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Chapter 1

Introduction

Email has rapidly become a common tool in everyday life. Whether it is a simple conversation or
important business matter, email is an inexpensive and fast method of communication. Unfortu-
nately, this popularity and ease of use has made email an ideal candidate for commercial marketing
campaigns and scams. Users often find their inbox full of spam — unsolicited and undesirable email.
What was once just an annoyance has become an epidemic for millions of email users. Tools to filter
spam from legitimate email (ham) have become a necessity.

The flow of control of a typical spam filter is shown in Figure 1.1 As each email arrives, the filter

Emall Filter

Junk Folder
[y

Periodic Checks

Reads Emall— "~ for Mistakes

User

Figure 1.1: Flowchart of a Typical Spam Filter

makes its best judgment whether or not it is spam. If a message is classified as spam, it is routed to
a junk folder. All ham is moved directly to the user’s inbox.

Filters make two types of errors. False negatives are spam messages that are incorrectly passed
to the inbox. False positives are ham messages that have been incorrectly classified as spam and
sent to the junk folder. If a spam filter is noticeably effective, users can tolerate a few remaining

spam in their inbox. However, all ham has a certain value to each user. If a single ham is misplaced



or even just delayed, users are negatively affected. Spam filters strive to keep the false positive rate
as low as possible. No filter is perfect though, so periodic checks of the junk folder for mistakes are
recommended.

All email has a header and an optional body. The header starts the message and includes
important information such as the To, From, and Date fields. Header lines beginning with an X-
are optional.

Spam is usually very easy to filter with the human eye. A quick glance at the Subject or From
fields of a message gives a very good indicator of its spamminess. Figure 1.2 shows the contents of

an actual spam. Unless the user is interested in buying watches, the Subject line would cause most

Return-Path: <wdvrwz@yahoo.com>
X-Original-To: brownba@cs.okstate.edu
Delivered-To: brownba@cs.okstate.edu
Received: from udp072122uds.hawaiiantel.net (udp072122uds.hawaiiantel.net [72.234.135.94])
by a.cs.okstate.edu (Postfix) with SMTP id 7F405A022E
for <brownba@cs.okstate.edu>; Wed, 1 Mar 2006 11:41:09 -0600 (CST)
Received: from sxjt.com
by n0 (4.23.8/0.73.9) id ez114PoT83150 with SMTP; Wed, 01 Mar 2006 22:39:08 +0500
Message-ID: <20041101163013.ED8DA244AEGmailhost10.1lists.techtarget.com>
Date: Wed, 01 Mar 2006 20:41:08 +0300
From: "Maurice Serrano" <wdvrwz@yahoo.com>
To: brownba@cs.okstate.edu
Subject: Cartier Watches

EXACT COPIES OF SWISS WATCHES

- exact copies of V.I.P. watches
- perfect as a gift for your colleagues and friends
- free gift box

Rolex, Patek Philippe, Omega
Cartier, Bvlgari, Franck Muller

. and 15 other most famous manufacturers.
http://ZGFi0TY1ZWZmMzYwNGQOYTNiOTE4Zjhk.girlzboyzallluvtuna.com

watches start from only $180
Web Special Discountz -25%
http://ZGFi0TY1ZWZmMzYwNGQOYTNiOTE4Zjhk.girlzboyzallluvtuna. com

Figure 1.2: Example of Spam

people to immediately recognize this message as spam.

Just as filters have gained in popularity and success, spammers have also improved. Spam has
evolved and continues to evolve as spammers try to elude filters. Spammers may forge the Received
and From lines in an attempt to appear hammy. Since they are not typically visible to users,

spammers might also fill X- headers with hammy material. As shown below, spammy words are



often intentionally misspelled.

Vliaagra \/IIGRA Cialhis ci-iallis

Again, the human eye easily recognizes the intent and knows these tokens are spammy. To a
computer these tokens might be nothing more than nonsense.

There are a few types of common spam filters. Blacklisting is the practice of blocking all mail
from certain servers. This can prohibit many legitimate users from getting their messages out, and
spammers can easily change servers to get around the blacklists. A heuristic filter relies on human-
made rules. These rules define known spam characteristics and give them weights. This paper
focuses on statistical spam filters. In this method, the filter only needs pre-classified training sets
of ham and spam. By giving the filter many examples of ham and spam, an original definition of
spam is indirectly given. Statistical spam filters do not require hard-coded weights and rules like
the heuristic approach. Instead, the example ham and spam sets give the filter a basis on which it
can automatically learn acceptable classification practices.

Many of the current statistical spam filters today drew their inspiration from one web-based
essay [6]. Chapter 2 looks at that essay and other important works. Chapter 3 presents the structure
of a generic spam filter designed to test existing techniques. Also, a new method is introduced.
Chapter 4 gives test results. Finally, Chapter 5 summarizes the results, draws conclusions, and

proposes future work.



Chapter 2

Literature Review

2.1 Graham’s Plans

He was not the first, but Paul Graham is widely considered to have written the seminal work on
statistical spam detection. In August 2002 he posted an essay to his website titled ‘A Plan for
Spam’ [6]. He clearly laid out an algorithm for filtering ham and spam.

The user starts with two corpora (collections of messages): one of ham, the other of spam. The

initial training stage takes place first.
1. Tokenize every message.

2. Count the number of times each token appears in each corpus. Two tables are created, one

for each corpus. The tables map tokens to their counts.
3. Create a third table mapping each token to its spamminess probability.

In most current spam filters, just one token database is built. It contains three columns: the token,
the count of each token in the ham corpus, and the count of each token in the spam corpus. The
individual token probabilities can be calculated as needed, which eliminates the need for the third
table.

The first step, tokenization, is a key area of research. In his first essay, Graham used a simple
definition of a token. He included alphanumeric characters, dashes, apostrophes, and dollar signs in
tokens. Everything else was considered a token separator. All-digit tokens and HTML comments

were ignored. Case is also ignored. Some examples of Graham tokens are listed below.

people’s  $75 pills Pharxmaceutical Ci-iallis




Individual token probabilities are calculated by his original Lisp code in Figure 2.1, where good
and bad are the token count tables produced in step 2, and nbad and mgood are respectively the
number of bad and good messages. A simpler version of Graham’s formula is shown in Figure 2.2.

(let ((g (¥ 2 (or (gethash word good) 0)))
(b (or (gethash word bad) 0)))
(unless (< (+ g b) 5)
(max .01
(min .99 (float (/ (min 1 (/ b nbad))
(+ (min 1 (/ g ngood))
(min 1 (/ b nbad)))))))))

Figure 2.1: Graham’s Token Probability Function - Lisp

Graham doubled the ‘good’ count of a token to favor fewer false positives (ham incorrectly classified

2 x numTimesSeenInHam

g(w) = numHam
numTimesSeenInSpam
buw) = N
numSpam
b(w)
w) =
PO = ) + ()

Figure 2.2: Graham’s Token Probability Function - Simplified

as spam). Tokens are only considered if seen more than five times in total. Graham handled tokens
that occur in one corpus but not the other by assigning them 0.01 or 0.99 for only ham or spam,
respectively. These two values are also hard limits for token probabilities. Tokens should never be
< 0.0 or > 1.0.

Once initial training is complete, new messages can be processed.
1. Tokenize the new message.

2. Choose the 15 unique most interesting tokens.

3. Calculate the combined probability.

Interesting tokens are those tokens farthest from a probability of 0.5 in either direction. These
interesting tokens form the decision matriz of the filter. Graham did not say how he broke ties
when filling the decision matrix. He dealt with hapazes (words never seen before) by assigning them
a value of 0.4, which is slightly hammy. Note, however, that tokens are still only considered if seen

more than five times in total.



Graham’s combined probability code is shown in Figure 2.3, where probs is the list of 15 inter-

esting token probabilities. A value from 0.0 to 1.0 is returned. If the probability is more than 0.9,

(let ((prod (apply #’* probs)))
(/ prod (+ prod (apply #’* (mapcar #’(lambda (x)
(-1 x)
probs)))))

Figure 2.3: Graham’s Combined Probability Function - Lisp

the message is classified as spam. A simplified version is shown in Figure 2.4. Notice a potential

12 ...x15

P =
T1T2...2T15 + (1 —.131)(1 —.1‘2)...(1 —1‘15)

Figure 2.4: Graham’s Combined Probability Function - Simplified

problem if hard limits were not used. If two tokens had probabilities of 0.0 and 1.0, a divide-by-zero
error would occur.

Graham refers to his method as Bayesian filtering [11]. However, the term Bayesian filtering is
now used as a catch-all phrase for statistical spam filters loosely based on Graham’s work. Bayes’ rule

is shown in Figure 2.5. In the context of spam filtering, C is the condition that ‘the message is spam’,

P(F|C)P(C)
P(F|C)P(C) + P(F|C")P(C")

P(C|F) =

Figure 2.5: Bayes’ Rule

C’ means ‘the message is not spam’, and F is the feature being considered (the token). P(C|F) is
the probability a message containing the feature is spam. This the desired overall probability, P, we
are after. P(F|C) is the probability a spam message contains the feature. This is represented by the
individual token probabilty, p(w), in Figure 2.2. P(C) is the probability a random message is spam.

Graham’s combined probability equation, shown in Figure 2.6, simplifies Bayes’ rule. Substituting

P(F|C)
P(F|C) + P(F|C")

P(C|F) =

Figure 2.6: Graham’s Bayes’ Rule

x for P(F|C) and (1 —x) for P(F|C"), and accounting for many features, gives Graham’s combined



probability function in Figure 2.4. This corresponds to assuming P(C) = P(C") = 0.5, equal a priori
probabilities that a message is spam or ham.
Graham’s method results in probabilities with little uncertainty. Most message classification

scores end up close to either 0.0 or 1.0. Consider the decision matrices in Table 2.1. Examples 1

‘ Ex1 ‘ Ex2 Ex3 Ex4
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
Token 0.01 0.99 0.99 0.99
Probabilities 0.01 0.99 0.01 0.99
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
Combined 0.000000 | 1.000000 | 0.010000 | 0.990000
Probability

Table 2.1: Graham’s Combined Probabilities

and 2 behave as expected. If only hammy or spammy tokens are used, the combined probability is
confidently hammy or spammy, respectively. However, notice the scores of examples 3 and 4. In
example 3, hammy tokens have the majority with eight of the fifteen tokens. The remaining seven
tokens are spammy, but the combined probability is a very confident 0.01. A similar behavior is
shown in example 4. Once spammy tokens take the majority, the combined probability flips to 0.99.
This radical change in the combined probability due to a change in only one position in the table is
unreasonable, as has been pointed out by later researchers [2][13].

A year after his first plan, Paul Graham wrote an update to ‘A Plan for Spam’, titled ‘Better
Bayesian Filtering’ [7]. He presented a more elaborate definition of a token. Now he suggested
preserving case. Previously, periods and commas were treated as delimiters, but they are now
included in tokens if they are between two digits. This approach allows IP addresses and prices to
remain intact.

Graham’s better plan also included the idea of marking header data. Tokens within specific
header fields were marked as such. For example, if the token brownba@cs.okstate.edu is found in

the To field of a header, that token would become To*brownba@cs.okstate.edu (where * is some



character not allowed in tokens). At the time, Graham marked tokens inside the To, From, Subject,
and Return-Path lines, and within URLs. Graham also discussed what to do about HTML. He
settled on noticing some tokens and ignoring the rest. He focused on the a, img, and font tags in
HTML, as these are likely to contain URLs.

In ‘Better Bayesian Filtering’, Paul Graham also presented a more theoretical topic of degenera-
tion. Marking header tokens and including more types of tokens will increase the filter’s vocabulary.
This can make a filter more discriminating, but with a growing vocabulary, the probability that a
token has never been seen before also rises. Degeneration allows a new token to be treated as a
less specific version of itself. The premise is that a new token’s probability of 0.4 is probably not
as accurate and useful as the probability of some similar token seen already. For example, if the
token Subject*longer!!! is not found in the database, the following degenerate case would be tried:
Subject*longer, Subject*Longer!!!, Subject*longer, longer!!l, Longer!!!, longer, etc. The probability
of the degenerate case farthest from 0.5 would be used. This token’s probability would most likely
be more indicative than 0.4.

Paul Graham’s personal filter is effective. He trained his filter with ham and spam corpora each
of about 4000 messages. Over the next year, he received about 1750 spam. He claims to have caught

99.5% of spam with 0.03% false positives over that period.

2.2 Pantel and Lin

The AAAI-98 Workshop on Learning for Text Classification took place four years before Graham’s
first essay on spam detection. Two papers presented at this conference, one by Pantel and Lin [12]
and the other by Sahami, Dumais, Heckerman, and Horvitz of Microsoft Research [15], formed the
foundation for our current state-of-the-art spam filters.

Catching 92% of spam with 1.16% false positives, Pantel and Lin’s filter performed better than the
filter from Microsoft Research. However, this is noticeably worse than Paul Graham’s 99.5%/0.03%
accuracy achieved four years later. A few differences in the way Pantel and Lin operated compared
to Graham, outlined below, could have attributed to the decreased accuracy.

The first difference is the data Pantel and Lin used. They used what is considered a very small
set of training messages: 160 spam and 466 ham. In contrast, Graham trained with about 4000
messages each of spam and ham. With such a small training set as that used by Pantel and Lin,
many tokens in the testing phase would be new and thus considered slightly hammy. Also, not only

did they train with few messages, their messages were not complete. They removed the headers from



all messages. With the classification based solely on the body of the message, a lot of potentially
incriminating data has been lost. It is highly recommended not to remove any information from
your messages.

The data fed into Pantel and Lin’s filter was substantially different from Graham’s data, and
so was the way they tokenized. They defined a token in two ways. A token may be a consecutive
sequence of letters or digits, or it can be a consecutive sequence of non-space, non-letter, and non-
digit characters. Tokens of the second type are limited to a maximum length of three characters.
Additionally, Pantel and Lin used an algorithm to remove suffixes from tokens. For example, the
token waited would be reduced to wait, and meetings would be treated as meet. This ‘stemming’
could have been an optimization or a step to combat the small set of training data. Examples of

tokens in Pantel and Lin’s vocabulary are shown below.

X8 99999 you address stem

Pantel and Lin used another interesting technique to derive information from their data. Instead
of stripping suffixes, they pulled trigrams from words. They defined a trigram as each three letter
sequence of consecutive letters in a word. A large amount of information is lost when words are
reduced to trigrams. However, this reduction did not significantly hurt their performance.

Pantel and Lin, and Sahami et al. deserve the credit for originating the idea of a statistical
spam filter, although similar techniques had been used for decision processes in other contexts. Paul

Graham made the process more efficient and more widely known.

2.3 SpamProbe

SpamProbe is an open-source spam filter developed by Brian Burton [2]. Burton credits Paul
Graham for the initial ideas, but Burton has implemented some alternative approaches designed to
improve performance.

SpamProbe’s tokenizer boasts more rules than those originally proposed by Graham. Some

example SpamProbe tokens are shown below.

127.0.0.1 $10,000 Hto_undisclosed cs.okstate.edu ci-iallis

P

The tokenizer allows certain non-text characters (‘.”; ¢, ‘47, -’, .’ and ‘$’) within tokens. All other
non-alphanumeric characters are delimiters. Purely numeric tokens are ignored. The token 127.0.0.1
is valid, but 127 is not. All tokens are converted to lower case, which will lead to a smaller database.

Tokens containing punctuation are broken down by repeatedly removing the head of the token. For



example, cs.okstate.edu will result in tokens cs.okstate.edu, cs, okstate.edu, okstate, and edu. This is
designed to capture domain names from URLs. Graham’s individual token probability function is
retained, but the hard limits are now 0.000001 and 0.999999, and the hapax value is 0.300000.

SpamProbe has many user-configurable options. For example, it can recognize HTML tags, but
by default ignores them. In either case, whether all or no HTML tags are used, URLs inside HTML
are always retained. By default, header data is marked for tokens inside the Received, Subject, To,
From, and Cc lines. This is referred to as the ‘normal’ set of header fields. The marked set can be
changed to all header fields, no header fields, or all header fields excluding X- fields. The X- header
fields in any email consist of optional lines added by user email clients. Spammers have been known
to insert seemingly hammy material in X- header fields, since these fields are not usually visible to
users. For example, X-mailer is a common X- header line. Spammers can insert the name of a
common email client to give the illusion that messages were sent from that client. Header tokens
are marked by prefixes consisting of an H, the field name, and an ‘_’. For example, if the term tok
was in the To field, the token Hto_tok would be produced. Since SpamProbe converts all terms to
lower case, marked header tokens will never be confused with body tokens.

In his first plan, Paul Graham mentioned the idea of tokenizing word pairs instead of just single
words. Burton has implemented this idea in SpamProbe. By default, all single and two-word phrases
are counted. For example, when the string ‘one two three’ is tokenized, the tokens ‘one’; ‘one two’,
‘two’, ‘two three’, and ‘three’ are generated. Optionally, the user can choose any phrase length. This
idea of word pairs gives the tokenizer a sense of context.

An important difference between SpamProbe and Graham’s filter is the decision matrix. Graham
used the fifteen most interesting, unique tokens in every case. Burton implemented a more dynamic
approach in SpamProbe. By default, a decision matrix of 27 tokens is used. Furthermore, tokens
may be repeated up to two times if they appear in the message twice. Both the window size and
the number of repeats may be adjusted by the user. A potentially important note should be made
regarding tokens that have never been seen before. SpamProbe scores these tokens with a constant
value like Graham, but they are allowed to appear in the decision matrix if slots remain empty. In
other words, SpamProbe will fill all slots of a decision matrix if the message size is greater than or
equal to the size of the decision matrix.

Optionally, a variable-sized array of tokens can be used in SpamProbe. This array starts at size
five and allows tokens to repeat up to five times each. To prevent a single token from dominating
the window, the array size is variable. All significant tokens of probability < 0.1 or > 0.9 in the

message are added to the array. Burton claims slightly lower spam detection accuracy but fewer

10



false positives with this approach.

Brian Burton also addressed the lack of uncertainty in Graham’s combined probability function.

SpamProbe uses the modified function shown in Figure 2.7. This small change of using the n** root

Q

(x122 ... 2p)
= (1—z)(1—a)...(1—z,)¥/"

S
S+dG

1/n

Figure 2.7: SpamProbe’s Combined Probability Function

of products produces smoother probabilities. As seen in Table 2.2, examples 1 and 2 still perform

‘ Ex1 ‘ Ex2 ‘ Ex3 ‘ Ex4
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
0.01 0.99 0.99 0.99
Token 0.01 0.99 0.99 0.99
Probabilities 0.01 0.99 0.01 0.99
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
0.01 0.99 0.01 0.01
Combined 0.010000 | 0.990000 | 0.424008 | 0.575992
Probability

Table 2.2: SpamProbe’s Combined Probabilities

similarly to Graham’s function. However, now examples 3 and 4 give much more meaningful values.

Burton also differs from Graham in using a 0.7 spam threshold.

Burton claims over 99% accuracy using SpamProbe with his own email. However, accuracy

claimed by authors and researchers should not be expected by all users.

Everybody’s email is

different, and often corpora show a plateau that is rarely surpassed with any filter optimization.

2.4 Gary Robinson

The development of two additional combination functions is credited to Gary Robinson [13]. These

functions have been employed with great success in many spam filters.

11



Robinson’s geometric mean function is shown in Figure 2.8. This function is quite similar to

P o= 1-3/((1=p)x(1—pa)#...x(1—py,))

Q = 1- V(pl*pg*...*pn)

(P-Q)
¢ - TR
2

Figure 2.8: Robinson’s Geometric Mean Function

Burton’s combination function in SpamProbe. They both use the n'"* root of products and return
values other than 0.0 or 1.0.
Robinson has also proposed an altered token probability function [14]. He has named this function

f(w), in Figure 2.9, a degree of belief. In this function, p(w) can be calculated as before in Graham’s

(s*z) + (z x p(w))
s+n

flw) =

Figure 2.9: Robinson’s Degree of Belief Function

essay, s is a tunable constant, x is an assumed probability given to words never seen before (hapaxes),
and n is the number of messages containing this token. Initial values of 1 and 0.5 for s and z,
respectively, are recommended. Robinson suggests using this function in situations where the token
has been seen just a few times. An extreme case is where a token has never been seen before. In this
case, the value of z will be returned. As the number of occurrences increases, so does the degree of
belief.

In Robinson’s degree of belief function, p(w) can be calculated as Graham did, but he suggests
another slight modification [14]. Figure 2.10 shows how instead of using the total number of oc-
currences of a token in a ham or spam corpus, Robinson used the number of messages containing

that token. Robinson believes Graham’s method performs slightly better than his since Graham’s

(w) = numHamW ithT oken
g o numHam
numSpamWithT oken
b(w) =
numSpam
b(w)
w =
PO = )+ gtw)

Figure 2.10: Robinson’s Token Probability Function

12



counting method does not ignore any of the token occurrences data.
The second combining function Robinson has proposed is based on the work of Sir Ronald
Fisher. This method has been named the Fisher-Robinson Inverse Chi-Square Function [14]. There

are three parts to this equation, as shown in Figure 2.11. H is the combined probability sensitive

H = C”l(fQIHHf(w),Qn)
S = C_1<—2lnH<1—f(w)),2n)

H
H+S

Figure 2.11: Fisher-Robinson’s Inverse Chi-Square Function

to hammy values, S calculates the probability sensitive to spammy values, I is used to produce
the final probability in the usual 0 to 1 range, C~! is the inverse chi-square function, and n is the
number of tokens used in the decision matrix. Jonathan Zdziarski [21] gives the C code for C~1 in
Figure 2.12. Zdziarski notes the high level of uncertainty provided by this function. SpamBayes is

double chi2Q( double x, int v )

{
int i;
double m, s, t;
=x/ 2.0;
s = exp( -m );
t = s;
for( i=1; i<(v/2); i++ ){
t *=m / i;
s += t;
}
return (s < 1.0) 7 s : 1.0;
}

Figure 2.12: The Inverse Chi-Square Function: C'~!

a free and open-source spam filter that uses the Fisher-Robinson Inverse Chi-Square Function [17].
The uncertainty given by this function allows SpamBayes to return an Unsure result instead of

just Ham or Spam. SpamBayes is also noted for using a slightly different function for I, where

_ 14+H-S
J= 185
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Chapter 3

A Spam Detection Test System

3.1 System Overview

Statistical spam filters have a few common modules. However, the specifics of how these modules
work can vary greatly. Tokenizers can be very simple or extremely elaborate. The combination
function might be a direct implementation of Graham’s function, or something original and possibly
proprietary. To compare the effect of different techniques, I designed and implemented a spam
detection test system (known as the System from here on). A flowchart of the System is shown in

Figure 3.1. The System, written in Ct+, implements existing approaches and a few proposed ideas.

Email
e > Tokenizer #<_Initial Training?

Mo

Buid Combination Training
> Decision Matrix Function Function

¥
¥

Yes

Database

Figure 3.1: Flowchart of Proposed System

3.2 Tokenizer

The tokenizer can be thought of as the eyes of the filter. It determines what data is pulled from

a given message. Current spam filters have employed a variety of tricks to try to gain as much
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knowledge as possible from each message. Many questions of how to handle certain parameters
remain. For simplicity, I used tokenization code from the open-source SpamProbe project.

The method of marking header data that Graham presented is commonly believed to be a good
one. One advantage is that strong tokens (those whose probability is far from 0.5 in either direction)
could appear more often in the decision matrix. For example, if the spammy token tok is found in
both the body and To field, both tok and Hto_tok could appear in the decision matrix and influence
the overall probability. The SpamProbe model of marking header data, given in Section 2.3, is used.
A test will be conducted to determine the effectiveness of marking header tokens. In addition, the
effects of tokenizing just subsets of the headers will also be compared. The tokenizing of all headers,
a ‘normal’ set of headers (From, To, Cc, Subject, and Received), and all header fields except X- lines
will be compared.

Word phrases will also be tested. The technique of tokenizing pairs of words was initially proposed
by Graham and has been implemented in many popular spam filters. The tokenizing of pairs and
triples will be tested against single word tokens. When n-word phrases are used, all phrases less
than n are also included. Much like marking header data, word pairs gives tokens a sense of context

and situation. Consider the tokens in Table 3.1. The tokens and counts are actual values from the

HamCount | SpamCount | Token
396 500 | number
293 360 | order
70 77 | sending
15 0 | order number
0 20 | order sending

Table 3.1: Pairs vs Singles

X corpus described later. Singly, number, order, and sending appear fairly neutral. Using pairs tells

a different story, as together these tokens can appear completely hammy or spammy.

3.3 Weighting

In an effort to determine how effective marking header data and using phrased tokens are, the
benefits of weighting header data and phrased tokens higher (or lower) than their body and single-
word counterparts will be tested. To test this idea, a new token probability function was developed
together with John P. Chandler [3]. It is shown in Figure 3.2. The header Weight and phrase Weight

are defaulted to 1.0, meaning they have no effect. Each weight can be set to a value w, where

1See Appendix A for details
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weight = headerWeight x phraseW eight
weight * numTimesSeenInHam + eps

g(w) = numHam + eps
bw) = weight x numTimesSeenInSpam + eps
N numSpam + eps
b(w)
p\w) =
= )+ gw)

Figure 3.2: Weighted Token Probability Function

w > 0.0. If 0.0 < w < 1.0, the token is weighted lower. For example, a spammy token’s probability
would move closer to 0.5. Likewise, if w > 1.0, the token is weighted higher. A spammy token’s
probability would then be pushed farther towards 1.0. This action effectively changes the confidence
of token probabilities. The farther a probability is from 0.5 in either direction, the more likely it
is to be chosen for the decision matrix, where it will impact the overall combined probability. The
variable eps is a constant tuned for performance. Using the variable eps also has the side effect of
not requiring hard limits on any token probabilities. Graham gave ham-only and spam-only tokens
values of 0.01 and 0.99, respectively. Now with an eps value not equal to zero, neither g(w) nor b(w)
will equal zero, and hard limits will not be necessary. Without hard limits, g(w), b(w), and p(w)
are now smooth functions, which is more favorable for possible optimization techniques.

Weighting header fields and phrase tokens will be tested separately. When header weighting is
applied, header tokens, regardless of whether or not they are single or two-word tokens, are given the
specified weight. As explained above, this weight strengthens or weakens the individual probability
of those tokens. The remaining tokens (all body tokens) are given unit weight (1.0), meaning they
are not strengthened or weakened. Phrase weighting is similar. All single-word tokens are given
unit weight. All other tokens (which are of phrase size > 1), regardless of whether or not they are
in a header field, are given the specified strengthening or weakening weight. Since the strengthening
and weakening action has a direct effect on which tokens appear in the decision matrix, it cannot
be expected that a header weight of 0.5 and a phrase weight of 1.0 would give results equal to a
header weight of 1.0 and a phrase weight of 2.0. For example, when a header weight of 0.5 and a
phrase weight of 1.0 is used, header tokens are weakened. The resulting decision matrix may be
different than if both the header and phrase weights were 1.0, or the resulting decision matrix could
contain the same tokens compared to header and phrase weights of 1.0, but the overall score would

be changed due to the weakened header tokens.
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In non-weighted tests, Graham’s individual token probability function will be used. Like Spam-
Probe, hard limits of 0.000001 and 0.999999 will be used with Graham’s individual token probability

function.

3.4 Combination Functions

The tokenizer is responsible for pulling all possible data from each message. Each token is then
given a value using an individual token probability function. It is the job of the combination
function to gather these individual probabilities and make a decision. Three combination functions
are implemented in the System and will be tested: Graham’s original in Figure 2.4, SpamProbe’s in
Figure 2.7 (hereinafter known as SP-Graham), and Gary Robinson’s geometric mean in Figure 2.8.

Vital to the performance of any combination function is the building of the decision matrix.
Choosing the tokens on which the combination function bases its decision is an important step.
However, there are many variables. The number of tokens and the number of repeats allowed could
be tested, but for simplicity, these variables will be held constant for most tests. SpamProbe’s model
of 27 tokens with 2 repeats will be used primarily. The top 27 tokens are chosen from a message
whose tokens have been sorted. The sort criterion is first by the token’s score’s distance from 0.5,
then ties are broken by favoring hammy tokens.

However, this work will differ from SpamProbe in the handling of new tokens. Tokens that do
not meet a constant maturity level will not be allowed in any decision matrix. Maturity is based
on the total of database ham and spam counts for each token. Currently the maturity level is set
to five, as Graham suggested. If the decision matrix is not full after adding all mature tokens, the
combination function still functions, and a result will be returned. With this course of action, the
token hapax value will never be used. In the rare situation that a decision matrix is empty, the
value 0.4 (ham) will be returned as the overall score. SpamProbe differs in that the decision matrix

will be filled if there are tokens to fill it, even if those tokens do not have sufficient database counts.

3.5 Training

Any spam filter will make mistakes. However, a key benefit of statistical spam filters is their ability
to adapt. After a new message is scored, various methods may be employed to update (train) the
token database. Three variations have been implemented and will be tested.

The first technique is to train on everything (TEFT). Since it requires no human intervention,
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this is also known as unsupervised learning. Every message received is scored, and its tokens are
added to the database, whether the classification was correct or not. For example, if a message is
classified as spam, the spam count of all tokens in that message will be incremented or added to the
database with a value of one if they are new.

An alternative to TEF'T has been implemented that employs error correction (TEFT-Corrective).
In a simulation, the correct classification is known, so an immediate error correction can be employed.
This will be acceptable for a simulation, but is not practical in a normal situation. In a real-life
situation, many subsequent classifications and database updates may have occurred before the user
recognized the error and issued a correction request. A mistake is corrected by re-tokenizing the
message, then decrementing the counts in the incorrect column and incrementing the counts in the
correct column.

Another technique is to train only on errors (TOE). Only when the filter incorrectly classifies
a message will the database be updated. Again, immediate corrections will be required, which is
not practical for production applications. TOFE has the benefit of fewer database writes and should
create a database of fewer tokens. However, a smaller, infrequently-updated database could hurt
accuracy when dealing with new types of spam.

The initial training phase is also important to the performance of any spam filter. Paul Graham’s
accuracy of 99.5% was based on tests using ham and spam corpora with about 4000 messages in
each. An argument could be made that this is not typical of the average user. I suspect most
users do not have 4000 ham messages archived, waiting for the day when they will train a spam
filter. Nor do they have 4000 spam messages waiting. Spam is junk, and is therefore usually deleted
immediately when found. Tests will be performed to see how accuracy is affected by different initial
training set sizes. However, most tests will be conducted with a training set size of 5000 messages

(total of ham and spam).

3.6 Testing

Testing will be performed in a manner similar to the style William Yerazunis suggested [20]. For
each corpus, the ham and spam will be shuffled, creating randomized index files. The index files
contain the path to each message and their gold-standard (correct) classification. Five such shuffled
index files per corpus will be used. In the results given, the number of messages and errors are the
sums of those from the five indexes. For each index, the first n messages will be used for initial

training, then the rest of the messages in that index will be classified and perhaps used also for
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training. Most test configurations will use a training set size of 5000 messages. After each index

is complete, the token database will be deleted to ensure an accurate test for the next index. The

index files have been preserved, so each test configuration will use the same ordering of messages.
Accuracy is the most important measure of performance in spam filtering, but we are dealing

with two different types of errors. The error measurements are defined in Figure 3.3 [4]. The false

True Negatives (ham classified as ham

Il
S

)

False Negatives (spam misclassified as ham)
False Positives (ham misclassified as spam)
)

True Negatives (spam classified as spam

False Positive Rate = ¢
a+c
b
False Negative Rate = b d
Overall Error Rate = &
a+b+c+d
d
Overall Accuracy = %

Figure 3.3: Error Rates Defined

positive rate is the percentage of all ham that are misclassified. The false negative rate is defined
similarly. False positives are considered much worse than false negatives. Users can accept a small
percentage of spam passed through to their inbox, but any ham misclassified as spam could have
unfortunate consequences. Typically, a spam filter channels any email classified as spam to a junk
folder. Depending on their confidence in their spam filter, users might rarely or never check this
junk folder for false positives. For these reasons, I will weigh the false positive count highly when
comparing two configurations. When relevant, the average number of database tokens per shuffle
will be noted.

Testing will be conducted with two private email collections (X of Kevin Brown and Y of John
Chandler) and with the publicly available SpamAssassin corpus (SA) [18]. Properties of the three

corpora are shown in Table 3.2. The ham in X is comparatively homogeneous, consisting mainly

X | Y | sA
Ham | 2470 | 3550 | 4150

Spam | 5368 | 6825 | 1891

Table 3.2: Corpora Properties
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of personal correspondence plus course-related messages. The number of original senders of ham in
this corpus is low. The ham in Y also contains significant numbers of commercial ads and purchases,
medical email messages, mail from students in two courses, and mail received as graduate coordinator
of a department in a large university. Therefore, the messages in corpus Y are quite heterogeneous
and are expected to be harder to classify correctly than the messages in corpus X.

Testing will be done in a safe environment where all known viruses have been removed from the
corpora. Three corpora are used for testing because everybody’s email is different. Some corpora
are inherently easy to classify, while others are not as cooperative. I am looking for solutions that
benefit all types of users, so a filter configuration that succeeds on just one corpus cannot receive a

full recommendation if the other corpora exhibit decreased performance.
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Chapter 4

Results

4.1 Standard Configurations

First, the base configuration is presented and tested against a configuration similar to the original
model Graham proposed. This base setup is similar to the default options supported by SpamProbe.
One difference is that all header lines are tokenized and marked, whereas, by default, SpamProbe
only utilizes the ‘normal’ set of header lines (Received, Subject, To, From, and Cc). This base setup
was used as a starting point in many of the following tests. Table 4.1 lists the options for the Base

and Graham-like tests. Graham’s original model did not mark header data, and it used just single-

Option ‘ Base ‘ Graham-like
Initial Training Set Size 5000 5000
Decision Threshold 0.7 0.7
Post-Classification Training Mode | TEFT-Corrective | TEFT-Corrective
New Word Probability 0.4 0.4

Token Probability Function Graham Graham
Combined Probability Function SP-Graham Graham
Marked Header Lines All None
Maximum Phrase Length 2 1

Decision Matrix Size 27 15

Token Repeats in Matrix 2 1
Graham-like Double Ham Count False True

Table 4.1: Base and Graham-like Configurations

word tokens. Its decision matrix is smaller than the default model of SpamProbe. However, the
decision matrix of SpamProbe does allow each token to fill two slots (if that token appears twice in
the message), so a minimum of fourteen unique tokens are needed. As seen in Table 4.2, despite all

the differences, these two configurations gave similar results. A possible cause for concern is in the Y
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Configuration

Corpus Base ‘ Graham-like
Overall Accuracy 0.997674 0.998450

False Positive Rate 0.003197 0.003197

False Negative Rate 0.001937 0.000815

X Ham Messages 4379 4379
False Positives 14 14

Spam Messages 9811 9811

False Negatives 19 8

Avg DB Token Count 925993 225921
Overall Accuracy 0.957730 0.943107

False Positive Rate 0.000000 0.000220

False Negative Rate 0.063917 0.085917

Y Ham Messages 9102 9102
False Positives 0 2

Spam Messages 17773 17773

False Negatives 1136 1527

Avg DB Token Count | 1449288 295528
Overall Accuracy 0.974063 0.967723

False Positive Rate 0.000848 0.000000

False Negative Rate 0.079089 0.100659

SA Ham Messages 3536 3536
False Positives 3 0

Spam Messages 1669 1669

False Negatives 132 168

Avg DB Token Count 915982 189235

Table 4.2: Base and Graham-like Results

corpus where false positives appeared with the Graham-like test, and false negatives were noticeably
higher in Y and SA. False positives are always a concern, and here there is an inconclusive trend
regarding them. The Y corpus had two false positives under the Graham-like setup, and the SA
corpus had three under the Base setup. Each of these two corpora had zero false positives with the
other setup. An obvious result is the substantially smaller database with the Graham-like setup,

due to the lack of marking header data and the maximum phrase length of one.

4.2 Training Modes and Initial Training Set Sizes

With a production software product like SpamProbe it is not atypical to see a user’s token database
consume over 40 megabytes of disk space. On a modern desktop computer where hard drives over
100 gigabytes are common, this amount of storage is very reasonable. However, in a multi-user
server environment where each user is granted a small amount of disk space, 40 megabytes could be
too much to justify. For example, if individual users are each granted just 100 megabytes of storage,
to use almost half that amount just for spam detection is hard to defend.

Production spam filters employ techniques to limit database growth. A manual cleanup operation
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is commonly supported. Periodically, users purge certain tokens, such as tokens not modified for
n days, from their database. I looked at a method to minimize database updates, thereby limiting
growth.

With the TOE method described in Section 3.5, the database is only updated when the user
corrects an error. Since errors are usually in a small minority, database updates should be few. TOFE
was tested against TEFT-Corrective. In this simulation, I assumed an ideal situation where the user
notices every error and corrects each before the next message classification has begun. Additionally,
results with TEFT (non-corrective) are included. Tests were conducted with the Base configuration
in Table 4.1, only differing by the training mode.

While investigating these three training modes, the initial training set size was also studied.
As mentioned in Section 3.5, many users might not have large corpora of ham and spam saved to
build their initial database. It is worthwhile to see what impact small initial training sets have on
accuracy. Results for TEFT-Corrective, TOE, and TEFT are shown in Tables 4.3, 4.4, and 4.5,
respectively. As outlined in Section 3.6, the classification set of messages is all messages remaining
after initial training. Therefore, in these tests, as the initial training set size increases, the number
of classified messages decreases. Since the number of classified messages now differs between tests,
the numbers of false positives and false negatives cannot be directly compared. The false positive

and false negative rates should be compared.

Initial Training Set Size

Corpus 0 | 50 | 100 | 500 | 1000 | 2500 | 5000
Overall Accuracy 0.993595 | 0.994453 | 0.994701 | 0.995476 | 0.996285 | 0.997152 | 0.997674

False Positive Rate 0.013036 | 0.011428 | 0.010762 | 0.008505 | 0.006007 | 0.003766 | 0.003197

False Negative Rate 0.003353 | 0.002848 | 0.002791 | 0.002702 | 0.002677 | 0.002438 | 0.001937

X Ham Messages 12350 12251 12173 11523 10655 8231 4379
False Positives 161 140 131 98 64 31 14

Spam Messages 26840 26689 26517 25167 23535 18459 9811

False Negatives 90 76 74 68 63 45 19

Avg DB Token Count 925993 925993 925993 925993 925993 925993 925993
Overall Accuracy 0.929889 | 0.931351 | 0.932380 | 0.938552 | 0.942997 | 0.951162 | 0.957730

False Positive Rate 0.000901 | 0.000340 | 0.000342 | 0.000297 | 0.000252 | 0.000075 | 0.000000

False Negative Rate 0.106110 | 0.104154 | 0.102585 | 0.093048 | 0.086101 | 0.073660 | 0.063917

Y Ham Messages 17750 17656 17569 16822 15888 13282 9102
False Positives 16 6 6 5 4 1 0

Spam Messages 34125 33969 33806 32553 30987 26093 17773

False Negatives 3621 3538 3468 3029 2668 1922 1136

Avg DB Token Count 1449288 1449288 1449288 1449288 1449288 1449288 1449288
Overall Accuracy 0.963218 | 0.965048 | 0.965932 | 0.968273 | 0.969530 | 0.970912 | 0.974063

False Positive Rate 0.001783 | 0.001312 | 0.001275 | 0.001211 | 0.001159 | 0.001078 | 0.000848

False Negative Rate 0.113591 | 0.108730 | 0.105862 | 0.098221 | 0.094076 | 0.088991 | 0.079089

SA Ham Messages 20750 20574 20391 18990 17254 12064 3536
False Positives 37 27 26 23 20 13 3

Spam Messages 9455 9381 9314 8715 7951 5641 1669

False Negatives 1074 1020 986 856 748 502 132

Avg DB Token Count 915982 915982 915982 915982 915982 915982 915982

Table 4.3: TEFT-Corrective Tests
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With TEFT-Corrective, the database is always updated, and updated correctly. Not surprisingly,
all corpora showed improved overall accuracy as the initial training set grows. Both the false positive
rate and the false negative rate dropped in all but one test. Even with zero initial training, all
three corpora presented respectable accuracy. In fact, increasing the training set from zero to 5000
messages only increased the overall accuracy of corpus X by 0.4079%. Its false positive rate started
at 1.3% and dropped to just 0.3197%. Corpus SA behaved much like X. Corpus Y showed less
than a 3% reduction of overall accuracy with no initial training compared to a training set of 5000
messages. However, at 5000 this corpus did not give any false positives. Still, with no initial training,

its false positive rate of 0.0901% was very reasonable.

Initial Training Set Size

Corpus 0 | 50 | 100 | 500 | 1000 | 2500 | 5000
Overall Accuracy 0.970350 | 0.980945 | 0.985552 | 0.992096 | 0.993946 | 0.995879 | 0.997322

False Positive Rate 0.022915 | 0.016978 | 0.017005 | 0.015794 | 0.012482 | 0.007532 | 0.003654

False Negative Rate 0.032750 | 0.020008 | 0.013275 | 0.004291 | 0.003144 | 0.002600 | 0.002242

X Ham Messages 12350 12251 12173 11523 10655 8231 4379
False Positives 283 208 207 182 133 62 16

Spam Messages 26840 26689 26517 25167 23535 18459 9811

False Negatives 879 534 352 108 74 48 22

Avg DB Token Count 58481 52342 56600 122814 199446 390586 659363
Overall Accuracy 0.947933 | 0.953259 | 0.959027 | 0.967392 | 0.964928 | 0.962997 | 0.961488

False Positive Rate 0.020620 | 0.016708 | 0.013717 | 0.005231 | 0.002392 | 0.000903 | 0.000439

False Negative Rate 0.068425 | 0.062351 | 0.055138 | 0.046755 | 0.051828 | 0.055379 | 0.058009

Y Ham Messages 17750 17656 17569 16822 15888 13282 9102
False Positives 366 295 241 88 38 12 4

Spam Messages 34125 33969 33806 32553 30987 26093 17773

False Negatives 2335 2118 1864 1522 1606 1445 1031

Avg DB Token Count 121698 126945 134222 237694 367459 617799 929897
Overall Accuracy 0.960271 | 0.965715 | 0.970847 | 0.982891 | 0.981789 | 0.976221 | 0.975600

False Positive Rate 0.034602 | 0.028531 | 0.024913 | 0.006372 | 0.002898 | 0.001492 | 0.000848

False Negative Rate 0.050978 | 0.046903 | 0.038437 | 0.040505 | 0.051440 | 0.071441 | 0.074296

SA Ham Messages 20750 20574 20391 18990 17254 12064 3536
False Positives 718 587 508 121 50 18 3

Spam Messages 9455 9381 9314 8715 7951 5641 1669

False Negatives 482 440 358 353 409 403 124

Avg DB Token Count 113154 121294 120973 193081 292678 527415 811547

Table 4.4: TOE Tests

The TOFE method did substantially reduce the database token count. With the standard initial
training set size of 5000, corpus Y displayed the largest reduction of tokens at over 64%. Compared
to TEFT-Corrective, this corpus also enjoyed increased overall accuracy, although it came at the
expense of more false positives. Corpus SA also experienced higher overall accuracy with TOE.
Interestingly, the overall accuracy of corpora Y and SA peaked with a training set of 500, then
slightly declined. Corpus X performed well with TOE, but never quite reached the level of accuracy
given by TEFT-Corrective. The higher false positive rates make TOE a very questionable choice

unless database size is a primary concern, in which case alternative approaches (such as limiting the
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phrase length to one word) should also be considered.

Initial Training Set Size

Corpus 0 | 50 | 100 | 500 | 1000 | 2500 | 5000
Overall Accuracy 0.315131 | 0.914689 | 0.926338 | 0.982666 | 0.991284 | 0.995654 | 0.996899

False Positive Rate 0.000000 | 0.267733 | 0.227388 | 0.044606 | 0.017457 | 0.007532 | 0.005481

False Negative Rate 1.000000 | 0.001574 | 0.003092 | 0.004848 | 0.004759 | 0.002925 | 0.002039

X Ham Messages 12350 12251 12173 11523 10655 8231 4379
False Positives 0 3280 2768 514 186 62 24

Spam Messages 26840 26689 26517 25167 23535 18459 9811

False Negatives 26840 42 82 122 112 54 20

Avg DB Token Count 925993 925993 925993 925993 925993 925993 925993
Overall Accuracy 0.342169 | 0.399225 | 0.429509 | 0.574258 | 0.683883 | 0.813410 | 0.900837

False Positive Rate 0.000000 | 0.000000 | 0.000000 | 0.000059 | 0.000063 | 0.000000 | 0.000000

False Negative Rate 1.000000 | 0.913038 | 0.866976 | 0.645716 | 0.478168 | 0.281570 | 0.149947

Y Ham Messages 17750 17656 17569 16822 15888 13282 9102
False Positives 0 0 0 1 1 0 0

Spam Messages 34125 33969 33806 32553 30987 26093 17773

False Negatives 34125 31015 29309 21020 14817 7347 2665

Avg DB Token Count 1449288 1449288 1449288 1449288 1449288 1449288 1449288
Overall Accuracy 0.686972 | 0.692238 | 0.699680 | 0.826710 | 0.884428 | 0.944705 | 0.970989

False Positive Rate 0.000000 | 0.000049 | 0.000000 | 0.000105 | 0.000348 | 0.001078 | 0.000848

False Negative Rate 1.000000 | 0.982624 | 0.957805 | 0.550660 | 0.365614 | 0.171246 | 0.088676

SA Ham Messages 20750 20574 20391 18990 17254 12064 3536
False Positives 0 1 0 2 6 13 3

Spam Messages 9455 9381 9314 8715 7951 5641 1669

False Negatives 9455 9218 8921 4799 2907 966 148

Avg DB Token Count 915982 915982 915982 915982 915982 915982 915982

Table 4.5: TEFT (non-corrective) Tests

Finally, Table 4.5 shows what a system of no user interaction offers. I expected accuracy to
be dreadful, and it sometimes was. For example, corpus Y only reached a 90% overall accuracy
rate with a full 5000 message training set. Surprisingly, even though its overall accuracy was much
lower at each training set size, Y'’s false positives were many fewer with non-corrective TEFT
than either TEFT-Corrective or TOE for most training set sizes. Corpus SA followed Y'’s trend
of fewer false positives with non-corrective TEFT compared to TEFT-Corrective and TOE. With
the 5000 message training set, SA almost matched its accuracy with TEFT-Corrective and TOE.
Compared to the other training modes, corpus X maintained decent overall accuracy, but with
an unacceptable level of increased false positives. With no initial training, non-corrective TEFT
classifies every message as ham. When the first message arrives to be classified, and the filter has no
prior knowledge, the filter must assume the message is ham (to avoid false positives). Subsequently,
since the filter thinks it has only seen ham before, the next message will also be judged as ham.
This will continue for all messages since no errors are corrected.

No matter the training mode, more initial training data generally resulted in fewer false positives
and a higher overall accuracy. Trivially, if a user has saved messages, they all should be used to

create the initial database. In the event the user has not saved many messages, adequate accuracy
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can still be had. TEFT-Corrective is recommended when dealing with small initial training sets.
If disk space is a major concern, TOE gives acceptable accuracy while keeping database size low.
The non-corrective method, TEFT, is intriguing. False positives were very low with two corpora,
and overall accuracy was decent with a 5000 message initial training set. Users don’t always catch
all mistakes, so the performance of TEFT is encouraging. However, non-corrective TEF'T is not

recommended unless user feedback is impossible for a system.

4.3 Weighted Token Probability Function

4.3.1 Establishing the Desire for Weighting

Tests given in Tables 4.6 and 4.7 are designed to show why I believed weighting header data and
phrase tokens differently might be beneficial. These tests use the Base configuration in Table 4.1,
with the changes described. With the All, Normal, and No-X options, only those header lines
were tokenized and marked. When a particular subset of headers is used, only those header lines
are tokenized. For example, in the No-X tests below, all X- headers are ignored on input. Two
variations of None were also run. None Marked considers when all headers are tokenized, but the

tokens are not marked as having come from headers. Their counts are combined with body tokens.

None Tokenized only uses body tokens, and the headers are discarded.

Corpus ‘ ‘ All ‘ Normal ‘ No-X ‘ None Marked ‘ None Tokenized
Overall Accuracy 0.997604 | 0.996476 | 0.997745 0.997674 0.975123

False Positive Rate | 0.004796 | 0.005709 | 0.004567 0.005937 0.013930

False Negative Rate | 0.001325 | 0.002548 | 0.001223 0.000713 0.029763

X Ham Messages 4379 4379 4379 4379 4379
False Positives 21 25 20 26 61

Spam Messages 9811 9811 9811 9811 9811

False Negatives 13 25 12 7 292
Overall Accuracy 0.975926 | 0.957135 | 0.972465 0.938047 0.845544

False Positive Rate | 0.001428 | 0.000439 | 0.000659 0.000220 0.000330

False Negative Rate | 0.035672 | 0.064592 | 0.041299 0.093569 0.233388

Y Ham Messages 9102 9102 9102 9102 9102
False Positives 13 4 6 2 3

Spam Messages 17773 17773 17773 17773 17773

False Negatives 634 1148 734 1663 4148
Overall Accuracy 0.980596 | 0.980596 | 0.980211 0.980788 0.964073

False Positive Rate | 0.000848 | 0.001131 | 0.000848 0.000283 0.001980

False Negative Rate | 0.058718 | 0.058119 | 0.059916 0.059317 0.107849

SA Ham Messages 3536 3536 3536 3536 3536
False Positives 3 4 3 1 7

Spam Messages 1669 1669 1669 1669 1669

False Negatives 98 97 100 99 180

Table 4.6: Maximum Phrase Length of 1
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Corpus ‘ ‘ All ‘ Normal No-X | None Marked | None Tokenized

Overall Accuracy 0.997674 | 0.997463 | 0.997604 0.998097 0.983369
False Positive Rate | 0.003197 | 0.003197 | 0.002969 0.003197 0.013702
False Negative Rate | 0.001937 | 0.002242 | 0.002140 0.001325 0.017939
X Ham Messages 4379 4379 4379 4379 4379
False Positives 14 14 13 14 60
Spam Messages 9811 9811 9811 9811 9811
False Negatives 19 22 21 13 176
Overall Accuracy 0.957730 | 0.947349 | 0.956428 0.941060 0.880819
False Positive Rate | 0.000000 | 0.000000 | 0.000000 0.000000 0.000000
False Negative Rate | 0.063917 | 0.079615 | 0.065886 0.089124 0.180217
Y Ham Messages 9102 9102 9102 9102 9102
False Positives 0 0 0 0 0
Spam Messages 17773 17773 17773 17773 17773
False Negatives 1136 1415 1171 1584 3203
Overall Accuracy 0.974063 | 0.974063 | 0.974448 0.973295 0.967531
False Positive Rate | 0.000848 | 0.000848 | 0.000848 0.000848 0.000566
False Negative Rate | 0.079089 | 0.079089 | 0.077891 0.081486 0.100060
SA Ham Messages 3536 3536 3536 3536 3536
False Positives 3 3 3 3 2
Spam Messages 1669 1669 1669 1669 1669
False Negatives 132 132 130 136 167

Table 4.7: Maximum Phrase Length of 2

First, comparing Table 4.6 to Table 4.7, the difference between a maximum phrase length of
two and one is very pronounced. Using pairs of tokens resulted in a substantial decrease of false
positives with two corpora. For example, corpus Y never experienced a single false positive with
pairs (Table 4.7), but had up to thirteen with single-word tokens (Table 4.6). When marking sets
of headers and using pairs of words, the overall accuracy of corpus Y was slightly lower, but the
false positive rate of zero more than made up for it. For corpora X and Y, increasing the maximum
phrase length from one to two gave a reduction, often substantial, of false positives in every test
configuration, while maintaining a strong (low) false negative rate. From these results, it appears
the suggestion of weighting phrase tokens higher than single-word tokens is justified.

Testing the three different sets of marked header lines (ALL, Normal, and No-X) gave inconclu-
sive results with a maximum phrase length of one. In the X and SA corpora, ALL and No-X gave
almost identical results. The Normal set of headers gave more false positives in X than did ALL
or No-X. Corpus Y experienced its highest overall accuracy with ALL, but Normal gave fewer false
positives than did ALL. The situation is slightly different with a maximum phrase length of two.
The three marked header sets gave practically no differences with the X and SA corpora. Corpus Y
had significantly more false negatives with Normal than with ALL or No-X, which does not seem
surprising, because Normal utilizes the fewest header fields, and I assume more data equals better

accuracy.
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I expected the difference between marking header and not marking to be substantial. I expected
marking headers (no matter the set) to give a noticeable increase in overall accuracy and help reduce
false positives. As it turned out, the results of None Marked were usually comparable to the different
marked sets or slightly better in some cases.

For relatively small numbers of counts, the standard deviation in a number of counts is approx-
imately equal to the square root of the number of counts: o & y/n. Statistical significance requires
a difference of two, or preferably three or more, standard deviations. In Table 4.6, corpus X had
21 false positives when marking ALL header fields. The standard deviation on 21 is less than 5,
therefore the difference between 21 false positives with ALL and 25, 20, and 26 with Normal, No-X,
and None Marked, respectively, is not significant. However, the difference between 21 false positives
with ALL and 61 with None Tokenized is significant. The low accuracy of None Tokenized was
predicted. Relative to any tested scheme of header marking, ignoring the headers completely gave

significantly worse accuracy and especially hurt the false positive rate.

4.3.2 Exploring the eps Value

Before header or phrase weights can be tested, we must see how different eps values affect accuracy.
The configuration for these tests differs from the Base configuration in Table 4.1 only by the use
of the weighted token probability function introduced in Section 3.3. This function has a constant
eps that removes the need for hard limits on token probabilities. It was unknown how different eps
values would affect accuracy. Results of several eps values are shown in Table 4.8. The header and
phrase weights were set to 1.0. As shown, each corpus behaved differently. Corpus Y is the easiest
to read, as it never experienced a single false positive. Its false negatives dropped solidly as eps
decreased. Corpus X mostly followed the same trend of decreasing false negatives as eps decreased,
but false positives showed a slight increase, then dropped at the lowest eps value. Finally, corpus
SA actually saw increased false negatives as eps decreased, but a sharp decrease in false positives as
eps decreased produced desirable results. Due to the differing behaviors, subsequent weighting tests
were run with eps values of 0.5 and 0.000001. Tested separately, header and phrase weights of 0.5,
0.9, 1.0, 1.5, 2.0, 5.0, 10.0, and 100.0 were tried.

On a side note, benefits of the weighted token probability function are already visible. As shown
in Table 4.9, compared to the Base configuration, the weighted token probability function with eps

of 0.000001 increased the overall accuracy of all three corpora. Also, X'’s false positives were fewer.
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eps Value

Corpus 1.0 0.5 0.1 ‘ 0.01 0.0001 | 0.000001
Overall Accuracy 0.989570 | 0.994644 | 0.997040 | 0.997886 | 0.997745 | 0.998097

False Positive Rate 0.002512 | 0.002512 | 0.002969 | 0.003197 | 0.002969 | 0.002055

False Negative Rate | 0.013964 | 0.006625 | 0.002956 | 0.001631 | 0.001937 | 0.001835

X Ham Messages 4379 4379 4379 4379 4379 4379
False Positives 11 11 13 14 13 9

Spam Messages 9811 9811 9811 9811 9811 9811

False Negatives 137 65 29 16 19 18
Overall Accuracy 0.788540 | 0.852205 | 0.931870 | 0.958140 | 0.962530 | 0.964353

False Positive Rate 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.319755 | 0.223485 | 0.103021 | 0.063298 | 0.056659 | 0.053902

Y Ham Messages 9102 9102 9102 9102 9102 9102
False Positives 0 0 0 0 0 0

Spam Messages 17773 17773 17773 17773 17773 17773

False Negatives 5683 3972 1831 1125 1007 958
Overall Accuracy 0.992123 | 0.993660 | 0.993660 | 0.992315 | 0.991739 | 0.985783

False Positive Rate 0.006787 | 0.004808 | 0.002545 | 0.002545 | 0.001697 | 0.001131

False Negative Rate | 0.010186 | 0.009587 | 0.014380 | 0.018574 | 0.022169 | 0.041941

SA Ham Messages 3536 3536 3536 3536 3536 3536
False Positives 24 17 9 9 6 4

Spam Messages 1669 1669 1669 1669 1669 1669

False Negatives 17 16 24 31 37 70

Table 4.8: eps Tests

Corpus Base Weighted Token
Probability Function,

eps of 0.000001

Overall Accuracy 0.997674 0.998097

False Positive Rate 0.003197 0.002055

False Negative Rate | 0.001937 0.001835

X Ham Messages 4379 4379
False Positives 14 9

Spam Messages 9811 9811

False Negatives 19 18
Overall Accuracy 0.957730 0.964353

False Positive Rate | 0.000000 0.000000

False Negative Rate | 0.063917 0.053902

Y Ham Messages 9102 9102
False Positives 0 0

Spam Messages 17773 17773

False Negatives 1136 958
Overall Accuracy 0.974063 0.985783

False Positive Rate 0.000848 0.001131

False Negative Rate | 0.079089 0.041941

SA Ham Messages 3536 3536
False Positives 3 4

Spam Messages 1669 1669

False Negatives 132 70
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4.3.3 Header Weights

In these tests, all header lines were tokenized and marked. During classification, the weighted token
probability function applied the given weight to all header tokens. Weights > 1.0 strengthen the
token’s probability, and weights < 1.0 weaken the token’s probability. For example, if a token has
a probability of 0.9, a weight > 1.0 will strengthen that probability, pushing it closer to 1.0. The
remaining tokens (all body tokens) are given the weight of 1.0. The phrase weight was also left
unchanged at 1.0. As was mentioned earlier, my belief was that header data is more important than
body data. I expected higher header weights to result in increased accuracy (while maintaining a
low rate of false positives).

Results for header weights < 1.0 are shown in Table 4.10. Compared to an eps value of 0.5,
0.000001 gave much less movement as the header weight was changed. In other words, with eps of
0.000001, all header weights resulted in very similar results. For example, corpus Y, as expected,
went from 4679 to 3972 false negatives as the weight increased using eps of 0.5. However, with eps
of 0.000001, false negatives in corpus Y decreased very slightly from 1000 to 958. The other corpora
showed similar stagnant results with eps of 0.000001.

Table 4.11 shows the effects of further raising the header weight beyond 1.0. Again, corpus Y
proved to be very cooperative as its false negatives sharply decreased with increasing header weights
with eps of 0.5. With eps of 0.000001, its false negatives also decreased with increasing header
weights, but at a slower rate. Also, two false positives made an appearance in the Y corpus with
the highest tested header weight and an eps value of 0.000001. No matter the eps value, corpus X
showed a trend of slightly increasing false positives as the header weight increased. Finally, as the
header weight increased, corpus SA showed acceptable increases of false negatives due to decreasing
false positives with eps of 0.5. Under eps of 0.000001, the same corpus showed no change, no matter
the header weight.

Overall, the tested separate header weight configurations cannot be fully recommended. In-
creased weights showed increased overall accuracy in most cases, but some corpora also showed a
trend of increasing false positives. The possibility of increased false positives is not a chance to be
taken lightly. However, if maximum overall accuracy is desired without regard to false positives,
eps of 0.000001 with the highest tested header weight did perform slightly better than the Base

configuration in all three corpora.
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Header Weight
Corpus 0.5 | 0.9 | 1.0
‘eps’: 0.5

Overall Accuracy 0.993728 | 0.994644 | 0.994644

False Positive Rate | 0.002284 | 0.002284 | 0.002512

False Negative Rate | 0.008052 | 0.006727 | 0.006625

X Ham Messages 4379 4379 4379
False Positives 10 10 11

Spam Messages 9811 9811 9811

False Negatives 79 66 65
Overall Accuracy 0.825898 | 0.847665 | 0.852205

False Positive Rate | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.263265 | 0.230349 | 0.223485

Y Ham Messages 9102 9102 9102
False Positives 0 0 0

Spam Messages 17773 17773 17773

False Negatives 4679 4094 3972
Overall Accuracy 0.992891 | 0.993660 | 0.993660

False Positive Rate | 0.005939 | 0.005090 | 0.004808

False Negative Rate | 0.009587 | 0.008987 | 0.009587

SA Ham Messages 3536 3536 3536
False Positives 21 18 17

Spam Messages 1669 1669 1669

False Negatives 16 15 16

‘eps’: 0.000001

Overall Accuracy 0.998097 | 0.998027 | 0.998097

False Positive Rate | 0.002055 | 0.002055 | 0.002055

False Negative Rate | 0.001835 | 0.001937 | 0.001835

X Ham Messages 4379 4379 4379
False Positives 9 9 9

Spam Messages 9811 9811 9811

False Negatives 18 19 18
Overall Accuracy 0.962791 | 0.964130 | 0.964353

False Positive Rate | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.056265 | 0.054240 | 0.053902

Y Ham Messages 9102 9102 9102
False Positives 0 0 0

Spam Messages 17773 17773 17773

False Negatives 1000 964 958
Overall Accuracy 0.985783 | 0.985591 | 0.985783

False Positive Rate | 0.000848 | 0.001131 | 0.001131

False Negative Rate | 0.042540 | 0.042540 | 0.041941

SA Ham Messages 3536 3536 3536
False Positives 3 4 4

Spam Messages 1669 1669 1669

False Negatives 71 71 70

Table 4.10: Header Weights < 1.0
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Header Weight

Corpus L5 | 2.0 | 5.0 | 10.0 100.0
‘eps’: 0.5

Overall Accuracy 0.994715 | 0.995349 | 0.996265 | 0.996476 | 0.996899

False Positive Rate | 0.002740 | 0.002740 | 0.002969 | 0.003425 | 0.003425

False Negative Rate | 0.006421 | 0.005504 | 0.004077 | 0.003567 | 0.002956

X Ham Messages 4379 4379 4379 4379 4379
False Positives 12 12 13 15 15

Spam Messages 9811 9811 9811 9811 9811

False Negatives 63 54 40 35 29
Overall Accuracy 0.871033 | 0.881898 | 0.910735 | 0.926847 | 0.947163

False Positive Rate | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.195015 | 0.178585 | 0.134980 | 0.110617 | 0.079896

Y Ham Messages 9102 9102 9102 9102 9102
False Positives 0 0 0 0 0

Spam Messages 17773 17773 17773 17773 17773

False Negatives 3466 3174 2399 1966 1420
Overall Accuracy 0.994236 | 0.995005 | 0.994813 | 0.995005 | 0.994236

False Positive Rate | 0.003676 | 0.003111 | 0.002828 | 0.002262 | 0.001980

False Negative Rate | 0.010186 | 0.008987 | 0.010186 | 0.010785 | 0.013781

SA Ham Messages 3536 3536 3536 3536 3536
False Positives 13 11 10 8 7

Spam Messages 1669 1669 1669 1669 1669

False Negatives 17 15 17 18 23

‘eps’: 0.000001

Overall Accuracy 0.997956 | 0.997956 | 0.998027 | 0.998168 | 0.998379

False Positive Rate | 0.002284 | 0.002284 | 0.002512 | 0.002512 | 0.002740

False Negative Rate | 0.001937 | 0.001937 | 0.001733 | 0.001529 | 0.001121

X Ham Messages 4379 4379 4379 4379 4379
False Positives 10 10 11 11 12

Spam Messages 9811 9811 9811 9811 9811

False Negatives 19 19 17 15 11
Overall Accuracy 0.965730 | 0.966288 | 0.969005 | 0.970753 | 0.975367

False Positive Rate | 0.000000 | 0.000000 | 0.000220 | 0.000220 | 0.000220

False Negative Rate | 0.051820 | 0.050976 | 0.046756 | 0.044112 | 0.037135

Y Ham Messages 9102 9102 9102 9102 9102
False Positives 0 0 2 2 2

Spam Messages 17773 17773 17773 17773 17773

False Negatives 921 906 831 784 660
Overall Accuracy 0.985975 | 0.986167 | 0.985975 | 0.985975 | 0.986167

False Positive Rate | 0.001131 | 0.001131 | 0.001131 | 0.001131 | 0.001131

False Negative Rate | 0.041342 | 0.040743 | 0.041342 | 0.041342 | 0.040743

SA Ham Messages 3536 3536 3536 3536 3536
False Positives 4 4 4 4 4

Spam Messages 1669 1669 1669 1669 1669

False Negatives 69 68 69 69 68

Table 4.11: Header Weights Tests > 1.0
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4.3.4 Phrase Weights

Phrase weight tests were conducted with the same configuration as the header weight tests. All
single-word tokens were given unit weight of 1.0. All other tokens (which are of phrase size > 1),
regardless of whether or not they are in a header field, are given the specified weight. Note the
maximum phrase length of these tests was set to two, so only pairs of words were weighted. Weights
applied to larger phrases were not tested. The header weight was left constant at 1.0. As with the
header weights, phrase weights gave mixed results.

Phrase weights < 1.0 are shown in Table 4.12. Neither eps value gave the same sort of movement
from changing phrase weights that changing header weights gave. Only corpus Y gave conclusive
results as its false negatives decreased by almost 500 with eps of 0.5.

In Table 4.13, corpus X once again showed a trend of increasing false positives as the phrase
weight increased. Also, again corpus SA showed decreasing false positives with eps of 0.5 at the
expensive of higher false negatives, as the phrase weights increased. Corpus Y continued its down-
ward trend of false negatives under eps of 0.5 as phrase weights increased, but showed little change
under eps of 0.000001.

As with the header weight results, an eps value of 0.000001 resulted in either higher overall
accuracy or decreased false positives compared to eps of 0.5. Again, with eps of 0.000001, results
changed very little with changes in the phrase weight. Overall, the conclusions are much the same
as with header weights. Since corpus X experienced increasing false positives as the phrase weights

increased, increasing phrase weights cannot be recommended.

4.4 Miscellaneous Tests

Other interesting test results are shown in Table 4.14. All tests are based on the Base configuration.

Robinson’s Geometric Mean combined probability function was tested. This configuration dif-
fered from Base only by the use of that function instead of Base’s SP-Graham combined probability
function. The Geometric Mean setup did not give a single false positive, but overall accuracy was
substantially lower. This test, conducted at the usual spam threshold of 0.7, showed a terrible false
negative rate for each corpus. Therefore, another test was run at a lower threshold of 0.6. This
decision threshold showed a much improved false negative rate, but still far from the accuracy of
Base. Out of fairness, the Base configuration was also tested with a threshold of 0.6. This test

showed an additional false positive in both X and Y, so 0.7 is favored for the Base setup.
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Phrase Weight
Corpus 0.5 | 0.9 | 1.0

¢

eps’: 0.5

Overall Accuracy 0.993587 | 0.994433 | 0.994644
False Positive Rate 0.002740 | 0.002740 | 0.002512
False Negative Rate | 0.008052 | 0.006829 | 0.006625

X Ham Messages 4379 4379 4379
False Positives 12 12 11
Spam Messages 9811 9811 9811
False Negatives 79 67 65

Overall Accuracy 0.834753 | 0.848558 | 0.852205
False Positive Rate | 0.000000 | 0.000000 | 0.000000
False Negative Rate | 0.249873 | 0.228999 | 0.223485

Y Ham Messages 9102 9102 9102
False Positives 0 0 0
Spam Messages 17773 17773 17773
False Negatives 4441 4070 3972

Overall Accuracy 0.994044 | 0.993852 | 0.993660
False Positive Rate 0.003676 | 0.004525 | 0.004808
False Negative Rate | 0.010785 | 0.009587 | 0.009587

SA Ham Messages 3536 3536 3536
False Positives 13 16 17
Spam Messages 1669 1669 1669
False Negatives 18 16 16

‘eps’: 0.000001

Overall Accuracy 0.997956 | 0.998097 | 0.998097
False Positive Rate 0.002055 | 0.002284 | 0.002055
False Negative Rate | 0.002039 | 0.001733 | 0.001835

X Ham Messages 4379 4379 4379
False Positives 9 10 9
Spam Messages 9811 9811 9811
False Negatives 20 17 18

Overall Accuracy 0.965247 | 0.964242 | 0.964353
False Positive Rate 0.000000 | 0.000000 | 0.000000
False Negative Rate | 0.052552 | 0.054071 | 0.053902

Y Ham Messages 9102 9102 9102
False Positives 0 0 0
Spam Messages 17773 17773 17773
False Negatives 934 961 958

Overall Accuracy 0.985783 | 0.985783 | 0.985783
False Positive Rate | 0.000848 | 0.001131 | 0.001131
False Negative Rate | 0.042540 | 0.041941 | 0.041941

SA Ham Messages 3536 3536 3536
False Positives 3 4 4
Spam Messages 1669 1669 1669
False Negatives 71 70 70

Table 4.12: Phrase Weights < 1.0
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Phrase Weight

Corpus 1.5 2.0 | 5.0 | 10.0 | 100.0
‘eps’: 0.5

Overall Accuracy 0.995208 | 0.995631 | 0.996406 | 0.996476 | 0.997393

False Positive Rate | 0.002284 | 0.002512 | 0.002740 | 0.003197 | 0.003197

False Negative Rate | 0.005912 | 0.005198 | 0.003975 | 0.003669 | 0.002344

X Ham Messages 4379 4379 4379 4379 4379
False Positives 10 11 12 14 14

Spam Messages 9811 9811 9811 9811 9811

False Negatives 58 51 39 36 23
Overall Accuracy 0.865414 | 0.874530 | 0.896856 | 0.906419 | 0.922047

False Positive Rate | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.203511 | 0.189726 | 0.155967 | 0.141507 | 0.117875

Y Ham Messages 9102 9102 9102 9102 9102
False Positives 0 0 0 0 0

Spam Messages 17773 17773 17773 17773 17773

False Negatives 3617 3372 2772 2515 2095
Overall Accuracy 0.993660 | 0.993084 | 0.993468 | 0.993276 | 0.992699

False Positive Rate | 0.004808 | 0.005373 | 0.003959 | 0.003676 | 0.003394

False Negative Rate | 0.009587 | 0.010186 | 0.011983 | 0.013182 | 0.015578

SA Ham Messages 3536 3536 3536 3536 3536
False Positives 17 19 14 13 12

Spam Messages 1669 1669 1669 1669 1669

False Negatives 16 17 20 22 26

‘EPS’: 0.000001

Overall Accuracy 0.997956 | 0.998027 | 0.998027 | 0.998027 | 0.997956

False Positive Rate | 0.002055 | 0.002284 | 0.002284 | 0.002284 | 0.002512

False Negative Rate | 0.002039 | 0.001835 | 0.001835 | 0.001835 | 0.001835

X Ham Messages 4379 4379 4379 4379 4379
False Positives 9 10 10 10 11

Spam Messages 9811 9811 9811 9811 9811

False Negatives 20 18 18 18 18
Overall Accuracy 0.963088 | 0.963163 | 0.963163 | 0.963163 | 0.962456

False Positive Rate | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

False Negative Rate | 0.055815 | 0.055702 | 0.055702 | 0.055702 | 0.056772

Y Ham Messages 9102 9102 9102 9102 9102
False Positives 0 0 0 0 0

Spam Messages 17773 17773 17773 17773 17773

False Negatives 992 990 990 990 1009
Overall Accuracy 0.985207 | 0.985399 | 0.984822 | 0.984822 | 0.984630

False Positive Rate | 0.001131 | 0.001414 | 0.001131 | 0.001131 | 0.001131

False Negative Rate | 0.043739 | 0.042540 | 0.044937 | 0.044937 | 0.045536

SA Ham Messages 3536 3536 3536 3536 3536
False Positives 4 5 4 4 4

Spam Messages 1669 1669 1669 1669 1669

False Negatives 73 71 75 75 76

Table 4.13: Phrase Weights > 1.0
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Geometric | Geometric Whole

Corpus Base | Base 0.6 Mean Mean 0.6 Triples | Message Matrix
Overall Accuracy 0.997674 | 0.997815 0.946723 0.978858 | 0.996688 0.986258

False Positive Rate 0.003197 | 0.003425 0.000000 0.000000 | 0.002512 0.000457

False Negative Rate 0.001937 | 0.001631 0.077056 0.030578 | 0.003669 0.019672

X Ham Messages 4379 4379 4379 4379 4379 4379
False Positives 14 15 0 0 11 2

Spam Messages 9811 9811 9811 9811 9811 9811

False Negatives 19 16 756 300 36 193

Avg DB Token Count 925993 925993 925993 925993 1786768 925993
Overall Accuracy 0.957730 | 0.962158 0.781805 0.835684 | 0.939498 0.784037

False Positive Rate 0.000000 | 0.000110 0.000000 0.000000 | 0.000549 0.000000

False Negative Rate 0.063917 | 0.057165 0.329939 0.248467 | 0.091206 0.326563

Y Ham Messages 9102 9102 9102 9102 9102 9102
False Positives 0 1 0 0 5 0

Spam Messages 17773 17773 17773 17773 17773 17773

False Negatives 1136 1016 5864 4416 1621 5804

Avg DB Token Count 1449288 1449288 1449288 1449288 3205845 1449288
Overall Accuracy 0.974063 | 0.975985 0.889145 0.918540 | 0.970221 0.941402

False Positive Rate 0.000848 | 0.000848 0.000000 0.000000 | 0.001414 0.000848

False Negative Rate 0.079089 | 0.073098 0.345716 0.254044 | 0.089874 0.180947

SA Ham Messages 3536 3536 3536 3536 3536 3536
False Positives 3 3 0 0 5 3

Spam Messages 1669 1669 1669 1669 1669 1669

False Negatives 132 122 577 424 150 302

Avg DB Token Count 915982 915982 915982 915982 1932047 915982

Table 4.14: Miscellaneous Tests

The Triples test used a maximum phrase length of three. The lower accuracy of was unexpected.
Just as pairs performed better than single word tokens, I assumed the more data gathered by triples
would equal higher accuracy. Actually, it appears triples were more susceptible to word salad — the
insertion of unrelated, seemingly hammy words in an attempt to dilute a message’s spamminess.
Table 4.15 shows the decision matrix used from a word salad spam message. Using triples created
more tokens from the word salad, and they succeeded in appearing hammy. Since the decision matrix
building process always favors hammy tokens, the hammy triples forced other spammy tokens out.
With triples this spam was classified as ham, but correctly classified using pairs. Obviously, triples
cannot be recommended if disk space is a concern. If triples were to be used, a larger decision
matrix might help. The matrix size of 27 is approximately optimal for a maximum phrase size of
two tokens, according to Brian Burton, but may be too large for a phrase size of one and too small
for a size of three.

The Whole Message Matriz test differed from Base by using a decision matrix of size 1,000,000
and a max token usage count of 1,000,000. This should have effectively included all of a message’s
tokens in the decision matrix. Pairs of words were still used. Corpus Y saw a serious increase of
false negatives. This could be due to successful word salad attacks. The decrease of false positives

in X with Whole Message Matrixz relative to Base is a welcome change.
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Triples Pairs
Ham  Spam Ham  Spam
Count  Count Score  Token Count  Count Score  Token
5 0 0.000001 paled 7 0 0.000001 face and
7 0 0.000001 face and 10 0 0.000001 irradiated
8 0 0.000001 thenill 5 0 0.000001 paled
5 0 0.000001 first or 5 0 0.000001 first or
5 0 0.000001 11 take 5 0 0.000001 1l take
7 0 0.000001 show him 17 0 0.000001 secretary of
10 0 0.000001 irradiated 6 0 0.000001 my neck
13 0 0.000001 secretary of state 6 0 0.000001 annals of
17 0 0.000001 secretary of 7 0 0.000001 show him
6 0 0.000001 out by the 6 0 0.000001 myself with
6 0 0.000001 my neck 7 0 0.000001 brass
25 0 0.000001 think i am 5 0 0.000001 really the
6 0 0.000001 annals of 0 15 0.999999 lordship
6 0 0.000001 myself with 0 15 0.999999 lordship
7 0 0.000001 brass 0 7 0.999999 stared
6 0 0.000001 don t say 0 14 0.999999 rebels
9 0 0.000001 more than the 0 10 0.999999  just try
5 0 0.000001 really the 0 5 0.999999 itself a
0 15 0.999999 lordship 0 18 0.999999 try us
0 15 0.999999 lordship 0 10 0.999999 levasseur
0 5 0.999999 Hsubject_she 0 7 0.999999  thee
0 7 0.999999 mr blood 0 7 0.999999 mr blood
0 7 0.999999 thee 0 10 0.999999 1l show
0 11 0.999999  get top 0 9 0.999999 king s
0 7 0.999999  you get top 0 13 0.999999 his lordship
0 6 0.999999 Hsubject_i m 0 5 0.999999 Hsubject_she
0 9 0.999999 king s 0 14 0.999999 land and

Table 4.15: Triples vs Pairs Matrices

The Geometric Mean 0.6 and Whole Message Matriz results test the definition of how results are
compared. Both setups gave equal or better false positive rates than Base, but their false negative
rate (and overall accuracy) is at times significantly worse. For example, in corpus X, Geometric
Mean 0.6 gave zero false positives compared to fourteen for Base, but it gave a false negative rate of
3.06% compared to 0.19% with Base. The situation is much clearer with corpus Y, as neither setup
gave false positives, but Base gave an obviously better false negative rate. Which configuration is
‘better’? The answer depends on the user. If a particular setup gives the highest overall accuracy,

it is not necessarily better than another. A low rate of false positives is extremely important.
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Chapter 5

Summary,

Conclusions and Future Work

5.1 Summary

Statistical spam filtering, inspired from Paul Graham’s original essay [6], is a relatively new and

successful technique to free users’ inboxes from spam. The procedure is straight-forward:
e An initial database is built.

— Saved ham and spam are broken into tokens.

— A token database is built, with ham and spam counts for each token.

e New messages are classified.

The message is tokenized.
— An individual probability for each token is calculated.

— The combined probability for the message, whether or not it is spam, is calculated.

The tokens from the message might be added to the database.

Error correction may be done later by the user.

This system of filtering requires only the pre-classified sets of ham and spam. Automatic learning
through statistical analysis of the token database gives a low rate of errors.
There are a few major modules in a statistical spam filter. The tokenizer is responsible for

breaking messages into tokens. This determines the actual information that the filter will see. The
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database will be large and must give fast and accurate access. The entire message is usually not used
for classification. Instead, a smaller decision matrix of tokens is built. The decision matrix is fed
to the combined probability function and a decision is made. Finally, after classification, different
methods of training (updating the database) may be employed.

In an effort to study the benefits of different techniques, a general test system was designed and

implemented in this paper. This System gives many options:
e Tokenization: The tokenizer uses code from the open-source SpamProbe project.

— Marking header tokens is a common technique that is implemented. Tokens are prefixed
with the name of the header field they are found in.

— Word phrases are implemented. Instead of just single-word tokens, n-word tokens are
gathered from messages.

e Token Probability Function:

— Paul Graham’s original in Figure 2.2.

— A new weighted individual token probability function was created (see Section 3.3). With
this function, weights can be applied to header and phrase tokens to give them stronger

or weaker scores. Also, hard limits on token probabilities are eliminated.
e Decision Matrix:

— Variable window size.

— Variable number of token repeats allowed.
e Combination Functions:

— Graham’s original in Figure 2.4.
— SpamProbe’s in Figure 2.7.

— Gary Robinson’s geometric mean in Figure 2.8.
e Post-Classification Training:

— Corrective TEFT: Every message is added to the database, and corrections are immedi-
ately applied.

— Non-Corrective TEFT: Every message is added to the database. No corrections are made.

— TOE: Only misclassified messages are trained. Errors are immediately corrected.
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Many filter configurations were tested. The Base configuration in Table 4.1 is similar to the
defaults given by the popular spam filter SpamProbe. This was tested against a setup similar to
Graham’s original model. The Base setup used a two-word maximum phrase length and marked
header tokens, whereas the Graham-like model used single-word phrases and did not mark header

tokens. The results of these tests are in Table 5.1. Both models performed well. Due to the lack of

Configuration

Corpus Base | Graham-like | Singles | Triples
Overall Accuracy 0.997674 0.998450 | 0.997604 | 0.996688

X False Positive Rate 0.003197 0.003197 | 0.004796 | 0.002512
False Negative Rate 0.001937 0.000815 | 0.001325 | 0.003669

Avg DB Token Count 925993 225921 322000 | 1786768
Overall Accuracy 0.957730 0.943107 | 0.975926 | 0.939498

Y False Positive Rate 0.000000 0.000220 | 0.001428 | 0.000549
False Negative Rate 0.063917 0.085917 | 0.035672 | 0.091206

Avg DB Token Count | 1449288 295528 419885 | 3205845
Overall Accuracy 0.974063 0.967723 | 0.980596 | 0.970221

SA False Positive Rate 0.000848 0.000000 | 0.000848 | 0.001414
False Negative Rate 0.079089 0.100659 | 0.058718 | 0.089874

Avg DB Token Count 915982 189235 271452 | 1932047

Table 5.1: Base, Graham-like, Singles, and Triples Summary

two-word phrases and not marking header tokens, the Graham-like system produces databases with
substantially fewer tokens.

Table 5.1 also compares three different maximum phrase lengths. The Singles and Triples setups
differ from Base only by their maximum phrase lengths. The Base setup always used a maximum
phrase length of two, and it proved to be most effective, at least when using a decision matrix size
of 27. The overall accuracy of Singles was higher than Base with two corpora, but Singles also gave
a higher false positive rate with two corpora. Compared to the two-word phrase model of Base,
Triples gave lower overall accuracy in all three corpora, and a higher false positive rate with two
corpora.

Disk space is a common concern for many users. A token database can easily exceed 1,000,000 to-
kens. Using a one-word phrase length decreases database size relative to two-word phrases. Database
size can also be reduced by only updating the database when errors are corrected. This method
is referred to as TOE. The standard method used in the Base setup is TEFT-Corrective, where
every message is added to the database after classification. In this simulation, using TOE or TEFT-
Corrective errors were immediately corrected before the next message classification began. To study
the effects of small training set sizes, tests were conducted with zero to 5000 messages in the initial

training set.
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Figure 5.1 shows the overall accuracy given by TOE and TEFT-Corrective for the three corpora.

Looking at this graph alone, the conclusion would be that TOE is better. Corpora Y and SA both
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Figure 5.1: TEFT-Corrective and TOE Overall Accuracy

achieve higher overall accuracy with TOE at almost all tested training set sizes. However, Figure 5.2
clearly shows TEFT-Corrective performing better than TOE with regard to false positive rates. For
this reason, TEFT-Corrective is the preferred technique. If database size if a major concern, TOE
does substantially reduce the token counts, but the higher false positive rate is a concern. Figure 5.1
also shows that great overall accuracy is still given with a small initial training set. Even with zero
initial training messages, all three corpora had overall accuracy greater than 92%. TEFT-Corrective
performed better than TOE with small training sets.

The new weighted individual token probability function introduced in Section 3.3 was tested.
First, different values for eps had to be tried. This variable removes the necessity for hard limits on
the token probabilities. As shown in Table 4.8, the lowest tested value of eps, 0.000001, was favored
with the X and Y corpora. Corpus SA saw its highest overall accuracy with eps at 0.5 and 0.1. All
header and phrase weighting tests were conducted with eps of both 0.5 and 0.000001.

As shown in Tables 4.10 and 4.11, mixed results were obtained from weighting header tokens. In

these tests, all header lines were tokenized. Any token from a header line was marked as such and
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Figure 5.2: TEFT-Corrective and TOE False Positive Rates

weighted. The remaining tokens (those in the body) were given unit weight of 1.0. The weighting
technique strengthens a token’s probability when the weight is > 1.0, and weakens the probability
for weights < 1.0. Corpus Y mostly performed well. As the header weight increased, Y’s false
negatives steadily decreased. However, two false positives did appear in Y with eps of 0.000001
at the two highest tested header weights. No matter the eps value, X showed a trend of slightly
increasing false positives as the header weight increased. The increased header weights cannot be
fully recommended due the action of the X corpus and the false positives in Y.

Tables 4.12 and 4.13 give the results of phrase weights. These tests used a maximum phrase
length of two, and only the two-word tokens were weighted. The remaining single-word tokens were
given unit weight of 1.0. The results are similar to the header weight tests. Again, corpus X showed
a trend of increasing false positives as the phrase weight increased. Due to this motion, increasing
the phrase weight cannot be recommended.

Even though increasing or decreasing the header or phrase weights separately did not give con-
clusive results, the weighted token probability function gave favorable results when weights were left
at the default 1.0 value. As shown in Table 5.2, corpora Y and SA achieved their highest overall

accuracy with the weighted token probability function using eps of 0.000001 compared to the Base
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Weighted Token

Corpus Base | Graham-like | Probability Function,
eps of 0.000001

Overall Accuracy 0.997674 0.998450 0.998097

X False Positive Rate 0.003197 0.003197 0.002055
False Negative Rate | 0.001937 0.000815 0.001835
Overall Accuracy 0.957730 0.943107 0.964353

Y False Positive Rate 0.000000 0.000220 0.000000
False Negative Rate | 0.063917 0.085917 0.053902
Overall Accuracy 0.974063 0.967723 0.985783

SA False Positive Rate | 0.000848 0.000000 0.001131
False Negative Rate | 0.079089 0.100659 0.041941

Table 5.2: Base, Graham-like, and eps of 0.000001 Summary

and Graham-like configurations. Also, with the weighted token probability function, corpus X had

a lower false positive rate compared to the other two configurations.

5.2 Conclusions

The Base configuration in Table 4.1 performed well. This filter configuration is similar to the defaults
given by the popular spam filter SpamProbe. Corpora X, Y, and SA saw overall accuracy of 99.8%,
95.8%, and 97.4%, respectively. Even though corpus Y’s overall accuracy of 95.8% was the lowest,
this corpus had zero false positives which is very much desired. The false positive rates of X and
SA were reasonably low at 0.32% and 0.08%.

Even though it is older and simpler, the Graham-like configuration gave results very close to the
Base setup. The Graham-like setup did not use methods now considered to be common-place, such
as tokenizing pairs of words and marking header data. Paul Graham introduced an effective system
four years ago, and it is still standing strong.

The System presented in this paper with its Base configuration thrives when given an abundance
of data. However, users with few or no saved messages need not worry. With TEFT-Corrective
especially, great accuracy can still be had with a very small training set. If disk space is a concern,
the TOFE method of training significantly reduces the database’s token count while maintaining high
accuracy. Users are encouraged never to assume their spam filter is perfect. The spam message
folder should be checked periodically for mistakes.

The new weighted token probability function gave inconclusive results when weighting header
data or phrased tokens. When one corpus experienced a sharp decrease in false negatives with

decreasing the eps value, another corpus showed a trend of increasing false positives. The possibility
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of increased false positives is not a risk most users probably want to take. However, when applied
with the default weights of 1.0, the weighted tokens probability function with eps of 0.000001 gave
higher overall accuracy compared to the Base configuration.

No matter what configuration was used, each tested corpus seemed to reach an accuracy plateau.
X consistently maintained 994+% overall accuracy, but false positives were a regular problem. Y
had trouble breaking 95-96%, but false positives were rarely seen. SA reliably gave 96-98% accuracy
with a minute false positive rate. This accuracy plateau may be tough to overcome with current
technology. The ‘plateau at 99.9%’ referred to by Yerazunis [20] is much more difficult to achieve
for a heterogeneous ham corpus such as Y, and probably impossible using the mainstream methods
we have applied in this paper.

From this study, the following general recommendations are made:

e Use two-word token phrases.

e Use as many saved messages as possible for initial training.

e The spam message folder should be monitored; false positives are not impossible.

e If a very small initial training set must be used, employ a TEFT-Corrective training system

and closely monitor your spam message folder and inbox for mistakes.
e If disk space is a major concern, consider TOE or single-word tokens.

o If a large initial training set is available, try different options to find those that work best with

your email.

5.3 Suggestions for Future Work

The header and phrase token weighting function presented in this paper produced mixed results.
Certain situations did however show promise. The weighted token probability function could be
revised or a new model for weighting could possibly show better results. Another idea is to allow
separate weights for separate header fields. For example, weight the To and Subject fields higher
than other fields.

Database growth is an interesting topic. Different database cleanup methods could be studied.
A popular cleanup technique is to delete tokens whose combined ham and spam counts are below
a threshold and been updated for a certain number of days. The modification date would have to

be stored along with each token. Another method is to delete tokens whose counts are below a
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threshold, and that haven’t been modified for some number of subsequent message classifications.
Alternatively, instead of deleting tokens whose counts are below a threshold, we could delete tokens
whose counts are above a threshold and probability is near 0.5. This would remove neutral tokens
that should never appear in any decision matrix and therefore are not necessary. A further method
for database cleanup is to remove entire messages of a certain age from the database. When each
message is purged, it would be re-tokenized and all token counts decremented. This could be
impractical, since users would have to retain all messages. Ham and spam change over time, and
this method would allow the database to move and adapt correspondingly.

Tokenization is a never-ending area of research. Token reconstruction is an interesting technique.

Consider the following tokens. They all came from spam in the X corpus.

Pharam acy Sto ck [V]-[i]-[a]-[g]-[r]-[a] re’'mo}-[v]a)l] R|O|L|E|X

Humans easily recognize these tokens as Pharamacy, Stock, Viagra, removal, and ROLEX, but to
the filter they may be useless garbage. John Graham-Cumming, author of the spam filter POPFile,
refers to this spammer trick as ‘L o st in s p ac e’ [8]. A tokenizer could reassemble these
excessively delimited tokens. However, a well-trained filter might already recognize single characters
as spammy. Another interesting proposed change to the tokenizer is a sliding window. A window of
size n moves over the messages, and whatever characters are found in that window form a token.

The decision matrix should be analyzed further. Our base model of 27 tokens with 2 repeats
may not be the most accurate. The optimum decision matrix size probably should be different for
single, pair, and triple-word tokens.

Multi-user environments present many interesting challenges. Disk space is a common concern.
The TOFE method has shown it successfully limits database growth while maintaining high accuracy,
and cleanup methods have been suggested. Another possible solution is a fixed-size database. This
could be implemented through an automatic cleanup system. The database would purge tokens
as necessary to allow additional new tokens while maintaining a maximum size. A single, shared
database could also be investigated. The handling of new users is an interesting topic. When a
new email account is created, a generic starter database might give better performance than TEFT-
Corrective gives with no initial data. This generic database could be built from an assortment of

interesting tokens collected from other users’ databases.
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Appendix A

Source Code

Code from SpamProbe 1.0a is used for tokenization. The following files are used:
AbstractMessageFactory.h, AbstractPhraseBuilder.h, Message.cc, Message.h, MessageFactory.cc,
MessageFactory.h, MimeHeader.cc, MimeHeader.h, MimeLineReader.cc, MimeLineReader.h, MimeMes-
sageReader.cc MimeMessage.h, NewPtr.h, PhraseBuilder.h ProximityPhraseBuilder.h, RegularEx-

pression.cc, RegularExpression.h, Token.h, Tokenizer.cc, Tokenizer.h, util.cc, util.h.
For clarity, all SpamProbe related code was modified to be encapsulated in its own namespace.
All original code is listed below.

//
7
// spamFilter test system
4+ // wersion 0.8
// last updated: Mar03,2006
s //
//
s // main.cpp
// starting point for program,
10 // handles command line arguments

//

12
#include <fstream>
14 #include <iomanip>
#include <vector>
16 #include <string>
#include "SpamFilter.hpp"
18 #include "Message.hpp"
#include "IndexMachine.hpp"
20 #include "TestingCenter.hpp"
using namespace std;
22
// boost library used for handling command line arguments
1 #include <boost/program_options.hpp>
namespace po = boost:: program_options;
26 using namespace boost;

V)

28 // the possible commands a user can request
enum COMMANDS
30 {
COMMAND_TOKENIZE,
32 COMMAND_CREATE INDEXES,
COMMAND_RUN_TEST

34 },
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36 const double versionNum = 0.8;

38

40

42

44

46

48

56

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

int main( int argc, char sxargv )

{

COMMANDS commandRequested ;

int numCommandsRequested = 0;

Message : : MSG.TYPE msgGoldStd = Message : :HAM;
string importFileName = "";

SpamFilter sf;
IndexMachine indexMaker;
TestingCenter tc;

try {
// set up the command line arguments

po::options_description genericOptions( "Genericgoptions" );
genericOptions.add_options ()

( "help", "produce_ help message" )

( "version,v", "print,version,string" )

)

po::options_description tokenizerOptions( "Tokenizer options" );
tokenizerOptions.add_options ()
( "no-body,b", po::value<bool>(),
"setyignorebodyof messages,, (false)" )
( "no-html,H", po::value<bool>(),
"set,ignore html tags, (true)" )
( "headers,h", po::value<string >(),
"set headers,toinclude: \n, ALL, NONE, NOX, or NORMAL,,(ALL)" )
( "mark-headers,m" , po::value<bool>(),
"set_ mark header data,,(false)" )
( "min-phrase-length,p", po::value<int>(),
"set minimum phrase length,,(1)" )
( "max-phrase-length,P", po::value<int>(),
"setymaximum, phrase length,(1)" )
( "tokenize", po::value<string >(),
"tokenize,given, input, file" )

po::options_description trainOptions( "Training,options" );
trainOptions.add_-options ()
( "delay,d", po::value<int>(),
"correctional delay, for TEFT-Cyand TOE\n,,(in number of errors beforey
correction) ,(1)" )
( "train-mode,M", po::value<string >(),
"training,mode:,TEFT, TEFT-C,,TOE, or NONE, ., ,(TEFT-C)" )

po::options_description classifyOptions( "Classification,options" );
classifyOptions.add_options ()

( "count,c", po::value<int>(),
"setuminimumucountuofutokenu\nuutoUallowuitsuusageuinudecisionumatrix
uu(s) " )

( "double,2", po::value<bool>(),
"set,Graham-style double ham  ,(false)" )

( "threshold,T", po::value<double>(),
"set_decision,threshold,,(0.7)" )

( "force,f", po::value<bool>(),
"forcejallow,interesting tokens \n_  in decision matrix ,(false)" )
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94

96

98

100

104

108

112

114

116

120

124

128

130

132

134

136

140

)

po::

"comb-prob,C", po::value<string >(),

"set,combination,function: \n,,graham, geo_mean, sp_graham,,(sp_graham
)

"max-token-score" , po::value<double>(),

"settoken maximumyscore;(0.999999) \n.,(applies only to,Graham token
uproby,func)" )

"min-token-score" , po::value<double>(),

"setytoken minimumyscore;(0.000001)  \n_,(applies only to,Graham token
uproby,func)" )

"new,N", po::value<double>(),

"set,probability assigned,toynew,tokens ., (0.4)" )

"usage-count ,u" , po::value<int >(),

"set number of ,times_a,\n,token can be used, in decision matrix ,(1)"

)
"size,s", po::value<int >(),
"set minimum,size ofdecision matrix ,(15)" )

options_description testingOptions( "Testing,Options" );

testingOptions.add_options ()

(
(

po::

"input-ham" , po::value< vector<string > >(),
"specifyham,folderused, toycreate index" )
"input-spam", po::value< vector<string > >(),
"specifyspam,folder used, to,create index" )

"create-indexes" , po::value<int>(),

"create_specifiednumber of index files \n, from,given ham, and spam
folders" )

"initial-train-count", po::value<int>(),

"set,number of messages,\ny,used,for initial, training,(0)" )
"id" , po::value<string >(),
"set ID of  this test" )

"verbose", po::value<int>(),
"setyverbosity,level (0) ,\n,,0:ynormal \n,,1: ,0output, decisionmatrix
file,for,each,run,\n,,2:,also output, database foreach,run" )

"importDB" , po::value<string >(),
"import,given ,database to be used in tests" )
"run-test", po::value<string >(),
"runytestonygiven folder of index, files" )

options_description experimentalOptions( "Experimental options" );

experimentalOptions.add_options ()

(
(

"token-prob" , po::value<string >(),

"set,token probability_ function: \n,,graham, weighted,,(weighted)" )

"h-weight", po::value<double>(),

"weight applied,toyheader_tokens (1) \n,,(applies only to,weighted
token,prob,func)" )

"p-weight", po::value<double>(),

"weight applied, to multi-word, tokens, (1), \n,,(applies only to weighted
utokenprob,func)" )

"weighted-eps" , po::value<double>(),

"set,’eps’yvalue,in, weighted token prob func,(1)" )

"h-usage-count" , po::value<int >(),

"set number of times_a header_ token can \n, be used_ in_ decisiongmatrix
uu() ")

"p-usage-count" , po::value<int >(),

"set number of times_a multi-word, token,can, \n_ ,be used in decision
matrix,,(1)" )
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144

148

152

156

160

162

164

166

170

174

176

178

180

184

188

190

192

194

196

198

po::options_description cmdline_options( "Allowed Options" );
cmdline_options.add( genericOptions );

cmdline_options.add( tokenizerOptions );
cmdline_options.add( trainOptions );

cmdline_options.add( classifyOptions );

cmdline_options.add( testingOptions );

cmdline_options.add( experimentalOptions ) ;

po::variables_map vm;

po::store(po::parse_.command_line(argc ,argv, cmdline_options), vm);
po::notify ( vimn );

??///////////////////////////////////////////////////////////////

// General options

//

//

if ( vimn.count ( "help" ) )

{
cout << cmdline_options << endl;
return 1;

if ( vm.count( "version" ) )

cout << endl << "Spam_ Filter Test_ System"
<< endl << " uuuVersion," << versionNum << endl;
exit (1);

}
??///////////////////////////////////////////////////////////////

// Tokenize options

if ( vm.count( "no-body" ) )

cout << "setyignore body:,"
<<vm["no-body"].as<bool>() << endl;
sf.setlgnoreBody ( vm["no-body"].as<bool>() );

if ( vm.count( "no-html" ) )

cout << "setyignore html: "
<<vm["no-html"].as<bool>() << endl;
sf.setlgnoreHTML ( vm["no-html"].as<bool>());

}

if ( vm.count ( "headers" ) )

cout << "set_ headers: "
<<vm["headers"].as<string >() << endl;

sf.setHeadersTolnclude ( vin["headers"|.as<string >() );
}

if ( vin.count ( "mark-headers" ) )

cout << "setymark headers: "
<< vm["mark-headers"].as<bool>() << endl;
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202

206

208

210

}

if ( vin.count ( "min-phrase-length" ) && vm.count( "max-phrase-length" ) )

sf.setMarkHeaders ( vin["mark-headers" |.as<bool>() );

if ( vin["min-phrase-length"].as<int>() >
vm|["max-phrase-length"]. as<int >() )

{

cout << endl << "min-phrase-length,should be LESS, than max-phrase-

length" << endl;
exit (1);

}

cout << "minimum_phraseylength_ wasyset to:y"
<< vm["min-phrase-length"].as<int >() << endl;

cout << "maximum_phraseylength_ wasysetyto:y"
<< vm["max-phrase-length"].as<int >() << endl;

sf.setMinPhraseLength ( vin["min-phrase-length"].as<int>() );
sf.setMaxPhraseLength ( vin["max-phrase-length"].as<int >() );

}

else if ( vm.count( "min-phrase-length" ) )

{

if ( vin["min-phrase-length"].as<int>() > 1)

cout << endl << "invalidymin-phrase-length" << endl;
exit (1);

}

cout << "minimum,phraselength wasyset to: "
<< vm|["min-phrase-length"].as<int>() << endl;

sf.setMinPhraseLength ( vin["min-phrase-length"].as<int>() );

}

else if( vin.count( "max-phrase-length" ) )

{

if ( vin["max-phrase-length"].as<int>() < 1)

cout << endl << "invalid max-phrase-length" << endl;
exit (1);

}

cout << "maximum,phraselength wasyset to: "
<< vm["max-phrase-length"].as<int>() << endl;

sf.setMaxPhraseLength ( vin["max-phrase-length"].as<int>() );

}

if ( vimn.count ( "tokenize" ) )

cout << "tokenize_was,requested" << endl;
++numCommandsRequested ;

commandRequested = COMMAND_TOKENIZE;
importFileName = vin["tokenize"].as<string >();

252

256

}

??///////////////////////////////////////////////////////////////

//
//
//

Train options
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264

266

268

272

274

276
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282

286

290

292

294

296

300

304

306

308

310

312

314

if

}
if

}

//
//
//

//

//
if
{

if

}
if

}
if

}
if

}
if

}

( vm.count ( "delay" ) )

cout << "Delayywasgsetyto:," << vm["delay"].as<int>() << endl;
sf.setCorrectionDelay ( vin["delay"].as<int>() );

( vin.count ( "train-mode" ) )
cout << "Training modeywasysetyto:y" << Vm[ "train-mode" ] .as<string >()

<< endl;
sf.setTrainMode ( vin["train-mode"]. as<string >() );

A A A A adda

Classification options

( vin.count ( "count" ) )

cout << "setyminimumg,count of token for usageyinydecisionymatrix: "
<<vm["count"].as<int >() << endl;

sf.setMinPrevSightings ( vin["count"].as<int>() );
( vm.count ( "double" ) )

cout << "set_double ham ,count: "
<< vm["double"].as<bool>() << endl;

sf.setDoubleHamCount ( vin["double" ].as<bool>() );
( vin.count ( "threshold" ) )

cout << "setythresholdof spamdecision: "
<<vm["threshold"].as<double>() << endl;

sf.setDecisionThreshold ( vin["threshold"]. as<double>() );
( vm.count ( "force" ) )

cout << "setyforcepallowyinteresting, ,tokens: "
<<vm["force"].as<bool>() << endl;

sf.setForcelnterestingTokens ( vin["force"].as<bool>() );
( vm.count ( "comb-prob" ) )

cout << "setycombined-probability, function: "
<<vm["comb-prob"].as<string >() << endl;

sf.setCombProbFunc( vm|["comb-prob"].as<string >() );
( vin.count ( "max-token-score" ) )

cout << "set_ token maximum, score: "
<< vm["max-token-score"].as<double>() << endl;

sf.setTokenMaxScore ( vin["max-token-score"|.as<double>() );
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344
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348

358

360

362

364

368

372

374

if ( vin.count ( "min-token-score" ) )

cout << "set token minimum, score: "
<<vm["min-token-score"].as<double>() << endl;

sf.setTokenMinScore ( vin["min-token-score"|.as<double>() );

}

if ( vim.count ( "new" ) )

cout << "setyprobabilityyof new, tokens: "
<< vm["new"].as<double>() << endl;

sf.setTokenHapaxScore ( vm["new"].as<double>() );

}

if ( vin.count ( "usage-count" ) )

cout << "set number of time a token, can be used in decision matrix: "

<< vm|["usage-count"].as<int >() << endl;

sf.setTokenUsageCount ( vin["usage-count"].as<int>() );

}

if ( vm.count ( "size" ) )

cout << "set_decisionymatrix minimum_ size: "
<<vm["size"].as<int >() << endl;

sf.setMatrixMinSize ( vin["size"].as<int>() );

}
??///////////////////////////////////////////////////////////////

// Testing options
//
//
if ( vim.count ( "input-ham" ) )
{
cout << "addedham,inputsources: " << endl;
vector<string > hamSources = vm["input-ham"|.as<vector<string > > ();
for ( size_-t i=0; i<hamSources.size (); ++1i )
{
cout << hamSources[i] << endl;
indexMaker.addSource ( hamSources[i], Message::HAM ) ;
}
}
if ( vin.count ( "input-spam" ) )

cout << "added,spam,input,Sources: " << endl;

vector<string > spamSources = vm|["input-spam"].as<vector<string > > ();

for ( size_t 1=0; i<spamSources.size (); ++1 )
{
cout << spamSources[i] << endl;
indexMaker.addSource ( spamSources[i], Message::SPAM ) ;

}
}

if ( vimn.count ( "create-indexes" ) )

++numCommandsRequested ;
commandRequested = COMMAND_CREATE INDEXES;
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414

418

422

424

426

428

430

432

indexMaker.setNumIndexes ( vin["create-indexes"].as<int>() );

}

if ( vin.count( "initial-train-count" ) )

cout << "setyinitial training,count: "
<<vm["initial-train-count"].as<int>() << endl;

tc.setlnitialTrainingCount ( vin["initial-train-count"]. as<int>() );
}

if ( vmm.count ( "id" ) )

cout << "settestpid:"
<<vm["id"].as<string >() << endl;

tc.setID ( vim["id"].as<string >() );

}

if ( vin.count ( "verbose" ) )
cout << "verbosity,levelyset: " << vm["verbose"].as<int>() << endl;
tc.setVerbose ( vim["verbose"].as<int>() );

}

if ( vin.count ( "importDB" ) )
cout << "import,database: " << vm["importDB"].as<string >() << endl;
importFileName = vm["importDB"]. as<string >();

}

if ( vim.count ( "run-test" ) )

++numCommandsRequested ;
commandRequested = COMMAND_RUN_TEST;

if ( tc.setTestSuitePath ( vm["run-test"].as<string>() ) )
return 1;

}
??///////////////////////////////////////////////////////////////

//  Ezperimental options

if ( vm.count ( "token-prob" ) )

cout << "setytoken,probability, function: " <<
vm|["token-prob"].as<string >() << endl;

sf.setTokenProbFunc ( vm["token-prob"].as<string >() );
}

if ( vim.count ( "h-weight" ) )

cout << "setyheader tokenweight: "
<<vm["h-weight"].as<double>() << endl;

sf.setHeaderWeight ( vin["h-weight" ]. as<double>() );
}

if ( vin.count ( "p-weight" ) )

cout << "setymulti-word token Weight: "
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476

478
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482

486
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492

}

}

if ( vin.count ( "weighted-eps" )

}

if ( vin.count( "h-usage-count" )

}

<<vm["p-weight"].as<double>() << endl;

sf.setPhraseWeight ( vin["p-weight" ]. as<double>() );

cout << "sety’eps’yvalueyinyweighted token,probyfunc: "
<< vm["weighted-eps"].as<double>() << endl;

sf.setTPFWeightedEps ( vin["weighted-eps"|. as<double>() );

cout << "set header_ tokenusage count: "
<< vm["h-usage-count"].as<int>() << endl;

sf.setHTokenUsageCount ( vin["h-usage-count"]. as<int >() );

)

)

if ( vm.count ( "p-usage-count" ) )

}

cout << "setymulti-word,token usagecount: "
<< vm|["p-usage-count"].as<int>() << endl;

sf.setPTokenUsageCount ( vin["p-usage-count"].as<int>() );

catch( exception &e )

{
}

// did the user issue some command?
if ( numCommandsRequested == 0 )

{

}

// only one command can be served at a time

cout << "error: " << e.what() << endl;

cout << "Error: No,Commands Specified" << endl;
cout << ",,Usey--help,for,allowed options" << endl;

return —1;

else if ( numCommandsRequested > 1 )

{

}

else

{

cout << "Error:_ Multiple Commands Specified" << endl;

return —1;

// just tokenmize the given message
if ( commandRequested == COMMAND_TOKENIZE )

{

ifstream inFile;

inFile.open( importFileName.c_str () );

if ( !'inFile )
{

cout << "Couldynot,openyfile: " << importFileName << endl;

exit (1);
}
Message msg;
sf.tokenize ( inFile , msg );
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494 inFile.close ();

496 msg. printShort ( cout );

}

198 // create inderes was rTequested
else if ( commandRequested == COMMAND_CREATE INDEXES )

500 {
502 }

// user wants to run a test

indexMaker . createIndexes () ;

504 else if( commandRequested == COMMAND RUN.TEST )
{
506 // did the user supply a DB?
// if so, open it
508 if ( importFileName != ""

sf.openDB( importFileName );

// connect the spamfilter to the testing center,

512 // then run the test
tc.setSpamFilter( &sf ) ;
514 tc.runTests () ;

518 return 0;
}
//

2 // SpamFilter. hpp
//

4 // class interface
//

6 // this class represents the heart of the spam filter
// it scores tokens, messages, and trains the database

10 #pragma once

12 #include "SpamProbeTokenizer.hpp"
#include "Message.hpp"
14 #include "Token.hpp"
#include "TokenDB_map.hpp"
16 #include "TokenDB_hashmap.hpp"
#include "TrainStation.hpp"
18 #include "DecisionMatrixFactory.hpp"
using namespace std;
20
class SpamFilter
22 {
public:
24 SpamPFilter (void) ;
“SpamFilter (void) ;
26
enum COMB_PROBFUNC
28
CPF_.GRAHAM,
30 CPF_GEOMEAN,
CPF_SP_.GRAHAM

32 } s
34 enum TOKEN_PROB_FUNC
{
36 TPF_GRAHAM,
TPF_WEIGHTED
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}s

void tokenize (
istream &in ,
Message &msg ) ;

void train (
istream &in ,
Message : : MSG.TYPE goldStd ,
Message : : MSG.TYPE prevDec ) ;

void initialTrain (
istream &in ,
Message : : MSG.TYPE goldStd );

void classify (
istream &in ,
Message : : MSG.TYPE & decision ,
double &score ,
int verbose,
ostream &out ) ;

void openDB( const string &fileName );
void resetDB(void);
int getDBTokenCount(void) const;

void printDB( ostream &out );

void setMinPhraseLength ( int value );
void setMaxPhraseLength ( int value );
void setlgnoreBody ( bool value );
void setIgnoreHTML ( bool value );
void setMarkHeaders( bool value );

void setHeadersTolnclude( string value );

void setCorrectionDelay ( int delay );
void setTrainMode ( string mode ) ;
void setMinPrevSightings ( int count );

void setDecisionThreshold ( double threshold );
void setForcelnterestingTokens ( bool value );

void setTokenUsageCount ( int num );
void setMatrixMinSize ( int num ) ;
void setDoubleHamCount ( bool value );

void setTokenHapaxScore ( double value );

void setTokenMinScore ( double value );
void setTokenMaxScore ( double value );
void setCombProbFunc( string mode ) ;
void setTokenProbFunc( string mode ) ;
void setHeaderWeight ( double value );
void setPhraseWeight ( double value );
void setTPFWeightedEps( double value );
void setHTokenUsageCount ( int value );
void setPTokenUsageCount ( int value );

private:
void scoreMessageTokens ( Message &msg )

const;
double tokenProbGraham ( Token xtok ) const;
double tokenProbWeighted ( Token *tok ) const;

double combProbGraham ( vector<Tokenx> decisionMatrix ) const;
double combProbGeoMean ( vector<Tokenx> decisionMatrix ) const;

double combProbSPGraham ( vector<Tokenx> decisionMatrix )
double constrainScore ( double score ) const;

protected:
SpamProbeTokenizer m_tokenizer;
TrainStation m_trainer;
string m_dbFileName;
TokenDB *m_db;
DecisionMatrixFactory m_matrixFactory;
bool m_doubleHamCount ;
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double m_tokenHapaxScore;

double m_tokenMinScore;

double m_tokenMaxScore;

double m_decisionThreshold ;
COMB_PROBFUNC m_combProbFunc;
TOKEN_PROBFUNC m_tokenProbFunc;
double m_headerWeight;

double m_phraseWeight ;

double m_TPFWeightedEps;

// SpamFilter.cpp
// class implementation

// this class represents the heart of the spam filter
// it scores tokens, messages, and trains the database

#include "SpamFilter.hpp"

// default constructor

SpamFilter :: SpamFilter (void)

: m-doubleHamCount ( false ),
m_tokenHapaxScore ( 0.4 ),
m_tokenMinScore( 0.000001 ),
m_tokenMaxScore( 0.999999 ),
m_decisionThreshold ( 0.7 ),
m_combProbFunc ( CPF_SP.GRAHAM ) ,
m_tokenProbFunc ( TPF_WEIGHTED ) ,
m_headerWeight ( 1 ),
m_phraseWeight ( 1 ),
m_TPFWeightedEps( 1 ),
m_dbFileName ( "" )

// currently wusing the hashmap DB
m_db = new TokenDB_hashmap () ;

}

// destructor
// close the DB, then delete
SpamFilter::” SpamFilter (void)

{

m_db—>close () ;
delete m_db;

}

void SpamFilter ::openDB( const string &fileName )

m_dbFileName = fileName;
m_db—>open ( fileName );

}

void SpamFilter ::resetDB (void)
m_db—>close () ;

if ( m_dbFileName != ""
m_db—>open ( m_dbFileName ) ;

}

int SpamFilter :: getDBTokenCount (void) const

{
}
A e

return m._db—>getDBTokenCount () ;
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124

//

// Tokenize the given input stream,
// building the given message
//
void SpamFilter:: tokenize (
istream &in ,
Message &msg )

{
}
/;//////////////////////////////////////////////

// take the given input stream,

// tokenize it,

// build a message,

// hand the training the message and database,

// it will add the message’s tokens to the database
// as mneeded in the currect training scheme

m_tokenizer.tokenize ( in, msg );

void SpamFilter:: train (
istream &in ,
Message : : MSG.TYPE goldStd ,
Message : : MSG.TYPE prevDec )

Message msg;
this—>tokenize ( in, msg );

m_trainer.train ( msg, goldStd, prevDec, *m.-db );

}
/?//////////////////////////////////////////////

// during initial training phase,

// take the given input stream,

// tokenize it,

// build a message,

// hand the trainer the message and database,

// it will apply the message’s tokens to the database

// during initial training phase,
// all tokens are added to the database

void SpamFilter::initialTrain (
istream &in ,
Message : : MSG.TYPE goldStd )

Message msg;
this—>tokenize ( in, msg );

m_trainer.initialTrain ( msg, goldStd, *xm.db );

}

void SpamFilter :: printDB( ostream &out )

{
}
;?//////////////////////////////////////////////

// tokenize the given input stream,
// build a message,

// score the tokens in the message,
// compute an overall score.

// return the score and decision

m_-db—>print ( out );

void SpamFilter:: classify (
istream &in ,
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126 Message : : MSGTYPE & decision ,
double &score |

128 int verbose,
ostream &out )

130 {

132 // tokenize the message, then score the individual tokens
Message msg;

134 this—>tokenize ( in, msg );
this—>scoreMessageTokens ( msg ) ;

136
vector<Tokenx> decisionMatrix;
138 m_matrixFactory.buildDecisionMatrix ( msg, decisionMatrix );
140 // which combined probability function are we using?
// score the message
142 switch ( m_combProbFunc )

{
144 case CPF.GRAHAM:

score = combProbGraham ( decisionMatrix ); break;
146 case CPF_.GEOMEAN:
score = combProbGeoMean ( decisionMatrix ); break;
148 case CPF_SP.GRAHAM:
score = combProbSPGraham( decisionMatrix ); break;
150 }
152 // so is the score hammy or spammy?
if ( score >= m_decisionThreshold )
154 decision = Message ::SPAM;
else
156 decision = Message : :HAM;

158 // is werbosity on?
// if so, output decision matriz to output stream
160 if ( verbose >=1)

{

162
int precisionSetting = out.precision ();
164 long flagSettings = out.flags();
166 out.setf( ios::fixed | ios::showpoint | ios::left );
out.precision ( 6 );
168
out << "," << score << "y";
170
switch ( decision )
172 {
case Message ::SPAM: out << "SPAM" << endl; break;
174 case Message::HAM: out << "HAM" << endl; break;
b
176
out << setw(6) << "Count"
178 << setw (6) << "Ham"
<< setw (6) << "Spam"
180 << setw (10) << "Score"
<< "Token" << endl
182

for ( size_t 1=0; i<decisionMatrix.size (); ++1 )
184 {
out << setw (6) << decisionMatrix[i]—>getCount ()

186 << setw (6) << decisionMatrix [i]—>getHamCount ()
<< setw (6) << decisionMatrix [i]—>getSpamCount ()

188 << setw (10) << decisionMatrix [i]—->getScore ()
<< decisionMatrix [i]—>getTok () << endl;

190 }

192 out << endl;
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194 out.precision ( precisionSetting );
out. flags ( flagSettings );
196 }

}
/?//////////////////////////////////////////////

// loop through tokens in message,
202 // score each

//

204 void SpamFilter::scoreMessageTokens ( Message &msg ) const

{

200

206 int hamCount = 0;
int spamCount = 0;
208 double score = 0;

210 for ( int i=0; i<msg.getNumTokens(); ++1i )

{

212 Token xcurrTok = msg.getToken( i );
214 // get token’s counts from the database

m_db—>getTokenCounts ( currTok—>getTok () , hamCount, spamCount ) ;
216 currTok—>setHamCount ( hamCount ) ;

currTok—>setSpamCount ( spamCount ) ;
218
// which token probability function are we using?

220 switch ( m_tokenProbFunc )
{

222 case TPF.GRAHAM:

score = tokenProbGraham ( currTok ); break;
224 case TPF_WEIGHTED:

score = tokenProbWeighted ( currTok ); break;
226 }
228 currTok—>setScore ( score );

230 }

232

%///////////////////////////////////////////////////////

// the original token probability function from Graham
236 //
// g(w) = hamCount / numHamMsgs
238 // b(w) = spamCount / numSpamMsgs
[/ p(w) = b(w) / (b(w)+g(w))
240 //
// graham also double the hamCount...
242 //  which I have as optional

//

244 // p(w) is limited to a specified min and maz

246 double SpamFilter :: tokenProbGraham ( Token *tok ) const
{
248 double score = 0;
double g = 0;
250 double b = 0;

int numHamMsgs = 0;
252 int numSpamMsgs = 0;
254 // get message counts from database

m_db—>getTokenCounts ( TrainStation :: MESSAGE.COUNTER, numHamMsgs, numSpamMsgs) ;
256

int spamCount = tok—>getSpamCount () ;
258 int hamCount = tok—>getHamCount () ;

260 // mever seen this token before
if ( hamCount == 0 && spamCount == 0 )
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262 return m_tokenHapaxScore;

264 // haven’t seen this token before in ham,
// so it kmustx be wvery spammy
266 if ( hamCount == 0 )
return m_tokenMaxScore;
268
// haven’t seen this token before in spam,
270 // so it kxmustx be wvery hammy
if ( spamCount == 0 )
272 return m_tokenMinScore;

274 // is the graham—like hammy fudge factor turned on?
if ( m_doubleHamCount )

276 hamCount *= 2;
278 // when you haven’t processed any ham or spam yet,
// default them to 1 (to avoid a DIVBYZERO)
280 // (rare, since you only score tokens after the initial training phase,

// unless you’re trying to score with an absolutely empty DB,
282 // which only I would be crazy enough to try)

numHamMsgs = max ( numHamMsgs, 1 );
284 numSpamMsgs = max ( numSpamMsgs, 1 ) ;

286 b = static_cast<double>(spamCount) /
static_cast <double>(numSpamMsgs) ;

g = static_cast<double>(hamCount) /
290 static_cast <double>(numHamMsgs) ;

292 score = (b / (b+g));
294 // apply limits to the score

score = constrainScore ( score );
296 return score;

}
/?///////////////////////////////////////////////////////

// our modified token probability function

300

// added an ‘eps’ wvalue to eliminate hard limites
304 // added weights for header and phrased tokens

s06 // g(w) = (weight * hamCount + eps ) / (numHamMsgs + eps )
// b(w) = (weight * spamCount + eps ) / numSpamMsgs + eps )
sos // p(w) = b(w) / (b(w) + g(w))

310 double SpamFilter::tokenProbWeighted ( Token xtok ) const
{
312 double score = 0;
double g = 0;
314 double b = 0;
int numHamMsgs = 0;
316 int numSpamMsgs = 0;
double weight = 1;
318
// get the message counts from the database
320 m-db—>getTokenCounts ( TrainStation :: MESSAGE.COUNTER, numHamMsgs, numSpamMsgs) ;

322 double spamCount = tok—>getSpamCount () ;
double hamCount = tok—>getHamCount () ;
324
// mever seen this token before
326 if ( hamCount == 0 && spamCount == 0 )
return m_tokenHapaxScore;
328

// build the ‘weight’
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if ( tok—>isHeaderToken () )
weight *= m_headerWeight;
if ( tok—>isPhraseToken () )
weight *= m_phraseWeight;

// is the graham—like hammy fudge factor turned on?
if ( m_doubleHamCount )
hamCount *= 2;

// apply weights
hamCount *= weight ;
spamCount x= weight ;

// add ‘eps’ walue to token counts
hamCount += m_TPFWeightedEps;
spamCount += m_TPFWeightedEps;

// calculate ‘b’ and ‘g’, with ‘eps’ added to message counts

b = spamCount /

(static_cast <double>(numSpamMsgs) + m_TPFWeightedEps ) ;
g = hamCount /

(static_cast <double>(numHamMsgs) + m_TPFWeightedEps ) ;

score = (b / (btg));
return score;

}
??///////////////////////////////////////////////////////

// Graham’s original combined probability function

//

/) P=s/s+yg

// where s = x1 * 2 % 8 % ... * In
// g = (1—z1)x(1—22)%...%(1—2zn)
//

//

double SpamFilter ::combProbGraham ( vector <Tokens> decisionMatrix ) const

{

double score =
double s = 1.0;
double g = 1.0

0.0;

)

if ( decisionMatrix.size () == 0)
return m_tokenHapaxScore;

// build products
for ( size_t 1=0; i<decisionMatrix.size (); ++1 )

{
s = s % decisionMatrix [i]—>getScore () ;
g =g * (1.0 — decisionMatrix[i]—>getScore() );
}
score = s / (s+g);
return score;
}

??///////////////////////////////////////////////////////

// Gary Robinson’s Geometric Mean
// combined probability function

/7

// P =1—=pow( ((1—pl)x(1=p2)*...x(1—pn)), (1/n) )
// Q=1 —pow( ((pl)*(p2)*...x(pn)), (1/n) )

?? S =(1+(PQ)/(P+Q)) / 2

double SpamFilter ::combProbGeoMean ( vector <Token*> decisionMatrix ) const
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double score = 0.0;

double p = 1.0;

double q = 1.0;

double s = 1.0;

double g = 1.0;

int n = static_cast<int>(decisionMatrix.size());
if( n==0)

return m_tokenHapaxScore;

for ( size_t 1=0; i<decisionMatrix.size (); ++1 )

{
s = s x decisionMatrix [i]—>getScore();
=g * (1.0 — decisionMatrix [i]->getScore() );

}

p=10 —pow( g, (1.0/n) );

q=1.0 —pow( s, (1.0/n) );

score = (p—q) / (p+aq);

score = ( score + 1.0 ) / 2.0;

return score;

}
??//////////////////////////////////////////////

// Modified Graham—like combined probability function
// created by the SpamProbe project
// http://spamprobe. sourceforge.net

double SpamFilter ::combProbSPGraham ( vector <Token*> decisionMatrix ) const

{

double score
double s =
double g =

1.0;

1.0;

int n = static_cast<int>(decisionMatrix.size());
if( n==0)

return m_tokenHapaxScore;

for ( size_t 1=0; i<decisionMatrix.size (); ++1 )

{
s = s x decisionMatrix [i]—>getScore();
=g * (1.0 — decisionMatrix [i]—->getScore());
}
s =pow( s, (1.0 / n) );
g =pow( g, (1.0 / n) );

score = s / (s+g);
return score;

}
?;//////////////////////////////////////////////

// put hard limits on the token probability score
// wused by Graham’s original token prob func

//
double SpamFilter:: constrainScore ( double score ) const
{
score = min( m_tokenMaxScore, score );
score = max( m_tokenMinScore, score );
return score;
}

Y A A A
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N A A N A
A a4
N A A A A A da
a0 //  Short modifiers for tokenizer , trainer, classifier ,
//
N A A A da
474 void SpamFilter::setMinPhraseLength ( int value )
476 m_tokenizer .setMinPhraseLength ( value );
}
478
void SpamFilter :: setMaxPhraseLength ( int value )
480 {
m_tokenizer .setMaxPhraseLength ( value );
482 }
484 void SpamFilter ::setIgnoreBody ( bool value )
{
486 m_tokenizer.setIgnoreBody ( value );
}
488
void SpamFilter ::setIgnoreHTML ( bool value )
490 {
m_tokenizer .setIgnoreHTML ( value );
492 }
404 void SpamFilter ::setMarkHeaders ( bool value )
{
496 m_tokenizer.setMarkHeaders ( value );
}
198
void SpamFilter::setHeadersTolnclude ( string value )
500 {
m_tokenizer.setHeadersTolnclude ( value );
502 }
504 void SpamFilter::setCorrectionDelay ( int delay )
{
506 m_trainer.setCorrectionDelay ( delay );
}
508
void SpamFilter::setTrainMode( string mode )
510 {
m_trainer .setTrainMode ( mode ) ;
512 }
514 void SpamFilter::setMinPrevSightings ( int count )
{
516 m_matrixFactory.setMinPrevSightings ( count );
}
518
void SpamFilter:: setDecisionThreshold ( double threshold )
520 {
m_decisionThreshold = threshold;
522 }
524 void SpamFilter :: setForcelnterestingTokens ( bool value )
{
526 m_matrixFactory.setForcelnteresting ( value );
}
528
void SpamFilter :: setTokenUsageCount ( int num )
530 {
m_matrixFactory.setTokenUsageCount ( num ) ;
532 }
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53¢ void SpamFilter::setMatrixMinSize ( int num )
{
536 m_matrixFactory.setMinMatrixSize ( num ) ;
}
538
void SpamFilter ::setDoubleHamCount ( bool value )
540 {
// this wvalue applies to both the spamFilter
542 // and in the decision matriz factory
m_doubleHamCount = value;
544 m_matrixFactory .setDoubleHamCount ( value );
}
546
void SpamFilter ::setTokenHapaxScore ( double value )
548 {
m_tokenHapaxScore = value;
550 }
552 void SpamFilter ::setTokenMinScore ( double value )
{
554 m_tokenMinScore = value;
}
556
void SpamFilter ::setTokenMaxScore ( double value )
558 {
m_tokenMaxScore = value;
560 }
s62 void SpamFilter ::setCombProbFunc( string mode )
{
564 transform ( mode. begin () , mode.end (), mode.begin (), toupper );
s66  if ( mode == "GRAHAM" )
m_combProbFunc = CPF.GRAHAM;
568 else if( mode == "GEO_MEAN" )
m_combProbFunc = CPF.GEOMEAN;
570 else if( mode == "SP_GRAHAM" )
m_combProbFunc = CPF_SP.GRAHAM;
572}
574 void SpamFilter ::setTokenProbFunc( string mode )
{
576 transform ( mode. begin () , mode.end (), mode.begin (), toupper );
s7s if ( mode == "GRAHAM" )
m_tokenProbFunc = TPF.GRAHAM;
550 else if( mode == "WEIGHTED" )
m_tokenProbFunc = TPF_WEIGHTED;
582 }
ss4 void SpamFilter :: setHeaderWeight ( double value )
586 m_headerWeight = value;
}
588
void SpamFilter:: setPhraseWeight ( double value )
590 {
m_phraseWeight = value;
592 }
594 void SpamFilter ::setTPFWeightedEps ( double value )
596 m_TPFWeightedEps = value;
}
598
void SpamFilter :: setHTokenUsageCount ( int value )
600 {

m_matrixFactory .setHTokenUsageCount ( value ) ;
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602

604

606

12

14

}

void SpamFilter ::setPTokenUsageCount ( int value )

{

m_matrixFactory .setPTokenUsageCount ( value );

// SpamProbeTokenizer. hpp

// class interface

// tokenizer class,
// utilizes code from the SpamProbe project
// http://spamprobe. sourceforge.net

// currently using the tokenizer from SPI1.0a

#pragma once

#include <iostream>

16 #include <algorithm>

#include "SpamProbeTokenizer/MessageFactory.h"

18 #include "Message.hpp"
using namespace std;

20

22

24

26

28

30

32

34

36

38

12

class SpamProbeTokenizer

{

public:

SpamProbeTokenizer (void) ;
“SpamProbeTokenizer (void) ;

void
void
void
void
void
void
void

tokenize ( istream &in, Message &message
setMinPhraseLength ( int value );
setMaxPhraseLength ( int value );
setIgnoreBody ( bool value );
setIgnoreHTML ( bool value );
setMarkHeaders ( bool value );
setHeadersToInclude ( string value );

protected:
SpamProbe :: MessageFactory m_factory;

bool
}s
//

m_markHeaders;

// SpamProbeTokenizer. cpp

// class implementation

// tokenizer class,
// wutilizes code from the SpamProbe project
// http://spamprobe. sourceforge.net

// currently using the tokenizer from SPI1.0a

#include "SpamProbeTokenizer.hpp"
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14
// default constructor
16 SpamProbeTokenizer :: SpamProbeTokenizer (void)
{
15 m_factory.setReplaceNonAsciiChars(—1)
m_factory.setReplaceNonAsciiChars (’2’
20  setMaxPhraseLength ( 1 );
setMinPhraseLength ( 1 );
22 setHeadersTolnclude ( "ALL" );
setMarkHeaders ( false );
22 setlgnoreHTML ( true );

}

26
// destructor
28 // intentionally empty
SpamProbeTokenizer::” SpamProbeTokenizer (void)

so {}

)

s2 // tokenize the input stream,
// build a message
3a void SpamProbeTokenizer:: tokenize ( istream &in, Message &message )
{
36 bool ignore_from = false;
bool ignore_content_length = false;
38
// set up the SP tokenizer
40 SpamProbe :: Message msg;
SpamProbe : : MimeMessageReader inReader ( in, ignore_from ,
ignore_content_length , !true );
42 msg.setReader(&inReader);
inReader .readNextHeader () ;
44 m_factory.initMessage (msg, inReader);

16 // dump from SpamProbe:: Message into our Message argument
for (int i=0; i < msg.getTokenCount(); ++1i) {
48 SpamProbe : : Token *xtok = msg.getToken(1);
string word = tok—>getWord () ;

// if we’re mot marking headers,

52 // we might need to clean the tokens,
// since the spamprobe tokenizer always marks
54 if ( m_markHeaders == false )
{
56 // try to find an ’_’, which means it was marked
int loc = static_cast<int>(word. find_last_of ( ’_’ ));
58
if( loc!= -1 ) // if there was an ’_’

60
// chop off everything before (and including) the ’_’
62 word = word.substr( loc + 1 );

}
o1 }

66 message .addToken ( word, tok—>getCount () , !m_markHeaders ) ;

}
68}

70 void SpamProbeTokenizer::setMinPhraseLength ( int value )

{
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m_factory.setMinPhraseLength ( value );

}

void SpamProbeTokenizer :: setMaxPhraseLength ( int value )

{

m_factory.setMaxPhraseLength ( value );

}

void SpamProbeTokenizer :: setIgnoreBody ( bool value )

{

m_factory.setlgnoreBody ( value );

}

void SpamProbeTokenizer ::setlgnoreHTML ( bool value )

{

m_factory .setRemoveHTML ( value );

}

void SpamProbeTokenizer :: setMarkHeaders ( bool value )

{

m_markHeaders = value;

}

void SpamProbeTokenizer:: setHeadersTolInclude ( string value )

{

transform ( value.begin (), value.end (), value.begin (), toupper );

if ( value == "ALL" )
m_factory.setHeadersTolnclude ( SpamProbe:: MessageFactory : : ALL HEADERS ) ;
else if( value == "NONE" )

m_factory.setHeadersTolnclude ( SpamProbe:: MessageFactory : : NOHEADERS ) ;
else if ( value == "NOX" )
m_factory.setHeadersTolInclude ( SpamProbe:: MessageFactory : : NOX HEADERS ) ;
else if ( value == "NORMAL" )
{
m_factory.addPrefixedHeader ( "from") ;
m_factory.addPrefixedHeader ("to");
m_factory.addPrefixedHeader ("cc");
m_factory.addPrefixedHeader ("subject");
m_factory.addPrefixedHeader ("received" , "recv");

m_factory.setHeadersToInclude ( SpamProbe:: MessageFactory : : NORMALHEADERS )

)

// Message . hpp
// class interface

// this class represents a simple message,
// mainly by the tokens wvector

#pragma once
#include "Token.hpp"
#include <vector>

#include <iostream>
#include <iomanip>

70



6 #include <algorithm>
using namespace std;

-

18
class Message
20 {
public:
22 Message (void) ;
“Message (void) ;
24
void addToken( const string &word, int count, bool needToCheck = false );

26 Token xgetToken( int index ) const;
int getNumTokens(void) const;
28 void printShort ( ostream &out ) const;

void printAll( ostream &out ) const;
30 void sortMsg(void);

32 // this enum is used by many other classes
enum MSG.TYPE

34 {

HAM,
36 SPAM
s
38
protected:
40 vector<Token*> m_tokens;

}s

2 // Message.cpp

4 // class implementation

6 // this class represents a simple message,
// mainly by the tokens wvector

10 #include "Message.hpp"

12 // default constructor
// intentionally empty
14 Message :: Message (void)

{}

// destructor
18 // delete all tokens
Message :: ~ Message (void)
20 {

for ( size_t 1=0; i<m_tokens.size(); ++1i )

16

22

24 }

26 m_tokens. clear () ;

}

// addToken
30 void Message ::addToken ( const string &word, int count, bool needToCheck )

{

32 // do we meed to check if the token is already in the message?
if ( needToCheck )

34 {

delete m_tokens|[i];

28

for ( size_t i=0; i<m_tokens.size(); ++1 )
36
if ( m_tokens[i]—->getTok () == word )
38
// we’ve found the token,
40 // so update its count, then return
m_tokens [i]->incCount ( count );
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return;

}
}
}

// either the token wasn’t found,
// or we didn’t need to look for it.
// add it to the message

m_tokens.push_back ( new Token( word, count )

}

// getToken

// return the requested tokens,
// or NULL if invalid request
Token *Message :: getToken ( int

{

if ( i >= static_cast<int>(m_tokens.size ())

[l i <0)

return NULL;

}

return m_tokens[i];

}

i ) const

int Message :: getNumTokens(void) const

{

return static_cast<int>(m_tokens.size ());

}

// output just token string, and count

void Message:: printShort ( ostream &out ) const

{
{

for ( int i=0; i<static_cast<int>(m_tokens.size()); ++i )

out << setw(6) << getToken( i )—>getCount ()

E

<< """ << getToken( i )—>getTok() << endl;

}
}

// output all info about a token

void Message:: printAll ( ostream &out )

{
{

for ( int i=0; i<static_cast<int>(m_tokens.size()); ++i )

out << setw(6) << getToken( i )—>getCount ()

const

<< setw (6) << getToken( i )—>getHamCount ()
<< setw (6) << getToken( i )—>getSpamCount ()

<< setw (10) << getToken( i )—>getScore()

<< "Ly << getToken( i )—>getTok() << endl;

}
}

// sort the message,
// wusing the Token::compare() function
// (STL’s sort wuses introsort.
void Message :: sortMsg (void)

{
}

sort ( m_tokens.begin (), m-tokens.end (), Token::compare );

//
// Token.hpp
//

// class interface

//
// a token — its

//

token string ,

worst case is Nlog(N) )

and counts

72



8
#pragma once

10
#include <string>

12 #include <iostream>
#include <cmath>

14 using namespace std;

16 class Token

18 public:
Token ( const string &tok, unsigned int count );
20 “Token (void) ;

22 void setScore( double score );
double getScore (void) const;
24
void setTok( const string &tok );
26 string getTok(void) const;

28 void incCount( int change = 1 );
int getCount(void) const;
30
void setHamCount ( unsigned int count );
32 int getHamCount (void) const;
34 void setSpamCount ( unsigned int count );

int getSpamCount(void) const;
36

double getDistanceFromMean (void) const;
38

static bool compare( Token* tokl, Tokenx tok2 );
10  bool isHeaderToken (void);

bool isPhraseToken (void);

42

protected:
44 string m_tok;
int m_count;
46 int m_hamCount;
int m_spamCount ;
48 double m_score;

50 };

//
2 // Token.cpp
//

4 // class implementation

//

6 // a token — its token string, and counts
//
8
#include "Token.hpp"
10
// only constructor
12 Token:: Token( const string &tok, unsigned int count )
: m_tok ( tok ),

14 m_count ( count ),
m_score( —1 ),
16 m-hamCount( 0 ),

m_spamCount ( 0 )

s {}

20 // destructor
// intentionally empty
22 Token::” Token(void)

{

24
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// how far is this token from 0.5%

// the score should have been set first
double Token:: getDistanceFromMean (void) const
28 {

double result

result = 0.5 — m_score;
return fabs ( result );

}

void Token::setScore( double score )

{

m._score = Score;

}

double Token:: getScore(void) const

{

return m_score;

}

void Token::setTok( const string &tok )

{
}

m_tok = tok;

string Token:: getTok(void) const

{
}

return m_tok;

void Token::incCount( int change )

{

m_count += change;

}

int Token:: getCount(void) const

{

return m_count;

}

void Token::setHamCount ( unsigned int count )

{

m_hamCount = count;

}

int Token:: getHamCount(void) const

{

return m_hamCount;

}

void Token::setSpamCount ( unsigned int count )

{
}

m_spamCount =

count ;

int Token::getSpamCount(void) const

{

return m_spamCount;

}

// Token comparison function

// used when so

rting a container of tokens

// sort first by distance from mean,
// if tied favor hammy tokens,
// if tied, favor tokem with higher count

// (does that

last comparison matter?)

bool Token::compare( Tokenx tokl, Tokenx tok2 )

// how far is

each from the mean probability?
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}

double distl = tokl—>getDistanceFromMean () ;
double dist2 = tok2—>getDistanceFromMean () ;

// sort first by distance from mean

// ——— farther from mean == more important

if ( distl > dist2 )
{

}

return true;

else if( fabs( distl — dist2 ) <= 0.00001 )

{
// if distFromMean tie,
// check score

// wuse the token with the lower score,

// to favor the hammy tokens

if ( tokl—>getScore() < tok2—>getScore() )

{

return true;

}

else if( fabs( tokl—>getScore() — tok2—>getScore() )

{

// if they have they same count,
// check count

<= 0.00001 )

———a higher count is considered more important
if ( tokl—>getCount () > tok2—>getCount() )

{

}
}

return true;

}

return false;

bool Token::isHeaderToken (void)

{

}

// this is simplified , but works,

// since the SpamProbeTokenizer disregards case,

// a capital 'H’ will only be seen as a header token

if ( m_tok[0] == *H’ )
return true;

return false;

bool Token::isPhraseToken (void)

{

// phrased (multi—word) tokens are the
// that may contain a space
size_t index;
index = m_tok.find ( ’y’>, 0 );
if ( index != string::npos )
return true;

return false;

// TokenDB. hpp

//

// class interface

//

// an abstract (pure wvirtual) base class

//

#pragma once

#include <string>

only tokens
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12 #include <iostream>
#include <fstream>
14 using namespace std;

16 class TokenDB

{

18 public:
TokenDB (void) ;

20 virtual ~TokenDB(void) = 0;

22 virtual bool open( const string &fileName = "" ) = 0;
virtual bool close() = 0;

24 virtual bool print ( ostream &out ) = 0;

26 virtual bool addToken( const string &token, int hamCount, int spamCount ) = 0;
virtual bool removeToken( const string &token ) = 0;

28 virtual bool getTokenCounts( const string &token, int &hamCount, int &spamCount )

virtual int getDBTokenCount(void) const = 0;
30 virtual void mergeDB( TokenDB xdb2 ) = 0;

w

2 protected:
string m_fileName;

34 virtual void clear(void) = 0;
36 class TokenData
{

38 public:

TokenData ( unsigned int hamCount = 0, unsigned int spamCount = 0 )
40 : m_hamCount ( hamCount ) , m_spamCount ( spamCount ) {};

unsigned int m_hamCount;
42 unsigned int m_spamCount;

}s
a4}

//

2 // TokenDB. cpp

//

4 // class implementationnterface

//

6 // an abstract (pure virtual) base class

//

#include "TokenDB.hpp"
10

// default constructor
12 TokenDB: : TokenDB (void)

: m_fileName ("")
14 {}

16 // destructor
// intentionally empty
18 TokenDB::~ TokenDB (void)

{r

//
2 // TokenDB_hashmap . cpp
//

4 // class interface

6 // TokenDB wusing an STL hashmap
/7

#pragma once

10
#include <hash_map>

12 #include <iomanip>
#include "TokenDB.hpp"
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14 using namespace stdext ;

16 class TokenDB_hashmap
public TokenDB

18 {

20 // from codeguru.com
22 // http://www. codeguru.com/forum/showthread.php?t=815286
//
24 // The following class defines a hash function for strings
class stringhasher public stdext:: hash_compare <std::string>
26 {
public:
28 size_t operator() (const std::string& s) const
{
30 size_t h = 0;
std::string :: const_iterator p, p-end;
32 for (p = s.begin(), p-end = s.end(); p != p-end; ++p)
{
34 h =31 %« h + (*xp);
}
36 return h;
}
38
bool operator() (const std::string& sl, const std::
40 {
return sl < s2;
42 }
s
44
public:
46 TokenDB_hashmap (void) ;
virtual ~TokenDB_hashmap(void);
48
virtual bool open( const string &fileName = "" );
50 virtual bool close();
virtual bool print ( ostream &out );
52
virtual bool addToken( const string &token, int hamCount,
54 virtual bool removeToken( const string &token );
virtual bool getTokenCounts( const string &token, int &hamCount,
56 virtual int getDBTokenCount(void) const;
virtual void mergeDB( TokenDB xdb2 ) ;
58
protected:
60
struct less_str {
62 bool operator () ( const string &x, const string &y ) const
{
64 return x < y;
}
66 }s
68 hash_map< string , TokenData, stringhasher > m_db;

70

}s
//

// class

stringhasher

virtual void clear(void);

2 // TokenDB_hashmap . cpp

//

4 // class implementation

6 // TokenDB wusing a hashmap
// (microsoft wversion , since hashmap not officially

s //

7

in STL yet)

string& s2) const

int spamCount ) ;

int &spamCount ) ;



-

0

12

14

16

18

#include "TokenDB_hashmap.hpp"

// default constructor
// intentionally empty

TokenDB_hashmap : : TokenDB_hashmap (void)

{

// destructor
// clear the hashmap

TokenDB_hashmap :: ~ TokenDB_hashmap (void)

20 {

22

24

26

28

30

32

34

36

38

40

42

44

46

52

54

56

60

62

64

66

68

70

72
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this—>clear () ;

}

void TokenDB_hashmap ::

m_db. clear () ;
}

clear (void)

// dump the database in format:

//  hamCount spamCount

tokenString

bool TokenDB_hashmap:: print ( ostream &out )

{

hash_map< string , TokenData >::const_iterator

for ( iter = m.db.begin () ;

{

out << setw (8) << iter —>second .m_hamCount
<< setw (8) << iter —>second.m_spamCount
<< "Lu" << iter —>first << endl;

}

return true;

}

// open the database,
// importing tokens in

format :

//  hamCount spamCount tokenstring
a8 //
bool TokenDB_hashmap::open( const string &fileName )

if ( fileName == "" )
return true;

ifstream inFile;

inFile.open( fileName.c_str() );

if ( !inFile )

return false;

}

pair < hash_.map< string ,

TokenData >::iterator ,

iter;

iter != m.db.end(); ++iter )

bool > mapPair;

hash_map< string , TokenData >::iterator maplter;

string token = "";

unsigned int hamCount, spamCount;

while ( inFile >> hamCount >> spamCount >> token )

{
}

inFile.close();
return true;

}

bool TokenDB_hashmap ::

{

m_db.insert ( make_pair ( token, TokenData( hamCount, spamCount )

close ()
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this—>clear () ;

return true;

}

// add a token and its counts to the database
// check if it exists

// if so, then increment the counts

// if mnot, add it

bool TokenDB_hashmap ::addToken( const string &token, int hamCount, int spamCount )

{

pair < hash_map< string , TokenData >::iterator , bool > mapPair;
hash_map< string , TokenData >::iterator maplter;

maplter = m_db. find ( token );
if ( maplter != m.db.end() ) // it was found

maplter—>second .m_hamCount += hamCount;
maplter—>second . m_spamCount += spamCount;

else // new word

m_db.insert ( make_pair ( token, TokenData( hamCount, spamCount ) ) );

}

return true;

}

bool TokenDB_hashmap ::removeToken ( const string &token )

{

m_db.erase ( token );

return true;

}

// given a tokenstring,

// return its ham and spam counts

// returns 0 and 0 if token not found

bool TokenDB_hashmap :: getTokenCounts ( const string &token, int &hamCount,
spamCount )

{

pair < hash_map< string , TokenData >::iterator , bool > mapPair;
hash_map< string , TokenData >::iterator maplter;

maplter = m_db. find ( token );
if ( maplter != m.db.end() ) // it was found

{

hamCount = maplter—>second .m_hamCount;
spamCount = maplter—>second . m_spamCount;

else // new word

hamCount = 0;
spamCount = 0;
return false;

}

return true;

}

// how many tokens are in the database?
int TokenDB_hashmap :: getDBTokenCount (void) const

{
}

// add another DB’s tokens to mine
void TokenDB_hashmap :: mergeDB ( TokenDB xdb2 )

return m_db.size ();
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32

34

36

38

40

42

48

50

TokenDB_hashmap xmapDB = dynamic_cast<TokenDB_hashmap*>(db2) ;

pair < hash.map< string , TokenData >::iterator , bool > mapPair;

hash_map< string , TokenData >::iterator maplter;

for ( maplter = mapDB—>m_db. begin () ;
maplter !'= mapDB—>m_db.end () ;
++maplter )

this—>addToken ( maplter—>first , maplter—>second
m_spamCount ) ;

//

// TrainStation . hpp

//

// class interface

//

// this class is in charge of updating the database
// during initial training and post—classification

/7
#pragma once

#include <algorithm>

#include "Message.hpp"
#include "TokenDB_map.hpp"
#include "TokenDB_hashmap.hpp"
using namespace std;

class TrainStation

public:
TrainStation (void) ;
“TrainStation (void) ;

enum TRAIN.MODE

TEFT,
TEFT.C,
TOE,
NONE

I

.m_hamCount ,

training

maplter—>second .

void train ( const Message &msg, Message:: MSGTYPE goldStd, Message:: MSG.TYPE

decision , TokenDB &db ) ;

void initialTrain ( const Message &msg, Message:: MSGTYPE goldStd , TokenDB &db ) ;

int getCorrectionDelay (void) const;
void setCorrectionDelay ( int delay );

TRAIN.MODE getTrainMode (void) const;
void setTrainMode ( string mode ) ;

static const string MESSAGE.COUNTER;

private:

void trainTEFT ( const Message &msg, Message :: MSG.TYPE decision , TokenDB &db ) ;

void trainTEFT_C( const Message &msg, Message :: MSG.TYPE goldStd , Message:: MSG.TYPE

decision , TokenDB &db ) ;

void trainTOE ( const Message &msg, Message :: MSG.TYPE goldStd , Message :: MSG.TYPE

decision , TokenDB &db ) ;

void processError ( const Message &msg, Message :: MSG.TYPE decision , TokenDB &db ) ;

protected:
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int m_correctionDelay;

52 int m_numErrors;
TRAIN.MODE m_trainMode
54 TokenDB s« m_errorTokens;

2 // DecisionMatrizFactory . hpp
4 // class interface

6 // this class handles options related to the decision matriz,
// then builds the decision matriz given a message

10 #pragma once

12 #include "Message.hpp"
#include <vector>
14 #include <algorithm>
using namespace std;
16
class DecisionMatrixFactory
18 {
public:
20 DecisionMatrixFactory (void) ;
“DecisionMatrixFactory (void) ;
22
void buildDecisionMatrix ( Message &msg, vector<Tokenx> &decisionMatrix ) const;
24
void setMinPrevSightings ( int value );
26 void setMinMatrixSize ( int value );
void setTokenUsageCount ( int value );

28 void setHTokenUsageCount ( int value );
void setPTokenUsageCount ( int value );
30 void setForcelnteresting ( bool value );

void setDoubleHamCount ( bool value );
32
protected:
34 bool isTokenMature ( Token* tok ) const;
bool isTokenGreat ( Tokenx tok ) const;
36 int calcTokenMatrixUsageCount ( Token* tok, int currMatrixSize ) const;

38 protected:
int m_minPrevSightings;

40 int m_minMatrixSize;
int m_tokenUsageCount;
42 int m_hTokenUsageCount;
int m_pTokenUsageCount ;
44 bool m_forcelnteresting;

bool m_doubleHamCount ;
46

2 // DecisionMatrizFactory . cpp

4 // class implementation

6 // this class handles options related to the decision matriz,
// then builds the decision matriz given a message

10 #include "DecisionMatrixFactory.hpp"

12 // default constructor

// initializes options
14 DecisionMatrixFactory :: DecisionMatrixFactory (void)
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m_minPrevSightings ( ),

16 m_minMatrixSize ( 15 ),
m_tokenUsageCount ( 1 ),

18 m_hTokenUsageCount ( 1 ),
m_pTokenUsageCount ( 1 ),

20 m_forcelnteresting ( false ),
m_doubleHamCount ( false )

22 {

}

// destructor
26 // intentionally empty
DecisionMatrixFactory ::~ DecisionMatrixFactory (void)

2 {}

30 // buildDecisionMatriz
// build the decision matriz given a message
32 void DecisionMatrixFactory :: buildDecisionMatrix (
Message &msg,

24

34 vector<Token*> &decisionMatrix ) const
{
36 int i=0;
int j=0;
38 Token xcurrTok = NULL;
int usageCount = 0;
40

// sort the tokens in the message
42 // see Message::sortMsg () for details

// important to sort the message,
44 // since calcTokenMatrizUsageCount

// just plucks off tokens if there’s room in the matriz
46 msg.sortMsg () ;

48 // consider all tokens in message
for ( i=0;
50 i<msg.getNumTokens () ;
i)

52 {

// consider the mexzt token in the message

54 currTok = msg.getToken (1i);
if ( currTok == NULL )
56 break;
58 // how many times should the current token be used?
usageCount = calcTokenMatrixUsageCount ( currTok, static_cast<int>(decisionMatrix.

size ()) );

// add the token to the decision matriz

60

62 // possibly more than once
for ( j=0;
64 j< usageCount;
++i )
66

decisionMatrix . push_back ( currTok );
68 }
}
70 }

72 // determine how many times this token
// should be added to the decision matriz
74 int DecisionMatrixFactory :: calcTokenMatrixUsageCount ( Token# tok, int currMatrixSize

) const
{
76 int usageCount = 0;
78 // has this token been seen before enough

// to be considered?
80 // if not, then you can’t use the token
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132

136

138

140

144

146

}

if ( !isTokenMature( tok ) )
return 0;

// is the token a special type of token?
// if so, then possibly use the appropriate token count

if ( tok—>isHeaderToken () )

usageCount = m_hTokenUsageCount ;
else if( tok—>isPhraseToken () )

usageCount = m_pTokenUsageCount;
else

usageCount = m_tokenUsageCount ;

// you can only use the token as many times as

it

occurs in the message

usageCount = min( tok—>getCount (), m_tokenUsageCount ) ;

// how many slots remain in the matrizc?
int slotsLeft = m_minMatrixSize — currMatrixSize;

// are we forcing interesting tokens?

// if we’re NOT, then we can only add the token
// for as many times as slots remain in the matriz.

if ( !m_forcelnteresting )

usageCount = min( slotsLeft , usageCount );

// if we are forcing interesting,

// check if the token is interesting

else if ( !isTokenGreat( tok ) )
usageCount = 0;

return usageCount;

// determine token ‘maturity’
// used by calcTokenMatrizUsageCount ()

// maturity is

based on number of times seen before

bool DecisionMatrixFactory ::isTokenMature ( Token* tok ) const

{

}

// determine token ‘greatness

int prevSightings = 0;

prevSightings += tok—>getHamCount () ;
if ( m_doubleHamCount ) // graham—like

prevSightings x= 2;

prevSightings += tok—>getSpamCount () ;

double ham count?

// have we seen the token enough before?
if ( prevSightings >= m_minPrevSightings )

return true;

return false;

’

// based on how far the token’s score
bool DecisionMatrixFactory ::isTokenGreat ( Tokenx tok ) const

{
}

return tok—>getDistanceFromMean ()

>

is from 0.5

.399999;

void DecisionMatrixFactory :: setMinPrevSightings ( int value )

{
}

m_minPrevSightings = value;

void DecisionMatrixFactory :: setMinMatrixSize ( int value )

{
}

m_minMatrixSize = value;
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150

152

156

158

160

void DecisionMatrixFactory :: setTokenUsageCount ( int value )

m_tokenUsageCount = value;

}

void DecisionMatrixFactory :: setForcelnteresting ( bool value )

{
}

void DecisionMatrixFactory :: setDoubleHamCount ( bool value )

m_forcelnteresting = value;

162 m_doubleHamCount = value;
}
164
void DecisionMatrixFactory ::setHTokenUsageCount ( int value )
166 {
m_hTokenUsageCount = value;
168 }
170 void DecisionMatrixFactory :: setPTokenUsageCount ( int value )
{
172 m_pTokenUsageCount = value;
}

10

12

14

16

18

20

22

24

26

28

30

32

36

//

// TrainStation . cpp

//

// class implementation

//

// this class 1is in charge of updating the database
// during initial training and post—classification training

//

#include "TrainStation.hpp"

const string TrainStation :: MESSAGE.COUNTER = "__MESSAGE_COUNTER__";

// default constructor
TrainStation :: TrainStation (void)
: m_correctionDelay (1),
m_numErrors (0) ,
m_trainMode ( TEFT.C )

// currently using a hashmap for the error tokens
m_errorTokens = new TokenDB_hashmap () ;

}

// destructor
// clears errorTokens db
TrainStation::” TrainStation (void)

{

m_errorTokens—>close () ;
delete m_errorTokens;

}

int TrainStation:: getCorrectionDelay (void) const

{
}

return m_correctionDelay;
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void TrainStation::setCorrectionDelay ( int delay )

as {
if ( delay < 0)

40 return;

42 m_correctionDelay = delay;

}

TrainStation : : TRAINMODE TrainStation :: getTrainMode (void) const
a6 {

return m_trainMode;

48}

44

50 void TrainStation ::setTrainMode( string mode )

{

52 transform ( mode. begin () , mode.end (), mode. begin (), toupper );

s if ( mode == "TEFT" )
m_trainMode = TEFT;

s6 else if ( mode == "TEFT-C" )
m_trainMode = TEFT_C;

ss  else if( mode == "TOE" )
m_trainMode = TOE;

6o else if( mode == "NONE" )

m_trainMode = NONE;
62 }

6a // train the given message
void TrainStation:: train ( const Message &msg, Message:: MSGTYPE goldStd ,
Message : : MSG.TYPE decision , TokenDB &db )
66 {

switch ( m_trainMode )
68
case TEFT:
70 trainTEFT (| msg, decision, db );
break;
72 case TEFT.C:
trainTEFT_C( msg, goldStd, decision, db );

74 break;
case TOE:
76 trainTOE ( msg, goldStd, decision, db );
break;
78 case NONE:
break;

80 }
}

// during initial training
sa // we just do a simple train—everything
void TrainStation::initialTrain ( const Message &msg, Message ::MSGTYPE goldStd
, TokenDB &db )
s6 {

trainTEFT ( msg, goldStd, db );
88 }

82

9 // train everything — not correctively
void TrainStation ::trainTEFT ( const Message &msg, Message :: MSG.TYPE decision ,
TokenDB &db )
92 {
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134
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148

// train everything,
// just add the tokens to the database

for ( int i=0; i<msg.getNumTokens(); ++1i )

{

}

// increment message counter in DB

Token *currTok = msg.getToken(1i);

if ( currTok == NULL )

break;

if ( decision == Message ::HAM )

db.addToken ( currTok—>getTok (), currTok—>getCount(), 0 );

else if( decision == Message ::SPAM )

db.addToken ( currTok—>getTok (), 0, currTok—>getCount() );

if ( decision == Message : :HAM )

db.addToken ( MESSAGE COUNTER, 1 ,
else if( decision == Message ::SPAM
db.addToken ( MESSAGE_.COUNTER, O ,
}
// train everything — correctively

void TrainStation ::trainTEFT_C( const Message &msg, Message :: MSGTYPE goldStd
, Message : : MSG.TYPE decision , TokenDB &db )

{

// train everything....
for ( int i=0; i<msg.getNumTokens(); ++1 )

{

}

Token *currTok = msg.getToken(i);

if ( currTok == NULL )

break;

if ( decision == Message ::HAM )

db.addToken ( currTok—>getTok (), currTok—>getCount() , 0 );

0
)
1

)
) s

so go ahead and add the tokens to the main database

else if( decision == Message::SPAM )

db.addToken ( currTok—>getTok (), 0, currTok—>getCount() );

if ( decision == Message::HAM )
db.addToken ( MESSAGE.COUNTER, 1 ,

else if( decision == Message ::SPAM
db.addToken ( MESSAGE_.COUNTER, O ,

// simulate error correction delay

//

// check for error
if ( goldStd != decision )

{

for ( int 1=0; i<msg.getNumTokens(); ++1 )

{

0
)
1

)
)

Token *currTok = msg.getToken(1i);

if ( currTok == NULL )
break;

if ( decision == Message ::HAM )

m_errorTokens—>addToken (
currTok—>getTok () ,
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170
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176

178

180
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184

188

190

192

196

198

200

202

204

206

}

}

—(currTok—>getCount () ),
currTok—>getCount ()

);

}

else if( decision == Message ::SPAM )

{

m_errorTokens—>addToken (

currTok—>getTok () ,
currTok—>getCount () ,
—(currTok—>getCount () )
);

I3

}

// update message counter
// incorrect ham classification needs to be reversed
if ( decision == Message : :HAM )
{
m_errorTokens—>addToken ( MESSAGE.COUNTER, —1, 1 );

}

// incorrect spam classification mneeds to be reversed
else if( decision == Message ::SPAM )

{
m_errorTokens—>addToken ( MESSAGE.COUNTER, 1, —1 );

}

++m_numErrors;

if ( mnumErrors == m_correctionDelay )
db.mergeDB( m_errorTokens );
m_numErrors = 0;

//m_errorTokens. close ();
m_errorTokens—>close () ;

}

// train only on error
void TrainStation ::trainTOE ( const Message &msg, Message :: MSG.TYPE goldStd ,

{

Message : : MSG.TYPE decision , TokenDB &db )

// was there an error in judgement?
if ( goldStd != decision )

{

// yes, there was an error, so process it

// put message tokens into error database
// these tokens were never put into the database as an error before,
// so just add them normally
for ( int 1=0; i<msg.getNumTokens(); ++1 )
{

Token *currTok = msg.getToken(i);

if ( currTok == NULL )

break;

if ( decision == Message : :HAM )

m_errorTokens—>addToken ( currTok—>getTok (), 0, currTok—>getCount() );
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214

216

218

220

224

228

232

8

}

else if( decision == Message ::SPAM )

m_errorTokens—>addToken ( currTok—>getTok () , currTok—>getCount(), 0 );

// update the message counter
if ( goldStd == Message ::HAM )

m_errorTokens—>addToken ( MESSAGE.COUNTER, 1, 0 );

else if( goldStd == Message ::SPAM )

m_errorTokens—>addToken ( MESSAGE.COUNTER, 0, 1 );

// yes, it was an error
++m_numErrors;

// have we seen enough errors to simulate the correction
if ( m_numErrors == m_correctionDelay )

{

// add the error tokens to the main database
db.mergeDB( m_errorTokens ) ;

m_numErrors = 0;
m_errorTokens—>close () ;

// TestingCenter. hpp

// class interface

// automated testing system
// runs the simulated spamfilter on randomzied indezx files

10 #pragma once

12 #include "SpamFilter.hpp"

#include "IndexMachine.hpp"

14 #include "TestResults.hpp"

#include <iostream>

16 #include <fstream>

#include <sstream>

18 #include <iomanip>

#include <boost/filesystem /operations.hpp>
20 #include <boost/filesystem /path.hpp>
namespace fs = boost:: filesystem;
using namespace std;

22

24

26

28

30

32

34

36

class TestingCenter

{

public

TestingCenter (void) ;
“TestingCenter (void) ;

void
void
void
bool
void
void

runTests (void) ;

setSpamFilter ( SpamFilter xsf );
setInitialTrainingCount ( int count );
setTestSuitePath ( string source );
setID ( string id );

setVerbose ( int value );

38 private:
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42

44
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48

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

void runTest ( fs::path indexFile, TestResults &results );

protected:
SpamFilter *m_sf;
int m_initialTrainingCount ;
fs::path m_testSuitePath;
TestResults m_totalTestSuiteResults;
string m_id;
int m_verbose;

// TestingCenter.cpp
// class implementation

// automated testing system
// rTuns the simulated spamfilter on randomzied index files

#include "TestingCenter.hpp"

// default constructor
TestingCenter :: TestingCenter (void)
: m_sf( NULL ),
m_initialTrainingCount (0) ,
m_testSuitePath(""),
m,id(" n)’
m_verbose (0)

{}

// destructor
// intentionally empty
TestingCenter::~ TestingCenter (void)

{}

// runTests
// a spamFilter needs to be connected first
// the spam test suite path should also be set
// this methods runs the indezxes in the test suite path,
// creating the results files along the way
void TestingCenter :: runTests (void)
{
// we need a spam filter if
// we plan to do any spam filtering
if ( m_sf == NULL )

cout << "!!! No,spamfilter  connected to,testing, center !!!" << endl;
return;

}

string indexFile;
int numlIndexes = 0;
ofstream resultsStream;

// create results directory
fs ::path resultsDirPath = m_testSuitePath / ("Results" + m_id);
fs::create_directory ( resultsDirPath );

// create main results file

fs :: path resultsFilePath = resultsDirPath / ("Results" 4+ m_id + ".txt");
resultsStream .open( resultsFilePath.native_file_string ().c_str() );

if ( !resultsStream )

{

cout << "!! resultsoutput,file could not be created!!" << endl;
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}

return;

int totalTokenCount = 0;

clock_-t stopTime;
clock_t singleStartTime;
clock_t elapsedTime;
double elapsedTimeSec;

// start overall timer
clock_t overallStartTime = clock();

fs::directory_iterator end_iter;
for ( fs::directory_iterator iter ( m_testSuitePath );

{

iter
++it

try

= end_iter;
er )

if ( is_directory ( xiter ) )

{

el

{

se

// check if the filename begins with ”Indez”

indexFile = iter —>leaf();
string :: size_type pos;

pos = indexFile.find ( IndexMachine:: getFilePrefix (), 0 );

if ( pos == string.npos )
continue;

++numlIndexes;

// so mow we have an index file ,

// go run a test on that file
TestResults currResults;

singleStartTime = clock();
runTest ( *iter , currResults );
stopTime = clock ();

resultsStream << indexFile << ", results"

<< endl << currResults;

elapsedTime = difftime ( stopTime,
elapsedTimeSec = static_cast<double>(elapsedTime) / CLOCKSPER_SEC;

singleStartTime ) ;

int precisionSetting = resultsStream . precision ();
long flagSettings = resultsStream. flags ();

resultsStream .setf ( ios::fixed
resultsStream . precision ( 3 );

ios

::showpoint

resultsStream << "Time:,uuuuuuuuuuuuuuoon"”

<< elapsedTimeSec / 60 << " min" << endl;
resultsStream << "DB,TokenCount :yuuuuuuu"

<< m_sf—>getDBTokenCount () << endl << endl ;
resultsStream . precision ( precisionSetting );
resultsStream . flags ( flagSettings );

// upate total results

m_totalTestSuiteResults = m_totalTestSuiteResults + currResults;

totalTokenCount += m_sf—>getDBTokenCount () ;

// is werbosity >= 27
// if so, dump the database
if ( m_verbose >= 2 )

ios :: left

)

fs :: path dbPath = resultsDirPath / (indexFile + "_db.txt" );

ofstream dbStream;
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124 dbStream .open ( dbPath.native_file_string ().c-str() );
m_sf—>printDB ( dbStream ) ;
126 dbStream . clear () ;

}

m_sf—>resetDB () ;

128

130 }
}

132 catch ( const exception &e )
{

134 cout << "Exception: " << iter—>leaf() << "," << e.what() << endl;
}

136 }

138 // lastly , output the owverall results to the results file,
// only if there was more then one test run

140 if ( numIndexes > 1)
{
142 resultsStream << "~~~ ,COMBINED_ RESULTS, """ << endl;
resultsStream << m_totalTestSuiteResults;
144
// stop timer, calculate total time
146 stopTime = clock ();
elapsedTime = difftime ( stopTime, overallStartTime );
148 elapsedTimeSec = static_cast<double>(elapsedTime) / CLOCKSPERSEC;
150 int precisionSetting = resultsStream . precision () ;
long flagSettings = resultsStream. flags ();
152 resultsStream.setf ( ios::fixed | ios::showpoint | ios::left );
resultsStream . precision ( 3 );
154 resultsStream << "Total,Time :yuuuuuuuuuuu"”
<< elapsedTimeSec / 60 << "ymin" << endl;
156 resultsStream << "Avg_ DB, Token Count : "
<< totalTokenCount / numlIndexes << endl;
158 resultsStream . precision ( precisionSetting );
resultsStream . flags ( flagSettings );
160 }
162 resultsStream. close ();

}

// run the test on an individual index file
166 void TestingCenter :: runTest ( fs::path indexFile, TestResults &currResults )

{

168 int numMsgProcessed = 0;
170 ifstream indexStream;
indexStream .open( indexFile.native_file_string ().c_str() );
172 if ( !indexStream )
{
174 cout << "indexyfile: " << indexFile.native_file_string ()
<< "couldynot be opened" << endl;
176 return;
}
178
// build path to individual test results file
180

fs :: path indexResultsPath = m_testSuitePath
182 / ("Results" 4+ m_id)
/ (indexFile.leaf () + "_results" 4+ m_id + ".txt" );

// open the results file
186 ofstream indexResultsStream ;
indexResultsStream .open ( indexResultsPath.native_file_string().c_str() );
188 if ( !indexResultsStream )
{
190 cout << "!! couldynot create index results file !!" << endl;
return;
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234

236

242

244

248
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254

}

ofstream matrixResultsStream;
if ( m_verbose >=1)

{

fs :: path matrixResultsPath = m_testSuitePath

/
/

("Results" + m_id)
(indexFile.leaf () + "_matrices" + m_id + ".txt" );

// open the matriz file

matrixResultsStream.open( matrixResultsPath.native_file_string ().

costr() )

if ( !matrixResultsStream )
{
cout << "!!,could notcreate matrix_ results file !!" << endl;
return;
}
}
indexResultsStream .setf ( ios::fixed | ios::showpoint | ios::left );

indexResultsStream . precision ( 6 );

string
string
string
string

inLine;
goldStdStr;
currMessage;
filePath ;

//Message : : MSG-TYPE goldStd = Message : : MSG_TYPE : : HAM;
Message : : MSGTYPE goldStd = Message : :HAM;
Message : : MSG.TYPE classification ;

double score;

// loop over index file

while (

getline ( indexStream , inLine ) )

// get the goldStd and fileName
istringstream sStream ( inLine );
sStream >> goldStdStr >> currMessage;

filePath = m_testSuitePath.native_directory_string() + "\\" + currMessage;
ifstream msgStream;

// try to open the message
msgStream . open ( filePath.c_str () );

if ( ! msgStream )

{
cout << "!!,could,not open message, file: " << filePath << endl;
continue;

}

if ( goldStdStr == "HAM" )

goldStd = Message : :HAM;

else

if ( goldStdStr == "SPAM" )

goldStd = Message : :SPAM;

// are we doing initial training?
if ( numMsgProcessed < m_initialTrainingCount )

{

m_sf—>initialTrain ( msgStream, goldStd );

// initial training s over,

/!

else

classify the message, then train as normal

if ( m_verbose >=1)

}

matrixResultsStream << currMessage;
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310

314

316

318

320

322

324

m_sf—>classify ( msgStream, classification , score, m_verbose,
matrixResultsStream ) ;

// reset the message stream back to the beginning of the file

msgStream . clear () ;

msgStream . seekg (0L) ;

m_sf—>train ( msgStream, goldStd, classification );

// check classification against goldStd,
// update current TestResult

if ( goldStd == classification )
currResults .incCorrectMsg ( classification );
else if( goldStd != classification )

currResults.incWrongMsg ( classification );

// print result line to the index results file
switch ( classification )
{
case Message : :HAM:
indexResultsStream << setw (5) << goldStdStr
<< setw (5) << "HAM"
<< setw (9) << score
<< currMessage << endl;
break;
case Message ::SPAM:
indexResultsStream << setw (5) << goldStdStr
<< setw (5) << "SPAM"
<< setw (9) << score
<< currMessage << endl;
break;
}
}

++numMsgProcessed ;
msgStream . close () ;

}

// close all I/O streams
indexStream . close () ;
indexResultsStream . close () ;
matrixResultsStream . close () ;

}

void TestingCenter :: setSpamFilter ( SpamFilter *sf )

{
}

void TestingCenter :: setInitialTrainingCount ( int count )

{
}

bool TestingCenter::setTestSuitePath ( string source )

{

m_sf = sf;

m_initialTrainingCount = count;

fs :: path sourcePath = fs::path( source, fs::native );
if ( ! fs::exists( sourcePath ) )

{
cout << "\ny!! Not Found: " << sourcePath.native_file_string () << endl;
return false;

}

else if ( !fs::is_directory ( sourcePath ) )

{
cout << "\ny!!', Test,Suite,should be a directory of index files !!," << endl;
return false;

}

else

m_testSuitePath = sourcePath;
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}

328 return true;

}

void TestingCenter::setID( string id )
332 {

330

m_id = id;

334 }
336 void TestingCenter ::setVerbose ( int value )

338 if ( value >=0)
m_verbose = value;
340 }

//
2 // TestResults.hpp

//

4 // class interface
//
6 // the current metrics used to gauge
// the performance of a particular spamPFilter setup

s //
10 #pragma once

12 #include <iostream>
#include <fstream>
14 #include "Message.hpp"
using namespace std;
16
class TestResults
18 {
public:
20 TestResults ( int hC = 0, int hW = 0, int sC = 0, int sW = 0 );
“TestResults (void) ;
22
int getNumHam (void) const;

24 int getNumSpam (void) const;
int getNumMessages(void) const;
26 double getFalsePositiveRate (void) const;

double getFalseNegativeRate(void) const;
28 double getOverallErrorRate (void) const;

double getOverallAccuracy (void) const;
30

void incHamCorrect ( int delta =
32 void incHamWrong ( int delta = 1 );

void incSpamCorrect ( int delta = 1 );
34 void incSpamWrong ( int delta = 1 );

void incCorrectMsg ( Message : : MSG.TYPE type ) ;
36 void incWrongMsg ( Message : : MSG.TYPE type ) ;

1)
)

38 TestResults operator+( const TestResults &r2 ) const;
friend ostream& operator<<( ostream& out, const TestResults &results );
40
private:
42 int m_hamCorrect;
int m_hamWrong;
44 int m_spamCorrect;

int m_spamWrong;

16 };
//

2 // TestResults.cpp

//

4 // class implementations

//

6 // the current metrics used to gauge
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66
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72

74

//
//

the performance of a particular spamPFilter setup

#include "TestResults.hpp"

//

default constructor

TestResults:: TestResults ( int hC, int hW, int sC, int sW )

m_hamCorrect ( hC ),

m_hamWrong ( hW ) ,

m_spamCorrect ( sC ),

m_spamWrong ( sW )

{

//
//

destructor
intentionally empty

TestResults::” TestResults(void)

{

int TestResults ::getNumHam(void) const

{
}

in

{
}

{
}
//

//
a

return m_hamCorrect + m_hamWrong;

t TestResults

return m_spamCorrect + m_spamWrong;

t TestResults:: getNumMessages(void)

return getNumHam () + getNumSpam () ;

False Postitive Rate
= numHamWrong / numHam

:: getNumSpam (void) const

const

double TestResults:: getFalsePositiveRate (void) const
4a {

}

//
//
a

int denom = m_hamCorrect + m_hamWrong;

if ( denom == 0 )
return 0;

return m_hamWrong / (double)denom;

False Negative Rate
= numSpamWrong / numSpam

double TestResults:: getFalseNegativeRate (void) const

{

}

//
//
a

int denom = m_spamWrong + m_spamCorrect;

if ( denom == 0 )
return 0;

return m_spamWrong / (double)denom;

Owverall Error Rate

= (hamWrong + spamWrong) / numMessages

double TestResults:: getOverallErrorRate(void) const
68 {

}

if ( getNumMessages() == 0 )
return 0;

return (m_hamWrong + m_spamWrong )

/ (double)getNumMessages () ;
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// Owerall Accuracy
7w // =1 — error rate

7s double TestResults:: getOverallAccuracy (void) const

{

80 return (1.0 — getOverallErrorRate());

}

void TestResults::incHamCorrect ( int delta )
84 {
m_hamCorrect += delta;

86 }

ss void TestResults ::incHamWrong( int delta )

{

90 m_hamWrong += delta;

}

void TestResults::incSpamCorrect ( int delta )

94 {

m_spamCorrect += delta;

96 }

98 void TestResults::incSpamWrong( int delta )

{

100 m_spamWrong += delta;

}

void TestResults::incCorrectMsg ( Message :: MSG.TYPE type )
toa {

82

92

102

switch ( type )
106 {
case Message : :HAM:
108 ++m_hamCorrect ;
break;
110 case Message ::SPAM:
4++m_spamCorrect ;
112 break;

}
114}

116 void TestResults::incWrongMsg ( Message :: MSG.TYPE type )

{

118 switch ( type )

{

120 case Message : :HAM:
++m_spamWrong ;

122 break;
case Message ::SPAM:
124 ++m_hamWrong;
break;
126 }

}

// operator +
130 // adds the test results of one run to another
TestResults TestResults:: operator+( const TestResults &r2 ) const

32 {

return TestResults(

134 this—>m_hamCorrect + r2.m_hamCorrect ,
this—m_hamWrong + r2.m_hamWrong,
136 this—>m_spamCorrect + r2.m_spamCorrect,

this—>m_spamWrong + r2.m_spamWrong ) ;

138}

140 ostream& operator <<( ostream &out, const TestResults &results )

{

142 int precisionSetting = out.precision ();
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144

146

150

152

156

160

10

12

14

16

18

20

24

26

28

30

32

34

36

38

40

42

long flagSettings = out.flags ();

out.setf( ios::fixed | ios::showpoint | ios:

out.precision ( 6 );

out << "Overall Accuracy: uuuuu" <<
out << "FalsePositivepyrate: " <<
out << "FalseyNegativeyrate:uu" <<
out << "Totalymessages :yuuuuuu" <<
out << "Hampymessages :yuuuuuuuuu" <<
out << "FalseyPositives :yuuuuuu" <<
out << "Spampymessages :yuuuuuuuu" <<
out << "FalseyNegatives :yuuuuuu" <<

out.precision ( precisionSetting );
out. flags ( flagSettings );

return out;

//
// IndexMachine. hpp
//

// class interface

//

// this class builds random indexes
// to be used in tests

/!

#pragma once

#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include "Message.hpp"
using namespace std;

// boost filesystem library

results.
results.
results.
results.
results.
results.
results.
results.

// wused to find all files in a directory
22 #include <boost/filesystem /operations.hpp>

#include <boost/filesystem /path.hpp>
namespace fs = boost:: filesystem;

class IndexMachine

{

public:
IndexMachine (void) ;
“IndexMachine (void) ;

tleft )

getOverallAccuracy () << endl;
getFalsePositiveRate () << endl;
getFalseNegativeRate () << endl;
getNumMessages () << endl;
getNumHam () << endl;

m_hamWrong << endl;
getNumSpam () << endl;
m_spamWrong << endl;

void addSource( const string &source, Message:: MSG.TYPE type );

void createlndexes (void);
void setNumlIndexes( int num ) ;

static string getFilePrefix (void);

private:
void shuffleSources(void);
void dumpSources ( ostream &out ) ;

protected:
static string FilePrefix;
int m_numlIndexes;

// store the messages sources as a
// type of message , path to messa
vector < pair<Message : : MSG.TYPE, fs

vector
ge
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50 };

//
2 // IndexMachine. cpp

//

4 // class implementation

6 // this class builds random indezes
// to be used in tests

s //
10 #include "IndexMachine.hpp"

12 // prefiz applied to index files
string IndexMachine:: FilePrefix = "index";
14
// default constructor
16 IndexMachine :: IndexMachine (void)
: m_numlIndexes (0)
s {}

20 // destructor
IndexMachine :: ~ IndexMachine (void)
22 {
// clear the messages vector
24 m_messages . clear () ;

}
// addSource

28 // opens the given source (should be a directory),
// then adds the sources to the owerall list of sources
30 void IndexMachine :: addSource( const string &source, Message::MSG.TYPE type )

{

// the source might be a file or a folder,
34 // and that source is either ham or spam

//
36 // add the path of the source (or paths if a folder)

// to the message vector

26

32

38
fs :: path sourcePath = fs::path( source, fs::native );

40 if ( !fs::exists( sourcePath ) )
{

42 cout << "\n,!! Not Found: " << sourcePath.native_file_string () << endl;

exit (1);
44
46 // check if the source is a directory

if ( fs::is_directory ( sourcePath ) )

48 {

fs::directory_iterator end_iter;

50 for ( fs::directory-iterator dir_iter ( sourcePath );
dir_iter != end_iter;
52 ++dir_iter )
{
54 try
{
56 // for simplicity ,
// don’t allow nested directories
58 if ( fs::is_directory ( *«dir_iter ) )
{}
60 else
{
62 m_messages . push_back ( make_pair( type, *dir_iter ) );

}
64 }

catch ( const exception &e )
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68

70

72

74

76

82

84

86

88

90

92

94

96

98

100

102

104

108

110

116

118

122

124

126

128

130

132

{
}

cout << "Exception:, " << dir_iter =>leaf () << "y" << e.what() << endl;

}

else // source is just a single file

m_messages . push_back ( make_pair ( type, sourcePath ) );

}
}

// createlndexes

// we’ve already added all the desired sources to the messages vector
// mow we meed to actually create the randomized index files

void IndexMachine:: createIlndexes (void)

{

string fileName;
cout << endl << " Indexes Created: " << endl;

// for as many indezxes as we want...
for ( int i=1; i<=m_numlndexes; ++1 )
{
// randomize the messages
shuffleSources () ;

// build indezx filename

fileName = FilePrefix;

stringstream inStream;

inStream << setw (2) << setfill (’0’) << i;
fileName += inStream.str ();

cout << fileName << endl;

// open index output stream
ofstream outFile;
outFile.open( fileName.c_str() );

// output to index file
dumpSources ( outFile );
outFile. close();

}

cout << endl;

}

// how many indezes are desired?
void IndexMachine::setNumIndexes ( int num )

{

m_numlIndexes = num;

// dumpSources

// actually output to the index file

// the messages have already been randomized
// the format is:

//  MSG.TYPE relativePathName

// where MSG.TYPE is either HAM or SPAM

void IndexMachine :: dumpSources ( ostream &out )

{

for ( size_t 1=0; i<m_messages.size(); ++1i )

if ( m_messages[i]. first == Message::HAM )
out << "HAMyuu";
else if( m_messages[i]. first == Message::SPAM )

out << "SPAM,,";

out << m._messages[i].second.native_file_string () << endl;
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}

}

// shuffleSources
// simple shuffling function

void IndexMachine ::

}

string IndexMachine:: getFilePrefix (void)

{
}

srand ( (unsigned)time (0)

int RANGEMIN = 0;

int RANGEMAX = static_cast<int>(m_messages.size ());

shuffleSources (void)

)

for ( size_t 1=0; i<m_messages.size(); ++1 )

{

int newPos = (rand() % static_cast<int>(m_messages.size()));

swap ( m_messages[i], m_messages|[newPos] ) ;

}

return FilePrefix;
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