0x0dO05,
0x0415,
0x3923,
0x19cc,
0x279e,
0x23d6,

Ox2baf,
0x2691,
0x1a81,
0x1037,

0x3b7c,
Ox2e6f,
0x397b,
0x3bc8,
0x2f7a,
0x3d3f,
0x1e69,
0x0c8b,
0x38d9,
0x3c96,
0Ox27a3,
0x1d62,
0x196b,
0x10aa,
0x3442,
0x331a,
0x1869,
0x24f8,
Ox2daf,
0x2bef,
Oxlac7,

0x140e,
0x3f24,
0x1dd6,
0x3321,

348

0x033e,
0x0cd2,
0Ox31lae,
0x2d79,
0Ox1b9a,
0x38de,
0x006b,
0x3a61l,
0x2a51,
0x04df,
0x2731,
0x326a,
Ox1ccb,
0x2082,
0x2f83,
Ox1dcb,
0x33e5,
0x2e46,
0x063c,
0x291c,
0x1d68,

0x04b2,
0x1a96,
0x3684,
0x217e,

0x3518},
0x1fof,
0x2394%,
0x1740,
0x37a4},
0x1925,
0x1974%,
0x317c,
0x264e},
0x3be9,
0x18ce},
0x1829,
0x264d},
0x318e,
0x3fcb},
0x3f66,
Ox12fe},
0x304e,
Ox3aaa}l,
0x2ff5,
0x38b2}

0x3178,
0x2938}%,
0x28f2,
0x115e},

{0x03c9,
0x2e47,
{0x0d2c,
0x3fla,
{0x2e3b,
0x2583,
{0x0cfO,
0x2262,
{0x3f70,
0x3c83,
{0x3bal,
0x3927,
{0x2008,
Ox1lfaz2,
{0x34b6,
Ox1ld6e,
{0x325b,
0x2c74,
{0x0653,
0x2d43,
{0x2841,
0x2c6b,
{0x2ceb,
Oxla3d,
{0x2aec,
0x0377,

0x346e,
0x3833,
0x04c7,
0x2842,
0x07cf,
0x0833,
0x0d87,
0x1941,
0x3122,
0x2252,
0x1943,
0x0ec9,
0x3353,
0x180f,
0x3007,
0x217c,
Ox2adb,
0x266b),
0x098a,
0x102b,
0x2894,
Ox1lebc,
0x1chO,
0x2af9,
0x15c7,
0x2c83,

Ox1bdf,
0x1314,
0x25df,
0x0374,
0x387a,
0x026e,
0x1293,
0x186e,
0x2263,
0x07ec,
0x2736,
0x3131,
0x315c,
0x04cc,
0x2f11,
Oxlea3,
Ox1lebb,
0x3673,
Ox1bce,
0x0704,
0x1b64,
0x2a48,
0x1675,
0Ox2ea8,
0x153b,
0x059e,

0x01bc,
0x1b73,
0Ox0Obac,
0Ox3a5f,
0x2e73,
0x082d,
0x3867,
0x1d97,
0x1378,
Ox13ad,
0x04db,
Ox1d1f,
0x30af,
0x056d,
0x01db,
0x2669,
0x357e,
0x0a7d,
0x0730,
0x340b,
0x021a,
0x3455,
0x2a85,
0x0557,
0x3500,
0x215d,

0x0f11,
0x16c4,
0x27de,
0x121c,
0x1176,
O0x14bd,
0x2c9b,
0x2954,
Ox06ac,
0x0994,
0x0f33,
0x32b4,
Oxlad3,
0x0cbO,
0x11f3,
0x02d0,
0x20ac,
0x1044,
Ox2afa,
0x2223,
0x3803,
0x2553,
0x18f4,
0x001d,
0x24d2,
0x11b9,

0x16¢8,
0x0972,
0x144f,
0x183b,
0x3717,
Ox3efd,
0x32c9,
0x2266,
Oxle2c,
0x1647,
0x110f,
0x2666,
0x0741,
0x1294,
0x2004,
Ox2cfa,
Ox1f4a,
0x2612,
0x13f9,
Oxlac3,
0x035c,
Ox1b4e,
0x0423,
0x259b,
0x28fe,
0x08db,

0x3771,
Ox2ebcC,
Ox1le81,
0x0508,
Ox1lle,
0x3d75,
0x087c,
Ox2ca4,
0x2b58,
Ox2f6a,
0x1f02,
0x25bc,
0x0d04,
0x3af9,
0x1988,
0x0b69,
0x26e5,
Ox11a8,
0x24d8,
0x09f6,
0x3a99,
0Ox3ec?2,
0Ox21e3,
0x3ea8,
0x3d36,
0x28ea,

349

0x1d47,
0x231a},
0x1c04,
Ox1fcd},
0x0f65,
0x190b},
0x16b9,
0x399f},
0x1758,
0x25bf},
0x3659,
0x3d4e},
Ox1lce3,
Ox3add},
0x366e,
Oxlaed},
0x1fd8,
Ox12ce},
0x1611,
0x194d},
0x326e,
Ox2deb6},
0Ox1c57,
0x33b1},
0x0253,
0x3744%,

b,
{

{0x05bf,
0x0ae8,

{0x1918,
0x3d00,
{0x0330,
0x0126,
{0x11a9,
0x0cOe,
{0x1a56,
0x1786,
{0x3da6,
0x2892,
{0x0098,
0x2f88,
{0x35b6,
Ox2ac8,
{0x35d8,
0x0a7f,
{0x1d80,
0x096f,
{0x2c88,
0x2c48,
{0x1beO,
0x0420,
{0x207a,

0x12c3,
0x2441,

0x2b9f,
0x218b,
0x3c05,
0x00bb,
0x3e37,
0x3865,
0x029c,
0x13ea,
0x224c,
0x0e7e,
0x2d86,
0x0811,
0x0f71,
Ox1cab,
0x0c2d,
0x09ac,
0x2976,
0x231b,
0x3al6,
0x1517,
0x2524,
0x1b5b,
Ox1d4e,

0x20b6,
0x27d4,

0x349a,
0x1170,
0x207e,
0x0b91,
0x0329,
0x2552,
0x25fb,
0x2d7d,
0x1548,
Ox14e6,
0x157d,
0x20ff,
Ox1b2f,
0x1a88,
0x2979,
0x3f8c,
0x3c4a,
0x18d8,
0x1ff9,
0Ox3a5e,
0x1f84,
0x275e,
0Ox1la28,

0x28be,
0x316b,

0x3c9c,
Oxleeb,

0x3cc8,
0x0083,

0x3fb9,
0x28f9,
0x38b9,
0x3bc4,
0x2108,
0x200e,
0x2697,
0x2b0e,
0x20b8,
0x0d57,
0x3086,
0x055c,
0x0d94,
0x304d,
0x22b3,
0x14f9,
0x028a,
0x19c2,
0x372a,
0x3f44,
0x3957,
0x3551,
0x1736,

0x2626,
0x3e0b,
0x32b2,
0x2a94,
0x1642,
0x020a,
0x3096,
0x2fb0,
0x339f,
0x31d7,
0x27e8,
0x3438,
0x2a99,
0x1119,
0x361c,
Oxle22,
0x0559,
0x0f18,
0x10b7,
Ox1lbee,
Ox0ala,
0x3844,
0x17b0,

0x02be,
0x054b,
0x27d9,
0x2bf9,
Ox1ba3,
0x3c61,
0x2451,
0x22be,
0x138d,
0x12a7,
0x31a0,
0x345b,
0x3efc,
0x2145,
0x0476,
0x33a7,
0Ox2d1c,
0x2467,
0x0826,
0x0f85,
0x3665,
0x1137,
0x0606,

350

0x0621,
0x248f,

0x361f,
0x2b59,
0x0c27,
0x2893,
0x0828,
0x2653,
0x1c37,
0x1700,
0x3472,
0x3a07,
Ox1cle,
0x23bd,
0x0bb8,
0x25f2,
Ox1lc2e,
0x389c,
0x3b12,
0x20ca,
0x24c6,
0x2e99,
0x1032,
0Ox112a,
0x2053,

0x04b1,
0x2132}

0x3blf,
0x353d},
0x0b8f,
0x3703},
0x28e8,
Oxlae4},
0x2276,
0x2f31},
0x0e0d,
0x14b1},
0x02cd,
0x08f6},
0Ox1laz27,
0x3124}%,
0x0d70,
0x08d0},
0x01d3,
0x0f08},
0x35ff,
0x222c},
0x1c38,
0x3147}%,
0x0f7e,

},
{

0x2aa8,
{0x2c04,
0x2166,
{0x083f,
0x091a,
{0x04ee,
0x3f3f,
{0x351b,
0x2649,

{0x295f,
0x0cbh3,
{0x0e19,
0x0d30,
{0x2eef,
0x06b6,
{0x3777,
0x2428,
{0x1510,
0x0f97,
{0x2ddc,
0Ox16dd,
{0x15b7,
0x370f,
{0x17df,
0x0e08,

0x3fe2,
0x3250,
0x384b,
0x3a09,
0x1944,
Ox3e5f,
0x2688,
0x34c4,
0x1058,

0x2722,
0x06b9,
Ox1cbb,
0x3449,
0x2f62,
0x0331,
0x37d0,
0x321b,
0x2d2b,
0x1211,
0Ox1aOc,
0x213d,
0x05e2,
0x1b42,
0x2b8a,
Ox2edb,

0x39b6,
0Ox152f,
0x25be,
0x2b98,
0x23e2,
0x21d0,
0x241e,
0x05b3,
0x1431,

0x19b8,
0x2260,
0x070b,
Ox1lels5,
0x369d,
0x0f28,
0x1076,
0x2dc9,
0x02f8,
0x05c7,
0x0c57,
Ox1lbe7,
0x1le29,
0x1939,
0x3039,
0x2f95,

0x1481,
0x25a2,
0x2blf,
0Ox25aa,
Oxlcc?,
Ox2aeb,
0x13a0,
0x39c5,
0x1141,

0x391c,
0Ox23al,
0x207d,
0x3ddb,
0x328c,
0x25cl,
0x0af8,
0x2186,
0x3893,
0x3d5f,
0x0681,
0x0396,
0x356e,
0x2b91,
0Ox2dab6,
0x1945,

0x28d4,
0x2570,
Ox1fe6,
0x2265,
0x20d4,
0x2bb4,
0x1311,
0x35c2,
0x2860,

0x2e08,
0x08c8,
Ox2ad1,
0x3c10,
0x0632,
0x3al5s,
0x2b8c,
0x2712,
Oxlec8,
0x38a7,
0x3c79,
0x02a9,
0x3ecO,
0x3c82,
0x0488,
0Ox2d4a,

0x14b7,
Ox2eaa,
0x28b9,
0x383c,
0x179c,
Oxle5f,
0x0df7,
0x0147,
0x26¢cb,

0x060c,
0x1388,
0x3747,
0x0el8,
0x15f6,
0x118e,
0x1819,
0x25f4,
0Ox3c5a,
0x2c96,
0Ox226c,
0x0fcb,
0x0821,
0x0777,
0x38fb,
0x352f,

351

0x3142,
0x1e08,
0x22b7,
Ox2ae5,
0x2574,
Ox0afd,
Ox3aec,
0x2988,
0x2e9f,

0Ox0a3d,
0x2411,
0x2546,
0x3895,
0x2f23,
0Ox18aa,
0x35c3,
0x2964,
0x0b39,
0x3d8a,
0Ox2el2,
0x1b6b,
0x3e3e,
0x156a,
0x12f6,
Ox2eal,

0x32ba},
Ox1de9,
0x35bf},
0x1b32,
0x1379},
0x32f8,
0x29dd},
0x2344,
0x090d}

0x385f,
0x1d94},
0x17d5,
0x3786},
0x3705,
Oxle9a},
0x073a,
0x05cd},
0x23a4,
0x09d5},
0x164d,
0x0b5d},
0x3334,
0x235d},
0x2e33,
Ox2fae},

3,
{

{0x1cd3,
0x1372,
{0x3337,
0x055d,
{0x2165,
0x011d,
{0x1b23,
0x0256,
{0x1b96,
0x3c00,
{0x1ldae,
0x3379,
{0x2bde,
0x3b38,
{0x24c0,
0x387f,

{0x29b1,
0x16f2,
{0x2a71,
Oxle27,
{0x0836,
0x0b26,
{0x203a,
Ox2abd,
{0x3933,

0x27b6,
0x0eOb,
0x291d,
0x16b0,
0x36f2,
0x0f75,
Ox1lc2a,
0x201a,
0x1b33,
0x037f,
0x29c5,
0x3448,
0x029a,
0x28c?2,
Ox2faf,
0x30bd,

0x1791,
0x3f41,
0x3ed4,
0x26bb,
Ox26cl,
0x1931,
0x31b6,
0x0573,
0x19da,

0x14d6,
Ox0ea?7,
0x0b96,
Ox3ea?2,
0x007e,
0x3288,
0x0636,
0x398e,
0x34b5,
0x385a,
0x0856,
0x38e7,
0x128b,
0x171e,
0x356a,
0x3800,

0x35bc,
0x308a,
0Ox1le9d,
0x0804,
0x175e,
Ox14af,
0x3544,
0x0f91,
0x1606,

0x000e,
0x2311,
0x3945,
0x2135,
0x2f7d,
Ox1le51,
0x26a3,
Oxla7c,
0x1363,
0x30fa,
0x3b62,
0x0cf7,
0x12c8,
0x13f8,
0x0b62,
0x3a59,

0x3850,
0x2d5e,
0Ox1a0a,
0x02fa,
0x332a,
0x21d1,
0x1159,
0x0101,
0x057e,

0x3648,
0x0906,
0x35fd,
0x0b2a,
Ox3aaf,
0x3644,
0x242c,
Ox26a7,
0x3672,
0x19be,
0x0fb4,
0x2627,
0x08c3,
0x03d1,
0x2313,
0x0aa4,

Ox1c64,
0x343b,
0x0267,
0x354e,
0x2d0c,
0x12f8,
0x172f,
0x31cd,
0x16fb,

0x163f,
0x03b6,
Ox2ebe,
0x0469,
0x2105,
0x0939,
0x13de,
0x3711,
Ox12ff,
0x290c,
0x02ee,
0x1666,
0x352c,
0Ox2e6b,
0x289f,
0x33cc,

0Ox3ee7,
Oxlebe,
0x3101,
0x2982,
0x26b1l,
Ox1lffa,
Ox1l6da,
Ox216e,
0x1714,

352

0x3b61,
0x11b5,
0x151f,
0x3737,
0x196f,
0x283f,
0x26db,
Ox2ad4,
0x3b97,
0x3cfo,
0x077e,
0x26bc,
0x2f03,
0x393b,
0x3c02,
Ox21led,

Ox1db2,
0x3f7b,
0x1443,
0x355d,
0x3193,
0x1db8,
0x027e,
0x157c,
0x2el0,

Ox1ldel,
0x0el0},
0x0d7c,
0x3b06},
Oxleal,
0x1915},
0x042f,
Ox1b2c},
0x19f9,
Ox1dd4},
0x302d,
0Ox2ba7},
0x3381,
0x27b8},
Ox2ecf,
0x2f14}

0x0631,
0x19d6},
0x0cfb,
0x2352}%,
0x3982,
0x3d2f},
0x1e50,
0x0370},
0x3240,

Ox1be8, 0x0f5e, 0x0387, 0x197d, 0x1961, Ox3bcf, 0x2249, 0x1l2a6},
{0x0d2b, 0x38bb, 0x1109, 0x0b79, 0xl2aa, 0x21f4, 0x1223, O0x3b50,
0x048f, 0x3e9a, 0x2130, 0x32fc, Ox1lbb9, 0x1lb47, 0x119e, 0x2b9a},
{0x2be2, 0x1313, 0x3872, 0x0846, 0x3dl5, 0x05dc, Ox2eOc, 0x385b,
0x3270, 0x2054, Ox15cb, 0x2343, 0x2c84, 0x1lc46, 0x0369, 0x1607},
{0x261b, 0x1f3b, 0x0bl4, Ox2bab, 0x1343, 0x3009, 0x1836, 0x05f5,
0x0c71, 0xOdeb, 0x3f4b, 0x35a8, O0xObb4, 0x19a7, 0x2e78, 0x1516},
{0x00cb, Ox2ffd, 0x290b, Ox3eab6, 0x0684, 0x093f, 0x37fb, Oxlfbe,
0x06f4, 0x010b, 0x23c5, Ox2be5, 0x1d7d, 0x36f6, 0x358b, 0x0da7},
{0Ox1bc3, 0x2052, Ox3faf, 0x346c, 0x0148, OxlaZ7b, 0x342e, 0x3dfb,
0x1d01l, 0x32cc, Ox2e2e, 0x1423, 0x29ef, Oxlddd, Ox25fa, Ox3a7c},
{0x1436, 0x12a9, 0x214d, Ox1lfd4c, O0x03df, Ox3be2, 0x1805, OxOce5,
O0x0ald, 0x2e84, 0x1360, Ox36cb, 0x36ff, Ox1lb4, 0x38f5, 0x2014},
{0Oxlaa7, 0x1838, 0x0769, 0x28le, 0x0d06, 0x3e59, 0x00e8, 0x1la20,
0x17b1l, 0x381f, O0x29ee, 0x3a81l, 0x27fe, 0x0e29, 0x0030, 0x0874},
{0x1e9f, 0x0d29, OxOlcc, 0x1524, 0Ox1l34e, 0x04f7, Oxlac9, 0x2al8,
0x3f0e, 0x108f, 0x1853, Ox0ff2, 0x2f09, Ox0fld, 0x2222, 0x1d20},
{0x1080, 0x3fl1l5, 0x1a94, 0x3697, 0x1230, 0x1c00, Ox0lb4, 0x0c2b,
0x00f1l, Oxleb6, 0x2a09, 0x38el, 0x1la69, 0xl1l4c7, O0x11f0, 0x0234},
{0x1bbl, 0x2138, 0x13cO0, 0x2e85, 0x0f10, Ox00fb, 0x3cl5, 0x2943,
0x00d3, 0x3c2b, 0x21f7, 0x1811, O0x373a, 0x1234, Oxlea9, 0x22d0},
{0x20ce, 0x1905, 0x2c56, 0x010e, 0x0912, Ox18le, 0x1f93, 0x2a65,
Ox3aa7, Oxldbd, Oxlfcf, 0x0204, Ox2aaf, Ox2eaf, 0x309f, 0x32f9}
3,
{ {0x3f4e, 0x329e, 0x17cd, 0x1d33, 0x2931, 0x060d, 0x2787, Ox3aca,
0x263b, 0x25d5, Oxla7l, 0x23d5, 0x2464, 0x3b6b, 0x2e7d, 0x07db},

353

{0x134c, 0x2a23, 0x3816, 0x1770, 0x13fc, O0x3dcc, 0x1627, 0x35c9,
0x2d8f, 0x3875, 0x27ae, 0x2d75, 0x10d7, Oxlacf, Ox2d1ll, Ox17f3},
{0x1la8c, 0x173f, 0x0515, Ox3bee, 0x19cb, 0x02ac, 0x1f77, Oxlef6,
0x08ca, 0x3b66, 0x017d, 0x2662, 0x0881, 0x30b7, 0x3f43, 0x30cl},
{0x3bf0, 0x1184, 0x0cd5, Ox2dbd, 0x03be, 0x0541, 0x2fOc, 0x2739,
Ox3ebe, 0x3c6b, 0x0Oelb, Oxlaa3, 0x30f9, O0xO0fbl, 0x2652, Oxlech},
{0x209b, OxObbl, 0x097a, Ox3ecc, O0x3b43, Ox3fel, 0x074f, 0x19fO0,
0x2958, 0x0677, 0x3598, OxOeeb, 0x3ea9, 0x1085, 0x10d5, Ox2c75},
{0x20e2, 0x3254, 0x1b59, 0x156d, 0x1334, 0x3ca3, 0x1075, OxOec8,
0x101f, 0x0399, 0x050c, 0x2170, Ox3fe9, 0x3827, 0x2bd0, Ox2a2d},
{0x23cc, 0x0a49, Ox2dbc, 0x3c48, 0x0838, 0x19c9, OxObd2, 0x39df,
0x3c80, 0Oxle36, 0x1250, O0x35a2, 0x247b, O0x3aa3, 0x3212, Ox2bd5},
{0x1750, 0x338b, 0x2c94, 0x3bd4, 0x1b60, Oxlbbf, 0x103c, 0x352d,
0x06e8, 0x14db, 0xla42, 0xObd3, 0x12f7, 0x20e7, OxOaad, 0x0dfO},
{0x1792, 0x0c5d, Ox0a8a, Oxl5ca, OxlO0ac, 0x2701, Ox3f23, 0x1825,
Oxlble, O0x3b4c, 0x22bf, 0x1031, 0x0091, 0x1l76c, 0x39ca, 0x2638},
{0x393c, 0x3c8f, 0x3f06, 0x2b84, 0x2949, 0x2291, 0x364f, 0x308f,
0x2373, 0x3ff8, 0x0dc7, 0x062a, 0x260b, 0x3d50, Ox31fl, Ox1l4b4},
{0x1df4, Oxlacd, 0x10c6, 0x30db, O0x09ba, 0x3355, 0x2273, 0x370b,
0x03db, 0x0425, 0x005e, 0x1965, 0x3397, 0x10d6, Ox1b0l, 0Ox324e},
{0x049f, 0x33ab, 0x0fce, 0x3de9, 0x3bd5, 0x3918, Ox3eaa, 0x00a3,
0x371a, 0x05a6, 0x2e29, 0x2d81, 0x2444, 0x3829, 0x3a37, 0x2f49},
{0x3340, 0x08f2, 0x3144, 0x1d1l9, OxOlce, 0x220b, 0x06f2, OxObOf,
0x3f4a, 0x15c2, 0x3291, 0x0e45, Ox06ca, 0x2897, 0x1951, Oxl3ec},
{0x35d0, 0x096e, 0x2e56, 0x0b02, O0x0a3c, O0x3ac3, 0x32bf, 0x030a,
0x0c44, O0x3edf, 0x202e, 0x1c97, 0x34ef, 0x0426, 0x3634, 0x31b7},

354

{0x180c, 0x3f93, 0x3dc2, 0x14e9, 0x3b92, 0x375f, 0x0552, 0x1345,
Ox2ee9, 0x3218, 0x34f6, 0x160c, 0x2376, 0x3881, Ox34ea, 0x2438}%,
{0x2cf4, 0x0f3c, 0x365b, 0x1399, 0x1341, 0x3a0l, 0x30dl, Ox3bfa,
Ox10ec, 0x28e2, 0x289d, 0x08d9, 0x1140, OxOee6, 0x098e, 0x19ec}
b
{ {0x1556, 0x3df3, 0x17d9, 0x3f90, 0x1l75a, 0x067d, Ox0c2e, Oxlla5s,
0x15bb, 0x2b6d, 0x2a66, 0x0eb5, 0x243f, 0x030b, 0x12c5, 0x086a},
{0x3960, 0x2746, 0x234f, O0x3f50, Ox1l5eb, Ox0ce9, O0xO0fbb, Ox2de4,
0x271c, 0x006f, Oxlaae, 0x1787, 0x0433, 0x196c, 0x3490, 0x206d},
{0x349c, 0x09de, 0x2e74, 0x09da, 0x3176, 0x24fb, OxOceb, 0x1005,
0x3823, 0x0ac8, 0x39de, 0x0a09, 0x1567, 0x1b95, O0x2aff, 0x098c},
{0x3848, 0x3eb2, Oxllbc, 0x1497, 0x2794, 0x1l76f, 0x25f0, Oxl4le,
0x1619, 0x0eb4, 0x19ed, 0xla07, 0x34f4, 0x2b63, 0x2974, Oxlecd},
{0x0e4d, 0x3ab3, 0x035f, 0x25d7, 0x0d4a, 0x0066, 0x3238, 0x049a,
Ox1fe3, 0x1lc20, 0x140d, 0x2180, 0x1424, 0xlelf, 0x075e, 0x37fd},
{0x172d, 0x19e3, 0x2098, 0x0d39, 0x3363, Oxlcb3, O0x0Ode4, 0x0729,
0x326¢c, 0x33c0, 0x0da0, 0x2561, Ox2dea, 0x274e, 0x22fl, 0x260c},
{0x09b2, 0x0a88, 0x3dbc, 0x0f8b, 0x0d47, Oxllcf, Ox25ab, 0x283d,
0x0fc6, Ox2del, 0x0976, 0x17e9, 0x21lc5, 0x2077, 0x1365, 0x3389},
{0x304a, 0x14d8, 0x2d08, 0x0d3e, 0x368b, 0x1f76, 0x29d4, 0x1455,
Ox2deb, 0x03f1l, 0x03d0, 0Ox08ac, Oxlaf0, 0x2286, 0x035e, Ox2ed0},
{0x0656, 0x177d, 0x1275, O0x31fb, 0x07d4, 0xOfa3, 0x1446, OxOdfe,
0x20b0, Oxla3c, 0x35b3, 0x02f1l, 0x3967, 0x017c, 0x2087, 0x05f2},
{0x0512, 0x3125, 0x108a, 0x064f, 0x007c, 0x350e, 0x3150, 0x3b80,
0x0c86, 0x1f55, 0x29f4, 0x13f4, 0x2fc3, 0x3298, 0x3a73, 0x0940},
{0x0ad0, 0x3418, 0x0c34, 0x1c01l, 0x2675, 0x0675, 0x324f, 0x27e4,

355

0x170c, 0x0e28, 0x335e, 0x2623, Oxledb, 0x2705, O0x0f53, 0x2142},
{0x3ca9, 0x3696, 0x22f6, 0x28cf, 0x27f8, 0x04el, 0x20cf, 0x2922,
0x36dd, 0x1518, 0x3940, OxOaea, 0x3b91, O0xOca2, OxOa5a, 0x09f1},
{0x1218, Ox3e4f, 0x0226, 0x37f2, Ox1dl3, 0x1381, Oxlabc, O0xObd8,
0x0763, 0x32e3, 0x2f2d, 0x3fbl, Ox2b3a, 0x3185, 0x298a, 0x377d},
{0x0570, 0x3755, OxOcee, 0x143b, O0x1b8d, 0x32f6, 0x0102, O0xO0bfs8,
Oxle2e, 0x2530, 0x0609, Oxleel, 0x02f2, 0x3117, Ox36ba, 0x1928},
{0x0c97, OxObaa, 0x0f06, 0x3f92, Oxlc6c, Ox16d6, 0x1441, 0x0d4d,
0x1301, 0x3f18, 0x0c23, 0x0974, 0x3677, 0x19f7, 0x0868, 0x205d},
{0x1da8, 0x061d, Oxle45, 0x024a, 0x2353, 0x2811l, Ox3a5a, 0x250c,
Ox1d9a, 0x17el, 0x0724, 0x297e, 0x2b34, 0x0378, 0x32cd, 0x2b42}
s
{ {0x3c25, 0x30f3, 0x0b87, 0x3890, Ox2dcd, 0x2738, 0x062c, 0x378b,
0x1298, 0x1d9b, 0x3699, 0x0903, 0x33d5, Ox3ca4, 0x1lc28, Oxle04},
{0x3b31, 0x1023, Ox2el5, 0x2113, Ox24cd, Ox3a8e, 0x37bl, Ox3f5f,
0x1997, 0x2c39, 0x18d4, 0x1742, 0xla33, 0x3a85, 0x3c2l1l, 0xOfdc},
{0x3110, Ox0Oadc, 0x0d17, 0x371f, Ox12db, 0x1227, 0x3440, 0x310a,
Ox1cOb, O0x3cla, Oxldde, OxOecf, 0x0fb3, OxOebe, 0x02a7, 0x38d0},
{0x1ab9, 0x3815, 0x2b2b, Ox2add, 0x385c, Ox1llb6, 0x1442, 0Ox3e84,
0x03d6, 0x18dd, 0x320c, 0x075c, 0x23a9, 0x35e7, 0x2647, 0x0235},
{0x2d53, 0x2398, 0x0blb, 0x01b8, 0x29fc, 0x09b5, 0x249d, 0Ox3cle,
Ox0e4a, 0x14ff, 0x0641, 0x2b68, O0xObef, 0x0440, Ox3cf8, 0x399c},
{0x19a2, 0x2e28, 0x0e8e, 0x2b2a, 0x3656, 0x2bc9, 0x2cl0, Ox2ecbh,
0x3d72, 0x088a, O0x1f3e, 0x372e, 0x139b, 0x19fe, 0x023a, 0x1622},
{0x2feb, 0x2cl3, 0x2b96, 0x07f9, 0x2102, 0x0eeO, 0x0c70, 0x2047,
Ox1le56, 0x35bl, 0x23e3, 0x0409, 0x1110, Ox3a75, 0x0611, Ox34e5},

356

b,
{

{0x11f2,
0x3d12,
{0x1fbc,
0x170a,
{0x1588,
Oxleb?2,
{0x2d1f,
0x1807,
{0x2ea5,
0x262c,
{0x22ff,
0x1646,
{0x3870,
0x0020,
{0x17a0,
0Ox1c21,
{0x0a0f,
0x021b,

{0x3831,
0x0d12,
{0x1c0d,
0x24e8,
{0x1904,
0x330b,
{0x20d0,

0x3615,
Ox3adb,
0x151b,
0x3939,
0x3f8&d,
0x106d,
0x3360,
0x242e,
0Ox2ca3,
0x1767,
0x0582,
0x3731,
0x3c8d,
Ox1a5b,
0x2593,
0x027a,
0x2c58,
0x3547,

0x38a8,
0x1545,
0x1f9c,
0x26d5,
0x3c8a,
0x25b1,
0x1057,

0x1936,
0x08ce,
0x3812,
0x2af6,
0x26b3,
0x072e,
0Ox2af4,
0x265e,
0x08c9,
0x3ed5,
0x3e9b,
0x36c7,
0x3341,
Ox3ceb,
0x0575,
0x0db1,
Ox1fcl,
0x21f0,

0x09cd,
0x2acO,
0x15c9,
0x00ae,
0x38e9,
0x3055,
Ox2efa,

Ox0abd,
Ox16al,
Oxle71,
0x306b,
0x018d,
0Ox28ac,
0x26b2,
0x1757,
0x3a0b,
0Ox2cc6,
0x0319,
0x3356,
0x06e6,
0x16f4,
0x39e0,
0x3ffb,
0x2477,
0x3bdb,

0x3674,
0x2c¢60,
0x32e8,
0x37e7,
0x2f74,
0x0584,
0x0771,

0x01l6c,
0x24b4,
0x3852,
0x03e4,
0x337c,
0x2314,
0x15c8,
0x3589,
0x0248,
0x3e77,
0x3862,
0x0ele,
0Ox1elO,
0x3184,
0x2215,
0x0797,
0x11cO,
Ox24ef,

0x307a,
Ox2ab1l,
0x15e6,
Ox1ff1,
Ox11led,
Oxlafa,
0x008e,
0x1142,
0x0164,
0x025d,
0x1d65,
0x3473,
0x3df8,
0x2dc7,
0x1d5f,
0x2a30,
0x2fd3,
0x092b,

0x0494,
0x183c,
0x360d,
0x3491,
0x242b,
0x135a,
0x2b5c,

0x3002,
0x28cb,
0x0691,
0x12a3,
0x1e91,
OxOaca,
0x3b02,

357

0x1102,
0x038b,
0x3492,
0x0a84,
0x062b,
0x3904,
0x38c7,
0x0925,
0x3eb5,
0x233b,
0x0e35,
0x3d29,
0x1772,
0x3d7e,
0xOcaf,
0x27a4,
0x2dOe,
0x313c,

0x2386,
0x1990,
0x28a4,
0x3719,
0x2812,
0x34do0,
0x0587,

0x3c52,
0x0413%,
0x123a,
0x29ad},
0x30a9,
0x1323},
0x021d,
0x35d7},
0x09e4,
0x03d3},
0x2cd7,
0x32af},
0x0237,
0x09ad},
0x3911,
0x230a},
0x3cdb,
0x38a9}

0x2eb62,
0x0386},
0x0af5,
0x08b7},
0Ox3caz,
0x1e97}%,
0x0150,

0x1c69, 0xOedf, 0x0c2c, 0x2e53, Oxlaf4, 0x2886, 0x0637, Oxlf6c},
{0x1369, 0x185b, 0x13d0, 0x14d4, 0x2229, 0x2dff, 0x3629, 0x0deO,
0x1f1l4, Ox3caa, 0x3585, 0x0437, Ox26ad, 0x2d47, 0x19e0, Ox25ba}l,
{0x2cab, 0x24c4, Ox2dad, 0x3612, 0x3e76, 0x3c85, 0x31a9, 0x3921,
Ox0lea, 0x1600, 0x0d2a, 0x0d9a, Ox3fed, 0x270f, O0x2f3c, 0x032d},
{0x1120, Ox2c7e, 0x3ed2, 0x201d, 0x0c98, 0x053f, 0x1072, 0x33bf,
0x31e4, 0x3c78, 0x3d25, 0x20f9, Ox2ca7, 0x0017, O0x05f3, 0x053b},
{0x3493, 0x3e43, 0x0a85, Ox2ef4, 0x0d49, OxOb3d, O0xla0l, Ox1fdf,
Ox1fe8, 0x0fle, 0x233a, 0x05eb, 0x2713, 0x04fe, 0x3a90, 0x20bf},
{0x32a6, 0x3c39, 0x2cc3, 0x0d84, 0x090b, 0x17d8, 0x102c, 0x104c,
Ox2e2a, 0x27b9, Oxlada, O0x39ef, 0x34fd, 0x3425, O0xObdl, 0x184f},
{0x2c67, 0x0410, Ox0a26, 0x2e77, 0x30a2, Ox3aed, 0x1f9d, Ox3ec4,
0x2b1l5, 0x26c3, O0x3a2e, 0x3f60, O0xOce6, 0x2543, 0x2907, Oxl1lc72},
{Oxlefd, 0x371c, 0x3783, 0x09f3, O0x27ad, 0x2210, 0x2192, 0xO0b3a,
0x0538, 0x278d, 0x0023, 0x2751, 0x3242, 0x1045, 0x1106, 0x160e},
{0x00c9, 0x1001, Ox0f8a, OxOaae, Ox015b, 0x39d7, 0x188d, Ox2bb3,
0x192a, 0x03c8, 0x388e, OxObaf, 0xla77, 0x2299, 0x1559, 0x3064},
{0x388d, 0x3408, 0x3efe, 0x1129, 0x17f6, Ox26aa, Ox1ff2, Ox3d6f,
0x211b, 0x0304, Ox1llal, 0x3394, 0x2e76, Oxlbcc, 0x39c4, 0x277d},
{0x194f, 0Ox2ad5, 0x324a, 0x0967, 0x012f, 0Ox254d, O0x1b83, 0x0d15,
0x3878, 0x28fd, 0x33a6, 0x084a, 0x0049, 0x2cOa, O0x3bd3, Oxla25},
{0x16de, Oxle3d, 0x139f, Ox2b4f, 0x3189, Oxlea2, Ox28ca, 0x2285,
0x3b41, 0x19ac, 0x1l6le, 0x2506, 0x312b, 0x1lc06, 0x2a07, O0x283a},
{0x0a87, 0x37c3, 0x1878, 0x13a9, 0x0d2f, Ox0Ob0l, 0x0c93, Ox2bé6a,
0x266e, 0x10f0, O0x3a43, 0x333e, 0x0al2, 0x37dl, Ox0f67, 0x226b}
b

358

{0x306a,
0x05b8,
{0x2830,
0x0585,
{0x2f07,
0x36f8,
{0x21aa,
0x214c,
{0x05cO0,
0x3f74,
{0x24f0,
0x34f7,
{0x19ea,
0Ox21leb,
{0x2f1le,
0x3c7f,
{0x2edf,
Ox2ab4,
{0x3a53,
0x23ce,
{0x015c,
0x2532,
{0x3e56,
0x0825,
{0x2711,
0Ox2ed8,

Ox3ebc,
0x13bb,
0x1047,
0x0dd2,
0x2374,
0x38fd,
0x3483,
0x2796,
0x0215,
0x034b,
0x2d3a,
0x3d5e,
0Ox0daf,
0x01lab,
0x3910,
0x0619,
0x1073,
0x33eb,
0Ox2fa3,
0x27dc,
0Ox18ec,
Ox1lad9,
Ox1lccb,
0x057a,
0x30dc,
0x02d4,

0x0e92,
0x288a,
0x264c,
0x33ae,
0x19cO0,
0x1d71,
0x23ef,
0x0038,
0x21a6,
0x35f6,
0x28d6,
0x2360,
0x18dc,
0x3fbe,
0x34d5,
0x2a90,
0x068e,
0x2f5d,
0Ox3ea3,
0x1412,
0x1b36,
0x2bcO,
Ox1ld2f,
0x2239,
0x2b27,
Ox1lab8,

0x0dca,
0x3d08,
0Ox1la54,
0x343f,
Ox1llad,
0x37a2,
0x204a,
0x3d61,
0Ox2af5,
0x1f31,
0x3ef0,
0x1890,
0x2df9,
0x2d32,
0x2eb3,
0x1316,
0x2350,
0x2cf8,
0x05df,
0x3441,
0x01f7,
0x0ca5,
0x21f6,
0x189e,
0x263c,
0x0031,

0x0120,
0x0170,
0x2502,
Ox21lef,
0x2f27,
Ox2ec4,
0x239a,
0x0df4,
0x2b8f,
0x1775,
0x105a,
0x09f0,
Ox3bec,
0x17e8,
0x039b,
0x2e23,
0x06a5,
Ox24eb,
0x197c,
0x0914,
0x3fc7,
0x218e,
0x352b,
0x2923,
0x0517,
Ox1c75,

0x2b83,
0x19d5,
Ox2def,
0x017e,
0x1ld7a,
0x37e6,
0x12bb,
Oxlad6,
0x3011,
OxOada,
0x160f,
0x1a47,
0x0ff8,
0x1948,
0x1513,
0x0e51,
0x0b78,
0x162a,
0x1586,
0x1919,
Ox1bfe,
0x2c3d,
0x109c,
0x15c4,
0x241a,
0x130b,

359

0x2c02,
0x0921,
0x3584,
0x2b7a,
0x2d29,
0x172b,
0x2ae8,
0x1382,
0x1972,
0x21bc,
0x1055,
0x2536,
0x3806,
Ox2ece,
0x0886,
0x136f,
0x3973,
0x2al0,
Ox1le8f,
Ox24fa,
0x0258,
0x310e,
0x0645,
0x18f3,
0x2133,
0x0167,

0x0487,
0x223b},
0x3136,
0x3a70},
Ox1lc4e,
0x2f02},
0x39f7,
0x37c2},
0x2765,
Ox16fd},
0x37bf,
Oxle4d},
Ox12el,
Ox2cdb},
0x04f5,
0x1219},
0x227e,
0x027f%,
0x30e5,
0x3d11},
0x2576,
0x1447%,
0x01b5,
0x0442}%,
0x2bl6,
0x367b},

b,
{

{0x071b,
0x20e8,
{0x29bc,
0x0743,
{0x1f1b,
Ox2efe,

{0Oxleca,
0x395a,
{0x05bc,
0x0e87,
{0x24f1,
0x336b,
{0x02c7,
0x0928,
{0x38c0,
0x09d6,
{0x3b67,
0x2b54,
{0x3720,
0x394a,
{0x089e,
0x0d71,
{0x3e24,
0x23a3,
{0x2f5e,

0x3372,
Ox1b41,
0x1902,
0x21c9,
0x2a8a,
Ox1df1,

0x395f,
0x2b93,
0Ox21a7,
0x06df,
Ox12de,
Ox2cfe,
0x0bf5,
0x3d27,
0x0el7,
0x364b,
0x362b,
0x0c82,
0x341e,
0x1a45,
0x3e7d,
Ox1bf1l,
0x0887,
0x1371,
0x33a0,

0x29db,
0x23f3,
0x1029,
0x091e,
0x1281,
0x284e,

0x0a55,
0x0110,
0x183f,
0x25e3,
0x03b7,
0x30fb,
0x0445,
Ox2bec,
0x3811,
0x391e,
0x33d6,
0x0274,
0x183e,
Ox2fca,
0x3080,
Ox2ac?2,
0x3723,
0x13cf,
0x321d,

0x3928,
0x0427,
0x2779,
Ox2elf,
0x2b12,
0x2833,

Oxlaa4,
Ox1b7c,
0x16ff,
0x12a5,
0Ox2eld,
0x3204,
0x3215,
0x0484,
0x3034,
Ox1dc7,
Ox3ee3,
0x00a8,
Ox1ldfa,
0x150f,
0x0029,
0x3ef7,
0x050d,
Ox1cb2,
0x2c9d,

0x059a,
0x08bf,
0x2547,
0x37e9,
0x066e,
0x05c6,

0x291a,
0x2b9b,
0x3cbc,
0x3b54,
0x28d9,
0x0a96,
0x128a,
0x0e84,
Ox2bla,
Ox1cbd,
0x04b0,
0x2957,
0x119a,
0x2445,
0x2a41,
Ox1lcfo6,
0x303d,
Ox1ce4,
0x05da,

0x0b7d,
0x0c32,
0x2a03,
0x32f7,
0x2b40,
0x1898,

0x0510,
0x3157,
Ox2dc4,
0x0e71,
0x0dad,
0x27d0,
0x23c8,
0x3453,
0x366a,
0Ox2el7,
0x0ff1,
0x216¢c,
0x2afb,
0x1832,
0x159c,
0x05ea,
0x3b3f,
0x221e,
0x3020,

360

0x2e42,
0x1a58,
0x38cf,
0x024e,
0x3e06,
0x0a28,

0x29f8,
Ox1leb3,
0x0f88,
0x0384,
0x0el2,
0x3b0Of,
0x1430,
0x135c,
0x3f59,
0x0d8a,
0x28f4,
0x214b,
0x0e58,
0x17e2,
0x2a02,
Ox0a6d,
0x18c1,
0x3187,
0x0280,

0x3f9f,
Ox3cde},
0x1895,
0x34f03%,
0x322c,
0x0e09}

0x3ab8,
0x369b},
0x0lee,
0Ox2coed},
0Ox21al,
0x03cc},
Ox2ffe,
0x1367}%,
0x2500,
0x3789},
0x28df,
0x2d62}%,
0x3be8,
0x07a0},
0x0285,
0x2al7},
0x1b99,
0x2748}%,
0x2027,

},
{

0x3721,
{0x0c9e,
0x02a4,
{0x06ee,
0x15e4,
{0x3fd6,
0x2369,
{0x2b28,
0x348e,
{0x30a0,
0x2038,
{0x084c,
0x0d37,

{0x07e6,
0x0834,
{0x0e30,
0x31f5,
{0x0a48,
0x085f,
{0x0c90,
0x1840,
{0x003c,
0x0004,
{0x0005,
0x0810,

0x279d,
0x3390,
0x26a0,
Ox3dac,
0x0ffo0,
0x16e9,
0x17fe,
0x325c,
0x2b00,
Ox1lca3,
0x0c21,
0x2d9b,
0x0d5b,

0x1552,
0x1598,
0x123e,
0x1520,
0x20ef,
0x1538,
0x3b88,
0x08b4,
0x2dd3,
0x294b,
0x28b8,
0x219c,

0x2189,
0x063a,
0x0402,
0x3545,
0x33cd,
0x07fe,
0Ox18af,
Ox1bf6,
0x2788,
0x2f50,
0x1ba8,
0x10b5,
0x32d2,

0x0aeb,
0Ox3a7e,
Oxle21,
OxOafc,
0x22f4,
0Ox2cld,
0x0312,
0x09c3,
0x30d3,
0x2046,
0x3752,
0x02c9,

Oxle3f,
Ox3ef5,
0x0282,
0x2b7c,
Ox3dle,
Oxlcea,
0x34be,
Oxlasd,
0x2a4b,
0Ox16ed,
0x2d27,
0x39h9,
0x1760,

0x3e8d,
0x2cd9,
0x102f,
0x23dd,
0x02d1,
0x287d,
0x3669,
0x3e57,
0x0251,
0x0cod,
0x223f,
0x120b,

0x3cl4,
0x2055,
0x1a87,
0x25a5,
0x3a74,
0x21a8,
Oxle3c,
Ox2cca,
0x1916,
0x049b,
0x3328,
0x2590,
0x3f2b,

0x0844,
Ox1le8e,
0x12be,
0x3594,
0x252c,
0x3b34,
Ox1bcf,
0x22fe,
0x2a32,
0x1991,
0x3366,
0x246e,

0x3292,
0x1a30,
0x2f3b,
0x21b3,
0x13fb,
0Ox3ade,
Ox1c5f,
0x2a33,
0x21c8,
0x36e8,
0x0c01,
0x3f38,
0x2789,

Oxlabe,
0x2457,
0x0690,
0x2eb8,
0x0798,
0x2084,
0x3565,
0x0e8a,
0x1960,
0x2117,
0x2490,
0x0888,

361

0x12f2,
0x06d2,
0x040d,
0x29d8,
0x2150,
0x3f56,
0x097d,
0x3cf3,
0x2a06,
0x08b5,
0x33ea,
0x2c8c,
0x2935,

0x02b2,
0x313b,
0x2220,
0x117a,
0x3530,
0x3a36,
0x0d92,
0x3468,
0x354b,
0x3f6a,
0x0667,
0x0c6f,

0x1a92},
0x1585,
0x0fba}l,
0x0da3,
0x1d8f},
0x250f,
0x06fb},
0Ox2e27,
0x0917}%,
0x1202,
0x01dd},
0x06e3,
0x167c}

0x3c4f,
0x003d},
0x094f,
0x302a},
0x38b8,
0x0e3e},
0x2e35,
0x3db8},
0x0ef6,
0x3b21},
Ox15ff,
Ox1lc2d},

{0x3d34, 0x2a54, 0x042c, 0x0205, 0x271b, Ox1l3ca, 0x070a, 0x2d61,
0x2413, 0x13cb, 0x0548, OxOaac, 0x22c9, 0Ox3ecb, 0x0419, 0x06b2},
{0x2cc9, 0x148c, 0x1789, 0x376f, Ox2a7f, Ox03e5, 0x223c, Ox2e43,
0x38e8, 0x3cbe, 0xO0b50, 0x2510, 0x0d1l4, Ox1lb46, Ox2a3c, Ox06la},
{0x3b46, Ox3def, 0x1613, 0x1259, 0x0735, 0x1515, 0x1303, 0x159a,
0x2195, 0x0ef5, 0x33fe, 0x1074, 0x336f, 0x23c3, 0x17c5, 0x2070},
{0x1624, 0x366d, 0x2a27, Ox3bb3, 0x2f36, Oxldc4, 0x327d, Ox1l8ed,
0x1950, 0x0764, Oxle9e, O0x3cchb, 0x22ad, 0x3d07, 0x3108, 0x0f94},
{0x2a44, 0x0ffb, 0x02c6, OxleOe, 0x0796, 0x3al8, OxOed9, 0x064d,
0x031d, 0x03d9, 0x243b, 0x38d4, 0x3943, 0x353f, Ox2a2a, O0x277e},
{0x042e, 0x1891, Ox1lb7a, 0x2b38, 0x3549, 0x3a87, 0x3798, 0x06d9,
0x3dcl, Oxlcbf, 0x2f38, 0x1f81, 0x0323, 0x09ab, 0x36cc, 0x2866},
{0x3de0, 0x0c85, 0x0d28, 0x1d45, 0x0dé6d, Ox35de, 0x1f04, 0x3043,
0x2723, 0x3e09, 0x0187, 0x294a, 0x0ca4, 0x200c, 0x39b2, 0x2936},
{0x3dea, 0x1263, 0x0287, 0x19a3, 0x38c3, 0x1l6b7, 0x2e21l, 0x23ea,
0x24ba, 0x1d83, 0x3cO0d, Oxlcc5, 0x0562, 0x39c7, 0x10ff, 0x352e},
{0x29e8, 0x26a5, 0x3bcl, Ox3bdc, 0x1265, Oxldeb, 0x338d, 0xl6a7,
0x2245, 0x06f6, 0x0815, 0x2b88, 0x13d3, 0x37a9, 0x25ec, 0x3325},
{0x143d, 0x138e, 0x0d0f, Oxlael, Ox3a9c, 0x16f8, 0x1682, 0Ox13ab,
Ox1fa4, 0x2c25, O0x3c7e, Ox0f57, Ox2a34, 0x0e47, 0x2539, 0x23e5}
b
{ {0x1568, 0x29aa, 0x28e0, 0x2clf, 0x2237, 0x26c4, 0x35b2, 0x23ae,
0x3691, O0x1fe9, O0x3ecl, 0x397c, 0x0964, 0x0c51, 0x07c0O0, Oxldaf},
{0x03a8, 0Ox0a2f, 0x3279, 0x1817, O0x37be, 0x1942, Oxl4e2, 0x0f74,
0x35c1, Ox1bd5, OxOcae, 0x27f7, 0x0f52, Ox34fe, 0x27c9, 0x3b99},
{Oxlede, Ox2cd6, 0x2537, 0x38al, 0x02fe, 0x1839, 0x3412, Ox2e71,

362

0x3a30, 0x14f3, Oxlda7, 0x1427, 0x07c4, 0x26e3, 0x3d35, 0x1522%},
{0x09d3, 0x0c48, 0x0958, 0x303f, OxObbb, 0x0d96, 0x05d5, Ox3be6,
0x03f6, 0x3dlb, 0x3f02, 0x2065, 0x39e5, 0x2846, Ox2ebl, 0x1728}%,
{0OxlecO, OxOee2, 0x3105, 0x18f8, 0x055b, 0x1l3e5, Ox0Oe6a, 0x252a,
0x21c4, 0x20fa, 0x128c, 0x2cOb, 0x2079, Ox2ccf, Oxllea, OxO5ae},
{0x0e0c, 0x2a62, 0x097f, 0x208b, 0x2679, 0x2548, Oxlfef, Oxlaf3,
0x33ac, 0x0d7a, 0x1833, 0x1761, 0x179b, 0x0cOb, 0x01le0, 0x0f2d},
{0x2706, 0x1975, 0x0842, 0xOdde, 0x3c34, 0x1d06, Oxlc34, 0x240f,
0x312f, Ox1lblc, 0x301f, 0x1490, 0x00dc, 0x3e30, 0x3d53, Ox3e32},
{0x005d, 0x350c, 0x1648, 0x1437, 0x2692, 0x299d, 0x0e40, 0x0Oed7,
0x0151, 0x36b0, 0x08f5, O0x22ed, 0x0132, 0x07a5, 0x3c7b, 0x0d8d},
{0x13f0, 0x1115, O0x0558, 0x235c, Ox2cdd, 0x213f, 0x191la, Ox2lca,
0x17fd, 0x3768, 0x0flb, O0x0e8d, 0x229e, 0x330d, 0x37de, Oxl4e4},
{0Ox2e6a, 0x08a3, 0x17f0, 0x29c7, 0x2168, 0x3d81, 0x0e78, 0xla36,
0x17b3, 0x383b, 0x3fcO, 0x1672, Oxlc7c, O0xlc55, 0x23b7, 0x1467}%},
{0x0869, 0x1347, Ox1lfOa, 0x147b, 0x1392, OxObe4, 0x034d, 0x19e6,
0x1499, 0x2458, 0x1la39, 0x3351, 0x356b, 0x2f9c, 0x193c, 0x0907},
{0x3497, 0x2f44, 0x14f6, 0x3374, 0x07e9, 0x0b4f, OxOfda, 0x3001,
0x3706, 0x3880, OxO0flf, 0x133b, 0x2074, 0x0e00, Ox2cec, 0x07b8},
{0x0404, Ox2efc, 0x3912, 0x39fd, Oxl2ca, Ox2fd7, 0x052c, Ox26a4,
0x07d8, 0x19db, 0x3eb7, 0x2e24, 0x31fd, Ox3ff7, Ox1l78a, 0x24a6},
{0x2b53, Ox0de2, 0x03ff, Oxled4b, 0x3358, O0x3cbl, 0x2952, 0x3062,
0x2708, 0x37el, 0x07a7, 0x288f, 0x3512, 0x0773, 0x177b, 0x1472},
{0x2d65, 0x2ea9, 0x26e9, 0x244b, Oxlbcd, 0x2921, 0x2e91, 0x386e,
0x0638, 0x1101, 0x009e, 0x33bd, 0x1704, 0x1a93, 0x1la84, 0x2809},
{0x2a43, Ox2cef, 0x3526, 0x075f, 0x0363, 0x1406, 0x0982, 0Ox36ac,

363

0x297d, 0x35al, 0x0376, 0x312e, 0x3661, Ox2cf6, 0x09f4, 0x08b6}
b
{ {0x3f67, 0x21bd, 0x2887, OxObcc, 0x02c8, 0x07bc, 0x093b, 0x067f,
0x3686, 0Oxle62, 0x3503, O0x1l64c, 0x1f41l, O0x136b, 0x188f, 0x1l9ae},
{0x3b40, 0x27ef, 0x067e, O0xO0fab, 0x1307, Ox0a42, Ox3c4b, 0x0046,
0x095d, 0x2155, Ox3fae, 0x099a, 0x23c7, 0x33ba, Oxlcaf, O0x32be},
{0x0d62, 0x1cl8, 0x35e9, 0x29cf, 0x323f, Ox3elc, 0x23cd, 0x28b2,
Oxlebl, O0x3f55, 0x3778, Ox2cdl, 0x3162, Ox3cel, 0x21le0, OxObf2},
{0x3613, 0x239d, 0x3f95, 0x027d, Ox3be5, 0x37f0, 0x0219, 0x15e0,
0x3eb9, 0x0663, 0x1398, 0x236b, 0x00ef, Ox2ade, 0x36c0, 0x3303},
{0x246a, 0x19b2, Oxlclb, Ox214a, 0x20c7, Ox177f, 0x369c, Ox212a,
0x1671, 0x3186, 0x04d8, 0x188e, 0x003e, 0x32ee, 0x3192, Ox2laf},
{0x2d36, 0x3704, 0x36d2, 0x38ba, 0x0694, 0x184e, 0x285a, 0x27e5,
0x1f56, 0x273c, 0x2ca8, 0x0a22, 0x3129, 0x32b7, 0x2861, 0Ox13dc},
{0x26f9, 0x2858, 0x2981, 0x127f, 0x0808, 0x18la, 0x07f6, O0x3f7a,
0x3fb8, Oxlac2, 0x2179, 0x3788, 0x07e5, 0x2416, 0x07ae, 0x129c},
{0x30f8, 0x3059, 0x0286, 0Ox12ab, 0x052e, 0x2514, 0x1268, Oxld5e,
0x3323, 0x3ba7, 0x1751, Ox165d, 0x1282, 0x1929, 0x3bf5, 0x2d85},
{0x0e80, 0x029f, 0x0475, 0x13d5, 0x1f19, 0x0345, 0x3959, 0x13d7,
0x0d3c, 0x0e73, 0x36d7, 0x2589, 0x07fd, Oxlefl, Ox1l7ad, 0x28dc},
{0x12e0, 0x0c83, 0x2319, 0xla55, 0x25cf, 0x3533, Ox3dc4, 0x33f7,
0x03c0, 0x0b46, 0x13c7, 0x3463, 0x1514, 0x2668, 0x1a98, 0x01l4e},
{0x0a02, 0x0a8c, 0x03ca, 0x0381, 0x3fdl, Ox3b6a, 0x35b9, 0x0003,
0x3f5a, 0x0f37, 0x2e69, 0x2f2a, 0x0f96, 0x3al0d, 0x1693, 0x36b9},
{0xla34, 0x1l5a2, Ox2faa, 0x37a8, 0x0115, Ox2dcf, Ox3cfc, 0x2e00,
0x03a3, 0x0016, 0x378e, 0x3bl7, 0x1374, 0x1384, 0x0ac3, Ox1l6bf},

364

3,
{

{0x0b40,
0x1459,
{0x2a70,
0x1180,
{0x1fbb,
0x076e,
{0x28d0,
0x3e25,

{0x0800,
0x3f16,
{0x01lel,
0x146a,
{0x0660,
0x3f1b,
{0x079c,
0x0221,
{0x0f0d,
0x0109,
{0x0bf4,
Ox2a6d,
{0x0f41,
0x007b,
{0x2ab8,
0x0272,
{0x0c02,

0x1845,
0x23e9,
0x1577,
0x0975,
0x215b,
0x15b4,
0x2f69,
0x1b06,

0x3257,
0x3e40,
0x3523,
0x0542,
0x0050,
0x0b94,
0x0e89,
0x3a47,
0x02b6,
0x024b,
0x19cf,
0x09e7,
0x3411,
0x3576,
0x216a,
0x341a,
0x2112,

0x18b2,
Oxlaaf,
0x1f85,
0x0eb9,
0Ox2b6c,
Ox1ldc2,
0x3362,
0x37ae,

0x197a,
0x2326,
0x2208,
0x0501,
0x3072,
Ox1le43,
0x207b,
0x0a6f,
0x277a,
0x20el,
0x028d,
0x035d,
Ox2ded,
Ox2ale,
0x1e06,
0x15fd,
0x23a5,

Ox1l6af,
0x04f3,
0x1173,
0x20d6,
0Ox06al,
0x20a7,
0x2fbd,
0x22c2,

0x04cb,
0x22af,
0x115b,
0x101c,
0x00b5,
0x3f32,
0x02bb,
0x3996,
Ox2dde,
0x3bf4,
0x37c9,
0x0de8,
0x2391,
0x1c91,
0x01fe,
0x0332,
0x18b0,

0x2264,
0x195d,
Ox1b5a,
0x08cd,
0x31d5,
0x2e92,
0x398d,
0x05bd,

0x2518,
0x136c¢c,
0x302e,
0x0c55,
0x2bf5,
0x3e21,
0Ox2a3d,
Ox14ef,
0x0be5,
0x0594,
0x347d,
0x0a36,
0x1b20,
0x10d1,
0x36fd,
0x0c74,
0x39%4c,

0x0288,
0x10d3,
0x098b,
0x3842,
Oxlda4,
0x1bbO,
Ox2aae,
0x38ac,

0x3d7f,
0x3e9f,
0x22c8,
0x0e21,
0x0al3,
0x2c28,
0x22a5,
0x0317,
0x0805,
0Ox26c2,
0x129b,
0x2b7b,
Ox0ade,
Ox1cbe,
0x3874,
0x0bfc,
Ox3fad,

365

0x075d,
0x2613,
0x3e22,
0Ox0a7c,
0x2a58,
0x1309,
Ox1le37,
0x2418,

0x32c2,
0x0ae?2,
0x0877,
0Ox2a7a,
0x35db,
0x0458,
0x07c8,
0x068b,
0x25b9,
0x2569,
Ox3fce,
0x2d51,
0x0c66,
0x03dd,
0x36dc,
0x259a,
0x1532,

Ox2ce5,
0x2275}%,
0x0c15,
0x298f},
0x2f04,
Ox1lfad},
0x01a4,
0Ox0dec}

0x07f4,
0x09a3},
0x19c7,
0x0b37},
0x2805,
0x26b6},
Ox12af,
0x01c6},
0x2665,
0Ox2b2e},
0x0414,
0x0008},
0x2df8,
0x3a83}%,
0x35ae,
0x1466},
0x3668,

}s
{

0x01leb,
{0x1f4f,
Ox3aab,
{0x2085,
0x3864,
{0x1695,
0x0421,
{0x0c35,
0x37aa,
{0x3d8b,
0x3d39,
{0x1cab,
0x018c,
{0x1bdO,
0x0b68,

{0x1lel2,
0x0759,
{0x08c5,
0x0a08,
{0x3dO0c,
0x0670,
{0x2df2,
0x0761,
{0x20fc,
0x05e6,

0x10c2,
Oxlafb,
ox1fe61l,
0x220c,
0x3dé6b,
0x320a,
0x0fd1l,
0x3316,
0x3710,
0x17f9,
0x04ba,
0x0edd,
0x0b3c,
0x3a67,
0x3a41,

0x08f3,
Ox1fec,
0x12e8,
0x1c43,
0x0b97,
0x3695,
0x0e2b,
0x161b,
0x3169,
0x3802,

Oxldea,
0x18ea,
Ox2dfe,
0x22c4,
0x0b5e,
0x0790,
Ox14fe,
Ox1fc2,
0x172c,
0x32bb,
0x0dea,
0x1886,
0x0c30,
0x37b6,
Ox26ef,

0x3107,
0x0a07,
0x137c,
0x05d3,
0x28da,
0x2afl,
0x17db,
0x3b87,
0x13a6,
0x2b33,

0x3f65,
0x2f2c,
0x2913,
0x0fe4,
0x0a2b,
0x0e9d,
0x1992,
0x342a,
Oxleba,
0x0749,
0x22ef,
0Ox01laa,
0x3903,
0x1394,
0x1d64,

0x2660,
0x1471,
0x106f,
0x2ba8,
0x0e66,
0x29de,
0x3718,
0x392d,
0x0ccc,
0x39ed,

0x023c,
0x18ca,
0x0f8e,
0x1b31,
0x3342,
0Ox16dc,
0x297f,
0x05ee,
0x2a46,
0x15dd,
0x3bb7,
0x2b3f,
0x18c7,
0x2ccO,
0x3148,

0x18cO0,
0x246d,
0Ox16ba,
0x099d,
0x0524,
0x1b90,
0x2f10,
0x33b8,
0x30a7,
0x1f24,

0x1897,
0x0355,
Ox1caO,
0x059f,
0x22ea,
0x392e,
Ox0ec3,
0x03f4,
0x3de7,
0x121a,
0x0040,
Ox3eea,
Ox0ead,
0x3556,
0Ox3ee5,

0x34e9,
0x12b1,
0x3741,
0x0463,
0x31c6,
0x0078,
Oxle4f,
0x20bb,
0x0f00,
Ox1lbef,

366

0x04ce,
0x1a8b,
Oxlecc,
0x28d3,
0x2f41,
0x3329,
0x2a38,
Ox2fef,
0x1256,
0x3c03,
0x20ba,
0x206a,
0x28f1,
0x0b80,
0x0f04,

0x2407,
0x090a,
0x0Obda,
0x0d13,
Ox1leeO,
Oxleab,
0x3fe5,
0x0e0e,
Ox0faf,
0x3b0a,

0x030d},
0x33ch,
0x06f0},
0x2185,
0x193a},
0x3015,
0x0f46},
OxOefe,
OxOafa}l,
0x21d9,
0x396a},
0Ox12cc,
0x0217}%,
0x1ffo,
0x2d49}

0Ox3a4f,
0x0d66},
0x0ce?,
0x3048}%,
0x05d6,
0x0cOa},
0x0d3f,
0x243d},
0x3c3c,
0x15b8%,

b,
{

{0x39b4,
0x20fe,
{0x2a22,
Ox2dab,
{0x1550,
0x012b,
{0x3620,
0x3f78,
{0x3406,
Ox1bdc,
{0x0ddf,
0x38f2,
{0x0cel,
0x28bc,
{0x14ce,
0x240d,
{0x1070,
0x04fd,
{0x1b17,
0x1f38,
{0x086f,
0x2c27,

{0x1d9f,
0x2601,
{0x2cla,

0x1132,
0x0212,
0x1870,
0x2e8f,
0x2bd8,
0x2758,
0x0478,
0x2972,
0x09bb,
Ox2a5c,
Ox261le,
0x1720,
0x0b66,
0x3bea,
0x0951,
0x1e92,
0x1c9a,
0x1dOa,
0x0b32,
0x3bc2,
Ox3ale,
0x3282,

0x0ab4,
0x1d58,
0x2b3d,

Ox1ba5,
0x0b58,
0x2f8b,
0x30c7,
0x24fd,
0x087e,
0x3ac8,
0Ox3ffe,
0x18db,
0x34d4,
0x3352,
0x0755,
0x18ff,
Ox1c7a,
0x1914,
0x2341,
0x3déc,
0x0f80,
0x0a74,
0x3d78,
0x39c1,
Oxla4de,

0x245b,
0x3f73,
0x2278,

0x3430,
0x2f73,
Ox3eda,
0x0716,
0x3805,
Ox1lc3c,
0x3359,
0x2934,
0x3d89,
0x2d21,
0x122d,
0x0067,
0x2f71,
0x337d,
0x0893,
0x0ffe,
0x0blc,
0x0c65,
0Ox2af2,
0x28a3,
0x2683,
0x30fd,

0x282d,
0x0310,
0x3709,

0x0ebc,
0x3a%e,
0x1c39,
0x132a,
Ox3fac,
Ox3fal,
0x1bb7,
0x151c,
0Ox2ce0,
0x1661,
0x3dd9,
0x1b24,
0x20d8,
0x2f3d,
0x0100,
0x0018,
0x3d4b,
0x2280,
0x3a46,
0x00c6,
Ox18ee,
0x29ed,

Ox3ebc,
0x3069,
0x2388,
0x0db3,
Ox3e2f,
Oxlccf,
0x2639,
0x0514,
0x29d9,
0x0257,
0Ox0ee8,
0x158b,
0x12b7,
0x2b80,
0x1749,
0x3427,
0x002b,
0x0chd,
0x22b0,
0x3d51,
0x06f1,
0x21b8,

0x25cc,
0x0f17,
0x04fc,

0x005f,
0x1329,
Ox2acf,

367

0x0348,
0x1907,
0x09d2,
0x2471,
0x2bf1,
0x3b00,
0x1c73,
0x022d,
0Ox2aaa,
Oxleef,
0x2d89,
0x000d,
0x25c2,
0x226e,
0x3e44,
0x0202,
0x1039,
0x2f20,
0x1946,
0x37ca,
0x3154,
0x2f80,

0x2f8a,
Ox3bab,
0x2f90,

0x32ad,
0Ox3af5},
0x250d,
Oxlef2},
0x08eb6,
0x198f%,
0x2c34,
0x1e09},
Ox1l6ae,
0x22d9},
0x14385,
Ox1fc6},
0x298d,
0x39d3},
0x2e94,
0x3bcd},
0x2405,
0x3a44},
0Ox3all,
0x2bf4},
0x30d5,
0x20cc}

0x3614,
0x144e},
0Ox2ed5,

0x0f58,
{0x0b42,
0x2596,
{0x1cé6d,
0x152d,
{0x3b7b,
0x21ba,
{0x2261,
0Ox17ae,
{0x27b1,
0x18b8,
{0x100a,
0x1434,
{0x1lcda,
0x0802,
{0x06b0,
0x121b,
{0x22al,
0x278a,
{0x21b5,
0x198b,
{0x3c66,
0x3a3f,
{0x1laa,
0x3445,
{0x0ef9,

0x14d9,
0x1860,
0x2020,
0x1535,
Ox3e2e,
0x3261,
0x36a0,
0x2752,
0x10f9,
0x3608,
0x26ab,
0x333b,
0x0446,
0x35cf,
0x1f21,
0Ox1ff3,
0x2cdO,
0x3036,
0x079b,
0x2f54,
0x2483,
Ox18ae,
Ox2afd,
0x00ac,
0x011c,
0x1dOe,

0x3640,
Ox2f6e,
0x28d1,
0x31d2,
0x13b3,
0x0bO0b,
Ox1llca,
0x16d4,
0x3b37,
0x2b4c,
0Ox12ad,
0x040e,
0x056b,
0x33b0,
0x32fe,
0x13ee,
0x122e,
0x3d68,
0x0dae,
0x0cd6,
0x0899,
0x0026,
0x3e34,
0x374b,
0Ox0Oeee,
Ox2eed,

0x331d,
0x067c,
0Ox3de2,
0x0f60,
0x08f4,
0x1fc9,
0x1d56,
0x3013,
0x2361,
0x3229,
0x1851,
0x2c89,
0x0fe9,
0x0b90,
0x0f89,
0Ox34ac,
0x0dOc,
0x0ebd,
0Ox3fa3,
0x224b,
0x2242,
Ox1fal,
Oxlecc,
0x3e0f,
0x2ef8,
0x38f8,

0x25da,
Ox1lclc,
0x399e,
0x1725,
0x390a,
0x0ad5,
0x069c,
0x163d,
0x1bd3,
0x3b5a,
0x359c,
0x1881,
0x2fb4,
Ox2d4e,
0x26f7,
0x1440,
0x1958,
Ox1dbc,
0x09a8,
Oxlcef,
Ox3edl,
0x3c04,
0x289b,
0x00f7,
0x196a,
0x2986,

0x382b,
0x302c,
0x33d9,
0x26b7,
0x0214,
0x0680,
0x25ed,
0x3198,
0x0f54,
0x2813,
0x381e,
0x2618,
0x281f,
0x0eb1,
Ox1lcd7,
0x3f33,
Ox2fa2,
0Ox2d6a,
0x3b04,
0Ox2all,
0x348a,
0x1d60,
Ox0Oeal,
0x3ef6,
0x19d3,
0x23a0,

368

0x181d,
0x2126,
0x304c,
0x25f3,
0x1636,
Ox114e,
0x36e0,
0x32dc,
0x0d3a,
0x1631,
0x3951,
0x187c,
0x0b9a,
0x09c0,
Ox2a5e,
0x1ab62,
0x08b0,
0x23fb,
0x3ae4,
0x335a,
0x0196,
0x24e4,
0Ox2c7a,
0x1fb3,
0x03d2,
0x36e4,

Ox3abe},
0x2cb2,
0x3d9d},
Ox1b8f,
Oxlaf8},
0x3bba,
Ox3bfd},
0x204d,
0x0e67},
0Ox1c58,
0x2187%,
0x3cf9,
0x2608},
0x3dff,
0x05a5},
0Ox2be3,
0x31123%,
0x0b47,
0x083d},
0x20b4,
Ox2daa},
0x0879,
0x1034},
0x3304,
Oxllee},
0x3318,

0x143c,
{0x19e9,
0x28b4,
b,
{ {0x2100,
0x12e6,
{0x388b,
0x2fc8,
{0x28d8,
Ox111b,
{0x3e90,
0x2f15,
{0x0554,
Ox2ead,
{0x047a,
0x005b,
{0x3326,
0x2c01,
{0x1226,
0x3c95,
{0x1b39,
0x226f,
{0x2cae,
0x33fa,
{0x1f7b,
0x0878,

0x310c,
0x0f2a,
0x3383,

0Ox0aal,
0x3417,
0x0e23,
0x328a,
0x20c3,
0x312a,
0x1628,
0x02e6,
0x165b,
0x3fd2,
0x1269,
0x3089,
Ox2elc,
0x1995,
0x224e,
0x38db,
Ox2e4b,
0x2dO0b,
0x14f5,
0x394b,
0x2ad7,
0x0c81,

0x3894,
0x1db6,
0x0d4e,

Ox1fe7,
0x18d1,
0x050a,
0x3653,
0x0cal,
0x1f53,
0x0717,
0x07dd,
0Ox1c47,
0x0dd7,
0x0c7f,
0x0969,
0x0d95,
0x069a,
0x38f4,
0x257b,
0x122b,
0x245c,
0x221c,
0x27cb,
0x1db9,
0x32b6,

Oxlcdd,
0x2363,
0x0620,

Ox2fed,
Ox3e6d,
0x0e55,
0x3ba2,
0x0d59,
0x0289,
0x08d4,
0x12a0,
0x39aa,
0x15do0,
0x078b,
0x218f,
0x05f9,
0x3591,
0x2529,
0x28b6,
0x2545,
0x085a,
0x3a34,
0x25a8,
0x1aa9,
0x022c,

0x05b2,
0x03ce,
0x2231,

0x04f8,
0x3826,
0x1d75,
0x06ff,
0x3f31,
0x3481,
0x276a,
0x29e7,
0x3d71,
0x25f1,
0x1687,
0x384d,
0x0688,
0x18e8,
0x0be8,
0x22b4,
0Ox0alc,
0x312c,
0x174f,
Oxleld,
0x22b2,
0x0044,

0x3950,
0x06b4,
0x3166,

0x0581,
Ox2de5,
0x0403,
Ox24ac,
0x2dd6,
0x38ea,
0x0140,
0x33e7,
0x36b3,
Ox1lfla,
0x1212,
0x2424,
0x244e,
0x2dbf,
0x2bc8,
Ox1le?2,
0x2550,
0x260a,
0x3f53,
0x00e1,
0x0fé6e,
0x298c,

369

0x3bof,
0x28cO0,
0x3e4d,

Ox1lc4c,
0x21b2,
0x13e2,
0x04fa,
0x2945,
0x3c18,
0x3ab5b,
0x0c06,
0x0e04,
0x28c6,
Ox21lac,
0Ox3edc,
0x0166,
0x0497,
0x0336,
0x0f83,
0xla32,
0x083c,
0Ox34af,
0x11e8,
0Ox16a3,
0x001e,

0x22fb},
0x09a2,
0x130e}

0x2408,
0x17a6},
0x256b,
0x15423%,
0x0105,
0x05c9},
0x1a91,
0xlab64},
Oxlach,
0x0cdf},
0x17f5,
0x073e},
0x1f95,
Ox3ae3},
0x2968,
0x0c8d},
0x0b7e,
0x2bbd},
0Ox156e,
0x21la2},
0x2568,
Oxlc6a},

b,
{

{0x1c27,
0x3647,
{0x3b18,
0x0b8d,
{0x1e47,
0x0d54,
{0x361d,
0x0225,
{0x3409,
0x2703,

{0x1400,
0x3fbc,
{0x316c,
0x1d39,
{0x0dd4,
0x07b5,
{0x0df3,
Ox1beb,
{0x3c2d,
0x2al3,
{0x0ebl,
0x22a8,
{0x244c,
0x3a96,
{0x3962,

0x0d64,
0x394f,
Ox2ad3,
0x359e,
0x07f7,
0x2fc2,
0x279a,
0x2658,
0x1495,
0x0ce3,

0x21f3,
0x0del,
0x048e,
0x30bb,
0Ox0ec?2,
0x0ca0,
0x02d7,
0x289c,
0Ox1ch5,
Ox3ecb,
Ox3de3,
0x33al,
0x2ca0,
0x004e,
0x3c06,

0x3286,
0x1264,
0x2b8e,
0x20e9,
Ox0aff,
Ox1lbea,
0x1b4b,
0x26f4,
Ox2fcd,
0x25b0,

0x36d6,
0x2a56,
0x0fbf,
Ox3eae,
0x262a,
0x3284,
0x2d76,
0x3dOe,
0x1b7e,
0x2431,
Ox21lec,
0x3bbe,
0x2b06,
0x09a7,
Ox2ecc,

Ox1d2a,
0x305a,
0x2c77,
Ox1bda,
0Ox14df,
Ox1ledO,
0x23d1,
0x2d8e,
0x22e9,
0x1304,

Ox1bbe,
Oxla7e,
0Ox25af,
0x083e,
0x0043,
0x3838,
0x322b,
0x019a,
0x15f7,
0x2a31,
0x02e0,
0x35b5,
0x38f9,
0x2891,
0x390c,

0x1463,
0x1f74,
0x332b,
0x3736,
0x1156,
0x200a,
0x195e,
0x2097,
0x1bd6,
0x34a8,

0x18e3,
0x3093,
0x0e8c,
Ox2cde,
0x1b78,
0x0203,
0x0849,
0x2128,
0x065f,
0x0241,
0x31f4,
0x0041,
0x3d38,
Ox3bcc,
0x03c3,

0x211f,
0x2d72,
0x2819,
Ox12ac,
0x093d,
0x2495,
0x30eb6,
0x2410,
0x0d5e,
0x2123,

0x19bf,
0x0957,
0x0ad6,
0x3fc8,
0x0c07,
0x0e88,
Ox1e57,
0x170d,
0x1087,
0x0a83,
0x31db,
0x3925,
0x29b2,
0x165f,
0x10d8,

370

0x0eb6,
0x17e7,
0x05c5,
0x05e3,
Oxlab6f,
0x27ec,
Ox1flc,
0x35ea,
0x080f,
0x381a,

0x300c,
0x34ad,
0x12f1,
0x2f4c,
0x18de,
0x090e,
0x2621,
0x1d98,
Ox21ce,
0x21d3,
0x2d16,
0x322f,
0x13b6,
Ox2e3a,
Ox1déd,

Ox1fa9,
0x18a9},
0x20f4,
0x03a9},
OxOeaf,
0x314e},
0x2e02,
Ox3dla},
0x1fe60,
0x0862}

0x2a5b,
0x374a},
0x33c7,
0x04ff},
0x041e,
0x365e},
0x3814,
0x0dd1},
0x3f20,
Ox2cac},
0x2048,
0x01233%,
Ox1f6e,
0x227f},
0x14b5,

0x2513,
{0x1640,
0x0127,
{0x2fal,
0x2c46,
{0x0be0,
0x2d4c,
{0x00ad,
0x36b5,
{0x0b0a,
0Ox146d,
{0x0392,
0x38ch,
{0x0047,
0x3cl1,
{0x057b,
0x367a,
b
{ {0x2677,
0x0e42,
{0x32a9,
0x3e47,
{0x0a62,
0x0c7b,
{0x114a,
0x2474,

0x25b5,
0x222d,
0x1bc8,
0x2f68,
0x0c72,
0x29a7,
0x1b79,
0x157b,
0x258b,
0x190e,
0x181c,
0x0ef8,
0x282a,
0x2fd9,
0x3b2a,
0x2feb,
0x189c,

0x0506,
0x2be8,
Ox1d1d,
0x21c2,
0x0867,
0x1233,
0x2c98,
0x1356,

0x39ce,
0x3534,
0x3197,
0x0328,
0x1f0e,
0x0dcc,
0x07fa,
Ox2ab2,
0x0ff4,
Ox2ffc,
0x15be,
Ox0Oeec,
0x3bff,
0x0c19,
0x0566,
0x2de9,
Ox3ada,

0x35c0,
Oxlee5,
0x131e,
0x1083,
0x196e,
0x3ddo,
0x0076,
0x28a7,

0x0436,
Ox1l46c,
0x26f1,
0x2c3b,
0x385d,
0x3d16,
0x2492,
0x2b24,
0x0481,
0x2ff6,
0x0337,
0x3365,
0x21b7,
0x2fe9,
0x1091,
0x08ee,
0x3b72,

0x348b,
Ox1cf7,
0x0157,
0x2039,
0x2f39,
Oxledl,
0x3743,
0x3e01,

0x18d9,
0x3269,
0x287a,
0x002f,
0x1b3d,
0x3e89,
Ox3afd,
Oxlabl,
0x1854,
Ox2fe4,
0x31a4,
0x1d79,
0x21e6,
0x2383,
0x1752,
0x09aa,
0x1290,

0Ox3ac4,
0x2eb64,
Ox1ldfc,
0x2f58,
0x3d3c,
0x09f7,
0x10el,
Ox0ae3,

0x23a7,
0x25fc,
0x15b9,
0x3a55,
0x11c8,
0x119f,
0x17f1,
0x2e9c,
0x2160,
0Ox2a2c,
0x22cb,
0x0be9,
0x01fb,
0x1900,
0x38d3,
0x3el0,
0x1d27,

0x05ef,
0x18cf,
0x12b5,
0x2b25,
0x1bO0b,
0x209e,
0x3a26,
Ox0lef,

371

0x217b,
0Ox1d8a,
0x0e8f,
0x18d2,
0x39ad,
0x255d,
Oxle6bd,
Ox1lbe,
0x0c4a,
0x383e,
0x112d,
0x0da9,
0x13bc,
0x0c62,
0x09d4,
0x3267,
0x0504,

0x08c4,
0x0d97,
Ox2bfd,
0x18f7,
Ox1le8a,
0x095c,
0x350f,
0x0bf1,

0x18f1},
Oxle5c,
Oxlebd},
0x3e97,
0x0e72},
0x3d98,
0x013a},
0x0cb5,
0x056a},
0x0d46,
0x14c3},
0x0b15,
0x3781}%,
0x3145,
0x33c9},
0x2f85,
Ox1b55}

0x041b,
Ox1lde4},
0x3632,
0x0db9},
0x2838,
0x169d},
0x37ba,
0x35cd},

3,
{

{0x201f,
0x0ebb,
{0x3395,
0x356f,
{0x31d6,
Ox3cec,
{0x1leb6l,
0x10e8,
{0x3c20,
0x2582,
{0x0feb,
0x3fe6f,
{0x33b5,
Ox2e2d,
{0x1753,
0x0fa4,
{0x2863,
0x2620,
{0x1c70,
0x261f,
{0x10ce,
0x363c,
{0x175b,
0x20a8,

{0x3ccO0,

Ox1fao0,
Ox3dab,
0x04d7,
0x3213,
0x1013,
0x26d7,
0x3b36,
0x1279,
0x0f27,
0x0e4f,
0x1175,
0x0f7f,
Ox2baa,
0x06fc,
0x127a,
Ox3ade,
0x2d0d,
0x2f46,
0x37f3,
0x0c18,
0x04e9,
0x0e70,
0x2729,
0x05e5,

0x06¢6,

0x1dd5,
0x3e41,
Ox2f4e,
0x3010,
0x10fd,
0x0301,
Ox1a9f,
OxOeed,
0x0d65,
Ox1dbf,
Ox2abe,
0x072b,
Oxlacé,
0x3b03,
0x2f45,
0x3bc7,
0x1926,
0x08be,
Ox11fd,
0x34f3,
0x01a7,
Ox1l1lda,
0x22e3,
0x049e,

Ox3adf,

0x2d99,
0x249a,
0x2c06,
0x17b7,
0x0942,
0x08al,
0x118a,
0x2011,
0x0499,
0x0757,
0Ox2e51,
0x0ef7,
0x2a57,
0x1856,
0x0b19,
0x33c2,
0x1153,
0x1547,
0x087a,
0x3d43,
0x0199,
0x0521,
0x3516,
0x1477,

0x194e,

0x2c8b,
0x1331,
0x1242,
0x3d77,
0x20f7,
0x1339,
0x1107,
0x2904,
0x3c3b,
0x0b93,
0x1d5c,
0x2d37,
0x17a4,
0x03cbh,
0x05d8,
0x0574,
0x28el,
0x1198,
0x092a,
0x1f32,
0x11d4,
0x3675,
0x28ec,
0x0d53,

0x191c,

0x3ffO0,
Ox1eb8,
0x28af,
0x1d3c,
0x07df,
0Ox1d61l,
Ox2cde,
0x3b8f,
0x3a0f,
0xOeba,
0x37cb,
0x1808,
0x1410,
0x2674,
0x2224,
0x36c8,
0x37a0,
0x3415,
0x15fb,
0x269b,
0x3fa8,
0x0beb,
0x0731,
0x1589,

0x3d76,

372

0x333f,
0Ox0dfa,
0x36a2,
0x3ch0,
0x0d50,
0x04f1,
0x2fb3,
0x248c,
0x1432,
0x0abb,
0x2f53,
0x2d68,
0x2774,
0x23f0,
0x15f1,
0x1e70,
0x2443,
0x2359,
0x39c6,
0x038d,
Ox1lbo6e,
0x3df6,
0x3b53,
0x1a80,

0x0015,

0x259d,
0x2724}%,
0x2799,
0x1d59}%,
0x160d,
0x135d},
0x36e6,
0x328d},
0x3b63,
0x3f2d},
0x0a44,
0x1064},
Ox1cd8,
0x101d},
0x3fb5,
0x212d},
0x30f0,
Oxle72},
0x1db4,
Oxlade},
Ox2ace,
0x1220}%,
0x3226,
0Ox0ab6e}

0x163a,

0x0a25,
{0x36d3,
Ox1lddc,
{0x1fd7,
0x1996,
{0x0a92,
0x08bc,
{0x3714,
0x0495,
{0x3997,
0x0588,
{0x1766,
0x24b8,
{0x0837,
0x36b6,
{0x2b70,
0x0472,
{0x2698,
0x3919,
{0x3ell,
0x2178,
{0x1e20,
0x2f5b,
{0x2f18,
0x05a9,
{0x244f,

Ox1ce9,
0x220f,
0x16bb,
0x0f86,
0x03e3,
0x0b56,
0x0db4,
0x00f8,
0x16be,
0x0e69,
0x0787,
0x3e73,
0x32ab,
0x011f,
0x34b8,
0x0e36,
0x062d,
0x0712,
0Ox21e5,
0x1f44,
0x047b,
0x266c,
0x1326,
0x3e33,
0x3914,
0x0bcd,

0x0b72,
0x04a9,
0x3bOb,
0x2da0,
0x2292,
0x00d8,
0x1e58,
0x08fb,
Ox12fa,
0x1aOb,
0x03ac,
0x1717,
0x38ce,
Oxlefb,
0x32e6,
0x0f66,
0x340c,
0x1052,
Ox1le34,
0x0e22,
0x1966,
0x2e40,
0x149c,
0x32b1,
0x08d7,
Oxla4f,

0x1021,
0x14cf,
0x1c65,
0x292a,
0x30b4,
0x0169,
0x3245,
0x3b69,
0x391a,
Ox2dba,
0x0569,
0x1216,
0x2415,
Ox1bfa,
0x1709,
0x180e,
0x0cf1,
0x02cc,
0x1f25,
0x0f42,
0x0b51,
0x2962,
0x05b0,
0x2b3e,
0x3564,
0x12b6,

0x0b6c,
0x27cc,
Ox2aea,
0x37c5,
0x06d5,
0x0c79,
0x290e,
Ox3cae,
0x1cOf,
0x17b9,
0x3c19,
0x1335,
Ox3abe,
0x2246,
0x2656,
0x2999,
0x167f,
0x3fc9,
0x2158,
0x0077,
0x2402,
0x142e,
Ox14fc,
0x3e60,
0x0a9f,
0x244d,

0x2d73,
0x0754,
0x00ba,
0x3elf,
0x2dfd,
Ox1d4f,
0x213a,
0x07ff,
Ox1ba?7,
Oxlbaf,
0x2021,
0x112f,
0x2a77,
0x0056,
0x1a9e,
0x2061,
0x2655,
0x009d,
0x3b15,
0x06fe,
0x2440,
0x1733,
0Ox3e5a,
0x064a,
0x1008,
0x1bOf,

373

0x24d6,
0x0e82,
0x33ce,
0x11c3,
Ox3baa,
0x21c3,
0x2566,
0x1181,
0x2b26,
0x2el3,
0x3599,
0x109e,
0x00cf,
0x2f4a,
0x2a20,
Ox1lcfb,
OxlaeO,
0x324c,
Oxlcaz2,
0x1c95,
0x05do0,
0x22d7,
0x145a,
Oxleac,
0x3c01,
0x2577,

0x27be},
0x3514,
0x1fc0},
0x1d31,
0x3db7},
0x3cb7,
0x3c3e},
0x0cle,
0x1534%,
0x254a,
0x272d},
0x373c,
0x0064},
0x106b,
0x383f},
0x37d7,
0x1fbO0},
0x16f5,
0x1090},
0x1385,
0x3e71},
0x1543,
0x20fd},
0x36e7,
0x2213}%,
0x315e,

0x3040,
{0x2d33,
0x256d,
{0x2f8e,
Ox24af,
b
{ {0x26a2,
0x22b9,
{0x1c80,
0x08eb,
{0x05ff,
0x14a3,
{0x0a90,
0x0be3,
{0x29cO0,
0x36c2,
{0x3e93,
0x3888,
{0x100d,
0x17b8,
{0x3cff,
0x3991,
{0x339e,
0x0f26,
{0x2504,
0x2e0f,

0x0ffa,
0x20dd,
0x1b87,
0x23da,
0x2b4b,

0x3100,
0x2a8b,
0xla23,
0x09f9,
0x314c,
0x1d28,
0x269c,
0x0bel,
0x11d6,
0x1125,
0x21db,
0x19b6,
0x3367,
0x29c3,
0x3398,
0x295b,
0x1c79,
0x240b,
0x1b27,
0x3bca,

0x3964,
0x0a86,
0x2916,
0x20ae,
0x3e39,

0x3f54,
0x081d,
0x38aa,
0x3371,
0x1629,
0x347a,
0x250a,
Ox3eab,
0x3d93,
0x0a4b,
0x0c77,
0x35cb,
0x34bf,
0x33f6,
0x0721,
0x2e04,
0x0266,
0x06d8,
Oxl6c7,
0x10f4,

0x0ebe,
0x24f6,
0x208c,
0x0ca?,
0x0678,

0x16d9,
0x3feb6,
0x3609,
0x319a,
0x0c40,
0x0544,
0x0d2d,
0x085c¢,
0x131f,
0x1f01,
0x07c6,
0x39c2,
0x11f9,
0x1177,
0x28f7,
0Ox2e8c,
0x2e32,
0x3ff1,
0x236c,
0x0d74,

0x278c,
0x0d21,
0x02c3,
0x036d,
Ox2cdc,

0x2d66,
0x1464,
0x3605,
0x22c5,
0x241b,
0x12c4,
0x0a76,
0x1616,
0x10bf,
0x353b,
0x354d,
0x0e3f,
0x21bb,
0x1b69,
Ox3eed,
Ox2eb4,
0x3054,
0x1al8,
0x08ab,
0x2937,

0x3926,
0x361le,
0x0da8,
Ox15af,
0x0327,

0x17b5,
0Ox2fe2,
0x01f9,
0x0479,
0x311f,
0x276b,
0x225f,
0x3046,
0x3b86,
0x0927,
0x1815,
Ox1b4c,
0x3a69,
0x3866,
0x09d8,
0x3920,
0x3b42,
0x35ad,
0x0b6f,
0x3ba8,

374

0x3839,
0Ox2da3,
0x1cdO,
0x1954,
0x0709,

0x11d2,
0x0a50,
0x3e0c,
0x19e4,
0x0f56,
0x3498,
0x03fO0,
0x0b64,
0x15c3,
0x2083,
Ox1d2e,
0x2c38,
0Ox1f5d,
0x1867,
0x247f,
0x1814,
0x377c,
0x3f71,
Oxlece,
0x1580,

0x319b},
0x1d2b,
0x3fdd},
0x300a,
0x0997}

0x2389,
0x10b9},
Ox2ee8,
Ox1la75},
0x1910,
0x04e4},
0x3307,
0x0860},
0x2d71,
0x0e49}%,
0x175c,
0x2d3e},
0x212c,
0x3ff6},
0x131c,
0Ox2d2c},
0x1674,
0x2412}%,
0x1777,
0x2880},

{0x2234,
0x3a60,
{0x2342,
0x2dd8,
{0x2933,
Oxlabb,
{0x2146,
0x27cf,
{0x16f1,
0x0550,
{0x1e87,
Ox3feéd,
b
{ {0x0bd9,
0x0f98,
{0x17a2,
Ox1fca,
{0x09e3,
0x307c,
{0x1laz2b,
0x2290,
{0x0e68,
0x1866,
{0x3b11,
0x2782,
{Ox1ceb,

0x3bb8,
0x2873,
0x2f86,
0x0491,
0x3133,
0x20chb,
0x3507,
0x3300,
0x2664,
Ox1eOb,
0x17f2,
0x339d,

Ox14eb,
0x1060,
0x1dd3,
0x02de,
0x0d80,
0x1397,
0x0aa0,
0x13c8,
Ox1cfa,
Oxlae?2,
0x3ebl,
0x1046,
0x23d9,

0x3a7d,
0x00df,
0Ox0ec4,
0x36a4,
0Ox2b5a,
Ox2ebe,
0x0700,
0x3797,
0x0d16,
0x344b,
0Ox1ch6,
0x0c4e,

Oxle4c,
0x250e,
0x05ba,
0x015f,
0x276c,
0x0949,
0x0c3e,
0x3976,
0x3c53,
0x32e4,
0x36el,
0x350b,
0x2870,

0Ox25ae,
0x058e,
0x2f05,
0x1d81,
0x16c3,
0Ox21ed,
0x04bf,
0x0ab7,
Ox17ea,
0Ox0lad,
0x17e6,
0x2e0e,

0x3a9d,
0x07d1,
0x22de,
0x2586,
0x3560,
0x0a46,
0x0ab5d,
0x3421,
0x0699,
0x01a8,
0x26c9,
0x1561,
0x221a,

Oxla22,
0x02fc,
0x255c,
0x2b74,
0x2b5e,
0x2d7c,
0x1933,
0x1f17,
0x09a5,
0x340d,
0x04dd,
Ox1f2f,

0x3a4b,
0x27ca,
0x3249,
0x257f,
0x094a,
0x09d7,
0x006e,
0Ox3c2a,
0x3044,
0x05e1l,
0x1b48,
0x19d1,

0x139d,
0x31fa,
0x3d55,
0x09el,
0x330f,
0x05c4,
0x06da,
0x3d46,
0x1743,
0x09dd,
0x0467,
0x2354,
0x35f9,

0x09fd,
0x3405,
0x3bbd,
0x16f3,
0x263d,
0x13b7,
0x2423,
0x32e7,
Ox2cle,
0x264a,
0x0b5a,
0x186¢,
0x0292,

375

0x262b,
0x26fb,
0x3c2f,
0x0f4f,
Ox2ec?,
0Ox24fe,
0x2ff9,
0x237a,
0x3552,
0x1721,
0x1482,
0x041a,

0x0f55,
0x3b0d,
0x0b2f,
0x147d,
0x35e6,
0x2cfl,
Ox2afe,
0x333a,
0x18c6,
0Ox06ce,
0x34fb,
0x3f3a,
0x2b7e,

0x347b,
Ox2a2e},
0x201e,
0Ox16e4},
0x31cf,
0x3820}%,
0x1c30,
0x32a2},
0x33e3,
0x168f%,
Ox2ele,
0Ox2e25}%

0x0c42,
0x35c5},
0x3e8c,
OxOeea},
0x1927,
0x32d6},
0x1f35,
0x3863},
0x33ad,
0x0b53},
0x0471,
0x22a7},
0x3cc5,

}s
{

Ox2bcc,
{0x36ef,
0x3377,
{0x0870,
0x2910,
{0x3a0a,
0x12c2,
{0x1868,
0x17e5,
{0x1c24,
0x0600,
{0x101a,
0x20a4,
{0x3860,
0x0d22,
{0x00e0,
Ox13ae,
{0x03c2,
0x2e9a,

{0x0db5,
0x2853,
{0x3faa,
Ox1ldle,
{0x3ece,
0x04b3,

0x32c6,
0x00f2,
Oxlafc,
Ox2bca,
Ox0cad,
0x2944,
0x14c5,
0x3759,
0x24e9,
0x0503,
0x1062,
0x3676,
0x1581,
0x0a9d,
0x32fb,
0Ox22ec,
0x04c3,
0Ox3cca,
0x211d,

0x2630,
0x3dfc,
0x3cc?2,
Oxlee3,
0x1066,
0x0883,

0x0f63,
0x02cO0,
0x37b7,
0x3clb,
Ox2cel,
0x21b1,
0x1a6b,
0x33cb6,
0x235e,
0x027b,
0x1c9b,
0x24cl1,
0x081c,
0x02e2,
0x3e50,
0Ox1df7,
0x3d70,
0x2ff3,
0x038c,

0x3cdc,
0x39bd,
0x02cf,
0x3ado,
0x2d46,
0x0534,

0x0dfd,
0x2429,
0x15d7,
Ox1l6aa,
0x395e,
0x31b8,
0x2837,
0x3b5d,
0x0b35,
0x07c2,
0x185f,
0x0019,
0x178d,
Ox1d4c,
0Ox0Oeel,
0Ox1d3f,
Ox1d11,
Ox1da9,
0x3384,

0x0c4c,
Ox0ef2,
0x19a5,
0x2562,
0x3847,
0x3423,

0x04d3,
Ox1le74,
0x1fb2,
0x3a56,
0x19d0,
0x07bd,
0x0eld,
Ox0fac,
0x3f3b,
0x1c85,
0x321c,
0x320b,
0x2c91,
0x1d86,
0x05ca,
0x39bc,
0x3f2f,
0x0bf6,
0x266d,

Ox0acc,
0x00e7,
0x1980,
0x0efO,
0x092c,
0Ox21a5,

0x28c1,
0x000f,
Ox2elb,
0x0bbe,
0x034e,
0x1841,
0x00eb,
0x3051,
0x2b44,
0x1092,
0x29e9,
0x2f42,
0x1376,
0x00bf,
0x02e5,
0x05e8,
0x103d,
0x00d5,
0x12ed,

0x18bf,
0x0962,
0x0971,
0x1755,
0x168c,
0x359f,

376

0x0662,
0x2f8d,
0x0ell,
0x0324,
0x1560,
0x045c,
0x0e7b,
0x0086,
0x25b6,
0x27f9,
0x0d40,
0x0a66,
0x0793,
0Ox14a7,
0x082e,
0x2396,
0x08d2,
0x1f8c,
0x0c87,

0x3f47,
0x164a,
0x22a0,
0x146b,
0x332d,
0x0855,

Ox1df6},
0x3813,
0x01d1},
0x1214,
Ox1c7d},
0x091b,
0x07bb},
0x1842,
0x0dOe},
0Ox3ae2,
Ox1lcld},
0x37e5,
0x2f6b},
0x3524,
0x3312},
0x3143,
0x1b86},
0x1575,
0x2648}

0x34a5,
0x141d},
0x39af,
Oxlacl},
Ox2efl,
0x100c},

{0x1500,
0x2028,
{0x1la72,
0x3420,
{0x24ce,
0x06e5,
{0x0ac9,
Ox1ldcd,
{0x2d50,
0x34e3,
{0x0c80,
Oxla3b,
{0x0876,
0x11d3,
{0x3bf8,
0x1fd6,
{0x0e4c,
Ox1llef,
{0x1la7d,
0x3ed7,
{0x31c3,
0x2036,
{0x3617,
0x3738,
{0x00b2,
0x26e6,

0x2148,
0x0194,
0x3b94,
0x2f84,
0x1144,
0x02f5,
Oxlaef,
0x3127,
0x31e8,
0x10d9,
0x3205,
0x339c,
0x1a9d,
0x148e,
0x18d3,
Ox24ec,
0x3d52,
0x0ffd,
0x37d4,
0x1284,
Oxlea7,
0x106c,
0x1864,
0x1253,
0x21cO0,
0x3480,

0x25db,
0x3b79,
Oxlef4,
0Ox1b3e,
0x2950,
0x0931,
Ox10fa,
0x02ef,
0x37d2,
0x0c56,
0x0539,
0x0473,
0x1d9d,
Ox3dae,
0x03e2,
0x0055,
0x3c12,
0x0727,
0x3633,
0x14be,
0x14d7,
0x1df9,
0x06c5,
0x1146,
0x2db3,
0x20f1,

0x0cla,
0x2bd3,
Ox1fel,
0x3540,
0x2e50,
0Ox15el,
0x37f9,
0x3e42,
0x1729,
0x0f0a,
0x3e45,
0x2610,
0x140b,
0x0f09,
Oxled4,
0x39fc,
0x025e,
0x242a,
0x25d8,
0x0c12,
0x1b08,
0x3f7e,
0x0161,
0x39dd,
0x010a,
0x2508,

Ox3dec,
0x38fe,
0x3beb,
0x2544,
0x279b,
0x1f90,
0x2b69,
0x09b7,
0x21d4,
Oxleaa,
0Ox1dc5,
0x3225,
0x2c79,
0Ox26c¢c7,
0x29b8,
0x35c7,
0x303c,
0x265a,
Ox1lde2,
0x32al,
OxObde,
0x23b4,
0x3f6c,
0x15b2,
0x23e0,
0x0e34,

0x2f99,
0x3077,
0x27d8,
0x14b6,
0x1010,
0x3446,
0x24f2,
0x3alf,
Oxlaea,
0Ox31le2,
Ox1b11,
0x106a,
0x326d,
0x2777,
0x31dc,
Oxllaf,
0x1fd5,
0x1f67,
0x0966,
0x0d67,
Ox2e2f,
0x249b,
0x072a,
0x3cf7,
0x30ba,
0x3810,

377

0x1d42,
0x3c99,
0x1557,
0x1201,
0x1151,
0x00ca,
0x075a,
0x116a,
0x2d34,
0x2641,
0x391d,
0x0fca,
0x16b6,
0x3111,
0x19b5,
Ox2ee?2,
0x0737,
0x152b,
0x2821,
0x053a,
0x389b,
0x3dd7,
0x3e69,
0x20cO0,
0Ox0ea5,
Ox2ala,

0x23a8,
0x01cd},
0x0clb,
0x12e3},
0x05de,
0x0273}%,
0x1bOc,
0x10ba},
0x130d,
Oxlcc2},
0x1735,
0x0f92}%,
0x09%4e,
Ox1l6ad},
0x1617,
0x3264},
0x31bf,
0x008b},
0x07f3,
0x24e2},
0x0eb6f,
0x2a25},
0x2f29,
0x3120},
0x2268,
0x3dd3}

{0x06bd,
0x0f84,
{0x1dba,
0x1b52,
{0x160b,
0x2603,
{0x32a7,
0x292b,
{0x3ae5,
0x0c9d,
{0x095a,
0x054c,
{0x2872,
0x37cf,
{0x0c9f,
0x1454,
{0x3265,
0x1148,
{0x0ea8,
0x18b1,
{0x085e,
0x02a6,
{0x280f,
0x0ca8,
{0x01fc,

0x0486,
Ox2e7f,
0x190c,
0x07f0,
Ox2afc,
0Ox2da2,
Ox1le5d,
0x026b,
0x07a2,
0x004b,
0x1a08,
0x3bb4,
0x0f13,
Ox3fef,
Ox1b4d,
0x0646,
0x0d73,
0x1b76,
0x1f71,
0x2909,
0x1346,
0x1036,
0x3075,
0x2f67,
0x2a82,

0x23db,
Oxla5c,
0x3c40,
0x18e2,
0x228a,
0x295d,
0x3f76,
0x300d,
0xla52,
0x374c,
0x2bld,
0x02b8,
0x1d52,
0x16b5,
0x1f88,
Ox2bce,
0x00f4,
0x28a2,
Ox1l7af,
0x37al,
0x329f,
0x1885,
0x38f6,
0x03f8,
0x1826,

0x08b8,
0x2096,
0x0a06,
0x33e9,
0x3f77,
0x3657,
0x31lel,
0x3d01,
0x2c99,
0x27bf,
0x3d86,
0x3023,
0x38cc,
0x1411,
0x0255,
0x3d8c,
0x3cOc,
0x0071,
0x019b,
0x1c52,
0x0bcl,
0x0bco6,
0x1e48,
0x0483,
Ox2a6f,

0x3906,
0x311d,
0x052b,
0x1166,
0Ox2cf2,
0x02el,
0x0955,
0x2434,
0x3b13,
0x3f94,
0x3beO,
0x0696,
0x38da,
0x2c19,
0x205e,
0x07b4,
Ox2aef,
0x3f49,
0x12cb,
0x1f40,
0x001c,
0x3fcd,
0Ox3afl,
0x3b33,
Oxlec3,

0x0ff3,
0x0080,
0x345a,
0x0a81,
Ox1c7e,
0x39b7,
0x0f4c,
Ox2cfc,
0x087f,
0x0f9c,
0x2bb5,
0x0073,
Ox1dbb,
0x2c09,
0x260f,
0x3f85,
Ox3ele,
0x100b,
0x26ff,
0x080b,
0x0a04,
0x37ee,
0x3407,
0x1797,
0x3088,

378

0x050f,
0x1e38,
0x2372,
0x34e4,
0x1451,
0x07aa,
0x128e,
0x1126,
0x138f,
0x1020,
0x2865,
Ox1cde,
0x3e67,
0x1f82,
0x1b72,
0x3c26,
0x23ch,
0x2526,
0x3262,
0x3ba3,
0x0341,
0x17a5,
0Ox1lc3a,
0x0fb7,
0x3966,

Ox14ae,
0x0d08},
0Ox21de,
0x1135},
0x3422,
0x159d},
0x0535,
0x30ca},
Ox1cfd,
Ox1llba},
Oxlaca,
0x1a68},
0x2493,
0x3095},
0x0490,
0x318d},
0x046a,
0x3cd0},
Ox1de8,
0x1f3d},
Ox2ecd,
0x194a},
Oxlaab,
Ox26ec},
0x00c1,

0x3146,
{0x2900,
0x0b08,
{0x3892,
0x192f,
{0x3200,
0x02e4,

0x0c36,
0x0685,
0x18fb,
0x20c4,
0x23c4,
0x27c3,
0x01b2,
b,
{ {0x3900,
0x15bf,
{0x12bd,
0x0583,
{0x3760,
0x0dbf,
{0x20f8,
0x02a8,
{0x0acf,
0x299%e,
{0x38f7,
0x1fb5,
{0x2645,
0x32f3,
{0x2fcl,
0x10al,
{0x341c,
Ox2e3e,

0x0c88,
0x2817,
Ox1le76,
0x103f,
0x3796,
0x3543,
0x28a0,
0x33dc,
0x0ec5,
0x2835,
0x136a,
0x3021,
0x34bd,
0Ox2c2a,
Ox2cea,
0x2095,
0x082a,
0x0276,

0x04f4,
0x3fdb,
0Ox3aal,
0x019d,
0x3f97,
0x1715,
0x0cc?2,

0x1d17,
0x1d34,
0x1d8c,
0x229d,
0x3707,
Ox3c2e,
0x3276,
0x3637,
0Ox0fdf,
0x3fd7,
0x370e,
0Ox1d3a,
Ox1leaO,
Ox2eae,
Oxlabd,
0x0553,
0x0ae4,
Ox3dfe,

0x0260,
0x3c89,
0x34el,
0x2a9e,
0x30c3,
0x1cd9,
0x20f2,

Ox3ad3,
0x0832,
0x18c9,
Ox1c74,
Ox17ac,
Ox2eab,
0x1c96,
0x3az20,
0x1f99,
0x3e9%e,
0x1409,
0x0e95,
Ox1fle,
Ox2bdd,
0x04eb,
0x0e57,
0x3221,
0x305c,

0x2b9d,
Ox14fa,
0x121f,
0x275b,
0x0647,
0x150e,
0x0540,

0x2397,
0x3698,
0x2e06,
0x0753,
0x21be,
0x3a95,
0x31a5,
0x2f7b,
0x2e98,
0x1837,
0x3772,
0x308b,
0x102d,
0x037b,
0x3234,
0x3e78,
0x0984,
0x2147,

0x2948,
0x0405,
0x3d84,
0x0cbh8,
0x280b,
0x1f8f,
Oxla7f,

0x2d78,
Ox1l7fa,
0x1b57,
0Ox2ae9,
0x23a6,
0x3ae0,
Ox3acc,
0x28c9,
0x10e4,
0x0ddc,
0x3977,
0x3cc7,
0Ox0adl,
0x3385,
0x1d08,
0Ox1lado,
Ox3afa,
0x3af8,

379

0x1f47,
0x2f22,
0Ox2ed7,
0x0e52,
0x3308,
0x2d82,
0x2b14,

0x118d,
0x384e,
0x218d,
0x3843,
0x31f2,
0x06b5,
Ox2ee4,
0x1db0,
0x2654,
0x2bb6,
0x37cO0,
0x008a,
0x162b,
0x0923,
0Ox2elb,
0x3c4d,
0x0c3c,
0Ox06aa,

0x195b},
0x019e,
Oxlceb},
0x1c45,
0x0bdd},
0x3b75,
0x201c}

0Ox1d2c,
0x0ab8},
0x1612,
0x3bcb},
0x2bc3,
0x019f%,
0x3499,
0x32393%,
0x28ab,
0x0961},
0x050b,
0x30el},
0x196d,
0x04ec},
0x17e0,
0x24a8},
Ox1fe4,
0x1162},

{0x2672, 0x295e, Ox1f7f, 0x34e8, 0x2657, 0x2c65, O0x27aa, 0x1f10,
Ox3ela, 0x0f3b, 0x233e, 0x1302, 0x185e, 0x0707, 0x3f29, 0x36¢c6},
{0x128f, 0x0e37, 0x0112, Ox0a2a, 0x08e5, 0Ox3c5e, 0x0492, 0x39d2,
0x2078, 0x067a, Ox1ff6, 0x3d1l8, 0x1844, 0x2625, 0x2081, 0x026d},
{0x3aa8, 0x0d81, 0Ox2bf6, 0x346f, 0x0672, 0x3869, 0x23c2, 0Oxle39,
0x0353, 0x35e8, 0x0d58, 0x33b9, 0x10d4, 0x10f3, 0x183d, Ox1l5a4},
{0x1c8e, 0x3821, 0x27ab, 0x282c, 0x2a86, 0x0530, 0x00a6, 0x1l0Oe5,
0x1470, Ox2ccb, 0x2c3c, 0x099c, 0x173d, 0x34cl, Ox03aa, 0x0000%},
{0x1449, 0x0333, 0x026f, Oxlcdf, 0x299f, Ox2ec8, 0x340f, 0Ox3ad5,
0x1d09, 0x1b92, 0x3b89, 0x15f8, 0x0b86, 0x03c7, 0x3519, Ox26de},
{0x2ad8, 0x0022, 0x1lddO, 0x13b5, 0x256c, O0x3bbl, 0x2565, O0x1lc48,
0x247a, O0x3fbf, 0x076f, O0x1le88, OxOcab, 0x17f8, 0x3616, Ox3edd},
{Ox1cla, OxOb3f, 0x2914, 0x36a9, 0x164b, 0x2154, 0x1710, 0x1426,
0x3e05, Ox2acb, 0x39e3, 0x3975, 0x3434, Ox3e6e, 0x3984, 0x20f6}
b,
{ {0x0a53, 0x1f86, 0x0863, 0x0461, 0x1906, OxObb9, 0x16f6, 0x2d31,
0x0da6, 0x22cb, 0x273e, 0x326b, 0x1987, Oxlale, 0x10f8, 0x0848},
{0x1a49, 0x3607, 0x30eb, 0x30da, 0x0208, 0x1fb8, 0x049d, 0x2cd5,
0x1b28, 0x3808, O0x3ce4, 0x269e, 0x3294, 0x0fd3, Ox21fa, O0x2b43},
{0x10a9, 0x059c, 0x1d9c, 0x3f9b, 0x3454, 0x3000, 0x3929, 0x0cO05,
0x314d, 0x2153, 0x3fd3, 0x35e3, Ox3a6a, 0x2202, 0x037c, 0x378f},
{0x0990, 0x0d02, Ox2ebc, Oxlea5, 0x0f3d, 0x273b, 0x30bc, 0x2b35,
Ox1le35, 0x00c0, 0x23eb, Ox2ac7, 0x05e9, 0x03la, O0x1526, Ox236e},
{0x10b2, Ox2bf0, 0x29e4, 0x1299, 0x1549, 0Ox1ld44, 0x006d, 0x018a,
Ox10ab, 0x1778, 0x3504, 0x060a, 0x1d04, 0x13db, 0x1d73, 0x2818},
{0x276f, Ox15e3, 0x262e, 0x0054, 0x1831, 0x3965, Oxlba2, Oxlacc,

380

0x2d83, 0x12f5, 0x1221, 0x3b58, 0x09bd, 0x3d47, 0x386f, 0x1d25},
{0x3f9c, 0x2525, 0x0dbc, 0x1768, 0x0430, 0x199d, 0x007d, 0x073f,
0x3199, 0x06el, O0x1lb26, Oxlaf5, 0x2551, 0x0228, 0x3b71, 0x2592},
{0x12e4, OxOccb, 0x079f, O0x3f61l, Oxl6fe, Ox0cOf, 0x362e, 0x29f5,
0x2f6c, Ox1fdd, Oxllce, 0x2304, 0x191le, O0x3b0Oe, 0x3a94, 0x0f01},
{0x3019, 0x1635, 0x2340, 0x0d23, OxOce2, 0x294f, Oxla2c, 0x00cd,
0x109a, 0x1272, 0x06de, Oxlab3, 0x2605, Oxlad7, Ox27cd, 0x229f},
{0x34a7, 0x206c, 0x12d2, 0x033b, Ox055f, Ox2fbf, 0x39f4, 0x102e,
0x0de3, 0x3fba, O0x0a3f, Ox1lbl4, 0x3402, Ox1b67, 0x254f, Ox1l5ed},
{0x02bd, 0x3a38, 0x3247, 0x2lel, 0x3df4, 0x0142, 0x1b81, 0x2a50,
0x21dd, O0x36de, 0x0318, 0x37b3, 0x018b, Oxlce8, 0x1d87, Oxlafe},
{0x2479, 0x3de8, 0x3fd5, Ox38bl, 0x15d9, OxObc2, 0x127c, Ox0a4l,
0x3da9, 0x0002, 0x0904, 0x0209, 0Ox26cc, Oxlcac, 0x11f7, 0x070e},
{0x14c9, 0x2460, OxlcOa, 0x2dd2, Oxla3e, Ox2f3e, Ox14a5, 0x18c4,
0x3068, 0x3b7d, 0x2d92, 0x3985, 0x2183, Oxl6bc, 0x0622, Ox2eel},
{0x3dd1l, Ox1f50, Ox1f78, Oxlbe9, 0x104e, 0x1983, 0x2043, 0x2151,
0x1651, 0x05b6, Oxle2a, 0x009a, 0x0e64, 0x0f05, 0x30e4, 0x349e},
{0x010f, 0Ox16d0, 0x37f1l, 0x2d98, 0x20e6, 0x3084, 0x24d9, 0x3502,
0x18f0, OxOba2, 0x1llc6, Ox3bac, 0x1599, 0x3d42, Oxlfeb, 0x2335},
{0x2594, 0x17eb, 0x334c, 0x29a9, 0x379c, 0x3a2l, Oxldcc, 0x32d9,
0x1b22, 0x0b85, 0x022e, 0x097b, 0x3f52, 0x27bd, 0x319f, 0x239c}
b
{ {0x1f00, 0Ox2cf3, 0x3290, Ox2dec, 0x07cb, 0x21lcl, 0x2686, 0x00a5,
0x089f, 0x25fe, O0x05f6, Ox2fel, OxOaba, 0x25dd, Oxlclf, 0x0d18},
{0x362c, 0x39fb, 0x20bc, O0x0ael, 0x35fc, 0x03ef, 0x2468, Ox2fa7,
0x0346, 0x1957, 0x37f6, 0x1414, 0x0394, 0x0911, 0x017a, O0x305e},

381

{0x38ef,
0x3a80,
{0x258e,
0x30b0,
{0x0d8f,
0x291e,
{0x046b,
0x39b8,
{0x0f29,
0x1291,
{0x3b3e,
0x198d,
{0x0ba3,
0x01d2,
{0x279c,
0x144a,
{0x16e0,
0x3898,
{0x3610,
0Ox14ee,
{0x2696,
0x2754,
{0x0b52,
0x3a35,
{0x3f3e,
0x3eb6,

0x1835,
0x0e79,
0x0c91,
0x34de,
Ox2e2c,
0x37cc,
0x0d3b,
0x3a8b,
0x0090,
0x064b,
0x14a9,
0x036a,
0x02df,
0x0014,
0x0795,
0x09do0,
0x267a,
0x308e,
Oxlad5,
Ox1d14,
0x2333,
Oxlecl,
0x0263,
Oxlafd,
0x2091,
0x382a,

0x3102,
0x02a2,
0x1876,
0x2427,
0x0932,
Ox15aa,
0x3058,
0x0d27,
0x3d09,
0x23b3,
0x256f,
0x222f,
0x3466,
0x23fe,
0x140a,
0x2607,
0x0206,
0x0564,
0Ox2c6f,
0x018e,
0x05a3,
0x0e5b,
0x3d03,
0x1776,
0x2687,
0x2282,

0x2d28,
0x31bd,
0x0383,
0x0a58,
0x0599,
0x1354,
0x1d07,
0x1461,
0x233f,
0x3d83,
0x1f83,
0x2780,
0x0259,
0x248b,
0x3d2d,
0x0a89,
0x163e,
0x1c03,
0x3776,
Ox2d1la,
Ox2ea4,
0x309d,
0x0cfc,
0Ox3ac2,
0x054a,
0x0701,

0x0602,
0x32b0,
Ox2d6c,
Oxleaf,
0x0913,
0x058b,
0x2447,
0x019c,
0x153e,
0x01c1,
0x311c,
0x0626,
0x33e0,
0x3fe4,
0x317b,
0x0b9b,
0x1199,
0x05e0,
0x302b,
0x135f,
0x11d7,
0x3074,
0x02a5,
0x2346,
0x0480,
Ox3dde,

0x0bf9,
0x3f82,
0x0519,
0x31le7,
0x280d,
0x3b5b,
Ox2ed2,
0x09c4,
0x11f5,
0x38c1,
0x117d,
0x2a04,
0x02ab,
0x3c51,
0x1f3a,
0x3fle,
0x1645,
0x2041,
0x089d,
0x0c1f,
Oxlaff,
0x141c,
0x07a3,
Ox2ebb,
0x195f,
0x2843,

382

0x17ed,
0x01c9,
0x1921,
0x3b55,
0x0fe8,
Oxlaee,
0Ox1bd4,
0x0852,
0x32f2,
0x375d,
0x2e49,
0x19aa,
0x0alf,
0x1d70,
0x2505,
Ox2bed,
0x10ed,
0x3753,
0x058a,
0x209a,
0x1095,
0x188a,
0x05fb,
0x2f01,
Ox17e3,
Ox1l6ea,

0x2760,
0x043c},
0x0c24,
0x0dcd},
0x3331,
0x31b5},
0x00e4,
0x1756},
0x3757,
0x3338},
0x38f1,
0x110e},
0x11db,
0x20d7}%,
0x3b07,
0x08ed},
0x232b,
0x2d64}%,
0x26fd,
0x2f75}%,
0x36e5,
0x285d},
0x1000,
0x3361},
0x09e9,
Ox2e7e},

{0x2480, 0x0a8e, 0x3a78, 0x1553, 0x307e, 0x10eb, 0x0b99, 0x17fb,
O0x3ae8, 0x0220, 0x2d7a, 0x0c4l, Ox1lb5f, 0x3d2a, 0x2d00, 0x327c}
3,
{ {0x22d4, 0x28ed, 0x0924, 0x08d3, 0x1266, Ox3ce3, O0x3f0f, 0x33ca,
0x00fc, 0x3ele, 0x1306, 0x2b39, 0x0094, 0x13df, 0x24bl, 0x0a80},
{0x04b9, 0x2b45, 0x1332, 0x1b09, 0x26bf, 0x00d0, 0x251c, 0x2511,
0x20c8, 0x31ff, O0x3dfl, Ox2lad, O0x245e, Ox3cad, 0x391b, Oxlec7},
{0x2ald, 0x3219, Ox07ac, 0x2762, 0x3623, Ox3efa, 0x00bd, 0x1dd8,
0x1b05, 0x254b, 0x0a8f, 0x314b, 0x2cc2, 0x29a8, Oxl3aa, O0x1139%},
{0x1b8e, 0x14b3, 0x3765, 0x2371, 0x275c, Ox2bf2, 0x355c, 0x2735,
0x283e, 0x32a8, 0x3382, 0x1l68a, 0x0d0a, Oxlel8, 0x365c, Ox15d5},
{0Ox1lef5, 0x144d, OxObbc, 0x2307, 0x068c, Oxlf6a, 0x1487, 0x3edO,
0x10a2, Oxlb4a, OxOdac, 0x2831, OxOece, 0x0417, 0x2501, Ox1d48%,
{0x29ac, Ox1le9b, 0x00c4, 0x28fb, 0x2clb, 0x3c7c, 0xlad46, 0x0f95,
Ox2ec6, 0x122c, 0x241d, 0x32e0, 0x23c6, 0x3f86, O0x2b5b, 0x191f},
{0x34b4, Ox2fac, OxOba6, O0x06cb, 0x2836, 0x3980, 0x0734, 0x0565,
0x39f8, 0x3b2d, 0x121d, Ox25ea, 0x356d, 0x0277, 0x2238, 0x0f69},
{0x3de4, 0x2452, Oxlcb7, 0x2dc2, 0x241lc, 0x0702, 0x0df2, 0x2667,
0x05ab, 0x2203, 0x37ce, Oxlae6, 0x2022, 0x306f, 0x0725, Ox158f},
{0x3727, 0x124d, 0x15al, 0x3557, 0x084b, 0x03d4, 0x2899, 0x2d25,
0x01b1l, Ox1lc6b, 0x29e6, 0x2256, 0x3a64, 0x00d7, OxOeca, Oxlc22},
{0x37f5, 0x1800, 0x0986, 0x15d6, 0x227c, 0x2ec9, 0x3030, 0x3c46,
0x02b1l, Oxlc6f, 0x04d9, O0x3bbc, Oxl5ac, 0x1b93, 0x3ad7, Ox1l5ba},
{0x187f, 0x17d3, 0x05cl, 0x0224, OxOlac, Ox29be, Ox1l7e4, 0x12f9,
0x252d, 0x0153, 0x38fc, 0Ox0fcl, 0x0f35, 0x133e, 0x0c8a, 0x3b60},
{0x0823, 0x012c, 0x304b, 0x3d79, 0x20dc, 0x26b4, 0x375a, 0x2955,

383

0x3c77,
{0x3469,
0x37d8,
{0x348d,
0x0959,
{0x1bfO,
0x2d3c,
{0x1475,
0x12f3,
b
{ {0x26b5,
0x127d,
{0x0af1l,
0x0b82,
{0x2016,
0x2520,
{0x2563,
0x13d1,
{0x01a6,
0x3158,
{0x20f0,
0x12d3,
{0x1261,
0x392b,
{0x28cc,
Ox1bab,

0x01bb,
0x2791,
0x05cb,
0x05a4,
0Ox25ac,
0x14b0,
0Ox2fa8,
0x33c3,
Ox1bd2,

0x0d43,
Ox3ee?,
0x27fc,
0x163b,
0x0cdO,
0x0lec,
0x226a,
0x2a49,
0x1f06,
0x073b,
0x3d65,
0x39f2,
0x3a3b,
0x372f,
0x176d,
Ox1cdb,

0x1615,
0x01d6,
Oxlele,
0x0356,
0x1959,
Ox2ea?2,
0Ox1cfo,
0x01b6,
0x2857,

0x29ea,
0Ox2c5c,
0Ox1cd6,
0x242d,
0x0b5c,
0x0f23,
0Ox11c9,
0x0c5e,
0x007a,
0x2709,
Ox0af3,
0x1fb6,
0x3ec5,
0Ox3cda,
Oxldda,
0x0fd2,

0x2380,
0x02b3,
0x02a3,
0x1a04,
Ox2cd4,
0x374e,
0x30e3,
0x06d0,
0x27a9,

0x0bed,
0x2b57,
Oxlecl,
0x39eb,
0x272e,
Ox1bo6c,
0x213e,
0x26be,
0x2507,
Ox1l1lfe,
0x297c,
0x2163,
0x30ee,
0x3b74,
0x3832,
0x0748,

0x2257,
0x0457,
0x10c1,
0x1f3c,
0x0616,
0x3501,
0x1999,
Ox1c42,
0x2766,

0Ox3ccc,
0x1d4b,
Ox1bfc,
0x04b5,
0x3d0d,
0x3d4f,
0x0c47,
Ox3daa,
0x1f3f,
0x092e,
0x088b,
0x0175,
0x1358,
0x277b,
0x3587,
0x105c,

0x2763,
0x2003,
0x2e96,
0x3bb6,
Ox15ef,
Oxla21,
0x0335,
Ox3aeb,
0x2104,

0Ox2ed6,
0x1d43,
0x3090,
0x0722,
0x0e59,
0x143f,
0x38a2,
0Ox36aa,
0x2c97,
0x38ca,
Ox26af,
Ox3ea4,
0x0b89,
0x3ab5,
0x3da2,
0x278e,

384

0x3032,
0x156b,
Ox2aal,
Ox2dé6b,
Ox3acf,
Oxlal2,
0x3c90,
0x230e,
0x39a7,

0x081a,
0x09a9,
0x0c59,
0x2088,
0Ox1b12,
0x036e,
0x0639,
0x3073,
0x039a,
0x38be,
0x3233,
0x2b49,
0x16b4,
0x3fc2,
0x06fd,
0x1576,

Ox3a4d},
0x208a,
0x0e99},
0x0be2,
0x27a7},
0x2769,
0x208f},
0x0775,
0x2b72}

0x1c83,
0x3ec9},
0x06b7,
0x3c88},
0x35f1,
0x3012},
0x39c8,
0x155f%,
0x2365,
0x398c},
0x245a,
0x125f},
0x1353,
0x32de},
0x32el,
0x1333},

{0x23ad,
Ox1lca5s,
{0x2d60,
0x384c,
{0x3ce0,
0x316f,
{0x1c10,
0x3feb,
{0x29d3,
Ox1fef,
{0x1a97,
0x1160,
{0x2825,
0x1149,
{0x19eb,
0x3bdO,
b
{ {0x23f9,
0x2798,
{0x1bf4,
0x3c5d,
{0x2b86,
0x0f9e,
{0x0f5c,
0x37fc,
{0x054f,

0x369f,
0x288e,
0x344d,
0x257a,
0x3693,
0x3a6b,
0x31b9,
0x199b,
0x0933,
0x333d,
0x1e02,
0x2971,
0x198a,
0x2b31,
0x18bd,
0Ox31laa,

0x1386,
0x095b,
0x09ef,
0x06d1,
0x0144,
0x2bd6,
0x24dd,
0x0dc5,
0x0bc5,

0x23be,
0x3b3b,
0x2744,
0x22ee,
0x13c9,
0x25e8,
0Ox1lad8,
0x3404,
0x1620,
0x1f33,
0x2680,
0x3114,
0x377b,
0Ox1bOa,
0x2377,
0x2172,

0x28ff,
0x31bc,
0x0946,
0x3922,
0x1574,
Oxlecb,
0x14f2,
0x210e,
0x29bd,

0Ox22fa,
0x0e3c,
0x0367,
0x2742,
0x26b9,
0x133c,
0x0342,
0x2d4f,
0x2519,
0x2488,
0x3818,
0x33el,
0x3d48,
0x05f1,
0x292e,
0x178c,

0x07ad,
O0x3dlc,
0x2ff1,
0x34aa,
0Ox26e2,
0x1391,
0x2ebb6,
0x23fa,
Ox1ledl,
0x22a4,
0x1827,
0x155a,
0x1779,
Ox1lda2,
0x3b78,
0x0cbf,

0x043f,
0x22f0,
0x17c1,
0x1457,
0x3621,
0x25ad,
Oxlab4,
0x27f4,
0x3eb4,
0x2bf3,
Ox36ce,
0x2439,
0x09b4,
OxOeda,
Oxlala,
0x3bef,

0x1124,
0x33f1,
0x12d8,
0x30al,
0x065e,
0x2175,
0x2159,
0x20e5,
Ox0fec,

Ox2fcc,
0x1f64,
0x34c6,
0x3e94,
0x2cf7,
0x03a2,
0x0d5c,
0x3cf4,
0x1498,

0x0424,
0x1888,
0x3571,
0x2631,
0x36d5,
0x341d,
Ox1b4f,
0x18b9,
0x0983,

385

0x07b2,
0x08ff,
0x0f4b,
0x17be,
0x0fdd,
0x1038,
0x36f7,
0x0e85,
0x0c7c,
0x28a8,
0x2d05,
Ox3faz2,
0x27c6,
0x22e2,
0x376d,
0x28c5,

0x168e,
0x3209,
0x20ee,
0x2906,
Oxlccl,
0x282e,
0x253a,
0x0dcf,
0x2426,

0x0179,
0x0fbd},
Oxle7f,
0x3f14},
0x21fd,
Ox06ae},
0x2b2d,
0x2d4d},
0x1724,
0x1d8b},
0x0001,
Ox1lfa7},
0x3801,
0x307d},
0Ox16cd,
0x119b}

0x2994,
Ox3cab},
0x04a4,
0x2487}%,
0x2807,
0x268a}l,
0x2d9c,
0x176e},
0x243e,

Ox1bbd, 0x324b, 0x2f5c, 0x0892, 0x20ec, 0x1602, 0x321f, 0x2810},
{0x2461, 0x069d, 0x04e6, 0x1319, Ox1fc3, 0x2f9f, 0x205a, 0x249c,
Ox1b44, 0x117b, 0x292f, O0xOcbc, 0x36f1l, 0x3d94, 0x022f, 0x2308},
{0x06d3, 0x3167, O0x0dc4, Ox31le5, Ox0e33, 0x212f, 0x037d, Oxlelf,
0x1582, 0x1649, 0x2136, 0x301d, 0x2a97, 0x01f8, 0x09b3, 0x3d88},
{0x1118, 0x203e, 0x2e36, 0x2fc5, 0x092f, 0x1587, 0x10e2, 0x17bb,
0x0fc8, 0x282b, Oxldce, Ox2bcl, 0x345c, 0x389d, O0x27ce, 0x1l57e},
{0x015a, O0x07da, 0xl22a, Oxlba0O, OxOcld, Ox3ch4, 0x3d0f, Ox2ela,
0x0713, 0x33f4, 0x12b8, 0x3c24, Oxlae5, 0x0470, 0x38a3, 0x3511},
{0x106e, 0x1f28, 0x1366, 0x3a89, 0xO0b3b, 0x3295, 0x3dc7, O0x2af3,
0x2e89, 0x3f81, O0x0a2e, 0x0010, 0x0865, 0x0956, 0x2269, O0x1f5c},
{0x28aa, 0x17b2, 0x167b, 0x36fc, OxOed5, 0x34a2, 0x2f1l9, Ox1l74c,
0x1c50, 0x244a, 0x30ce, O0x1l6a4, Ox3lce, 0x384f, 0x19d4, 0x368c},
{0x3fee, 0x016f, 0x324d, 0x1la9b, 0x01lc2, 0x2489, 0x30c8, 0x32fd,
0x2315, 0x34a3, O0x35af, Ox05aa, 0x3fd9, 0x37dd, 0x186b, 0xlaOf},
{0x29e5, 0x0061, 0x0059, 0Ox3al7, Oxld2d, Ox33ff, 0x2a98, 0x3901,
0x25al, 0x0laf, 0x16b8, 0x07bl, 0x1127, 0x3885, 0x299a, 0x058c},
{0x2226, 0x289e, 0x207f, Ox1llbf, 0x2661, 0x2c87, 0x2997, 0xO06ea,
0x2271, 0x363e, 0x0222, 0x26el, 0x3457, Oxlee7, 0x128d, 0Ox3cl7},
{0x3d85, 0x2727, 0x3851, OxOadd, 0x246c, 0Ox33af, 0x3794, 0x317d,
0x0591, 0x3f2e, 0x297b, 0x3b32, 0x178f, Oxlc5b, Ox3da3, 0x39a5},
{0x361a, 0x3532, 0x2a79, 0x1605, 0x3c57, 0x2395, 0x3bl0, 0x263e,
0x37ab, 0x1fd2, 0x0223, 0x2541, Ox2al6, 0x190f, Oxl6fa, 0x0021}

3,

{ {0x1529, 0x3e20, 0x29c4, 0x3e79, 0x0f73, 0x31l4a, 0x2dbl, 0x36b7,
0x3dc3, 0x288b, 0x367e, 0x2a7d, Ox36ae, 0x2le4, 0x3596, 0x031b},

386

{0x24e0,
0x2633,
{0x1led,
0x36f3,
{0x2e5f,
0x3828,
{0x31d9,
0x1e68,
{0x3527,
Ox3aab,
{0x1328,
0x3487,
{0x0dc8,
0x3ed9,
{0x0edb,
0x3a00,
{0x2abc,
0x3346,
{0x181f,
0x1247,
{0x3f8f,
0x2382,
{0x2834,
Ox1ldcl,
{0x39d6,
0x1801,

0x39a9,
0x12c9,
0x2c66,
Ox2bel,
Ox2cbc,
0x05db,
0Ox0a4e,
0x2f96,
0x22da,
Ox1cb1l,
0x119c,
0x23ab,
Ox0acd,
0x042b,
0x315f,
0x0674,
0x0faz2,
0x393a,
0x2b7f,
Ox1ldcf,
0x1352,
Ox3e5d,
0x3d2c,
0x2f26,
0x3970,
0x03cl1,

0x1317,
0x04c6,
0x257d,
0x0947,
0x31ba,
0x0cbe,
Ox2fe3,
0x29b9,
0x22d6,
0x3e95,
0x115d,
0x2fb9,
0x0a3a,
0x3d3d,
0x28ba,
0x07ed,
0x3268,
0x309a,
0x14cb,
Ox2e5e,
0x3070,
0x369e,
0x313a,
0x05f8,
0x0d9d,
0x0528,

0x25d4,
0x0e6b,
0x162f,
Oxleee,
0x2c9a,
0x139a,
0Ox0Oeac,
0x0131,
0x30c9,
0x2060,
Ox11la4,
0x03b0,
0x3cd2,
0x0732,
Ox21lea,
0x03fb,
0x3488,
0x31c9,
0x22a9,
0x2fod,
Ox1b21,
0x0cd7,
0x1f94,
0x120e,
0x00ce,
0x2442,

0x27a8,
0x2884,
0x0401,
0x1c82,
0x0654,
0x1194,
0x3369,
0x3e46,
0x29ec,
0x3a22,
Ox1ldec,
0x202a,
0x06b8,
0x3746,
0x3aa0,
0x1fof,
0x094b,
0x22cc,
0x14c1,
0x0155,
0x3el2,
0x2707,
0x32b9,
Ox1fdb,
0x2c8f,
0x3998,

Ox2fdc,
0x0b67,
0x1986,
Oxleb7,
0x1b77,
0x22f9,
0x2d7f,
0x3d58,
0x2878,
0x1a29,
0x31a8,
0x3151,
0x0d86,
oOx2f1f,
0Ox1eb5,
0x0092,
0x3b26,
0x3cfd,
0x005c,
0x1b2b,
0x2c57,
0x2b79,
0x16cO0,
0x37fe,
0x30f1,
0x34cc,

387

0x25ef,
0x231c,
0x3231,
0x09c1,
0x2710,
Ox2de2,
0x0f59,
0x009f,
0x3céd,
0x3f22,
0x3efb,
0x2181,
0x02ff,
0x236a,
0x2188,
0x31d4,
0x0075,
0x01b0,
0x1f63,
0x0a63,
0x374d,
0x17d6,
0x04e7,
0x3510,
0x1422,
0x3241,

0x1618,
Ox1b6d},
0x00e6,
0x3c65},
0x0a91,
0x0651},
0x17b4,
Oxla8a},
0x2640,
0x0c29},
0x392f,
0x3251},
0x0b4c,
0x0116},
0x26e0,
0x2b78}%,
Oxle3e,
Ox1c5c},
0x3de5,
0x2e75}%,
0x293d,
0x19ad},
0x3eld,
0Ox3cde},
0x3658,
0x17c2},

{0x281b, 0x3263, 0x19e8, 0x219f, 0x2927, 0x255f, 0x1d72, 0x3175,
0x2338, 0x063e, 0x1930, Ox1l6a5, Oxl6e7, 0x14f7, 0x1lc07, 0x35d3},
{0x230f, 0x1192, 0x0f3a, 0x06c9, 0x29cd, Ox3ad4a, 0x1243, 0x2a9f,
0x2399, 0x0cdl, 0x26d4, Ox2b4a, 0x077d, Ox2ce9, 0x3791, Ox1lc66}
b
{ {0x347c, 0x25e5, 0x0de9, 0x294e, 0x2e55, 0x381lc, 0x297a, Ox3fa5,
0x1189, 0x3f05, 0x1793, 0x32bc, Ox3dce, 0x3092, 0x2a89, 0x151d},
{0x0d56, 0x0439, 0x28d7, 0x2270, 0x2de0, 0x2851, 0x1739, 0x3682,
Ox2cc8, 0x05f0, 0x23f2, Ox0all, 0x3164, 0x3287, 0x1l0e7, 0x3477}%,
{0x2d5f, Ox2da7, 0x0b06, 0x316d, 0x0035, 0x0978, 0x1ld7c, 0x370a,
0x093e, 0x1c53, 0x298b, 0x0ed0, 0x19bd, 0x3769, Oxlfaa, 0x0b44},
{0Ox1le6f, 0x02f4, 0x0c43, 0x2a5d, 0x0119, Ox3b6f, 0x34e0, 0x0661,
0x32c0, 0x1l7ee, 0x25f5, 0x3e75, Ox1f9b, 0x06a6, Ox2bad, 0x1846},
{0x05be, 0x18a6, 0x2ddd, 0x39fe, 0x0968, 0x223d, 0x2f00, 0x2855,
0x36¢c9, 0x184b, 0x1134, 0x0a8d, 0x3f2a, 0x203c, OxOea3, 0x22c7},
{0x1251, 0x220d, Ox2f2f, 0x23c9, 0x2721, 0x3e96, 0x2069, Ox0f8f,
0x0610, Ox3ba6, 0x3978, 0x040f, O0x31lfc, 0x2f47, 0x3d3a, 0x03fe},
{0x3392, 0x12ef, 0x30d9, OxOdee, 0x2d1l4, 0x1407, Ox2cd2, OxObfa,
0x057d, 0x0106, 0x1f45, 0x07bf, O0x24bf, Oxlbe2, Ox2bfa, 0x0365},
{0x0347, 0x3935, Ox0Odla, 0x22d8, 0Ox1b43, 0x3dld, 0x19f3, Ox2fbe,
0x29dc, 0x2351, 0x028f, 0x1203, Oxlc4a, 0x025c, Ox1le9, 0x0340},
{0x1780, 0x2573, 0x1d35, 0x2f82, 0x2244, 0x2859, 0x0898, 0x1143,
0x0265, 0x150b, 0x13cd, O0x00ff, 0x013d, 0x3d66, Ox3bed, 0x2d03},
{0x3c08, 0x04a3, 0x108b, 0x21d2, 0x01d0, O0x0835, 0x065d, OxOefa,
0x0f2f, O0x06a4, 0x23a2, 0x3330, Oxlel4, 0x10dc, 0x01b3, Ox1le86},
{0x3855, 0x0896, 0x27fl, 0x2e6l, 0x3d2b, 0x34bb, 0x12le, 0Oxl2e5,

388

Ox1lca9, 0x04ae, 0x1390, Ox2acl, 0x3d44, 0x063b, 0x3d3b, 0x1660},
{0x3315, 0x0527, 0x10f6, 0x01l2a, 0x002d, 0x08de, Ox1lc67, 0x2f87,
0x043a, 0xla35, 0x0689, 0x0e81, 0x33a2, 0x2d4b, Ox3db2, 0x1638%,
{0x393d, 0x0db2, 0x3026, 0x3el9, 0x1lb1l8, 0x1665, 0x3a24, 0x357c,
0x039f, 0x079a, Oxleab, 0x082c, 0x3f08, Ox3ce2, 0x235f, 0x087d},
{0x2fb5, 0x0163, 0x2089, 0x0024, 0x0e93, 0x2d39, 0x35b7, Oxle5b,
0x0a9c, 0x0b43, 0x154e, 0x0f2b, Oxlad4, 0x040b, 0x39e4, 0x3a2b},
{0x0cf9, OxleOd, 0x2a92, 0x3419, 0x0950, Ox134a, 0x2d26, 0x295c,
0x2d07, 0x0fa6, O0x0c6b, 0x2cll, 0x3a04, 0x3d67, Ox2aed, O0x27al},
{0x26d0, Ox13a2, Ox3d4a, Ox11lb7, 0x3539, 0x1572, 0x2733, 0x22f5,
0x15df, 0x0861, 0x367c, OxOb41l, 0x35d4, Ox34ab, Oxllcd, 0x0d91}
s
{ {0x2al5, 0x30d6, 0x27e9, O0x2e54, 0x2e9d, Oxlc2f, 0x24b2, 0x1d85,
0x1330, Ox1b5c, 0x3272, 0x3el5, 0x2f78, 0x1f7c, O0x2a2b, 0x23d2},
{0x0d0d, 0x2741, 0x0676, 0x1l7dc, 0x3e38, 0x0768, 0x293a, 0Ox11d5,
0x0970, Ox2dbb, 0x3f9a, 0x35fb, 0x1794, O0x3c6a, 0x05fa, 0x146f},
{0x3569, 0x1d53, Ox3ef4, 0x1f7e, 0x2b36, 0x31f0, Oxlec2, 0x2d95,
0x0e3b, 0x0ed2, 0x09e0, 0x18e9, 0x0432, 0x2dl7, 0x10le, 0x09df},
{0x2e90, 0x3a39, 0x1245, 0Ox36ca, Ox1lb7f, 0x39f9, 0x0242, Ox2aa3,
0x003a, 0xla78, 0x3ale, 0x0357, 0x300e, 0x1450, 0x3156, 0x1362},
{0x09ce, 0x1b35, 0xObb5, Oxlae9, 0x24ad, 0xOb60, O0x178b, Ox36fa,
0x1c78, 0xOb4b, O0x14al, 0x3972, 0x0Ode6, 0x0500, 0x0b25, 0x245d},
{0x2015, 0x3lab, 0x0c46, 0x16c9, 0x110c, 0x1726, 0x040c, 0x0817,
0x07b9, 0x15f2, O0x3e51, 0x28f3, Ox3e8e, 0x307f, 0x0d6c, 0x3081},
{0x0c20, 0x3954, 0x2473, 0x0c58, 0x01b9, 0x0dlc, O0x27eb, 0x2481,
0x18d0, 0x0bOc, 0x179e, 0x22bc, 0x200d, 0x089c, Ox3alb, 0x2217}%,

389

{0x2b50,
0x2331,
{0x3ff2,
0x2d6f,
{0x1bf9,
0x13c4,
{0x04e2,
0x3e72,
{0x140°,
0x3281,
{0x11bd,
0x36d8,
{0x31f8,
0x25b2,
{0x3258,
0x193e,
{Ox1cca,
0x38f3,
b,
{ {0x0eb3,
0x2347,
{0x0291,
Oxlab5,
{0x11b2,
0x39ea,
{0x0d26,

0x24fc,
0Ox3cc3,
0x3006,
0x2671,
Ox1la51,
0x074b,
0x30ad,
0x066b,
0x3324,
0x33f2,
0x3dcf,
0x3c94,
0x1041,
0x0882,
0x186f,
0x032b,
0x32c3,
0x09bf,

Ox2ab6,
0x27e3,
0x022b,
0x21d7,
0x1053,
0x1f27,
0x378a,

0x32a4,
Ox1ca4,
0x37f4,
0x24cb,
0x1aa0,
Ox1fch,
0x1f59,
0x0152,
Ox2eea,
0x2144,
0Ox18ac,
0x3dd8,
0x195c,
Ox31lee,
0x20df,
0x3d02,
0x00b6,
0x0fe?,

0x03b3,
0x2390,
0x12b2,
0Ox2e3d,
0x043b,
0x10ef,
0x3f0a,

Ox15ea,
0x18d7,
0x3e86,
0x3702,
Oxla4d,
0x1594,
0x0f87,
0x2862,
0x1215,
0x28bf,
0x07e8,
0Ox26fe,
0x3ba9,
0x10fb,
Ox1lccd,
0x0698,
0x04do0,
0x2a00,

0x1d91,
0Ox3e8a,
0x0de6f,
0x270a,
Ox161la,
0x271a,
0x076c,

0x2b97,
0x27fd,
0x2a88,
0x0b49,
Ox3aef,
0x23aa,
0x14e8,
0x1297,
0x2c71,
0x09f8,
0x0f38,
0x2c23,
0x18e7,
0x3cb6,
0x1685,
0x225b,
0x2235,
0x0060,

0x357b,
0x333c,
0x3203,
0x2725,
0x32ac,
0x38bc,
0x0e3a,

0x3cdd,
0x2783,
0x06b1,
0x286d,
0x061e,
0x0efb,
0x183a,
0x20c?2,
0x120a,
0x118c,
0x0cff,
0x2f92,
0x2cd8,
0x1b53,
0Ox0Ocaa,
0x3af7,
0x3681,
OxOadf,

0x3cdf,
Ox1llfc,
0x28ef,
0x0434,
0x0453,
0x23cl1,
Ox2cad,

390

0x2890,
0x157a,
Ox1le32,
0x07ab,
0x38e0,
0x331b,
0x317e,
0x2b92,
0x2385,
0x0373,
0x00b9,
0x170f,
0x1a09,
0x213c,
0x1952,
0x08ea,
0x0b8c,
0x07fb,

0x231d,
0x09ec,
0x19d9,
Ox3bad,
0x014a,
0x27b7,
Ox3ec3,

0x33a3,
0x02f6},
Oxlal4,
0x17al},
0x3688,
0x2455}%,
0x1d37,
0x08fc},
0x3942,
0x394d},
0x295a,
0x3836},
0x1d3b,
0x0cf5},
0x2745,
0x1909},
Ox1fda,
0x12b0}

0x336e,
0x153d},
Ox2ad2,
0x08dd},
0x2867,
Ox12ba},
Ox2ada,

},

0x2517,
{0x0a68,
0x012e,
{0x05cf,
0x117f,
{0x3273,
0x2b21,
{0x1da6,
0x182b,
{0x2b3b,
0x3b25,
{0x006¢c,
0x21ff,
{0x3461,
0Ox34da,
{0x1le7b,
0x0aa8,
{0x1539,
0Ox2ddf,
{0xlaba,
Ox26eb,
{0x02e8,
0x0a51,
{0x3f6e,
0x08f8,

0x2969,
0x25e0,
0x396b,
0Ox0ee5,
0x1d7b,
0x35f2,
0x1492,
0x09eb,
Ox1bdb,
0x113c,
Ox24ae,
0x0254,
0x10d2,
Ox2f5f,
0x2616,
0x3535,
0x20d2,
0x0b5b,
Oxlcce,
0x175f,
0x225e,
0x0693,
0x3bc9,
0x25c3,
0x3cOf,

0x0Obla,
0x0352,
0x1976,
0x1b13,
Ox2bbe,
0x30f6,
0x1fdo,
0x2e97,
0x29ce,
0x34ff,
0x24a5,
0x3896,
0x2715,
0x1f9e,
0x3bf2,
0x0294,
0x1088,
0x259f,
0x2005,
Oxledc,
Oxle42,
0x0858,
0x0093,
0x0740,
0x2946,

0x047c,
0x18cb,
0x0321,
0Ox0Ocac,
0x3961,
0x1186,
0x19f4,
Ox3daf,
Oxle3b,
0x31d1,
0x1857,
0x334d,
0x1c23,
0x07a9,
0x1551,
Ox1c77,
0x0f12,
0x294c,
0x3c28,
0x0349,
0x38e2,
0x3121,
0x2e07,
0x01a9,
0x3141,

0x3df2,
0x20e3,
0x2824,
0Ox26e4,
0x3a45,
0x1283,
0x1078,
0x274f,
0x1f26,
0x0146,
0x146e,
0x312d,
0x2c50,
0x107c,
0x23f5,
0x0fc4,
0x08f7,
0x0e44,
0x3c22,
0x0526,
0x3bc6,
0x306c,
0x0b30,
0x2f94,
0x28a5,

Ox12fc,
0x3559,
0x0782,
0x3e49,
0x2140,
0x3505,
Oxlccc,
0x19f6,
0x13a7,
0x1c49,
0x268f,
0x2e9b,
0x3726,
0x1209,
0x229c,
0x132f,
0x24de,
0x05a2,
0x0792,
0x1883,
0x1163,
0x0ae9,
0x221d,
0x3eb62,
0x26f5,

391

0x24da,
0x29b5,
0x3a50,
0x273f,
0x198c,
Oxlaa2,
0x237d,
0x3202,
0x0657,
0x1la24,
0x13fe,
0Ox2a4d,
0x041f,
Ox3fa7,
0x3b6c,
0x24cf,
0x0f72,
0x3091,
0x0db6,
0x39c9,
0x0e5f,
0x2030,
0x3f98,
0x3140,
0x3f75,

0x301le},
0x35f3,
0Oxla8d},
0x2a63,
0x1081},
0x1658,
0x0f303},
0x1601,
0x0d5d},
0x06c8,
0x2700},
0x0362,
0x2432}%,
0x02e7,
0x3d9f},
0x096¢c,
0x2c4d},
Ox1be5,
0x154a},
0x3762,
0x3e6f},
0x35ba,
Ox0aZe},
0Ox3e3a,
0x290d}

{0x2832,
0x162c,
{0x04a0,
0OxOefc,
{0x21d5,
0x2d88,
{0x2c0d,
0x0428,
{0x3460,
0x1e95,
{0x108e,
0x0125,
{0x2770,
0x3375,
{0x1584,
0x2453,
{0Ox2fce,
0x0238,
{0x080c,
0x112e,
{0x13c3,
0x1e78,
{0x0213,
0x3da8,
{0x31b1,
0x3blb,

0x31leb,
0Ox36al,
0x24b3,
0x2297,
0x117e,
0x04c5,
0x0fd4,
0x1657,
0x3a8a,
0x07d7,
0x10ab6,
0x2120,
Ox1c11,
0x15f0,
0x2f24,
0x25bb,
0x3057,
0x2883,
Ox1da3,
0x2ch7,
0x3c07,
0x0f45,
0x2987,
0x2694,
0x0438,
Ox2a4e,

0x2149,
0x13b4,
0x2f89,
0x284f,
0x281d,
0x21cf,
0x048c,
0x2b71,
0Ox3fda,
0x2206,
Ox1blf,
0x0398,
0x09b1,
0x3d9e,
0x06d4,
0x1c98,
Ox3caf,
0x0c49,
0x2a01,
0x1956,
0x0b7b,
0x0197,
0x387b,
0Ox1cd5,
0x365a,
0x308c,

0Ox1db7,
0x3c69,
0x0d36,
0x0ab9,
0x2cb5,
0x0edl,
0x2beb,
0Ox24cc,
Ox2ef5,
0x274d,
0x1f75,
0x04c2,
Ox31lec,
0x0af6,
Ox3ea?,
0x34fc,
0x3c67,
0x39ae,
0x1953,
0x2905,
0x2611,
0x0af9,
0x12bf,
0x1684,
0x3732,
0x100f,

0x137e,
0Ox1le64,
0x0293,
0x2757,
0x360b,
0x0b18,
0x206e,
0x206b,
0x0dOb,
0x35ab,
0x0d60,
0x3a54,
0x0ea9,
0x38b0,
0x0279,
0x0a54,
0x2c20,
0x0b33,
0x077c,
0x3761,
Ox26ac,
0x1644,
0x20d9,
0x2d1d,
0x36bd,
0x04f9,

0x358a,
0x3f48,
0x0902,
0x35ca,
0x38bd,
0x2ab7,
0x077f,
0x10b4,
0x1dcO,
0x3602,
0x0745,
0x185c,
0x0bad,
0x144b,
0x19de,
Ox1lde,
0x2367,
0x04cf,
0x156f,
0x0507,
0x349f,
0x308d,
Ox3ecf,
0x30f4,
0x1d8d,
0x3fc6,

392

Ox2ea3,
0x2006,
0x29e2,
0x08fd,
0x33fd,
0x1830,
0x3963,
0x114f,
0x33c5,
0x0a40,
0x3c33,
0x2c8d,
0x1387,
0x0eb0,
0x254c,
0x0d69,
0x3f80,
0x230d,
0x0ca3,
0x0a47,
0x3380,
0x0107,
0x08b1,
0Ox3ccl,
0x2302,
0x0c38,

0x2b95,
Ox10ad},
0x043d,
0x3f68}%,
0x323a,
0x3cb3},
0x0141,
0x0a5b},
0x20be,
0x0a31},
Oxlalf,
0x000b},
0x3066,
0x076b},
0x390f,
0x296c¢},
0x34ae,
0x3211},
0x1fo0d,
0x20ed},
0x1555,
0x3879},
0Ox17ef,
0x3c8b},
OxOaef,
0x27df},

b,
{

{0x22el,
0x315d,
{0x1d99,
0x1a86,
{0x0186,
0x042a,

{0x031f,
0x1c40,
{0x08d5,
0x2759,
{0x2c9c,
0x3fb4,
{0x3cO0e,
0x3060,
{0x3350,
Ox3fff,
{0x0a5e,
0x1630,
{0x22e7,
0x37a7,
{0x3305,
0x2ff8,
{0x33a4,
0x2d15,
{0x02b0,

0x2a52,
0x09fb,
0x0fa8,
0x180a,
0x38e3,
0x0f0f,

0x1f48,
Ox1fb1l,
0xObea,
0x1b9b,
0x0Obae,
0x25eb,
0x00fO0,
0x051b,
0x021e,
0x0c22,
Ox2dac,
0x334b,
0x2823,
0x36a7,
0x335d,
0x3546,
0x2336,
0x20a9,
0x2143,

0x2856,
0x0c61,
0x3a9%b,
0x28bb,
0x0c45,
0x164e,

0x1280,
0x133a,
0x1417,
0x2bc7,
0x068d,
0x3a2d,
0x1460,
0x1462,
0x1865,
Oxla2e,
0x21d6,
0x2063,
0x025f,
0x0a18,
0x342c,
0x3152,
0x048d,
0x0b7c,
0x1a44,

0x18f9,
0x074e,
0x194b,
0x23b1,
0x2327,
0x2044,

0x13d9,
0x372d,
0Ox2d5a,
0x0c92,
0x215a,
0x29f9,
0x19f8,
0x22b5,
0x0d6b,
0x1231,
0x0fc7,
0x2d42,
0x305f,
0x2a67,
Ox1dlc,
0x29da,
0x2c2d,
0x3414,
0x1453,

0x0a65,
0x124e,
0x2d5d,
Ox2dfa,
0x0114,
0x0abc,

Ox1c4d,
0x0ff9,
Ox1b1l5,
0x331f,
0x202c,
0x04b7,
0Ox0ecl,
0x151a,
Ox1le8c,
0x0e24,
0x0d61,
0x20c6,
0x18ab,
0x0ba9,
0x165e,
0x0807,
0x3cchb,
0x0e77,
0x063d,

0x018f,
0x1650,
0x35d5,
0x071d,
0x1325,
0x12cd,

0x371e,
0x2bfc,
0x04ad,
0x087hb,
Ox1b2d,
0x04b4,
0x2c53,
0x32ed,
0x1737,
0x15e5,
0x3f12,
0x2992,
0x2368,
0x2b5f,
0x3b5f,
0x22e4,
0x06a3,
Ox1b3f,
0x2983,

393

0x2871,
0x2743,
0x3f3c,
0x02bf,
0x1e82,
0x391f,

0x3d5a,
0x123b,
0x2926,
0x034f,
0x3c45,
0x358d,
0x3017,
0x1523,
0x1d84,
0x2a0a,
0x17d2,
0x2c00,
0Ox3a2a,
Oxlef3,
0x364a,
0x01le2,
0Ox2bbe,
0x3f0c,
0x103e,

0x1614,
0x0012}%,
0x1eOc,
0x26f6},
0x0fdo,
0x03b8}

0x05ed,
0x22eb},
0x0f8c,
0x2cb3},
0x2659,
0x198e},
0x1566,
0x3eb8}%,
0x164f,
0x238a},
Ox2acc,
0x0el6},
0x2bdf,
0x265f},
0x2e19,
0x158d},
0x0Obee,
0x0feb},
Ox1lbac,

},
{

0x3248,
{0x271f,
0x2dbe,
{0x045a,
0x1872,
{0x15fe,
0x3f51,
{0x0444,
0x1b75,
{0x2090,
0x28fa,
{0x1az26,
Ox15ee,

{0x2b10,
0x1641,
{0x3c30,
0x2d7b,
{0x3a63,
0x0039,
{0x0ac5,
0x2f98,
{0x0ea?2,
Oxlaad,
{0x3d6e,
0x2888,

0x2bb1l,
0x1573,
0x1f6b,
0x1a59,
0x3857,
0x322e,
0x17bd,
0x3561,
0x3113,
0x1955,
0x033a,
0x0791,
0x0bO05,

0x071a,
0x29ae,
0x234d,
0x1225,
Ox2c4a,
0x0361,
0x058f,
0x03ad,
0x199c,
0x174b,
0x20d5,
0x30c2,

0x3082,
0x0d68,
0x293f,
0x113f,
0x0772,
0x199e,
o0x2ff7,
0x2b46,
0x03d7,
0x112b,
0x1f57,
0x02db,
0Ox2a2f,

0x1a95,
0x1579,
0x0299,
0x211c,
0x3e31,
0x131b,
0x1676,
0x3a98,
0x29a3,
0x2c0c,
0x3573,
0x0464,

0x1670,
0x06ab,
0x01e9,
Oxlebc,
Ox3e4b,
0x3dd4,
0x3b8c,
0x1f8b,
0x10b6,
0x0380,
0x104a,
0x0786,
0x1741,

0x05d4,
0x19a8,
0x2bd7,
0x0b10,
0x2af8,
0x03a0,
Oxla6d,
0x3988,
0x2c68,
0x1834,
0x3bla,
0x277c,

0x08c0,
0x065b,
Ox2fad,
0x2df3,
0x020b,
0x3413,
0Ox06cc,
0x2f77,
0x30b2,
0x166c,
0x0604,
0x2734,
0x2534,

0x0b4d,
0x34a6,
0x33fc,
0x02d2,
0x07af,
0x0371,
0x269d,
0x1706,
Ox1le55,
0x252e,
0x389e,
0x1alo,
0x2042,

0x0316,
0x1a37,
0x09a4,
0x38d8,
0x05fe,
0x075b,
0x3c9of,
0x3804,
0x135b,
0x1591,
0x380c,
0x37cl1,

0x182d,
Oxlac8,
0x2cdf,
Ox3ad4,
0x3bc3,
0x3az2f,
0x3b9b,
0x2584,
0x25de,
0x22d2,
0x0cd3,
0x332c,

394

Oxlaba,
0x28ee,
0x3fcl,
0x0c54,
0x0819,
0x258f,
0x1632,
0x1322,
0xOcec,
0x3252,
Ox2ecl,
0x016a,
0x208d,

0x32ff,
Ox1fbd,
0x29a4,
Ox3eee,
0x2f12,
0x0bc4,
Ox0aab,
0x2717,
0x31ch,
0x08cb,
0x144c,
0x3c3a,

0x367d},
0x0c9a,
Oxlcc4},
0x142f,
0x16a9},
0x3f8a,
0Ox1e40},
0x2bbf,
Ox2cab},
0x1922,
0x01c3},
0x217f,
Ox2bcb}

0x0567,
0x2211},
0x2062,
0x2086},
Ox1le26,
0x0e63},
0x1c35,
0x2e01},
0x3581,
0x3e91},
0x38e6,
Ox1f15},

{0x1820,
0x02e9,
{0x2606,
0x0c68,
{0x1680,
0x0618,
{0x03b4,
0x03af,
{0x18a2,
0x2521,
{0x2ee0,
0x2d19,
{0x11f6,
0x3734,
{0x3f63,
0x27e6,
{0x0154,
0x3a68,
{0x1011,
0x1db1l,
b
{ {0x397d,
0x1746,
{0x2f30,
0x0b0d,
{0x2515,

0x3993,
0x1082,
0x0bOe,
0x28f6,
0x023b,
0x18f2,
Ox12ea,
0x1971,
0x0890,
0x263a,
0x3dc5,
0x2bbc,
0x1206,
0x10cb,
0x0063,
0x09ed,
0x3470,
Ox25ee,
0x1998,
0x3b57,

0x380d,
0x13e8,
0x23cO0,
0x35e2,
0x3ed6,

0x0ee9,
0x239e,
0x2930,
0x3bf6,
0x2980,
0x01c4,
0x0f4d,
OxOede,
0x30c6,
0x32aa,
0x08a8,
0x03el,
0Ox16ef,
0x08d6,
0x2a87,
0x28d2,
0x0b73,
0x0f0c,
0x0chb,
0x1401,

0x3690,
0x3b19,
0x32a0,
0x149a,
0x00d1,

Ox2ce3,
0x3191,
Ox2edd,
0x1785,
0x0d34,
0x2f25,
0x2808,
0x1fO0c,
0x2e93,
0x1061,
0x05al,
0x1d22,
0x27dd,
0x24dc,
0x3c68,
0x3b2b,
0x0784,
Ox1e83,
0x2fa0,
0x0655,

0x2037,
0x316a,
0x06a8,
0x3b20,
0x138c,

0x284a,
0x3f84,
0x2flc,
Oxlcae,
0Ox116e,
0Ox2cébc,
0x39cd,
0x2498,
0x0247,
0Ox3c44,
Oxlaa5s,
0x175d,
0x3664,
0x085d,
0x349b,
0Ox3ad2,
0x385e,
0x0134,
0x29bb,
0x2dcO,

0x3538,
0x30ed,
0x3dd2,
0x2a39,
0x36db,

0x2321,
0x3094,
0x0e25,
0x3106,
0x1f07,
0x379d,
0x3b5e,
0x2b07,
0x35d6,
0x37c6,
0x29c1,
0x2650,
0x373b,
0x0642,
0x0b9c,
0x3f37,
0x2e67,
0x149f,
0x0270,
0x2fba,

0x10db,
0x24be,
0x21a4,
Ox1d6a,
0x17c9,

395

0x30b1l,
0x02c1,
0x111d,
0x08cc,
0x18be,
0x2822,
0x2522,
0x23ec,
0x24e3,
0x293e,
0x3575,
0x2a29,
0x2e9%e,
Oxlela,
0x3243,
0x10fc,
0x2fb7,
0x247c,
0x2676,
0x0c9c,

0x0b5f,
0x2b8b,
0x0ab1l,
0x327a,
Ox1bc4,

0x10c8,
0x20b9},
0Oxla74,
0x088d},
Ox2e4d,
0x3d21}%,
0x2d55,
0x06ed},
0x3685,
0x3f4c},
0x2fdo,
0x232d},
Oxleea,
0x301c},
0x1a03,
0x381b},
Oxla5f,
0x1633},
0x37ea,
0x34a0}

0x293b,
0x2cl4},
0x10f2,
0x29c8},
0x2917,

0x2e22, 0x01d9, 0x0262, 0x201lb, 0x187d, 0x0d83, 0x195a, 0x0bd7},
{0x30ab, 0x1113, 0x02b9, 0x002e, 0x08a2, 0x0422, Ox3ed8, 0x3309,
0x2963, 0x3255, 0x2d02, 0x032c, 0x38b3, 0x19el, Ox2be7, Oxl1lOea},
{0x17a7, 0x0fc9, Ox2ffb, 0x0191, 0x371d, 0x0783, 0x0309, 0x0c89,
0x2b73, 0x2fdb, O0x2lcc, Ox1l6eb, 0x18cd, 0x1383, 0x22aa, 0x0614},
{0x03b9, 0Ox04af, O0x05fd, Ox1l0da, Oxlfa5, Ox3laf, Ox2ee5, Ox3afb,
Ox26ce, 0x0fc3, Oxl4ba, 0x25dc, 0x101lb, 0x043e, 0x2f43, Oxlc5d},
{0x0b20, 0x0135, 0x354a, 0x2320, 0x067b, 0x3b05, 0x363a, 0x1978,
O0x0ad3, Ox0e2a, 0x2726, 0x2491, 0x1c8b, 0x0351, Ox3e7f, 0x35a6},
{0x2e65, 0x0a8b, 0x0el5, 0x1429, 0x051f, Oxla6e, 0x3555, Ox20aa,
0x0448, 0x0a29, 0x3907, Ox2fcf, 0x1128, 0x39d4, 0x2419, 0x148f},
{0x3d92, 0x21b9, 0x10de, OxObc8, 0x39f6, 0x15d4, 0x0a78, O0x3cbhb,
0x3715, 0x335b, 0x3930, 0x2797, Oxle53, 0x113d, 0x33dd, 0x2e82},
{0x109f, 0x374f, 0x09fa, 0x079d, Ox3eld4, Ox25a3, 0x2330, 0x34e7,
0x2f48, 0x0b92, 0x2024, 0x1480, 0x1014, 0x3d31, 0x1849, Oxla76},
{0x11ff, 0x15d3, 0x3583, 0x23e6, 0x3ef8, 0x3679, 0x3968, 0x2985,
Oxlede, 0x2050, 0x08a4, 0x398b, 0Oxlbc6, 0x3d37, 0x1089, O0x11lc5},
{0x162d, 0x34d9, 0x2409, 0x3fb3, 0x364d, 0x0227, 0x1448, 0x1889,
0x16a8, 0x00c2, 0x0b28, 0x2932, 0x0408, 0x2a83, 0xObb3, 0x3bb9},
{0x2bf7, 0x138b, 0x3484, 0x04be, 0x165c, Ox07f2, 0x373d, 0x3a88,
Ox1beb, 0x1985, 0x0f22, Ox155e, 0x2c49, 0x227d, 0x1la02, 0x309e},
{0x273a, 0x3119, 0x0da4, 0x0f49, 0x2033, 0xObb2, 0x1027, Oxle73,
0x289a, 0x372c, 0x155c, Ox3e74, 0x2d2f, 0x30d7, O0x0e26, 0x0f99},
{0x3045, 0x1097, 0Ox14a4, 0x2254, 0x074d, 0x305d, 0x1852, 0x34f9,
0x10f1, 0x3c87, 0x1348, Oxlbaa, 0x3228, 0x3e26, 0x07ea, 0x240a},
{0x1c3f, OxOcba, 0x3fb6, 0x3a6f, 0x00af, 0x08d8, 0x3782, 0x29fa,

396

0x0ba8,
3,
{ {0x294d,
0x2b13,
{0x176a,
Ox2ce4,
{0x3ce9,
0x1501,
{0x12d4,
0x1773,
{0x3542,
0x1a48,
{0x19a0,
0x29f2,
{0x307b,
0x09e2,
{0x000a,
0x09a0,
{0x2f4f,
0x3cd4,
{0x166d,
0x2941,
{0x098f,
0x2a78,
{0x1024,
0x3f01,

0x38ff,

Ox3ea5,
0x1468,
0x0201,
0x2f60,
0x036b,
0x3376,
0x3670,
0x257c,
0x36d1,
0x25b8,
Oxlee9,
Ox14dc,
0Ox1e63,
0x39a0,
0x208e,
0x041c,
0x3fd4,
0x224f,
0x36e3,
0x1051,
0x3c27,
0x162e,
0x0a73,
0x27a2,

Oxled5,

0x0d1d,
0x2690,
0x2d12,
0x044a,
0x1d46,
0x3750,
0x3c76,
0x2cOe,
0x3dcO,
0x1003,
0x37e3,
0x2288,
0x1a06,
0x099e,
0x1496,
0x28ce,
0x2aa9,
Ox2fa4,
0x0989,
0x07c5,
0x2e88,
0x084e,
0x3b7a,
0x0f5b,

0x1327,

0x3619,
0x33a5,
0x0c09,
0x2422,
0x2fd2,
0x2d24,
0x1208,
Ox2eeb,
0x0f7d,
0x05a7,
0x263f,
Ox3fa4,
Oxlcaa,
0Ox11c7,
Ox0fee,
0x15e8,
0x04b8,
0x31c4,
0x0908,
0x1df8,
Ox1llel,
0x3fde,
0x03e9,
0x29ab,

0x0243,

0x24bb,
0x0a4c,
0x3cd3,
0x0f5d,
0x0485,
0x3171,
0x1015,
0x1f98,
0x2b4d,
0x19fc,
0x18el,
0x1626,
Ox2fff,
0x152a,
0x33c1,
Ox2e3f,
0x246f,
0x23e4,
0Ox1c13,
0x0314,
0x2blc,
0x2325,
0x0df1,
0x0d44,

0x05d7,

Oxledf,
0x1c68,
0x1e94,
0x0866,
0x29c?2,
0x2c59,
0x2103,
0x15f5,
0x2c36,
0x2e5b,
0x166e,
0x316e,
0x0e39,
0x30dd,
0x00a4,
Ox21ae,
0x05e7,
0x008d,
0x216f,
Ox1fc5,
0x361b,
0x10be,
0x21e9,
0x2066,

397

0x3d80,

0x190a,
0x0eb?2,
0x21a3,
0x07a4,
0x2f0b,
0x36c5,
Ox1b3a,
0x1810,
0x3a23,
0x072f,
0x3179,
0x39a3,
0x3494,
0x354f,
0Ox2c2c,
0x20cd,
0x3c58,
0x2716,
0Ox26¢f,
Oxlefa,
0x24eb6,
0Ox3e2a,
0x149b,
Ox2efb,

0x0c63}

OxOafe,
0x3447}%,
0x05b7,
0x142b},
0x2a7b,
0x073c},
0x0934,
0x00d6},
0x138a,
0x3934},
0x231f,
0x338f},
Ox1ca8,
0x36cd},
0x0143,
Ox2e8d},
Ox0fae,
0x0dbd},
0x2877,
Ox3aad},
0x01a5,
0x1f49},
Oxlel?,
0x148d},

{0x3f26, 0x0d9e, 0x3e55, 0x327f, 0x34f2, O0x3eff, O0x1822, 0x3b48,
Ox2c5a, 0x0alb, 0x169e, 0x088f, 0x0650, 0x0f47, 0x3087, 0x2200},
{0x272f, 0x1908, 0x3456, Ox1f52, Ox13bl, Ox05cc, 0x2198, 0x091c,
OxOaaa, 0x1652, 0x39a6, 0x0875, 0x095f, O0x212e, 0x072c, Ox2e7c},
{0x3163, Oxldla, Oxlded, 0x38ad, Ox3aba, 0x0695, 0x237c, OxOacl,
0x029d, 0x2a73, 0x3b49, 0x1111l, 0x0416, 0x0099, 0x06dc, 0x3067},
{0x0df9, 0x15b6, 0x1028, 0x1690, 0x357d, OxOea6, Ox3dbe, 0x3207,
0x0668, 0x145b, 0x1b89, 0x0659, 0x0509, 0x1784, Ox2e34, 0x3779}
b
{ {0x1dd2, Ox11lbb, 0x1f18, 0x045d, 0x3d7b, 0x06c4, 0x304f, 0x30df,
0x2598, 0x0ff5, 0x30a5, 0x39cb, 0x0388, 0x2920, 0x1536, 0x1321},
{0x3474, 0x1c9f, 0x04e8, 0x3098, 0x23dc, 0x353e, 0x2c52, 0x1425,
0x1823, 0x2c4f, 0x317f, 0x3899, 0x3845, 0x1489, 0x3882, 0x1l6e6},
{0x0de5, 0x29b6, Ox3cef, 0x0390, 0x0774, 0x2009, 0x0da5, 0x03eb,
0x2109, 0x15d2, 0x1395, 0x313f, O0x04a2, 0x29b7, 0x3c32, 0x1l2b4},
{0x0eef, 0x04d6, 0x3f30, 0x3d69, 0x1f46, 0x233d, Oxlce7, 0x00da,
0x37b9, 0x1505, 0x0847, 0x2d01l, 0x357a, 0x01l4b, 0x3450, 0x2475}%,
{0x182a, 0x2f06, 0x3873, 0x1c99, 0x3349, 0x296e, 0x3313, 0x1465,
0x07e4, 0x23f7, 0x0fd8, 0x0418, 0x0181, 0x0307, 0x3a29, 0x2839},
{0x0db7, 0x19ce, 0x3a93, 0x27da, 0x09c7, 0x0489, 0x0a05, 0x194c,
0x0188, 0x1d1l6, 0x370c, OxOaba, 0x2768, Ox2bda, 0x0443, 0x1533},
{0x3b3d, 0x0840, 0x090c, Oxlaf9, Ox2eb5, 0x0al5, 0x13a3, 0x0dcO,
0x070f, Ox24e7, 0x2cl8, 0x3ddc, 0x1884, 0x3dcb, 0x00ee, 0x2152},
{0x03f7, 0x1d29, 0x1d30, O0x24al, 0x3443, 0x366f, 0x2f97, 0x24b5,
0x37b4, 0xO0fbe, O0xOccf, 0x3033, 0x08fl, 0x178e, Ox1l0fe, Ox3aa2},
{0x2803, 0x3053, 0x3b3c, 0x34cb, 0x274c, 0x0537, 0x3le6, 0x1019,

398

Oxlefe,
{0x2e48,
0x23f1,
{0x2902,
0x22f7,
{0x22a6,
0Ox2a6c,
{0x25c5,
0x1bd8,
{0x2403,
0x19c6,
{0x0644,
0x1a38,
{0x26bd,
0x3118,
b,
{ {0x25el,
0x3c92,
{0x0915,
0x1d66,
{0x10dd,
0x0a32,
{0x318b,
0x3628,
{0x31c2,
0x086e,

0x31a2,
0x0719,
0x19cd,
0x00fe,
0x104b,
0x3730,
0x30cd,
0x1d69,
0x24f4,
0x37dc,
0x1359,
0x0598,
0x03b5,
0x33b6,
0x3887,

0x281a,
0Ox3e4a,
Oxleba,
0x2201,
0x3553,
0x32b5,
0x1483,
Ox11le5,
0x12d5,
0x234b,

Ox3afe,
0x259c,
0x323e,
0x123d,
0x17bc,
0x20d1,
0x11c4,
0x16db,
0x2251,
0x0926,
Ox1be3,
0Ox3aae,
0x35e5,
Ox1b2a,
0x3235,

0x377e,
0x22bb,
0x3c50,
0x30cO0,
0x14c4,
0x1300,
Ox211le,
0x1la31l,
0x1b94,
0x38c8,

0x1deO,
0x29d0,
0x220a,
0x1444,
0x3a51,
0x2bab,
Oxlcc3,
0x28ad,
0x0ded,
0x1e93,
0x06f3,
0x0889,
0x0555,
Oxleb7,
0x05d9,

Ox16cf,
0x0271,
0x2a0f,
0x25a6,
0x01dc,
Ox2eec,
0x2bdc,
0x2001,
0x0395,
0x05c2,

0x0025,
0x0936,
0x317a,
0x3079,
0x013f,
Ox3del,
Ox1lab6,
0x3d26,
0x253d,
0x033c,
0x19e2,
0x1655,
0x0d88,
0x0b29,
0x0b07,

0x044b,
Oxlell,
0x226d,
0x0e3d,
0x004a,
0x3ddd,
0x2b20,
0x2df4,
Ox11c1,
0x0210,

0x01d5,
0x310d,
0x37ec,
0x0c14,
0x2875,
0x35ef,
0x024c,
0x3a3d,
0x21f5,
0x103b,
0x1861,
0x2776,
0x359b,
0x3d60,
0x1d63,

0x0af4,
0x2d54,
Ox1b1ld,
0x1c88,
0x1812,
Ox1e8b,
0x0c4f,
0x2228,
0x1324,
0x2d3d,

399

0x24do0,
0x011b,
0x07dc,
0x2fcb,
0x057f,
0x2456,
0x1d67,
0x342b,
0x1610,
0x1f22,
0x2417,
0x3e52,
0x1195,
0x39al,
Ox2eca,

Ox14aa,
0x3b9a,
0x0705,
0x0b7a,
0x2b52,
0x04e0,
0x12e9,
0x351f,
0x2118,
0x0fe5,

0x03de},
Ox3ach,
0x1389}%,
0x33ef,
0x27c5},
0x3649,
0x30a3},
0x0cd9,
0x0def},
0x2232,
0x20d3},
0x3680,
0x2c0f},
0x399d,
0x03b2}

0x35f8,
0x2225}%,
0x03ba,
0x15c5},
0x1la79,
0x0c3d},
0x37d3,
0x3611},
0x0765,
0x1b58}%,

{0x04f0,
0x1355,
{0x0cde,
0x13b8,
{0x0350,
0x1809,
{0x3567,
0x0d63,
{0x00a9,
0x19f2,
{0x1laf2,
0x0achb,
{0x1994,
0x3650,
{0x0b65,
0x0ed8,
{0x13ff,
Ox36da,
{0x07e3,
0x38e5,
{0x219a,
0x1790,
b,
{ {0x0ed3,
0x0b98,
{0x1664,

0x2ch6,
Ox2fd4,
0x36d4,
Ox21ab,
0Ox25a7,
0x3130,
0x3alo,
0x200b,
0x001f,
0x1357,
0x182c,
0x17da,
0x1d49,
0x1f43,
0x33d3,
0x039d,
0x0elc,
0x3bfb,
0x2fdd,
0x1d24,
0x2051,
0x1511,

0x3459,
0x2575,
0x14fb,

0x105d,
Ox2cbb,
0x0058,
Oxladb,
0x3854,
0x0b48,
0Ox2aa5,
0x0a20,
0x1d96,
0x0d2e,
0x1970,
0x39cf,
0x2a64,
0x0b8e,
0x2f4ad,
0x088c,
0x37d5,
0x2465,
0x3cOb,
0x091d,
0x18b6,
0x2a42,

0x382d,
0x381d,
0x1716,

0x2f63,
0x3014,
0x3d91,
0x076a,
0x300f,
0x3645,
0x3b7f,
0x21b0,
0x3db3,
0x19b4,
0x38b4,
0x0b95,
0x0601,
0x1981,
0x0919,
0x006a,
0x1351,
0x02fd,
0x2f1b,
0x29e0,
0x37fa,
0x3280,

0x170b,
0x2e63,
0x2384,

0x039e,
0x2c54,
Ox1lbec,
0x38df,
0x0c39,
Ox1le31,
0x0d07,
0x32ef,
Ox112c,
0x27f0,
0x2a93,
0x331e,
0x179d,
0x3a52,
0x3eb0,
0x2393,
0x2253,
Ox2ce?,
0x12a2,
0x29b4,
0x27fa,
0x2fc9,

0x0dd8,
0x39db,
0x01bf,
0x0261,
0x2274,
0x3b24,
0x051c,
0x3161,
0x04f6,
0x1f4d,
0x173c,
0x3ae7,
0Ox0ae5,
0x1f29,
0x24ff,
0x1169,
0x3981,
0x2190,
0x2485,
0x17cf,
Ox1c3d,
0x013b,

0x13cc,
0x0b71,
0x3e5c,

0x21bf,
0x2965,
0x3a57,

400

0x2df7,
0x083a,
0x1098,
0x030e,
Ox14de,
0x2973,
0x2786,
0x3eb3,
Ox36ec,
0x1979,
0xOcfa,
Oxle2b,
0x03cd,
0x2df6,
0x395c,
0x3e2b,
0x2c76,
0x0d78,
0x3830,
0x0245,
0x02ae,
0x3cf2,

0x329c,
0x2fcO,
0x0185,

0x0393,
0x071f%,
0x37ad,
Ox2ef2},
0x24f5,
0x1402}%,
0x3784,
0x01le8%},
0x2355,
0x053e},
0x218a,
0x344c},
0x0fd6,
0x114d},
0x180b,
0x07b0},
0x2d63,
0x149e},
Ox1fab,
0x21a0},
Ox1lebb,
0x3c74}

0x125d,
0x328e},
0x2248,

0x2db0,
{0x1816,
Oxlcdc,
{0x3671,
Ox0dal,
{0x19ee,
0x0799,
{0x3149,
Ox1cee,
{0x0e90,
Oxlef9,
{0x290f,
0x22df,
{0x3dca,
Ox2dcc,
{0x2e80,
0x20a6,
{0x3f5c,
0x37da,
{0x2a0d,
0x2107,
{0x08af,
0x01d8,
{0x2651,
0x063f,
{0x3428,

0x0ad7,
0Ox2cle,
0x0028,
0x092d,
0x287b,
0x04bd,
0x044d,
0x33c4,
0x19d7,
Oxlae7,
0x189a,
0x34d3,
0x2792,
0Ox1c31,
0x011a,
0Ox0a7a,
0x323b,
0x3bd2,
0x1c3b,
0x12b3,
0x0d38,
0x232a,
0x3f7f,
0x2349,
0x1d02,
0x3999,

0x3a40,
0x234e,
0x3cld,
Oxlelc,
0x099b,
0x3a48,
0x0cc9,
0x24df,
0x3452,
0x3306,
0x29ff,
0x07b7,
0x326f,
Ox2a6b,
ox1fed,
0x1096,
0x20bd,
0x12d1,
0x26fc,
0x08ae,
0x22a2,
0x376b,
Ox1dbe,
0x2c8e,
Ox2e4e,
0x2c86,

0x060b,
Ox14e5,
0x3b93,
0x265c,
0x2469,
0x3b90,
0x3188,
0x2c70,
OxOble,
0x00f9,
0x3dO05,
0x36f9,
0x2b23,
0x2a3b,
0x0abO0,
0x3bd7,
0x1320,
0x258a,
0x2fd8,
0x096b,
Oxlea8,
0x3a42,
0x0162,
0x2895,
0x397e,
0x3a79,

0x30aa,
0x31e0,
Ox2dda,
0x1fd4,
0x15e2,
0x2bo6f,
0xO0ecb,
0x3426,
0x2db7,
0x336c,
0x108d,
0x037a,
0x1255,
0x0d4c,
0x129a,
Ox2c7c,
Ox1cl4,
Ox0eab,
0x2767,
0x3d3e,
0x1546,
0x363f,
0x0cc5,
0x189d,
0x2b37,
0x137d,

0x3d59,
0x2c85,
0x1bf7,
0x3c9e,
0x2fd5,
Ox13ce,
0x268c,
0x3a58,
0x329d,
0x3712,
0x0995,
0x18a4,
0x3e68,
0x30e7,
0Ox1c62,
0x0082,
0x0bdf,
0x0e50,
0x3076,
0x20b1,
0x35a4,
0x08d1,
0x05dd,
0x1738,
0x0339,
0x2b66,

401

0x1d76,
0x18d6,
0x2cf9,
0x3104,
0x10c4,
Ox3ee8,
0x36c4,
0x0fb6,
0x38b5,
0x2al9,
Ox2eba,
0x10ae,
0x1569,
0x0190,
0x1692,
0x0062,
0x1875,
Ox1le52,
0x0ad8,
0x0149,
0x00c3,
0x1747,
0x158a,
0x0522,
0x37bb,
0Ox34ec,

0x2111},
0xla73,
0x0d7f},
0x3d90,
Ox3af4},
0x3a65,
0x29fd},
0x0b76,
Oxlabf},
0x20ad,
0x34d2},
0x0441,
Ox2fec},
0x06c7,
0x0e86},
0x327e,
0x1114},
0x157f,
0x0f21},
0x232f,
0x1050},
Ox3aac,
0x11d9},
0x1932,
0x19dc},
0x1179,

0x0e54,
{0x335c,
0x3d96,

0x3d8f,
Ox37ac,
0x1963,

0x3e9d,

0x0bb6,

0x017b,

b,

{ {0x228c,
0x10c7,
{0x2e30,
0x358f,
{0x0e75,
0x08a7,
{0x1e59,
0x0563,
{0x3196,
0x276e,
{0x2afo,
0x3078,
{0x32d0,
0x154c,
{0x1116,
0x21d8,
{0x36e9,
0x236d,
{0x2b47,
0x1748,
{0x2134,
0Ox2c2f,

0x2348,
0x0894,
0x397a,
0x228e,
0x227b,
0x13d6,
0x0814,
0x375c,
0x3345,
0x008c,
0x202f,
0x2f61,
0x27bb,
0x19a1l,
0x0283,
0x34c2,
0x2dc6,
Ox2ac3,
0x35a3,
0x253b,
0x14d3,
0x3afo,

0x0bfd,
0x16c¢5,
0x0ale6,
0x34c7,
0x0f82,
0x1b66,
0x1a40,
0x2d04,
0x27a6,
0x0174,
0x3bce,
0x2864,
Ox2ef6,
0x20c9,
0x124c,
0x052f,
0x2599,
0x21f1,
0x35el,
0x1b45,
0x376e,
0x125e,

0x16d2,
0x19a9,
Ox1d4a,

0x0f48,
0x3159,
0x0b13,
0x1054,
ox2ff2,
0Ox0ec?,
0x2c7d,
0x1984,
0x20b7,
0x2531,
0x27f3,
0x0643,
0Ox0ac2,
0x2fd6,
0x3e3d,
0x1774,
0x3577,
0x3e04,
0x0d98,
0x1d82,
0x30b9,
0x39cc,

0x364e,
0x2b87,
0x1fb9,

0x05f7,
Ox2aab,
0x0e31,

0x10cd,
0x1d5d,
0x2496,
0x3624,
0x3a92,
0x18b5,
0x06f8,
0x2013,
0Ox24aa,
Ox3ce8,
0x340a,
0x1254,
Ox1bel,
0x0f7b,
0x2cl15,
0x1c76,
0x28f5,
0x028e,
0x0240,
0x3c9d,
0x2127,
0x2255,

0x2a55,
0x1007,
0x3485,
0x0315,
0x2704,
0x2e66,
0x228d,
0x21e7,
0x03bf,
0x2119,
0x0f5a,
0x002c,
0x0450,
0x1937,
0x0fde,
0x3663,
0x3f5d,
0x2fb1,
0x3520,
0x13f3,
0x31d8,
0x3063,

402

0x3678,
0x0382,
0x0f36,

0x30b5,
0x124a,
0x26b8,
0x0ecb,
0x05b9,
0x1c56,
0x3b4b,
0x3889,
0x1f72,
0x1f37,
0x262d,
0x126a,
0x01df,
0x0d6a,
0x3abl,
0x01fd,
Ox1lef8,
0xObca,
0x24c7,
0x1193,
0x27d1,
0x39ba,

0x36bf},
0x169b,
0x26d6}

0x3f2c,
0x3b2f},
0x0459,
0x0244%,
0x2139,
0x32d4},
0x337e,
0x3dcd},
0x0113,
0x1a05},
0x0543,
0x3e58%,
0x1713,
0x2956},
0x3db6,
0x15a3},
0Ox3ab2,
0x03ee},
0x15bd,
0x30f73},
0x28f8,
0x369a},

b,
{

{Ox1lada,
Ox1cec,
{0x3368,
0x3876,
{0x351d,
0x062e,
{0x2ab0,
0x2b5d,
{0x27d3,
0x2e03,

{0x1318,
0x29ca,
{0x0ch4,
0x2c90,
{0x04d4,
Oxlaac,
{0x30b3,
0x2689,
{0x3fe8,
0x1707,
{0x1dfo0,
0x197e,
{0x0864,
0x2ch8,
{0x274b,

0x2750,
0x239b,
0x203d,
0x0229,
Ox26ca,
0x1123,
Ox3ala,
0x0580,
0x1f16,
0x13ed,

0x205c,
0x34bc,
0x18b4,
0x3d10,
0x0e27,
Ox1ldad,
Ox1bb2,
0x1d1b,
0x1f11,
0x07e2,
0x3f25,
0Ox11a3,
0x33a9,
0x3275,
0x30b8,

Ox3afc,
0x2421,
0x0233,
0Ox22ac,
0x24b7,
0x2d7e,
0x0992,
0x08dc,
0x10a0,
0x1643,

0x00b4,
0x1121,
0x1b50,
0x23bc,
0x2f51,
0x03f2,
0x3b76,
0x0198,
0x3763,
0x2d23,
0x274a,
0x2040,
0x0f79,
0x3029,
0x109d,

0x373f,
0x1f66,
0x0beb,
0x216b,
0x3al3,
0x09be,
0x1623,
0x3c8c,
0x2753,
0x02dd,

0x2bd9,
0x1b71,
0x3cdl,
0x33df,
0x130c,
0x24f7,
0x0c50,
0x0dce,
0x343d,
0Ox1a63,
0x07c9,
0x2076,
0x0c16,
0Ox3ca7,
0x354c,

Ox2e4c,
0x2b82,
0x38a6,
0x1dOb,
0x0518,
0x0bd4,
0x1509,
0x13da,
0x3a62,
0x0a34,

0x271e,
0x1667,
0x18fc,
0x2323,
0x2ac9,
0x2b99,
0x1fd3,
0x021c,
0x23ff,
0x28b5,
0x15bc,
0x3b4a,
0x3799,
0x15cf,
0x0dbe,

0x2e7b,
0x0057,
0x1677,
0x3a97,
0x0576,
0x1686,
0x23d3,
0x0c67,
0x02ca,
0x103a,

0x2d96,
0x2764,
0x1277,
0x2057,
0x15a8,
0x35ec,
0x2bfb,
0x0466,
Ox1lcfl,
0x235a,
0x0269,
0x02d8,
Ox0aa5,
0x0747,
0x3103,

403

0x1cOe,
0x0f64,
0x23f6,
0x33eb6,
0x3190,
Ox12al,
0x1188,
0x27d5,
0x1f7d,
0x258c,

0x0a95,
Ox2ffa,
0x3548,
0x032a,
0x3293,
0x3b98,
Ox3abc,
0x0ba5,
0x3109,
0x0268,
0x321a,
0x05ce,
0x0f6a,
0Ox31lac,
0x0f44,

0x0850,
0x0d8c},
0x3764,
0x167d},
0x334e,
0x189b},
Ox15ae,
0x32f0}%,
0x278f,
Ox1lc5a}

0x25ff,
0x0lca}l,
Ox26al,
0x16a0},
Ox2fe8,
0x2049},
0x2425,
Ox0Oaee},
0Ox2c4c,
0x342d},
0x17bf,
0x05ad},
0x169f,
0x0e5d},
0x102a,

},
{

0x077a,
{0x38eb,
0x0b22,
{0x2cba,
0x0918,
{0x00d4,
0x3a28,
{0x3c72,
0x2ado0,
{0x3840,
0x2f7c,
{0x0d1f,
Ox14cd,
{0x284b,
0x176b,
{0x2600,
0x0568,

{0x2f7f,
0x3bfc,
{0x116c,
0x2a9b,
{0x0e5a,
0x22f8,
{0x35hbd,
0Ox27ac,

0x1b63,
0Ox3a4c,
0x0627,
0x1dao,
0x0a0c,
0x14dd,
0x2740,
0x3401,
0x0252,
0x261d,
0x3fe0,
Ox2bea,
0x0c94,
0x368a,
0x1935,
0x0d00,
0x052d,

0x02f3,
0x2d13,
0Ox2ae4,
0x0dc3,
0x0468,
0x2e45,
0x0171,
0x1205,

0x03a5,
0x0bf7,
0x31cO0,
0x1100,
0x2879,
0x08ef,
0x284c,
0x24c8,
0x248e,
0x07fc,
0x0042,
0x1138,
Ox3ef2,
0x1336,
0x14cO0,
0x0bdc,
Ox1cfe,

0x2585,
0x34eb6,
0x3271,
0x3e7b,
0Ox26ba,
Ox3ede,
Ox1ba9,
0x33aa,

Oxla2a,
0x0617,
0x14f1,
0x25e4,
0x34db,
0x1982,
0x2849,
0x017f,
0x287e,
0x117c,
0x0b24,
0x15a6,
0x020d,
0x0a57,
0x2137,
0x0e56,
0x09cf,

0x3e83,
0Ox3ble,
0x0c04,
0x2d1b,
0x09c5,
0x2026,
Ox2alf,
0x03b1,

0x13d4,
0x34cd,
0x1e07,
0x37af,
0x2b17,
0x32c7,
0x3d8e,
0x0b16,
0x0239,
0x3e0a,
0x04bc,
0x1d3d,
0x0b38,
0x1273,
0x18bc,
0x0d9c,
0x1030,

0x3f83,
0x373e,
0x0fb2,
0x1f91,
0x159f,
0x0306,
Ox1l4ed,
0x3314,
0x015e,
Ox1lba4,
0x09e8,
0x02ce,
0x0ccb,
0x3c5f,
0x0640,
0x31bb,
0x0b27,

0x2c32,
0x25c8,
0x1084,
0x1b7b,
0x2617,
0x09b0,
0x0803,
0x0d51,
0x31f3,
Ox1blb,
0Ox2eb?2,
0x18fd,
0x3b28,
0x2f4b,
0x0360,
0xOcfe,
Ox1e85,

0x3521,
0x2bd1l,
0x10bb,
0x3495,
0x1e99,
0x3eal,
0x3230,
0x06ef,

0x39a8,
0x12dd,
0x1213,
0x1344,
0x2219,
0Ox06a7,
0x2bc4,
0x24a3,

0x1418,
0x0cf2,
0x27e2,
0x2828,
0x20a3,
0x179a,
Ox3eeb,
0Ox15da,

404

0x2d8d},
0x2f65,
0x042d},
0x0586,
0x1f68},
0x1b85,
0x3216},
0x3a49,
Ox3cce},
0x2466,
0x19af},
0x153c,
0x0e06},
0x08f9,
0x1dod},
0x0578,
0x0c69}

0x3c2c,
0x2db5},
0x2609,
0x3d19},
0x358e,
0x3abb6},
0x3435,
Ox15a7},

3,
{

{0x013c,
0x2681,
{0x09e6,
0x3770,
{0x1f42,
0x0cbl,
{0x0f50,
0x3083,
{0x27c8,
0Ox16e2,
{0x1d6c,
0x2dof,
{0x0b4e,
0x09cc,
{0x1b00,
0x2919,
{0x0778,
0x3c59,
{0x153f,
0x2f3a,
{Ox1ledd,
0x3065,
{0x0c53,
0x3868,

{0x01f6,

0x202d,
0x02dc,
0x0al4,
0x3cab,
0x386a,
0x02cb,
0x3c41,
0x33d4,
0x2d87,
0x223a,
0x1806,
0x3bdl,
Ox16e3,
0x3a32,
0x18c3,
0x3fdc,
0x2a61,
0x2a69,
0x1479,
0x3859,
0x3c56,
0x0d32,
0x0dbO0,
0xOcef,

0x37d9,

0x066f,
0x2718,
0x3bae,
0x22e5,
0x3177,
0x1924,
0x3941,
0x0891,
0x00d9,
0x267d,
0x29b0,
Ox2aba,
0x3666,
0x2984,
0x27f6,
0x0a69,
0x0726,
0x1b88,
Ox1ff7,
0x2555,
0x352a,
0x210a,
0x253c,
0x378c,

0x2fla,

0x3593,
0x0313,
0x0493,
0x0b54,
0x2101,
0x15b1,
0x3056,
0x26b0,
0x30a8,
0x2d06,
0x3886,
0x060e,
0x013e,
0x355b,
0x36be,
0x0979,
0x1519,
0x25cd,
0x3344,
0x3e03,
0x189f,
0x38b6,
0x1d15,
0x2af7,

0x0592,

0x05bb,
0x2714,
0x03bb,
0x3c36,
0x3a7b,
0x267f,
0x071c,
0x36b4,
0x2790,
0x022a,
0x2dd1,
0x08bb,
0x1862,
0x2dd7,
0x3a0c,
Oxlcle,
0x1fb7,
0x3299,
0x1312,
0x0ale,
0x25cO0,
0x1104,
0x009c,
0x09ae,

Ox1fcc,

Ox17ff,
0x064e,
0x11b1,
0x0036,
Ox1cl5,
0x232c,
0x3af6,
0x2064,
0x22e0,
0x252f,
0Ox2e52,
0x2588,
0x27d2,
0x0180,
0x305b,
0x1590,
0x1285,
0x166b,
0x27c2,
0x15dc,
0x2eal,
0x217a,
0x07cc,
0x3e27,

0x1b54,

405

0x0572,
0x2el4,
0x24a2,
0x143a,
0x177a,
0x159b,
0x39be,
Ox1ldee,
0x3320,
0x360c,
0x2162,
0x26e8,
0x1408,
0x339a,
0x30d8,
0x0d93,
0x14c2,
0x2295,
0x0b75,
Oxlac4,
0x243a,
0x36b2,
0x27ed,
0Ox3ded,

0x07cd,

0x10f7,
0x0c3b},
0x14b8,
0x0c84}%,
0x2925,
0x156¢},
0x2b01,
0x1235},
0x2029,
0x2f0f},
0x05b4,
Oxleed},
0x3al4,
0Ox31lab6},
0x01e5,
0x1108},
0x1493,
Ox1fee},
0x2885,
Ox1lbad},
0x0b45,
0x2a0c},
0x2a75,
0Ox1a0d}

0x145d,

0x3989,
{0x31e9,
0x0bf0,
{0x36af,
0x27el,
{0x395d,
0x36bc,
{0x0943,
0x1458,
{0x08e4,
0x3388,
{0x0b3e,
0x1267,
{0x3f00,
0x2ba5s,
{0x0bc9,
0x34cf,
{0x0760,
0x22dd,
{0x0683,
0x07d0,
{0x35f7,
0x242f,
{0x260d,
0x20al,
{0x0e96,

0x3e48,
0x1796,
0x209d,
0x09c8,
0x251e,
0x0ddd,
0x1f62,
0x0dc1,
Ox1labO,
0x0649,
0x29a6,
0x3cfb,
0x20ab,
0x0455,
0x02f0,
0x2080,
0x10a4,
0x079e,
0x2a3f,
0Ox3e3f,
0x1048,
0x0d20,
0x2332,
0x2c33,
Ox1bcb,
0x0féc,

0x0922,
0x0295,
0Ox2cc5,
0x2918,
0x2bb0,
Ox2fea,
0Ox14ca,
0x23bf,
0x303e,
0x2967,
0x238d,
0x296b,
0x26f2,
0x2d5c,
0x01la2,
0x2328,
0x1880,
0x01c5,
0x230c,
0x0e7a,
0x3223,
Oxlaf6,
0x3807,
0x3b3a,
0x1625,
0x3700,

0x31cl,
0x39a2,
0x2d38,
0x32cb,
0x31fe,
0x18al,
0x22e8,
0x2dd4,
Ox1bfd,
0x29f0,
0x39ee,
0x1416,
0x3f03,
0x238b,
0x2d90,
0x3b44,
0x0fla,
0x0db8,
0Ox2c5e,
0x20ea,
0x3742,
0x000c,
0x0d24,
0x35f5,
0x2755,
0x2c78,

0x31d3,
0x04a5,
0x00ed,
0x3f09,
Ox16ab,
0x3508,
0x08e7,
0Ox1c8c,
0x19b1,
0x25e9,
0x2b41,
0x171a,
0x218c,
0x3d30,
0x1637,
0x1377,
0x3936,
0x387c,
0x2814,
0Ox24ea,
0x19c3,
0x0230,
0x3f5e,
0x0e4b,
0x2ca9,
0x353c,

0x3d28,
0x360a,
0x3701,
0x321e,
0x1507,
0x31cc,
0x0d25,
0x33b7,
0x09fc,
Ox0edc,
0x0e98,
0x27e0,
Ox3acl,
0x05fc,
0x1989,
0x1278,
0x31f6,
0x3296,
0x05b1,
0x0138,
0x13be,
0x2fab,
0x3467,
0Ox26ed,
0x00e3,
0x032f,

406

0x347e,
Ox1cad,
0x04a8,
0x30ea,
0x048a,
0x132b,
0x34al,
0x0985,
0x21b4,
0x0fb9,
0x3837,
0x0845,
0x2558,
0x10a3,
0x20a2,
0x250b,
0x24ca,
0x113b,
0x35f4,
0x1065,
0Ox26cd,
0x37b0,
0x025a,
0x2bc2,
Ox2dfc,
0x1122,

0x3531},
0Ox17aa,
0x23d0},
0x251a,
0x37bc},
0x15e7,
0x0452},
0x328f,
0x0a0d},
0x286b,
0x288c},
0x18a3,
0x1903},
0x31b0,
0x1183},
0x32a3,
0x32bd},
0Ox2fo0d,
0x00f5}%,
0x1f2c,
0x1938},
0x2795,
0x22d3},
0x0al9,
0x33b4},
0x0305,

0x3b2c,
{0x0dba,
0x1968,
{0x1583,
0x3931,

},

{ {Oxladb,
0x1alé6,
{0x2fd1,
0x055a,
{0x34d7,
0x0b36,
{0x19ef,
0x153a,
{0x17cO0,
0x2283,
{0x36f0,
0x1ff8,
{0x3403,
0x1596,
{0x3550,
0x2fb2,
{0x11le3,
0x2602,
{0x3773,
0x17fc,

Oxlaf7, 0x118f,
0x394e, 0x3444,
O0x1bb3, 0x0c76,
0x3e36, 0x0c52,
0x2334, 0x13b9,

0x1157, 0x1456,
0x0264, 0x0e48,
0x2e70, Ox24c2,
0x2194, 0x105f,
0x2f40, O0x2fbc,
0Ox2ca2, 0x0eb7,
0x014f, 0x34a9,
Ox1ff4, 0x378d,
0x37f7, 0x02fb,
0Ox3e2c, O0x13fa,
Ox1le9c, 0Ox3a6d,
0x3336, 0x2c47,
Oxla3a, 0x397f,
0x389f, 0x3d9c,
0x3e53, 0x3bbb,
0x2847, 0x02ea,
0x3dfd, 0Oxla3f,
O0x3be4, 0x177e,
Ox1ddf, Oxlce2,
0x1b49, 0x1d92,

407

0x331c},

0x0b03},

0x3f07},

0x2bd2},

0x2a9d},

0x2911}%,

0x0b34},

0x0fd5},

0x275d},

0x13bd},

0x0577}%,

0x0d72%,

{0x0909, 0x37e2, 0x3b96, 0x3528, 0x2157, 0x20f3, 0x205f, 0x1855,
0x3b82, 0x2305, OxleS5e, Oxlbe4, 0x02ad, 0x38b7, O0x11l0a, Ox18fe},
{0x2d41, 0x07b3, 0x0df6, Ox1b74, 0x22b8, 0x3lca, 0x060f, 0x2d9e,
0x2dd9, 0x2f9b, 0x3016, 0x0b81, 0x24d3, 0x2092, 0x085b, Ox1lb8c},
{0x2e72, 0x124b, 0x2c26, 0x2b29, 0OxlacO, 0x1305, Ox24ee, 0x2f35,
0x051e, 0x1433, 0x2785, Oxl6el, Ox2dal, 0x20de, 0x31c5, 0x1578}%,
{0x35e0, 0x3289, 0x3f89, 0x07d3, 0x3260, 0x362f, 0x1018, 0x3196,
0x094d, 0x3fb0, 0x3099, 0x1131, Oxlbd7, 0x34bl, 0x2164, Oxlb6a},
{0x0ab2, 0x1d93, 0x291f, 0x3979, 0x2637, 0x325d, 0x3df5, 0x0715,
0x081le, 0x36a6, 0x171f, 0x350a, 0x0607, 0x0429, 0x19e5, 0x336a},
{0x12fd, 0x3f39, 0x08cl, Oxlall, Ox3el3, 0x348f, Oxlaec, 0x06f5,
0x06c3, 0x00a2, 0x398f, 0x0841, 0x1634, 0x080e, 0x3b81, 0x1795}
b
{ {0x2093, Ox1lbf3, 0x238e, 0x0454, 0x26a6, O0x3al2, Ox13c5, 0x3097,
0x0718, 0x39d0, 0x0513, O0x33ee, 0x28b3, 0x0236, Ox3aff, 0x2124},
{0x2b94, Ox1lcb8, Oxlcd4, OxleOf, 0x1069, 0x209f, 0x00e2, O0x18eb,
Ox2e7a, Ox1lbff, O0xO0fb5, 0x2749, Oxlce5, 0x2581, 0x1799, Oxle75},
{0x0c60, 0x3579, 0x325a, 0x3639, 0x28b0, 0x1145, 0x379f, 0x2e05,
Ox1ld3e, 0x302f, 0x33d7, 0x25d1l, Oxlldc, 0x01lb7, O0x15db, Ox2fa5},
{0x28c7, 0x3983, 0x3126, 0x16f0, Ox3lad, Ox23el, 0x3f42, Ox1ldf2,
0Oxla70, 0x2636, 0x268e, 0x3d99, 0x12f4, 0x15dl, Ox2eda, Ox22ba},
{0x315a, 0x3137, Ox1lb3c, 0x0687, 0x0d85, Oxlae8, 0x27d7, 0x134f,
0x1405, 0x3825, 0x3932, Oxlc3e, 0x3224, Oxlcff, 0x09c6, 0x2c3f},
{0x15ad, 0x323d, 0x0111l, Ox00c5, OxOfad, Ox1c87, 0x3d41l, 0x2699,
Ox2bcd, 0x29cb, 0x12d7, 0x30ff, 0x1154, 0x10cO, OxOc2a, 0x2289%},
{0x0343, 0x0520, 0x3817, 0x2d80, 0x00ec, 0x2400, Oxlcd2, 0x3913,

408

0x0824,
{0x29af,
0x19c1,
{0x0780,
0x04cO0,
{0x2975,
0x2b75,
{0x0303,
0x00db,
{0x04e5,
0x2ba2,
{0x3c55,
0x25cb,
{0x2370,
0x184d,
{0x0fdb,
0x2a96,
{0x1554,
0x133d,
b,
{ {0x11d8,
0x3ab7,
{0x2756,
0x04c8,
{0x07c7,
0Ox0ac4,

0x06db,
0x3908,
0x078d,
0x1103,
Ox3ee9,
0x3ff5,
0x325e,
0x2747,
0x17cb,
0x1b3b,
0x229b,
0x0b8a,
0x01cb,
Ox1ff5,
0x3347,
0x1093,
0x3410,
Ox2edc,
0x3c81,

0x0ef3,
0x15f9,
0x0d4f,
0x07el,
0x345f,
0x23af,

0x2dfb,
0x37df,
0x186d,
0x27db,
0x0785,
Ox3ead,
0x38dd,
Ox1fa8,
Ox1ebO,
0x1512,
0x3592,
0x0c99,
0x0ddb,
0x3916,
0x125a,
0x3a76,
0x230b,
0x2d9f,
0x1544,

0x3f17,
Oxlec4,
0x3cle6,
0x0673,
0x03da,
Ox3aee,

0x0d3d,
0x2844,
0x22d1,
0x1c86,
Ox3bde,
0x3085,
0x2816,
0x107a,
0x3c84,
Ox1bf5,
0x3e81,
0x291b,
0x3fad,
Ox2a3e,
Ox1l4cc,
0x0137,
0x3236,
0x07ba,
0x355a,

0x2ad9,
0x320e,
0x2000,
0x0a30,
0x1a90,
0x3774,

0x0549,
0x0eb62,
0x25b3,
0x367f,
0x1473,
0x1b0d,
0x0el4,
Ox1lced,
Ox34ee,
0x3d63,
0x1f8&d,
0x2959,
Ox2adc,
0x2f3f,
0x3d33,
0Ox3abc,
Ox2ea?7,
0x3877,
0x27ba,

0x3729,
0x25c7,
0x0bao,
0x0794,
0x23d4,
0x1452,

0x34d6,
0x12a4,
0x284d,
0x11fb,
0x3d32,
0x3861,
0x03c5,
0x0b9f,
0x210d,
0x2557,
0x0a33,
0x1238,
0x0dda,
0x1621,
0x107d,
0x2912,
0x0929,
0x3b7e,
0x1727,

0x09b6,
0x30bf,
Ox2acb,
0x3871,
0x09c9,
0x154f,

409

0x0cba,
0x0136,
0x1540,
0x2528,
0x3536,
0x2f1d,
0x0006,
0x0ee?,
0x03d5,
0x3db9,
0x02da,
0x27cO0,
0x058d,
0x2d74,
0x14a8,
0Ox2ab3,
0Ox3e7c,
0x3dfo0,
0x1d32,

0x266a,
0x0cbb,
0x1df5,
0x2357,
0x149d,
0x39e8,

0x3f19}%,
0x09f5,
0x093a},
0x2628,
Ox0Oecc},
0x26df,
0x37ed},
0x098d,
0x171d},
Ox12e2,
Oxleb4},
0x2beb,
0x2e68},
0x24b9,
0x00a0},
0x3ba5s,
0x13dd},
0x0e60,
0x06cf}

Ox2a5f,
0x359d},
0x16e8,
0x26f3}%,
0x364c,
0x2d58%,

{0x046d,
0x27e7,
{0x0165,
0x35c4,
{0x0de7,
0x1609,
{0x0ab3,
0x2ba9,
{0x1le24,
0x1db3,
{0x33ec,
0x14bb,
{0x34f1,
0x0948,
{0x0460,
0x1b9f,
{0x25c6,
0x07a8,
{0x3740,
0x29cc,
{0x174d,
0x24d5,
{0x35a0,
0x399a,
{0x0385,
Ox3abb,

0x1697,
Ox1llcc,
0x076d,
0x2072,
0x12fb,
0x0cfd,
0x210b,
0x3b45,
0x0c75,
0x24c5,
0x3c86,
0x31b3,
0x0183,
0x0alo0,
0x0999,
0x3165,
0x33f8,
0x248d,
0x01fo0,
0x2644,
0x0c7d,
0x0dc9,
0x37a3,
0x2fc6,
0x2171,
0x1899,

Ox0aec,
0x2a0e,
0x0dd6,
0x2781,
0x1361,
0x224d,
0x012d,
0x1leOa,
Ox1lccs8,
0x19d2,
0x21fb,
0x36b8,
Ox2e4a,
0x2737,
0x285c,
0x045e,
0x1668,
0x2c35,
0x0431,
0x3135,
0x3256,
0x347f,
0x0993,
0x011le,
0x2177,
0x1562,

0x35df,
0x0474,
0x3cbc,
0x1731,
0Ox1c51,
0Ox2ae6,
0x25f9,
0Ox3a3e,
0x3e28,
0x13fd,
0x016e,
0x13f1,
0x17d0,
0x078f,
0x2b55,
0x2b2c,
0x2176,
Ox1leec,
0x0630,
0x0756,
0x1056,
0x38c6,
0Ox0abe,
0x155d,
Ox1fe5,
0x0529,

0x2732,
0x2007,
0x1683,
0x0f24,
0x31le3,
Ox14ab,
0x3464,
0x2702,
0x0590,
0x02b4,
0Ox22ca,
0x0767,
0x3652,
0x10cc,
0x08bd,
0x158e,
0x081f,
0x1dOc,
0x1d7f,
Oxlea4,
0x0ca9,
0x066a,
0x15a0,
0x33e8,
0x1608,
0x3f79,

0x2300,
0x2298,
0x02bc,
0x2294,
Oxleff,
0x32c4,
0x10bd,
0x142c,
0x0d10,
0x1043,
0x003f,
0x30c5,
0x29df,
0x0f07,
0x03bd,
0x3751,
0Ox0abf,
0x225c,
0x388a,
0x074c,
0x2848,
Ox1bdd,
0x052a,
0x2241,
0x2de8,
0x3227,

410

0x31be,
Ox3ac5,
0x00c8,
0x1002,
0x0cébc,
0x21f2,
Ox2dae,
0x10a5,
0x3c9b,
0x3285,
0x0e32,
0x0b7f,
0x1705,
0x0034,
0x32cf,
0x26a9,
0x3974,
0x396d,
0x0af2,
0x27fb,
0x0216,
0x2e39,
0x1b02,
0Ox2ecO,
0x2882,
0x1d95,

0x3dc9,
0x3d87},
0x2f9e,
0x0efd},
0x3bb2,
0x0b83},
0x1c84,
Oxle25}%,
0x064c,
0x3694},
0x2b61,
0x32d7},
0x2ddo,
Ox21da},
0x2c93,
0x3479}%,
0x0bbd,
0x0973}%,
0x171c,
0x021f},
0x3b77,
0x2670}%,
0x1745,
0x06dd},
0x19ca,
0x0fa7}

{0x3400,
0x190d,
{0x25a0,
0x37b2,
{0x0831,
0Ox15de,
{0x057c,
0x3767,
{Ox1de3,
0x2a95,
{0x3c70,
Ox1cf5,
{0Ox1chbc,
0x0379,
{0x2850,
0x0a9%4,
{0x1bla,
0x3d5d,
{0x37db,
Ox1bb4,
{0x0f3e,
Ox1fe2,
{0x2f13,
Oxled7,
{0x3f0d,

0x01f3,
0x2604,
0x09a6,
0x04aa,
0x0053,
0x1042,
0x097e,
0x2693,
0x2991,
0x36fb,
0x078e,
0x0d7b,
0x3d13,
0x2a76,
0x031c,
0x2881,
0x3b73,
0x05ac,
Ox2bee,
0x14d1,
0x2448,
0x3c23,
0x1d5b,
0x23d7,
0x31de,

0x2b04,
0x118b,
0x3d56,
0x0a9%e,
Ox3ec8,
0x2197,
0x23ee,
0x187a,
0x215f,
0x1f92,
0x2499,
0x0a70,
0x3d7a,
Ox3ace,
0x2a36,
0x2cd3,
0x09e5,
Ox2ael,
0x18b7,
0x06ba,
Ox1b5d,
0x2e09,
Ox2fee,
0Ox3ald,
0x07c1,

0x2719,
Ox1lc5e,
0x3606,
0x187b,
0x1bb6,
0x38ab,
0x2682,
0x17f4,
0x1a99,
0x1503,
0x0952,
0x0c10,
0x1067,
Oxlace,
0x014d,
0x1603,
0x267c,
0ox0dff,
0x30fc,
0x38a5,
Ox15ab,
0x3496,
0x3b35,
0x0a37,
0x1419,

0x1d38,
0x35be,
0x2978,
0x1f54,
0x344e,
0x19c4,
0x06ad,
0x3600,
Ox1lcel,
0x0a03,
0x03d8,
0x2459,
0x2al4,
0x2ffo0,
0x1f8e,
0x010d,
0x10df,
0x3646,
Ox2bae,
0x055e,
0x35c6,
0x1ab67,
0x349d,
Ox2de7,
0x0dd3,

0x0851,
0x39ff,
0x001b,
0x1338,
Ox1de6,
0x3f5b,
Ox1cc9,
0x06e7,
0x3322,
0x28cd,
0x2025,
0x22e6,
Oxlab7,
0x1688,
0x210f,
0x2eb0,
0x1257,
0xo0fef,
0x203f,
0x0207,
0x0853,
0x1b62,
0x023f,
0x3785,
0x0a79,

411

0x3a82,
0x09d9,
0x2642,
0x0cdd,
0x3809,
0x35aa,
0Ox11lch,
0x120f,
0x2dc5,
0x07d2,
0x25c9,
0x1f97,
0x0779,
0x3335,
0x107e,
Ox3edb,
0x3ee0,
0x3cl13,
0x2806,
0x16d5,
0x2116,
0x159e,
0x145c,
0x368e,
0x150a,

0x0fd9,
0x3a27},
0x172e,
0x3008},
0x319e,
0x2161},
0x2fe0,
0x01lde},
0x3992,
0x25b7}%,
0x275a,
0x32a5},
0x10bc,
0x3d73},
0x3da7,
0x3004},
0x3052,
0x3018},
0Ox15cc,
0x173e},
0x1b8a,
0x2bb7},
0x32b3,
0x3f45}%,
0x23bb,

0x19d8, 0x2f5a, 0x0cb9, 0x08c7, 0x3214, 0x0e7d, 0x082f, 0x2a4f},
{0x1413, 0x1763, 0x11fl, 0x089b, 0x0407, 0x1d57, 0x3578, 0x168b,
0x3643, 0x20fb, 0x1f23, 0x139c, 0x17f7, Ox3ec7, 0x0b59, 0x07e7},
{0x029b, Ox04ea, 0Ox13al, Ox1b82, 0x35fe, 0x0744, Oxlebf, 0x36bl,
0x33bb, 0x0766, 0x0d89, 0x0211, 0x36f5, OxOe6d, 0x184a, 0x0d09},
{0x0b04, 0x3a77, 0x2cl7, 0x3739, OxOaaf, Ox11l4c, 0x00e9, 0x25b4,
0x2c05, O0x2bb8, 0x286e, 0x2141, 0x2f34, 0x29d2, 0x083b, 0x34b3}
s
{ {0x243c, 0x31df, 0x126b, 0x0412, 0x1f58, Oxl2ee, 0x30cf, 0x2182,
0x0965, Ox2ae7, 0x3387, 0x3310, 0x2b64, 0x2801, 0x20b3, 0x383d},
{0x33e2, 0x32f1l, O0x0a2l, 0x13e0, Ox3ed3, 0x126c, 0x0516, 0x39b5,
Ox1c71, 0x38bf, 0x3905, 0x330c, 0x2d94, 0x3139, 0x2995, 0x327b},
{0x01be, 0x2db9, 0x05c8, 0x0f39, 0x3792, 0x2a8f, 0x25bd, Oxlee2,
0x3d62, 0x329a, 0x26dc, 0x0533, 0xOcc4, 0x18a5, O0x3a9a, 0x3c93},
{0x0a27, 0x2058, 0x3437, 0x207c, 0x0556, 0x31d0, Ox154b, 0x33d1,
0x0160, Oxle46, 0x100e, 0x2e0Ob, 0x29al, Oxle7c, Ox3a8c, Ox1l5cd},
{0x3d23, 0x0cc7, O0x3fa6, 0x0d99, 0x23d8, 0x04c4, 0x2512, 0x0069,
0x2059, 0x05d1l, 0x2942, O0x36ea, O0x3fcf, 0x24f9, Ox24el, Ox1lcf9},
{0x17a3, 0x281c, 0x380b, 0Ox15fc, 0x38f0, OxOacb, O0xl1l6a2, O0x3bc5,
0x2a81, 0x2430, 0x3f35, 0x275f, 0x1f79, Ox26ae, 0x3c63, 0x1l42d},
{0x2f28, 0x25d3, 0x1f96, 0x3595, 0x0781, Ox2c4l, 0x2301, 0x179f,
0x11b8, 0x21fc, 0x0c4b, 0x3994, 0x39ac, Ox2cfd, Ox1lf5a, Oxleeb},
{0x3db5, 0x0f43, 0x1701, 0x393f, 0x3266, O0x08el, 0x0c26, 0x3a02,
0x07al, O0x38af, OxOcce, 0x2db2, Ox15a5, 0x0944, 0x35a5, 0x3049},
{0x1368, 0x2928, 0x3123, 0x115f, 0x1782, 0x29eb, 0x0b57, 0x39e9,
0x14a6, 0x049c, Ox2bfe, Ox3fca, 0x24b6, 0x0302, 0x2312, 0x2bb9},

412

{Ox1bca,
Ox3da4,
{0x34c9,
0x3f40,
{0x3cee,
0x155b,
{0x3631,
0x396f,
{0x04b6,
0x2c08,
{0x1b0e,
0x1248,
{0x32b8,
0x026¢,
3,
{ {0x1558,
0x0998,
{0x3ba0,
0x24a0,
{0x073d,
0x0fcc,
{0x1b9c,
0x123f,
{0x37c8,
0x0597,
{0x044e,

0x252b,
0x161d,
0x1c9e,
0x2337,
0x27ff,
0xo0fed,
0x3bbf,
0x1f2a,
Ox1ldab,
0x3d40,
0x2993,
Ox1le23,
0x1dc9,
0x09cb,

Ox1lcf2,
Ox35ac,
0x0723,
0x1e89,
Ox2edl,
0x03a4,
0x2b3c,
0x3d82,
Ox2ced,
0x18a0,
0Ox17ca,

0x3558,
0x2c24,
0x1012,
0x0f62,
0x0b2d,
0x23fd,
0x2b7d,
0x16b3,
0x3fbb,
0x07ee,
0x00a7,
0x22b1,
0x06c1,
Ox1d4d,

0x126e,
0x3c5b,
0x0496,
0x2b77,
0x1694,
0x14do0,
0x214e,
0x390b,
0x2414,
0x14e7,
0x18e0,

0x2989,
0x0159,
0x1b04,
0x1200,
Ox3ebd,
0x380e,
0x07d5,
Ox11llc,
0x020e,
0x0708,
0x093c,
0x3b27,
0x06e2,
0x07f5,

0x28c3,
0x0612,
0x1917,
0x1b97,
0x237f,
0x1207,
0x2169,
0x004d,
0x19dd,
Ox0ad4,
0x0128,

0x288d,
0x2889,
Ox1leac,
0x192b,
0x35dc,
0x2486,
0x0a0b,
0x3ab4,
0x341b,
0x286¢C,
0x03dc,
0x2929,
0x3b08,
Ox3ced,

0x3b56,
0x3aa9,
0x221f,
0x2094,
0x25d2,
0x3d22,
0x2dd5,
0x1dc8,
0x16d7,
0x2b02,
Ox2alc,

0x3dd5,
0x3el7,
0x2d2e,
0x1765,
0Ox3af3,
0x0052,
0x2d3b,
0x3c5c,
0x1c93,
0x2c43,
0x18e5,
0x2454,
0x008f,
0x3027,

0x3bf1l,
0x222e,
Ox2caa,
0x2317,
0x38ec,
0x3987,
Ox2ac4,
Oxlfea,
0x219b,
0x0bc7,
Ox3baf,

413

0x02b7,
0x02al,
0x31lea,
0x1528,
Ox11lc2,
0x137b,
0x0fcd,
0x0751,
0x399b,
0x06bf,
0x2f52,
0Ox2ca5,
0x392c,
Ox15ec,

0x22f2,
0x19a6,
0x2d2a,
0x3909,
0x2cl2,
0x0079,
Ox2abb,
0x1bc5,
Ox1c8f,
0x3b68,
Ox1c8d,

0x3037,
0x051d},
0x0085,
0x299b},
0x030c,
0x1196},
0x37c4,
0x1e80}%,
Ox1lel3,
Ox14ad},
0x3d45,
0x078c},
0x2ef7,
0x0cOd}

0Ox1le84,
0x0733},
0x293c,
0x1c92},
0x29fe,
0x0686},
Oxle4l,
Ox1ffd},
0x0cf3,
0x3041%,
0x2b9c,

0x2ch4,
{0x0ab7,
0Ox3a7f,
{0x0628,
0x1e03,
{0x2250,
Ox1ffc,
{0x143e,
0x32f5,
{0x03cf,
0x1fb4,
{0x3df9,
0x06fa,
{0x2e86,
0x3132,
{0x0c64,
0x24bd,
{0x0739,
0x34cO0,
{0x2ee3,
0x2c82,
b
{ {0x1349,
0x02ec,
{0x3590,
0x2156,

0x337b,
0x2970,
0x0435,
0Ox3e7e,
Ox1c44,
0x28dd,
0Ox2aaz2,
0x0c95,
0x19f5,
0x06a9,
0x0féb,
0x38ed,
0x35ed,
Oxle33,
Ox3dfa,
0x3f34,
0x05c3,
0x0298,
0x2316,
0x1762,
0x2497,

Ox36ee,
0x3d2e,
0x2868,
0x09dc,

0x0eOf,
Ox1dc3,
0x047d,
0x3f46,
0x3b95,
0x0f68,
0x182f,
0x0b61,
Ox21e2,
0x1662,
0x379e,
0x0cfo,
0x1877,
0x273d,
0x28e3,
0x2f8c,
0x270d,
0x10ee,
0x0880,
Ox1d5a,
Ox2abe,

0x28e6,
0x2191,
0x1240,
0x3a05,

0x3d06,
0x16c¢6,
0x303a,
0x0789,
0x3486,
0x03f5,
0x23b2,
0x3b29,
0x1678,
0x0b23,
0x2b51,
0x29ba,
0x0c7e,
Ox2aca,
0x1f30,
0x1191,
0x35eb,
0x2067,
0x09d1,
0x17a9,
0x1871,

0x05af,
Ox2aee,
0x3465,
0x045f,

0x1d54,
0x1133,
0x31f7,
Ox1a8e,
Ox1f2e,
0x2484,
0x0c3f,
Ox2a7c,
0x1db5,
0x285f,
0x3944,
0x0736,
0x3f13,
0x20a0,
0x2339,
0x1d8e,
0x353a,
0x0477,
0x0872,
0x2073,
0x35e4,

0x0a00,
0x16b1,
0x1f89,
0x2db8,

0x068f,
0x04e3,
0x35b0,
0x338a,
0x2538,
0x285b,
0x1873,
0x3fa9,
Ox1ledf,
0x04ab,
0x06b3,
0x0027,
0x32d3,
0x3d14,
0x3660,
0x390d,
0x2b0a,
0x145f,
0x0fd7,
0x3dc6,
0x3399,

0x1f2b,
0x00cc,
0x3c0a,
0x0806,

414

Ox3a3c,
0x3194,
0x23b5,
0x1d90,
0x379a,
0x27f2,
Oxléca,
0x191d,
0x323c,
0x3f87,
0x3b47,
Oxla7a,
0x0fa9,
0x0589,
Ox2clc,
0x0a0a,
0x2c07,
0x047f,
0x0daa,
0x2a80,
0x07de,

0x13a4,
0x13b2,
0x3dbf,
0x19b0,

0x2056},
0x2449,
0x0a72}%,
0x24d1,
0x078a},
0x3525,
0x35da},
0x3946,
0x03ed},
0x0f31,
0x3e66},
0Ox3bda,
0x2b03},
Ox2ec5,
Ox2bal},
0x36df,
0x387d},
0x35ce,
0x3d95}%,
0x1521,
0x2230}

Ox1fff,
0x1893},
0x0dd5,
0x3d6d},

{0x086c, 0x363d, 0x18bb, 0x1296, Ox2bba, 0x2c55, 0x192d, Oxlb5e,
0x301b, 0x0c08, 0x1375, 0x322d, 0x1712, 0x00b7, 0x3574, Ox1c9d},
{0x3d9b, 0x3883, 0x1912, 0x1469, 0xldc6, 0x3b0Oc, Oxlaaa, 0x3022,
0x0200, 0x0c8f, 0x360e, 0x2939, 0x30d2, 0x2c92, O0x1lc63, Ox3efl},
{0x3e23, 0x24e5, 0x3bd9, 0x287f, 0x256a, 0x0816, 0x1315, O0xO0b2l,
0x1337, 0x39b0, 0x1f65, 0x3d5b, 0x13d2, Ox27ee, Oxllla, 0x2509},
{0x1a43, Ox2cba, 0x3283, 0x0118, 0x0cOc, 0x3424, 0x2e37, 0x38d1l,
Ox3dad, O0xObcb, 0x0f02, 0x341f, 0x31f9, 0x090f, Oxl4ea, O0xOfa5},
{0x0820, Ox3fc4, 0x2406, 0x1404, O0x2c6l, Ox2be4, 0x339b, 0x0629,
Ox3ffa, 0x2cb9, 0x1dl2, 0x08a0, 0x2947, 0x36eb, 0x35c8, 0x1653},
{0x0297, Ox2ccc, 0x1le00, 0Ox1e98, 0x3917, 0x0991, 0x09f2, Ox3ad8,
0x33ed, 0x24db, 0x3fbd, 0x3986, 0x1136, O0x32ca, 0x1604, 0x06d6},
{0x3e80, 0Ox31lda, 0Ox00ea, 0x0c3a, Ox3ed4c, 0xObc3, 0x29a2, 0xO0b55,
0x3618, 0x0368, 0x193d, 0x264b, 0x024d, 0x0c00, 0x09ca, OxOadb},
{0x3393, 0xl2ae, 0x2ed9, 0x25ca, 0x3d74, 0xOb77, 0x1025, Ox3c8e,
Ox3ca8, 0x172a, 0x129f, 0x0996, O0x27ea, 0x1b07, O0x1l3e3, 0x150c},
{0x03ec, 0x3724, 0x18b3, 0xll5a, 0x14c8, 0x192e, Oxla8f, Oxl3ac,
0x27a5, 0x1718, 0x2ba0, Ox3bdd, 0x2c44, Ox2a6a, O0x3flc, 0x287c},
{0x3475, 0x33a8, 0Ox3alc, Ox15cl, 0x2d56, 0x0d03, 0x02ba, 0x2f33,
0x13a8, 0x36ad, 0x38c2, 0x384a, 0x2d6e, 0x265d, 0x3195, 0x1759%},
{0x14d2, 0x033f, 0x00c7, 0x0608, 0x2c9e, 0x2597, 0x005a, 0x1565,
Oxllab, 0x04ca, 0x22ce, 0x3478, Ox2aa4, 0x3897, 0xOdab, 0x14b2},
{0x08cb, 0x30e8, O0xObf3, Ox3elb, 0x3e35, 0x282f, 0x2516, O0x24a4,
0x3e98, Ox1ffb, O0x24ab, 0x0954, 0x3a08, 0x1l7c7, O0x3fdf, Ox3cfa},
{0x2287, 0x0f93, 0x38cd, 0xlel9, 0x2306, Ox2ebf, 0x110d, Oxled8d,
0x28c4, 0x0f7a, 0x2b05, 0x325f, 0x05b5, Ox21ldc, 0x188c, 0x387e},

415

{0x23b6, Ox2ec3, OxOlae, Oxlle4, O0x2f37, 0x3c98, 0x355f, 0x0275,
Ox34ce, 0x1488, 0x3237, 0x306d, 0x343e, 0x3b09, 0x2214, 0x320d}

416

VITA
Richard Lloyd Churchill
Candidate for the Degree of
Master of Science

Thesis: RICHARD LLOYD CHURCHILL

Major Field: Computer Science
Biographical:
Education:

Completed the requirements for the Master of Seem€omputer Science at
Oklahoma State University, Stillwater, Oklahomdiecember, 2011.

Completed the requirements for the Bachelor off@aen Chemistry and
Philosophy at Oklahoma State University, Stillwa@klahoma in 1980.

Experience:

Systems Engineer, Telex Corp., Tulsa, OK 1985-1988

Systems Engineer / Systems Architect, Compaq Can@drp., Houston, TX
1988-2001

Programmer / Software Architect / Consultant, HonsT X 2001-2004

Programmer / Software Architect / Consultant, &tlier, OK 2004-2011

Name: Richard Lloyd Churchill Date of Degree: Debem 2011
Institution: Oklahoma State University Locationill®ater, Oklahoma
Title of Study: MODIFIED MCLAREN-MARSAGLIA PSEUDO-RNDOM NUMBER

GENERATOR AND STOCHASTIC KEY AGREEMENT

Pages in Study: 416 Candidate for the Degree otévla$ Science
Major Field: Computer Science

Findings and Conclusions: A discussion of problemsyptographic applications, with
a brief survey of pseudo-random number generaRR&NG) used as synchronous
stream ciphers, leads to a discussion of the MeG#Marsaglia shuffling PRNG,
and some means of altering its structure to batkige a more secure PRNG and
to provide effective means by which to inject apéigity into a modified form of
McClaren-Marsaglia. A discussion of two closellated protocols using this
modified form of McClaren-Marsaglia as means bychhtorrespondents may
agree upon a set of random bits in a manner saitablse in cryptographic
applications is then presented, with implementaitiaime C programming
language of the second protocol. Analysis of tteeqeols concludes that a
reasonable expectation of confidentiality and agpaphic strength in the agreed
bit-sequence is obtained.

ADVISER’S APPROVAL:_Dr. H. K. Dai

