

AN INTEGRATED TEST ENVIRONMENT

PROCESS MODEL TO CONTROL

SOFTWARE FAILURES

By

MOHAN BHEEMASENARAO

Bachelor of Mechanical Engineering

University of Mysore

Davangere, Karnataka State, India

1988

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of
MASTER OF SCIENCE

December 2007

 ii

AN INTEGRATED TEST ENVIRONMENT

PROCESS MODEL TO CONTROL

SOFTWARE FAILURES

 Thesis Approved:

Dr. M. H. Samadzadeh

Advisor

Dr. G. E. Hedrick

__

Dr. Venkatesh Sarangan

__

Dr. A. Gordon Emslie

__

Dean of the Graduate College

 iii

PREFACE

 Software is important to virtually any business in today’s world. The most

challenging issue that the software industry is facing today is how to produce quality

software consistently. When there are multiple applications involved in a project in an

integrated environment, controlling software quality becomes more complex. Even

though many methodologies have been suggested to address the issue of software quality,

there is always a demand for new and innovative software testing processes and

methodologies in the face of changing technologies.

 Part of the objective of this thesis work was to analyze the reasons for failures in

software projects. In particular, the main focus was reasons for failures during the various

stages of the testing process in an Integrated Test Environment (ITE). Based on this

analysis, the main thrust of this thesis work was the development of an Integrated Test

Environment Process Model (ITEPM) to control software failures. The proposed model

includes effective software practices that were developed based on practical industry

data. This model was tested for efficacy, applicability, viability, and practicability. A

software development process that utilizes the proposed model will be able to control the

software failures in an Integrated Test Environment and improve the software quality.

 iv

ACKNOWLEDGEMENTS

 I would like to express my sincere appreciation to my graduate advisor Dr. M. H.

Samadzadeh for his continued guidance, support, and encouragement throughout my

thesis work. This thesis work would not have been possible without his valuable insights

and directions.

 My sincere appreciation also extends to Dr. G. E. Hedrick and Dr. Venkatesh Sarangan

for their advice and serving on my graduate committee.

 My sincere thanks to Dr. John P. Chandler for his valuable advice during the thesis

proposal presentation meeting.

 Finally, my sincere thanks to my parents, my wife, and my son for their

encouragement and patience throughout my studies.

 v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION.. 1

1.1 Importance of Software and Quality... 1

1.2 Importance of Software Testing.. 1

II. INTEGRATED TEST ENVIRONMENT (ITE).. 3

III. REASONS FOR SOFTWARE PROJECT FAILURES IN AN ITE............................ 5

3. 1 Planning Failures ... 5

3.2 Requirement Failures .. 6

3.3 Process Failures .. 7

3.4 Technology Failures.. 8

3.5 Management Failures.. 8

3.6 Uncontrolled Factors... 9

IV. DESIGN AND DEVELOPMENT OF AN INTEGRATED TEST ENVIRONMENT

PROCESS MODEL (ITEPM) .. 10

 4.1 Planning Model... 11

 4.1.1 Planning Model Factors ... 12

 4.2 Requirements Model... 14

 4.2.1 Requirements Model Facors .. 15

 4.3 Process Model... 17

 4.3.1 Process Model Factors ... 18

 4.4 Technology Model .. 23

 4.4.1 Technology Model Factors .. 23

 4.5 Management Model .. 25

 4.5.1 Management Model Factors .. 26

 4.6 ITEPM Team Model.. 30

 4.6.1 Team Model Factors .. 31

 4.7 Test Plan Template ... 35

 4.8 Test Case Template... 36

V. ANALYSIS OF PRACTICAL DATA .. 37

5.1 Description of Applications in Figure 1.. 38

5.2 Type of Failures in ITE Project– 1 ... 38

5.3 Type of Failures in ITE Project– 2 ... 39

 vi

5.4 Type of Failures in ITE Project– 3 ... 39

5.5 Type of Failures in ITE Project– 4 ... 40

VI. IMPLEMETATION AND TESTING OF INTEGRATED TEST ENVIRONMENT41

 PROCESS MODEL (ITEPM)

6.1 Test Plan for Planning Model ... 41

6.2 Test Plan for Requirements Model ... 42

6.3 Test Plan for Process Model ... 42

6.4 Test Plan for Technology Model .. 43

6.5 Test Plan for Management Model... 43

6.6 Test Plan for ITPEM Team Model ... 44

6.7 Test Cases and Desk Checks for Planning Model .. 44

6.8 Test Cases and Desk Checks for Requirements Model .. 47

6.9 Test Case and Desk Checks for Process Model.. 50

6.10 Test Cases and Desk Checks for Technology Model ... 53

6.11 Desk Checks for Management Model... 55

6.12 Desk Checks for ITEPM Team Model ... 56

SUMMARY AND FUTURE WORK .. 58

7.1 Summary... 58

7.2 Future Work .. 59

REFERENCES ... 60

APPENDICES .. 62

APPENDIX A - GLOSSARY .. 63

 APPENDIX B – RESULTS OF TESTING.. 66

 vii

LIST OF FIGURES

Figure Page

1. Example of an Integrated Test Environment .. 37

 1

CHAPTER I

INTRODUCTION

1.1 Importance of Software and Quality

 Production-quality software is an indispensable technology and has become a

powerful business asset. It has zero reproduction cost, can be distributed worldwide in

seconds, does not wear out or deteriorate (unless it undergoes modification), and is the

most economical and flexible way to implement almost any complex function

[Humphrey 02].

 The most challenging aspect that the software industry is facing today is how to

deliver defect-free quality software. Software quality is defined as conformance to

explicitly-stated functional and performance requirements, explicitly-documented

development standards, and implicit characteristics that are expected of all professionally

developed software [Pressman 05].

1.2 Importance of Software Testing

 Software testing is a critical part of the software development process and impacts the

delivery of high quality software [Eickelmann and Richardson 96]. The Standish Group,

an IT consulting firm, reported that 65 percent of software projects started in 2006 were

failures, meaning they were either not completed on time, on budget, or meet user

 2

requirements. This included 19 percent of the projects that were outright failures,

meaning that they were abandoned without implementation [Rubinstein 07]. Failing to

understand and manage risks can lead to project failure, a costly problem that has not

been completely addressed in almost three decades since such outcomes were first

described in the literature [Wallace and Keil 04].

 The rest of this thesis is organized as follows: Chapter II provides information about

the importance of an Integrated Test Environment (ITE). Chapter III discusses reasons

for software project failures in an Integrated Test Environment. Chapter IV describes the

design and development of an Integrated Test Environment Process Model (ITEPM).

Chapter V includes analysis of practical data from various software projects involving an

Integrated Test Environment. Chapter VI contains the implementation and testing of an

Integrated Test Environment Process Model with test plans, desk checks, and test cases.

Chapter VII provides a summary, conclusion, and suggestions for future work on an

Integrated Test Environment Process Model.

 3

CHAPTER II

INTEGRATED TEST ENVIRONMENT (ITE)

 An Integrated Test Environment validates functionality across multiple systems. ITEs

provide a means to integrate different applications from different software technologies

and provides for the end-to-end flow of a product. When testing involves an Integrated

Test Environment, it becomes more complex and challenging to control the quality of the

resulting software. The input runs through the different applications in the ITE and

undergoes various stages of validations in each application before coming out as the

expected defect-free end-product. Since ITEs involve many major applications in the

flow, failure of one application may impact the entire chain resulting in revenue losses,

taking more time to analyze the failures, and hampering the growth of the business. So it

is critical for businesses to address these failures.

 A number of applications may work well individually but when they are put together

in an ITE, the end-product might fail. Data can be lost across an interface, one module

can have an inadvertent adverse affect on another, sub-functions when combined may not

produce the desired major functions, individually acceptable imprecision may be

magnified to unacceptable levels, global data structures can present problems, etc.

[Pressman 05].

 4

Studies strongly suggest that formal project management practices have the power to

reduce software project risks. The value of such practices lies largely in the well-defined

patterns and directives they create for coordinating interactions and integrating inputs

from various project constituents. Formal milestones also help in monitoring progress and

spotting discrepancies throughout the project trajectory [Tiwana and Keil 04].

 5

CHAPTER III

REASONS FOR SOFTWARE PROJECT FAILURES IN AN ITE

 This chapter discusses the various reasons for software project failures in an ITE,

namely planning failures, requirement failures, process failures, technology failures,

management failures, and uncontrolled factors which are described in the following

sections.

3.1 Planning Failures

 Planning is an important phase in software projects that defines various tasks

involved in the project and outlines the project schedule. The project plan is developed at

the beginning of a software development undertaking and is continually refined and

improved as the project progresses. It can be useful to the management as a framework

for rigorous review and it can play a significant role in the process of developing quality

software. The following three items constitute the common planning failures in an ITE.

• Unrealistic Schedules [Humphrey 02]: Unrealistic release schedules without any

rational plan are bound to fail and will result in defective software. This may be

due to factors such as poor project planning, underestimation of tasks, ineffective

project head, and poor communication.

 6

• Out-of-Sync Release Schedules and Code Delivery Dates: Testing process will

have to wait until all applications become available, resulting in missing the

schedules.

• No Dedicated ITE: Some applications, though required in an ITE, are not even in

the ITE since they do not have a test environment. These applications are tested

independently but not as a part of the ITE. This could be risky in the production

phase.

3.2 Requirement Failures

 To begin any software project, it is essential to have a set of Business Requirements.

Business Requirements are transformed into Business Related Documents (BRD) based

on which the System Related Documents (SRD) is developed. These documents must be

finalized and accepted by all applications in an ITE. The following four items constitute

the common requirement failures in an ITE.

• Misunderstanding of Requirements [Wallace and Keil 04]: Requirements define

what the product should be and how it should perform. Thus, a clear

understanding of the requirements could be responsible for producing a good

product outcome, even as problems with process outcome persist.

• Incorrect Requirements: Giving incorrect requirements to the applications will

result in defective products delivery to the market and can adversely impact

business prospects.

 7

• Frequent Requirement Changes: Such changes impact the flow across an ITE

since applications not impacted by requirement changes have to wait until

applications impacted by these are modified to complete their implementation,

resulting in delays in the final implementation across the ITE. While the

requirements or objectives normally change during the early phases, there is a

point beyond which changes will do more harm than good [Humphrey 02].

• Requirements Conflict Among Applications: Requirements for one application

may conflict with the functionality of some other application in an ITE, thus

causing failures.

3.3 Process Failures

 The end-to-end testing process has to be finalized and accepted by all applications in

an ITE. Individual applications have to make sure that this will not conflict with their

own testing process. If the end-to-end testing process is not followed, it may result in the

following failures.

• Poor Quality: The poor quality work of one application may result in failure

across the entire ITE.

• Data Configuration Mismatch across ITE: Given two communicating

applications, data found in one application is not found in the other application,

thus resulting in a failure.

• Data Sharing Issues: Many testing groups share the data generated from one

instance of an application in an ITE thus causing duplicate, redundant, and

conflicting data issues across the ITE.

 8

• Lack of Progress Tracking System: This could be critical in any software project.

When there is no tracking system to monitor the progress of each application and

mitigation strategies to avoid failures, the projects will generally fail.

3.4 Technology Failures

 Applications in an ITE may be operating on different software technologies due to

various business needs. It is essential to have proper software interfaces clearly defined

to avoid the following failures.

• Software Technology Configuration Mismatch across ITE: Some applications

running on the latest software technologies and some applications running on old

software technologies may result in complex interface issues.

• Instance Issues across ITE: Some applications in an ITE operate on multiple

instances whereas other applications operate on a single instance in an ITE, thus

causing failures.

3.5 Management Failures

 Top management controls all applications in an ITE. Top management should clearly

define the objectives, the scope of operation, and the goals of all applications in an ITE.

What follows are some of the management failures in an ITE.

• Inappropriate Staffing [Humphrey 02]: When management fails to provide timely,

adequate, and properly trained resources for a project, the projects will generally

fail.

 9

• Lack of Coordination Among Applications in an ITE: This may be due to

different applications in an ITE coming under different departments in the

organization, different regions with varying working culture, etc.

• Lack of Top Management Support for the Project [Wallace and Keil 04]:

Management support for a project is essential in terms of providing the required

budget, resources, motivation, and encouragement.

3.6 Uncontrolled Factors

 Software projects may fail due to many uncontrolled factors including factors such as

turn-over of the skilled people, organizational restructuring resulting in the shifting of

people, a product becoming obsolete, the software technology utilized becoming

obsolete, organizational changes due to acquisitions resulting in business changes,

changes in business due to governmental regulations, and so on. Since these factors are

difficult to predict, top management must have mitigation strategies in place to counter

these factors in the event they occur.

 10

CHAPTER IV

DESIGN AND DEVELOPMENT OF AN INTEGRATED TEST

ENVIRONMENT PROCESS MODEL (ITEPM)

 An Integrated Test Environment Process Model (ITEPM) consists of the following

models to address various failures in an ITE such as planning failures, requirement

failures, process failures, technology failures, and management failures.

• Planning Model

• Requirements Model

• Process Model

• Technology Model

• Management Model

• ITEPM Team Model

 These models establish a technical and management framework for applying

methods, tools, and people to the software development task. Also, these models identify

roles, specify tasks, establish measures, and provide input and output criteria for the

major failures impacted. Well-defined process models help in identifying the problem

areas and suggest various methods for improvement [Humphrey 05a].

 11

 When new or improved processes are developed, these models can be reused or

modified and incorporated into the process models. These models provide a solid

foundation for software process improvement in an ITE and help to improve software

quality.

4.1 Planning Model

 The template for the planning model is given below.

TEMPLATE FOR PLANNING MODEL

Purpose Model to prevent planning failures in an ITE

Input criteria

List of common planning failures in an ITE

• Unrealistic schedules

• Out-of-sync release schedules and code delivery dates

• No dedicated ITE

Input source
Planning failures in all applications in an Integrated Test

Environment

Factors

Release schedule

Capacity planning and tracking

Level of effort

Release listing report

Release development plan

Status reporting

High level risk assessment

Environment setup plan

Output

criteria

• Release schedules of all applications in an ITE is documented

• Capacity model completed

• Level of effort estimation completed

 12

• Release listing report ready for distribution

• Release development plan ready for distribution

• Milestone dates reported

• Risk assessment review completed

• Environment setup plan completed

4.1.1 Planning Model Factors

 The factors considered in the planning model are described in this subsection.

Release Schedule:

 Release management develops a schedule for an ITE testing project. The schedule is

discussed with all impacted applications in an ITE to ensure alignment with the delivery

of the release to production in support of the end-to-end testing process. All the

subordinate schedules developed by different application testing groups must be based on

the major milestones included in the release management calendar.

Capacity Planning and Tracking:

 Capacity of resources is tracked throughout an ITE testing lifecycle. Capacity

planning includes manpower planning and any software and hardware tools required for

the project. Each application in an ITE maintains its individual capacity roster. The

capacity model translates the roster of a team by skill and function into hours available

for future testing work.

Level of Effort (LOE):

 Level of effort is an estimation of number of hours required to complete a software

testing lifecycle in an ITE. All applications must use their Level of Effort model process

 13

to estimate the time required for testing applications in an ITE. To estimate the number of

hours required to test an application, the complexity of the testing must be determined.

The complexity level depends on the type of application and also the number of changes

required to be made to the existing data. Different applications may be based on different

software technologies in an ITE, so each application must create its own estimated Level

of Effort model. The LOE model consists of a matrix of software components and

modules comprising the application, and an estimate of the number of hours needed to

complete the given task.

Release Listing Report:

 This report lists the number of releases of all applications in an ITE throughout the

year. This report will ensure that all applications in an ITE are congruent with the release

schedules well in advance.

Release Development Plan (RDP):

 This plan is developed for each release by all applications in an ITE. It includes

application-specific plans, schedules, resources, status, risks, and the software quality

assurance functions [Humphrey 05b]. If new requirements are to be introduced into a

release, the impacted applications in an ITE will be notified to update their respective

plans.

Status Reporting:

 Status reports help in periodically reviewing the status of an ITE project and assess

progress. Frequent meetings are conducted to review the progress. Information reviewed

at the meetings is captured in the various status reports, ranging from the application

 14

level to the ITE level tracked by release management. Completion of milestone dates

throughout the course of an ITE testing release is also tracked.

High Level Risk Assessment:

 The purpose of risk management during the planning phase is to identify any possible

events that would have adverse effect on the successful completion of the software

project [Tiwana and Keil 04]. Risk assessment has to be done at the application level as

well as at the ITE level. Risk status may be reviewed on a weekly basis. Risk

management has to be done continuously throughout the lifecycle of the software project.

Environment Setup Plan:

 This plan includes all applications impacted by the release including hardware,

software, servers, and network configuration. The plan may also contain the availability

of all applications impacted in an ITE. The plan also outlines the down-time required for

the applications during the environment setup phase.

4.2 Requirements Model

 The template for the requirements model is given below.

TEMPLATE FOR REQUIREMENTS MODEL

Purpose Model to prevent requirement failures in an ITE

Input criteria

List of common failures in an ITE

• Misunderstanding of requirements

• Incorrect requirements

• Frequent requirement changes

• Requirements conflict among applications

 15

4.2.1 Requirement Model Factors

 The factors considered in the requirements model are described in this subsection.

Receiving Requirements:

 A work request (WR) is a business client’s request for development of a new product

or the client’s requested modifications to an existing product. A work request is

composed of requirements that define the development and testing work to be done by

the organization. Complete and accurate requirements are to be collected before starting

the work. Requirements can be from internal sources or from clients in the organization.

Input source Requirement failures in all applications in an Integrated Test Environment

Factors

Receiving requirements

Reviewing requirements

Candidate listing

Analyzing requirements

Requirement modifications

Output criteria

• Requirements of all applications in an ITE received

• Requirements reviews completed

• Candidate listing finalized

• Requirements analysis completed

• Requirements modifications documented

• Matrix to trace the requirements completed

 16

Reviewing Requirements:

 The release management group described in the planning model reviews all work

requests and assigns a date by which all applications in the ITE must perform an impact

assessment. The assessment will determine whether or not the new work requests impact

the different applications that exist in an ITE. The information is documented by each

work request as part of the project profile. After it is determined that the application is

impacted by a work request, a separate project profile is created. The order of magnitude

(OOM) [Murthy 07], which estimates the needed capacity to complete the work request

based on the information available in the project profile, is recorded in the LOE. Finally,

authorization may be needed by the release development group to proceed with the work

requests.

Candidate List:

 A candidate list basically contains the number of ITE work requests approved by the

release management group after prioritization. The candidate list may be distributed to

the impacted ITE application groups. If there are changes in the requirements, the

candidate list may have to be reevaluated. All the application groups impacted by the

changes may have to be notified of the changes in the requirements and changes in the

candidate list.

Requirement Analysis:

 The detailed client requirements based on the candidate list are captured and may be

stored in a requirements database. The key business objectives, business function, client

traceability, dependencies among application groups, and contact information may be

 17

recorded in the requirements database. A team meeting has to be conducted with all

application groups in the ITE to analyze the requirements documents.

Requirement Modifications:

 Whenever a client submits changes to the requirements, the ITE testing team will be

notified and the impact to the ITE testing schedule needs to be analyzed. The

modifications and the impacted applications are reviewed by the ITE testing team. Once

the applications concur with the modifications, the requirements documents are updated.

Requirement Traceability Matrix:

 Business requirements are transformed into Business Related Document (BRD),

based on which the System Related Document (SRD) is developed. The application

groups use the SRD and the general design document to create the detailed design in

order to ensure traceability to the original work request. The Traceability matrix is

utilized by the test teams to map test cases and the test results to the requirements.

4.3 Process Model

 The template for the process model is given below.

TEMPLATE FOR PROCESS MODEL

Purpose Model to prevent process failures in an ITE

Input criteria

List of common process failures in an ITE

• Poor quality

• Data configuration mismatch

• Data sharing issues

• Lack of tracking system

Input Source Process failures in all applications in an Integrated Test

 18

4.3.1 Process Model Factors

 The process model factors are described in this subsection.

ITE test plans and test cases:

 The ITE test plan containing the details of the testing process, test approach, and test

methodology has to be designed as a part of the ITE testing process. The set of test cases

can be derived from the test plan. The number of test cases depends upon the input

parameters for which the software has to be tested.

Environment

Factors

ITE test plan and test cases

Application readiness

Interface readiness

Data setup

Test execution

Verification and validation

Test status tracking

Software quality assurance

Reviews and audits

Quality assurance reporting

Quality assurance training

Output criteria

• ITE testing procedure documented

• Readiness of ITE is checked

• Data setup for testing across all applications

 in ITE

• Tracking system established

• Quality policy is setup

 19

Application Readiness:

 All applications in an ITE have be tested in conformance to the system requirements

and kept ready before the integrated testing is started. Application testing is to test the

logical paths of the code that have been added, modified, or deleted. Application tests

ensure that the proper changes were made to the code. The application group executes the

unit test stage to test the code they created. The application groups analyze the problems

as they surface, making code changes as needed.

Interface Readiness:

 Interface readiness can be checked by doing a shake-out test which ensures the

connectivity of all applications in an ITE. This test will ensure that all applications are

working properly before the actual integration testing begins.

Data Setup:

 During the test data setup phase, the test team, in coordination with the ITE

applications, has to make sure that the required data to carry out the integrated testing is

made available to all applications. Also, if multiple applications share a common data,

the data configuration checks have to done to avoid data mismatch across ITE systems.

Test Execution:

 ITE test execution includes regression testing and progression testing. Regression

testing is done to check the existing functionalities whenever a change is made to any

portion of the software [Prasad 04]. Regression test is conducted to ensure that the

previous code works with the new changes, and that the new functionality does not break

the procedures related to the existing functionality. Regression test may also include the

 20

testing of existing production software issues. Progression testing is the testing of new

functionalities with the new software.

Verification and Validation [Pressman 05]:

 Verification in an ITE involves verifying the test results for each work request

requirement already defined with respect to the corresponding system related

requirement. This will ensure that we are building the product right. Validation in an ITE

involves verifying the test results for each work request requirement already defined with

respect to the corresponding business related requirement. This will ensure that we are

building the right product.

Test Status Tracking:

 A test status tracking mechanism has to be established to track the test results and

also for reporting purposes. A suitable software test reporting tool may be used for this

purpose. The details to be reported on the tracking report may be negotiated with all

applications in an ITE so that all applications will be made accountable for the testing

progress. The frequency of reporting, e.g., daily, weekly or monthly, may be discussed

with the release development group and others in an ITE. Status review meetings may

also be conducted as part of progress tracking with other applications in an ITE. At the

completion of integration testing, client traceability outputs are released for review. The

accuracy and completeness of the output may be reviewed with the release management

group and then forwarded to the client for final review and approval.

 21

Software Quality Assurance (SQA):

 The purpose of software quality assurance is to provide visibility to practices and

processes followed by all application teams in an ITE and to ensure that the key

deliverables and design articrafts meet the defined standards [Hower 07]. The SQA team

is part of the business planning unit. The SQA team reports the SQA related data to the

management. The SQA team performance and all release activities are subject to audits

by an outside SQA team to ensure that all SQA and release-related activities are

compliant with the processes described in the SQA plan and the SQA procedure

document [Prasad 04]. The SQA team performs a role in establishing and improving a

well-defined process for delivering high-quality software products. The SQA process is

essential in planning and performing each activity associated with the software testing

work request, application, or release. The key factors necessary to integrate SQA

successfully into all aspects of the software development and testing are listed below.

• Use the guidelines described within this process document.

• Define and document the standards and procedures, plans, and schedules.

• Audit the deliverables and articrafts produced during the software lifecycle.

• Review the processes and procedures established for software development

and testing.

The software quality policy forces the independent SQA group to review the software

testing activities and regularly report quality assurance metrics to the management.

Establishment of an effective software quality process, one that is practiced, documented,

trained, enforced, measured, and improved upon, results in improved productivity and

quality [Prasad 04].

 22

Reviews and Audits:

 The SQA manager ensures that the SQA process reviews of different applications are

scheduled and conducted. The purpose of the review is to ensure compliance with the

established policy and operational procedures and to recommend any necessary changes.

The reviews are listed in the SQA audit and review schedule. The SQA manager ensures

that the SQA work product audits of the articrafts produced are scheduled and conducted.

The audits are conducted to determine whether the procedures and standards set by the

organization are being met in the development of a specific product. SQA team members

perform the audit reviews.

Quality Assurance Reporting:

 The SQA manager collects and reports the data regarding process compliance and

cost in hours, schedule, and status of the SQA activities. The SQA manager collects data

from reviews, audits, and presents SQA review report.

Quality Assurance Training:

 The skills and knowledge needed by each member of the organization to perform

their functions are identified by the manager, and any skill or knowledge gaps are

addressed through a training plan. Manager works with members of their teams to

develop individual objectives and training plans. Skill gaps for individuals are addressed

in the individual training plans and documented in the employee development, growth,

and education system. Training is targeted only for employees. The objective of a

training program is to ensure that all employees receive the training needed in order to

perform their job.

 23

4.4 Technology Model

 The template for the technology model is given below.

4.4.1 Technology Model Factors

 The factors considered in the technology model are described in this subsection.

TEMPLATE FOR TECHNOLOGY MODEL

Purpose Model to prevent Technology Failures in an ITE

Input criteria

List of common failures in an ITE

• Software technology configuration mismatch across ITE

• Instances issues across ITE

Input source

Technology failures in all applications in an Integrated Test

Environment

Factors

Name and location

Ownership and contact details

Database server specifications

Application server specifications

Main frame specifications

Instance details

Input type

Source and destination

Response times

Access details

Sub system and others

Output

criteria

• All applications in ITE are configured.

• All testing instances documented.

• Technical specifications of all applications documented

 24

Name and Location:

 The Technology model should have all application names and their address location.

Ownership and Contact Details:

 The technology model should have details such as application owner information and

contact information.

Specifications:

 The technology model should have database server specifications, application server

specifications, and main frame specifications. The specifications should include details

such as dbms type, operating system details, memory size, host name, and program size.

This information will help in interfacing different applications in an ITE by designing

different intermediate programs to take care of applications operating on different

software technologies.

Instance Details:

 There may be several different testing instances for different user groups in an

organization. The technology model should have details of all applications instances

required in an ITE such as production instance, test instance, user acceptance testing

instance (UAT), and staging test environment (STE) instance.

Input Type:

 The input file received by different applications may be in different formats

depending upon the type of technology they use. The technology model should list the

type of input files coming into the system such as text file format, XML format, batch

 25

type, transactional type, frequency, estimated daily traffic, and transaction direction

(send or receive or both).

Source and Destination:

 The technology model should list the source application sending the data and the

destination application where data is being transmitted.

Response Times:

 The most common fall-out noticed in an ITE is the timing issue because of the

different response times taken by different applications in an ITE. So, the technology

model should have details about the typical response times of all applications for both

best case and worst case scenarios.

Application Access Details:

 Details of how the application should be accessed with userid, password, privileges,

and permissions, etc. should be included. Special software tools may be required in some

cases to access the systems.

Others:

 The technology model should list any special program or hardware device used as a

subsystem to establish communication between applications in an ITE operating on

different software technologies.

4.5 Management Model

 The template for the management model is given below.

 26

4.5.1 Management Model Factors

 The factors considered in the management model are described in this subsection.

TEMPLATE FOR MANAGEMENT MODEL

Purpose Model to prevent management failures in an ITE

Input

List of common failures in an ITE

• Inappropriate staffing

• Lack of coordination among applications in an ITE

• Lack of top management support for the project

Input source
Management failures in all applications in an Integrated Test

Environment

Factors

Project management

Financial management

Development management

Test management

Team management

Configuration management

Implementation management

Release management

Support management

Environment

Verification and audits

Output

criteria

• Adequate staffing for the project is finalized

• Coordinated testing process is documented

• Top management support is ensured.

 27

Project Management:

 Project management is responsible for launching a new project, decides the goals

with the marketing department, and coordinates with the release department. They work

with the management team to select team members for the project. Application managers

are responsible for checking the capacity and level of effort as well as the risk level, and

prepare the work plan for their applications. They are also responsible for document

control. All staff members are responsible for maintaining any documentation under their

individual control.

Financial Management:

 Financial management is responsible for budget planning for the organization. It

includes hardware capacity planning, technical support, disaster recovery planning, and

overall resource management. Budget managers would estimate the cost of the release

based on the initiatives on the candidate list and LOE’s. They are responsible for getting

funding approval from the clients.

Development Management:

 They are responsible for the all development activities that are involved in the

development of the project. They manage the development team. They monitor the

capacity and develop the release development plan. A development manager will assign

the work areas for each developer who is maintaining or enhancing configuration items.

Developers create a private work area and use it to check out the required configuration

item for editing and developing.

 28

Test Management:

 Test management is responsible for test-related activities that include preparation of

test plans, test procedures, and test cases which meet the test standards. It has to ensure

that the system is thoroughly tested and performs the required functions properly.

Team Management:

 Team management is responsible for setting goals for the team. Team management is

responsible for building the team. They are responsible for defining strategies, tasks, and

plans for the team. They define the roles and responsibilities of the team members. They

also decide the training programs to be conducted. Basically, they are responsible for

overall team activities.

Configuration Management (CM) [Pressman 05]:

 They are responsible for the overall configuration management activities, and prepare

the configuration management plan. The CM plan is developed in conjunction with the

project release plan, and it identifies the resources, CM check-in and check-out

procedures, configuration item identification and naming procedure, application build

procedure, CM schedule, change control procedures, and CM audit procedures.

Configuration management is responsible for assigning work areas for each developer

maintaining or enhancing configuration items. New configuration items are placed under

configuration control when developers check in new configuration items to the CM build

work area. If the build is successful, CM promotes the configuration items in this area to

an intermediate testing area. Otherwise, CM coordinates with the development group for

 29

corrections. This area is not available for normal check out. CM also provides an audit

trial of change activity with the appropriate level of documentation.

Implementation Management:

 The responsibilities of the implementation management are to produce a high-quality

product, and to ensure that the implementation is fully confirmed to the design. It

identifies and resolves all the implementation issues. It is responsible for training the

team in producing, refining, and verifying the product implementation.

Support Management:

 They are responsible for helping the team use proper tools and methods, and handle

the team’s configuration management and change control functions [Humphery 05b].

Release Management:

 They are responsible for the overall management and coordination of the releases.

They are responsible for the client interface and coordination, and implementing releases

successfully and on schedule. The release manager will coordinate and communicate the

release status and activity. They report the release activities and its progress and publish

executive status reports.

Environments:

 Environments are locations where the latest versions of the code are stored.

Configuration control manages the environments by checking the levels of code being

migrated, ensuring that the code is being installed is exactly the way it was tested and

 30

received signed-off. It ensures that the code is production ready before it is installed via

test environment certification.

Verifications and Audits:

 Verification and audits provide traceability throughout the software development life

cycle.

4.6 ITEPM Team Model

 The template for the team model is given below.

TEMPLATE FOR ITEPM TEAM MODEL

Purpose To build an ITEPM team

Input criteria

• Goals

• Strategy

• Roles

• Team Plans

• Reviews

Input source ITPEM team failures in all application teams in an ITE

Factors

Attributes

Goals

Define strategy

Define roles

Define plans

Reviews and meetings

Training

Team Building

Post mortem

 31

4.6.1 Team Model Factors

 The team model factors are described in this subsection.

Attributes:

 The ITEPM team members need to have the following attributes in order to form a

successful team [Humphery 05b].

• The team members are skilled and have the knowledge of all applications in an ITE.

• The team members are committed to achieving quality.

• Commitment to a common goal.

• Ownership of the process and plan.

• Following a disciplined personal process.

• Planning, managing, and reporting on their personal work.

• Cooperating with the team and all team members to maintain and effective and

productive working environment.

• Dedication to excellence.

Goals:

 The members of the teams are committed to a common set of goals to maintain the

team’s motivation and energy. The team agrees on the goals during project launch that

can be stretched from several months to years. All members of the team know their

Output criteria
• Team roles, goals, processes, and responsibilities are defined

• Well-defined ITEPM team is established

 32

individual goals and understand where they stand against these goals. The team goals

should be measured frequently and the members should regularly see the results of the

measures. Team charts can be used to post the updates of goal progress. If there are any

issues with the team, measures should be taken immediately. This will help motivating

the team. All measures should be discussed, progress goals should be set and the status of

each goal should be reviewed. Aggressive long-term goals should be set but they should

be broken down into realistic and measurable short-term goals. Each team member

should be assigned a specific job which is measurable.

Strategy:

 The plans and strategies should be clearly defined for achieving the goals which are

set. The members of the team would strive hard to meet the team’s quality goals for every

module created and tested. The team should have a strategy for reviewing every module

before code inspections. The team should have to set plans to test each and every module

created. The issues found during the reviews should be solved with recommendations for

what to do about them. Within the context of an overall strategy, the team should make

improvements to their team plans. Plans for achieving the goals should be clearly

defined. The tools required to achieve the goals should be available. The team should be

trained in using the ITEPM process models such as the Planning model, Requirements

model, Process model, Technology model, Quality model, Testing model, and

Management model.

 33

Team Roles [Humphery 05b]:

 Team roles are tasks performed by members of the team. The tasks are assigned

based on the individual skill sets. The roles of the team members are defined before the

project launch. Team’s prior performance is reviewed and compared with the suggested

roles. Discuss the roles of the members with the team to make sure that they understand

the importance of their role. Team members will be committed to their task when they

realize, how important their role is in making the project successful. Different team roles

include Application manager, Implementation Manager, Release Manger, Test Manager,

and Test teams such as Application Test team and Integration Test team. The team roles

include:

• Communicating with the environment group regarding tracking/controlling the test

environment.

• Preparing and maintaining test data.

• Preparing reports and summary data.

• Preparing test cases and scenarios.

• Test case execution and validation.

• Documenting errors.

• Reviewing problem reports for completeness and prioritization.

Team Plans:

 The team plan is to define how the job should be done within the team. The plan

defines the overall project schedules, daily targets, and weekly targets that are

measurable. The plan represents the resources the team has and the strategy the team

intends to follow. The teams should be motivated consistently to maintain their plan after

 34

the project launch. The teams should follow the plans and perform the tasks specified in

their plans. The plan provides the reference for everything the teams do. The plans will

represent the way team members work. The team members should always update their

plans to reflect their current work. If there are frequent changes in the plan or the plan is

inaccurate, then the plan should accommodate for the dynamic changes and workload

balancing. Team members should have a detailed and accurate plan to track their

progress. The plan should define the, overall project schedules, the daily targets, and the

weekly targets that are measurable. The plan should accommodate for the dynamic

changes and workload balancing that may occur during the execution of the project.

Team Reviews and Meetings:

 Effective team goals are defined during project launch and the team plan is discussed

with all the members of the team. Tasks are assigned to each member of the team. Once

the project begins, the progress will be reviewed daily or weekly. Team reviews are done

at every stage of the software process. Each and every document will be reviewed. All

modules created are reviewed. All test documents are reviewed. If any problems are

found at any stage, recommendations should be made to rectify the errors found. A

problem module will be re-reviewed, re-developed, and re-tested until defect-free

software is developed and a quality product is produced. Team meetings are held

frequently to track the team activities. The teams should have frequent reviews and

meeting to track the progress. If progress is not being made, alternate measures should be

taken to meet the target.

 35

Team Training Programs:

 Team members sometimes will not be fully productive. Some team members may not

have proper skills or they might lack the required skills. Training will solve many skill

problems. If team members are not trained, they take longer to do their jobs and they

produce poorer quality products. With training, the quality of a developer’s work will be

improved and the testing time will be reduced. Proper training in the project’s tools and

methods will also generally shorten the overall schedule by more than enough time to

compensate for the training time.

4.7 Test Plan Template

 The test plan template designed for ITEPM is described in this section. This test plan

format can be utilized throughout the testing of various failures in ITEPM.

TEST PLAN TEMPLATE FOR ITEPM

Failures Test plan (TP)

User enters test plan title:

User enters test plan title: User enters type of failure

User enters test plan title:

User enters test plan title:

User enters test plan title:

User enters type of failure
User enters test plan title:

4.8 Test Case Template for ITEPM

 The test case template designed for ITEPM is described in this section. This test case

format can be utilized throughout the testing of various failures in ITEPM.

 36

TEST CASE TEMPLATE FOR ITEPM

Test case number User enters test case number

Test case title User enters test case title

Test plan reference User enters test plan reference number from the

corresponding ITEPM template model

Failure User enters type of failure

Test planner User enters test planner name

Test executor User enters test executor name

Test environment Integrated Test Environment

Application name User enters application name

Test instance name ITE 01

Test data User enters test data

Test data source User enters model name of ITEPM

Execution method Manual/Automatic

Execution steps Uses enter test execution steps

Expected results User enters expected test results

Test results User enters actual test results

Tester comments User enter comments

Test case status Complete/In validation/Fail/Not executed

Tester action No action required / Trouble ticket opened

Test case history Previous history of test case if any

Test cycle number Cycle 1/ Cycle 2

 37

CHAPTER V

ANALYSIS OF PRACTICAL DATA

 In this chapter, the various applications involved in an ITE are described and the

practical issues gathered from various ITE projects are analyzed and classified into

various ITEPM failures (see Chapter III for a list of the failures). The practical ITE

projects described in this chapter integrate different applications from different software

technologies and provide for the end-to-end flow of a product. The applications used in

this chapter were obtained from a Software Services Organization that provides various

testing solutions to telecommunication industries.

 Figure 1: Example of an Integrated Test Environment

J

K

L

M

 D

C

 B

I

H

G

F

E

 A

 N

Legend:

 : Personal Computer/Main Frame Computer

 A : Text file/ XML file

 : A software application in an ITE

 : Send or receive communication

 : Send and receive communication

 38

5.1 Description of Applications in Figure 1

 The various applications involved in Figure 1, their function, and the technology used

by them are given in the following table.

Application Name Function Technology

Used

A Input file Receives input files Controlled

text file,

XML file

B Service order generator Generates service order Java, Oracle

database

C Service order validator Validates service orders Main frame

D Distributor Distributes service order Main frame

E Account system Stores customer account

information

Java

F File validator Validates input files Main frame,

XML, Oracle

database

G Address validator Validates addresses Java

H Facility design application Handles all facility design

information

Java

I Reporting application Used as a reporting tool Oracle

J Project application Handles special projects Java

K Work force application Handles information of all

actual field work

Oracle

L Facility router Handles all actual facility

routing

Main frame

M Service order router Routes service orders to

corresponding regions

Main frame

N End customer Sends information to end

customer

Java

5.2 Type of Failures in ITE Project– 1

 The practical issues gathered from ITE Project-1 are given in the table below. These

issues are further classified as per failures listed in Chapter III.

 39

Type of Issue Total Number

Reported

Classification of issues as per

ITEPM

Business As Usual (BAU) 9 Planning Failures

Code 27 Process Failures

Data setup 14 Process Failures

Environment 13 Technology Failures

External inputs 1 Uncontrolled Failures

Explainable Differences 1 Management Failures

Requirements 22 Requirement Failures

Unknown (TBD) 19 Requirement and Management

Failures

Table entry 15 Process Failures

Testing 9 Process Failures

Total 130

5.3 Type of Failures in ITE Project– 2

 The practical failures data gathered from ITE Project-2 are listed in the following

table.

Type of Issue Total Number

Reported

Classification of issues as per

ITEPM

Business As Usual (BAU) 5 Planning failures

Code 32 Process Failures

Data setup 3 Process Failures

Environment 16 Technology Failures

External inputs 1 Uncontrolled Failures

Explainable Differences 1 Management Failures

Requirements 20 Requirement Failures

Unknown

(TBD)

6 Requirement and Management

Failures

Table entry 4 Process Failures

Testing 3 Process Failures

Total 91

5.4 Type of Failures in ITE Project– 3

 The practical failures data gathered from ITE Project-3 are given in the table below.

 40

Type of Issue Total Number

Reported

Classification of issues as per

ITEPM

Business As Usual (BAU) 7 Planning Failures

Code 50 Process Failures

Design 3 Process Failures

Data setup 5 Process Failures

Environment 17 Technology Failures

External inputs 2 Uncontrolled Failures

Explainable Differences 0 Management Failures

Requirements 16 Requirement Failures

Unknown

(TBD)

22 Requirement and Management

Failures

Service Order 0

Table entry 8 Process Failures

Testing 9 Process Failures

Total 140

5.5 Type of Failures in ITE Project– 4

 The practical failures data gathered from ITE Project-4 are listed in the following

table.

Type of Issue Total Number

Reported

Classification of issues as per

ITEPM

Business As Usual (BAU) 4 Planning Failures

Code 48 Process Failures

Data 1 Process Failures

Design 2 Process Failures

Environment 12 Technology Failures

Explainable Differences 5 Management Failures

Requirements 11 Requirement Failures

Testing 9 Process Failures

Table Entry 7 Process Failures

Others 53
Requirement and Management

Failures

Total 152

 41

CHAPTER VI

IMPLEMETATION AND TESTING OF THE INTEGRATED TEST

ENVIRONMENT PROCESS MODEL (ITEPM)

 In this chapter, various test plans, test cases, and desk checks are described for the

planning model, requirements model, process model, technology model, and management

model for implementation and testing of Integrated Test Environment Process Model

(ITEPM).

6.1 Test Plan for Planning Model

 A test plan for the planning model for testing the planning failures is given in the

table below.

TEST PLAN FOR PLANNING MODEL

Planning failures Test plan (TP)

TP6.1.1: Release schedule checking

TP6.1.2: Resource capacity verification 1. Unrealistic schedules

TP6.1.3: Compare capacity model with LOE

TP6.1.4: Release management deliverables

checking

2. Out-of-sync release schedules

 and code delivery dates

TP6.1.5: Risk analysis checking

3. No dedicated ITE TP6.1.6: Check environment requirement for all

applications

 42

6.2 Test Plan for Requirements Model

 A test plan for the requirements model for testing the requirements failures is given in

the table below.

TEST PLAN FOR REQUIREMENTS MODEL

 Requirement failures Test Plan(TP)

1. Misunderstanding of

 requirements

TP6.2.1: Requirements checking

2. Incorrect requirements TP6.2.2: Requirements review

3. Frequent requirement

 changes

TP6.2.3: Requirement modifications checking

4. Requirements conflict among

 applications

TP6.2.4: Requirements conflict among different

application groups checking

6.3 Test Plan for Process Model

 A test plan for the process model for testing the process failures is given in the table

below.

TEST PLAN FOR PROCESS MODEL

Process failures Test Plan(TP)

TP6.3.1: Interface readiness checking

TP6.3.2: Regression testing

TP6.3.3: Progression testing

TP6.3.4: Test case verification

TP6.3.5: Test status tracking

TP6.3.6: Verify SQA practices and procedures

followed

 1. Poor quality

TP6.3.7: Validate SQA reviews and audits

 43

2. Data configuration mismatch TP 6.3.8: Data checks verification

3. Data sharing issues TP6.3.9: Report the data sharing issues

4. Lack of progress tracking

 system

TP6.3.10: Check the progress tracking system

6.4 Test Plan for Technology Model

 A test plan for the technology model for testing the technology failures is given in the

table below.

TEST PLAN FOR TECHNOLOGY MODEL

 Technology failures Test Plan(TP)

TP6.4.1: Check the technical specifications 1. Software technology

 configuration mismatch across

 ITE

TP6.4.2: Check of hardware and sub-systems

involved

2. Instances issues across ITE TP6.4.3: Instances issues to be checked

6.5 Test Plan for Management Model

 A test plan for the management model for testing the management failures is given in

the table below.

TEST PLAN FOR MANAGEMENT MODEL

Management failures Test Plan(TP)

TP6.5.1: Check project management plan 1. Inappropriate staffing

TP6.5.2: Check financial management plan

TP6.5.3: Check Configuration management plan

TP6.5.4: Check environment conflicts

2. Lack of coordination among

 applications in an ITE

TP6.5.5: Check implementation management

 44

3. Lack of top management

 support

TP6.5.6: Check release management

6.6 Test Plan for ITPEM Team Model

 A test plan for ITEPM team model is given in the table below.

TEST PLAN FOR ITPEM TEAM MODEL

Team factors Test Plan(TP)

1. Goals TP6.6.1: Check team goals

2. Strategy TP6.6.2: Check team strategy

3. Roles TP6.6.3: Check team roles

4. Team plans TP6.6.4: Check team plan

TP6.6.5: Check for team reviews

TP6.6.6: Check the team building activities

5. Reviews

TP6.6.7: Check training programs

6.7 Test Cases and Desk Checks for Planning Model

 Test cases and desk checks considered for testing the planning failures are given in

the tables below.

Test case number 6.7.1

Test case title Check if the release schedule of all applications match with that

of ITE release schedule

Test plan reference Planning model : TP6.1.1

Failure Planning failure : Unrealistic schedule

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

 Test data

 45

Test data source Planning model reference number 4.1.1

Execution method Manual

Execution steps • Go to planning model

• Check the release schedules of all applications

• Check the ITE release schedule.

• Check if the release date for applications in an ITE are

earlier than ITE release date

Expected results Test passes if release dates of all applications are earlier than

ITE release date

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.7.2

Test case title Compare level of effort and capacity available

Test plan reference Planning model : TP6.1.3

Failure Planning failure: Unrealistic schedule

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Planning model reference number 4.1.1

Execution method Manual

Execution steps • Go to planning model

• Check the level of effort

• Check capacity model

• Check if level of effort is less than capacity

Expected results Test passes if level of effort in number of hours is less the

capacity in number of hours.

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

 46

Test case number 6.7.3

Test case title Check if the required test environment is available for all

applications in an ITE

Test plan reference Planning model: TP6.1.6

Failure Planning failure: No dedicated ITE

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Planning model reference number 4.1.1

Execution method Manual

Execution steps • Go to planning model

• Check the environment required to test the applications

• Check if the test environment is available to test the

applications

Expected results Test passes if the test environment is available to all applications

in an ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Desk checks number 6.7.4

 Yes No

1. Is the release date of the project as per the release management calendar

date

2. Is the hardware capacity sufficient for the applications in an ITE

3. Is the estimated hours for the project sufficient

4. Is the cost estimation done

5. Has the release management released the list of releases in an year

6. Are all work requests included in the release development plan

7. Are the reviews conducted at every stage of the software cycle for all

applications in an ITE

8. Are status reports updated at all the stages of the software cycle for all

applications in an ITE

9. Is risk analysis done regularly

 47

6.8 Test Cases and Desk Checks for Requirements Model

 Test cases and desk checks considered for testing the requirements failures are given

in the tables below.

Test case number 6.8.1

Test case title Check the requirements with all the application groups in an ITE

to verify if there is any misunderstanding of requirements

Test plan reference Requirements model: TP6.2.1

Failure Requirements failure: Misunderstanding of requirements

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in ITE

Test instance name ITE 01

Test data

Test data source Requirement model reference number 4.2.1

Execution method Manual

Execution steps • Go to the requirements model

• Check with all application groups in an ITE if the

requirements can be implemented

• Review the BRD and SRD

• Verify that the requirements are understood correctly by

applications

Expected results Test passes if requirements can be implemented by all

applications in an ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.8.2

Test case title Check if the requirements are correct

Test plan reference Requirements model: TP6.2.2

Failure Requirements failure: Incorrect requirements

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in ITE

 48

Test instance name ITE 01

Test data

Test data source Requirement model reference number 4.2.1

Execution method Manual

Execution steps • Go to the requirements model.

• Review the requirements with all application groups in an

ITE

• Verify that the requirements are correct

Expected results Test passes if the requirements are correct

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.8.3

Test case title Check the requirement modifications for all applications in an

ITE

Test plan reference Requirements model: TP6.2.3

Failure Requirements failure: Frequent requirement changes

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Requirement model reference number 4.2.1

Execution method Manual

Execution steps • Go to the requirements model

• Review the modified requirements with all application

groups in an ITE

• Check if the candidate list is updated with the modified

requirements

• Verify that the modified requirements are correct and can

be implemented

Expected results Test passes if the modified requirements can be implemented

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

 49

Test case number 6.8.4

Test case title Check the requirement conflicts among different applications

when requirement changes are frequently asked

Test plan reference Requirements model: TP6.2.4

Failure Requirements failure: Requirement conflict among applications

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Requirement model reference number 4.2.1

Execution method Manual

Execution steps • Go to the requirements model

• Review the modified requirements with all application

groups in an ITE

• Check how it impacts different applications

• Verify that there are no requirement conflicts among

different applications

Expected results Test passes if the requirements can be implemented without any

conflicts among applications in an ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Desk checks number 6.8.5

 Yes No

1. Are the requirements complete and accurate

2. Are the requirements of all applications in an ITE reviewed

3. Is the candidate list from all application groups in an ITE ready

4. Are the requirements analysis done with all the application groups in an

ITE

5. Do the modified requirements impact all the applications in an ITE

6. Are the modified requirements notified to all impacted application groups

in an ITE

7. Are the test cases mapped to requirements using traceability matrix

 50

6.9 Test Case and Desk Checks for Process Model

 Test cases and desk checks considered for testing the process failures are given in the

tables below.

Test case number 6.9.1

Test case title Check if all the applications are tested and reviewed individually

before testing in an ITE

Test plan reference Process model: TP6.3.1

Failure Process failure: poor quality

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Process model reference number 4.3.1

Execution method Manual

Execution steps • Go to the process model

• Check if all interfaces are ready for ITE testing

• Check if the testing is completed for all applications in an

ITE

• Verify if reviews are completed for tested applications

Expected results Test passes if all applications in ITE are ready for testing in an

ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.9.2

Test case title Report data mismatch errors for all the applications in an ITE

Test plan reference Process model: TP6.3.8

Failure Process failure: Data configuration mismatch

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Process model reference number 4.3.1

Execution method Manual

 51

Execution steps • Go to the process model

• Check the test data for all applications in an ITE

• Check for any data configuration mismatch between the

applications in an ITE

Expected results Test passes if there is no data mismatch among applications in an

ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.9.3

Test case title Report the data sharing issues among applications in an ITE

Test plan reference Process model: TP6.3.9

Failure Process failure: Data sharing issues

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Process model reference number 4.3.1

Execution method Manual

Execution steps • Go to the process model

• Check the test data for all applications in an ITE

• Check if any test data is shared with other applications

• Check if the data sharing process is finalized among

applications in an ITE

Expected results Test passes if there is no data sharing issues among applications

in an ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.9.4

Test case title Check if the data from reviews and audits are tracked and

 52

reported

Test plan reference Process model: TP6.3.10

Failure Process failure: Lack of progress tracking system

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Process model reference number 4.3.1

Execution method Manual

Execution steps • Go to the process model

• Check the review dates

• Check the review results

• Check the auditing process

• Check if all the details are reported

Expected results Test passes if reviews and audits are tracked and reported

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Desk checks number 6.9.5

 Yes No

1. Is SQA practices and processes followed by the all the application

teams in an ITE

2. Are the guidelines of the SQA followed by the all the application teams

in an ITE

3. Has the defined standards met by the all the application teams in an ITE

4. Has reviews done by the SQA team for all application groups in an ITE

5. Is the software quality assurance metrics reports updated for the project

6. Are audits to check the procedures and standards set by the organization

 done by all the application teams in an ITE

7. Are audit reviews done for the project

8. Do you have non-compliance issue in an ITE

9. Is the SQA review report given for the project ITE

10. Is the necessary training organized for the team members

11. Are team members in an ITE trained regarding the data sharing

operations among applications

 53

6.10 Test Cases and Desk Checks for Technology Model

 Test cases and desk checks considered for testing the technology failures are given in

the tables below.

Test case number 6.10.1

Test case title Check software technology configuration mismatch across all the

applications in an ITE

Test plan reference Technology model: TP6.4.1

Failure Technology failure: Software technology configuration mismatch

across ITE

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

Test data source Technology model reference number 4.4.1

Execution method Manual

Execution steps • Go to technology model

• Check the technical specifications

• Check if all applications in an ITE are configured

• Conduct shake-out test to ensure connectivity

• Report if there is any configuration mismatch

Expected results Test passes if there is no configuration mismatch across ITE

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Test case number 6.10.2

Test case title Check instance issues across applications in an ITE

Test plan reference Technology model: TP6.4.3

Failure Technology failure: Instances issues across ITE

Test planner Mohan

Test executor Mohan

Test environment Integrated Test Environment

Application name All applications in an ITE

Test instance name ITE 01

Test data

 54

Test data source Technology model reference number 4.4.1

Execution method Manual

Execution steps • Go to technology model

• Check applications running on multiple instances

• Check applications running on single instance

• Check if configuration process is finalized

Expected results Test passes if proper interfaces are established to match one to

many relation of instances

Test results

Tester comments

Test case status

Tester action

Test case history No history available

Test cycle number First cycle

Desk checks number 6.10.3

 Yes No

1. Is application owner details like name, location, and contact

information available

2. Do you have the details of dbms type, and operating system for

database server

3. Do you have the details of operating system, memory size, host name,

and program size for application server

4. Do you have the details of operating system, memory size, host name,

and program size for mainframe server

5. Is production instance details available

6. Is test instance details available

7. Is user acceptance test instance details available

8. Is staging test environment instance details available

9. Do you have details of type of input coming into the system

10. Is the source of data coming into the system available

11. Is the destination source going out of the system available

12. Is the response time available for all the scenarios in the all the

applications

13. Are access details like login and password available

14. Do you have list of hardware and sub-system involved in all the

 55

application

15. Is there is any data masking involved

6.11 Desk Checks for Management Model

 Desk checks considered for testing the management failures are given in the table

below.

Desk checks number 6.11.1

 Yes No

Project Management

1. Is project team selection done

2. Is training required

3. Has application manager done capacity planning and level of effort

4. Has application management done risk assessment

5. Is work plan made ready

6. Is document control done

Financial Management

7. Is approved budget sufficient for the project

8. Is hardware capacity planning done

9. Is technical support provided for the project

10. Is disaster recovery planning done

11. Are resources sufficient for the project

Development Management

12. Are development manager responsibilities defined

13. Is the release plan ready

14. Are the design documents ready

15. Is the tracking system for the development process ready

Test Management

16. Are they using the right test methodologies

17. Are test documents ready on time

18. Have they done functionality testing

19. Is the overall testing complete

Configuration Management

 56

20. Is configuration management plan ready

21. Is code control done for development work

22. Is change control taken care of

23. Is configuration manager coordinating with different groups

Implementation Management

24. Are all the measures taken to produce the high quality product

25. Is implementation fully confirmed with the design

26. Are all the implementation issues resolved

Support Management

27. Are they helping the team with the proper software tools

28. Are they helping the team to use proper methods to handle the

configuration management

29. Are they supporting the team in handling the team’s configuration

 management and change control functions

Release Management

30. Is the implementation ready as per release schedule

31. Is release manager tracking the release status and activity

32. Has release manager given progress reports to the executives

Environment

33. Is environment made available for testing

Verifications and Audits

34. Is verification and audits done for the project

6.12 Desk Checks for ITEPM Team Model

 Desk checks considered for testing the ITEPM team model is given in the table

below.

Desk checks number 6.12.1

 Yes No

1. Are the team goals set

2. Is the individual goal set for all the team members

3. Is the team goal measured frequently

4. Do the teams have strategy to execute the team plan

5. Do the teams have strategy to improve the team plan

6. Are the roles of the individual team members defined

 57

7. Do the teams have team plan for the project

8. Are the teams following the plan

9. Are the teams updating the plan

10. Is the team plan accommodating for the dynamic changes

11. Are the team reviews done frequently

12. Are the code reviews done before code implementation

13. Are all the test documents reviewed

14. Are the team meetings done frequently for team building activities

15. Are the team members trained with proper skills

17. Is the training sessions arranged for the team members

 58

CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary

 Part of the objective of this thesis work was to analyze the reasons for failures in

software projects. Reasons for failures during the various stages of the testing process in

an Integrated Test Environment (ITE) were discussed in detail. Based on this

investigation, the main thrust of this thesis work was the development of an Integrated

Test Environment Process Model (ITEPM) to control software failures. The proposed

model includes effective software practices that were developed based on practical

industry data. This model was tested for efficacy, applicability, viability, and

practicability.

 Chapter I discussed the importance of software quality and software testing. Chapter

II provided information about the importance of an Integrated Test Environment (ITE).

Chapter III discussed reasons for software project failures in an Integrated Test

Environment. Chapter IV described the design and development of an Integrated Test

Environment Process Model (ITEPM). Chapter V included analysis of practical data from

various software projects involving an Integrated Test Environment. Chapter VI

described the implementation and testing of an Integrated Test Environment Process

Model with test plans, test cases, and desk checks.

 59

 It is widely known that creating good production-quality software is quite challenging

and the software industry must use the best available methods to improve quality. A

software development process that utilizes the proposed model should be able to manage

if not control the occurrence of software failures in an Integrated Test Environment and

help to produce production-quality software consistently.

7.2 Future Work

 For future work, the factors listed in the planning model, requirements model, process

model, technology model, management model, and ITEPM team model can be further

broken down into individual models to cover more failure points than listed in this thesis

report. For each application in an Integrated Test Environment an Application Process

Model can be developed similar to the Integrated Test Environment Process Model

proposed in this thesis work. More test cases and desk checks can be considered for a

more thorough testing of the model.

 60

REFERENCES

[Eickelmann and Richardson 96] Nancy S. Eickelmann and Debra J. Richardson, “An

Evaluation of Software Test Environment Architecture”, Proceedings of the 18
th

International Conference on Software Engineering (ICSE-18), pp. 353-364, Berlin,

Germany, March 1996.

[Hower 07] Rick Hower, “Software QA and Testing Resource Center”, URL:

http://www.softwareqatest.com

date created: July 2007, access date: September 2007

[Humphrey 02] Watts S. Humphrey, Winning with Software: An Executive Strategy, pp.

17-18, 70-71, 115-116, Addison-Wesley, Boston, MA, 2002.

[Humphrey 05a] Watts S. Humphrey, PSP: A Self-Improvement Process for Software

Engineers, SEI Series in Software Engineering, pp. 109-132, 225-240, 287-294, Addison-

Wesley, Upper Saddle River, NJ, 2005.

[Humphrey 05b] Watts S. Humphrey, TSP: Leading a Development Team, SEI Series in

Software Engineering, pp. 47-60, 93-105, 115-124, 133-150, 251-255, Addison-Wesley,

Upper Saddle River, NJ, 2005.

[Murthy 07] Sanjay Murthy, “Useful Estimation Techniques for Software Projects”,

URL: http://www.developer.com/ mgmt/article.php/1463281

date created: unknown, access date: September 2007

[Prasad 04] K.V.K.K Prasad, Software Testing Tools, pp. 69-96, Dreamtech Press,

Daryaganj, New Delhi, 2004.

[Pressman 05] Roger S. Pressman, Software Engineering: A Practitioner’s Approach,

pp. 181, 498-499, McGraw-Hill, New York, NY, 2005.

[Rubinstein 07] David Rubinstein, “Standish Group Report: There Is Less Development

Chaos Today”, URL:

http://www.sdtimes.com/article/story-20070301-01.html

date created: March 2007, access date: May 2007.

 61

[Tiwana and Keil 04] Amrit Tiwana and Mark Keil, “The One-Minute Risk Assessment

Tool”, Communications of the ACM, Vol. 47, No. 11, pp. 75-76, November 2004.

[Wallace and Keil 04] Linda Wallace and Mark Keil, “Software Project Risks and Their

Effect on Outcomes”, Communications of the ACM, Vol. 47. No. 4, pp. 68-72, April

2004.

 62

APPENDICES

 63

APPENDIX A

GLOSSARY

BAU Business As Usual indicates that the part of the business

 functionality that is not defined in the new functionality

requirements, has to work the same way it is currently working.

BRD Business Related Document refers to the business requirement

 common for all systems in an ITE.

CM Configuration Management is a process to establish and maintain the

 integrity of the components of a software application throughout the

 project’s lifecycle.

ITE An Integrated Test Environment provides a testing environment

where individual software applications are combined and tested as a

group. The connectivity and flow between the different applications

are tested to achieve pre-determined results.

ITEPM Integrated Test Environment Process Model, a structured process

 model to effectively manage, monitor, and implement ITE software

 projects.

LOE Level of Effort is a detailed estimate of the number of hours required

 to complete the analysis, design, build, and testing a specific work

 request.

OOM The Order Of Magnitude is an estimation of the needed effort to

 complete the work request based on the information available in the

 project profile [Murthy 07].

PROGRESSION Testing of new functionalities in conformance with the requirements.

TESTING

 64

PROJECT A person who is in charge of a software project. The primary

HEAD responsibility of a project head is to ensure that all work related to

 the project is completed on time, within budget and scope, and in

 conformance to the requirements.

PSP Personal Software Process [Humphrey 05a], a process that claims to

 convert capable software engineers into disciplined and highly

 efficient software engineers.

RDP Release Development Plan includes specific plans, schedules, status,

 risks, and software quality assurance functions [Humphrey 05b].

REGRESSION Regression Testing is carried out to ensure that modifications to one

TESTING portion of software have will not impact other portions of the

 software [Prasad 04].

SHAKE-OUT This test is done to check the interface readiness to ensure

TESTING the connectivity of all applications in an ITE.

SQA Software Quality Assurance will add visibility to practices and

 processes to ensure that the key deliverables and design articrafts

 meet the defined standards [Prasad 04].

SRD A System Related Document defines the individual system-related

 requirements in conformance with a BRD.

STE A Staging Test Environment provides a production-like test

 environment for integration testing before the software is implemented

 in production.

TBD To Be Decided later.

TC A Test Case defines the set of input parameters for which software is

 tested.

TP Test Plan provides the framework of required resources, test

 approaches, and test methodologies for defining detailed test cases.

 All related test cases are grouped under one test plan.

TSP Team Software Process [Humphrey 05b], a process that claims to

 build and maintain motivated and committed engineering teams. Also,

 it is claimed that it addresses the growing need for capable software

 teams that deliver quality products on schedule and within their

 committed costs.

UAT User Acceptance Testing is the testing generally performed by the

 65

 end-user clients who are actually going to use the application.

WR A Work Request is a business client’s request for development of

 a new product or modifications to be made to an existing product.

 66

APPENDIX B

RESULTS OF TESTING

 This appendix contains test data for testing ITEPM and eight sample test case results

that were referenced in Chapter VI. These test cases can be executed on every

application in an ITE.

1. Test Data for Testing ITEPM

 The sample practical test data was obtained from various applications involved in ITE

projects described in Chapter V.

Work Request 1AZ234

ITE testing start date 10/11/07

ITE testing end date 11/07/07

ITE Release date: 11/11/07

Appli-

cation

Instance Release

date

LOE

(Hours)

Capacity

(Hours)

Application

testing end

date

Data

sharing

SRD

finalized

date

A ITE 11/10/07 828 1200 10/10/07 9/10/07

B ITE01 11/10/07 2350 2500 10/10/07 With J

and L

9/10/07

C ITE 09/03/07 530 600 10/10/07 7/10/07

D UAT 03/07/08 2200 1500 02/02/08 TBD

E ITE 11/10/07 225 300 10/15/07 5/10/07

F ITE 11/10/07 430 500 10/25/07 TBD

G ITE,

UAT,

STE

11/10/07 422 500 08/10/07 7/10/07

H ITE 11/10/07 328 400 10/06/07 7/10/07

I ITE 11/10/07 226 240 Not tested 7/10/07

J ITE 11/10/07 536 580 09/10/07 With B

*K ITE None None None None With B None

 67

*L ITE None None None None None

*M ITE None None None None None

* Applications are not impacted by the work request 1AZ234

2. Test Results

 The test results, after executing the test cases described in Chapter VI, are listed in the

following table.

Test case Application

tested

Test results Comments

Test case

number 6.7.1

A Pass ITE release date same as application

A release date

Test case

number 6.7.1

D Fail ITE release date earlier than

application A release date

Test case

number 6.7.2

B Pass LOE hours less than capacity hours

Test case

number 6.7.2

D Fail LOE hours more than capacity hours

Test case

number 6.7.3

E Pass Test environment is available in ITE

Test case

number 6.7.3

G Fail No test environment is available in

ITE

Test case

number 6.9.1

A Pass Application testing will be completed

before ITE testing

Test case

number 6.9.1

I Fail Application testing will not be tested

before ITE testing

3. Conclusions Based on Test Results

• Work request 1AZ234 can only be partially implemented until Application D is

ready if that is acceptable to the business client, otherwise it cannot be

implemented.

• Application D needs more resources to implement work request 1AZ234.

• Application G needs a test environment in an ITE.

 68

• ITE testing cannot be started until Application I is ready and this may result in

missing the ITE release schedule.

VITA

Mohan Bheemasenarao

Candidate for the Degree of

Master of Science

Thesis: AN INTEGRATED TEST ENVIRONMENT PROCESS MODEL

 TO CONTROL SOFTWARE FAILURES

Major Field: Computer Science

Education: Bachelor’s degree in Mechanical Engineering from Government B.D.T

College of Engineering, University of Mysore, Davangere, Karnataka State, India in

January 1988; completed the requirements for the degree of Master of Science in

Computer Science at the Computer Science Department of Oklahoma State

University in December 2007.

Experience: Worked in Computer Aided Design and Computer Aided Manufacturing

Applications from 1988 to 1999 in India. Working as a Software Consultant from

2002 in the US and involved in providing testing solutions, testing automations, and

process improvements.

Name: Mohan Bheemasenarao Date of Degree: December 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AN INTEGRATED TEST ENVIRONMENT PROCESS

 MODEL TO CONTROL SOFTWARE FAILURES

Pages in Study: 68 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: Software is important to virtually any business in today’s

world. The most challenging issue that the software industry is facing today is how to

produce quality software consistently. When there are multiple applications involved

in a project in an integrated environment, controlling software quality becomes more

complex. Even though many methodologies have been suggested to address the issue

of software quality, there is always a demand for new and innovative software testing

processes and methodologies in the face of changing technologies.

Findings and Conclusions: Part of the objective of this thesis work was to analyze the

reasons for failures in software projects. In particular, the main focus was reasons for

failures during the various stages of the testing process in an Integrated Test

Environment (ITE). Based on this analysis, the main thrust of this thesis work was

the development of an Integrated Test Environment Process Model (ITEPM) to

control software failures. The proposed model includes effective software practices

that were developed based on practical industry data. This model was tested for

efficacy, applicability, viability, and practicability. A software development process

that utilizes the proposed model will be able to control the software failures in an

Integrated Test Environment and improve the software quality.

ADVISOR’S APPROVAL: Dr. M. H. Samadzadeh

