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CHAPTER I 
 
 

INTRODUCTION 

 

 

Social networks are structures consisting of individuals or organizations that 

create powerful ways of communicating and sharing information. Millions of people use 

social networking websites like MySpace, Facebook, Bebo, Orkut and Hi5. The question 

of their value related to size is an important problem in computer science [1, 2], both 

from the point of view of connectivity and that of business investment.   

1.1 Concepts 

   Social networks connect people and the cost involved in connecting is low, 

which benefits businesses and institutions. These networks are important in customer 

relationship management, and they serve as online meeting places for professionals. 

Virtual communities allow individuals to be easily accessible. People establish their real 

identity in a verifiable place, these individuals then interact with each other or within 

groups that share common business interests and goals. 



 

. 
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Fig1. Simple Social Network 
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For humans, the max group size is 147.8, or about 150. This represents Dunbar’s estimate 

of the maximum number of people who can be part of a close social relationship [4]. 

 
              Support for Dunbar’s ideas come from the community of Hutterites, followers of 

the sixteenth century Jakob Hutter of Austria, who are pacifists and believe in community 

property and live in a shared community called colony. Several thousand Hutterites 

relocated to North America in the late 19th century and their colonies are mostly rural 

[3,4].  A colony consists of about 10 to 20 families, with a population of around 60 to 

150. When the colony's population approaches the upper figure, a daughter colony is 

established. 

 

Dunbar’s ideas can be taken to be an indication of the idea that most social 

networks are “small world” networks [3, 4, 5, and 9]. Small world networks exhibit 

clustering and small characteristic path lengths that seem to capture many features of 

social computing networks.  We are interested in relating value to size in such networks. 

1.2 Problem Formulation 

    In this thesis we propose to investigate the value of a social network with 

respect to the probability mechanism underlying its structure. Specifically we introduce 

new random networks and compute the value for small world networks and scale free 

networks. We provide evidence in support of the value of such networks to be given by 

Zipf’s law. 
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1.3 Layout of Thesis 

We first review articles that lead to the proposal for new random networks. 

Chapter 2 presents review of literature, Chapter 3 presents our methodology, and chapter 

4 provides results on value of different kinds of social networks. These chapters also 

discuss the theory of the networks and issues related to simulation. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

2.1 Background 

 

Odlyzko et al claimed [2] the reason for failure of the dot-com and telecom 

booms that was based on Metcalfe’s law, according to which value of a communication 

network is proportional to the square of the size of the network. There is also the Reed’s 

law [7] saying that the value is exponentially related to the size. Odlyzko et al argued that 

the Metcalfe’s rule is a significant overestimate and Reed’s law is even more of an 

overestimate. It should be noted that Metcalfe actually meant to establish the existence of 

a cost-value crossover point (critical mass) before which networks don’t pay; the trick is 

to get past that point, to establish critical mass. 

Devices 

Critical 
Mass 

Cost ≈N 

Dollars 

$ 

Value≈N
2

Fig. 2 Robert Metcalfe's original circa-1980 slide 
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Consider a network of 100 000 members that we know brings in $1 million, if the 

network doubles its membership to 200 000, by Metcalfe’s law the value grows by (200 

0002/100 0002) times, quadrupling to $4 million, whereas the n log n law says its value 

grows by (200 000 log (200 000))/ (100 000 log (100 000)) times to only $2.1 million. In 

both the cases, the network’s growth in value more than doubles, still outpacing the 

growth in members, but one is much more modest growth than the other. Much of the 

difference between the artificial values of the dot-com era and the genuine value created 

by the internet can be explained by the difference between the Metcalfe-fueled optimism 

of n2 and the more sober reality of n log n.  

 
Odlyzko et al developed several quantitative justifications for their n log n rule of 

thumb valuation of a general communications network of size n. One of them is Zipf’s 

law which states that if we order some large collection by size or popularity, the second 

element in the collection will be about half the measure of the first one, the third one will 

be about one-third the measure of the first one, and so on. In other words, the kth ranked 

item will measure about 1/k of the first one.  As example of this popularity is a rough 

measure of value to booksellers like Amazon. If we have a million books, then the most 

popular 100 will contribute a third of the total value, the next 10,000 another third, and 

the remaining 989,900 the final third. The value of the collection of n items is 

proportional to log n. For this reason we choose to call the proposal of Odlyzko and 

associates also as the Zipf’s law. 
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2.2 Small World Phenomenon 

 

The small world phenomenon is the empirical fact that we are all linked by short 

chains of acquaintances, which was first pointed in pioneering work of Stanley Milgram. 

Kleinberg [5] argues that the framework developed by Watts and Strogatz provided a 

compelling evidence that the small world phenomenon is pervasive in a range of 

networks arising in nature and technology. But he believes that the existing models are 

insufficient to explain the striking algorithmic component of Milgram’s original findings 

that individuals using local information are collectively very effective at actually 

constructing shorts paths between two points in a social network. Kleinberg proves that 

no decentralized algorithm, operating with local information only, can construct short 

paths in these networks with non-negligible probability. He defines an infinite family of 

network models that generalizes the Watts-Strogatz model, and shows that for one of 

these models, there is a decentralized algorithm capable of finding short paths with high 

probability.  

 
Kleinberg says that social network exhibits small world phenomenon adding that 

recent work has suggested that the phenomenon is pervasive in networks arising in nature 

and technology, and a fundamental ingredient in the structural evolution of the World 

Wide Web. 

 
The Watts and Strogatz proposed model [21] for the small world phenomenon is 

based on a class of random networks that interpolates between two extremes, in which 

the edges of the network are divided into local and long range contacts.  Watts and 

Strogatz argue that such a model captures two crucial parameters of social networks: 



 

there is a simple underlying structure that explains the presence of most edges, but a few 

edges are produced by a random process that does not respect this structure. Kleinberg 

raises two important questions regarding the 

arbitrary pairs of strangers be able to find short chains of acquaintances that link them 

together?” and “Why should there exist short chains of acquaintances linking together 

arbitrary pairs of strangers?”

 

 
 

 
 
 
 

Kleinberg studied decentralized

the locations of their direct acquaintances, attempt to transmit a message from a source to 

a target along a short path. 

explain the success of such decentralized algorithms in finding short paths through a 

social network. In a class of networks generated according to the model of Watts and 

Strogatz, it was proved that there is no decentralized algorithm capable of constructing 

paths of small expected length. 

 
 
 
 

Fig .3 Two –dimensional grid with a 

single random shortcut superimposed [5]
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there is a simple underlying structure that explains the presence of most edges, but a few 

random process that does not respect this structure. Kleinberg 

raises two important questions regarding the small world phenomenon. ” 

arbitrary pairs of strangers be able to find short chains of acquaintances that link them 

should there exist short chains of acquaintances linking together 

arbitrary pairs of strangers?” [17, 21] 

                 

 

leinberg studied decentralized algorithms by which individuals, knowing only 

the locations of their direct acquaintances, attempt to transmit a message from a source to 

a target along a short path. Firstly it is shown that the existing models are insufficient to 

explain the success of such decentralized algorithms in finding short paths through a 

social network. In a class of networks generated according to the model of Watts and 

ved that there is no decentralized algorithm capable of constructing 

paths of small expected length.  

dimensional grid with a 

single random shortcut superimposed [5] 

Fig. 4 Two dimensional grid with 
many random shortcuts superimposed 

(Watts-Strogatz model) [5] 

there is a simple underlying structure that explains the presence of most edges, but a few 

random process that does not respect this structure. Kleinberg 
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should there exist short chains of acquaintances linking together 
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explain the success of such decentralized algorithms in finding short paths through a 

social network. In a class of networks generated according to the model of Watts and 
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Fig. 4 Two dimensional grid with 
shortcuts superimposed 
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Kleinberg defines an infinite family of random network models that naturally 

generalizes the Watts-Strogatz model and showed for one of these models, there is a 

decentralized algorithm capable of finding short paths with high probability. Finally he 

proves the stronger statement that there exist a unique model within the family for which 

decentralized algorithms are effective. Avinash Kak [23] presents an extensive discussion 

of the small world phenomenon together with simulations.  

Subhash Kak in his proposal [4] on the future of social computing networks has 

proposed the envisioning of new social computing networks where the physical 

connectivity provided to the participants is bootstrapped in new ways so that we can 

speak of creativity enhancing digital ecosystem.  

 

 

2.3 Different Networks       

         Based on the topological characteristics online social networks can be modeled into 

three major types. They are  

1) Random networks 

 2) Scale free networks 

 3) Small world networks. 

 

2.3.1 Random Networks  

             Intorduced by Erdos and Renyi in 1959 [19], such networks can be easily 

constructed by connecting each pair of nodes in the network with a probability p. A graph 

can be represented as  G(n,p) where n is the number of actors and p being the probability 

of having an edge between any two actors. If an actor in the graph is connected to all 
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other (n-1) actors with the same probability as p and n being the  total number of actors in 

the graph, the probability that P(k) that an actor has a  degree equivalent to k is given by 

the binomial distribution  

                                        P(k)= Ck
n-1

p
k
(1-p)

N-1-k
 

               The average degree of an actor in the network is x=(n-1) p so we can rewrite the 

above equation as  

                         P(k)= Ck
n-1� �

��������
k	1 � �/�� � 1��n-1

 ≈ x
k
/k!  e

-x
 

            From the above equation we can say that degree of connectivity of actors follows 

the Poisson distribution. Random networks are extensively studied and are usually used 

as refrences in robustness tests of networks and how a rumor or virus spreads around the 

network. Bernoulli random networks random network is created in which edges are 

generated independently from a Bernoulli distribution.  A random number between 0 and 

1 is generated for each cell in an adjacency matrix.  If this number is less than the 

specified probability then an edge is created.  We specify a single probability for the 

whole matrix, or different probabilities for each row, column or cell.  The whole 

procedure can be repeated for a number of trials to create an integer valued network 

 

2.3.2 Scale Free Networks 

   Scale free networks were introdued by Barabasi and his team [11, 25]. They have 

the characteristics of continous growth and preferential attachement. In random networks 

the degree distribution follows Poisson distribution but in scale free network the degree 

distribution follows the power law which says that P(k)≈k
-λ where λ is a constant and is 

within the range 2<λ<3. 
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        Scale free networks are noteworthy because many empirically observed 

networks such as the world wide web, protein networks, citation networks and some 

social networks have this property. The scale free network has the characteristic of 

adding new nodes over time and there is a continuous growth. Preferential attachment is 

other characteristic by which new node is added. Each time each step will have higher 

probability of attaching itself or having an edge to the node which is well connected . 

Hence older nodes have more probability of establishing an edge with the new node that 

is joined into the network. Even the clustering coefficeint of nodes also follows the power 

law. The probability for a node  attaching itself to a new node is given by 

����� �
��

∑ ���
 

where Ki  is degree of node i. 

  Since the network follows power law, the topology of network formed is 

different from other models.  

 

2.3.3 Small World Networks 

 

 Stanley Milgram in his [26] paper presented the experiment of passing 

documents from a person to his acquaintance and then to immdeiate accquaintance could 

linkup two starangers in different parts of the country. It was found that to link up two 

strangers in an average case would take six people in between. This phenomenon is 

widely known as the six degrees of separation. The small world propety usually mean 

that network exhibiting short linking path between individuals.  The Watts and Strogatz 

model [21] is used to generate small world networks is, given the number of nodes N, the 
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mean degree K, and parameter β, satisfying 0 ≤ β ≤ 1 and  N >>  ln(n) >> 1; the model 

constructs an undirected graph with N nodes and (NK)/2 edges . A regular ring lattice is 

constructed with  N nodes and K neighbours, K/2 on each side i.e. if the nodes are labeled 

n0….nN-1, there is an edge (ni, nj) if and only if | i-j | ≅ k (mod N) for some | k | ε (1, K/2). 

For every node n= n0….nN-1 take every edge (ni, nj) with i<j, and reire it with probability 

β. Small world network is created by rewiring the basic network, rewiring at each node 

consists of redirecting one of the outgoing arcs at the node to some other destination 

node.The extent of rewiring is controlled by a probability β and is done by replacing (ni, 

ni) with (ni, nk) where k is chosen with uniform probability from all possible values that 

avoid loops (k ≠ i) and link duplication with k’=k at this point. 

                 

2.4 Zipf’s Law 

Zipf’s law is an empirical law originally proposed for words in a large text and it 

states that given some corpus of natural language utterances, the frequency of any word is 

inversely proportional to its rank in the frequency table. The most frequent word will 

occur approximately twice as often as the second most frequent word, which occurs twice 

as often as the fourth most frequent word etc. In the network context, if the value of the 

most important member to user A is taken to be proportional to 1; that of the second most 

important member is proportional to ½, and so on. For a network that has n members, this 

value to the user A will be proportional to 1 + 1/2 + 1/3 +…+ 1 / (n-1), which 

approximates to log n. Given that the number of users is n, the total value of the network 

is proportional to n log n. 

Metcalfe’s law took the value of the network to be proportional to its 

connectivity, since the total number of connections in a network of n users is n (n-1) or 
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about n2. In practice many users will be connected socially only to a fraction of all the 

users though the networks provide a full connectivity of n2. Reeds law [7] is based on the 

insight that in a communication network as flexible as internet, in addition to linking 

pairs of members. With n participants, there are 2n possible groups, and if they are all 

equally valuable, the value of the network grows like 2n. 

 

2.5 Sample Random Networks 

 We examined different random networks, and estimate the total number of 

connections and connectivity and compare them with the values n log n and n2. A few 

sample graphs with small number of nodes 8, 9, 10, 11 are given in Figures 5 to 7. 

                   

     1 2 3 4 5 6 7 8

     - - - - - - - -

  1  0 1 1 1 0 0 0 1

  2  1 0 1 1 0 1 1 0

  3  1 1 0 1 1 1 0 1

  4  0 0 1 0 0 0 0 1

  5  0 0 0 1 0 1 1 0

  6  1 0 0 0 0 0 0 0

  7  1 1 1 0 0 1 0 1

  8  1 0 1 0 0 1 1 0  

            Fig.5 Random Graph with 8 nodes and value 27. 
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Fig .6 Random Bernoulli graph with 10 nodes, and value 44  

 

Fig. 7 Random Bernoulli graph with 12 nodes, 62 connections  

 

2.5.1 Value of Random Networks           

    For randomly generated graphs with Bernoulli distribution and for a probability of tie 

being 0.5, the connectivity values for different network are as follows: 
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No. of nodes Actual Value n2 (Metcalfe’s)  n log n (Zipf’s)

8 33 64 7 

9 39 81 9 

10 44 100 10 

11 59 121 11 

12 62 144 13 

13 75 169 14 

14 83 196 16 

15 96 225 18 

     Table 1 Values  for different random networks 

 

 

 

        It may be seen that from this example the graph fits Zipf’s model better than 

Metcalfe’s law. 
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  Fig. 8 Sample graph showing different values for different networks 
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CHAPTER III 
 
 

PROBABILISTIC NETWORKS 

3.1 Probabilistic Random Networks 

We consider probabilistically generated social networks. These networks are 

based on the variable binomial distribution in which sets of nodes are connected to other 

nodes with different probability distributions.. Several networks are considered and the 

average samples are considered for calculating the bin values. The histogram for such 

values is given in Fig. 9. This histogram is a consequence of the examples that 

contributed to our simulation, which explains the bump for the bin 16.35. The main point 

here is the frequency increases as we increase the bin value. The bin values are the 

average number of connections for nodes labeled 1 through 100, where the probability 

mechanism for generating nodes varies in group of 10. 

 

Fig.9 Histogram showing the new random networks 

0

2

4

6

8

10

12

14

16

18

1 2.09 4.07 6.37 8.29 11.19 16.35 17.61 19.42 22.49 25.56 28.63 32.19 More

F
re
q
u
e
n
c
y

Bin

Histogram



 17

  

3.1.1 Value of Networks             

With the above experiment results we calculated the value for the networks 

generated and compared them with the values n
2 and n log n. We generated networks 

with variable number of nodes like 100, 90, 80, 70 etc. and we calculated the values 

obtained with Metcalfe’s law and the heuristic n log n Zipf’s law. 

 

                      Fig. 10 Graph showing the values for new random networks 

 

Fig. 11 Comparison of values between the n2, n log n for example networks  
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Fig.12 Graph showing the values of example networks compared with n2 and n log n 

 

            Figures 11 and 12 show the values of the network in comparsion with other values 

n
2
 and n log n. The number of nodes in the network is the X-axis and the associated value 

for each node is in the Y-axis. From this observation we clearly understand that the actual 

value of the network lies somewhere in between the values n2 and n log n.  

 

 

3.2 Small World Networks 

 We have simulated small world networks and and the value associated to 

coressponding graphs are observed on an average case. We generated a Watts-Strogatz 

small world network consisting of N nodes [17, 18, 21]. Each node is directly connected 

to k immediate neighbours that are located symmetrically in the ring lattice on two sides 

of the node. 
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Fig. 13 Watts Strogatz ring lattice for a small world networks with 15 Nodes and 4 local           

contacts for each node 

A small world network is generated by “rewiring” the basic network i.e. ring 

lattice. Rewiring at each node consists of redirecting one of the outgoing arcs at the node 

to some other destination node. The extent of rewiring is controlled by probability p.  We 

generate a random number which is uniformly distributed and check whether the 

generated random number is less than or greater than the given probability. If the random 

number generated is less than the assumed probability we rewire an arc, otherwise the arc 

is left unchanged.  
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Fig.14 Small world network with the probability of rewiring is p=0.08 

 

As we increase the value of the p from 0 to 1.0 we see a randomly rewired graph 

almost all the nodes connected differently 

 

Fig. 15 Small world network with probability of rewiring p=1.0. 
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3.2.1 Value of Small World Networks 

Several small world networks with different number of nodes are generated using 

different binomial distribution for random number generation and with variable 

probability values for the rewiring. In every network for every node we count the number 

of other nodes to which it is connected and the total value of the network is estimated. 

We considered several repetitions of the generations and the average case value is 

considered.     

No. of 

Nodes 

Calculated 

Value Metcalfe’s Odlyzko 

100 747 10000 200 

90 689 8100 176 

80 634 6400 152 

70 518 4900 129 

60 490 3600 107 

50 345 2500 86 

40 256 1600 64 

 

 

The graph showing the different value curves as observed for a small world 

network with a probability of rewiring p as 0.18 and 0.32 in Figures 16 and 17.

 

Fig. 16 Graph comparing the Values of small world network with a p=0.18 
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Table. 2. Comparison between the calculated value, n2 and n log n values of 
small world networks with different sizes with p=0.18 
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No. of 

Nodes 

Calculated 

value Metcalfe Zipf 

100 1296 10000 200 

90 1221 8100 176 

80 1025 6400 152 

70 830 4900 129 

60 730 3600 107 

50 522 2500 85 

40 384 1600 64 

 

 

 

 

Fig. 17 Graph comparing the values of small world network with a p=0.32 

       

      We observe that in Table 2 and Table 3 that the calculated value is 4 and 6 times that 

of n log n respectively. Table 4 presents these results. 
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Table. 3. Comparison between the calculated Value, n2 and n log n values 

of small world networks with different sizes with probability of rewiring p=0.32 
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Probability 

 No. of Time 

higher 

0.56 10 

0.32 6 

0.18 4 

0.06 3 

0.03 2.8 

        Table 4. Showing the relation between calculated and n log n value for a different 

probability 

       We plotted a graph for the above table and established a relation between probability 

and number of times the calculated value is more than that of n log n as and where the 

functional relationship is given by the following quadratic relationship 

         Y=12.045x
2
 + 6.59x+2.5533 

The regression value for this quadratic function is quite close to 1. 

 

 

 Fig. 18 Graph showing the relation between probability and the no. of times calculated value is 

more than n log n 
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3.3 Scale Free Networks 

 A scale free network is network whose degree distribution follows a power law. 

We have simulated Barabasi and Albert (B-A) [10, 11] model of scale free networks. We 

generated a network of small size, and then used that network as a seed to build a greater 

sized network, continuing this process until the actual desired network size is reached. 

The initial seed used need not have scale free properties, while the later seeds may 

happen to have these properties. 

 

Fig. 19 B-A Scale Free graph with 30 nodes 

 

We can draw a best fit line to the frequency of degrees distribution of the nodes. 

Degree is the number of links that connect to and fro a single node. For scale free 

networks, the frequency of degrees distribution forms a power- law curve, with a 

exponent usually between -2 and -3. 
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Fig. 20 Power-law curve for the small world network in Fig.18. 

 

 Fig. 21 B-A small world network with 150 nodes 
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Fig. 22 Graph showing the power law distribution for the small world network in Fig.20 

 

 

3.3.1 Value of Scale Free Networks 

          Several of these scale free networks are generated and the average case for the 

value calculation is taken into account. These scale free networks follow the Power law 

and therefore the values associated with them correspond to n log n.  

  No. of 

nodes 

Calculated 

value  

Odlyzko 

n log n 

30 60 44.31 

40 80 64.082 

50 100 84.94 

60 120 106.689 

70 140 129.156 

80 160 152.247 

90 180 175.88 

100 200 200 

                 Table 5. Showing the Values Scale Free networks with different nodes 
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Fig. 23 Graph comparing the value of scale free network and n log n 

 

 This is also seen in Figure 23. We conclude that the property of being scale free 

captures the underlying foundation of the Zipf’s law. 
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CHAPTER IV 
 
 

CONCLUSION 

 

The main contribution of the thesis is the demonstration that the Zipf’s law, 

originally proposed on heuristic grounds, is valid for scale free and small world networks. 

We have shown empirically that the expression of value for a Watts- Strogatz small 

world network of n nodes is                  

                                              f(p) n log n 

         f (p) = 12.054p
2
+6.59p+2.5533 

 where p is the probability of rewiring. We have computed the value of f (p) for various p 

and found that the quadratic function provides an excellent fit. We believe that this is the 

first study broadly validating the heuristic claim of Odlyzko et al on the value of social 

networks. 

Although no specific relationship between size and value can be fixed for random 

networks, our simulation shows that this value lies between Zipf’s law and Metcalfe’s 

law. 

As future study one would like to determine if non-Watts-Strogatz small world 

networks also follow the Zipf’s law.
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that the Zipf’s law describes the value for scale free and small world networks although 

for small world networks the proportionality constant is a function of the probability of 

rewiring. We have estimated the function associated with different values of rewiring to 

be described well by a quadratic equation. We have also shown experimentally that the 

value of random networks lies between Zipf’s law and Metcalfe’s law.  


