

MODELING THE ARTIFICIAL IMMUNE SYSTEM

TO THE HUMAN IMMUNE SYSTEM

WITH THE USE OF AGENTS

By
BASHAR BARRISHI
Bachelor of Science
Computer Science
Mutah University

Karak, Jordan
1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 2004

ii

MODELING THE ARTIFICIAL IMMUNE SYSTEM

TO THE HUMAN IMMUNE SYSTEM

WITH THE USE OF AGENTS

 Thesis Approved:

Blayne Mayfield

Thesis Advisor

George Hedrick

Venkatesh Sarangan

A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

 I wish to express my great appreciation to my thesis advisor, Dr. Mayfield for his

insight, intelligence, constructive guidance and support. My sincere appreciation extends

to my committee members Dr. Hedrick and Dr. Sarangan for their guidance, assistance

and encouragement. I wish to express my appreciation to Dr. Samadzadeh for his support,

guidance and valuable counseling. I wish to thank my friend and colleague Mr. Cain for

his support and encouragement.

 I would like to express my sincere appreciation to my father and mother for their

support and blessings, you were always my inspiration. Thanks to my sister and brother

for their support and love.

 My special gratitude and appreciation is to my leader, role model, friend and King,

Abdullah II Bin Al-Hussein. It was your support, trust, and inspiration that helped me

through my achievements. My beloved King, thank you.

 Finally, I would like to thank the department of computer science and the OSU

library faculty, staff, and students for their support. Thanks to all my family and friends.

To all those that I forgot to thank, I hope you will find it in your heart to forgive.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION...2

1.1 The Problem. ...2

1.2 Purpose of the Study. ...4

II. LITERATURE REVIEW ..6

2.1 Brief Description of the Human Immune System. ..6

2.2 Related Work on Artificial Immune Systems..9

2.3 Models of malware...14

2.4 Approximation Between the Human Immune System and the Available
Security Systems...19

2.5 Related Work on Self-Healing Systems..23

2.6 Comparative Study of Self-Healing Systems. ...25
2.6.1 A Graph based (Re)configuration language....................................... 28
2.6.2 Model-Based adaptation for self-healing systems.............................. 33
2.6.3 The DMonA Architecture. .. 36
2.6.4 Kinesthetics eXtreme (KX)... 39

2.7 Bandwidth Control. ..42

2.8 Processes Control...43

III. METHODOLOGY ..46

3.1 Basis of the Approach. ...46

3.2 The System’s Architecture ...47

3.3 Characteristics and design of the Agent. ...49

v

3.4 Architecture workflow ...54

IV. CONCLUSIONS...58

4.1 Summary. ..58

4.2 Conclusions. ..59

4.3 Model Weaknesses...63

REFERENCES..66

vi

LIST OF TABLES

Page

Table 1. Correlation between the HIS and the AIS [9] ...11

Table 2. Comparison Between Four Self-Healing Systems. ...61

LIST OF FIGURES

Figure 1. Externalized Adaptation In A Model Based Self-Healing System [27]............33

Figure 2. Communication Channels Between Dmona And Dips Layers.37

Figure 3. Structure of the Proposed Network Model. ...48

Figure 4. Immunity Propagation Among The Nodes. ...56

Figure 5. The Process By Which T Cells And B Cells Interact With Antigens [6]..........70

Figure 6. Graphical Representation of the Life Cycle of T Cells and B Cells and Their

Interactions with Antigens. ..71

Figure 7. Agent Structure And Flow Diagram..72

Figure 8. Sandbox Technique Sequence...75

1

ABSTRACT

In a continuous search for computer security, researchers and software developers are

trying to provide all the possible means to stop the threat to information. These efforts

include providing different ways to save the data, backup techniques, and security

applications against harmful programs.

This research discusses the use of the human (biological) immune system to provide

the basis of a model for an artificial immune system. The research lays out a complete

workflow for the model with the use of agents and commercial off-the-shelf products to

work together to counter malware. The novel idea in this work is in providing a self-

healing system that is outside the software architectural descriptive handling (while

avoiding the weaknesses of the current models); which utilizes the achievements of the

market security products to provide a complete self-healing package from malware in a

controlled environment.

This research provides the ground for a complete implementation of a product which

can handle programs considered untrustworthy. The agent uses techniques such as

sandboxing, processing priority and bandwidth control to quarantine the malicious code

and prevent it from spreading.

2

I. INTRODUCTION

1.1 The Problem.

Malicious software (malware) has been a threat to organizations and personal

machines since the first written computer program. In fact, any program not debugged

correctly may cause a problem of some kind or undesirable result. This code, if executed

in such a context, will have an unacceptable output. A common definition among the

security community of malware is: “Short for malicious software, which is designed

specifically to damage or to disrupt a system, such as a virus or a Trojan horse” [15]. This

definition is debated all over the security research community, even when it is used by

the community members; where it lacks complete definition. If someone writes code that

overwrites a part of the bootable hard drive in a silent way (i.e. without informing the

user of the running process), that code is not malware for the writer, because he1 knows

the complete functionality of the code, he might be using it to fix a problem. If someone

other than the code writer gets a copy of that code and executes it without knowing all of

its functionality, then according to the definition above, this code could be considered

malware because it damaged and disrupted the system.

The goal of this study is to present an architecture for a security system that provides

a self-healing capability with minimal user interference. The significance is that such an

architecture will provide the system the capability to identify malware based on its

characteristics and behavior. This prevention results in saving time and money.

1 Whenever “He” is used in the text, it means “He/She.”

3

A complete and precise definition of malware is difficult to find; due to the changing

nature of such code. This research focuses on the hidden functionality of the malware,

defining it as a piece of code (single program or an application) that performs an

undesirable action without the user’s knowledge or without the user’s knowledge of all

its actions.

This definition helps to describe the code functionality in this approach, which

includes viruses, worms and the like. Our concern also includes malware that activates

without the user’s knowledge or acceptance, such as spyware. The result of running such

applications may be destructive or a mere violation of privacy.

The easy access and wide usage of the Internet make it a prime target for malicious

activity. In particular, the Internet has become a powerful mechanism for propagating

malicious software programs designed to annoy (e.g., deface web pages), spread

misinformation (e.g., false news reports or stock quotes), deny service (e.g., corrupt hard

disks), steal financial information (e.g. credit card numbers), and enable remote login

(e.g., Trojan horses). The two most popular ways to spread such malicious software are

commonly referred to as worms (such as Code Red) and email viruses (such as Melissa or

Love Bug). However, it is increasingly difficult to categorize malicious software

programs using these terms [11].

Mapping an artificial model to a biological model is a helpful method used in the

study of evolutionary computation. Approaches such as Artificial Life study biological

life to achieve optimization, just as ant colonies are studied to find different approaches

to problems like the Traveling Salesman problem. With this in mind, researchers began

looking for a biological model to help in achieving better security. Researchers used the

4

Human Immune System (HIS) as the biological model, which is the same model in all the

vertebrates, due to its complexity and its familiar functionality. The HIS model can help

us better understand the biological approach for handling an antigen attack, and in trying

to develop a solution in the artificial system similar to the biological process to handle

security threats.

Building components that approximate the behavior of the human immune system

components to encounter malware without depending on the user interference may

provide an enhanced self-healing capability. This paper proposes a self-healing

architecture based on the HIS model with the use of agents to protect the system from

malware threats. The agents coordinate the actions and behaviors of the security

components, perform anomaly detection, identify unknown malware and make/suggest

decisions by communicating with the administrator, here, the administrator intervention

is welcomed, but not necessary.

1.2 Purpose of the Study.

 The purpose of the study is to provide a working model of a self-healing system that

helps in preventing from malware threats, inspired by the human immune system

working architecture, which proved to be effective in handling antigens unknown to the

system. The components of the model are mostly commercial off-the-shelf, except for the

agent that manages these components and coordinates their behavior once the agent

detects an anomaly in the system.

 In researching a security self-healing system that models the HIS, accuracy in the

behavior model is required to design future adaptation or modification if needed, based

on the original model. For an example, the HIS does not behave in an intelligent manner

5

during the detection or the cleaning phases. Therefore, the Artificial Immune System

(AIS) follows a step-by-step sequence in detecting and cleaning antigens, based on trial

and error, depending on the information that it gets from its previous experiences, which

is logged in a database for future use. Meanwhile, the components may behave

intelligently based on their duties and functionalities, depending on the provider’s design

of the product.

 The AIS will behave in a natural manner by quarantining the infected node from the

rest of the network to avoid spread of the “disease”, by utilizing strict firewall policies.

Alongside the prevention of antigen spread, it is required to protect the system from the

external threats and perpetrators awaiting the necessary conditions to perform harmful

actions.

6

II. LITERATURE REVIEW

2.1 Brief Description of the Human Immune System.

 The human immune system is extremely complex. Some believe it has evolved over

hundreds of millions of years to respond to invasion of the pathogenic microbes that

regularly attempt to infect our bodies and the invasion of the microbes that tried to infect

our genetic ancestors. There are similarities between the immune system of humans and

those of the most primitive of vertebrates [6], with the difference in the complexity and

nature of the threats they may encounter in their environments.

Diseases in the body are recognized by symptoms that occur as the result of a

weakened immune system not being able to produce sufficient antibodies to counter a

particular strain of virus, bacteria or fungus. The symptoms could be pain, swelling,

infected wounds, poor digestion, stiff joints, weakened bones or general debilitation.

The immune system does not rely on one single mechanism to deter invaders, but

instead uses many strategies, the most important of which are detailed below. The main

division between the strategies is that between innate immunity, which does not require

previous exposure to the invading microbe, and acquired immunity, whereby the immune

system "remembers" how to deal with a microbe that it has dealt with before [1].

Phagocytes (white blood cells) are the soldiers of the immune system, and provide

innate immunity. They are responsible for swallowing, killing and digesting invading

microbes. The process of swallowing microbes is known as phagocytosis. There are two

main types of phagocyte:

7

- Microphages. These cells are also known as Polymorphonuclear Leucocytes,

PMNs and Polymorphs. These cells start life in the bone marrow. They are

constantly circulating in the blood. They cannot replicate, and live for only a few

days. The bone marrow contains large reserves of microphages.

- Macrophages. These cells start out life as monocytes, which originate in the stem

cells in the bone marrow, but when they are first called into action, they turn into

macrophages. Macrophages are not as numerous as microphages, and there are no

large reserves of them, but they are longer lived than microphages. Macrophages

are stationed at strategic locations throughout the body, usually in places that are

not otherwise well defended. These areas include the alveoli of the lungs, the

abdominal (peritoneal) and chest (pleural) cavities, under the top layer of the skin

and the intestines. Macrophages are the front line of defense against microbial

invasion in these areas.

Macrophages engulf antigens, process them internally, and then display parts of them

on their surface together with some of their own proteins. This sensitizes the T cells to

recognize these antigens. All cells are coated with various substances. Clusters of

Differentiation (CD) encompass more than one hundred and sixty clusters, each of which

is a different chemical molecule that coats the surface.

An immunocompetent but as yet immature B-lymphocyte is stimulated to maturity

when an antigen binds to its surface receptors and there is a T helper cell nearby (to

release a cytokine). This sensitizes or primes the B cell and it undergoes clonal selection

(Appendix A1), which means it reproduces asexually by mitosis. Most of the family of

clones becomes plasma cells. These cells, after an initial lag, produce highly specific

8

antibodies at a rate of as many as 2000 molecules per second for four to five days. The

other B cells become long-lived memory cells. (Appendix ‘A’ describes the interaction

between the T-cells, B-cells and the antigens [6]).

When these tasks are complete, the Macrophages have one further task to complete.

They return to the lymph nodes, displaying the remnants of the destroyed invader on their

surface. This has the effect of stimulating the cells of the acquired immunity system into

action.

Immunity can be either natural or artificial, innate or acquired/adaptive, and either

active or passive.

- Active natural (contact with infection): develops slowly, is long term, and

antigen-specific.

- Active artificial (immunization): develops slowly, lasts for several years, and is

specific to the antigen for which the immunization was given.

- Passive natural (transplacental, i.e. mother to child): develops immediately, is

temporary, and affects all antigens to which the mother has immunity.

- Passive artificial (injection of gamma globulin): develops immediately, is

temporary, and affects all antigens to which the donor has immunity.

The goal of all vaccines is to promote a primary immune reaction so that when the

organism is again exposed to the antigen, a much stronger secondary immune response

will be elicited. Any subsequent immune response to an antigen is called a secondary

response and it has the following properties:

- Shorter lag time,

- More rapid buildup,

9

- Higher overall level of response,

- More specific or better "fit" to the invading antigen.

In summary, the following innate immunity will be the model for the digitized

immune system. It is comprised of a collection of proteins that "recognize" corresponding

proteins on the cell walls of invading microbes. When such invading microbes have been

recognized, the following actions are taken:

- The "alarm" is sounded. Chemicals, known as chemotaxins, that attract

phagocytes are emitted. This process is known as chemotaxis. The phagocytes

follow the trail of chemotaxins to arrive at the site of invasion.

- The invading bacteria are "marked" with chemicals that make them stand out.

These chemicals are known as opsonins, from the Latin word opsonium, meaning

"sauce". This "marking" greatly increases the chances of the invading bacteria

being phagocytosed.

2.2 Related Work on Artificial Immune Systems.

Zhang et al. [16] discuss an immunity-based model for network intrusion detection,

which could be looked at as the simplest way of applying the Human Immune System

(HIS) model on a computer world. The simplicity lies in the fact that these immunity

agents will have steady and fixed targets on which to focus, which are the incoming ports

and the packets being transferred. The paper focuses on certain aspects of the HIS such as

the threshold of the number of detected antigens to provide activation for killer cells, also

the memory model to attack the already known antigens. The paper describes the

characteristics of the Intrusion Detection (ID) system as distributed, self-organized and

lightweight. It also discusses and identifies the nature of self versus alien connection in

10

correlation to trusted and not-trusted transactions. The task is performed through two

processes, the detector generation, and the detection process. The detectors are generated

randomly and considered immature at this stage. If the detector produces false positives

during the training period, it will be eliminated. The detectors use the pattern matching to

provide detection of non-self transactions, which are generated outside the

network/organization entity. However, the process in which the generation of the

detectors is being used was not well documented because it describes the propagation of

the characteristics to newly generated detectors without defining the mechanism for

achieving such a goal. In the paper it seems that there is a trivial way of generating a

detector, training and testing it albeit sometimes immaturely. However, if a detector fails

it will be eliminated, with very little use of its good characteristics.

In Robert et al. [12], the paper discusses a distributed architecture for virus detection,

which should ease the processing pressure (detection and job execution) of the individual

nodes. This is achieved by protecting the node from infection and assigning the tasks

allocated to the infected node to other nodes for execution. It also introduces the concept

of self (files generated within the system) or non-self (files from an external source)

identification methods presented in [5] to identify individual files posing threats, or

infected files. Some self-files might mutate to non-self by being infected. Another

approach described in the paper is the use of virus decoy programs to attract viruses to

infect them. Once the file is being infected, the virus signature is extracted and

monitored.

The authors also describe a leveled approach to the problem: local, network and

global. Each level has its responsibilities and functionalities. In the local level decoys

11

used to attract the attackers are deployed (entrapment) and identification is performed on

the antigen. Every attack or malware characteristic is added to the knowledge base for

future reference. The network area performs the classification and reporting, while the

global level performs the strategy management and selection of decoys based on an

evolutionary algorithm approach, in which the fitness function is based on the attracting

characteristics of the decoy and its success.

Regina et al. [9] present an excellent approximation between the HIS and the

Artificial Immune System (AIS). The study discusses innate and acquired immunity, the

stages of a disease, and the countermeasures that are taken to eliminate the threat. In their

correlation the authors discuss four main aspects that both systems have to monitor:

availability, correction, integrity and accountability. Table (1) displays the correlation

and their duties.

 Human Immune System Artificial Immune System
Integrity This is a way to guarantee that

the genetic codes present in the
cells will not be corrupted by
any pathogen

Data has to be protected from
intentional or accidental corruption

Availability This aspect allows the body to
continue working even under
attack of a pathogen

Information, such as the computer,
must be accessible when necessary
and as desired

Correction This mechanism prevents the
immune system against attacks
of the (body) cells

False alarms from an incorrect
classification of computational
events must be minimized

Accountability These are means adopted by the
immune system to identify, find
and destroy the pathological
agents

The security system must be
configured to preserve sufficient
information from the intrusion that
can be permitted to trace the origin
of the attack

Confidentiality

There are no concepts of secret
data or confidential information

Data access must only be allowed
to authorized users

Table 1. Correlation between the HIS and the AIS [9]

12

The main threat the paper discusses is the intrusion into the system. The tools

described to detect the threat are: (1) misuse intrusion, where well-defined attacks are

launched against known system vulnerability, and (2) anomaly intrusions, which can be

identified as activities based on deviation from normal system usage patterns. The paper

classifies four possible scenarios that the system might encounter, checked against four

log files: Hacking, violations, violations-ignore, and ignore. The hacking log file would

be composed of keywords that characterize a hacking attempt. If detected, the immune

system is activated. The violations log file is composed of keywords that characterize a

violation. If detected, protective actions are required, i.e., blocking certain ports. The

violations-ignore log file contains keywords opposite of the violations log check. Activity

is logged and no action is required. The ignore log file holds keywords that are safe for

the user. The paper displays experimental results of improved numbers of true positive

detection and lesser numbers of false positives, compared to previously used signature

approaches.

Neil et al. [10] describe JISYS system, which is AIS for network security. The main

activities of the system are to collect information about the data transferred and

categorize it as self (initialization). Performing this frequently “generalizes” on these data

sets to identify non-self. Over time it mutates to apprehend new changes (accepted ones),

to generate new patterns and generations, then to generalize on the new data again. The

process will repeat for all the data sets. This process continues to produce AIS to

recognize any data sets that are not legitimate to traffic the network.

The drawback of the system as described by the authors is the extensive execution

time that the system takes [The complexity of the algorithm is O(n2) in the worst case],

13

due to the need for processing the data transferred and then matching it with the library

and mutating if required. The system was developed to identify fraud in audited data, but

it is generalized to monitor network traffic as well.

Taheri et al. [14] introduce two approaches to utilize agent federation for error

control by imitating the HIS. Agent federation is a process of generating numerous

numbers of agents with different characteristics abstracted from a knowledgebase. The

approaches discussed are the immune recruitment mechanism (IRM) and the genetic

algorithms (GA). With IRM, the antibodies are selected from a pool randomly. These

agents work to locate and handle. The agents are called to counter the antigen once it is

located. The federation of agents chooses the individual with the best capabilities to

achieve the required task. If it succeeds then it will be cloned and will spread to destroy

the remaining antigen. If no individual from the initial set possesses the required

capability then all the initial set will be terminated and a new population will be

generated. The process of selection is repeated until a successful clone is found. Once a

clone is selected and the cleansing is completed then the characteristics of that clone are

saved in a memory location for future reference and its capabilities will be within the

potentially cloned agents (phase space theory).

The GA approach is based on fitness, mutation and regeneration. Where an initial

population is generated, the fitness function (based on the type of threat) selects the best

fit members of the population. This is a basic operation in genetic algorithm, which

selects the best members of a group based on certain criteria. The desirable characters in

these members are forwarded to the next generation and so on until a certain number of

iterations are performed or the desired set of characters is met (desired set of genes in the

14

chromosome). The process is repeated as it checks for the fitness until the near optimum

is reached or a mutation is applied to certain members. In a search for the near optimum

individual, that will be used to achieve the required cleansing of the antigen by

reproducing the fittest members. After a successful encounter, the system activates a

process of recording the gene “chromosome” in memory to be generated in the future in

case a similar threat occurs.

Other researches (i.e. [38], [39], [40]) discuss the approximation between the HIS and

the AIS by tackling certain aspects of both systems, but none has approached the use of

available security tools (either COTS or customized) or the use of agents to orchestrate

their work to achieve the required immunity.

2.3 Models of malware.

The main threat of malware comes from the intentions of its creator; some code might

be created to be a joke while others target core information to delete or encrypt.

Regardless of the intentions or hidden goals, the best thing for the administrator is to

monitor all applications, as it is his right of knowing what is happening on his machine,

and his privileges of privacy.

According to the institute of certified security associates (ICSA) labs 7th annual

prevalence survey in 2001, conducted on a group of 300 organizations had 1,182,634

encounters on 666,327 machines during the 20 months of the survey period from January

2000 through August 2001. This translates to 113 encounters per 1,000 machines per

month over the entire survey period. Global infection rates calculated from the surveys of

1996 through 2001 showed a significant annual growth rate of approximately 20

encounters per month per 1,000 PCs for each year in that period. In 2000, 36% of those

15

reporting disasters estimated that servers were down one hour or less. By contrast, 65%

of the year 2001 respondents reported downtime of one hour or less, with 53% claiming

no server downtime at all. More than 80% of those reporting a disaster required 20

persons-days or less to recover from their virus disasters. The median response was four

person-days for recovery. On average, this cost between $5,500 (median) and $69,000

(average) in estimated direct costs [17].

Based on its target, malware can be classified in many categories. Here is an

explanation of some of its types and characteristics [4]:

1. Virus: Code that attaches itself to other software, such as a patch algorithm, by

redirecting the original starting point of the host to the start point of the virus, or by

residing on the machine and pointing certain hosts to point-execute the virus when

activated. Replicates and attempts to attach itself to other applications. Effect varies

from humorous to catastrophic. Might attack boot sector in Microsoft operating

systems, Terminate and Stay Resident (TSR) in the memory (until certain conditions

hold). Also, might attack applications, or network protocols. Meanwhile, in Unix, the

threats of malware are a little different, and will be discussed later in this section.

Certain viruses mutate or use stealth techniques to escape Antivirus (AV) software.

They may attack any platform, though most of them are platform dependent.

Prevention can be achieved by limiting connectivity to other machines. Movement of

host means a spread of the virus, where the host could be a file or a mobile machine

such as a laptop with wireless capability. Common symptoms could be physically

monitored, such as files expanding, date/time stamps changing, slow computer due to

the virus using the resources to multiply, or system failure. Common

16

countermeasures include identification/ containment/ recover (if possible) of the host,

using AV software.

2. Worm: A stand alone application that prefers network environments, often designed

to propagate through networks, generally targeting multitasking machines with open

network standard. Infected systems perform slower than usual and might fail.

Monitored connectivity is a very good tool for prevention. Identification,

containment and system recover is the countermeasure with use of AV software.

3. Trojan Horse: Might be a virus or a worm. Main target is to gain the user’s

cooperation by mocking a useful program to get access to certain information. Then,

the Trojan relays the targeted information back to perpetrator. The best prevention is

knowledge and training for users. Trojans are executed by the user, and may not

reproduce, but they may target a specific machine or group of users. They may stay

idle for a long time waiting for execution of the program, so users must be alerted not

to execute it and take evasive actions if possible.

4. Time/Logic Bomb: A virus or a worm that activates according to certain time-

stamp/conditions. They mostly try to cause damage by spreading and multiplying as

much as possible. These take time to deploy, so careful monitoring will allow

detection before the trigger. Team effort and user awareness are important prevention

and detection tools, and user’s concerns should be noticed. Contain, identify and

recover are countermeasures with use of AV to help assure cleansing.

5. Rabbits: These target multi-tasking systems, draining the system resources by

multiplying until complete system failure occurs. They act like worms on all machine

levels consuming CPU, network, disk and memory resources. Firewalls play a major

17

role in prevention besides anomaly identifiers. Initial symptoms are the same as

viruses, with increasing slowness to total paralysis.

6. Back Doors and OS vulnerabilities: Some programmers leave an open door in the

applications that they write to allow debugging space and direct access points. These

might be exploited by hackers or perpetrators to gain access or to perform other

actions they may desire. Nothing is perfect, including the operating systems (OS).

Every now and then patches are sent to fix certain problems and vulnerabilities in the

OS. These fixes are not always forced on the user’s machine. Therefore, some users

might take more time before applying it to their machines. The actual declaration of

the fix is an announcement of a problem, and certain perpetrators might use such a

bug to attack the users who have not yet applied the fix. Users should be notified of

any new updates and of the importance of applying these fixes. When applications

are released, backdoors should be sealed. If there is a severe need to leave the back

door in the released version, it should be protected and the administrator should be

alarmed when it is used.

7. Spyware: These are applications that are installed on the machine with the user’s

approval (in most cases). However the spyware might do more than what was

advertised, such as telling the weather forecast while reporting surfing behavior or

information about the system. The important violation here is the privacy of the user

and his right to know the behavior of the application, which it should not do such

actions without the user’s approval. Certain applications might have been installed

legitimately with the user’s consent, but the applications have the hidden

18

functionality of serving a third party, such as reporting other software activity on the

machine (i.e. monitoring licensing).

8. UNIX malware: UNIX shell scripting malware is considered one of the major

weaknesses in the UNIX/Linux environment; it may control program configuration

and start/kill services. Bourne (sh), Bourne Again (Bash), Korn, C and Tops C shell

scripting could be used as interpreters, or a completely new shell script could be

created with a simple tempting name like “runme.sh”[18]. Creating malware using

shell scripting is relatively easy. Simple viruses may be very short, consisting of only

a few lines, and even less code is needed to construct a Trojan. Another threat in the

UNIX/Linux environment is the mobile code “Javascript” that uses the Java virtual

machine, which is used in both Windows and UNIX operating systems. This means

that mobile malware could be executed on both machines, albeit having the virtual

machine enabled. Windows emulators are also a possible drive for malware designed

to operate on Windows, hence the availability of the emulator will provide the proper

grounds for these malware to execute. To be fair with UNIX, it does not have the

volume of attack that MS Windows has due to its levels of security, but it is still not

considered immune.

9. Macintosh malware: Because Macintosh OS X is shipped with all its vulnerable

services turned off and because Apple has a small market share, little opportunity is

provided to spreading threats and malware in the Macintosh community. Experts say

that this doesn’t mean Macintoshes are safe, but that it is very difficult to activate a

virus. No application is allowed to launch any script without the user’s approval.

Another plus for Macintosh is the UNIX based system that can handle multiple users

19

on the same machine, preventing infection from spreading from one account/user to

another on the same machine. In the Macintosh environment, the most frequent way

to infect a machine is to convince the user to willingly activate a script or set his

machine to automatically activate scripts in email messages, or by running certain

applications in Windows emulator. Infection alternatives are definitely available, but

“black hats” (hackers and the like), did not have the interest in the target, yet!

In conclusion, a malware writer can persuade a victim that the code is doing

something desirable, and the user will launch it. The writer can also bypass the victim by

writing a self-propelled code that executes without the direct action from the user,

depending on the settings of the operating system’s security features.

These malware can pose a threat in one way or another to the user. Yet we have not

discussed evolving programs that might attack in many shapes where they learn to

change strategy and attack in many shapes to achieve a certain goal. Currently, this is not

a wide spread threat and available technologies do not provide enough flexibility and

speed to achieve such goals. These applications have neural network engines that provide

alternating patterns of attack, creating either a virus or a worm, but evolving as a

complete application, mutating in different shapes and techniques. [10].

2.4 Approximation Between the Human Immune System and the Available Security
Systems.

When the first worm was released in 1988, available antivirus software at that time

could not see it because it was a standalone application which multiplied and spread

while the antivirus expected an embedded code. Therefore it slipped through and caused

loss in tens of millions of dollars. The threat of the unknown next step currently stands.

20

The recurrently spreading technique for malware nowadays uses email attachments

containing Worms or Trojan Horses. Mutating applications might be the new threat that

combines various malware techniques, which might not be detected by the current

counter measure applications. This situation dictates the daily continuing race between

malware producers and Counter Measures (CM) developers. The CM applications are

required to be competent to provide the required security and confidence to deliver peace

of mind to the administrators. These applications require certification and updates to keep

them effective against known threats. Following are some common known commercial

off-the-shelf (COTS) tools for detecting and handling malware:

- Intrusion Detection (ID): Detects inappropriate, incorrect, or anomalous activity

[16]. ID systems that operate on a host to detect malicious activity on that host are

called host-based ID systems, and ID systems that operate on network data flows are

called network-based ID systems. The basic approaches in ID are using statistical

anomaly or pattern matching. External threats are mostly monitored and identified

using ID, but certain applications may produce huge numbers of false positives.

- Firewalls: A firewall is a system or group of systems that enforces an access control

policy between two networks. The actual means by which this is accomplished varies

widely, but in principle the firewall can be thought of as a pair of mechanisms: one

which exists to block traffic, and the other which exists to permit traffic. Some

firewalls place a greater emphasis on blocking traffic, while others emphasize

permitting traffic. Probably the most important thing to recognize about a firewall is

that it implements an access control policy defined by the administrator. Simply put,

policies are everything the firewall can follow.

21

- Anti-Viruses (AV): Programs used to detect and remove computer viruses by

identifying their signature (i.e. binary pattern). The simplest kind of AV scans

executable files and boot blocks for a list of known viruses. Others are constantly

active, attempting to detect the actions of general classes of viruses. Antivirus

software should always include a regular update service allowing it to keep up with

the latest viruses as they are released.

- Behavior Monitors/Blockers [2]: Behavior blockers watch ActiveX, Java applets,

various scripting languages, and other mobile code that arrives on a host via e-mail,

the Internet, or other network connections. Some blockers isolate this code in a

“sandbox,” restricting the code’s access to various OS resources and applications.

Other blockers insert themselves into the kernel of a host’s OS to intercept system

calls.

As mentioned before, the Human Immune System (HIS) has its tools to counter the

threats arising from various sources. We can describe the Artificial Immune System

(AIS) in the same manner, where both systems seek the following four properties:

detection, diversity, learning and tolerance:

o Detection – Detection (or recognition) of chemical components between pathogen

fragments and receptors on the surface of the lymphocyte occurs in a human

immune system.

• In the same manner, the AIS seeks the detection of any virus or harmful code that

enters the system illegally, intends to cause damage, existing on the system

without acquiring the user’s approval or acceptance.

22

o Diversity – Detection in the immune system is related to non-self elements of the

organism. Thus, the immune system must have diverse receptors to ensure that at

least some lymphocytes will react to the pathogenic element. The solution

adopted by the body relies on a dynamic protection via a continuous renewal of

lymphocytes.

• The AIS has the same concept, with diverse tasks and frontiers, such as when ID

handles the communication ports and the agent sandbox mobile code. The

diversity of the threats that the AIS can handle provides protection from different

sources at the same time. Hence, each element manages a different aspect of the

system, handling a huge number of threats.

o Learning – The immune system must be capable of detecting as quickly as

possible the pathogen and eliminating it. It includes a principle which allows

lymphocytes to recognize and adapt themselves to specific foreign protein

structures, and to “remember” these structures as soon as possible when needed.

These principles are implemented by the B cells.

• The only task that the AIS lacks is the self (adaptive) learning, where most of the

COTS products require continuous updates with patches from the producers to

update them with current and new threats. The papers reviewed in the literature

research discuss many ways to achieve the adaptability to new threats. This

research discusses ways to achieve this goal with the use of agents.

o Tolerance – The molecules that mark a cell as a self gene are contained in the

chromosome sections also known as Major Histocompatibility Complex (MHC).

23

• The AIS has to be tolerant with self “programs” to avoid destroying them while it

has to be decisive with any alien code. It is important to have some kind of

rollback or backup sequence to correct any errors that may occur during that

process. It also needs to be able to fix self “programs” if infected.

As we can see, both immune and computer security systems share common security

concerns. They both intend to protect their corresponding systems against attacks and

intrusions that cause anomalies in the system.

2.5 Related Work on Self-Healing Systems.

 Self-healing systems technology is a gray zone between self-adaptability, software

engineering, software architecture and object oriented programming. In a system, the

mechanical parts can be configured to perform self-healing by providing an array of

redundant resources (e.g. array of hard disks), and if one of the operable HDD fails,

another is loaded by the backup copy and operated instead.

 To achieve the self-healing aspect in a system, there should be an automated

mechanism to allow the system to get back online or back to full capacity without the

involvement of the operator. Before the use of object-oriented programming, the system

architecture was only available to the administrators to terminate or initiate a process

manually; a failure of a function (i.e. having a bug in the code) resulted in the failure of

the whole system, unless the administrator interfered. Furthermore, the systems were not

built in module architecture, where processes could be altered in a single command but

not applications, which required a set of operations to achieve replacement, termination

or initiation. If the system failed, it required to be taken offline and rebooted to reload a

fresh (good) copy of the system to return it to operation. This process is very time

24

consuming, considering slow machines, and the massive number of peripherals attached

to the system. However, a system composed of multiple components means that once a

component fails, then that component can be replaced with a corrected one. These

components are not necessarily sitting idle, waiting to be swapped.

 As a matter of fact, the components that are the most heavily used are the ones that

are quicker to develop bugs. To be able to switch these heavily used components, the hot-

swapping concept is introduced. It provides an approach to load the fresh copy of the

component in the workspace, and then delete all the pointers from the old copy and point

them to the new one. If successful, then the old copy is removed, and the new copy is

adopted; the system is back to normal.

 To achieve this, the application should have the self-awareness to realize that there is

a problem and adapt to the changing requirements. Software engineering has to consider

the design and architecture of the components to make it easy to swap the component

without halting a huge number of the system components.

 Neil et al. [19] describe the essentials for the ability to dynamically repair a system

based on its architecture at runtime. These are:

1. Descriptive knowledge of the current architecture;

2. Ability to express the change of the architecture;

3. Analysis of the repair expectation and its validity; and

4. Ability to execute the repair in runtime.

 Software architecture description language (ADL) can describe the changes in the

architecture of the system and provide an analysis of the suggested changes that could be

applied as a fix. Component sensors, such as bandwidth or cycle time, can be used to

25

describe the health of the system. Reconfiguration strategy should be considered to

provide the alternative solutions.

 In software frameworks, approaches for software self-awareness and self-healing are

a growing demand in languages structure and design. Open object request broker (ORB)

provides reflection capability of middleware which, in part, provides more knowledge of

the system structure and behavior [20]. This is being applied with the use of common

object request broker architecture (CORBA) interceptors and dynamic proxies in Java.

Providing a component framework can help in managing the system with a better

understanding of the overall state. Implementation of the open ORB provides monitors

for events and quality of service, which directs the controllers that govern the strategy

selectors and implementers to a better solution.

2.6 Comparative Study of Self-Healing Systems.

Systems are increasingly required to work continuously. The idea of taking a system

off-line to perform either hardware or software maintenance is becoming impractical

financially and professionally. Online hardware component switching and swapping is a

solution for hardware malfunction. Mapping this hardware concept to software

components provides a parallel work paradigm for software malfunction runtime

maintenance.

User’s requirements and system resources change frequently. To provide the desired

quality of service and continuity of that service, a cost effective technique is required to

reliably and dynamically adapt a system’s behavior to provide optimal service.

The work on software adaptability is not a new topic. Runtime assertion checking and

exceptions handling are simple examples of software adaptability, but these handling

26

techniques are not capable of determining the source of the problem, and are not able to

decide proper strategy handling for future errors.

Software engineering has proposed many alternatives and techniques to handle

changing software environments. Research and study has been done in that field to

present the performance model as the monitoring element and strategy evaluation tool.

The basic concept in these studies focuses on the architecture models as the cornerstone

of model-based adaptation. Oreizy et al. use a hierarchical publish-subscribe service via

C2, where all communications among components occur via connectors, thus minimizing

component interdependencies and strictly separating computation from communication.

The style also imposes topological constraints; every component has a “top” and a

“bottom” side, with a single communication port on each side. This restriction greatly

simplifies the task of adding, removing, or reconnecting a component. A C2 connector

also has a top and a bottom, but the number of communication ports is determined by the

components attached to it. A connector can accommodate any number of components or

other connectors. This enables C2 connectors to accommodate runtime rebinding.

Finally, all communications among components are done asynchronously by exchanging

messages through connectors [21].

An older study by Gorlick et al. uses data-flow style via Weaves. Weaves are

networks of concurrently executing tool fragments that communicate by passing objects.

Weaves are distinguished from other data flow styles by their emphasis on

instrumentation, continuous observability, and dynamic rearrangement. Basic low-

overhead instrumentation is inserted automatically. Weaves can be executed at any time

by means of sophisticated analysis agents, without degrading the performance of the

27

weave. Weaves can be dynamically snipped and spliced without interrupting the data

flow; this permits novel forms of experimentation and analysis. Weaves execute

efficiently on a broad spectrum of architectures and offer numerous opportunities for

parallel execution [22].

Magee et al. use bi-directional communication links via Darwin, an architectural

description language specifically designed for the specification and construction of

distributed software systems. It deliberately separates the description of structure from

that of computation and interaction in order to provide a clear separation of concerns. A

Darwin architecture can be used to compose component implementations to build a

system and/or to compose LTS (labeled transition systems) specifications of component

behavior for system property analysis [23].

Wermelinger and Fiadeiro use architecture primitives to effect architectural changes,

independent of particular styles, mainly by using graph transformation approach for

software reconfiguration. Their work provides a formally based language that integrates

the aspects of architectural description, constraints, and modification [24].

Using architecture modeling to achieve adaptability is the preferred approach to

address this issue. In the previous papers, the architecture model is used in different

ways. Those research studies are relatively old, and have been used by other researchers

to build upon. The first of these approaches that this paper discusses is the graph

transformation approach; it is a relatively new concept that is being approached, and there

is no further research that extends it yet. The other work discussed afterwards is built on

architectural models, but each uses a different technique in monitoring and applying the

changes.

28

2.6.1 A Graph based (Re)configuration language.

 Wermelinger and Fiadeiro [26] introduced in the Software Engineering

ESEC/FSE’99 an algebraic software architecture reconfiguration approach [25], both

heterogeneous and uniform. It is heterogeneous because it provides a dedicated,

separate sub-language for each aspect: a program design language for computation, a

declarative language for constraints, and an operational language for reconfiguration.

It is uniform because it uses Category Theory as a semantic foundation both for

configurations taken as categorical diagrams and reconfiguration achieved through

algebraic graph rewriting techniques.

 The approach also provides a strict separation between computation and

(re)configuration, while keeping them explicitly related; the components do not have

access nor can they change the configuration variables or call scripts. The

reconfiguration scripts have access but cannot change the state of components. Notice

that replacing a component by another one of the same design with a different state is

not what is meant by state change, because there are actually two components

involved. The original one is removed and a new one is created.

The main goal of the language is to provide high-level constructs that are suited to

the architectural level of description of a system. In particular, interactions are created

and removed at the level of connectors, hence guaranteeing that configurations are

always instances of the architecture [26].

In the literature, the authors discuss four elements that should be monitored and

handled within a healing system design. These are: modification time and source,

modification operation, modification constraints, and system state. To handle all these

29

issues, a complete knowledge of the system state is required and a tool is needed to

express this knowledge. A graph design of the system nodes and connections could

provide expressional means of the correlations between the components. The authors

use CommUnity programs to provide the syntactic layout of the architecture.

CommUnity is independent of the actual data types used with pre-defined sorts and

functions given by a fixed algebraic signature in the usual sense.

A CommUnity design consists of a set of type defined variables and a set of

actions. There are input, output and private variables. Input variables are read-only.

Output and private variables are called local variables and cannot be changed by the

environment. A design with input variables is open in the sense that it needs to be

connected to other components of the system to read data.

Connecting a design D1 with a design D2 is done through a channel: a set of

bindings i1,j -i2,j , where each i1,j is a non-private variable or a set of shared actions of

design D1. In the first case, i2,j must be a non-private variable of D2, of the same sort

as i1,j , and the pair i1,1-i2,1 denotes that the two variables are to be shared. In the

second case, i2,j must be a set of shared actions of D2. Moreover, every shared action

of the involved designs can appear at most once in the channel definition. Intuitively,

a pair:

{a1,1, . . . , a1,n}-{a2,1, . . . , a2,m}

states that any action a1,i of D1 must occur simultaneously (i.e., synchronize) with

some action a2,j of D2 and vice versa.

30

A configuration is given by an undirected labeled graph, where each node is

labeled by a design and each arc by a channel, such that no node is connected to

itself, and no two output variables are directly or indirectly shared.

A run-time configuration is a configuration in which each node, besides being

labeled with a design D, is also labeled with its current state, i.e., with one pair

<l,value> for each local variable l of D. Because local variables cannot be shared

among designs, it is not possible for two different nodes to have different values for

the same variable. Hence, the colimit (a universal categorical construction) of a run-

time configuration always exists and is given by the colimit of the underlying

configuration together with the disjoint union of all variable-value pairs.

A key factor for architectural description is a notion of refinement that can be

used to support abstraction. A design R refines design P if each variable of P is

mapped to a variable of R of the same sort and kind (input, output or private), and

each action of P is mapped to a set of actions of R of the same kind (private or

shared), such that the functionality and interface (i.e., the “binding points”) of P are

preserved. The interface is preserved by requiring the mapping of input and output

variables to be injective and the image of a shared action to be a non-empty set.

An architecture defines the designs that may be used as components/roles and the

refinement relationships between them; the designs that may be used only for roles,

the connectors, and the refinement morphisms for each role; the configuration

variables; and a constraint on the possible configurations.

31

A common reconfiguration is to update a component (e.g., to add new

functionality, eliminate bugs, or improve efficiency). This is achieved through the

replacement of a component by a refinement other than the identity of it. The syntax:

[Node2 :=]

create Design2 as [Refinement(]Node1[)]

with l1 := Exp1 k . . .

where Node2 is of type Design2 and Node1’s type is some Design. This command

removes Node1 and replaces it by a new node Node2. For any glue to which Node1

was connected, through some channel c, the new node becomes connected to the

same glue through a channel that is the composition of c with Refinement.

The command to replace a component is the most complex one, because one

cannot know a priori to which connectors the component to be replaced is attached.

Therefore the command is compiled into a set of productions that do the replacement

in three phases: The first introduces the new component, the second re-links all

connectors to the new component, and the last phase removes the original component.

For the second phase, there is one production for each role of each connector that the

node to be replaced may initiate.

For example, if there were two connectors C1(R1,R2) and C2(R4,R5,R6), and a

node n1 of type N1 were to be replaced by a node n2 of type N2, with refinements from

R1, R4 and R6 to N1, then there would be three productions; One replacing the first

channel of C1 to n1 by a channel from C2 to n2, another production for the first

channel of C2 and the last production for the third channel of C2. The set of

productions generated for this second phase of the replacement is to be applied until

32

no left-hand side can be matched to the current configuration. At that point, the node

to be replaced has no connectors attached and the single rule for the last phase can be

applied: It simply removes the node, updating the node reference given in the

command.

Notes:

This approach introduces a language that provides a high level construct of the

system architecture. The language is capable of configuring and reconfiguring a

system architecture offline and at run-time. The interactions in the language are

created and removed at the level of connectors; this guarantees that the configurations

are always instances of the architecture. This design adds more constraints on the

architecture. The components of the language are not reusable and they are attached

to the system components. Removing or modifying any component of the language

will affect the system and its components.

Another note on this approach is the transition phase in the replacement of the

system component or reconfiguration. In most cases, the component might be

involved in transactions or computations that are reading or writing data. The design

did not address this issue because pointers and counters might be involved and

because the reconfiguration might be lost.

Rolling back to the previous configuration is not discussed. Guarantees of a better

reconfiguration cannot be provided, based on the hand written scripts that govern the

chosen new configuration. The choice of a bad configuration could lead the language

into a series of reconfigurations; it might be better to roll-back to the previous

configuration and chose another scenario. This issue was not discussed in the current

33

papers, yet the authors have the concept of evolving architecture suggested in future

researches, which could be a solution to such a problem.

2.6.2 Model-Based adaptation for self-healing systems.

One of the main drives to this research paper is the need to decentralize the error

checkers in the systems such as Java exceptions or RPC timeouts. They suffer from

the problem that localized error handling may not be able to determine the true source

of the problem, and hence the required remedial action. Moreover, while they can trap

errors, they are not well-suited to recognizing “softer” system anomalies, such as

gradual degradation of performance, or patterns of unreliability. They make it

difficult to change adaptation policies, because they are so intertwined with the

normal code of the system.

Figure 1. Externalized Adaptation In A Model Based Self-Healing System [27]

In a very rough description of the system, externalized adaptation supports a kind

of closed-loop control system paradigm (Figure 1). In this paradigm, system behavior

is monitored by components outside the running system. These components are

34

responsible for determining when a system’s behavior is within the envelope of

acceptable system parameters, and when it falls outside of those limits, adapting the

system. To accomplish these tasks, the externalized mechanisms maintain one or

more system models, which provide an abstract, global view of the running system,

and support reasoning about system problems and repairs.

This approach [27] advertises the reuse of components, due to the fact that they

are not localized. It also provides different models to choose from, which gives more

control over the performance vs. reliability relationship. This brings the option of

implementing new models easier and on demand. Security is preserved better with the

priori knowledge of the system architectures available.

The centerpiece of the approach is the use of architectural models, by using a

simple scheme in which an architectural model is represented as a graph of

interacting components. This is the core architectural representation scheme adopted

by a number of architecture description languages (ADLs), including Acme, xADL,

and SADL.

To account for various behavioral properties of a system, elements in the graph

can be annotated with property lists. For example, properties associated with a

connector might define its protocol of interaction, or performance attributes, such as

delay or bandwidth. Representing an architectural model as an arbitrary graph of

generic components and connectors has the advantage of being extremely general and

open ended.

An architectural style typically defines a set of types for components, connectors,

interfaces, and properties together with a set of rules that govern how elements of

35

those types may be composed. The challenge is to engineer things so that the system

adapts appropriately at run time. To get information out of the running system, the

model uses low-level monitoring mechanisms that refine various aspects of the

executing system. This is done with the use of existing off-the-shelf performance-

oriented “system probes”. (In the implementation, Remos Monitoring System is

used).

To translate architectural repairs into actual system changes, the authors use a

table-driven translator that interprets architectural repair operators in terms of the

lower level system modifications. In the running system the monitoring mechanisms

update architectural properties, causing re-evaluation of constraints. Violated

constraints, such as high client-server latencies or low server loads trigger repairs,

which are carried out on the architectural representation and translated into

corresponding actions on the system itself. Matching the architectural style to the

existing system infrastructure helps guarantee that relevant information can be

extracted. The architectural changes can be propagated to the running system;

architectural constraints are checked in the running system via a tool called Armani.

Notes:

Providing the tools in an externalized manner results in less overhead for the

system components. It also prevents any changes to the monitoring tools from

effecting the system components. Yet, the authors did not discuss the overhead on the

communicating channels (monitors to the executing system, and among the

adaptation system components). This overhead includes monitor probing and data

analysis.

36

Another note on the use of Armani ADL is that it requires the administrator to

handcraft the scripts for any suggested reconfigurations. Moreover it does not tolerate

any mistakes or unhandled issues in the configuration. This forces the designer to

write explicit constraints to prevent dangling roles, or in distributed systems, require

reconfiguration scripts to connect the components port by port, for an example [30].

The proposed approach describes a monitoring and self-adapting mechanism for a

system. The adaptation is not intended to reconfigure the system or change the

architecture, but to tune up the components of the system. In conclusion, it is an

adaptation to a changing environment. Yet the approach is not used in the actual

implementation, and it does not affect the tuning up of the system. A better use of the

model is to use the ADL to swap components that are causing a bottleneck due to a

bug in the execution. The ADL is a good tool to reconfigure the system where a fresh

copy is swapped and the component is re-located in a less active role in the new

architecture. By doing so, any problems of traffic or malfunctioning could be solved.

2.6.3 The DMonA Architecture.

In this paper [28], the authors are proposing the DiPS (Distrinet Protocol Stack)

component architecture as a solution to develop manageable system software such as

file systems or protocol stacks. DiPS separate functionality from other aspects such as

inter-component communication and internal parallelism. The paper argues that such

separation of concerns makes managing specific aspects, such as concurrency, easier.

The system is constructed of reusable components that adapt themselves to cope with

changing circumstances.

37

The approach uses DMonA, the DiPS monitor and management extension

architecture (Figure 2), which allows detection of performance bottlenecks, proposes

solutions and deploys them at run-time. The authors focus on the run-time adaptation

initiated by the system itself, using self-monitoring tools.

The main goal for DiPS is to support reuse and adaptation at design-time as well

as at run-time. The DiPS component (packet) is a building block surrounded with an

explicit entry (forwarder) and exit (receiver) points. Data is encapsulated within the

packet. DiPs system is created by connecting packets into a pipe. A dispatcher unit

dispatches requests into different branches of the pipe based on meta-information in

the request.

Figure 2. Communication Channels Between Dmona And Dips Layers.

DMonA is a monitoring and management extension of the DiPS component

architecture. It takes advantage of existing abstractions of the packets (entry and exit

points). Management can be divided in three sub tasks: detecting problems (self-

38

monitoring), proposing solutions to the problem (self-adapting), and deploying the

proposed solution (self-healing).

The primary goals of DMonA are to provide with DiPS a self-adapting system

that can be applied in different contexts, with sensors and monitors that can be

changed according to the context. DMonA and DiPS are orthogonal, meaning that the

removal or modification of DMonA will not affect the functionality of DiPS,

allowing the reusability of the DMonA components outside the DiPS system.

The sensors provide the required information from the functional level to the

monitors, which are used to evaluate and manage the system. The sensors are of two

types: state sensors which provide information about the internal state of the system

and analysis sensors which provide information about the messages flow in the

system. Based on the gathered information from the monitors, DMonA chooses the

proper action to improve the system’s performance.

After a problem is detected, a solution is proposed by the adaptability strategy,

and then is applied. The performance is then monitored again to check the efficiency

of the chosen strategy.

Notes:

The adaptability strategy that chooses the solutions for the detected problems is

not well described. The paper does not explain the mechanisms of choosing the

appropriate strategy or how this strategy was put together in the first place. A good

approach to construct a solution is the use of xADL to provide architecture

reconfiguration tools that can be monitored and adjusted based on the changing

demands (environment). Keep in mind that ADL tools are not self evolving and

39

require a hands-on updating of the changing settings, which includes script writing

and management.

Another aspect the authors did not discuss is the feedback from the system on the

quality of the proposed solution. A rollback technique, though may not be needed, but

still in place to be included in the design, to prevent looping in search for an optimal

performance. To solve those two issues, a special monitor could be added to provide a

feedback to the strategy management on the initial system performance, or to provide

a statistical comparison between the previous architecture and the suggested

reconfiguration.

2.6.4 Kinesthetics eXtreme (KX).

This approach [29] introduces a dynamic adaptation facility. The infrastructure

consists of multiple layers, with the objectives of:

1. Probing, measuring and reporting of activity and state during the execution of

the target system among its components and connectors;

2. Gauging, analysis and interpretation of the reported events;

3. Whenever necessary, providing feedback onto the probes and gauges to focus

them, or onto the running target system to direct its automatic adjustment and

reconfiguration.

This approach to adaptation adds a feedback control loop outside and orthogonal

to the legacy system’s main computation, control and communication.

The first interaction the KX has with the system is through the probes that provide

feedback to the monitors. The probes should have a minimally invasive approach that

can be guaranteed to have zero or negligible effect on the performance and reliability

40

of the system. A probe here is an individual sensor attached to or associated with a

running program. The probe can sense some portion of the program’s execution and

make this data available by issuing events. Probes are reusable components that can

be customized and adjusted based on the running environment.

A Smart Event XML scheme is introduced as a standard format for structuring the

probes output; each probe has a unique identifier and tag structure appropriate for

reuse outside the current architecture.

Gauges are software entities that gather, filter, aggregate, compute, and/or analyze

measurement information about the software systems, interpreting the information

gathered by the probes. Gauges operate within a framework consisting of two major

components: event packager transforms raw data format from the probes output into

Smart Events, and event distiller which recognizes complex temporal event patterns

from multiple probe sources, and constructs higher-level measurements to reflect the

system state represented by the events. The Event Distiller is “programmed” by a

collection of condition/action rules.

Gauge outputs are inputs to a decision process that determines what course of

action to take, if any. The decision process may be supported by a variety of tools,

including an architecture transformation tool that reacts to gauges that detect

differences between the running and the nominal architecture. Executing high-level

repair actions such as to reconfiguring the architecture will often involve several

activities at the implementation level. Some of these activities may be conditional or

dependent on others, or may simply fail, so the adaptation process is expressed as a

workflow rich enough to express contingency plans. This decision and control layer

41

might also invoke the management actions of the probe and gauge layers on occasion,

to induce refined measurements before proceeding with adaptation.

Workflakes is used to instantiate and coordinate all kinds of adaptations of the

running system, as a decentralized workflow system. The workflow is currently

expressed as a set of coding patterns in Java, which are then dynamically loaded into

and executed by the Workflakes engine. The language needs to specify both

sequential and parallel execution of actions, and how to deal with unsuccessful

actions, by retrying, attempting alternate actions, rolling back or compensating

changes.

Effector (implementation) actions cover a spectrum from simple adaptations such

as relatively low-level adjustments, to a well-defined target system API (changing a

process variable or calling a method), to potentially complex reconfiguration

commands that cause structurally significant changes, possibly involving high-level

adjustments at the system/environmental level. The latter may involve starting,

migrating, restarting, or stopping one or more processes, and/or rearranging the

connections among components. Workflakes currently conducts an adaptation

workflow by selecting, instantiating and dispatching Worklets mobile agents (hand

crafted), and coordinating the activities of the deployed Worklets on the target

system’s components and connectors.

Notes:

The approach mentioned in this paper has considered all the aspects of monitoring

and analyzing the gathered data. It also provided a strategy, or adaptation, mechanism

42

to choose the best reconfiguration and provide feedback on that change to adjust the

gauges performance.

Workflakes is chosen to apply the changes, based on a hand written script. It

would be a good change to have a self adapting Worklets on the system (evolving

code) that uses previous gathered data and produces a script that fits its expected

future data. The script could be generated and analyzed for predictability before

actually being implemented or provided to Workflakes.

The use of ADL is being mentioned in the future work that the group is looking

for, but the exact version of ADL or where they want to use it in the current model is

not discussed.

2.7 Bandwidth Control.

 Controlling the communication bandwidth in Microsoft Windows is possible and

relatively simple. Starting from the basics of networking, a networking protocol depends

on the ISO Open Systems Interconnection (OSI) model. The model determines the type

of the connection between two nodes, and therefore sets the parameters of the connection.

In the protocol stack, the transport layer governs the connection speed and data flow. This

is the key control to the bandwidth of the connection.

 A networking adaptor in MS Windows is designed to utilize the highest bandwidth

possible from the connection. Yet, Windows provides the capability to manually adjust

this parameter and choose the appropriate network speed.

 The options provided in Windows 2000, NT and XP allow the administrator to adjust

the connection speed to auto, 100Mbps full duplex, 100Mbps half duplex, 10Mbps full

43

duplex, 10Mbps half duplex, or disable. This property can be controlled using Common

Language Infrastructure (CLI) [33], and can be embedded in the code of the agent.

 Reducing the bandwidth down to the allowed settings may not be the optimal answer

to control the communications that the agent is trying to degrade in order to prevent the

spread of the malware. Additionally, with the use of firewalls, all communication ports

on the machine can be blocked, with the exception of the one port that the agent is using

to communicate on the network. The choice of the port is a limited random selection,

providing protection for the agent from being attacked by malware that might attempt to

block its communication port.

 The port control is managed by the firewall, as it prevents any communication from

happening unless being certified. This will provide a bottle neck for the malware to

communicate, given that by its nature, it will attempt to consume all the available

bandwidth. Other self applications might have the capability to locate open ports to

provide connectivity, and they will add more pressure on the port and on the malware.

2.8 Processes Control.

 In the search for the processes control in the Microsoft Windows environment, a

possible control paradigm can be applied from within MS Windows. The operating

system provides a capability to control the priorities for executing the processes, which is

extended into ending a process. Using the Common Language Infrastructure (CLI)

commands, the agent could adjust the priority of a process, which gives the other self

processes the privilege of taking most of the processor(s) time.

 Another capability of the operating system is to assign priorities to processes across

an entire array of processors. In this case, the agent should be aware that degrading the

44

priority of the process will not prevent it from the chance to execute on another processor

in multi processor systems. Therefore, it should assign all the targeted processes to a

single processor, with high restrictions.

 This solution may not be the best to handle the processes and their behaviors. In an

article published in 1993, Wahbe et al. [34] discussed a framework for handling fault

isolation, and a way to sandbox a process by assigning a separate processing area where

the process is not allowed to write or jump outside it. Small and Seltzer [35] extend this

concept by saying that even a read operation can change the priorities and privileges for

resources’ requests.

 In this model, a better approach to handle novel processes that are still not classified

as self components, is to apply a sandbox technique. Modern programing languages

including C# and Java Corba can facilitate the control of processes by performing

sandbox operation on them in a virtual processing environment and even manag the

execution of these processes’ threads [36]. This control can be performed in micro-kernel

as added extensions, or can be done outside the kernel to prevent any violations to the

kernel functionality in critical systems.

 Windows Runas command can be used by the agent to provide simple control of the

process. This can provide privilege control over the process, but it does not control the

process activity and occupation of the processor time. User-level sandbox operations are

an ideal mode to perform the control on the processes; this is performed by modifying the

address space of all processes or logical protection domain to contain one or more shared

pages of virtual addresses [37]. This method can control the privileges (write, read, and

jump operations) which the process can perform; the extensions applied on the kernel can

45

perform restrictions on the process piping for execution. This approach provides the ideal

platform for controlling the processes.

 In a review of our model, the best approach to control the non-self processes can be

achieved by providing a sandbox environment for all the new processes. A sandbox

environment provides a temporary storage for process output, and a virtual processing

parameters and tools, such as registers and controllers. All the transactions that these

processes perform can be rolled back if proven malicious, by simply dumping the

temporary memory locations and files. If the application is registered by the administrator

as self-component, then it can be allowed outside the sandbox to execute in the real

environment by redirecting its pointers to the real processing environment. All the

processes in the virtual space are prevented from exiting the controlled area until their

signatures are extracted and identified by the agent or administrator as safe. This saves

the time to recover from potential damage by containing the supposed effect in a throw

away temporary storage, or for possible future changes, if needed.

46

III. METHODOLOGY

3.1 Basis of the Approach.

 The primary concept this study is based upon is the approximation between the

human immune system (HIS) and the artificial immune system (AIS). Therefore, the

components of the AIS need to act in the same manner as the HIS components. Based on

this approximation, any additions or modifications to the system can be derived from the

HIS actual working (artificial life approach).

 As discussed in section 2.1, the white cells in the HIS perform their function in a trial

and error process. The cells try a certain protein compound to kill the antigen, and if it

does not work, it will continue trying new compounds until the correct one is found,

cloned and spread throughout the body. The agent in the AIS behaves in the same

manner, using the antivirus and the signature extraction tools to try to identify the antigen

and to remove it from the system. In this approximation, the agent acts like the B cells in

the HIS.

 Another basic concept used in this study is the reuse of the already provided

components of the security systems such as antivirus software. This reuse will alleviate

the cost of rebuilding the components by using applications tested previously and used in

real systems.

 Sandbox technique is another concept that provides protection from malware, by

putting the new processes in a virtual processing area, to monitor them and prevent any

malicious changes to the system. If the new process was certified by the administrator, it

47

is then released to be executed in the real system and be allowed to utilize the system’s

resources.

3.2 The System’s Architecture

Despite all the efforts in trying to reach better security, hackers are still able to pose a

great threat to the computer systems with the help of the technology advancement. One of

the main factors is time, through which the security systems’ developers can react to a

threat posed by the attacker. An analyst can look at the attack in an attempt to build an

antidote, after which the system becomes immune from the same attack again. The nature

of the beast is that viruses and the like have to strike first before the anti-viral is

prescribed. This is similar to the HIS, where the disease has to first attack the body before

it receives the medicine or treatment.

The architecture proposed here depends on the teamwork among the security

applications; their work must be coordinated to avoid wasting time in identifying one

another and resolving conflicts among them. The model is implemented on distributed

system architecture (Figure 3), and the operating system has a multi processing capability

to allow the agent to handle more than one process at one time.

In this architecture, the operating system environment is assumed to give capabilities

and permissions for programs to call each other and execute code embedded within other

containers, such as scripts in emails or mobile code in HTML containers. This is the

worst case scenario for security, but it is the most spreading configuration among Internet

users with machines using MS Windows. These settings must be disabled to prevent

many intrusions; most average users do not know the severity of keeping such options

enabled without proper monitoring.

48

IB M

A B C D E F G H
SELECTED

ON-L IN E

Figure 3. Structure of the Proposed Network Model.

Antivirus (AV) developers depend on code signature to identify viruses, at the same

time virus developers strive to develop techniques to elude the virus scanning

mechanism, such as using polymorphic viruses to camouflage copies of the virus.

Polymorphic viruses change its virus signature (i.e. its binary pattern) every time it

replicates, yet the core of the virus remains the same, and what is actually changing is the

shell around the virus. In an attempt to partially solve this problem, anomaly-based

intrusion detection (ID) and behavioral-based malware detection were introduced to help

encounter unknown threats that have predictable behavior. In many experimental cases,

these techniques proved effective with new threats, but more work needs to be done to

49

improve them; mainly, in the field of adaptability to new anomalies. Recognition is

improved by using techniques such as neural networks to recognize new patterns of the

behavior to reproduce better generations of the recognizers and reach better optimization.

Research in this field is still in progress and requires more confidence in the approach. In

interest of “brevity”, the current state-of-the-art in this field is accepted as given.

3.3 Characteristics and design of the Agent.

A definition of a software agent is “a software entity which functions continuously

and autonomously in a particular environment often inhabited by other agents and

processes” [13]. Other definitions found in the literature portray the same concepts with

different wording. In essence, for a program to be considered as an agent, it has the

following characteristics [3]:

• Reactivity: the ability to selectively sense and act.

• Autonomy: goal-directedness, proactive and self-starting behavior.

• Collaborative behavior: can work in concert with other agents to achieve a common

goal.

• Knowledge-level communication ability: the ability to communicate with persons

and other agents with language more resembling humanlike “speech acts” than

typical symbol-level program-to-program protocols.

• Inferential capability: can act on abstract task specification using prior knowledge of

general goals and preferred methods to achieve flexibility; goes beyond the

information given, and may have explicit models of self, user, situation, and/or other

agents.

• Temporal continuity: persistence of identity and state over long periods of time.

50

• Personality: the capability of manifesting the attributes of a “believable” character

such as emotion.

• Adaptivity: being able to learn and improve with experience.

• Mobility: being able to migrate in a self-directed way from one host platform to

another.

It is worth mentioning the difference between an agent and a daemon, where a

daemon is a program that runs continuously and exists for the purpose of handling

periodic service requests that a computer system expects to receive. The daemon program

forwards the requests to other programs (or processes) as appropriate. For an example,

each server of pages on the Web has Hypertext Transfer Protocol daemon (HTTPD) that

continually waits for requests to come in from Web clients and their users. The main

difference between a daemon and an agent in this study is that a daemon can not make

decisions on proper actions; it simply receives and carries out commands while the agent

makes decisions and gives command to other applications.

An agent should be able to carry out activities in a flexible and intelligent manner; it

should be responsive to changes in the environment without requiring constant human

guidance or intervention. In this architecture, the agent intelligence is very primitive, the

fact that it is simulating the B-cells which shows no intelligence but a mere systematic

process. In future work of the agent, the behavioral monitors could be constructed to be

able to adapt to new anomalies and train them to add to its knowledge, which will add

intelligence characteristics to the agent. The agent should function continuously in an

environment over a long period of time and be able to learn from its experience.

Furthermore it inhabits an environment with other agents and processes.

51

In this application, the agent has a main goal to manage the components of the AIS,

by directing their attention, and managing their reactions. For an example, the agent

utilizes the AV to scan suspect processes, while the AV is in the status of in-the-fly scan,

which requires the AV to scan the agent first to assure its validity. Afterwards the agent

will direct the AV to activate a custom scan of the target. At which time, the agent should

be inferential of the standard process of the AV. Otherwise a deadlock might occur where

each task preserve the right to go first. To achieve coordination, the AV provider has to

modify his product to allow the agent to assume control over the AV.

Another important task is the reproduction, which aids the agent in gaining an overall

system control [8]. The agent cannot have the ability to know everything happening in

the whole domain. However, it is task oriented, so it is able to provide complete control

of its local domain. This requires the agent to have duplicates in every station in the

domain to dominate locally after gathering the required information to function in their

new environment. Agents should have a kind of identification such as encrypted

identification keys, to provide validity and a correctness check and to avoid hoax agents.

The regeneration of the agents should be done from a controlled station such as a server

machine. This server provides the identification keys to the agents, and sends them to the

stations that are requesting them.

If the agent engages a malware in one machine, then it triggers an alert to all other

agents in the other machines in the domain. After the current suspected code is handled,

the high alert situation is removed and the normal operational configuration is restored.

Agents have a certain critical age defined by the administrator to assure the agent always

have the latest anomaly algorithms. When the agent reaches its critical age it reports to

52

the server to be terminated and a fresh copy of the latest agent is generated and released

to inhabit the node.

The next task the agent should be able to handle is reading the signature of the

malware. The entire AV products perform signature extraction on the code that they scan.

Researchers in IBM describe and provide an automated mechanism that can extract the

signature of a virus or any code [7]. In following comments on the IBM research site, the

author discusses the new threats of macros and worms, and provides an alteration to the

virus-signature extraction approach to handle the new threats. So an automated technique

could be utilized within the agent to identify the malware signature, yet the technique

offered refers to certain cases where the human interference is required, such as handling

polymorphic code. In this architecture, polymorphic code is still in a sandbox, and the act

of replicating is a sufficient condition to identify an anomaly.

Another working of the agent is the sandbox technique performed to deprive the

malware of the freedom of movement, while providing a better environment for the AV

to work with the code, and protecting the system from any actions the malware might

perform. Sandbox in this case includes a rollback of any changes the malware performed,

to avoid any changes that are not desirable if the code was identified as “harmful”

afterwards (refer to [36] and [37] for details on this process). Those changes include any

attempted outgoing communications, registry changes and any other parameters or saved

data.

 The agent is the cornerstone of this system. It monitors the behavior of the system,

decides the proper action, and reports to the administrator. To perform the required

actions, it must have a goal to achieve, which is to prevent any non-self code from

53

executing freely. Another requirement for its success is the plan based on stimuli/reaction

pairs [31]. The plan might actually consist of more than one sequence of actions and

possible alternative actions to be followed throughout the agent life cycle.

 To provide the agent with some feedback to help facilitate its workings, a knowledge

base is provided. This acts as the memory for the agent, to distinguish self from non-self

components. The agent monitors the environment by applying probes on the processes in

sandboxes to provide knowledge of anomaly existence [32]. To provide the agent with

reference to the boundaries that it needs to govern, a periodic count of the base running

processes is generated by the agent. This information is provided by the probes to

conduct a comparison and tell of the existence of newly added processes. The count

contains the number of processes loaded in the safe and clean startup of the system. This

provides the agent a reference to observe. When the administrator installs a new

application, the agent requires the administrator to register the new application in the

knowledge base. This updates the signature database (the agent performed signature

extraction of the new application) by adding the new signature to its memory. The

knowledge base contains all the signatures of the applications installed by the

administrator.

 The administrator is informed of the existence of the anomaly by the agent, and is

informed of the system’s behavior. The agent encourages the administrator’s

intervention, but can manage without it. If the agent becomes overwhelmed with new

processes and could not handle them, then the administrator needs to terminate some of

the processes in the sandboxes to allow the agent space to work, or inject the system with

the proper antigen if it is available at that point. Frequent updates of the AV definitions

54

are very helpful to the agent, to go through the shorter process of just cleaning, rather

than the longer process of sandbox, investigate and clean.

3.4 Architecture workflow

Once a station is started, the station will request an agent from the server, this is like

requesting an IP address from a DHCP server, or MS Windows checking for updates. The

request includes the station identity encrypted by its private key and a time stamp. The

station identity can be a combination of identifying characteristics, for an example its

MAC address, the machine name, and a password. The server and the station identify

each others request and reply using asymmetric cryptosystem. If the request is valid, the

server will send an agent to the system with the server identity, and then the system

verifies the agent’s validity and executes it.

The agent starts it work by instructing the AV to perform a scan of the memory for

known malware. Once the AV returns with a clean memory result, the agent runs a scan

of the memory and extracts the signature of all the processes and puts them in a table,

then checks each signature against a database of self processes. For each process, if a

process is a “non-self”, the agent will inform the administrator of its existence, puts it in a

sandbox (which is a virtual processing environment) using the sandbox tools, and starts

preventive action, which will be explained later.

When a process is loaded in memory, the agent sandbox it in a virtual environment to

ensure that it does not perform any illegal operations or harmful acts. The agent identifies

processes by extracting their signatures and then search for the signature in a database of

known/trusted applications to avoid a sandbox operation of self components. In general,

agents reside in the stations performing the B-cell job in the HIS by looking for any

55

suspicious activity such as a process cloning or reproducing. The agent realizes such fact

by using the behavioral monitoring tools which identify such anomalies.

When the process is loaded in memory, the agent directs the AV to scan it against

known malware, then it is terminated and the administrator is informed. If the AV could

not recognize it as malware, it will be allowed to execute in its sandbox until the

administrator instructs the agent to allow it to execute outside the sandbox or terminate it.

If the administrator identifies the process as friendly, the agent logs it in its memory

database as “self”. In the future, if the same process activates again it will not be put in a

sandbox. If the administrator says that the process is unfamiliar, then the agent will

perform preventive action which allows the process to continue executing in its sandbox

under supervision of the anomaly detection tools. If the process at any time performs an

anomaly, the agent will inform the administrator and terminate the process which

includes dumping all the changes made in the virtual processing environment in a

temporary file for the administrator to evaluate. This can be stored in a quarantined

machine controlled and used only by administrators. The signature of the anomaly is

added to the AV and ID database to be considered in the future as a malware. This

database is accessed by all the agents on the network to update their AV and ID to

identify the malicious process and terminate it (Figure 4).

If the administrator can not identify the process then it will remain in the sandbox to

execute, providing it does not show any odd behavior. This will lead to two possible

scenarios: the process will finish executing normally, which requires it to exit the

sandbox, but all the changes are saved in temporary files for the administrator to evaluate

if he wishes, then he can decide to commit these changes or just dump them. The other

56

possibility is that the process will terminate due to the sandbox effect, such as running out

of resources or not receiving responses, this will result in saving all the changes made in

the virtual environment for future action by the administrator and the owner of the

process to be notified of the reason of the termination.

Figure 4. Immunity Propagation Among The Nodes.

If the agent detects an anomaly, the administrator is alerted of the specific action, and

asked if he wishes to trust the process, if the administrator agrees to trust the process,

then the agent will instruct the sandbox tools to allow the process to execute outside the

sandbox. Otherwise the agent will terminate the process and throw away all the changes

made by this process, informs the administrator, then the process’ signature is added to

the AV and ID database as a known malware. By doing so, the agent prevented the

malware from making changes outside the sandbox, and helped keeping it in a controlled

environment which concludes the preventive action of the agent work.

On the other frontiers, the ID handles the intrusion detection with two techniques,

anomaly detection and pattern recognition. The first technique develops a

57

sense/knowledge of the type of the transmitted data by gathering information based on a

random collection of propagating data on the network. This can be classified as the

training phase. Next is a random inspection and detection of the transmitted data on the

network. This is considered the practical phase. If any abnormal data transfer occurs

afterward, such transaction is put in a sandbox and the administrator is informed. Pattern

recognition is used to check for certain patterns in the transactions, such as brute-force

attacks or a code’s signature.

Another aspect is the Firewall, which manages the port connections coming into or

going out of the network. The administrator has to manually set the policies to suit his

vision for a secure gateway to his network. This part is an analogy to the parts of the

human body; which allow communication with the external world. The firewall is

running all the time with no ports left open unless the administrator allows for a good

reason. Due to the fact that reconnaissance is important before any attack, log files must

be monitored to try to prevent future attacks. Auditing the log files can help identify any

bizarre attempts that may be an introduction to a more serious threat. The administrator

should define two sets of policies, one for normal situations and another to be used when

an anomaly is detected. Processes in a sandbox are not allowed to use the network, but

providing limited access monitored by the ID can be allowed, as long as there are no

anomalies in the system. If the agent declares an anomaly, the FW will apply its strict

policy which prevents processes in sandboxes to use the network.

 Appendix B provides a diagram of a visual description and an algorithm of the

workflow of the agent. Additional figures are provided to visualization of the sandbox

technique performed on new processes.

58

IV. CONCLUSIONS

4.1 Summary.

 In chapter 1, this paper laid out the problem of malware and the difficulty in handling

such code. The current approach to handle malware is to wait for it to hit then subscribe

the cure. The purpose of the study was introduced, which is to use the human immune

system (HIS) as a base for an approach to the artificial immune system (AIS), using

agents to act as the B-cells and provide the artificial system with the self-healing

capability against malicious software.

 Chapter 2 provided a summary of the literature review done on the related subjects to

this research, which provide better understanding of the biological model; it also included

a look at the research on the AIS and the approaches to achieve a good comparison

between the biological immune systems and the AIS. It is important to understand the

threats that a system faces. Section 2.3 provides a brief look at the models of malware

and their techniques. An approximation between the HIS components and the proposed

AIS components was presented in section 2.4. The approximation provided an approach

to design the agent to perform like the B-cells. Another idea used is the technique that the

white cells follow when searching for the right protein compound that can be used against

certain antigens. This concept inspires the trial and error approach that the agent uses to

extract the signature of the malware to identify and remove it.

 Self-healing systems were also reviewed in section 2.5 to get an understanding of the

approaches used to provide the artificial systems with a self-healing capability without

59

the need to take them off-line. A comparative study was provided to describe the

strengths and weaknesses in the current research of self-healing. This comparison

provides a novel approach to design a self-healing system against malware. The last two

sections of chapter 2 described the possibility of controlling a process’ speed and the

communication bandwidth from within the agent’s code.

 Chapter 3 introduced the functionality of the system with section 3.1 describing the

basis of the approach in the design of the architecture. The system architecture was

introduced in the following section to present detailed functionality of the system.

Section 3.3 provided the agent characteristics and design that enable it to control its

environment and perform its job. Based on the provided architecture, the agent

implementation is likely a straight forward operation that can be implemented within a

proper environment of software development.

4.2 Conclusions.

 Complete security is a dream, like every other dream we strive to make it a reality,

even though we know it is almost impossible, but we have to try.

 When this research started, the main concern was to provide the administrator with

better control over the applications installed on his machine. With a closer look at the

problems that face this approach, the research diverted toward finding a better way to

handle malware in general with the use of smart code such as an agent. To provide a

work frame for such an agent, the agent’s living environment must be examined. That is

where the approach of artificial life became a part of the research. Putting all these

elements together provides a self-healing system, inspired by the human (biological)

60

immune system, for healing from security “diseases”. Therefore, this research provides a

bridge between the mere self-healing approaches and the security concerns.

 So far, self-healing studies focus on components swapping and architecture

reconfiguration. These studies do not consider the security aspect of the system, and do

not discuss the existence of malware as a component in the system. If such malware

exists, a current self-healing system would treat it as a valid component with a bug, and

would simply relocate it, possibly increasing its threat. Table 2 provides a comparative

description of four recent approaches to self-healing systems, introduced in the last

workshop on self-healing systems 2002. In the table, different approaches are described

for viewing the system components and handling suggested changes.

 Graph based
reconfiguration

Model-based
adaptation

DMonA
architecture

KX approach

Ability to force
reconfiguration
online

Can be
implemented

Can be
implemented

Can be
implemented

Can be
implemented

Reusability of
the self-healing
components

Not applicable Applicable.
Adds overhead
to
communication
channels

Applicable.
DMonA and
DiPS are
independent
applications.

Applicable.
Components
are independent
software
entities.

Dependability
among self-
healing
components

Tightly bonded,
failure of one
component
might cause the
system to
malfunction

Lightly bonded.
Components
can be changed
and moved
without
affecting the
system
performance

Work
separately,
needs each
other to
complete the
job. Location is
irrelevant.

Totally
independent.
Could be used
by other
applications
while not in use
by the self-
healing system

Handling
running
operations (in
process
transactions)

Running
transactions will
be lost. No
temporary
storage or
pointer handling

Use of ADL
provides control
over the
transaction’s
pointers.

Data are
encapsulated.
Data pipelines
are removed as
a whole.

No discussed in
the literature.
Indicated
possible with
the use of XML
smart schemes.

61

Rollback to
previous
configuration

Not provided.
Memory
configuration is
not discussed.

Not provided.
Configuration
memory is not
discussed.

Not included,
but could be
implemented.

Discussed in
detail. Uses
Workflakes
with
configuration
memory.

Feedback on the
new
configuration

Not discussed
in the current
publications.
Mentioned in
future work.

Immediate
evaluation of
the system
performance
after the change
is made.

No discussed.
Monitors are
available to
evaluate the
change.

Provides
feedback to
focus gauges
and probes, to
provide better
reading of the
system
performance.

Location of the
monitoring
tools

Instances of the
architecture.
Provides better
knowledge, but
extra overhead.

External to the
system
components.

External to the
system
components.
Parts of the
monitoring
applications.

External to the
system
components.
Independent
applications.

Reconfiguration
strategy scripts

Handwritten
scripts of
possible
configurations

Tuning the
system
components to
gain better
performance.

Strategy
management
application
handles the
changes in the
configuration.

Uses
Workflakes
with scripts of
possible
configurations.

Use of
descriptive
languages

Not used. Uses ADL. DMonA
application uses
xADL.

Workflakes.

Feedback
techniques on
the changes

Not provided.
Discussed in
future work,
using
evolutionary
computation.

No tools used,
only test system
performance.

Not included in
the design.

Not provided.
Probes and
gauges could be
used to provide
feedback to the
XML event
schemes.

Malware
handling
capability

Does not recognize malware, may relocate it as a legitimate
component. Will possibly dump the changes made, but will not
terminate it. Lack of feedback on system performance may result in an
infinite loop of changes exhausting the system’s resources. Reusability
of the system components may result in spread of the infection outside
the current station and possibly throughout the domain.

Table 2. Comparison Between Four Self-Healing Systems.

62

The components of the system are all available in the market or under development,

except for the agent proposed here. Antivirus and intrusion detection applications are

researched continuously, with new features and techniques added with every new release,

modifying them to accept the agent control is possible and required to achieve the overall

system’s goal. Sandbox techniques and tools have been used in testing and evaluating

applications, with capability to log every action made to decide on either commit these

actions or abandon them later. Anomaly detectors have been used in intrusion detection

techniques for a long time, and antivirus applications have recently adopted this

technique to detect polymorphic malware, but with limited success. Anomaly detectors

still need to be improved, but with the introduction of neural networks, it is possible to

achieve better results.

 New processes do not always have to be malware, the number of false positives

depend on the sensitivity of the agent which is governed by the anomaly detectors.

Predicting these values can be realized only by implementing and testing the proposed

architecture. The administrator attention is needed, to reduce the number of false

positives, yet it is not required. Absence of the administrator will result in loosing great

amount of the memory and system resources to the new processes in the sandboxes,

which will result in overall system slow performance. The administrator can adjust the

agent response to leave the decision to him, but that will require the administrator to

devote a lot of his time monitoring and responding to the agent’s requests. If the users of

the system utilize the same type of applications, the system will have a steady learning

curve after all the standard applications have been executed at least once, this brings the

number of new processes much lower, giving the administrator more free time.

63

 The self-healing architecture as described in this paper can be implemented and will

probably deliver the expected service. The success ratio can only be determined after the

actual implementation, but all the components have sensitivity parameters that can be

adjusted to decide the overall system sensitivity. One of these parameters is the

administrator and his involvement in the system’s operations.

 The current research and development of sandbox tools and anomaly detectors means

that certain parts of this architecture may need to be developed alongside the

development of the architecture. This could be considered by some as a road block, but it

could be a good derive to enhance and test such tools within a working system.

4.3 Model Weaknesses.

 Applying security to a system means applying restrictions on the components of the

system. This is noticed not only in computer systems, but also in real life situations.

These restrictions can result in less efficiency, slowness and the possible lessening of

functionality in the original system.

 This fact applies to this model, as a huge tradeoff is expected between

efficiency/speed and security. The agent will execute new processes in a sandbox which

requires more space from the memory and more time from the I/O devices. The firewall

will secure the communication gateways to prevent the spread of the malware and the ID

will filter all the network transactions when a threat is seen. This is not necessarily

pleasant for the users, but slow performance is better rather than the consequence of

malware spread, paralyzing the whole system later.

 Users who are executing the new processes will notice a very slow performance due

to executing these processes in a sandbox. The process is living in a virtual environment,

64

meaning that it is another layer over the operating system. The operations that are

executed by that process are not committed until the administrator agrees on its safety.

Here, if the administrator can not identify the process it might terminate due to the lack of

resources in the sandbox environment.

 In this model, if the agent notices a generation of processes with different signatures,

it will sandbox them and try to monitor all of them. This means that the agent will be

busy and will use a big chunk of the processor time and memory space. This generation

of the processes can be either a malware regenerating with polymorphic technique, or it

can be a simple compiler generating processes for a user writing a program and running

it. All these processes are not signed in because the programmer is still debugging and

fixing the code. This model will not handle this situation in a good manner, except by

blocking all requests from that user; other solutions could be applied to fix this problem,

depending on the nature of the system and the possible use of its services.

 Administrator attention can be of great help in this architecture. In the human body, a

kidney is not planted without the proper tests to make sure it has the correct signature.

The same applies in this model; the administrator saves the agent a lot of trouble by

defining a process as “self”, resulting in the agent saving the system’s time bypassing the

analysis and monitoring of the new process

 In many cases, a new malware is possibly not a threat to a system if the system users

are cautious enough in their daily use. This means the malware will have an antivirus

signature produced by the AV producers before the malware reaches the system.

Therefore the administrator is required to stay up-to-date with the new virus signatures

65

and AV updates. This will save a huge amount of time that the agent might have spent

trying to handle the malware, when the cure is already available.

66

REFERENCES

 [1] http://alan.kennedy.name/crohns/primer/immunsys.htm, The Human Immune
System, accessed Dec 2003

[2] Behavior-Blocking Stops Unknown Malicious Code, Network Magazine, June 2002.

[3] J. M. Bradshaw, “An Introduction to Software Agents”,

http://agents.umbc.edu/introduction/01-Bradshaw.pdf, accessed Jan 2004.

[4] Computer Security Threats, http://www.caci.com/business/ia/threats.html, accessed

Nov 2003.

[5] S Forrest, “Self/Non-self Discrimination in a computer”, Proceedings of the IEEE

symposium on research in security and privacy 1994.

[6] http://uhaweb.hartford.edu/BUGL/immune.htm, Immune System, accessed Dec 2003.

[7] “Automatic Extraction of Computer Virus Signatures”,

http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html, accessed
Jan 2004.

[8] N. R. Jennings, M. Wooldridge, “Applications of Intelligent Agents”, from “Agent

Technology Foundations, Applications, and Markets”, publisher: Springer-Verlag, 1st
edition, 1998.

[9] K. Regina, A. Boukerche, J. Bosco, M. Notare, “Human Immune Anomaly and

Misuse Based Detection for Computer System Operations: Part II”, Proceedings of
the International Parallel and Distributed Processing Symposium 2003, IEEE © 2003.

[10] M. Neal, J. Hunt, J. Timmis, “Augmenting an Artificial Immune Network”,

International Conference on Systems, Man, and Cybernetics, 1998, IEEE © 1998.

[11] M. Garetto, W. Gong, D. Towsley, “Modeling Malware Spreading Dynamics”, 22nd

Annual Joint Conference of the IEEE Computer and Communications
Societies, Volume: 3, 30 March-3 April 2003, IEEE © 2003.

[12] R. E. Marmelstein, D. A. Van Veldhuizen, G. B. Lamont, “A distributed architecture

for an Adaptive computer virus immune system”, International Conference on
Systems, Man, and Cybernetics, 1998, Volume: 4 , 11-14 Oct. 1998 IEEE © 1998.

67

[13] Y. Shoham, “An Overview of Agent-oriented Programming”. Source: Software
agents, Pages: 271 – 290, Year of Publication: 1997, MIT publications.

[14] S.A. Taheri, G. Calva, “Imitating the Human Immune System Capabilities for Multi-

agent Federation Formation”, Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, 5-7 Sept. 2001 IEEE © 2001.

[15] Webopedia, http://www.webopedia.com/TERM/M/malware.html, last accessed Jan

8th 04.

[16] Z. Yanchao, Q. Xirong, W. Wendong, C. Shiduan, “An Immunity Based Model for

Network Intrusion Detection”, Proceedings of the International Conferences on Info-
tech and Info-net 2001, Beijing, Volume: 5, 29 Oct.-1 Nov. 2001 IEEE © 2001.

[17] L. M. Bridwell, P. Tippett, “ICSA labs 7th annual computer virus prevalence survey

2001”, http://www.trendmicro.com/NR/rdonlyres/C490C780-DF65-43FB-9629-
9A6EE23B804E/2770/icsavps2001.pdf. Last accessed Mar 7 th 04

[18] M. van Oers, McAfee AVERT “Unix Shell Scripting Malware”, http://www.net-

security.org/, Posted on 7/26/2002; last accessed Mar 14th 04.

[19] E. M. Dashofy, A. Hoek, R. Taylor, “Towards Architecture-Based Self-Healing

Systems”, Workshop on Self-Healing Systems (WOSS) 02, Charleston SC, USA,
ACM.

[20] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira, N.

Parlavantzas, “Reflection, Self-awarness and Self-Healing in OpenORB”, Workshop
on Self-Healing Systems (WOSS) 02 Charleston SC, USA, ACM.

[21] P. Oreizy, N. Medvidovic, R. N. Taylor, “Architecture-Based Runtime Software

Evolution”, April 1998, Proceedings of the 20th international conference on Software
engineering, ACM.

[22] M. M. Gorlick, R. R. Razouk, “Using weaves for software construction and

analysis”, May 1991, Proceedings of the 13th international conference on Software
engineering, ACM.

[23] J. Kramer, J. Magee, “Distributed Software Architectures”, International Conference

on Software Engineering (ICSE) 97 Boston MA, USA, 1997 ACM.

[24] M. Wermelinger, J. Luiz Fiadeiro, “A graph transformation approach to software

architecture reconfiguration”, 2000, Citeseer.

[25] M. Wermelinger, J. Luiz Fiadeiro, “Algebraic software architecture

reconfiguration”, ACM SIGSOFT Software Engineering Notes, Proceedings of the

68

7th European engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, October 1999.

[26] M. Wermelinger, J. Luiz Fiadeiro, “A Graph Based Architectural (Re)configuration

Language”, European Software Engineering Conference (ESEC)/ Foundations of
Software Engineering (FSE) 2001, Vienna, Austria, ACM 2001

[27] D. Garlan, B. Schmerl, “Model-based Adaptation for Self-Healing Systems”,

Workshop on Self-Healing Systems (WOSS) '02, Nov 18-19, 2002, Charleston, SC,
USA. 2002 ACM

[28] S. Michiels, L. Desmet, N. Janssens, T. Mahieu, P. Verbaeten, “Self-Adapting

Concurrency: The DMonA Architecture”, Workshop on Self-Healing Systems
(WOSS) ’02, Nov 1819, 2002 Charleston, SC, USA, ACM.

[29] G. Valetto, G. Kaiser, “A case study in software adaptation”, Workshop on Self-

Healing Systems (WOSS) ’02, Nov 1819, 2002 Charleston, SC, USA, ACM.

[30] R. T. Monroe. “Capturing software architecture design expertise with Armani”.

Technical Report CMU-CS-98-163, School of Computer Science, Carnegie Mellon
University, Oct. 1998.

[31] J. Bryson, “The Behavior-Oriented Design of Modular Agent Intelligence”,

http://www.cs.bath.ac.uk/~jjb/web/bod.html, Proceedings of Agent Technology and
Software Engineering, 2002.

[32] N. Janssens, E. Steegmans, T. Holvoet, P. Verbaeten, “An Agent Design Method

Promoting Separation Between Computation and Coordination”, Symposium on
Applied Computing (SAC) ’04, March, 2004, Nicosia, Cyprus, ACM.

[33] Best Practices for Managing Applications with Process Control, Microsoft TechNet,

http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/prodspecs/p
roctrl.mspx, last accessed May 2004.

[34] R. Wahbe, S. Lucco, T. E. Anderson, S. L. Graham. “Efficient software-based fault

isolation”. 14th Symposium on Operating Systems Principles (SOSP). ACM
Operating Systems Review, SIGOPS, volume 27 number 5.

[35] C. Small, M. Seltzer. “A comparison of OS extension technologies”. USENIX (the

Advanced Computing System Associations) Annual Technical Conference, winter
1996. Citeseer.

[36] S. Chan-Tin S. Reiss, “Sandboxing programs”,

http://www.cs.brown.edu/people/sct/sandboxing.programs.sct.pdf, last accessed June
2004.

69

[37] R. West, J. Gloudon, “User-Level Sandboxing: a Safe and Efficient Mechanism for
Extensibility”, http://www.cs.bu.edu/techreports/pdf/2003-014-user-level-
sandboxing.pdf, last accessed June 2004.

[38] P. L. Meintjes, A. G. Rodrigo, “Evolution of relative synonymous codon usage in

Human Immunodeficiency Virus type-1”, Proceedings of the second conference on
Asia-Pacific bioinformatics, ACM, 2004.

[39] P. K. Lala and B. Kiran Kumar, “Human Immune System Inspired Architecture for

Self-Healing Digital” Systems, Proceedings of the International Symposium on
Quality Electronic Design (ISQED.02), 2002 IEEE

[40] O. Nasaroui, F. Gonzalez, D. Dasgupta, “The fuzzy artificial immune system:

motivations, basic concepts, and application to clustering and Web profiling”,
Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, 2002.
FUZZ-IEEE'02.

70

Appendix A: Human Immune System Components

Figure 5. The Process By Which T Cells And B Cells Interact With Antigens [6].

71

Figure 6. Graphical Representation of the Life Cycle of T Cells and B Cells and Their

Interactions with Antigens.
From University of Hartford, Department of Mathematics, Epidemics and AIDS web
page [6].

72

Appendix B: Agent Design

Figure 7. Agent Structure And Flow Diagram

73

Algorithm 1: Agent algorithm.

initializeAgent (){
 requestAgent (timestamp, hashkey)
 Receive agent from server
 If valid hash key{ //run agent

 Agent()
 }
}//end AgentCreation
Agent(){
 Run antivirus to scan and clean system memory for known malware

for each process in memory{
signature=extractSignature(processID)

 Scan memory for processes according to “self” database entries
 If process is not in “self” database{
 Status=PreventiveAction(processID, signature)
 //log status
 }//end if
 }//end for
 // after assurance that all processes in memory are “self”
 while agentAge<criticalAge{
 Monitor all processes loaded in memory
 If loaded process not self{

Run antivirus to scan if a known malware{
 if yes, terminate process and update log file
 else status=PreventiveAction(processID, signature)
 //log status
 }//end if
 }//end while
}//end ActiveAgent
string PreventiveAction(processID, signature){
 //Inform admin of process existence without interrupting its execution
 cobegin
 sandbox(processID)
 begin{

print(Would you like to allow <process> to execute outside its
sandbox? Y/N)
read reply
if reply is yes{

setSelf(processID, signature)
return “self”

}
}end
//use the anomaly detector to monitor the process behavior
if process performs an anomaly

status=alert(processID, signature)
 coend

74

if process terminates normally or due to the sandbox effect{
 //such as out of memory, no response from admin…etc.
 Inform admin and owner of termination status
 Update log files

 }//end if
 return status
}//end PreventiveAction
string alert(processID, signature){
 Interrupt process
 Enforce firewall strict traffic policy
 print(<process> performed anomaly, terminate it? Y/N)

read reply
 Wait for predetermined period of time //admin defined, maybe zero
 If no response || Yes{
 Terminate process

Save process’ temporary storage into an un-executable temp file
Save process’ virtual processing area parameters in temp file.
Update AV and ID with process signature
Update log file with actions taken
status= “malware”

 }//end if
 else{//admin identifies process as self
 setSelf(processID)
 status= “self”
 }//end else

return status
}//end alert
setSelf(processID, signature){
 //use sandbox tools to redirect the process pointers to the real system components.

Allow process to execute outside the sandbox
//copy saved data to target files
Commit changes made by the process to output devices
//allow changes to memory and registers
Commit changes made to the execution environment
Add signature to “self” database

}//end setSelf
sandbox(processID){

//using sandbox tools
 Create virtual processing area in memory (virtual memory and registers)
 Create temporary storage area for process output
 Execute process
}//end sandbox
string extractSignature(processID){
 Use signature extraction tool
 return signature
}//end extractSignature

75

Figure 8. Sandbox Technique Sequence.

Operating System + Agent

Memory

R0

R1

R2

R15

I/O Devices

Registers

a. Part of the system hardware components

b. Job 2 is a “non-self” process, agent creates virtual processing environment for it to

execute, with registers and temporary storage in memory or virtual hard drive.

Memory

Job2

Job 3

Job 5

Job 9

Job 1

Agent Sandboxing of
Job2

R0 R1

…. R15

Virtual Registers for
Job2

Job2 Data
Virtual Storage
Area for Job 2
(not executable).
In actual system,
this is a
temporary file on
HDD

Input
Devices

Job 2
Outputs
Only to the
Virtual
Storage
Area

76

c. Job 2 performed an anomaly, the agent updated the AV and ID signature database with

Job 2 signature for future reference.

d. Job 2 is terminated and all the changes it made are abandoned along with its virtual

processing environment

Memory

Job2

Job 3

Job 5

Job 9

Job 1

R0 R1

…. R15

Job2 Data

Input
Devices

Job 2
Outputs
Only to the
Virtual
Storage
Area

1001001101111010110101101

Job 2
Signature is
extracted
and
updated in
the
Signature
Database

Signature
Database

used by AV and
ID

The Agent
Terminates Job2
Including its
Virtual Registers
and Storage Area

Memory

Job2

Job 3

Job 5

Job 9

Job 1

R0 R1

…. R15

Job2 Data

VITA

Bashar Barrishi
Candidate for the Degree of

Master of Science

Thesis: Modeling the Artificial Immune System to the Human Immune System with the
use of Agents.

Major Field: Computer Science.

Biographical:

 Personal Data: Born in Amman, Jordan, on November 27, 1972, the son of
Salah and Hanan Barrishi.

 Education: Graduated from Hussein College (High School), Amman, Jordan in
May 1990; received Bachelor of Science degree in Computer Science and
a minor in Military Science from Mutah University, Karak, Jordan, in June
1994. Completed the requirements for the Master of Science degree with a
major in Computer Science at Oklahoma State University in (December
2004).

 Experience: Employed as a car mechanic during summers when at school. Was
granted the silver and bronze medal prize for the Crown Prince
Achievement when at school. Special Forces Captain and reconnaissance
information officer at the Jordanian Armed Forces Special Operations
Command. Employed by Oklahoma State University Library as systems
assistant student. Employed by Oklahoma State University, Computer
Science Department as a teaching assistant.

 Professional Membership: Association for Computing Machinery (ACM), Phi
Beta Delta (OSU) society.

Name: Bashar Barrishi Date of Degree: December 2004

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MODELING THE ARTIFICIAL IMMUNE SYSTEM TO THE
HUMAN IMMUNE SYSTEM WITH THE USE OF AGENTS.

Page in Study: 76 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The purpose of this study is to provide a model and a work

frame to approximate the artificial immune system to the human
immune system with the use of agents to counter malicious software
(malware). The artificial immune system components are commercial
off-the-shelf products that are managed by the agent that coordinate and
synchronize their activity. The behavior of the agent is a simulation of
the B-cells in the Human Immune System in the encapsulation, analysis
and digestion of the antigen.

Findings and Conclusions: The proposed architecture can be implemented in almost

certainty based on the use of the commercial off-the-shelf products
(COTS). The agent can be constructed to perform the required
functionality with the help of the sandbox tools that provide the
encapsulation. Anomaly detectors provide the knowledge of any
process’ action that is considered abnormal, hence, a possible malware.
The Antivirus applications provide the digestion of the antigen, where
known malware is handled directly, while unknown malware is analyzed
by signature extraction, then handled by the antivirus. Other components
such as intrusion detection (ID) applications perform the defenses at the
entrances to the system (communication channels) and the firewall
applications provide the prevention of the spread of the antigen and
quarantining it in the infected node. The implementation of the model
will provide a parallel self-healing system against antigens along side
the applications and hardware self-healing systems.

ADVISOR’S APPROVAL: Blayne Mayfield

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	References
	Appendices
	Vita
	Abstract

