
AN ADAPTIVE CLUSTERING ALGORITHM

FOR WIRELESS SENSOR NETWORKS

 By

 ALIREZA BOLOORCHI TABRIZI

 Bachelor of Science in Computer Engineering

 Amirkabir University of Technology

 Tehran, Iran

 2008

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December 2011

iii

 AN ADAPTIVE CLUSTERING ALGORITHM

FOR WIRELESS SENSOR NETWORKS

Thesis Approved:

Dr. M. H. Samadzadeh

Thesis Adviser

Dr. Johnson Thomas

Dr. Nazanin Rahnavard

Dr. Mark E. Payton

Dean of the Graduate College

iv

PREFACE

In the context of Wireless Sensor Networks (WSN), the interactions of the sensors in

order to provide service to a specific job is a significant issue. Services provided by

WSNs include collecting data from the environment and aggregating them to address

queries, or processing the collected data and using the result to adjust a number of

environmental parameters such as temperature and moisture. In WSNs, a number of

nodes may need to be used by the same job simultaneously and these nodes usually need

to interact with one another. A number of studies have been conducted to minimize the

overhead of such interactions and to optimize the energy and other resources utilized in

the process. It is desirable in WSNs that enough resources be assigned to the jobs in such

a way that the jobs can acquire their needed resources as fast as possible. The distances

among the sensors that are assigned to carry out a specific job typically constitute an

important factor in saving energy in the context of communications among this sensors.

This thesis concerned introducing a clustering algorithm to enhance the efficiency of

resource assignment by reducing the distances among the cooperating sensors.

Furthermore, in the proposed algorithm, clusters are formed with different sizes in order

to be able to assign just enough number of sensors to a requested job. The sizes of the

clusters in the network were determined based on an input to the algorithm that

contained the initial number of required clusters of each size. The algorithm forms

clusters in such a way that the clusters’ sizes are adapted to the input for the network for

the purpose of serving the incoming jobs better. Upon providing a different input, the

algorithm adaptively changes the network’s clusters.

In this thesis, a basic version of the clustering algorithm was developed. In the

simulation results, several issues were recognized and resolved by revising/extending the

initial version of the algorithm. In a second extension, the algorithm was complimented

by attaching the isolated nodes (i.e., nodes not assigned to any cluster) to the clusters that

did not obtain a sufficient number of nodes. The clustering algorithm was executed with a

pseudo-randomly generated input. The results showed that the number of clusters with

each size matched the requirements for the given input. The algorithm was also run with

100 different pseudo-randomly generated inputs and rectangular-grid networks of

different sizes.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1

 1.1 Background and Problem Statement ... 1

 2.1 Assumptions and Research Objectives ... 2

II. REVIEW OF LITERATURE .. 3

 2.1 Chapter overview ... 3

 2.2 Wireless Sensor Networks (WSN).. 3

 2.3 Clustering Algorithms .. 4

 2.4 Four Popular Clustering Algorithms for WSNs .. 5

 2.4.1 K-mean ... 5

 2.4.2 Low Energy Adaptive Clustering Hierarchy (LEACH) 6

 2.4.3 Hybrid Energy-Efficient Distributed Clustering (HEED) 7

 2.4.4 An Energy Efficient Hierarchical Clustering Algorithm for WSNs 8

III. NETWORK MODEL AND ASSUMPTIONS ... 10

 3.1 Chapter Overview .. 10

 3.2 Network Model .. 10

 3.3 Assumptions .. 11

IV. PROPOSED CLUSTERING ALGORITHM’S DESIGN 15

 4.1 Chapter Overview .. 15

 4.2 Basic Algorithm: Clusterheads and the Advertisement Protocol 15

 4.3 Extension 1: Re-Selection of the Clusterheads .. 17

 4.4 Extension 2: Assigning Isolated Nodes to Clusters 19

iii

Chapter Page

V. ANALYSIS AND SIMULATION .. 21

 5.1 Chapter Overview .. 21

 5.2 Introduction ... 21

 5.3 Simulation Results for the Basic Algorithm .. 24

 5.4 Simulation Results for Extension 1... 26

 5.5 Simulation Results for Extension 2... 27

 5.6 Simulation Results for Different RoAs’ Distributions Among the Clusterheads

 .. 29

 5.7 Scalability Analysis.. 32

 5.7.1 Number of Nodes .. 33

VI. SUMMARY AND FUTURE WORK .. 34

 6.1 Summary ... 35

 6.2 Future Work ... 36

REFERENCES .. 37

APPENDICES ... 39

 Appendix A ... 40

 Appendix B ... 42

iv

LIST OF TABLES

Table Page

Table 1. Number of Clusters of each cluster size or type .. 12

Table 2. The map of Table 1 to cluster types with a granularity factor of 4 13

Table3. An example of calculating the average number of clusters for each cluster sizes

 ... 24

v

LIST OF FIGURES

Figure Page

Figure 1. Result of initial clusterhead selection. The darker nodes are pseudo-

randomly chosen clusterheads and the other nodes represent the regular

nodes before being assigned to a cluster.. ... 22

Figure 2. An example of the distribution of the Range of Advertisements (RoA)

among clusterheads. RoAs define clusters sizes. 23

Figure 3. Comparison of the expected RoAs and the average number of clusters with

each size in the results for 100 executions of the basic algorithm on the

same distribution of RoAs.. .. 25

Figure 4. Visual simulation result of the basic algorithm. The nodes of a cluster have

the same color and shape, and the clusterheads are the bigger nodes with

the same color and shape as the regular nodes in each cluster.. 25

Figure 5. Comparison of the expected RoAs and the average number of clusters with

each cluster size in the results for 100 executions of the extension 1

algorithm using the same distribution of RoAs.. 26

Figure 6. Visual simulation result of extension 1. The nodes of a cluster have the

same color and shape, and the clusterheads are the bigger nodes with the

same color and shape as the regular nodes in each cluster.. 27

Figure 7. Comparison of the expected RoAs and the average number of clusters with

each size in the simulation results for 100 executions of extension 2

algorithm on the same distribution of RoAs. .. 28

Figure 8. Visual simulation results of extension 2 (crawling method), (a) choice 1 (b)

choice 2. The nodes of a cluster have the same color and shape, and the

clusterheads are the bigger nodes with the same color and shape as the

regular nodes of each cluster. ... 29

Figure 9. Results for execution of the proposed algorithm for 100 pseudo-randomly

generated distributions. .. 31

Figure 10. Results for several network sizes: (a) nodes (b) nodes (c)

 nodes. The nodes of a cluster have the same color and shape, and

vi

the clusterheads are the larger nodes with the same color and shape as the

regular nodes of each cluster ... 32

1

CHAPTER I

INTRODUCTION

1.1 Background and Problem Statement

In Wireless Sensor Networks (WSNs), resource management and energy efficiency

are important issues in the context of node interactions [Heinzelman et al. 00]

[Bandyopadhyay and Coyle 03] [Crosby and Pissinou 07] [Zhang et al. 06].

It is necessary to assign sensors to the services that WSNs provide for incoming

queries in a way that each service acquires its required sensors in a finite amount of time.

A service could be monitoring environmental parameters such as temperature and

moisture in different sections of a forest, or doing intrusion detection in different sections

of a bank. A sensor might need to interact with a number of other sensors of the network

in order to obtain the results of their operations for serving a specific query.

Communication might be also between the sensors and a center that manages the sensors

or functions as a sink to which the processed, collected, or generated data are sent for

further processing.

In WSNs, if some of the nodes are not needed for any requested service, a procedure

is required to ask the nodes to go to sleep in order to save energy [van Dam and

Langendoen 03]. Matching the number of nodes in a cluster with the number of nodes

2

needed to provide a service, to which the cluster is going to be assigned, could be a good

solution for efficient communication and resource management. The reason is that the

nodes that are awake and serving a requested service could interact with less energy

consumption since they are in the same cluster.

1.2 Assumptions and Research Objectives

In this thesis work, a clustering algorithm was provided to group the sensors of a

network into clusters of different sizes. The nearest sensor to the geographical center of a

cluster is called a clusterhead [Bandyopadhyay and Coyle 03] [Crosby and Pissinou 07].

The proposed clustering algorithm aimed to decrease the sum of the distances between

the nodes and the clusterhead in each cluster. To this end, an iterative approach was used

to find best clusterheads on the basis of their locations. To test the proposed clustering

algorithm, a list that shows how many clusters with each size are expected to exist in the

clustered network was used. The list was generated pseudo-randomly in this thesis.

3

CHAPTER II

REVIEW OF LITERATURE

2.1 Chapter overview

Resource management provided by clustering algorithms for the purpose of energy

efficiency in WSNs has been the area of research for several studies during the last

decade. In this chapter, a brief background for WSNs and clustering algorithms is

provided. Four of the most notable clustering algorithms for WSNs are also discussed

with the aim of using some of their best practices in designing the proposed clustering

algorithm.

2.2 Wireless Sensor Networks (WSNs)

The emergence of low-power wireless sensors is the result of recent advances in

Micro-Electro-Mechanical Systems or MEMS base sensor technology and low power

electronics [Dong et al. 97] [Clare et al. 99] [Chandrakasan et al. 99]. Sensors are

typically capable of processing data and communication. Wireless Sensor Networks

collect data from the environment, process them in some cases, and provide access to the

data. A sensor in a WSN could measure a number of its environment’s parameters (e.g.,

temperature and sound) and convert the collected data into electrical

4

signals. Processing of the signals generated by a sensor reveals information about the

environment around that sensor [Abbasi and Younis 07]. Sensors are generally weaker

than the nodes in mobile ad hoc networks in that they are less mobile, more limited in

capabilities, and more densely deployed [Younis and Fahmy 04].

2.3 Clustering Algorithms

Backer and Jain [Backer and Jain 81] defined clustering analysis as follows: “a group

of objects is split into a number of more or less homogeneous subgroups on the basis of

an often subjectively chosen measure of similarity such that the similarity among the

objects within a subgroup is larger than the similarity among the objects belonging to

different subgroups”.

Clustering or categorizing entities with similarities into groups has been used in

computer science (web mining, computer vision, machine learning, and wireless sensor

networks), in life sciences and medical sciences (genetics, biology, microbiology,

psychiatry, and pathology), in social sciences (sociology, psychology, archaeology, and

education), in earth sciences (geography, geology, and remote sensing), and in economy

(marketing and business) [Xu and Wunsch 05].

The idea of clustering has been used in a number of studies on WSNs to enhance

energy efficiency [Heinzelman et al. 00] [Bandyopadhyay and Coyle 03] [Crosby and

Pissinou 07]. One of the frequently-considered constraints in designing new clustering

algorithms is that a clustering algorithm for WSNs should provide energy efficiency

while using the maximum capability of the nodes in the respective clusters to give the

best possible performance.

5

In addition to the regular sensing roles in WSNs, some nodes serve another role.

These nodes, one per cluster, are referred to as clusterheads and usually are in charge of

communicating with other clusterheads, base stations, and of course other nodes in the

corresponding cluster [Abbasi and Younis 07]. Base stations are the sink nodes to which

the transferred data from the network are destined for further processing, and they usually

have higher computational and communicational capabilities. Clusterheads sometimes

have management responsibilities as well such as assigning less energy consuming tasks

to nodes with less energy, dealing with node failures, and controlling intra-cluster

communication and traffic [Bandyopadhyay and Coyle 03] [Crosby and Pissinou 07].

2.4 Four Popular Clustering Algorithms for WSNs

2.4.1 K-mean

The distance between nodes and their clusterheads is an important factor in the

context of Wireless Sensor Networks where energy constraints limit the communication

capabilities [Abbasi and Younis 07] [Heinzelman et al. 00]. Several existing clustering

algorithms such as K-mean [McQueen 66] create clusters based on the distance between

pairs of nodes in a network. In the K-mean algorithm, which aims to divide a WSN into k

clusters, k sensors are chosen randomly as clusterheads. Sensors join the clusters with the

geographically nearest clusterhead to them. After all nodes join the cluster, the first step

is completed. Then the nearest nodes to the geographical center of each cluster are chosen

as the new clusterheads. The same procedure is repeated until the clusterheads do not

change anymore [McQueen 66].

6

2.4.2 Low Energy Adaptive Clustering Hierarchy (LEACH)

One of the popular clustering algorithms for Wireless Sensor Networks is Low

Energy Adaptive Clustering Hierarchy (LEACH) [Heinzelman et al. 00]. In LEACH, all

sensors in the network are homogeneous and energy constrained. They assume a radio

model for the transmitters and receivers. In this radio model, the receivers’ energy

consumption depends on the message size, and the transmitters’ energy consumption

depends on the message size and the square of the distance the data being transmitting. In

LEACH, it is also assumed that the radio channels are symmetric in the sense that for a

given SNR, the energy required to transmit a message from node A to node B is the same

as the energy required to transmit a message from node B to node A. It is also assumed

that all the sensors are sensing with a same rate so they always have data to send to the

end users.

Sensors become clusterheads based on two parameters. The first parameter is a

suggested percentage for clusterheads in the network that is given as an input to the

algorithm. The second parameter is the number of times a node has been a clusterhead.

Clusterheads advertise or broadcast their status as clusterheads in the network. The

strengths of the signals that are used for communication in the network decrease as the

signals move away from the source. Based on the strengths of the signals that the sensors

receive from the clusterheads, the non-clusterhead nodes join a cluster with the

clusterhead that can be reached with the least energy consumption for communication

[Heinzelman et al. 00].

In LEACH, clusterheads are changed in a timely manner to prevent them from

running out of energy which could come about much earlier than the other nodes. This

7

could be considered the distinguishing feature of LEACH, a conventional clustering

algorithm that has fixed clusterheads during its lifetime (i.e., the time period before the

first sensor dies as a result of energy depletion). The LEACH protocol has been

compared to three other protocols, namely, direct transmission, minimum transmission

control, and static clustering. In the direct transmission protocol, each sensor node

transmits directly to the sink, and it is efficient when there is a small coverage area and/or

high receive cost. Traffic is routed through independent nodes in minimum transmission

energy protocol which is a good solution when the average transmission distance is large.

In static clustering, the nodes in each cluster transmit the collected data to the clusterhead

and the clusterhead transmits it to the sink.

It has been shown that compared to conventional clustering algorithms, Heinzelman

et al.’s algorithm increases network lifetime [Heinzelman et al. 00].

2.4.3 Hybrid Energy-Efficient Distributed Clustering (HEED)

Another clustering algorithm for Wireless Sensor Networks is Hybrid Energy-

Efficient Distributed clustering (HEED) [Younis and Fahmy 04]. Younis and Fahmy

assumed that the sensors are stationary and all have the same amounts of energy and

identical processing capabilities. Analogous to LEACH, the aim of the HEED protocol is

prolonging network lifetime by adaptively changing the clusterheads based on their

energy. In their protocol, Younis and Fahmy used a second parameter for decision

making in the situations when a node receives advertisements from more than one

clusterhead. HEED works based on the probability of two clusterheads being in each

other’s transmission range, i.e., the probability of existence of nodes that might receive

clusterhead advertisement from both clusterheads. The smaller this probability is, the

8

more uniformly distributed the clusterheads are in the network, as Younis and Fahmy

demonstrated. They modified LEACH slightly in order to be able to compare its result in

terms of network lifetime with their algorithm’s results. They showed that their algorithm

outperforms this extension of LEACH. Younis and Fahmy showed that the improvement

is a result of a better choice of clusterheads by HEED as compared to LEACH where

clusterheads are chosen randomly.

2.4.4 An Energy Efficient Hierarchical Clustering Algorithm for WSNs

Bandyopadhyay and Coyle [Bandyopadhyay and Coyle 03] introduced an energy

efficient clustering algorithm for WSNs in which sensors in the network join clusters

based on each sensor’s distance from the clusterheads. In this algorithm, a probabilistic

approach is used to select the clusterheads. The event of a node becoming a clusterhead

follows a binomial distribution where each node becomes a clusterhead with probability p

that is determined based on the required number of clusters in the network, and is

assumed to be provided as an input to their algorithm [Bandyopadhyay and Coyle 03].

In Bandyopadhyay and Coyle’s work, each clusterhead advertises itself to other

nodes in the network. These advertisements are broadcast in the network with the range

of no more than a specific number of k hops. The number of hops is the number of

intermediate nodes in the path from a clusterhead to a node that receives the

advertisement.

Bandyopadhyay and Coyle tried to find optimal values for parameters p and k to

minimize the energy used in the network [Bandyopadhyay and Coyle 03]. They

simulated their algorithm and provided a comparison with another clustering algorithm,

namely, Max-Min D-Cluster [Amis et al. 00]. In the Max-Min D-Cluster algorithm,

9

networks are clustered in such a way that each node is either a clusterhead or at most d

hops away from a clusterhead with d ≥ 1.

A hierarchical clustering algorithm was also provided by Bandyopadhyay and Coyle

[Bandyopadhyay and Coyle 03]. In this algorithm, after a network is clustered, which is

the first level of a hierarchy, the clusterheads are considered as nodes of a new network.

The new network is clustered as the second level of the hierarchy, and again the

clusterheads of the second level build a new network of their own. This procedure

continues up to a given level (the optimized number of levels is provided by

Bandyopadhyay and Coyle) [Bandyopadhyay and Coyle 03]. In the hierarchical

clustering algorithm, the first level would be the same as the basic protocol where each

node elects itself as a clusterhead with probability p1 and the clusterheads advertise

themselves within the range of k1 hops. For subsequent levels, the clusterheads of the

previous level elect themselves as the clusterheads of a new level i with probability pi and

advertise themselves within the range of at most ki hops. Bandyopadhyay and Coyle also

introduced a method to optimize the values of pi and ki in level i clusters in an attempt to

provide an energy efficient scheme [Bandyopadhyay and Coyle 03].

10

CHAPTER III

NETWORK MODEL AND ASSUMPTIONS

3.1 Chapter Overview

In this chapter, a network model and several assumptions about the characteristics of

the network to which the new proposed clustering algorithm applies are specified. First, a

number of network characteristics and assumptions are discussed. The assumptions are

tightened in Section 3.3.

3.2 Network Model

In this thesis work, the focus was on a network with a number of homogeneous

components where each component is a processing unit with local memory, and no

limitation is imposed on the number of components in the network. The components are

deployed in rows and columns, and the layout of the network is assumed to be

rectangular with hard boundary (i.e., a rectangular grid). The components to the right and

left of a component as well as above and below it are called its neighbors. Each

component is directly connected to its four neighbors. The distance between two

neighbors is defined to be one unit. Since the layout has hard boundaries, there are

11

components at the periphery of the network which might have fewer than four neighbors.

Investigation of the case where the components are distributed in a pattern more general

than a rectangular array is relegated to the future work in this area.

The proposed clustering algorithm needs to be initially deployed with a centralized

approach, i.e., a centeralized entity is needed to manage the clustering.

The components of the network are to be divided into several clusters of not-

necessarily-equal sizes. One of the components in each cluster is used as a clusterhead to

aggregate the output of the components of the cluster and to manage the communication

among the components in the cluster. Aggregation here refers to any process to which the

output of the components of a cluster could be subjected, e.g., concatenation of the

outputs or removal of the possible overlaps of the outputs.

3.3 Assumptions

The input to the proposed clustering algorithm is a list of the number of clusters with

different sizes, i.e., number of nodes. An example of the input list is given in Table 1. In

this example, it is assumed that the clusters have between 6 and 25 nodes.

Depending on the network that uses the proposed clustering algorithm, the input list

can be generated using predictive methods based on historical data, e.g., based on the

number of clusters of different sizes in the past. However, the focus of this work is on the

clustering algorithm. Therefore, as a simplifying assumption and to maintain narrow

research focus, the input based on which the algorithm forms the clustered network is

generated pseudo-randomly. To evaluate the level of dependence of the algorithm on the

pseudo-randomly generated input, the algorithm was tested for 100 different pseudo-

randomly generated inputs as outlined in Section 5.6.

12

As for using historical data to predict the needed number of clusters with each size,

generating an accurate table like Table 1 might not be easy. In other words, determining

the number of clusters needed for each cluster size precisely would be a nontrivial task.

Without the loss of generality, the clusters with sizes that are only slightly different could

be put into one group as a cluster type resulting in a number of cluster types. The

granularity of this grouping can be decided based on the accuracy of the method used for

generating the input list. In the example provided in Table 2, the clusters in Table 1 are

grouped in a way that the difference between any pair of cluster sizes in a cluster type is

at most 4 nodes, referred to as the granularity factor for the rest of this thesis report. For

example, the number of clusters for the first cluster type is equal to the sum of the

number of clusters with each size in that cluster type which are 1, 2, 0, and 1 in Table 1,

and 4 for the first cluster type in Table 2. It is obvious that Table 1 is a special case of

Table 2 with a granularity factor of 1.

Table 2. Number of clusters of each “cluster size” or “type”.

Cluster size Number of Clusters Cluster size Number of Clusters

6 1 16 1

7 2 17 1

8 0 18 0

9 1 19 0

10 2 20 2

11 0 21 3

12 1 22 0

13 2 23 3

14 0 24 2

15 4 25 0

13

Table 2. The mapping of Table 1 to cluster types with a granularity factor of 4.

A parameter is assigned to each clusterhead that shows the number of nodes that the

corresponding cluster needs. This parameter is named the Range of Advertisement (RoA)

which shows the expected cluster size. The namesake for the RoA is that the number of

Cluster

size

Number

of

Clusters

Cluster type

Cluster

Type’s

Range

Median of

the Group

range

Number of

Clusters

6 1

1 {6, 7, 8 , 9} 7.5 4

7 2

8 0

9 1

10 2

2
{10, 11, 12,

13}
11.5 5

11 0

12 1

13 2

14 0

3
{14, 15, 16,

17}
15.5 6

15 4

16 1

17 1

18 0

4
{18, 19,

20, 21}
19.5 5

19 0

20 2

21 3

22 0

5
{22, 23, 24,

25}
23.5 5

23 3

24 2

25 0

14

nodes that are joining a cluster should be proportional to the distance (range) up to which

the related clusterhead advertises the membership message.

All clusters in a cluster type were assigned the same RoA which is the median of the

cluster type’s range. For example, the RoA of all five clusters of the second cluster type

in Table 2 is equal to 11.5. A method could be used to lessen the effect of the inaccuracy

that may be introduced due to the grouping method proposed earlier in this section.

Instead of assigning the same RoAs to all clusters in a cluster type, the clusters in a

specific cluster type could be distributed among the other clusters with sizes in the cluster

types’ ranges. For example, the number of clusters in the second cluster type in Table 2 is

5. Instead of assigning 5 clusters with an RoA of 11.5, there could be 1.25 clusters with

RoA of 10, 1.25 clusters with RoA of 11, 1.25 clusters with RoA of 12, and 1.25 clusters

with RoA of 13. Although the number of clusters should be a natural number as one

would expect, the real number that is mentioned here shows the expected number of

clusters for each RoA. To make it clearer, assume that the number of clusters to which

each RoA in a cluster type’s range are assigned are chosen using a pseudo-random

number generator that is based on a uniform distribution.

The computational complexity of the proposed clustering algorithm is an issue to be

considered. Based on the studies on a special case of the proposed clustering algorithm

(k-mean) [McQueen 66], the problem is computationally difficult (NP-hard). With

different assumptions, the questions of best case and worst case complexities of the

algorithm could be investigated.

15

CHAPTER IV

PROPOSED CLUSTERING ALGORITHM’S DESIGN

4.1 Chapter Overview

Characteristics of the input to the proposed algorithm were presented in Chapter III.

In this chapter, first a basic version of the proposed clustering algorithm is explained. The

basic algorithm is based on an advertisement protocol. The proposed clustering algorithm

is then improved with two extensions. The first extension consists of an iterative

advertisement protocol with the purpose of improving the clustering process. The second

extension introduces a method for assigning the nodes which have not already joined a

cluster to different clusters.

5.2 Basic Algorithm: Clusterheads and the Advertisement Protocol

In the proposed algorithm, each node can be a clusterhead with a probability of .

Considering a node becoming a clusterhead as “success” and not becoming a clusterhead

as “failure” where the event of a node becoming a clusterhead is independent of other

nodes, the number of clusterheads in the network follows a binomial distribution.

 (7)

where Nch is the number of clusterheads and N is the number of nodes in the network.

16

Nch clusterheads are chosen from among the nodes in the network pseudo-randomly.

Each clusterhead advertises membership messages which are messages that ask network

nodes to join the clusters of the advertising clusterheads. The membership messages are

sent to each clusterheads’ directly-connected neighbors (four nodes). The nodes that are

not clusterheads and receive the advertisement, join the cluster. If a node receives two or

more membership messages, it joins the cluster for which the difference between its

number of acquired nodes and the respective clusterhead’s RoA is larger. In the next step,

the recently-joined nodes advertise membership messages to their own directly-connected

neighbors. Ideally, this procedure should continue until every cluster acquires exactly a

number of nodes that is equal to its RoA. However, based on simulations (Section 6.3), it

was determined that the basic algorithm has a number of drawbacks as listed below.

1. There might be a number of nodes that are neither clusterheads nor members of a

cluster, to be referred to hereafter as isolated nodes.

2. There might be a number of clusters in close proximity to each other that cannot

grow and accumulate the sufficient number of nodes, i.e., reach their assigned

RoAs, the reason being that the clusterheads have been chosen pseudo-randomly

from the nodes and are not distributed evenly in the network to be able to acquire

their required number of nodes. The clusterheads are distributed evenly in a

network if they are distributed evenly in a way that all of them are able to acquire

their required nodes while staying at the geographical center of their cluster.

Uneven distribution of the clusterheads may also cause the creation of entangled

isolated nodes which are nodes that are not connected to any cluster and are

17

trapped among some clusters that have already accumulated a sufficient number

of nodes.

3. Some clusters may have constrained surroundings because either there are other

clusterheads as their neighbors or they are next to the boundary of the rectangular

grid network. Since a rectangular layout with hard boundary is assumed for the

network (see Chapter III), there may be a number of clusterheads close to the

periphery that cannot grow in one or even two directions. Moreover, from the

simulations, it has been observed that as expected the nodes near the boundary are

more likely to stay isolated.

In the following sections, two extensions to the proposed basic clustering algorithm

are introduced with the purpose of addressing the above three issues.

5.3 Extension 1: Re-Selection of the Clusterheads

In this extension, the nodes that have been selected as clusterheads by the clustering

algorithm are released and the central node of each cluster is chosen as a future

clusterhead. If the network is assumed as a two dimensional Cartesian coordinate system,

the central node of each cluster is the node whose coordinates are closest to the average

of the coordinates of all the nodes in the cluster in both x and y axes.

The extended proposed algorithm basically consists of iterations of the basic

algorithm followed. The iterations terminate once the clusterheads do not change their

locations anymore, i.e., when the sum of the distances of the current clusterheads and the

previous ones in each cluster approaches 0. Note that 0 is a limit value and, since a

discrete environment is assumed, there may be a case where two or more nodes are

qualified for being clusterheads in a cluster and selection of a clusterhead may switch

18

back and forth among those nodes continually. Therefore, once the locations are changing

less than a threshold value, to be referred to as the convergence threshold, the process is

stopped. The convergence threshold is a system parameter and its value is decided based

on a trade-off between the algorithms convergence time and the even distribution of the

clusterheads.

This extension should provide a better distribution of the clusterheads since it is

designed to separate the clusterheads that are undesirably close to each other. The

modified clustering algorithm also places the clusterheads away from the boundary based

on the number of nodes in each cluster.

Since the clusterheads are distributed pseudo-randomly in the network, it is possible,

in spite of the re-selection of the clusterheads toward the center of clusters, that a number

of the clusterheads still get entangled among some other clusterheads and not be able to

acquire all of their required nodes. This problem is addressed by pseudo-randomly

selecting another node in the network as the clusterhead instead of any of the clusterheads

that have not reached a threshold number of nodes in the previous iteration. The RoA of

the current clusterhead should be assigned to the new one. The threshold value for the

number of nodes that each cluster should acquire in each iteration was chosen based on

the RoA of that cluster. The closer threshold values to the RoAs of the clusterheads

resulted in fewer isolated nodes in the basic algorithm and a larger convergence time.

Simulation results showed that the problem that a number of nodes may not be

members of any cluster still exists. The next extension addresses this issue.

19

5.4 Extension 2: Assigning Isolated Nodes to Clusters

In this extension, two possible alternative improvements are proposed and their

comparison is discussed in the analysis and simulation chapter (Section 5.5) in more

detail.

In the first improvement, before each iteration of re-selecting the clusterheads, the

isolated nodes are assigned to the nearest clusterhead. In the situations where there are

more than one clusterhead with the same minimum distance to the node, the clusterhead

that needs more nodes to reach its specified population size is chosen.

An alternative improvement is introduced in this thesis. This improvement, to be

referred to as the crawling method, attaches the isolated nodes to the clusterheads that

need more nodes to reach their RoAs, i.e. the neediest clusters. The isolated node should

not be added directly to the neediest cluster because it prevents the protocol from

guaranteeing nearest distances between nodes and their corresponding clusterheads.

Another algorithm was proposed to help the isolated nodes crawl in the network to reach

the neediest cluster. The algorithm is outlined below.

1. Each isolated node, marked as the current node, finds a shortest path through the

network to the neediest cluster.

2. In the shortest path, the current node joins the cluster that the next node belongs

to.

3. If the next node in the shortest path is not a member of the neediest cluster, set

the next node as the current node and go to Step 2.

4. If there is no other isolated node in the network, exit, else go to Step 1.

20

After the algorithm runs, the clusterhead re-selection is re-applied and the new

clusterheads will be the nodes in the center of the clusters with the inclusion of the new

additions.

Since the clusterheads are initially selected pseudo-randomly, in some cases the

algorithm may not converge to minimize the sum of the distances, i.e., the sum of the

distances may just keep changing. To deal with this problem, a threshold value was used

for the number of iterations. If within that threshold number of iterations the algorithm

did not converge, the clusterheads are re-selected pseudo-randomly, and the algorithm

starts anew. The threshold value could be chosen based on different factors such as the

number of nodes, historical data, etc.

21

CHAPTER V

ANALYSIS AND SIMULATION

5.1 Chapter Overview

The design of the proposed clustering algorithm was explained in Chapter IV. The

proposed clustering algorithm’s implementation and evaluation are described in the

current chapter. First, the basic algorithm is evaluated and, based on the observed

drawbacks, the first extension is added. The results of the extension are compared with

the basic algorithm. Next the second extension is implemented and added to the proposed

algorithm, and the results are analyzed.

The proposed clustering algorithm was tested for different number of nodes in the

network and 100 different pseudo-randomly generated inputs (Section 5.6). The inputs

contain information about the number of clusters of certain sizes. The results suggest that

the proposed clustering algorithm’s performance is independent of network size and

specific input.

5.2 Introduction

As it is mentioned in Chapter III, the network has a rectangular layout with hard

22

boundary, and the clusterheads are chosen based on the computed probabilities as given

in Section 4.2.

Figure 1 shows a 20 network after choosing the clusterheads. The nodes with

darker colors are the clusterheads and the rest are regular nodes. The input could be

considered as the distribution of the RoAs (see Section 3.3) among the clusters in the

network.

In this section, the RoAs’ distribution among the clusterheads is assumed to be as

given in Figure 2. The given RoAs’ distribution is consistently used for all simulation

results in this chapter. In the example of this chapter, five cluster types with sizes

between 5 and 29 are considered and the granularity factor is 5.

 In Figure 2, the number of clusters for each RoA is not a whole number and the

reason is explained in Section 3.3. The results of using the algorithm for 100 different

pseudo-randomly generated RoAs’ distributions among the clusterheads are discussed

later in the thesis (Section 5.6).

Figure 1. Result of initial clusterhead selection. The darker nodes are pseudo-randomly

chosen clusterheads and the other nodes represent the regular nodes before being

assigned to a cluster.

23

An advertisement protocol was used to assign the nodes to clusters. All clusterheads

advertise to take members with the same priority. To this end, the clusterheads are asked

to advertise one step at a time, i.e., first to their neighbors, next to the neighbors of their

neighbors, and so on. The process of stepwise advertising ceases when all clusterheads

obtain their required number of nodes or there are no nodes that respond to the

advertisements. Based on the simulations in this thesis, it has been observed that it is

harder for the clusters with larger RoAs to acquire sufficient number of nodes. Thus,

another choice could be giving the clusters with larger RoAs higher priority in taking

nodes. To this end, the clusterheads could be prioritized in a non-ascending order of their

RoAs in order to give the clusterheads with larger RoAs more opportunity to acquire

nodes.

To make the results that are provided in this chapter more reliable, the clustering

algorithm was executed 100 times and the average of the result of each execution was

used for analysis. Table 3 describes how the average of 3 execution of clustering

algorithm could be generated. In this example, 5 clusters are considered in a cluster type

with the range of {6, 7, 8, 9}.

Figure 2. An example of the distribution of the Range of Advertisements (RoA) among

clusterheads. RoAs define clusters sizes.

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Ex
p

e
ct

e
d

 N
u

m
b

e
r

o
f

C
lu

st
e

rs

RoA

24

5.3 Simulation Results for the Basic Algorithm

The result of the execution of the basic algorithm is depicted in Figure 3. In the basic

algorithm, only the advertisement procedure is executed and neither re-selection of the

clusters is applied (extension 1) nor the isolated nodes are taken care of (extension 2). As

it is observable in Figure 3, the number of clusters of sizes 18 and more (except 21) are

less than the expected number. The number of clusters of sizes smaller than 17 are more

than their expected number. The reason is that a number of the clusters do not acquire

sufficient number of nodes, which is the result of the existence of the isolated nodes.

Table3. An example of calculating the average number of clusters for each cluster size.

Cluster ID 1 2 3 4 5 Cluster Sizes 6 7 8 9

Cluster size after 1st

execution

7 7 6 7 9

Number of

clusters after 1st

execution

1 3 0 1

Cluster size after 2nd

execution

8 7 9 9 6

Number of

clusters after 2nd

execution

1 1 1 2

Cluster size after 3rd

execution

9 7 7 7 9

Number of

clusters after 3rd

execution

0 3 0 2

Average number

of clusters

0.6 2.3 0.3 1.6

25

The clusterheads are distributed pseudo-randomly therefore a number of them might

prevent other clusterheads from acquiring nodes and, a number of the clusterheads might

fall on the boundary and not be able to advertise in all directions.

Figure 3. Comparison of the expected RoAs and the average number of clusters with

each size in the results for 100 executions of the basic algorithm on the same

distribution of RoAs.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
v
e
r
a
g
e
 N

u
m

b
e
r
 o

f
C

lu
st

e
r
s

Cluster Size

Expected Number of Clusters

Basic Algorithm

Figure 4. Visual result of the basic algorithm. The nodes of a cluster have the same

color and shape, and the clusterheads are the bigger nodes with the same color and

shape as the regular nodes in each cluster.

26

In the example depicted in Figure 4, the distribution of the clusterheads in the

network as a result of applying the basic algorithm indicates that several clusterheads

may be undesirably close to one another, and a number of them might be on or too close

to the boundary.

5.4 Simulation Results for Extension 1

In this stage, a procedure for re-selecting clusterheads was added to the algorithm.

Figure 5 shows the simulation result of adding the procedure for re-selecting the

clusterheads and the results of iterations of the algorithm until the change in the

clusterheads’ locations became at most one unit for each clusterhead. One unit is the

convergence threshold value that was discussed in Section 4.3.

The number of clusters with different sizes was still not matching the RoAs

distribution and the clusterheads with higher RoAs still could not obtain a sufficient

number of nodes although all clusterheads were far enough from the boundary and each

Figure 5. Comparison of the expected RoAs and the average number of clusters with each

cluster size in the results for 100 executions of the extension 1 algorithm using the same

distribution of RoAs.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
lu

st
e

rs

Cluster Size

Expected Number of Clusters

Basic Algorithm

Extention 1

27

other to be able to reach their RoAs. The clusterheads were also close to the centers of

their own clusters. Figure 6 depicts the visual simulation result of this extension.

5.5 Simulation Results for Extension 2

To choose between the two proposed methods of attaching the isolated nodes to the

clusters, both methods that were proposed in Section 4.4 were implemented and the

results were compared. The distribution of the resulting clusters in the network was

compared with the distribution of the RoAs among the clusterheads. It was found that the

convergence time for the first method was less than the convergence time for the second

method. However, the distribution of clusters with different sizes did not match the RoAs

distribution among the clusterheads. A better distribution of the clusterheads seems to be

necessary to be found using an optimization approach, e.g., by using genetic algorithms,

which was not covered in this thesis.

Figure 6. Visual simulation result of extension 1. The nodes of a cluster have the

same color and shape, and the clusterheads are the bigger nodes with the same color

and shape as the regular nodes in each cluster.

28

Figure 7. Comparison of the expected RoAs and the average number of clusters with

each size in the simulation results for 100 executions of extension 2 algorithm on the

same distribution of RoAs.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930 A
v
e
r
a
g
e
 N

u
m

b
e
r
 o

f
C

lu
st

e
r
s

Cluster Size

Expected Number of Clusters

Extention 2: Choice 2

Extention 2: Choice 1

There are two choices for attaching the isolated nodes to clusters using the crawling

method as introduced in Section 4.4. One choice is to attach the isolated nodes before

each re-selection of the clusterheads and the other choice is to execute the crawling

method once right at the end of last iteration of reclustering. Simulations showed that the

second choice worked better in that the clusterheads were distributed more evenly and the

algorithm converged faster. The later convergence time of the first choice might be

because of a number of nodes that were not directly attached to their clusters causing the

crawling procedure to be executed several more times thus making the clusters

unbalanced. As a result of unbalanced clusters, more iterations were needed in re-

selecting the clusterheads in order to stabilize the location of the clusterheads. In the

simulation runs, the convergences time for the first choice and the second choice were

33.73 and 2.34, respectively. The two numbers are the average number of iterations that

each method needs to converge. They are the average number of iterations for 100

executions of the algorithm. The result for the crawling method is given in Figure 7. The

visual results of the algorithm for the two choices are depicted in Figure 8.

29

(a) (b)

Figure 8. Visual simulation results of extension 2 (crawling method), (a) choice 1 (b)

choice 2. The nodes of a cluster have the same color and shape, and the clusterheads are

the bigger nodes with the same color and shape as the regular nodes of each cluster.

In Figure 7, compared to extension 1, the number of clusters with each size is closer

to the expected number for that cluster size. Only in a few situations where the expected

number of clusters changes from one cluster type to another was a large difference

between the number of clusters and the expected number of clusters observed (e.g., from

cluster size 9 to 10). Depending on the magnitude of change of the expected number of

clusters in two adjacent cluster types, the first or the last cluster size in the cluster types’

ranges might have more or fewer clusters than what was expected. This inequality was

compensated for by other clusters in the cluster type. Since the clusters in one cluster type

were supposed to have close cluster sizes, this inequality was considered negligible.

5.6 Simulation Results for Different RoAs’ Distributions Among the Clusterheads

In the previous sections of this chapter, the simulation results presented were based

on a specific distribution of the RoAs. In this subsection, it is shown that the algorithm

worked well for 100 different pseudo-randomly generated distributions.

30

The difference between the number of the nodes that a cluster acquires and that

cluster’s RoA was calculated for all clusters. This number is referred to as the number of

missing nodes of a cluster. Note that if the magnitude of the number of nodes acquired by

a cluster is greater than its RoA, the magnitude of the number of missing nodes is

considered to be a negative number equal to the difference between the number of

acquired nodes and the RoA. The following formula calculates the sum of the differences

in all clusters for the pseudo-randomly generated distributions.

 ∑

 (8)

In this formula, d is the sum of the differences, di is the number of missing nodes in

cluster i, |di| is the absolute value of di which is an integer between 0 and the RoA of the

respective cluster, and Nch is the total number of clusterheads in the network.

The ideal case for the result is for the sum of differences to be equal to 0 or the

number of nodes in the clusters to be exactly equal to their RoAs.

The sum of the differences contains information about the total number of missing

nodes in all clusters although it does not provide any information about how the missing

nodes are distributed among the clusters. For example, consider the situation where Nch is

10 and the total number of missing nodes in the clustered network is 20. It is possible that

the number of nodes in cluster j be in the range [RoAj - 2, RoAj+2], where RoAj is the

RoA of cluster j with 0 < j < Nch. It is also possible that a cluster’s missing nodes be 20

and any other cluster j have exactly RoAj nodes. Formula (9) below, in addition to the

total number of missing nodes, reflects another parameter that is related to how the

missing nodes are distributed in the clusters of the network. In this formula, in each

cluster more weight is given to the second missing node than the first one, more weight to

31

the third missing node than the second one, and so on for the rest of missing nodes. A

geometric progression is utilized to reflect the weights.

 ∑

 (9)

In this formula, the value of a can be decided based on the criticality of not reaching

RoAs in the clusters, i.e., not acquiring enough nodes. In the simulation runs reported in

this work, a = 2 was used. For instance, assume the situation where there are three

clusters in the network and three nodes are missing. In situation where the three clusters

miss one node each, the sum of the differences would be 3, but if one cluster misses three

nodes and the others do not miss any node, the sum of the differences would be 2
3
.

Average simulation results for 100 executions of the proposed algorithm for any of

the 100 pseudo-randomly generated distributions is shown in Figure 9. It appears that

almost all the averages of the sum of the differences for all distributions in Figure 9 were

between 30 and 50, and the number of clusters were in the range of 20 to 30. In the

situation where all the missing nodes were from only one cluster, since the sum of the

differences is at most 50, the average of the total number of missing nodes was less than

Figure 9. Results for execution of the proposed algorithm for 100 pseudo-randomly

generated distributions.

0

10

20

30

40

50

60

0 99W
e
ig

h
te

d
 M

is
se

d
 M

e
m

b
e
r
s

a
n

d
 A

v
e
r
a

g
e
 N

u
m

b
e
r
 o

f

C
lu

st
e
r
s

Psuedo-Randomly Generated Distribution's Number

weighted sum of the differences

number of clusters

32

(a) (b)

 (c)

Figure 10. Results for several network sizes: (a) nodes (b) nodes

(c) nodes. The nodes of a cluster have the same color and shape, and the

clusterheads are the larger nodes with the same color and shape as the regular nodes

of each cluster.

6 based on Formula 9 which is provided earlier in this section. If each cluster misses at

most 2 nodes on average, the total of less than 25 nodes would be missing in the network.

In both cases, the average result of executing the proposed algorithm was similar to the

case study of this thesis, Sections 5.2 to 5.5.

5.7 Scalability Analysis

In the previous sections of Chapter V (Sections 5.2 to 5.6), a constant value of 400

nodes in 20 rows and 20 columns was assumed, and the number of cluster types was

33

assumed to be 5. In the following section, the proposed algorithm is discussed for

different values of number of nodes and cluster types.

5.7.1 Number of Nodes

The algorithm was tested based on several choices for the number of rows and columns

of the rectangular grid network. Results for three cases are shown in Figure 10.

34

CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary

In Chapter I, the main objective of this thesis was presented. Chapter II provided

background knowledge on Wireless Sensor Networks and clustering. The characteristics

of four popular clustering algorithms were also discussed in Chapter II. Chapter III

contained the description of the network model. The assumptions for this thesis were

further described in Chapter III.

In Chapter IV, a new clustering algorithm was proposed to support Wireless Sensor

Networks. The proposed algorithm groups the nodes of a given network into clusters of

different sizes. The proposed clustering algorithm was built upon two quantitative aspects

of the underlying network. The first aspect was the required number of nodes in each

cluster that could be different for each cluster. The number of nodes in each cluster was

aimed to match the size expected for that cluster. In this thesis, the expected size for each

cluster was determined based on a pseudo-randomly generated input. The second aspect

was the consideration of the sum of the distances between the nodes in each cluster and

35

its corresponding clusterhead. A clusterhead was chosen based on its location, which

means that it was chosen in a way that the sum of the distances between nodes and the

clusterhead was minimized. In this thesis, a basic algorithm was introduced and then

extended in two stages.

The proposed algorithm was simulated based on pseudo-randomly generated

expected number of clusters with different sizes. In Chapter V, the results of the

simulation were provided. The results showed that the number of clusters with each size

in the clustered network closely correspond to the given expected numbers. The proposed

algorithm was executed based on 100 different pseudo-randomly generated expected

number of clusters with different sizes to prototypically evaluate the applicability of the

algorithm for more general cases. The scalability of the proposed algorithm was

discussed in Section 5.7 and the observation is that the algorithm was working for

different network sizes.

6.2 Future Work

The clustering algorithm that was introduced in this thesis was based on a number of

assumptions. First, the proposed clustering algorithm is designed for Wireless Sensor

Networks and it might be extendable for Network on Chips, cloud computing, and

several other types of networks.

The network model was assumed to be in a rectangular layout with hard boundary.

The sensors were considered to be placed in rows and columns and the distance between

two neighbors was assumed to be one unit. The proposed clustering algorithm might be

extended based on more generalized assumptions. The layout can be considered to be

other geometric shapes or no specific geometric shape. The distribution of the sensors in

36

the network could be considered as not being in rows and columns or not even uniformly

distributed. Instead of or in addition to the distance among the sensors, other aspects can

be considered such as the cost of communication among the sensors.

37

REFERENCES

[Abbasi and Younis 07] A. A. Abbasi and M. Younis, “A Survey on Clustering

Algorithms for Wireless Sensor Networks”, The Journal of Computer

Communications, Vol. 30, No. 14-15, pp. 2826-2841, October 2007.

[Amis et al. 00] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-Min D-

Cluster Formation in Wireless Ad Hoc Networks”, Proceedings of the Nineteenth

Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), No. 1, pp. 32-41, Tel Aviv, Israel, March 2000.

[Backer and Jain 81] E. Backer and A. K. Jain, “A Clustering Performance Measure

Based on Fuzzy Set Decomposition”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. PAMI-3, No. 1, pp. 66-75, January 1981.

[Bandyopadhyay and Coyle 03] S. Bandyopadhyay and E. Coyle, “An Energy Efficient

Hierarchical Clustering Algorithm for Wireless Sensor Networks”, Proceedings of

the Twenty-Second Annual Joint Conference of the IEEE Computer and

Communication (INFOCOM’03), Vol. 3, pp. 1713-1723, San Francisco, CA, April

2003.

[Casella and Berger 90] George Casella and R. L. Berger , Statistical Inference, Duxbury

Press, Pacific Grove, CA, 1990.

[Chandrakasan et al. 99] A. Chandrakasan, R. Amirtharajah, Seonghwan Cho, J.

Goodman, G. Konduri, J. Kulik, W. Rabiner, and A. Wang, “Design Considerations

for Distributed Microsensor Systems”, Proceedings of IEEE 1999 Custom

Integrated Circuits Conference (CICC), pp. 279-286, San Diego, CA, May 1999.

[Clare et al. 99] L. P. Clare, G. J. Pottie, and J. R. Agre, “Self-Organizing Distributed

Sensor Networks”, Proceedings of Society of Photo Optical Engineering (SPIE)

Conference on Unattended Ground Sensor Technologies and Applications, pp. 229-

237, Orlando, FL, April 1999.

38

[Crosby and Pissinou 07] G. V. Crosby and N. Pissinou, “Cluster-Based Reputation and

Trust for Wireless Sensor Networks”, Proceedings of the Consumer

Communications and Networking Conference (CCNC’07), pp. 604-608, Las Vegas,

NV, January 2007.

[Dong et al. 97]M. Dong, K. Yung, and W. Kaiser, “Low Power Signal Processing

Architectures for Network Microsensors”, Proceedings of International Symposium

on Low Power Electronics and Design, pp. 173-177, Monterey, CA, August 1997.

[Heinzelman et al. 00] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,

“Energy-Efficient Communication Protocol for Wireless Microsensor Networks”,

Proceedings of the Hawaii International Conference on System Sciences

(HICSS’00), Vol. 2, pp. 1-10, Wailea Maui, HI, January 2000.

[Josang and Ismail 02] A. Josang and R. Ismail, “The Beta Reputation System”,

Proceedings of the Fifteenth Bled Electronic Commerce Conference, pp. 324-337,

Bled, Slovenia, June 2002.

[Keshavarzian et al. 06] A. Keshavarzian, H. Lee, and N. Venkatraman, "Wakeup

Scheduling in Wireless Sensor Networks", Proceedings of the Seventh ACM

International Symposium on Mobile ad hoc Networking and Computing, pp. 322-

333, Florence, Italy, May 2006.

[McQueen 66] J. B. McQueen, “Some Methods for Classification and Analysis of

Multivariate Observations”, Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, Vol. 1, pp. 281–297, Berkeley, CA, January

1966.

[Pantazis et al. 09] N. A. Pantazis, D. J. Vergados, D. D. Vergados, and C. Douligeris,

"Energy Efficiency in Wireless Sensor Networks Using Sleep Mode TDMA

Scheduling", The Journal of Ad Hoc Networks., Vol. 7, No. 2, pp. 322-343, March

2009.

 [Xu and Wunsch 05] R. Xu and D. Wunsch II, “Survey of Clustering Algorithms”, IEEE

Transactions on Neural Networks, Vol. 16, No. 3, pp. 645-678, May 2005.

[Younis and Fahmy 04] O. Younis and S. Fahmy, "HEED: A Hybrid, Energy-Efficient,

Distributed Clustering Approach for Ad Hoc Sensor Networks", IEEE Transactions

on Mobile Computing, Vol. 3, No. 4, pp. 366-379, October 2004.

[Zhang et al. 06] W. Zhang, S. K. Das, and L. Yonghe, “A Trust Based Framework for

Secure Data Aggregation in Wireless Sensor Networks”, Proceedings of the Third

Conference on Sensor and Ad Hoc Communications and Networks (SECON'06),

Vol. 1, pp. 60-69, Reston, VA, September 2006.

39

APPPENDICES

40

APPENDIX A

GLOSSARY

Base Station The sink nodes to which the transferred data from

the network are destined and usually have higher

computational and communicational capabilities.

HEED Hybrid Energy-Efficient Distributed clustering.

Heterogeneous Network A network connecting different types of devices.

Homogeneous Network A network connecting similar devices.

Inter-cluster Communication Communication among the clusters.

Intra-cluster Communication Communication among the nodes of a cluster.

LEACH Low Energy Adaptive Clustering Hierarchy.

Mobile Ad hoc Network A Mobile Ad hoc NETwork (MANET), is a self-

configuring infrastructureless network of mobile

devices connected by wireless links.

MEMS Micro-Electro-Mechanical Systems, very small

mechanical devices working with electricity.

Netlogo A multi-agent programmable modelling

environment [Wilensky 99].

41

NoC Network-on-Chips is a new approach for designing the

communication subsystem of a System-on-Chips (SoC).

SNR Signal to Noise Ratio (SNR) is a measure that compares the

level of a desired signal to the level of background noise.

SoC System-on-Chips refers to integrating all components of a

computer or other electronic systems into a single

integrated circuit (chip).

WSNs Wireless Sensor Networks, networks that consist of

distributed sensors to monitor physical or environmental

conditions such as sound, temperature, and moisture.

42

APPENDIX B

SOURCE CODE

This appendix contains the source code for the simulation part of this thesis.

;;
;; AN ADAPTIVE CLUSTERING ALGORITHM FOR WIRELESS SENSOR NETWORKS

;; Author Alireza Boloorchi Tabrizi
;; Comments start with a semicolon ‘;’.

;; ;; ;;

extensions [array table]

; Declaring global variables

globals [distances mostLikelyRoA RoA numberOfNeededClusters expectedValues

probabilityOfRoA cluster_heads turtlesArray level numberOfClusterHeads

numberOfClusterTypes overallNumberOfNeededClusters normalizationFactor

currentMainTurtle p x advertiseBlock clusterHeadsBlock iterations totalDistances

AVGNOMembers NOMembers lastOne firstOne startingCluster central-turtle nearestCluster

isolatedNode nearestTemp endd check firstNode lastNode enddd]

;In Netlogo, nodes are called turtles and they contain attributes which are declared

;here

turtles-own [joined beingCH rangeOfAdvertise number edge clusterType member flag

CHMembers]

;==

;Steup is the main procedure in this program and the program starts from this

;procedure.

;==

to setup

Let counter 0 ;To count the number of iterations

Let temp array:from-list n-values 6 [0]

Let tempMem array:from-list n-values numberOfClusterHeads [0]

43

;After each iteration of the algorithm, the average of the number of members of the

;clusters are updated in the AVGNOMembers array.

set AVGNOMembers array:from-list n-values (ceiling ((granularityfactor *

numberOfClusterTypes)) + 1) [0]

set AVGNOMembersROA array:from-list n-values (ceiling ((granularityfactor *

numberOfClusterTypes)) + 1) [0] let tempFirst 0

set firstOne 0 2

repeat 1[; This loop is for executing the algorithm for different RoA’s distributions

 set counter counter + 1

 set temp AVGNOMembers

 set tempFirst firstOne

 start

 set firstOne tempFirst

 set AVGNOMembers temp

 ;set members tempMem

 printNumberOfMembers ;A

 set firstOne 1

]

 let m 0

 repeat 100[;This loop is to obtain the average of the number of clusters with each

 ;size for all the iterations.

 array:set AVGNOMembers m array:item AVGNOMembers m / counter

 Print array:item AVGNOMembers m

 set m m + 1

]

 set enddd true

end

44

;==

; This procedure takes care of the initializations of the environment before the

;algorithm starts.

;==

to start

 clear-all

 create-turtles 400 ; There are 400 nodes in the network

 let n 1

 let m 0

 repeat 400 [; Initializes the turtles which are the nodes in the network

 ask turtle m [set number m set color white set edge "null" set joined "null" set

beingCH "null" set member "null" set CHMembers "null"]

 set m (m + 1)

]

 let temp 0

;*****************Boundary: Assign the attributes of the nodes that are on the

 ;boundary of the network layout.

 ask turtle 0 [set edge ("left-down")]

 while [n < 19] [

 ask turtle n [set edge "left"]

 set n (n + 1)

]

 ask turtle 19 [set edge "left-up"]

 set n (1)

 while [n < 19] [

 set temp (n * 20)

 ask turtle temp [set edge "down"]

 set n (n + 1)

]

 set temp (20 * 19)

45

 ask turtle temp [set edge "right-down"]

 set n (2)

 while [n < 20] [

 set temp (n * 20 - 1)

 ask turtle temp [set edge "up"]

 set n (n + 1)

]

 set temp (399)

 ask turtle temp [set edge "right-up"]

 set n (1)

 while [n < 19] [

 set temp (380 + n)

 ask turtle temp [set edge "right"]

 set n (n + 1)

]

 ;************************

 ask turtles [set shape "dot"]

 ask turtles [set size 1.5]

 let i 0

 let j 0

 set temp 0

 ;setting the location of each node

 while [i < 20][

 while [j < 20][

 set temp (i * 20 + j)

 ask turtle temp [setxy (i * 1)- 10 (j * 1)- 10]

 set j (j + 1)

]

 set i (i + 1)

46

 set j (0)

]

 set granularityFactor 5;

 probablityOfRoA

 let g 0

end

;==

; This procedure determines the number of expected nodes in each cluster.

;==

to probablityOfRoA

set numberOfClusterTypes 5

set RoA array:from-list n-values numberOfClusterTypes [0]

set numberOfNeededClusters array:from-list n-values numberOfClusterTypes [0]

set totalDistances 1

;clustertypes

array:set RoA 0 (1)

array:set RoA 1 (2)

array:set RoA 2 (3)

array:set RoA 3 (4)

array:set RoA 4 (5)

;The numberOfNeededClusters is set for each cluster. It is modified in another

;version of the program to be generated pseudo-randomly.

array:set numberOfNeededClusters 0 (10);

array:set numberOfNeededClusters 1 (97)

array:set numberOfNeededClusters 2 (15)

array:set numberOfNeededClusters 3 (51)

array:set numberOfNeededClusters 4 (70)

sortByNumberOfNeededClusters

 computeExpectedValues

47

 findNumberOfClusterHeads

 clusterHeads

 ;computeProbabilities

 set iterations 0

 assignDistancesToClusterHeads

 let m 0

 let notFinished true

 while [notFinished = true][

 set notFinished false

 while [m < numberOfClusterHeads][

 if [rangeOfAdvertise] of array:item cluster_Heads m - [member] of

array:item cluster_Heads m > 3

 [set notFinished true

]

 set m m + 1

]

 clusterInitial

]

; The isolatedNodes1 is one of the optional procedures of the algorithm which might

; be enabled for comparisons. This procedure has two versions isolatedNodes and

; isolatedNodes1.

;isolatedNodes1

end

48

;==

; The clusters are sorted by the number of needed clusters where the clusters with

;more needs could be given a higher priority.

;==

to sortByNumberOfNeededClusters

let k 0

let i 0

let j 0

let temp 0

let tempArr array:from-list n-values numberOfClusterTypes[0]

set tempArr (RoA)

while [i < numberOfClusterTypes] [

 set j (i)

 while [j < numberOfClusterTypes] [

 if (array:item numberOfNeededClusters i < array:item numberOfNeededClusters j) [

 set temp (array:item numberOfNeededClusters i)

 array:set numberOfNeededClusters i array:item numberOfNeededClusters j

 array:set numberOfNeededClusters j temp

 set temp (array:item RoA i)

 array:set RoA i array:item RoA j

 array:set RoA j temp

]

 set j (j + 1)

]

 set i (i + 1)

]

end

49

;==

; This assigns clusterheads pseudo-randomly.

;==

to clusterHeads

 let i 0

 set cluster_heads array:from-list n-values numberOfClusterHeads [0]

 while [i < numberOfClusterHeads] [

 array:set cluster_heads i one-of turtles

 ask array:item cluster_heads i [set member 1]

 if [beingCH] of array:item cluster_heads i != 1[

 ask array:item cluster_heads i [set beingCH 1 set size 2]

 set i (i + 1)

]

]

 ; print cluster_heads

end

;==

; This procedure is for future work and uses a method to estimate the number of ;nodes

needed in the clusters based on historical data.

;==

to computeExpectedValues

 set expectedValues array:from-list n-values numberOfClusterTypes [0]

 let i 0

 let temp 0

 while [i < numberOfClusterTypes][

 set overallNumberOfNeededClusters (array:item numberOfNeededClusters i +

overallNumberOfNeededClusters)

 set i (i + 1)

]

 set i (0)

50

 while [i < numberOfClusterTypes][

 set temp precision ((array:item numberOfNeededClusters

i)/(overallNumberOfNeededClusters)) 3;; expected value of each RoA

 array:set expectedValues i temp

 set i (i + 1)

]

 ;print expectedValues

end

;==

; This method computes the number of clusterheads based on the input.

;==

to findNumberOfClusterHeads

 let temp 1

 let i 0

 let ch 0

while [i < numberOfClusterTypes][

 set temp (precision ((array:item expectedValues i) * (array:item RoA i) *

normalizationFactor) 0) + temp

 set i i + 1

]

 set numberOfClusterHeads precision (400 / temp) 0

end

;===

; This assigns the respective RoA to each cluster.

;==

to assignDistancesToClusterHeads

 let clusterNumber 0

 let temp 0

 let i 0

51

 let j 0

 while [i < numberOfClusterTypes] [

 set temp (precision ((array:item expectedValues i) * numberOfclusterHeads) 0)

 repeat temp [

 ; print [member] of array:item cluster_heads j

 ask array:item cluster_heads j [set rangeOfAdvertise (array:item RoA i) *

granularityFactor + (random granularityFactor -

 (granularityFactor / 2) + 0.5) set member 1 set CHMembers array:from-list n-

values (30) ["null"]]

 set j (j + 1)

 ; ask array:item cluster_heads i [print (array:item RoA i) * granularityFactor

;]

]

 set i (i + 1)

]

clusterInitial

end

;==

;This procedure initializes the clusterheads.

;==

to clusterInitial

 set p 0 set x 1

 set level array:from-list n-values numberOfClusterHeads[0]

 set clusterHeadsBlock table:make

 while [p < numberOfClusterHeads][

 table:put clusterHeadsBlock p array:from-list n-values 9[false]

 set p p + 1

]

 ;print clusterHeadsBlock

 set p 0

 set startingCluster 0 ; The variable starting cluster is used to simulate the

 ;parallel advertisement

52

 joinToClusters3

end

;==

; This is the last version of the procedure that is used to join the nodes to the

;clusters.

;==

to joinToClusters3

 let temp 0

 let tempBlock 0

 let nextAdvertise array:from-list n-values numberOfClusterHeads["right"]

 let currentAdvertise "right"

 let turtleNumber 0

 let clusterNumber startingCluster

 let clusterNumberTemp 0

 let allClustersZero 0

 let level' 0

 let notfinished true

while [clusterNumberTemp < numberOfClusterHeads][

 set level' array:item level clusterNumber ; The layers of advertisement

 if 0 < ([number] of array:item cluster_heads clusterNumber + level')

 and([number] of array:item cluster_heads clusterNumber + level') < 400 [

 if [joined] of turtle ([number] of array:item cluster_heads clusterNumber +

level') = clusterNumber

 or [beingCH] of turtle ([number] of array:item cluster_heads clusterNumber +

level') = 1

 [

 set currentMainTurtle turtle ([number] of array:item cluster_heads clusterNumber +

level')

 set turtleNumber ([number] of currentMainTurtle)

 if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of

array:item cluster_heads clusterNumber [

 set currentAdvertise (array:item nextAdvertise clusterNumber)

53

 ;;right

 if currentAdvertise = "right" ;Advertisement to the node on the right

 ifelse [edge] of currentMainTurtle != "right" ; Check for the boundary

 and [edge] of currentMainTurtle != "right-up"

 and [edge] of currentMainTurtle != "right-down"

 [

 set temp ([number] of currentMainTurtle + 20)

 if [joined] of turtle temp = "null"

 and [beingCH] of turtle temp = "null"[

 ;;print ["right "]

 ask turtle temp [set joined clusterNumber set color clusterNumber * 10 +

5]

 ask array:item cluster_heads clusterNumber [set member member + 1

array:set CHMembers member - 1 temp]

]

][

 set tempBlock table:get clusterHeadsBlock clusterNumber

 array:set tempBlock 1 true

 array:set tempBlock 5 true

 array:set tempBlock 8 true

 table:put clusterHeadsBlock clusterNumber tempBlock

]

 set currentAdvertise ("up")

]

54

]

 if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of

array:item cluster_heads clusterNumber[

 if currentAdvertise = "up" ;Advertisement to the node on the right

 ifelse [edge] of currentMainTurtle != "up" ; check for the boundary

 and [edge] of currentMainTurtle != "right-up"

 and [edge] of currentMainTurtle != "left-up"

 [

 set temp ([number] of currentMainTurtle + 1)

 if [joined] of turtle temp = "null"

 and [beingCH] of turtle temp = "null"[

 ;; print "up"

 ask turtle temp [set joined clusterNumber set color ((clusterNumber * 10

+ 5))]

 ask array:item cluster_heads clusterNumber [set member member + 1

array:set CHMembers member - 1 temp]

 ; ask array:item cluster_heads clusterNumber [set rangeOfAdvertise

[rangeOfAdvertise] of array:item cluster_heads clusterNumber - 1]

]

][

 set tempBlock table:get clusterHeadsBlock clusterNumber

 array:set tempBlock 2 true

 array:set tempBlock 5 true

 array:set tempBlock 6 true

 table:put clusterHeadsBlock clusterNumber tempBlock

]

]

 set currentAdvertise ("left")

]

55

 if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of

array:item cluster_heads clusterNumber[

 if currentAdvertise = "left" [;Advertisement to the node on the left

 ifelse [edge] of currentMainTurtle != "left" ; Check for the boundary

 and [edge] of currentMainTurtle != "left-up"

 and [edge] of currentMainTurtle != "left-down"

 [

 set temp ([number] of currentMainTurtle - 20)

 if [joined] of turtle temp = "null"

 and [beingCH] of turtle temp = "null"[

 ;;print "left"

 ask turtle temp [set joined clusterNumber set color clusterNumber * 10 +

5]

 ask array:item cluster_heads clusterNumber [set member member + 1

array:set CHMembers member - 1 temp]

 ; ask array:item cluster_heads clusterNumber [set rangeOfAdvertise

[rangeOfAdvertise] of array:item cluster_heads clusterNumber - 1]

]

][

 set tempBlock table:get clusterHeadsBlock clusterNumber

 array:set tempBlock 3 true

 array:set tempBlock 6 true

 array:set tempBlock 7 true

 table:put clusterHeadsBlock clusterNumber tempBlock

]

]

 set currentAdvertise ("down")

]

 if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of

array:item cluster_heads clusterNumber[

 let m 0

56

 if currentAdvertise = "down" [;Advertisement to the node below

 ifelse [edge] of currentMainTurtle != "down" ; check for the boundary

 and [edge] of currentMainTurtle != "left-down"

 and [edge] of currentMainTurtle != "right-down"

 [

 set temp ([number] of currentMainTurtle - 1)

 if [joined] of turtle temp = "null"

 and [beingCH] of turtle temp = "null"[

 ;;print "down"

 ask turtle temp [set joined clusterNumber set color clusterNumber * 10 +

5]

 ask array:item cluster_heads clusterNumber [set member member + 1

array:set CHMembers member - 1 temp]

 ; ask array:item cluster_heads clusterNumber [set rangeOfAdvertise

[rangeOfAdvertise] of array:item cluster_heads clusterNumber - 1]

]

][

 set tempBlock table:get clusterHeadsBlock clusterNumber

 array:set tempBlock 4 true

 array:set tempBlock 7 true

 array:set tempBlock 8 true

 table:put clusterHeadsBlock clusterNumber tempBlock

]

]

 set currentAdvertise ("right")

]

]

]

 set clusterNumber (clusterNumber + 1)

57

 set clusterNumbertemp (clusterNumbertemp + 1)

 if clusterNumber >= numberOfClusterHeads [

 set clusterNumber (clusterNumber - numberOfClusterHeads)

]

]

;***

; This is the recursive part of the joiningCluster3 procedure that advertises the

;needed number of nodes after the first round of advertisement.

;***

 set clusterNumber startingCluster

 set clusterNumbertemp 0

 set p p + 1

 while [clusterNumberTemp < numberOfClusterHeads][

 set currentMainTurtle turtle ([number] of array:item cluster_heads

clusterNumber)

 set tempBlock table:get clusterHeadsBlock clusterNumber

 if p = 1 and array:item tempBlock 1 = false[

 set temp [number] of currentMainTurtle + 20 * (x - 1)

 ifelse [edge] of turtle temp != "right"

 and [edge] of turtle temp != "right-up"

 and [edge] of turtle temp != "right-down"

 [

 array:set level clusterNumber 20 * x

][

 array:set tempBlock 1 true

]

58

]

 if p = 2 and array:item tempBlock 2 = false[

 set temp ([number] of currentMainTurtle + 1 * (x - 1))

 ifelse [edge] of turtle temp != "up"

 and [edge] of turtle temp != "right-up"

 and [edge] of turtle temp != "left-up"

 [array:set level clusterNumber 1 * x][

 array:set tempBlock 2 true

]

]

 if p = 3 and array:item tempBlock 3 = false[

 set temp ([number] of currentMainTurtle + -20 * (x - 1))

 ifelse [edge] of turtle temp != "left"

 and [edge] of turtle temp != "left-up"

 and [edge] of turtle temp != "left-down"

 [array:set level clusterNumber -20 * x]

 [array:set tempBlock 3 true

]

]

 if p = 4 and array:item tempBlock 4 = false[

 ifelse [edge] of turtle temp != "down"

 and [edge] of turtle temp != "left-down"

 and [edge] of turtle temp != "right-down"

 [array:set level clusterNumber -1 * x][

 array:set tempBlock 4 true

59

]

]

 if p = 5 and array:item tempBlock 5 = false[

 set temp ([number] of currentMainTurtle + 20 * (x - 1) + 1)

 ifelse [edge] of turtle temp != "right"

 and [edge] of turtle temp != "right-up"

 and [edge] of turtle temp != "right-down"

 and [edge] of turtle temp != "left-up"

 and [edge] of turtle temp != "up"

 [

 array:set level clusterNumber 20 * x + 1

][

 array:set tempBlock 5 true

]

]

 if p = 6 and array:item tempBlock 6 = false[

 set temp ([number] of currentMainTurtle + -20 * (x - 1) + 1)

 ; print temp

 ifelse [edge] of turtle temp != "left"

 and [edge] of turtle temp != "left-up"

 and [edge] of turtle temp != "left-down"

 and [edge] of turtle temp != "up"

 and [edge] of turtle temp != "right-up"

 [

 array:set level clusterNumber -20 * x + 1

][

 array:set tempBlock 6 true

]

]

 if p = 7 and array:item tempBlock 7 = false[

60

 set temp ([number] of currentMainTurtle + -20 * (x - 1) - 1)

 if temp > -1[

 ifelse [edge] of turtle temp != "left"

 and [edge] of turtle temp != "left-down"

 and [edge] of turtle temp != "right-down"

 and [edge] of turtle temp != "left-up"

 and [edge] of turtle temp != "down"

 [

 array:set level clusterNumber -20 * x - 1

]

 [

 array:set tempBlock 7 true

]

]

]

 if p = 8 and array:item tempBlock 8 = false[

 set temp ([number] of currentMainTurtle + 20 * (x - 1) - 1)

 if temp > -1[

 ifelse [edge] of turtle temp != "right"

 and [edge] of turtle temp != "left-down"

 and [edge] of turtle temp != "right-down"

 and [edge] of turtle temp != "right-up"

 and [edge] of turtle temp != "down"

 [

 array:set level clusterNumber 20 * x - 1

][array:set tempBlock 8 true

]

]

61

]

 table:put clusterHeadsBlock clusterNumber tempBlock

 set clusterNumber (clusterNumber + 1)

 set clusterNumbertemp (clusterNumbertemp + 1)

 if clusterNumber >= numberOfClusterHeads [

 set clusterNumber clusterNumber - numberOfClusterHeads

]

]

 ;***

 set clusterNumber 0

 set notFinished false

 while [clusterNumber < numberOfClusterHeads][

 ;print [rangeOfAdvertise] of array:item cluster_heads clusterNumber

 if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member]

of array:item cluster_heads clusterNumber [

 set notFinished true

]

 set clusterNumber clusterNumber + 1

]

 ifelse p < 9

 [

 ifelse startingCluster < numberOfClusterHeads - 1[

 set startingCluster startingCluster + 1

][

 set startingCluster 0

]

 joinToClusters3]

 [

 ifelse notFinished = true and x < 5[

62

 set p 0

 set x x + 1

 ifelse startingCluster < numberOfClusterHeads[

 set startingCluster startingCluster + 1

][

 set startingCluster 0

]

 joinToClusters3

]

 [

 ;isolatedNodes ; should be uncommented for extension 2, method 1

 reclustering1 ; re-selecting clusterheads

]

]

end

63

;==

; This is one version of the reclustering procedures. In this procedures, after one

clustering, the center of the clusters are found and assigned as new clusterheads. The

clustering algorithm is executed again for the new clusterheads.

;==

to reclustering1

ifelse totalDistances > 0 and (totalDistances < 500 and iterations < 200)[

 ;isolatedNodes

 let n 0

 let m 0

 ; These matrices are used to calculate the central nodes

 let maxRow-turtle array:from-list n-values numberOfClusterHeads[0]

 let minRow-turtle array:from-list n-values numberOfClusterHeads[20]

 let maxColumn-turtle array:from-list n-values numberOfClusterHeads[0]

 let minColumn-turtle array:from-list n-values numberOfClusterHeads[19]

 let tempNum 0

 while [n < 400] [

 if [joined] of turtle n != "null" [

 set tempNum precision (([number] of turtle n) / 20) 0

 if tempNum > ([number] of turtle n) / 20

 [

 set tempNum tempNum - 1

]

 if tempNum > (array:item maxColumn-turtle [joined] of turtle n) [

 array:set maxColumn-turtle ([joined] of turtle n) tempNum

64

]

 if tempNum < (array:item minColumn-turtle [joined] of turtle n)[

 array:set minColumn-turtle [joined] of turtle n tempNum

]

 if (([number] of turtle n) - tempNum * 20) > (array:item maxRow-turtle

[joined] of turtle n) [

 array:set maxRow-turtle [joined] of turtle n ([number] of turtle n -

tempNum * 20)

]

 if (([number] of turtle n) - tempNum * 20) < (array:item minRow-turtle

[joined] of turtle n) [

 array:set minRow-turtle [joined] of turtle n ([number] of turtle n -

tempNum * 20)

]

]

 ask turtle n [set member "null" set joined "null" set color white set

size 1.5 set beingCH "null"]

 set n n + 1

]

 set level array:from-list n-values numberOfClusterHeads[0]

 set p 0

 while [p < numberOfClusterHeads][

 table:put clusterHeadsBlock p array:from-list n-values 9[false]

 set p p + 1

]

 set x 1 set p 0

 set m 0

 let tempClusterHeads array:from-list n-values numberOfClusterHeads[0]

 while [m < numberOfClusterHeads][

 array:set tempClusterHeads m array:item cluster_heads m

65

 set m m + 1

]

 set m 0

 while [m < numberOfClusterHeads][

 set tempNum (precision ((array:item maxColumn-turtle m + array:item

minColumn-turtle m) / 2) 0)

 ;print tempNum

 if tempNum > (array:item maxColumn-turtle m + array:item minColumn-

turtle m) / 2

 [

 set tempNum tempNum - 1

]

 let tempNum1 tempNum * 20 + precision ((array:item maxRow-turtle m +

array:item minRow-turtle m) / 2) 0

 if tempNum1 > tempNum * 20 + (array:item maxRow-turtle m + array:item

minRow-turtle m) / 2

 [

 set tempNum1 tempNum1 - 1

]

 ; print tempNum1

 ;print minColumn-turtle

 ifelse [beingCH] of turtle tempNum1 != 1[

 array:set cluster_heads m turtle tempNum1

][

 ifelse tempNum < 399 [

66

 array:set cluster_heads m turtle (tempNum1 + 1)

][array:set cluster_heads m turtle (tempNum1 - 1)

]

]

 ask array:item cluster_heads m [set member 1 set beingCH 1 set Color

green set size 2]

 set m m + 1

]

 set m 0

 set iterations iterations + 1

 while [m < numberOfClusterHeads][

 if [rangeOfAdvertise] of array:item cluster_Heads m > 5

 [ask array:item cluster_Heads m [set beingCH "null"]

 let tempTurtle one-of turtles

 while [[beingCH] of tempTurtle != "null"][

 set tempTurtle one-of turtles

]

 array:set cluster_heads m tempTurtle

 ask array:item cluster_heads m [set beingCH 1 set Color green

set size 2 set member 1]

]

 set m m + 1

]

 set-current-plot "CHChanges"

 let i 0

 let tempX 0

 let tempY 0

 while [i < numberOfClusterHeads][

 set tempX [xcor] of array:item cluster_Heads i

 set tempY [ycor] of array:item cluster_Heads i

67

 ifelse tempX > [xcor] of array:item tempClusterHeads i [

 set tempX tempX - [xcor] of array:item tempClusterHeads i

][

 set tempX [xcor] of array:item tempClusterHeads i - tempX

]

 ifelse tempY > [ycor] of array:item tempClusterHeads i [

 set tempY tempY - [ycor] of array:item tempClusterHeads i

][

 set tempY [ycor] of array:item tempClusterHeads i - tempX

]

 set totalDistances totalDistances + tempX + tempY

 set i i + 1

]

 plot totalDistances

 assignDistancesToClusterHeads

][if totalDistances > 500 or iterations > 200[

 start

]

]

 end

;==

; This is another version of the reclustering method.

;==

to reclustering

ifelse totalDistances > 0 and (totalDistances < 500 and iterations < 200)[

;Checks for the threshold values

 let n 0

68

 let m 0

 ; These matrices are used to calculate the central nodes

 let maxRow-turtle array:from-list n-values numberOfClusterHeads[0]

 let minRow-turtle array:from-list n-values numberOfClusterHeads[20]

 let maxColumn-turtle array:from-list n-values numberOfClusterHeads[0]

 let minColumn-turtle array:from-list n-values numberOfClusterHeads[19]

 set central-turtle array:from-list n-values numberOfClusterHeads[1000]

 let centerXCors array:from-list n-values numberOfClusterHeads[0]

 let centerYCors array:from-list n-values numberOfClusterHeads[0]

 let tempNum 0

 ; centralNodes

 set n 0

 while [n < 400] [

 if [joined] of turtle n != "null" [

 set tempNum precision (([number] of turtle n) / 20) 0

 if tempNum > ([number] of turtle n) / 20

 [

 set tempNum tempNum - 1

]

 if tempNum > (array:item maxColumn-turtle [joined] of turtle n) [

 array:set maxColumn-turtle ([joined] of turtle n) tempNum

]

 if tempNum < (array:item minColumn-turtle [joined] of turtle n)[

 array:set minColumn-turtle [joined] of turtle n tempNum

]

 if (([number] of turtle n) - tempNum * 20) > (array:item maxRow-turtle

[joined] of turtle n) [

69

 array:set maxRow-turtle [joined] of turtle n ([number] of turtle n -

tempNum * 20)

]

 if (([number] of turtle n) - tempNum * 20) < (array:item minRow-turtle

[joined] of turtle n) [

 array:set minRow-turtle [joined] of turtle n ([number] of turtle n -

tempNum * 20)

]

]

 ask turtle n [set joined "null" set color white set size 1.5 set beingCH

"null" set member "null" set CHMembers "null"]

 set n n + 1

]

 set level array:from-list n-values numberOfClusterHeads[0]

 set p 0

 while [p < numberOfClusterHeads][

 table:put clusterHeadsBlock p array:from-list n-values 9[false]

 set p p + 1

]

 set x 1 set p 0

 set m 0

 let tempClusterHeads array:from-list n-values numberOfClusterHeads[0]

 while [m < numberOfClusterHeads][

 array:set tempClusterHeads m array:item cluster_heads m

 set m m + 1

]

 set m 0

while [m < numberOfClusterHeads][

70

 set tempNum (precision ((array:item maxColumn-turtle m + array:item

minColumn-turtle m) / 2) 0)

 ;print tempNum

 if tempNum > (array:item maxColumn-turtle m + array:item minColumn-

turtle m) / 2

 [

 set tempNum tempNum - 1

]

 let tempNum1 tempNum * 20 + precision ((array:item maxRow-turtle m +

array:item minRow-turtle m) / 2) 0

 if tempNum1 > tempNum * 20 + (array:item maxRow-turtle m + array:item

minRow-turtle m) / 2

 [

 set tempNum1 tempNum1 - 1

]

 ; print tempNum1

 ;print minColumn-turtle

 ifelse [beingCH] of turtle tempNum1 != 1[

 array:set cluster_heads m turtle tempNum1

][

 ifelse tempNum < 399 [

 array:set cluster_heads m turtle (tempNum1 + 1)

][

array:set cluster_heads m turtle (tempNum1 - 1)

]

]

 ;set cluster_heads central-turtle

71

 ask array:item cluster_heads m [set beingCH 1 set Color m * 10 + 5 set

size 2 set member 1 set rangeOfAdvertise [rangeOfAdvertise] of array:item

tempClusterHeads m

 set CHMembers array:from-list n-values (30) ["null"]]

 set m m + 1

]

 set m 0

 set iterations iterations + 1

 while [m < numberOfClusterHeads][

 if [rangeOfAdvertise] of array:item cluster_Heads m - [member] of

array:item cluster_heads m > 3

 [ask array:item cluster_Heads m [set beingCH "null"]

 let tempTurtle one-of turtles

 while [[beingCH] of tempTurtle != "null"][

 set tempTurtle one-of turtles

]

 array:set cluster_heads m tempTurtle

 ask array:item cluster_heads m [set beingCH 1 set Color m * 10

+ 5 set size 2 set member 1 set rangeOfAdvertise [rangeOfAdvertise] of array:item

tempClusterHeads m

 set CHMembers array:from-list n-values (30) ["null"]]

]

 set m m + 1

]

 set-current-plot "CHChanges"

 let i 0

 let tempX 0

 let tempY 0

 while [i < numberOfClusterHeads][

 set tempX [xcor] of array:item cluster_Heads i

72

 set tempY [ycor] of array:item cluster_Heads i

 ifelse tempX > [xcor] of array:item tempClusterHeads i [

 set tempX tempX - [xcor] of array:item tempClusterHeads i

][

 set tempX [xcor] of array:item tempClusterHeads i - tempX

]

 ifelse tempY > [ycor] of array:item tempClusterHeads i [

 set tempY tempY - [ycor] of array:item tempClusterHeads i

][

 set tempY [ycor] of array:item tempClusterHeads i - tempX

]

 set totalDistances totalDistances + tempX + tempY

 set i i + 1

]

 plot totalDistances

 ;print totalDistances

 ;print "hello"

 let z 0

 while [z < 400] [

 if [beingCH] of turtle z != 1[

 ask turtle z [set size 1.5]

]

 set z z + 1

]

 if enddd != true[

 clusterInitial

]

][if totalDistances > 500 or iterations > 200[

73

 if enddd != true[

 start

]

]

]

end

;==

; This procedure takes care of the nodes that have not already joined any cluster.

;==

to isolatedNodes

 set isolatedNode 0

 let clusterNumber 0

 let clusterToJoin 0

 let rowDistance 0

 let columnDistance 0

 let temp 0

 let distancee 400

 set nearestCluster 0

 let g 0

 let counter 0

 let firstNearest 0

 while [isolatedNode < 400][

 while [g < numberOfCLusterHeads][

 ask array:item cluster_heads g [set flag 0]

 set g g + 1

]

 if [joined] of turtle isolatedNode = "null" and [beingCH] of turtle isolatedNode

= "null"[

74

 set nearestTemp isolatedNode

 findeNearestClusterHead

 set firstNearest nearestCluster

 ask array:item cluster_heads nearestCluster [set flag 1]

 set counter 0

 set endd false

 ifelse [rangeOfAdvertise] of array:item cluster_Heads nearestCluster -

[member] of array:item cluster_Heads nearestCluster > -3[

 ask turtle isolatedNode [set joined nearestCluster set color nearestCluster

* 10 + 5]

 ask array:item cluster_heads nearestCluster [set member member + 1 array:set

CHMembers member - 1 isolatedNode]

 set endd true

][

 ;"""""""""""""""""""""""""""""

 while [[rangeOfAdvertise] of array:item cluster_Heads nearestCluster -

[member] of array:item cluster_Heads nearestCluster <= -3 and endd != true][

 ; type [rangeOfAdvertise] of array:item cluster_Heads nearestCluster type

" ," type [member] of array:item cluster_Heads nearestCluster print ""

 set counter counter + 1

 set nearestTemp nearestCluster

 set nearestCluster 0

 findeNearestClusterHead

 print [rangeOfAdvertise] of array:item cluster_Heads nearestCluster -

[member] of array:item cluster_Heads nearestCluster

 ask array:item cluster_heads nearestTemp [set flag 1]

 let i 0

 let nearestNode 0

 while [[CHMembers] of array:item cluster_heads nearestTemp != "null" and i <

[member] of array:item cluster_heads nearestTemp][

75

 set columnDistance [ycor] of array:item cluster_heads nearestCluster

 set temp [ycor] of turtle i

 set columnDistance abs (columnDistance - temp)

 set temp [xcor] of array:item cluster_heads clusterNumber

 set rowDistance [xcor] of turtle nearestTemp

 set rowDistance abs(rowdistance - temp)

 set temp rowDistance + columnDistance

 if temp < distancee [

 set distancee temp

 set nearestNode i

]

 set i i + 1

]

 ask turtle nearestNode [set joined nearestCluster set color nearestCluster *

10 + 5]

 ask array:item cluster_heads nearestTemp [set member member - 1 array:set

CHMembers member - 1 "null"]

 ask array:item cluster_heads nearestCluster [set member member + 1 array:set

CHMembers member - 1 nearestNode]

 set distancee 400

]

]

]

 set distancee 400

 set temp 0

 set nearestCluster 0

 set clusterNumber 0

76

 findeNearestClusterHead

 set isolatedNode isolatedNode + 1

]

;*****************************

 end

;==

; This procedure is used to output the results.

;==

to printNumberOfMembers

let m 0

set NOMembers array:from-list n-values 6 [0]

 set m 0

while [m < numberOfClusterHeads][

ifelse [member] of array:item cluster_heads m < 5 [

 array:set NOMembers 1 array:item NOMembers 1 + 1

][ifelse [member] of array:item cluster_heads m < 10 [

 array:set NOMembers 2 array:item NOMembers 2 + 1

][ifelse [member] of array:item cluster_heads m < 15 [

 array:set NOMembers 3 array:item NOMembers 3 + 1

][

 ifelse [member] of array:item cluster_heads m < 20 [

 array:set NOMembers 4 array:item NOMembers 4 + 1

][

 array:set NOMembers 5 array:item NOMembers 5 + 1

]

]

]

]

77

set m m + 1

]

test

end

;==

; This procedure checks to see if the clustering algorithm is working correctly. In

;other words, it checks is the number of nodes taken by each cluster against the

;number of needed nodes in that cluster.

;==

to test

set NOMembers array:from-list n-values 13 [0]

let m 0

while [m < numberOfClusterHeads][

ifelse [member] of array:item cluster_heads m < 7 [

 array:set NOMembers 1 array:item NOMembers 1 + 1

][ifelse [member] of array:item cluster_heads m < 10 [

 array:set NOMembers 2 array:item NOMembers 2 + 1

][ifelse [member] of array:item cluster_heads m < 13 [

 array:set NOMembers 3 array:item NOMembers 3 + 1

][

 ifelse [member] of array:item cluster_heads m < 16 [

 array:set NOMembers 4 array:item NOMembers 4 + 1

][

 ifelse [member] of array:item cluster_heads m < 19[

 array:set NOMembers 5 array:item NOMembers 5 + 1

]

 [

 ifelse [member] of array:item cluster_heads m < 22 [

 array:set NOMembers 6 array:item NOMembers 6 + 1

]

78

 [

 ifelse [member] of array:item cluster_heads m < 25 [

 array:set NOMembers 7 array:item NOMembers 7 + 1

][ifelse [member] of array:item cluster_heads m < 28 [

 array:set NOMembers 8 array:item NOMembers 8 + 1

 ;][ifelse [member] of array:item cluster_heads m < 21 [

 ; array:set NOMembers 9 array:item NOMembers 9 + 1

 ;][ifelse [member] of array:item cluster_heads m < 23 [

 ; array:set NOMembers 10 array:item NOMembers 10 + 1

 ;][ifelse [member] of array:item cluster_heads m < 25 [

 ; array:set NOMembers 11 array:item NOMembers 11 + 1

 ;]

][

 array:set NOMembers 9 array:item NOMembers 9 + 1

]

]

]

]

]

]

]

]

set m m + 1

]

 set m 1

if firstOne = 0[

 repeat 10[

79

 ; array:set AVGNOMembers m array:item NOMembers m

 set m m + 1

]

]

set m 1

repeat 10[

 array:set AVGNOMembers m ((array:item NOMembers m + array:item AVGNOMembers m))

 set m m + 1

]

set m 0

repeat numberOfClusterHeads [

type [member] of array:item cluster_heads m type ", "

set m m + 1

]

print " "

set m 0

repeat numberOfClusterHeads [

type [rangeOfAdvertise] of array:item cluster_heads m type ", "

set m m + 1

]

print " "

print "===============================; "

Let shapeArr array:from-list n-values numberOfClusterHeads [0]

array:set shapeArr 0 "star"

array:set shapeArr 1 "circle"

array:set shapeArr 2 "triangle"

80

array:set shapeArr 3 "pentagon"

array:set shapeArr 4 "x"

array:set shapeArr 5 "leaf"

array:set shapeArr 6 "plant"

set m 0

repeat 400 [

if [joined] of turtle m != "null"

[ask turtle m [set shape array:item shapeArr (joined mod 6)set size 0.7 set color

([joined] of turtle m) * 10 + 5]]

set m m + 1

]

set m 0

repeat numberOfClusterHeads [

ask array:item cluster_heads m [set shape array:item shapeArr (m mod 6) set size 1

set color m * 10 + 5]

set m m + 1

]

end

;==

; This is a procedure that is used in the crawling method. Two different methods are

;tested for finding the nearest clusterhead.

;==

to findeNearestClusterHead

 let clusterNumber 0

 let distancee 400

 let rowDistance 0

 let columnDistance 0

 let temp 0

81

 set nearestCluster 0

 while[clusterNumber < numberOfClusterHeads][

 ; type nearestCluster print " "

 ; type clusterNumber type " " print nearestTemp

 ;test

 if clusterNumber != nearestTemp[

 set columnDistance [ycor] of array:item cluster_heads clusterNumber

 set temp [ycor] of turtle nearestTemp

 set columnDistance abs (columnDistance - temp)

 set temp [xcor] of array:item cluster_heads clusterNumber

 set rowDistance [xcor] of turtle nearestTemp

 set rowDistance abs(rowdistance - temp)

 set temp rowDistance + columnDistance

 ifelse temp < distancee and ([flag] of array:item cluster_heads

clusterNumber) = 0[

 if check = true[

]

 set distancee temp

 set nearestCluster clusterNumber

 type nearestCluster type " , "

][if temp = distancee[

 if ([rangeOfAdvertise] of (array:item cluster_Heads nearestCluster) -

([member] of array:item cluster_heads nearestCluster)) <

82

 ([rangeOfAdvertise] of array:item cluster_Heads clusterNumber -

[member] of array:item cluster_heads clusterNumber) and

 [flag] of array:item cluster_heads clusterNumber = 0 [

 set nearestCluster clusterNumber

]

]

]

]

 set clusterNumber ClusterNumber + 1

]

 if nearestCluster = nearestTemp[

 set endd true

]

 set clusternumber 0

 while[clusterNumber < numberOfClusterHeads][

 ; type [flag] of array:item cluster_heads clusterNumber type " , "

 set clusterNumber ClusterNumber + 1

]

 print " "

 print nearestCluster

end

;==

; This is another version of attaching the isolated nodes to the clusters.

;==

to unjoinedNodes1

let shortestPaths array:from-list n-values numberOfClusterHeads ["null"]

let nodee 0

let fin false

while [fin = false][

set fin true

83

while [nodee < 400][

if ([joined] of turtle nodee = "null")[

;::::::::::::::::::::::::::::::::::::finding the neediest clusterhead

 set fin false

 let clusterNumber 0

 let neediest 0

 while [clusterNumber < numberOfClusterHeads][

 ask array:item cluster_heads clusterNumber [set joined clusterNumber]

 if ([rangeOfadvertise] of array:item cluster_heads clusterNumber - [member] of

array:item cluster_heads clusterNumber

 > [rangeOfadvertise] of array:item cluster_heads neediest - [member] of

array:item cluster_heads neediest)[

 set neediest clusterNumber

]

 set clusterNumber clusterNumber + 1

]

;::::::::::::::::::::::::::::::::::::find the nearest cluster to the node

let tempNode nodee

findeNearestClusterHead1

;:::::::::::::::::::::::::::::::::::find the shortest path from nearest clusterhead to

the neediest cluster (greedy approach)

set firstNode nodee

set lastNode [number] of array:item cluster_heads neediest

shortestpath

]

set nodee nodee + 1

84

]

]

end

;==

; This is a procedure that is used in the crawling method.

;==

to findeNearestClusterHead1

 let clusterNumber 0

 let distancee 400

 let rowDistance 0

 let columnDistance 0

 let tempNode 0

 let temp 0

 set nearestCluster 0

 while[clusterNumber < numberOfClusterHeads][

 if clusterNumber != tempNode[

 set columnDistance [ycor] of array:item cluster_heads clusterNumber

 set temp [ycor] of turtle nearestTemp

 set columnDistance abs (columnDistance - temp)

 set temp [xcor] of array:item cluster_heads clusterNumber

 set rowDistance [xcor] of turtle nearestTemp

 set rowDistance abs(rowdistance - temp)

 set temp rowDistance + columnDistance

 if temp < distancee and ([flag] of array:item cluster_heads

clusterNumber) = 0[

 set distancee temp

 set nearestCluster clusterNumber

]

]

85

 set clusterNumber ClusterNumber + 1

]

 set clusterNumber 0

end

;==

;This procedure finds the shortest path between the node that is crawling and the

cluster ;that needs the node.

;==

to shortestPath

let Hdirection 0

let Vdirection 0

let rowDistance abs ([ycor] of turtle firstNode - [ycor] of turtle lastNode)

let columnDistance abs ([xcor] of turtle firstNode - [xcor] of turtle lastNode)

let i 0

let j 0

let currentNode firstNode

let nextNode 0

;ask turtle firstNode [set color red]

;ask turtle lastNode [set color red]

ifelse [xcor] of turtle firstNode > [xcor] of turtle lastNode[

 set Hdirection -1

][

 set Hdirection 1

]

ifelse [ycor] of turtle firstNode > [ycor] of turtle lastNode[

 set Vdirection -1

][

 set Vdirection 1

]

86

set i 0

;print lastNode

while [i < columnDistance and [joined] of turtle currentNode != [joined] of turtle

lastnode][

 set nextNode currentNode + hdirection * 20

 if [joined] of turtle nextNode != [joined] of turtle currentNode[

 ask turtle currentNode [set joined [joined] of turtle nextNode set color [color]

of turtle nextNode]

]

 set currentnode nextNode

set i i + 1

]

set i 0

while [i < rowDistance and [joined] of turtle currentNode != [joined] of turtle

lastnode][

 set nextNode currentNode + vdirection

 ask turtle currentNode [set joined [joined] of turtle nextNode set color

[color] of turtle nextNode]

 set currentnode nextNode

set i i + 1

]

ask turtle lastNode [set member member + 1]end

VITA

Alireza Boloorchi Tabrizi

Candidate for the Degree of

Master of Science

Thesis: AN ADAPTIVE CLUSTERING ALGORITHM FOR WIRELESS SENSOR

NETWORKS

Major Field: Computer Science

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December 2011.

Completed the requirements for the Bachelor of Science in Computer

Engineering at Amirkabir University of Technology, Tehran, Iran in December

2008.

