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CHAPTER I

INTRODUCTION

The Internet is a major source of information, news and entertainment.

“Connecting” was the highest priority when the Internet was designed and implemented.

Now, there is no question that the Internet is “connected”. The Internet has started using

Quality of Service (QoS) features, and QoS is the key for the further success of the

Internet. With a variety of services over the large network, users expect QoS

improvements.

An inevitable issue in QoS routing is scalability. Frequently updating state

information is required in QoS routing, and it causes not only consumption of network

bandwidth but power to generate and advertise update messages [1]. This scalability

concern increases as the network size becomes larger.

Hierarchical QoS routing is one of the solutions to deal with this scalability

concern in a larger network. In hierarchical routing, nodes are grouped and treated as

domains. This clustering is repeated to create a multi-level hierarchy. Since continually

updating detailed information at every router increases the communication overhead in

such a large network, topology information is aggregated before being advertised. This

technique is called topology aggregation [2]. In hierarchical QoS routing with topology
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aggregation, upper level nodes receive concise topology information from lower level

nodes [12].

A general maximum flow algorithm is used to find a feasible path in bandwidth

aggregation. It displays a high Bandwidth Over-estimation Ratio (BOR) and low

Bandwidth Under-estimation Ratio (BUR). The maximum multicommodity flow and

maximum concurrent flow algorithms can reduce BOR because of their more accurate

acceptance criteria. The objective in this thesis is to compare the statistical results

obtained by simulation using general maximum flow algorithm and maximum

multicommodity flow and maximum concurrent flow algorithms.  
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CHAPTER II

REVIEW OF LITERATURE

2.1 Quality of Service (QoS)

Assurance of QoS involves selecting a path with sufficient resources for the

requested QoS parameters, such as bandwidth, delay, jitter and packet loss. The QoS

problem is intractable when dealing with multiple constraints [7].

Many applications use the Internet, and packets flowing within the network

include those for Web browsers, e-mail and so on. The sender has to deal with routing of

various commodities. On the other hand, the receiver expects data to be delivered with

guaranteed QoS. Frequent updating is needed in QoS routing. However, as the network

becomes larger, it is almost impossible to advertise topology information to every node in

the network due to the time, space and bandwidth required. Therefore, scalability will be

the main concern as network size increases. There are two possible solutions to deal with

this problem: quantity reduction and frequency reduction [13]. Quantity reduction

emphasizes reducing the number and size of the messages which must be sent to inform

one router of another’s state. The objective of frequency reduction is to try to create

messages infrequently as keeping routing performance. The topology aggregation scheme

belongs in the quantity reduction strategies [1].
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2.2 Hierarchical Routing Algorithm

The nodes are classified into groups, and nodes and links in a group are

aggregated recursively [11]. Figure 1 (a) shows a physical network. A.a.*, A.b.*, A.c.*,

B.a.* and so on are clustered and represented as a logical node, A.a, A.b, A.c and B.a and

so on respectively. This is first-level abstraction and shown in Figure 1 (c). And then

repeatedly A.* is clustered to A, B.* is clustered to B, and C.* is clustered to C. This is

second-level abstraction and shown in Figure 1 (d).

2.3 Topology Aggregation (Network State Aggregation)

The objective of the topology aggregation technique is to allow the application of

both concise and detailed information to the routing. This topology aggregation is

important for scalability in hierarchical large networks and contributes to the reduced

overhead. The nodes are clustered into domains and each domain is connected with

others through border routers (BRs). BRs in a particular domain have detailed

information about their own domain and concise information about neighboring domains.

For example, A.a.3 in Figure 1 (e) has detailed information about connectivity and

resources of its domain (A.a.1, A.a.2, and A.a.4) and aggregated information of A.b. A

BR sends reduced network information to nodes outside of its domain and detailed

information to those within its domain. In other words, it has a complete view for inside
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the domain and aggregated view for outside the domain. Detailed inside domain

information is aggregated before being advertising. The exchanged information between

domains contains an aggregation of the connectivity and resource availability [10].

Hierarchical QoS routing is the technique to find a feasible path using these detailed and

aggregated information sets [9].

2.4 Maximum Flow Problem

The objective of the maximum flow problem is to find a flow of maximum value

from a single-source to a single-sink in a flow network G = (V, E), where V is a vertex set

and E is a collection of edges. Ford-Fulkerson, Edmonds-Karp, and push-relabel

algorithms are major algorithms to solve maximum flow problem [8]. In this simulation,

Edmonds-Karp is used. We add a super-sink to calculate the advertised capacity. Figure 2

shows an example of calculating advertised capacity when domain B requests to domain

A. The edges are added from c, d, and e to the super sink with an infinity capacity.

Adding a super sink enables max flow algorithm to calculate advertised capacity of the

topology with multiple sinks.
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(a) Physical network (b) clustering

(c) First-level abstraction (d) Second-level abstraction (e) the network image viewed by node A.a.1

Figure 1. Hierarchical Network Model [7]
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Figure 2. Max Flow with Multiple Sinks

2.5 Multicommodity Flow Problem

Given a graph G = (V, E) with a non-negative capacity 0≥u . There are k

commodity pairs ),),.......(,(),,( 2211 kk tststs . js and jt represent source and sink of

commodity j, kj ≤≤1 respectively. Let if be a real-valued function. ),( vuf j is the

flow from vertex u to v of commodity j. Define ),( vuf as an aggregate flow. The

aggregate flow on edge (u,v) is sum of all commodity flows, ∑ =
=

k

j j vufvuf
1

),(),( and

cannot exceed the capacity of edge (u,v). The multicommodity flow problem is to

determine if there is such a flow.

A

B
C

D E

b c

d e

super sink
∞

∞
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2.6 Maximum Multicommodity Flow Problem

Given a directed network G = (V, E) with non-negative capacities u, E -> R and k

ordered pairs of vertices ),),.......(,(),,( 2211 kk tststs . The pair, ),( jj ts , kj ≤≤1 represents

a source-sink terminal pair for commodity j. Let jf be the amount of flow from js to jt .

The objective of maximum multicommodity flow problem is to maximize the sum of

flows, ∑ j jfmax without exceeding capacity of any edge [3]. Let jΡ denote the set of

paths from js to jt and let jjΡ∪=Ρ : . Let )(Px define as an amount of flow sent along

path P and let )(eu be a capacity of edge e. The linear programming formulation is

defined as follows:

.0)(:

)()(:

)(max

:

≥∀

≤∀ ∑
∑

∈

Ρ∈

PxP

euPxe

Px

PeP

P

The length of an edge means the “marginal cost of using an additional unit of capacity of

the edges” [3]. Let l denote the length function. When applying lengths to each edge in

the graph, the dual for the above linear program is given as follows:
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0)(:

1)(:

)()(min

≥∀

≥∀ ∑
∑

∈

ele

elP

eleu

Pe

e

Fleischer [3] provides pseudo-code for maximum multicommodity flow problem

invented by Garg and Konemann [6], and it is shown in Figure 3. This pseudo-code is

used for simulation.

Figure 3. Maximum Multicommodity Flow Pseudo-Code

Input: network G, capacities u(e), commodity pairs ),( jj ts , kj ≤≤1 ,

accuracy ε
Output: primal (infeasible) and dual solutions x and l

Initialize δ=)(el 0, ≡∀ xe
while there is a Ρ∈P with 1)( <Pl

select a Ρ∈P with 1)( <Pl

)(
1)(()(,

)()(

)(min

eu

u
elelPe

uPxPx

euu Pe

ε
+←∈∀

+←
← ∈

end while
Return (x, l).
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2.7 Maximum Concurrent Flow Problem

Given a directed network G = (V, E) with non-negative capacities u, E -> R and k

ordered pairs of vertices ),),.......(,(),,( 2211 kk tststs . At commodity j, source-sink pair,

),( jj ts has demands jd , kj ≤≤1 . The objective of this problem is to maximize the

possible portion of all demands: jdf jj ∀≥ ,,max λλ . Let jΡ denote the set of paths

from js to jt and let jjΡ∪=Ρ : . )(Px is defined as an amount of flow sent along path P

and )(eu denotes a capacity of edge e. The notation jz stands for weights at commodity

j. The maximum concurrent flow problem is represented using linear program as follows.

0)(:

)(:

)()(:

max

:

≥∀

≥∀

≤∀

∑

∑

Ρ∈

∈

PxP

dPxj

euPxe

jP
j

PeP

λ

λ

The lengths are assigned to the edges just as in the maximum commodity flow problem.

In addition to them, weights are assigned to the commodities. The length of an edge

means “the marginal cost of using an additional unit of capacity of the edges” [3]. The

weight is defined as “the marginal cost of not satisfying another unit of demand of the
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commodity” [3]. Let l denote the length function. The dual for above linear program is

expressed as follows:

0:

0)(:

1

)(:,

)()(min

1

≥∀
≥∀

≥

≥Ρ∈∀∀

∑

∑
∑

≤≤

∈

j

kj
jj

j
Pe

j

e

zj

ele

zd

zelPj

eleu

Fleischer’s paper [3] introduces maximum concurrent flow pseudo-code in Figure 4. This

simulation is based on this pseudo-code. Demands should be given as we can see from

her pseudo-code; however, they are not provided in the network topology we use in this

simulation. They are calculated as follows. Add a super sink to border routers which are

not the source border router. Then, calculate maximum flow from source to the super sink

and divide it by the number of (border routers -1). 1 is for source border router.



12

Figure 4. Maximum Concurrent Flow Pseudo-Code

Input: network G, capacities u(e), vertex pairs ),( jj ts with demands

kidi ≤≤1, , accuracy ε
Output: primal (infeasible) and dual solutions x and l

Initialize 0,),(/)( ≡∀= xeeuel δ
while 1)( <lD

for j = 1 to k do

jj dd ←'

while 1)( <lD and 0' >jd

←P shortest path in jΡ using l









+←∈∀

+←

−←

← ∈

)(
1)()(,

)()(

''

)}(min,'min{

eu

u
elelPe

uPxPx

udd

eudu

jj

Pej

ε

end while
end while
Return (x,l)
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2.8 Goodness Measures

The following are used for statistical measurements [10].

� Bandwidth Admission Ratio (BAR): Ratio of bandwidth admitted to bandwidth

requested

� Bandwidth Over-estimation Ratio (BOR): Ratio of bandwidth dropped in a

domain to bandwidth sent

� Bandwidth Under-estimation Ratio (BUR): Ratio of non-forwarded bandwidth

that could have been successful to bandwidth not sent

2.9 General Maximum Flow vs. Maximum and Maximum Concurrent Multicommodity

Flow Algorithms

Suppose that a border router in domain B wants to send to domain E through

domain A in Figure 5. In the general maximum flow problem, it is assumed that other

neighbor domains of A, C and D are not using resources in A. In other words, domains C

and D cannot share resources in domain A. This makes BOR increase and BUR decrease.

We believe that maximum multicommodity flow and maximum concurrent flow

algorithms can reduce BOR since their property allows sharing resources among domains.
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The maximum multicommodity flow and maximum concurrent flow algorithms can be

better than the general maximum flow algorithm.

Figure 5. Network Model

A

B C

D E

Border Router
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CHAPTER III

METHODOLOGY

3.1 Discrete Events Simulator (DES)

A DES is a dynamic system model to simulate the flow of people, things or events,

where the system consists of queued events and a virtual clock. Simulation languages

such as GPSS, SIMSCRIPT and SIMULA, as well as simulation software have been

developed. Programming languages can substitute for simulation languages or simulation

software. In this research, we used the Java language to implement both a DES as well as

the routing algorithms to be applied.

3.2 Implementing a DES

The system is simulated for a given number of events. Events can be one of two

kinds: (1) resource reservation event or (2) resource release event. A new, resource

reservation event includes four pieces of information: the time the event occurred, source,

destination and bandwidth required to allocate. The time which the event occurred is

generated by the equation, 1−= nn TT + (exponential random value, 1µ ), ≤≤ n1 maximum

number of events. Source and destination domain are randomly chosen from neighbors of
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main domain and created such that source and destination are not equal. Neighbor

domains request a bandwidth amount of either 1 or 2. The system updates advertised

capacity every 30 seconds as a default value. Once an algorithm decides that the

requested bandwidth can be allocated, then the time when resource along the selected

path will be released is randomly generated by the equation, nn TereleaseTim = +

(exponential random value, 2µ ), ≤≤ n1 maximum number of events. This release event

is added to a heap data structure. The current network topology, G is copied and edges

whose capacity is less than requested bandwidth are dropped. This copied topology, G’ is

used by Edmonds-Karp algorithm to see if a feasible path is found in the Network

topology. A code sequence of the DES, when the number of events is variable, and the

values of average time between requests and time between updates are fixed, is

summarized in Figure 6.  

 

3.3 Assumptions

Here is a summary of the assumptions made in this simulation.

1. If the network cannot reserve a requested unit, the request is dropped and has no

second try.

2. Source and destination nodes are not the same.

3. Requested bandwidth is either 1 or 2.
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4. All edges’ capacity is a fixed number, 4.

5. For more accurate results, the simulation is taken 50 times and then averaged.

6. The default values for maximum number of events, update time, and the

average time between requests are 20000, 500 seconds, and 0.05 seconds

respectively.

7. The average time a request uses resource in the network is fixed at 10 seconds.
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Figure 6. Discrete Events Simulator

for i from 1 to MaxEvents do{
// generate event (time)

// do resource release events

// if current time modulo 500 == 0, update advertised capacity

// generate event (source)
// generate event (destination)
// generate event (bandwidth, 1 or 2)

// check advertised capacity
// copy topology G’ � G
// drop edges whose capacity are less than requested bandwidth in G’
// find a path using Dijkstra

If (advertised capacity > request){
If (path is found in G’){

// generate resource release event time
// add this event to heap

}
else if (path is NOT found in G’) 

 // over-estimation
}
else if (advertised capacity ≤ request){

if( path is found in G’) 
 // under-estimation

}
}
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3.4 Input

The DES program takes one input file as an argument that contains the network

topology of the main domain with adjacent matrix style: 0 represents no edges between

vertices and 1 means there is an edge between vertices.

3.5 Simulation Circumstances

In this simulation, we tested three circumstances as follows [10].

1) BAR/BOR/BUR vs. Number of events

2) BAR/BOR/BUR vs. Average time between requests

3) BAR/BOR/BUR vs. Time between updates
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CHAPTER IV

FINDINGS

Three algorithms, maximum multicommodity flow (MMF), maximum concurrent

flow (MCF) and general maximum flow (MAX) are simulated to see how each algorithm

differs from the others under three situations: sensitivity to (1) the number of events, (2)

average time between requests and (3) time between updates. The standard deviations

from mean are from the simulations. The results are shown in the graphs (Figures 7 - 17).

The error bars in some graphs cannot be seen because of their small values. The vertical

lines shown in Figures 7 – 10, 12 – 15, and 17 are connected to the mean and are only

given for visual confirmation.

4.1 Goodness Measures vs. Number of Events

An event is defined as a resource request. This simulation is to see how BAR,

BUR and BOR change as the number of events increase. The number of events is

incremented from 1000 to 40000 at intervals of 1000. The average time between requests

is fixed as 0.05 seconds, update interval is every 500 seconds, and the average time a

request keeps resources in the network is fixed at 10 seconds. The results shown are the

average obtained after 50 runs. 
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4.1.1 BAR vs. Number of Events

The MAX and MMF draw almost the same lines (Figure 7). MCF follows a

similar curve as MMF and MAX do, though the values are not even close. Starting with a

gentle curve and staying flat for a moment, each algorithm decreases quickly and then

keeps stable as the number of events increases. We can say that the BAR becomes lower

and then stable as the number of events increase.
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4.1.2 BUR vs. Number of Events

MCF stays high from the beginning compared to other algorithms (Figure 8). The

BUR of MMF and MAX stays flat until some point and then increases. MMF keeps

stable with a slight increase, and MAX falls over a narrow range of y as the number of

events increase.
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4.1.3 BOR vs. Number of Events

MAX stays high from the beginning to the end (Figure 9). On the other hand, the

other two algorithms keep a low BOR. Though MMF decreases slightly, all three

algorithms seem unaffected by the number of events simulated. The characteristics of this

graph are that all lines stay flat, and the standard deviations from the simulations of all

three algorithms are very small. MCF always has a value of zero. Therefore, the error

bars cannot be seen.
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4.1.4 Discussion

As mentioned before, each edge’s capacity is 4, the average time a resource is

kept in use is 10 seconds, information is updated every 500 seconds, and the average time

between requests is 0.05 seconds. We are able to estimate the time the simulation takes,

and how many times network information is updated. The simulation times are calculated

by multiplying the number of maximum event and the average time between requests,

0.05 seconds. At x = 1000, the simulation takes 50 seconds, 1000 times 0.05 equals to 50.

In this case, network is updated just one time, at 0 second. Therefore, between x = 1000

and x = 9000, information is updated only one time, at 0 second. Between x = 10000 and

x = 19000, information is updated two times, at 0 and 500 seconds. The network update

affects performance of some algorithms at x = 10000, 20000, 30000 in BAR and BUR as

graphs show, and we can see the changes of behaviors of goodness measures at these

instances. BOR is not affected by update.

Though MMF and MAX show almost the same performance in BAR, the BOR of

MMF is very low and that of MAX is very high. This tells us that MMF is more

conservative than MAX.

MCF does not perform as well as the two others do in BAR. This is because of

how it is implemented, and is explained in section 2.7. It makes advertised capacity low,

and finally, ends up with poor performance.
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4.2 Goodness Measures vs. Average Time between Requests

This scenario is to see how BAR, BUR and BOR change as the average time

between requests increases. The results are recorded at x = 0.01, 0.05, 0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, 0.45. The number of events, the time network information is

updated, and the average time a request uses resources in the network are fixed at 20000

events, 500 seconds and 10 seconds respectively. The results under the standard

deviations from mean due to simulations are the average obtained after 50 runs. 

 

4.2.1 BAR vs. Average Time between Requests

The values of BAR of all three algorithms are almost the same at the beginning,

but the differences increase as the average time between requests grows (Figure 10). The

values of MAX are the highest, and those of MCF are the lowest. We can say that the less

heavily loaded the network is, the better all three algorithms perform, especially MAX.

The unweighted nonlinear regression fits help to see the patterns (Figure 11). The

data sets of MAX, MMF, and MCF are fitted well by )1(*185.1 563.2 xey −−= ,

)1(*6013.0 156.4 xey −−= , and )1(*4484.0 528.2 xey −−= respectively. The equations tell us

that MMF is approaching its asymptote faster than others; MAX and MCF increase at

almost the same rate. Since the ratio cannot be above 1, the equation of MAX is

unreasonable. The best fit with the coefficient constrained not to exceed 1.0 is
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)1(*0.1 369.3 xey −−= , although the quality of this fit is not very good.
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Figure 10. BAR vs. Average Time between Requests
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Figure 11. Unweighted Nonlinear Regression Fits

4.2.2 BUR vs. Average Time between Requests

MCF values do not change and keep a high ratio (Figure 12). The values of MMF

start low with high standard deviations, get higher quickly, and keep their high values

with small standard deviations. The values of MAX increase quickly after the beginning

stage, and then seem to be stable, although they show some variation.
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Figure 12. BUR vs. Average Time between Requests

4.2.3 BOR vs. Average Time between Requests

The values of MCF and MMF are always low (Figure 13). On the other hand, the

MAX line shows dramatic changes; decreasing as the time increases. The standard

deviations from mean for all three algorithms are extremely small, especially in longer

average time between requests. This is why the error bars cannot be seen in the graph.
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Figure 13. BOR vs. Average Time between Requests

4.2.4 Discussion

This simulation shows the influences of updates frequency as well as the network

load.

We can estimate the time when the simulation ends by multiplying maximum

number of event and average time between requests. In this simulation, 20000 is the

number of maximum event. At x = 0.05, information is updated 2 times and 18 times at x

= 0.45. Low x values means a heavily loaded network and high x values are for a lighter

load.
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In BAR, all algorithms result almost 0% at x = 0.01. Heavy load and infrequent

updates cause this low ratio. Raw data shows us that numerator (accepted bandwidth) is

extremely low. As the average time between requests increases, the network becomes less

heavily loaded, and also the network information is updated more frequently. This

reflects increases of the accepted bandwidth. As a result, BAR increases in all algorithms.

The way each algorithm is implemented shows different increase rates in BAR graph.

MAX is using general max-flow algorithm, so its returning advertised capacity may be

large. As described in section 2.7, MCF will result in a low advertised capacity.

The business of network and frequency of updates do not influence BUR, but may

have impacts on the BOR of MAX. As the network is less heavily loaded with more

accurate network information, bandwidth dropped in the main network becomes less;

therefore, we can see a declining line in Figure 13.

4.3 Goodness Measures vs. Time between Updates

This simulation is to see how BAR, BUR and BOR change as the time between

updates increases. The results are recorded at x = 10, 50, 100, 150, 200, 250, 300, 350,

400, 450, 500. The number of events is fixed at 20000 events, the average time between

requests is 0.05 seconds, and the average time a request uses resource in the network is

fixed at 10 seconds. The averaged values are obtained after 50 runs. 
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4.3.1 BAR vs. Time between Updates

The values of two algorithms, MMF and MAX, are especially unstable and their

lines curve almost the same after x = 150 (Figure 14). The differences between mean of

MMF and MAX are less than 2% after x = 200. As seen from the graph, the standard

deviation of MAX is high after x = 250 and that of MMF is small. Therefore, the line of

MMF and MAX could be much closer. The values of MCF seem to be stable.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

B
an

d
w

id
th

A
d
m

is
si

on
R

a
tio

Time between Updates (sec)

MMF
MCF
MAX

Figure 14. BAR vs. Time between Updates



32

4.3.2 BUR vs. Time between Updates

The values of MCF are the highest and MAX are the lowest (Figure 15). MMF

has high values at the very short update intervals, but decrease gradually. The values of

MCF keep flat. Those of MAX look unstable, but it seems they are within some range.

BUR of MCF is inadequate, but that of MMF is not as bad as MCF. MAX displays

reasonable result values.

Unweighted nonlinear regression fits show that the data set of MMF is fitted well

by xey 00311.0*)710.01(710.0 −−+= in Figure 16. The equation says that y values

approach to y = 0.710 as further simulation occurs.
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4.3.3 BOR vs. Time between Updates

The values of MAX are the highest among the three algorithms (Figure 17). The

values of MMF gradually get higher and keep stable, and MCF stay extremely low from

the beginning to the end. MAX begins with slightly low values, but the values increase

gradually and keep flat.
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4.3.4 Discussion

The simulation time is estimated by multiplying number of maximum event and

the average time between requests; 20000 times 0.05 equal to 1000 sec. With this time

and x value, we can see how many times network information is updated. The smaller the

x value, the more updates occur. It seems that they do not affect the performance. There

are no recognizable patterns on simulations except BOR. Here, also, how MCF is

implemented seems to affect the performance.
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4.4 Summary of Findings

We carried out simulations using three variables: (1) number of events, (2) time

between requests, and (3) time between updates. Some graphs are obvious to see that they

are affected by number of update times and network density. However, we cannot see

recognizable patterns in some graphs.

In (1) and (3), MMF and MAX have almost the same performance in BAR. The

BOR of MMF always shows an extremely low ratio. The way how each algorithm is

implemented may help us to understand some of results. MAX calculates its advertised

capacity by adding super sink, and returns a large number. On the other hand, MMF

returns its advertised capacity so that each path can have maximum flow. Therefore, its

number may not be as large as MAX’s. This differences show well in some BOR graphs.

We conclude that MMF is more conservative than MAX.

We can also explain poor MCF performance by how it is implemented. As

mentioned in section 2.7, it returns a low advertised capacity. In conclusion, its

performance is not as good as the other’s in BAR. We are sure that a network topology

with precise demands would increase its performance relative to the others.
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CHAPTER V

CONCLUSION

The higher BAR and lower BOR and BUR are, the better the algorithm is. The

motive of this research is to demonstrate that maximum multicommodity flow and

maximum concurrent flow algorithms can result in lower BOR than the general

maximum flow algorithm. This is because the general maximum flow algorithm finds a

path from a single source to a single destination and does not allow sharing of resources

which are requested from other domains. On the other hand, maximum multicommodity

flow and maximum concurrent flow algorithms can deal with multiple sources and

destinations and the problem of sharing resources with other domains. Their purpose is to

maximize all paths’ resource usage in the network. As we expected, maximum

multicommodity flow and maximum concurrent flow algorithm reduced BOR. Also, we

find that maximum multicommodity flow and general maximum flow algorithm produce

almost the same results in BAR under heavy network usage with a long enough time

between updates.

In addition to this, we can conclude that the maximum multicommodity flow

algorithm is a more conservative approach than the general maximum flow algorithm.

This is because the general maximum algorithm calculates advertised bandwidth

capacities that can be forwarded through the main network; giving a tendency to return
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large values. On the other hand, the advertised bandwidth capacities calculated by

maximum multicommodity flow algorithm are reasonable in that it computes the values

which can be routed with 100% guarantee to border routers in other domains.

As future work, various situations should be performed such as using a broad

range of capacity of edges and request bandwidth, networks with more nodes and

neighbor domains, dense networks, sparse networks, the length of time a resource is kept,

etc. In addition to these, it would be exciting to simulate MCF again using demands of

each commodity pair as an input.

Further development and analysis are needed for the QoS seeking algorithms to

be used in the Internet [5]. I believe that this research can be another step toward the fast

and efficient next generation network.
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