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PREFACE 

 

Patterns are Object-Oriented reusable units. The principal idea behind patterns is 

to capture and reuse the abstractions that have been formed by expert programmers and 

designers to solve problems that occur in particular contexts. These abstractions capture 

the valuable experiences of experts in solving problems. Although patterns are currently 

being used successfully, there is no general agreement among the software community as 

to how patterns should be formalized or represented. Various formal specification 

schemes have been proposed to complement the natural language description of patterns 

in order to alleviate the ambiguities inherent in the natural language description by 

rigorously reasoning about the structural and behavioral aspects of patterns. Existing 

formal specification languages of design patterns have generally failed to provide a 

standard definition, specification, or representation for patterns because there is no 

general agreement as to how patterns should be formalized. Also, each formal 

specification is generally based on a different mathematical formalism and when pattern 

users want to understand a pattern, first they have to understand the respective 

mathematical formalism. 

In addition to comparing three existing formal specification schemes, the main 

objective of this research work was to lay the foundation for developing a formal 

specification scheme that could be understandable without having to delve into the details 
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of the underlying formalism. This research work attempted to capture and represent the 

structural aspects of design patterns since capturing the behavioral aspects of design 

patterns is a semantic issue and is beyond the scope of this work. Two-Level Grammar 

(TLG) was used to capture and represent the structural aspects of design patterns. This 

study was conducted using the GoF design patterns [Gamma et al. 1995]. It has already 

been demonstrated that TLGs have the capability to represent the building blocks of 

object-oriented software systems. The primary advantage of TLGs in defining design 

patterns is that specifications written in TLGs are understandable due to their natural-

language-like vocabulary [Edupuganty 1987] [Lee 2003] [Maluszynski 1984]. The TLG 

representation of the observer pattern was developed to gauge the feasibility of the 

proposed pattern representation scheme. TLGs could help pattern users understand the 

formalized version of patterns more readily compared to other formal specification 

methods that are difficult to understand due to their arcane mathematical notations.  
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Increased demand for software application development has led programmers to 

explore all possible reuse techniques. The potential benefits of software reuse include 

reduced development time and costs, shortened time-to-market, and improved software 

quality and maintainability [Schmid and Verlage 2002]. As a result, reusable software 

artifacts are being widely used by the software industry to build software systems faster 

to satisfy the ever increasing expectations from the user community. The notion of 

patterns can be considered as one of the possible software reuse artifacts.  

Patterns are problem solving approaches based on urban planning and architecture 

[Alexander et al. 1977]. The principal idea behind patterns is to capture and reuse 

abstractions formed by expert programmers and designers to solve problems that recur in 

particular contexts and communicate the design knowledge in a domain-independent 

way. Alexander found recurring themes in building architectures that he captured into 

abstractions called “patterns”. This pattern concept was adopted by the software 

community because of its straightforward relationships with the object-oriented 

constructs.  

Software patterns are usually described as common solutions to recurring
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software design problems [Gamma et al. 1995]. Patterns are gaining increasing 

acceptance and usage because they are abstractions generated from the valuable 

experiences of developers in solving problems that are repeatedly encountered in certain 

contexts [Buschmann et al. 2006]. These abstractions capture the valuable experiences of 

experts in solving problems. Since Patterns have generally been extensively tested and 

used in many development efforts, reusing them should yield better quality software 

within a reduced time frame [Taibi and Ling 2003 B]. They also capture the overall 

design experience in such a way that they have become a learning aid for novice 

designers [Taibi 2006].  

 

1.2 The Problem 

In the early stages of pattern evolution, patterns were described only by using 

pattern forms [Gamma et al. 1995]. Pattern forms define the essential elements of 

patterns using textual descriptions, sample code fragments, and graphical modeling 

languages. These descriptions are mostly in a natural language which is inherently 

informal, ambiguous, and sometimes misleading when used in an attempt to understand 

them. This is mainly due to the inaccurate and mostly vague verbal specifications, which 

cannot be definitive. As a result, pattern users were forced to understand the meaning of 

patterns from the interpretation of their verbal specifications [Eden 2000]. Hence, there 

was a need to formalize patterns in order to describe them accurately, reason about them 

rigorously, and also to facilitate tool support [Agerbo and Cornils 1998] [Bayley and Zhu 

2008] [Buschmann et al. 2007] [Chinnasamy 2000] [Dong 2002] [Eden 2000] [France et 
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al. 2004] [Kent and Lauder 2004] [Mikkonen 1998] [Soundarajan and Hallstrom 2004] 

[Taibi and Chek Ling 2003]. 

Various formalization schemes have been proposed to describe design patterns 

accurately, in order to reason about them rigorously and to lead forward tool support for 

them. These formal specification schemes were expected to lay a foundation for tool 

support by clarifying the notions underlying patterns through rigorously reasoning about 

the structural and behavioral aspects of patterns. However, the existing formalization 

methods have failed to capture the essential structural and behavioral elements of 

patterns, which has led to a situation where there is neither a standard methodology for 

representing patterns nor a standard definition for what a pattern is [Agerbo and Cornils 

1998] [Bayley and Zhu 2008] [Buschmann et al. 2007] [Chinnasamy 2000] [Dong 2002] 

[Eden 2000] [France et al. 2004] [Kent and Lauder 2004] [Mikkonen 1998] [Soundarajan 

and Hallstrom 2004] [Taibi and Ling 2003 B]. This is mainly due to the reason, as 

mentioned by Taibi and Ling [Taibi and Ling 2003 B], that, more often than not, each 

specification scheme is based on a different mathematical formalism that reflect each 

specific author‟s opinion on how patterns should be formalized.  

A consequence of this deficiency in capturing the essential structural and 

behavioral elements of patterns may be that the number of patterns will increase to a level 

that it will become impossible to maintain the information as to which pattern solves 

which problem. This can also negatively impact the possibility of using patterns as a 

common vocabulary, and furthermore it will likely become hard to find the appropriate 

pattern(s) for a given problem. Moreover, the lack of a standard definition for patterns 

has led to a situation where concepts such as schemas, interfaces, client/server 
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communication, interaction, and composition are being viewed under the general rubric 

of patterns. It is necessary to determine the properties of patterns that would help in 

distinguishing patterns from other reusable units and also in restricting the formation of 

overlapping patterns. 

Fundamentally, the problem resides in expressing the meaning of design patterns 

in a definitive way. Rigorous reasoning about the structural and behavioral semantic 

elements of design patterns is required to capture the essential properties of patterns, to 

represent them unambiguously, and to provide tool support, all of which can only be 

achieved by providing a formal model [Chinnasamy 2000] [Eden et al. 2007] [Mikkonen 

1998] [Taibi and Ling 2003 B] [Taibi 2007]. Capturing the essential properties of 

patterns could address the problem of formation and proliferation of overlapping patterns, 

which could help in preserving the benefits offered by design patterns. The contention is 

that the traditional approaches used to define the semantics of programming languages 

can be used to capture the semantics or the structural and behavioral elements of design 

patterns accurately. The captured semantics or elements should be represented in such a 

way that it would be understandable (by everyone including the software developers who 

may not want to delve into the details of the mathematical foundation of a formalism 

before they can understand the meaning of a pattern) and less ambiguous. It is also 

important that the specification preserve the flexible nature of design patterns because 

when the specification tightens the base of a pattern, then it is not a pattern anymore. 
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1.3 The Approach 

The work reported in this thesis formalizes the structural aspects of design 

patterns by keeping in mind the following critical attributes of a specification language: 

flexible nature of the patterns should be preserved, the specification scheme should be 

understandable and not complex to the users of patterns, and the mathematical concepts 

used for the formal specification schemes should not be a burden for the pattern users so 

that the pattern users will not have to unnecessarily delve into the as potentially 

prohibitive details of a mathematical formalism before they can understand the meaning 

of a pattern.  

By formalizing the structural aspects of design patterns, this thesis work lays the 

foundation for a formal model for patterns that will become a complete model when the 

behavioral aspects of design patterns are captured and represented, along with tool 

support and pattern repository management schemes. The contention is that when the 

structural and behavioral semantics of patterns are captured, it should be straightforward 

to capture the essential elements of design patterns accurately, thus controlling and 

restricting the formation of overlapping patterns.  

So, it is crucial to select a formalism to capture and specify the behavioral and 

structural elements of patterns accurately. This research work selected two-level 

grammars. Each design pattern is formed using a set of symbols. This set of symbols can 

be viewed as a language associated with that pattern. Grammars and other semantic 

formalization approaches have been used to formalize and generate programming 

languages without restricting the usability of these languages. Admittedly, programmers 

in general may not be directly and consciously aware of the formal grammars 
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underpinning the programming language that they use. Nonetheless, when one learns a 

programming language, it is typically through syntax charts and specific language 

construct templates which are in effect based on the formal grammars used to define 

programming languages and to parse the resulting programs. Therefore it seems 

appropriate to provide a formal specification of patterns using grammars and traditional 

semantic definition approaches that are used for languages.  

The proposed formal specification scheme will only replace the ambiguous 

textual description of the design patterns, and it will not restrict the usability of patterns. 

In this thesis, two-level grammars (TLGs) were used to represent the syntactic or 

structural elements of design patterns. The capability for data and procedural 

abstractions, provided by the different levels of TLGs, makes TLG suitable for 

representing each level of refinement used in the concrete realization of patterns. TLGs 

can be used to represent different level of abstraction represented by design patterns by 

utilizing the concept of inheritance in object-oriented programming. For example, a TLG 

can be used to represent an abstract design pattern and, when additional levels of detail 

need to be included, those details can be added through inheritance or interface 

implementation.  

The primary advantage of using TLGs to represent design patterns is that 

specifications written in TLGs are understandable due to their natural-language-like 

vocabulary [Edupuganty 1987] [Bryant and Pan 1992]. Thus TLGs could help pattern 

users understand the formalized version of patterns more readily compared to the other 

formal specification methods, such as BPSL and DisCo, that are difficult to understand 

due to their generally arcane mathematical notations. The close correspondence between 
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the natural language description of patterns and the TLG specification of patterns could 

make the TLG specification of design patterns widely acceptable. Since TLGs have 

already been used to formalize programming languages, it could be argued that the TLG 

representation of design patterns will not restrict the flexibility of design patterns 

[Edupuganty 1987]. 

 

1.4 Contributions 

In addition to comparing three existing formal specification schemes, the work 

presented in this thesis report provides a basis for the formal specification of design 

patterns using two-level grammars. More specifically, this thesis presents an approach to 

formalize the structural aspects of design patterns using two-level grammars.  The 

investment of time and effort, and the issue of complexity involved in the process of 

understanding and implementing design patterns can be reduced due to the natural-

language-like nature of two-level grammars. Also, the ambiguous, and the unreliable 

nature of current pattern descriptions can be addressed, complemented, and made more 

understandable with the proposed formal specification scheme.  

This work also lays a foundation for capturing the behavioral aspects of patterns. 

More specifically, by formalizing the structural aspects, this thesis lays the foundation for 

a formal framework that could be a complete model when the behavioral aspects of the 

design patterns are also captured and represented, along with the requisite tool support 

and repository management scheme.  
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1.5 Organization of the Thesis 

The organization of the rest of this thesis report is as follows. Chapter II provides 

an overview of design patterns, including a brief discussion of the history of object-

oriented design patterns. The GoF representation [Gamma et al. 1995] of the observer 

design pattern is included along with an overview of the existing formal specification 

schemes, namely,  DisCo, BPSL, and LePUS3 and Class-Z with their representation of 

the observer pattern, in order to illustrate the ambiguities inherent in the natural language 

representation of design patterns and the need for formal specification schemes. This 

chapter also provides a brief description of the Two-Level Grammars (TLGs) and some 

of the existing applications based on TLGs. Chapter III introduces TLGs in the context of 

classes and objects. Chapter IV illustrates the use of TLG as a formal specification 

language to represent patterns by using the observer design pattern as an example. 

Chapter V summarizes the contributions of this research work and outlines some 

directions for future work. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 History of Patterns 

Patterns, as a concept, originated from the work of Christopher Alexander. 

Christopher Alexander found recurring themes in (building) architectures and captured 

them into descriptions that he called patterns [Alexander et al. 1977]. Christopher 

Alexander defined a pattern as a rule that describes “a problem which occurs over and 

over again in our environment, and then describes the core of the solution to that problem 

in such a way that you can use this solution a million times over, without ever doing it the 

same way twice” [Alexander et al. 1977]. The intention was to teach the language of the 

architects to everyone, so that even non-architects get the power and wisdom to bring 

liveliness to the places they live by designing their buildings and communities in the way 

they want. A pattern language, like a natural language, allows its users to create “an 

infinite variety of unique combinations [of its elements], appropriate to different 

circumstances, at will” [Alexander et al. 1977]. The elements of the pattern language are 

nothing but patterns. A pattern language captures the collective wisdom of the architects 

in terms of patterns [Alexander et al. 1977]. 

A pattern language is not merely a catalogue of patterns, it is a body of patterns 

that follows a strategic way to lead from a small pattern to larger ones providing the flow.
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that connects various patterns. So, when a person is faced with a need to design, she/he 

does not have to start from scratch, rather they can learn or grasp the basic ideas from the 

experience of successful architects in terms of patterns, by learning the pattern language 

Therefore, a pattern language was used as a tool to share and communicate design 

knowledge in a domain independent way.  

Patterns were described in a natural language, along with pictures of instances of 

the patterns, since patterns were meant to be a tool to communicate design knowledge in 

a domain independent way. Patterns abstracted by Alexander have the same format 

[Alexander et al. 1977]. First there is a picture that shows the instance of a particular 

pattern, followed by an introductory paragraph that sets the context for that particular 

pattern. After each pattern form, there is a brief two-line description of the context in 

which the pattern can be applied. Then the body of the problem is described in detail. The 

body of the problem also includes the empirical background of the pattern, sources of 

validity evidence, and the range of contexts in which the pattern can be applied. Then the 

solution part of the patterns is described, followed by a picture that indicates the pattern‟s 

main components. At end of each pattern form, all the patterns that are related to this 

particular pattern in the pattern language are listed. This format of pattern description is 

known as Alexandrian pattern form [Alexander et al. 1977]. This pattern form described 

patterns in a very narrative form intending to reach everyone. This pattern concept was 

adopted by the software community for its rather straightforward relation to the object-

oriented constructs.  

Patterns were widely adopted by the software community after the publication of 

the book Design Patterns: Elements of Reusable Object-Oriented Software by Erich 
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Gamma, Richard Helm, Ralph Johnson, and John Vlissides in 1995 [Gamma et al. 1995]. 

This book created an important influence in the software pattern community. Since then, 

object-oriented design patterns have been considered to be the most popular and 

influential pattern work among the other patterns such as architectural patterns and 

idioms [Buschmann et al. 2007].  

Gamma et al. captured and represented recurring design problems and solutions in 

traditional object-oriented programming in a domain independent way by describing 

them in a natural language using elements such as classes, methods, interfaces, and 

objects [Gamma et al. 1995]. The object-oriented patterns described by Gamma et al. are 

not from any specific domains. However, in recent years, catalogs of domain-specific 

patterns have been made available in a number of domains: parallel programming 

[Beverly et al. 2004], embedded systems [Konrd et al. 2004], service-oriented 

architectures [Endrei 2004], concurrent and distributed systems [Buschmann et al. 2007], 

and so forth.  

Patterns have been widely used by the software community because of several 

reasons: they are abstractions generated from the valuable experiences of developers in 

solving problems that are repeatedly encountered within certain contexts, they capture 

design experience in such a way that they become a learning aid for novice designers, 

they provide a standard vocabulary among developers, and they capture the essential 

parts of a design in a compact form, e.g., for documenting the existing software 

architectures [Agerbo and Cornils 1998] [Chinnasamy 2000] [Eden 2000] [France et al. 

2004] [Mikkonen 1998] [Taibi and Ling 2003 B]. 
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 Although patterns have been widely used, there is no standard definition for what 

a pattern is? There are many definitions in existence in the software engineering field for 

what a pattern is. One of the definitions given by Professor Christopher Alexander is 

“each pattern is a three-part rule that expresses a relation between a certain context, a 

certain system of forces that occurs repeatedly in that context, and a certain software 

configuration that allows these forces to resolve themselves in the software community 

itself” [Alexander 1979]. Another definition for patterns provided by Buschmann et al. 

[Buschmann et al. 1996] is “a pattern for software architecture describes a particular 

recurring design problem that arises in specific design contexts and presents a well-

proven generic scheme for its solution; the solution scheme is specified by describing its 

constituent components, their responsibilities and relationships, and the ways in which 

they collaborate”. These definitions agree that a pattern should provide a proven solution 

to a recurring problem in a specific context. 

 At the early stages of pattern evolution, patterns were described only by using 

pattern forms [Gamma et al. 1995]. Although pattern authors tend to follow their own 

pattern forms, the following pattern forms are well-known and widely used by the pattern 

community: Alexandrian Form [Alexander et al. 1977], GoF Form [Gamma et al. 1996], 

POSA (Pattern-Oriented Software Architecture) Form [Buschmann et al. 1996], and 

Coplien Form [Coplien 1991]. All these pattern forms define the essential elements of 

patterns using textual descriptions, sample code fragments, and graphical modeling 

languages. There are a few differences in the elements that are described in the various 

forms. There are also some common elements, which are considered to be the essential 

elements of patterns, that are described by almost all the pattern forms.  
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What follows are brief descriptions of the essential elements of a pattern that are 

described in all the pattern forms [Chinnasamy 2000].  

Name: It assigns a meaningful name to a pattern. The name is usually an abstracted 

representation of the participants (classes and objects involved in a pattern) and their 

responsibilities of the associated pattern.  

Problem: This is the intent of the pattern, it provides a detailed description of the design 

problem being addressed by the pattern. 

Consequences: This is the responsibilities and rewards involved in applying the pattern.  

Context: It describes the context in which the specific design problem can recur and for 

which the solution is desirable. This can also be considered as a precondition to the 

system for which the pattern can be applied. 

Forces: It provides descriptions on the constraints and how these constraints may conflict 

with the goal that can be achieved by using the pattern. Forces describe the minutiae of 

the constraints and solutions that can be considered in the presence of those constraints. 

Solution: It describes the participants, i.e., classes, objects, their relationships, and their 

responsibilities (for object-oriented design patterns). It also adds descriptions on how to 

construct the participants and the relationships among the participants of the pattern. It 

also includes the structure of the pattern as a picture created using graphical modelling 

tools such as UML. The solution section is quite abstract in that it presents the solution to 

a wide variety of problems rather than providing a concrete solution to a specific issue. 

So, an object-oriented design pattern is neither a concrete design solution nor a complex 

domain-specific design solution. Instead, object-oriented design patterns capture general 

object-oriented design problems which occur in a particular context and abstract the key 
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aspects of the solutions to the problems to make it reusable. The solution section includes 

the guidelines to follow during the concrete realization of the pattern. Sometimes, the 

solution section also provides the alternative design options that can be considered during 

the concrete realization process.  

Examples: One or more instances or the patterns are illustrated in detail in this section. 

Resulting Context: This section outlines the resulting state of the system after the 

pattern has been applied, along with the forces (see entry on Forces above) that may arise 

from the current state of the system. This will help in deciding whether or not a specific 

pattern can solve a given design problem.  

Rationale: This section provides a justification to the pattern. It provides a detailed 

description on how the pattern can solve a particular design issue and why the pattern is a 

desirable solution to a particular design problem.  

Related Patterns: This section provides a list of patterns that are associated with this 

pattern. The related pattern can often be considered as a set of components that can be 

used to construct a larger system.  

Known Uses: This section lists out the known occurrences of the pattern in the existing 

applications or systems. 

As stated perviouly also, one of the widely-used pattern forms in the software 

pattern community is the GoF pattern form proposed by Gamma et al. [Gamma et al. 

1995]. Their original design pattern form consisted of fourteen fields or sections. The 

GoF representation of the observer pattern is given in the following section to illustrate 

the discussion on the disadvantages of the textual representation of design patterns. 
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2.2 GoF Representation of the Observer Pattern 

This section contains the representation of the observer pattern as given by 

Gamma et al. [Gamma et al. 1995]. 

Intent 

Define a one-to-many dependency among objects so that when one object changes state, 

all its dependents are notified and updated automatically. 

Also Known As 

Dependents, Publish-Subscribe  

Motivation  

A common side-effect of partitioning a system into a collection of cooperating classes is 

the need to maintain consistency among related objects. Consistency is not to be achieved 

by making the classes tightly coupled, because that reduces their reusability. For 

example, many graphical user interface toolkits separate the presentational aspects of the 

user interface from the underlying application data. Classes defining application data and 

presentations can be reused independently. They can work together, too. Both a 

spreadsheet object and a bar chart object can depict information in the same application 

data object using different presentations. The spreadsheet and the bar chart don't know 

about each other, thereby letting you reuse only the one you need. But they behave as 

though they do. When a user changes the information in the spreadsheet, the bar chart 

reflects the changes immediately, and vice versa. This behavior implies that the 

spreadsheet and bar chart are dependent on the data object and therefore should be 

notified of any change in its state. And there is no reason to limit the number of 

dependent objects to two, there may be any number of different user interfaces to the 
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same data.  The Observer pattern describes how to establish these relationships. The key 

objects in this pattern are subject and observer. A subject may have any number of 

dependent observers. All observers are notified whenever the subject undergoes a change 

in state. In response, each observer will query the subject to synchronize its state with the 

subject's state. This kind of interaction is also known as publish-subscribe. The subject is 

the publisher of the notifications. It sends out these notifications without having to know 

who its observers are. Any number of observers can subscribe to receive notifications. 

Applicability  

 

Use the Observer pattern in any of the following situations:  

 When an abstraction has two aspects, one dependent on the other. Encapsulating 

these aspects in separate objects lets the users vary and reuse them independently.  

 When a change to one object requires changing others, and there is no telling how 

many objects need to be changed.  

 When an object should be able to notify other objects without making 

assumptions about the identity of these objects. In other words, it is not desirable 

for these objects to be tightly coupled. 

Participants  

 Subject  

o Knows its observers. Any number of Observer objects may observe a subject.  

o Provides an interface for attaching and detaching Observer objects.  

 Observer  

o Defines an updating interface for objects that should be notified of changes in a 

subject.  
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 Concrete Subject  

o Stores the state of interest to Concrete Observer objects.   

o Sends a notification to its observers when its state changes.  

 Concrete Observer  

o Maintains a reference to a Concrete Subject object.   

o Stores the state that should stay consistent with the subject's state.   

o Implements the Observer updating interface to keep its state consistent with the 

subject's state. 

Structure 

 

 

 

 

 

 

 

Figure 2.1 UML Representation of the Observer Pattern 
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Collaborations  

 

 Concrete Subject notifies its observers whenever a change occurs that could make its 

observers' state inconsistent with its own.  

 After being informed of a change in the concrete subject, a Concrete Observer object 

may query the subject for information. Concrete Observer uses this information to 

reconcile its state with that of the subject. The following interaction diagram 

illustrates the collaborations between a subject and two observers. Interaction 

diagrams model the behavior of use cases by describing the way groups of objects 

interact to complete a task [Fowler 2003].  

 Note how the Observer object that initiates the change request postpones its update 

until it gets a notification from the subject. Notify is not always called by the subject. 

It can be called by an observer or by another kind of object entirely. The 

Implementation section discusses some common variations. 

Consequences  

The Observer pattern lets the users vary subjects and observers independently. Users can 

reuse subjects without reusing their observers, and vice versa. It lets users add observers 

without modifying the subject or other observers.  

Further benefits and liabilities of the Observer pattern include the following: 1. 

Abstract coupling between Subject and Observer. All a subject knows is that it has a list 

of observers, each conforming to the simple interface of the abstract Observer class. The 

subject doesn't know the concrete class of any observer. Thus the coupling between 

subjects and observers is abstract and minimal. Because Subject and Observer aren't 

tightly coupled, they can belong to different layers of abstraction in a system. 



19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 An interaction diagram depicting the collaborations of the Observer Pattern 

 

A lower-level subject can communicate and inform a higher-level observer, thereby 

keeping the system's layering intact. If Subject and Observer are lumped together, the 

resulting object must either span two layers (and violate the layering), or it must be 

forced to live in one layer or the other (which might compromise the layering 
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automatically to all interested objects that subscribed to it. The subject doesn't care how 

many interested objects exist, its only responsibility is to notify its observers. This gives 

the users the freedom to add and remove observers at any time. It is up to the observer to 

handle or ignore a notification.  

Unexpected updates. Because observers have no knowledge of each other's 

presence, they can be blind to the ultimate cost of changing the subject. A seemingly 

innocuous operation on the subject may cause a cascade of updates to observers and their 

dependent objects. Moreover, dependency criteria that aren't well-defined or maintained 

usually lead to spurious updates, which can be hard to track down. 

This problem is aggravated by the fact that the simple update protocol provides no details 

as to what changed in the subject. Without additional protocol to help observers discover 

what changed, they may be forced to work hard to deduce the changes. 

Implementation  

Several issues related to the implementation of the dependency mechanism are discussed 

in this section.  

1. Mapping subjects to their observers. The simplest way for a subject to keep track of 

the observers it should notify is to store references to them explicitly in the subject. 

However, such storage may be too expensive when there are many subjects and few 

observers. One solution is to trade space for time by using an associative look-up 

(e.g., a hash table) to maintain the subject-to-observer mapping. Thus a subject with 

no observers does not incur any storage overhead. On the other hand, this approach 

increases the cost of accessing the observers.  
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2. Observing more than one subject. It might make sense in some situations for an 

observer to depend on more than one subject. For example, a spreadsheet may depend 

on more than one data source. It is necessary to extend the Update interface in such 

cases to let the observer know which subject is sending the notification. The subject 

can simply pass itself as a parameter in the Update operation, thereby letting the 

observer knows which subject to examine. 

3. Who triggers the update? The subject and its observers rely on the notification 

mechanism to stay consistent. But what object actually calls Notify to trigger the 

update? Here are two options:  

a. Have state-setting operations on Subject call Notify after they change the 

subject's state. The advantage of this approach is that clients don't have to 

remember to call Notify on the subject. The disadvantage is that several 

consecutive operations will cause several consecutive updates, which may be 

inefficient.  

b. Make clients responsible for calling Notify at the right time. The advantage 

here is that the client can wait to trigger the update until after a series of state 

changes has been made, thereby avoiding needless intermediate updates. The 

disadvantage is that clients have an added responsibility to trigger the update. 

That makes errors more likely, since clients might forget to call Notify.  

4. Dangling references to deleted subjects. Deleting a subject should not produce 

dangling references in its observers. One way to avoid dangling references is to make 

the subject notify its observers as it is deleted so that they can reset their reference to 
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it. In general, simply deleting the observers is not an option, because other objects 

may reference them, or they may be observing other subjects as well.  

5. Making sure the Subject state is self-consistent before notification. It is important to 

make sure the Subject state is self-consistent before calling Notify, because observers 

query the subject for its current state in the course of updating their own state. This 

self-consistency rule is easy to violate unintentionally when the Subject subclass 

operations call inherited operations.   

6. Avoiding observer-specific update protocols: the push and pull models. 

Implementations of the Observer pattern often have the subject broadcast additional 

information about the change. The subject passes this information as an argument to 

Update. The amount of information may vary widely. At one extreme, which we call 

the push model, the subject sends observers detailed information about the change, 

whether they want it or not. At the other extreme is the pull model: the subject sends 

nothing but the most minimal notification and the observers ask for details explicitly 

thereafter. The pull model emphasizes the subject's ignorance of its observers, 

whereas the push model assumes that the subjects know something about their 

observers' needs. The push model might make observers less reusable, because 

Subject classes make assumptions about Observer classes that might not always be 

true. On the other hand, the pull model may be inefficient, because Observer classes 

must ascertain what changed without help from the Subject. 

7. Specifying modifications of interest explicitly. Update efficiency can be improved by 

extending the subject's registration interface to allow registering observers only for 

specific events of interest. When such an event occurs, the subject informs only those 
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observers that have registered their interest in that event. One way to support this uses 

the notion of aspects for Subject objects. To register interest in particular events, 

observers are attached to their subjects using  

a. void Subject::Attach(Observer*, Aspect& interest);  

where “interest” specifies the event of interest. At notification time, the subject 

supplies the changed aspect to its observers as a parameter to the Update operation. 

For example:  

b. void Observer::Update(Subject*, Aspect& interest); 

8. Encapsulating complex update semantics. When the dependency relationship between 

subjects and observers is particularly complex, an object that maintains these 

relationships might be required. Such an object is called a ChangeManager. Its 

purpose is to minimize the work required to make observers reflect a change in their 

subject. For example, if an operation involves changes to several interdependent 

subjects, it might have to be ensured that their observers are notified only after all the 

subjects have been modified to avoid notifying observers more than once. 

ChangeManager has three responsibilities:  

a. It maps a subject to its observers and provides an interface to maintain this 

mapping. This eliminates the need for subjects to maintain references to their 

observers and vice versa.  

b. It defines a particular update strategy.  

c. It updates all dependent observers at the request of a subject.  

The following diagram depicts a simple ChangeManager-based implementation of the 

Observer pattern. There are two specialized ChangeManagers. The 
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SimpleChangeManager is naive in that it always updates all observers of each subject. In 

contrast, the DAGChangeManager handles directed-acyclic graphs of dependencies 

among subjects and their observers.  

A DAGChangeManager is preferable to a SimpleChangeManager when an 

observer observes more than one subject. When more than one subject is observed by an 

observer, a change in two or more subjects might cause redundant updates. The 

DAGChangeManager ensures that the observer receives just one update. The 

SimpleChangeManager is fine when multiple updates do not pose an issue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 UML Representation of an Instance of the Observer Pattern 
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9. Combining the Subject and Observer classes. Class libraries written in languages that 

lack multiple inheritance (e.g., Smalltalk) generally don't define separate Subject and 

Observer classes but combine their interfaces in one class. That lets the users define 

an object that acts as both a subject and an observer without multiple inheritance. In 

Smalltalk, for example, the Subject and Observer interfaces are defined in the root 

class Object, making them available to all classes. 

Sample Code of the Observer Pattern 

An abstract class defines the Observer interface:  

class Subject;   

class Observer { 

public:   

virtual ~ Observer();   

virtual void Update(Subject* theChangedSubject) = 0;  

protected:   

Observer();  

};  

This implementation supports multiple subjects for each observer. The subject passed to 

the Update operation lets the observer determine which subject‟s state is changed when 

the observer is observing more than one subject. 

Similarly, an abstract class defines the Subject interface:  

class Subject {  

public:   

virtual ~Subject();   

virtual void Attach(Observer*);   

virtual void Detach(Observer*);   

virtual void Notify();  

 

protected:   

Subject();  

private: List<Observer*> *_observers;  

};   
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void Subject::Attach (Observer* o) {         

_observers->Append(o);     

}  

void Subject::Detach (Observer* o) {         

_observers->Remove(o);     

}   

void Subject::Notify () {  

ListIterator<Observer*> i(_observers);  

for (i.First(); !i.IsDone(); i.Next()) {  i.CurrentItem()->Update(this); }  

}  

ClockTimer is a concrete subject for storing and maintaining the time of day. It notifies 

its observers every second. ClockTimer provides the interface for retrieving individual 

time units such as the hour, minute, and second. 

class ClockTimer : public Subject {  

public:   

ClockTimer();   

virtual int GetHour();   

virtual int GetMinute();   

virtual int GetSecond();   

void Tick();  

};  

The Tick operation gets called by an internal timer at regular intervals to provide an 

accurate time base. Tick updates the ClockTimer's internal state and calls Notify to 

inform observers of the change: 

void ClockTimer::Tick () {   

// update internal time-keeping state  // ...  Notify();  

}  

Now we can define a class DigitalClock that displays the time. It inherits its graphical 

functionality from a Widget class provided by a user interface toolkit. The Observer 

interface is mixed into the DigitalClock interface by inheriting from Observer.  
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class DigitalClock: public Widget, public Observer {      

public:           

DigitalClock(ClockTimer*);   

virtual ~DigitalClock();   

virtual void Update(Subject*);   // overrides Observer operation  

virtual void Draw();         // overrides Widget operation;    

                // defines how to draw the digital clock  

private:   

ClockTimer* _subject;  

};   

DigitalClock::DigitalClock (ClockTimer* s) {   

_subject = s;  _subject->Attach(this);  

}   

DigitalClock:: DigitalClock () {  _subject->Detach(this); } 

Before the Update operation draws the clock face, it checks to make sure the notifying 

subject is the clock's subject:  

void DigitalClock::Update (Subject* theChangedSubject) {   

if (theChangedSubject == _subject) {   Draw();  }  

}   

void DigitalClock::Draw () {   

// get the new values from the subject    

int hour = _subject->GetHour();   

int minute = _subject->GetMinute();   // draw the digital clock  

}  

An AnalogClock class can be defined in the same way. 

class AnalogClock : public Widget, public Observer {  

public:   

AnalogClock(ClockTimer*);   

virtual void Update(Subject*);   

virtual void Draw();  // ... 

}; 

The following code creates an AnalogClock and a DigitalClock that always show the 

same time:  

ClockTimer* timer = new ClockTimer;  
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AnalogClock* analogClock = new AnalogClock(timer);  

DigitalClock* digitalClock = new DigitalClock(timer);  

Whenever the timer ticks, the two clocks will be updated and will redisplay themselves 

appropriately. 

Known Uses  

The first and perhaps best-known example of the Observer pattern appears in Smalltalk 

Model/View/Controller (MVC), the user interface framework in the Smalltalk 

environment [Krasner and Pope 1988]. MVC's Model class plays the role of Subject, 

while View is the base class for observers. Smalltalk, ET++, and the THINK class library 

provide a general dependency mechanism by putting Subject and Observer interfaces in 

the parent class for all other classes in the system.  

Other user interface toolkits that employ this pattern are InterViews, the AndrewToolkit, 

and Unidraw [Kvale 1996] [Palay et al. 1988] [Vlissides and Linton 1990]. InterViews 

defines Observer and Observable (for subjects) classes explicitly. Andrew calls them 

“view” and “data object”, respectively. Unidraw splits graphical editor objects into View 

(for observers) and Subject parts.  

Related Patterns 

Mediator: By encapsulating complex update semantics, the ChangeManager acts as 

mediator between subjects and observers.  

Singleton: The ChangeManager may use the Singleton pattern to make it unique and 

globally accessible.  
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2.2.1 Deficiencies in the GoF Representation 

The textual description provided by the GoF pattern form [Gamma et al. 1995] is 

quite detailed and is a suitable way to communicate design knowledge in a domain 

independent way. Although examples improve understanding, the lengthy description 

(around 10 pages for each pattern) spread out over multiple sections, thus making it 

rather challenging for a developer to get the core of the pattern because the 

implementation detail is sometimes lost in the long-winded description [Sabatucci et al. 

2009]. Pattern users are expected to enhance their design experience by studying these 

design patterns and use their pattern knowledge in the development process. These 

patterns are represented at a level of abstraction and in a natural language mode that 

requires human interpretation of the pattern contents to the desired implementation. The 

natural language descriptions restrict precise interpretation of the design patterns also 

hinder tool support and automation.  

Henninger and Corrêa collected a number of patterns published in the 1994-2007 

time frame to show the pros and cons of the increase in the number of patterns being 

published, and analyze the trend in pattern practice [Henninger and Corrêa 2007]. They 

collected and analyzed 2241 software design patterns from various resources including 

the GoF book [Gammat et al. 1995], PLoP (Pattern Languages of Programs) proceedings 

[Hillside 1993], POSA (Pattern-Oriented Software Architecture) [Buschmann et al. 

1996], and Fowler's book titled Analysis Patterns [Fowler 1997]. They advance the 

argument that their collection of patterns should be considered an underestimate of the 

actual number of patterns available, as “it is a daunting task to find all patterns in various 

printed and electronic sources” [Henninger and Corrêa 2007].   
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Even before 2000, when the number of patterns being published was reaching 

over 1000 [Rising 2000], there was discussion on the manageability of the increasing 

number of available patterns: “...there are now so many patterns it is very difficult to 

remember them all” [Cline 1996] and that “the increase in the number of design patterns 

makes a common vocabulary unmanageable” [Agerbo and Cornils 1998]. Since 2000, the 

number of patterns published has more than doubled and the increase is probably due to 

the diverse set of software systems being developed [Henninger and Corrêa 2007].  

The advantage of such an increase in the number of patterns is that “the body of 

knowledge collectively represented by patterns is vast and increasing” [Henninger and 

Corrêa 2007]. But the drawback is that the number of patterns published is increasing and 

it could reach a point where it would become infeasible to identify all potentially relevant 

patterns to a specific situation [Henninger and Corrêa 2007] [Buschmann et al. 2007] 

[Chinnasamy 2000] [Soundarajan and Hallstrom 2004] [Taibi and Ling 2003 B]. 

Therefore, the need for tool support is becoming critical. The natural language 

representation of patterns restricts the development of automated tools support due to the 

inherently informal semantic description of natural languages. In spite of the increasing 

number of available patterns, duplicate patterns, and the lack of a standard medium for 

communicating software patterns, they have the great potential to become a unique 

medium for capturing and communicating domain knowledge about the best practices of 

software development. 

The motivation behind the natural description of the patterns is to communicate 

design knowledge in a domain independent way [Buschmann et al. 2007]. But natural 

language representation has serious flaws. The pattern users are faced with difficulties in 
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understanding when and how to use the increasing number of available patterns [Taibi 

and Ling 2003 B] [Bayley and Zhu 2008]. This is mainly due to the natural language 

textual description of patterns which is informal, ambiguous, and sometimes misleading 

in attempting to understand and apply them [Taibi 2006] [Bayley and Zhu 2008]. As a 

result, pattern users were forced to understand the meaning of patterns from their 

interpretation of the patterns‟ verbal specification [Eden 2000]. Hence, there was a need 

felt to formalize patterns in order to describe them accurately, to reason about them 

rigorously, and also to facilitate tool support [Agerbo and Cornils 1998] [Bayley and Zhu 

2008] [Buschmann et al. 2007] [Chinnasamy 2000] [Dong 2002] [Eden 2000] [France et 

al. 2004] [Kent and Lauder 2004] [Mikkonen 1998] [Soundarajan and Hallstrom 2004] 

[Taibi and Ling 2003 B]. 

Formal specification approaches were used in an attempt to formalize patterns 

using existing formal specification languages, programming languages, object-oriented 

notations, as well as by devising special purpose notations and specification languages. 

For example, Bosch [Bosch 1996] and Dong [Dong 2002] formalized design patterns 

using C++ and UML, respectively. Mikkonen [Mikkonen 1998], Eden and Hirshfeld 

[Eden and Hirshfeld 2001], and Chinnasamy [Chinnasamy 2000] derived special purpose 

specification notations such as Distributed Coordination (DisCo), LanguagE for Pattern 

Uniform Specification 3 (LePUS3), and Extended LanguagE for Pattern Uniform 

Specification (eLePUS), respectively. Eden and Hirshfeld [Eden and Hirshfeld 2001] and 

Taibi and Ling [Taibi and Ling 2003 B] devised special purpose specification languages 

called Balanced Pattern Specification Language (BPSL) and class-Z.  
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Among the existing formal specification schemes, DisCo, BPSL, and LePUS3 are 

considered to be the most promising specification languages for design patterns [Taibi 

2007] [Henninger and Corrêa 2007] [Mak et al. 2004]. The rest of this section contains a 

brief description of these three schemes. Sections 2.3, 2.4, and 2.5 discuss these three 

schemes in more detail followed by their comparison in Section 2.6. 

DisCo is a formal specification method proposed by Mikkonen [Mikkonen 1998]. 

In DisCo, the specifications and the modeling of the interactions are done at a high level 

of abstraction. The formal basis of this method is the Temporal Logic of Actions. DisCO 

was mainly aimed at formalizing the behavioral aspects of design patterns, hence its 

specification of the structural aspects of the patterns is not as good compared to the 

specification of the behavioral aspects of patterns. Also, DisCo did not provide a 

repository management system for patterns.  

Taibi [Taibi 2007] proposed the Balanced Pattern Specification Language (BPSL) 

that uses First Order Logic and Temporal Logic of Actions to formalize the static and 

dynamic (or structural and behavioral) aspects of patterns. This specification scheme uses 

mathematical notations to formalize patterns. As its name suggests, BPSL attempts to 

provide a balanced specification of the structural and behavioral aspects of design 

patterns, but fails to concentrate on the understandability of the resulting specification. 

Pattern specification schemes/languages should be understandable and not unduly 

complex to the users of patterns [Kim and Carrington 2004]. The mathematical notations 

used for the formal specification schemes should not be a burden for the developer. The 

developers‟ having to delve into the details of the mathematical foundations of a 
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formalism, before they can understand the meaning of a pattern, constitutes extra and 

arguably unnecessary work for pattern users. 

One of the notable works on formal specification of design patterns is LePUS3 

and Class-Z [Eden and Hirshfeld 2001], with LePUS3 being an extension of LePUS. 

LePUS is graphical formal specification language. This language expresses the 

relationships among different patterns and the relationships among the different elements 

of a pattern, using a simplified Higher Order Monadic Logic formalism. Since LePUS did 

not provide the means to capture the behavioral aspects of patterns, Chinnasamy 

[Chinnasamy 2000] extended LePUS and provided eLePUS which can be used to capture 

the structural as well as the behaviroal aspects of design patterns. LePUS was also 

extended by Eden and Hirshfeld [Eden and Hirshfeld 2001] to represent both structural 

and behavioral aspects of patterns. LePUS3 mainly represents the relationships that exist 

among the participants of design patterns. The visual notations of LePUS3 are supported 

by the formal specification language Class-Z [Eden et al. 2007]. Class-Z is derived from 

the formal specification language Z [Eden et al. 2007]. LePUS3 and Class-Z can be used 

to capture the static and behavioral aspects of design patterns. It seems that LePUS3 is 

still in its initial evolutionary phases. This two-tier programming tool support for the 

specification, verification, and visualization of design patterns as well as software 

systems is still a work in progress [Eden and Gasparis 2009]. One of the main limitations 

of LePUS3 and Class-Z is that they do not really capture or represent the behavioral 

elements of design patterns accurately [Eden et al. 2007]. 

The following sections provide detailed descriptions of DisCo, BPSL, and 

LePUS3 & Class-Z. 



34 

 

2.3 Distributed Cooperation (DisCo) 

 

2.3.1 Introduction 

DisCo is an object-oriented specification language for specifying the behavioral 

aspects of reactive systems proposed by Mikkonnen [Mikkonen 1998]. A reactive system 

is “one that is in continuous interaction with its environment, this is in contrast to the 

transformational theories, where a system is understood to transform input into output” 

[Mikkonen 1995]. In DisCo, the specification and modeling of interactions are done at a 

high level of abstraction. The formal basis of this method is the Temporal Logic of 

Actions. 

 

2.3.2 Building Blocks of DisCO 

The building blocks of DisCo are: classes, relations, and actions [Mikkonen 

1995]. Classes are structures that describe the elements of an object. An Object in DisCo 

is a structure that may contains: state machines, variables, and references to other 

objects. State machines represent different states of the system. Variables are of basic 

types such as integer, string, and character. State machines, variables, and references 

together represent the current or local state of the object. Global state of the system can 

be determined by combining the local state of all the objects. Relations are used to 

associate objects with other objects. Relations are defined in the following format:  

relation (n).R.(m): C x D 

Here, relation R associates n instances of class C with m instances of class D [Mikkonen 

1998]. 
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Actions in DisCo are atomic events that are executed in an interleaving manner 

and are selected non-determinately, i.e., if alternative actions are possible at the same 

time, the selection between them is nondeterministic (one action among other actions is 

selected without any specification of which one will be taken). The specification of an 

action contains three parts: a header, a guard, and a body. The header specifies the name 

of the action as well as a list of participating objects and parameters. The guard is a 

precondition, which is boolean expression is upon the satisfaction of the guard, the 

corresponding action is executed by the system. The body of an action contains a set of 

statements that might change the state of the participating objects when the action is 

executed.  

A simple DisCo class [Mikkonen 1995]: 

class sample = {  

state *a, b; //a state machine; * indicates the default state of the state 

machine 

 value: integer:= 0; //an integer variable 

} 
 

A sample DisCo action [Mikkonen 1995]: 

Act (s: sample; value)    //header 

when s.a do    //guard 

  s.b;    //body, a state transition 

      s.value := s.value + 1; //an assignment 

The action Act, specificed above, can be invoked only when there is an instance s of a 

class called sample and the local state of its state machine is a. When the action Act 

executes, it changes the local state of state machine of class sample to b and increments 

the variable value of the class sample by one. 

In addition to specifying the bahaviroal aspects of a system, DisCo also provides 

methods to modularise DisCo specifications by refining them. Refinements are applied 
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by making sure the safe properties hold (nothing bad will ever happen) using proof 

obligations. Each refinement that is applied to the specification modularizes the 

behaviroal aspect of the system as a whole rather than modularizing the local behavior of 

a participant in the system. During this refinement process, new classes and variable are 

added, and the exisitng actions are refined to reflect the changes made to the newly added 

classes and variables. Refinements to the actions are applied by inheriting the existing 

actions. 

 

2.3.3 DisCo Representation of the Observer Pattern 

This subsection contains the representation of the observer pattern in the DisCo 

specification followed by a brief discussion on the relations involved in the specification. 

 

class Subject = { Data } 

class Observer = { Data } 

 

//asterisk (*) stands for any possible number of instances 

 

relation (0..1).Attached(*): Subject x Observer  

relation (0..1).Updated(*): Subject x Observer 
 

Attach(s: Subject; o: Observer): 

¬ s.Attached.o        //¬ represents logical NOT, i.e., o is not attached to s 

 s.Attached.o      // represents state transition 

 

Detach(s: Subject; o: Observer): 

  ¬ s.Attached.o 

 ¬ s.Attached.o 

¬ s.Updated.o // represents logical AND  

 

Notify(s: Subject, d): 

¬ s.Updated.class Observer 

 s.Data = d 

 

Update(s: Subject; o*: Observer; d): 
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      s.Attached.o 

¬ s.Updated.o 

  d = s.Data 

 s.Updated.o 

 o.Data = d 

 

DisCo specification introduced two relations: Attached and Updated. The relation 

Attached is defined over a subject and a set of observers. This relation captures the 

Observers that are currently attached to the Subject. An observer can be attached to the 

subject whenever the action Attach() is executed. Attach() can only be executed when 

there exist instance s of a class Subject and another instance o of a class Observer. An 

observer is disassociated from the subject when the Detach() action is executed. The 

relation Updated() is defined over a subject and a set of observers. It is used to capture 

the observers that were updated by the subject after the Notify() action was last executed 

[Mikkonen 1998].  

 

2.4 Balanced Pattern Specification Language (BPSL) 

2.4.1 Introduction 

BPSL [Taibi and Ling 2003 B] is an attempt to formalize both the structural and 

behavioral aspects of design patterns using a subset of First Order Logic (FOL) and a 

subset of Temporal Logic of Actions (TLA). The subset of TLA is used to perform 

actions such as changing state variables (class attributes) and associating or 

disassociating object with the other participants of a design pattern. This work can be 

considered an extension to DisCo [Mikkonen 1998] and LePUS [Eden 2000] [Taibi and 

Ling 2003 B] [Hallstrom 2004]. In BPSL, the structural aspects of patterns are 

represented by the classes associated with the patterns and the relationships among them. 
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Classes are represented by the instances of the objects of the associated classes. The 

relationship between the participating classes and objects are represented as mathematical 

association between them using temporal relations. The behavioral aspects of patterns are 

captured using actions, which define the state changes of the associated participants. 

 

2.4.2 Building Blocks of BPSL 

The building blocks of BPSL specifications are: entities, relations, and actions. 

They are explained in the following paragraphs. 

Entities include classes, attributes, methods, objects, and untyped variables. The 

entities are represented using the following symbols respectively C, A, M, O, and V. 

Untyped variable are variables of any type, such as a combination of a class and objects, 

which are used to create higher levels of abstraction [Taibi and Ling 2003 B].  

Relations define the way entities cooperate with one another. There are two types 

of relations: permanent and temporal. As the name suggests, permanent relations once 

defined and cannot be changed, but the temporal relations change dynamically 

throughout the execution of actions. A temporal relation is defined as follows: TR(C1[n], 

C2[m]), where n and m are cardinalities. The relation TR is associated with n instances of 

class C1 and m instances of C2. In BPSL, the cardinality of a class can be specified either 

as a closed interval [n..m] or as [*]. In a closed interval ([n..m]), n and m represent any 

two positive integers, and [*] depicts any possible number of instances of a class [Taibi 

and Taibi 2006]. 

An action in BPSL is similar to an action in DisCo. Actions use temporal relations 

to either associate with or disassociate from objects from the other participants of the 
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patterns.  Objects are the instances of classes as defined in any object-oriented software 

system. An action consists of a set of parameters, a precondition, and a body.  Parameters 

of the actions can be of two types: untyped values and objects. The pre-condition of an 

action should be satisfied in order to execute the body of the action. The body defines the 

state changes caused by an execution of the action. Actions are atomic and selected non-

deterministically. Temporal relations are used in the actions to associate with and 

disassociate from objects from the other participants of the patterns. For example, the 

temporal relation TR(Object1,Object2) indicates that an object Object1 of a class C1 is 

currently associated with an object Object2 of a class C2 through TR, while the relation 

¬TR(Object1, Object2) shows that Object1 and Object2 are no longer associated through 

TR [Taibi and Taibi 2006].  

 

2.4.3 Representation of Structural Aspects in BPSL 

A subset of First Order Logic (FOL) is used to define the structural aspects of 

design patterns in BPSL. Structural aspects are represented as expressions that use logical 

connectives (mainly  (logical or) and  (logical and)), quantifiers (mainly∃ ), and 

predicate symbols to impose constraints on the variable symbols. Variable symbols are 

the primary entities of BPSL. A predicate is a Boolean expression defined over the 

variables and classes of the system. Predicates define permanent relations among the 

entities. These relations are derived from the object-oriented concepts.  

The relations described in Table 2.1 are the primary permanent relations, their 

domain, and their intent. Other permanent relations can be derived from these primary 
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permanent relations. Primary permanent relations are extracted from the object-oriented 

concept [Taibi and Taibi 2006].   

 

Name Domain Intent 

Defined-in 

MxC 
Indicates that a method is defined in a certain 

class. 

AxC 
Indicates that an attribute is defined in a 

certain class. 

Reference-to-one (-

many) 
CxC 

Indicates that one class defines a member 

whose type is a reference to one (many) 

instance(s) of the second class. 

Inheritance CxC 
Indicates that the first class inherits from the 

second. 

Creation 

MxC 
Indicates that a method contains an instruction 

that creates a new instance of a class. 

CxC 

Indicates that one of the methods of a class 

contains an instruction that creates a new 

instance of another class. 

Invocation MxM 
Indicates that the first method invokes the 

second method. 

Argument 

CxM 
Indicates that a reference to a class is an 

argument of a method. 

VxM 
Indicates that an untyped value is an argument 

of a method. 

Instance OxC Indicates that an object is an instance of a 

certain class. 

 

Table 2.1 Primary permanent relations, their domains, and their intents in BPSL [Taibi 

and Taibi 2006] 

 

 

2.4.4 Representation of Behavioral Aspects 

The behavioral aspects of patterns are specified using a subset of TLA (Temporal 

Logic of Actions). The behavioral aspects of a pattern are represented as the consecutive 

state changes resulting from the execution of consecutive actions. These sequences of 

state changes can be potentially infinite. Each state represents the values of its state 
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variables and the temporal relations among the objects. State variables are the attributes 

of a class in a particular state. Actions are selected dynamically and are executed when 

the preconditions of the actions are satisfied. As mentioned above (see Section 2.4.2), 

actions change the state of system and associate objects with or disassociate objects from 

the other entities such as classes, attributes, methods, objects, and untyped variables of 

the system. The system will start in some initial state. As a side effect of the actions and 

the execution on the system, the state of the system will change accordingly.  

 

2.4.5 Representation of the Observer Pattern in BPSL 

 This subsection contains the representation of the observer pattern in the BPSL 

schema followed by a brief explanation of the entities, relations, and actions involved in 

the schema. Figure 2.4 contains the representations of the observer pattern in BPSL (see 

Section 2.4.2 for a detailed description of the symbols used in the BPSL specification of 

the observer pattern). 

Patterns are represented as formulas in BPSL. Both permanent and temporal 

relations are expressed as formulas. The Observer pattern specification has two temporal 

relations and six types of primary permanent relations (see Table 2.1 for a list of the 

primary permanent relations and their definitions in BPSL). Attached and Updated are 

the two temporal relations. Defined-in, Inheritance, Invocation, Argument, Reference-to-

one, and Reference-to-many are the six types of primary permanent relations used in the 

BPSL specification of the observer pattern.   

 

∃ subject, concrete-subject, observer, concrete-observer ∈ C;  

subject-state, observer-state ∈ A;  

attach, detach, notify, get-state, set-state, update ∈ M; 
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Defined-in(subject-state, concrete-subject) ∧   

Defined-in (observer-state, concrete-observer) ∧   

Defined-in(attach, subject) ∧   

Defined-in (detach, subject) ∧   

Defined-in (notify, subject) ∧   

Defined-in(set-state, concrete-subject) ∧    

Defined-in (get-state, concrete-subject) ∧    

Defined-in (update, observer) ∧  

Reference-to-one(concrete-observer, concrete-subject) ∧   

Reference-to-many(subject, observer) ∧   

Inheritance(concrete-subject, subject) ∧   

Inheritance(concrete- observer, observer) ∧   

Invocation(set-state, notify) ∧   

Invocation(notify, update) ∧   

Invocation(update, get-state) ∧    

Argument(observer, attach)  ∧  

Argument(observer, detach) ∧   

Argument(subject, update)   

Attached (concrete-subject<0..1>,concrete-observer<[*]>,  

Updated (concrete-subject<0..1>,concrete-observer<[*]>) ∈ TR;  

s ,o ∈ O;s ∈ concrete-subject; o ∈ concrete-observer; d∈ V;   

Initially: ¬Attached(s, concrete-observer)    

Attach(s, o): ¬Attached(s, o) → Attached'(s, o)    

Detach(s, o): Attached(s, o) ∨ (Attached(s, o) ∧ Updated(s, o)) →  

¬Attached'(s, o) ∧¬Updated'(s, o)    

Notify(s,o,d) : Attached(s,o) ∨ (Attached(s, o) ∧ Updated(s, o)) →  

¬Updated'(s, concrete-observer) ∧    ((s.subject-state)'=d)     

Update*(s, o):  Attached (s, o) ∧ ¬Updated(s, o) → Updated'(s, o) ∧ (  

(o.observer-state)' = s.subject-state) 

 

Figure 2.4 Representation of the Observer Pattern in BPSL [Taibi and Taibi 2006] 

 

The Temporal Relations (TR) Attached and Updated are defined over a subject 

and a set of observers. The term Initially defines the initial state of the system. Attach, 

Detach, Notify, and Update are the actions defined in the observer pattern. Attach 

associate an observer with a subject and Detach disassociate an observer from a subject. 

Notify indicates that the state of a concrete subject have been modified thus initiating the 
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update process to update all the concrete observers that are associated with the concrete 

subject. 

  

2.5 Language for Uniform Pattern Specification3 (LePUS3) and Class-Z 

2.5.1 Introduction 

LanguagE for Pattern Uniform Specification 3 (LePUS3) and Class-Z are object-

oriented Design Description Languages (DDL) that are intended to abstract, model, and 

formalize object-oriented programs, design patterns, and application frameworks. 

LePUS3 is an extension of LePUS [Eden 2000]. LePUS3 and Class-Z are defined using 

first-order predicate calculus. The semantics of LePUS3 and Class-Z specifications were 

defined using the standard language of mathematical logic including model theory, 

predicate calculus, and elementary set theory. The semantics of LePUS3 and Class-Z are 

specifications of the abstract semantics of programs that is an abstract representation of 

programs written in object-oriented languages. Therefore the atomic units of LePUS3 and 

Class-Z specifications are the basic elements of object-oriented programs. These 

elements are classes, methods, method signatures, and relationships such as inherits from, 

defined in, and creates instances of that exist among the classes and methods. In the 

LePUS3 and Class-Z notation, classes and methods are known as entities.  

2.5.2 Building Blocks of LePUS3 and Class-Z  

LePUS3 uses visual notations to model object-oriented units (i.e., classes and 

methods) whereas Class-Z is a symbolic language which is basically an extension of the 

formal specification language Z [Spivey 1992]. For example, LePUS3 uses a rectangle to 

represent a class and a shaded rectangle to represent a set of classes. Appendix B lists the 
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symbols, terms, and relations used in LePUS3 and Class-Z. Specifications represented in 

LePUS3 can be represented in Class-Z, and vice versa. A specification is either a 

Codechart expressed in LePUS3 or a schema expressed in Class-Z. The structure of a 

Class-Z schema is displayed in Figure 2.5. Codechart is the visual notation expressed in 

LePUS3. Codechart of the observer pattern is given in Figure 2.6 and the representation 

of the observer pattern in Class-Z is given in Figure 2.7. Specifications written in 

LePUS3 and Class-Z are formulas that use predicate and relation symbols to express the 

constraints of the participating entities and the relationships that exist among the entities.  

Appendix B lists all the predicate and relation symbols in Class-Z schema.  

 

A Class-Z Schema is a specification with a specific format given below. 

 

 
declaration : TYPE 

declaration : TYPE … 

 

formula 

formula 

… 

 

Figure 2.5 Class-Z Schema [Eden et al. 2007] 

 

Three participants of the observer pattern are represented in the codechart 

representation (see Figure 2.6): Subject, which is an abstract class; concreteSubject, 

which is a class; and observers, which is an inheritance variable. The inheritance variable 

observers can have any number of class variables that can inherit from the observers 

hierarchy variable. Members of each of the three participants are given in elliptical 

shapes. 

 

Schema Name 
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Figure 2.6 Codechart representation of the observer pattern [Eden et al. 2007] 

 

Observer   

subject, concreteSubject: CLASS 

Observers: HIERARCHY 

getState, notify, attach(Observers), detach(Observers): SIGNATURE 

constructor, destructor, update(subject): SIGNATURE 

SetState: PSIGNATURE 

Legend 

method call 

(direction) 

binary relation 

(member) 

Legend 

Call Member 

0-dim signature 

variable (method) 

1-dim signature 

variable (set of  methods) 

0-dim class variable 

(class) 

1-dim hierarchy 

variable (hierarchy) 

method call 

(direction) 

binary relation 

(member) 
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Abstract(subject) 

Inherit(concreteSubject,subject) 

Total(Member,subject,Observers) 

Total(Call,SetState concreteSubject,notify subject) 

Total(Call,notify subject,update(subject) Observers) 

Total(Call,update(subject) Observers,getState concreteSubject) 

Total(Call,destructor Observers,detach(Observers) subject) 

Total(Call,constructor Observers,attach(Observers) subject) 

 

 

Figure 2.7 Class-Z Schema of the Observer Pattern [Eden et al. 2007] 

 

 

Figure 2.7 provides the class-z schema of the observer pattern. Following 

paragraphs explain the symbols used in the schema. 

There are two kinds of formulas: ground and predicate formulas. Ground 

formulas specify the constraints on the entities (i.e., classes and objects) whereas 

predicate formulas specify the relations among sets of entities. 

Entities are the elements of the specification language LePUS3 and Class-Z which 

are class, methods, and method signatures. Each entity has a type and a dimension. There 

are seven kinds of types in the specification of LePUS3 and Class-Z: CLASS, PCLASS, 

SIGNATURE, PSIGNATURE, METHOD, PMETHOD, and HIERARCHY. Type is used to 

denote whether an entity is a class (CLASS) or a set of classes (PCLASS), a method 

signature (SIGNATURE) or a set of method signatures (PSIGNATURE), a method 

(METHOD) or a set of methods (PMETHOD), or a hierarchy (HIERARCHY). Dimension is 

used to specify whether an entity is an atomic unit or a finite set of atomic units. There 

are two kinds of dimensions: dimension-0 or dimension-1. An entity of dimension-0 

represents an atomic entity such as a class, a method, or a method signature. An entity of 

dimension-1 represents a non-empty, finite set of atomic entities, i.e., a non-empty set of 
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entities of dimension-0. For example, if Class A in a Java program, is an entity of 

dimension-0, then Class B, which extents A and implements C in a java program is an 

entity of dimension-1. A hierarchy of classes is also an entity of dimension-1. The 

difference between a set of a finite number of classes and a hierarchy of classes is that a 

hierarchy is also a set of a finite number of classes which has one root and all other 

classes in the set inherit from the root class. So, a HIERARCHY is a subset of classes 

(PCLASS) (i.e., an entity of dimension-1). 

Entities are of two kinds: constant or variable. Constant entities represent entities 

that are bound to a specific implementation and variable entities represent entities that are 

not tied to any specific implementation. For example, as stated by Eden et al., “design 

patterns and generic elements of application frameworks are not tied in to a particular 

implementation, their specification therefore requires variables rather than constants” 

[Eden et al. 2007]. Constant entities represent specific entities and variable entities range 

over constant entities.  

Relations specify relationships such as inherits and instance of that exists among 

entities. Relations are also of two types: unary and binary. A unary relation represents an 

entity of dimension-0. For example, the unary relation of a method is but the method 

itself, i.e., the unary relation of a method is also known as a method of dimension-0. A 

binary relation represents relationship between two entities of dimension-0. For example, 

the binary relation inherits represents the inheritance relationship between two classes of 

dimension-0. 
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According to Eden et al., “declaration is a comma-separated list of constants and 

variables, TYPE is a type symbol, and formula is a well-formed formula in Class-Z” 

[Eden et al. 2007]. 

Predicates or predicate symbols are used to impose the constraints on relations 

that exist between entities. There are three kinds of predicates symbols that are used in 

LePUS3 and Class-Z: ALL, TOTAL, and ISOMORPHIC.  

Predicate symbol ALL is of the following form: ALL(UnaryRelation,T). ALL 

specifies an onto relation between UnaryRelation and the entities in T. For example, the 

predicate formula ALL(Abstract,Operations collection) specifies that all the methods 

with the signature represented by Operations in class collection are abstract [Eden and 

Gasparis 2009]. 

Predicate symbol TOTAL specifies a total functional relation (BinaryRelation) 

from the entities of one set to the other, i.e., any pair of elements in the set of relations 

holds the relation. A TOTAL predicate is of the form: TOTAL(BinaryRelation,T1,T2), 

where T1 and T2 are entities. 

Predicate symbol ISOMORPHIC specifies the existence of a one-to-one and onto 

relation from the entities of one set to those of another. For example, 

ISOMORPHIC(BinaryRelation,T1,T2) indicates the existence of a subset of the 

BinaryRelation, which is one-to-one and onto, from the set of concrete entities T1 to the 

set of entities T2. 

 

2.6 Comparison of DisCo/BPSL/LePUS and Need for Another Specification Scheme 



49 

DisCO was mainly aimed at formalizing the behavioral aspects of design patterns, 

hence its characterization of the structural aspects of patterns is not good compared to the 

behavioral specification aspects. Actions in DisCo are separated from the objects, thus 

clearly violating the principles of object-oriented design [Hallstorm 2004]. DisCo 

specifications concentrate mostly on the behavioral aspects, thus largely leaving the 

structural aspects to be considered by the designer. So, when a designer provides an 

implementation that satisfies the temporal properties characterized by a particular 

specification, the designer is responsible for the most part to make sure that the structural 

aspects do not violate any temporal properties.  

As its name suggests, BPSL (Balanced Pattern Specification Language) provides 

a mostly balanced specification of the structural and behavioral aspects of design 

patterns, but fails to concentrate on the understandability of the resulting specifications 

that is critical for the usability of the patterns [Kim and Carrington 2004]. Pattern 

specification schemes/languages should be understandable and not complex to the users 

of patterns [Kim and Carrington 2004]. The mathematical notations used for formal 

specification should not be a burden for software developers. The developers‟ having to 

delve into the details of the mathematical foundations of a formalism, before they can 

understand the meaning of a pattern, constitutes extra and arguably unnecessary work for 

pattern users.  

LePUS3 is still in its initial evolutionary phases. This two-tier programming tool 

support for the specification, verification, and visualization of design patterns as well as 

software systems is still a work in progress [Eden and Gasparis 2009]. One of the main 

limitations of LePUS3 and Class-Z is that they do not really capture or represent the 



50 

behavioral elements of design patterns [Eden et al. 2007]. LePUS3 specifies only the 

structural elements of the design patterns. Since the behavioral elements can also be 

represented using static relations, Eden et al. have focused on capturing the static or 

structural elements rather than the dynamic or behavioral elements [Eden et al. 2007]. 

There have been a few research works that have contributed to the evaluation of the 

existing formal specification methodologies available for patterns. One of a notable 

works done in this area is by Chinnasamy [Chinnasamy 2000]. This work identified the 

merits and demerits of some of the existing formal specification languages such as 

Contracts [Helm et al. 1990], DisCo [Mikkonen 1998], LePUS [Eden 2000], Constraint 

Diagram [Lauder and Kent 1998], and Category Description Language (CDL) [Klarlund 

et al. 1996]. This work identified the preferred specification scheme among the five 

specification schemes motioned above. The evaluation criteria used by Chinnasamy are 

[Chinnasamy 2000]: formalism, comprehensiveness, versatility, mathematical 

foundation, precise visual notation, conciseness, specification of structural and behavioral 

aspects, specification of constraints, scalability, complementing object notations, support 

for object-orientation, ease of use, multi-level representation, representation of low-level 

details, and potential for pattern repository management. These evaluation criteria 

resulted in the conclusion that “LePUS has many merits that makes it an ideal starting 

place, which can be enhanced to be a comprehensive language for specification of 

software design patterns” [Chinnasamy 2000]. In fact, the conclusion resulted in the 

development of the formal specification language eLePUS. The pros and cons as 

observed and reported by Chinnasamy about LePUS and DisCo, are listed below in Table 

2.2. 
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 LePUS 

 

DisCo 
 

Mathematical 
Foundation 

Strong Mathamatical Model 

(Higher Order Monadic 

Logic, Predicate Calculus) 

Fair Temporal Logic of Actions 

 

Precise Visual Notation 

 

Exists 

 

Nil 

 

Conciseness 

 

Very good 

 

Fair 

Specification of 

Structural Aspects 
Very good Fair 

Specification of 

Behavioral Aspects 
Fair Very good 

Specification of 

Constraints 
Good Fair 

 

Scalability 

 

Good 

 

Very good 

Complementing Object 

Notations 
Nil Nil 

 

Support for OOP 

 

Good 

 

Good 

 

Easy of Use 

 

Good 

 

Fair 

Multilevel 

Representation 
Nil Nil 

Representation of Low-

Level Details 
Fair Good 

Support for Pattern-

Repository Management 
Good  Poor 

 

Table 2.2 Evaluation of LePUS and DisCo [Chinnasamy 2000] 

 

Although a lot of research effort has been spent to formalize design patterns, the 

existing formalization methods have the following drawbacks: either they are good at 

capturing the behavioral aspect or they are good at capturing the structural aspect, and the 

schemes that try to capture both the structural as well as behavioral aspects have failed to 

concentrate on the understandability of the resulting specification. As mentioned 

previously, pattern specification schemes/languages should be understandable and not 

complex to the users of patterns [Kim and Carrington 2004]. The schemes that have 
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attempted to capture both the structural as well as the behavioral aspects of patterns have 

actually failed to capture both the essential structural and the essential behavioral 

elements of patterns, which has led to a lot of overlapping patterns [Chinnasamy 2000]. 

This has lead to a situation where there is neither a standard methodology for 

representing patterns nor a standard definition for what a pattern is [Agerbo and Cornils 

1998] [Bayley and Zhu 2008] [Buschmann et al. 2007] [Chinnasamy 2000] [Dong 2002] 

[Eden 2000] [France et al. 2004] [Kent and Lauder 2004] [Mikkonen 1998] [Soundarajan 

and Hallstrom 2004] [Taibi and Ling 2003 B]. The lack of a standard methodology or a 

definition for representing patterns is mainly due to the reason as mentioned by Taibi and 

Ling [Taibi and Ling 2003 B] that each specification scheme is based on different 

mathematical formalisms which reflect their specific author‟s opinion on how patterns 

should be formalized.  

The number of design patterns keeps growing [Buschmann et al. 2007], and the 

consequences of this growth may be that it will become next to impossible to figure out 

which pattern solves which problem. This proliferation can also seriously negatively 

impact, if not destroy, the possibility of using patterns as a common vocabulary among 

software developers. As Agerbo and Cornils stated over a decade ago, “an overdose of 

design patterns will eliminate two of the three benefits that design patterns offer: it will 

make it too laborious to find and use the encapsulated experience, and it will make the 

common vocabulary too large to be easily comprehended” [Agerbo and Cornils 1998].  

Therefore, at this point it is necessary to come up with a formal model that can 

capture both the structural as well as the behavioral aspects of design patterns by keep in 

mind the understandability of the formalism behind the specification scheme. The 
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proposed pattern specification schemes should be understandable and not complex, and 

the formalism behind the formal specification schemes should not be a burden for pattern 

users, so that the users will not have to delve into the details of the formalism before they 

can understand the meaning of a pattern. Also, the specification scheme should enhance 

the eventual possibility of automated processing capabilities for design patterns. 

Two-level grammars (TLG) can provide such a formal model. Specifications 

written in TLG are understandable due to their natural-language-like vocabulary [Bryant 

et al. 1986] [Bryant and Pan 1992] [Maluszynski 1984] [Edupuganty 1987]. The close 

correspondence between the TLG specification and the problem description further 

enhances understandability [Edupuganty 1987]. The primary reason for the use of TLG 

as a specification scheme in this research work is its natural-language-like vocabulary, 

understandability, the capability for data and procedural abstractions provided by the two 

levels of the grammar, and their support for representing object-oriented constructs [Lee 

2003] [Edupuganty 1987] [Bryant and Pan 1992]. Formal grammars have been used to 

generate and formalize programming languages. This formalization has not restricted the 

usability of programming languages. Therefore, it seems appropriate to provide a formal 

specification scheme for patterns using grammars and other traditional approaches that 

have been used for programming languages. Of course, the original van Wijngaarden 

two-level grammar [van Wijngaarden et al. 1975] may not be directly used for the 

specification of object-oriented design patterns since van Wijngaarden two-level 

grammar were not aimed at defining object-oriented units. TLG has been tailored by 

authors like Lee, Edupuganty, and Bryant [Lee 2003] [Edupuganty 1987] [Bryant et al. 
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1986] to make it suitable for the representation of object-oriented units such as classes, 

objects, and methods. 

Although a lot of research effort has been spent to formalize design patterns, there 

are several objections to the formalisms used and the formalization from the pattern 

community. 

 Formal specifications contribute little or nothing to understanding when and how to 

use a pattern. As Buschmann et al. put it [Buschmann et al. 1996], “formalizing the 

solution makes it harder to grasp the key ideas of the pattern… programmers need 

concrete information that they can understand, not an impressive formula”. 

 Patterns are abstractions, or generalizations, and therefore are meant to be vague, 

ambiguous, and imprecise. If they are specified in a precise form, or expressed in 

mathematical terms, they are no longer patterns [Buschmann et al. 1996]. 

 There is no fixed element in patterns and everything can be changed about them. In 

other words according to Coplien, if “the basic structure is fixed… this isn‟t patterns 

anymore” [Coplien 1991].  

However, the formal specification of patterns is not going to replace the 

textual/graphical descriptions, rather it will complement the existing descriptions to 

achieve well-defined semantics, to allow for rigorous reasoning about them, and to 

facilitate tool support, and to enhance the understandability of their semantics [Taibi and 

Ling 2003 B]. The following section provides a detailed description of two-level 

grammars. 

2.7 Two-Level Grammars 
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Two-level grammars (TLG) were introduced by van Wijngaarden [Wijngaarden 

1965] to define the context-free and context-sensitive syntax of ALGOL 68 [Wijngaarden 

1975]. A two-level grammar is usually viewed as an extension to a context-free grammar 

with an infinite number of productions.  

The definition of TLG given below is based on two references[DeGraaf and 

Ollongran 1984] [Maluszynski 1984]. A TLG is defined as a triple W = [(Σ, T), (N, HR, 

L), (M, MR)], where Σ is a finite alphabet of terminals and T is a finite alphabet called 

orthovocabulary, (N, HR, L) is called the hyper-level and consists of N, a subset of (T  

M)*, that is a finite set of hyper-notions, HR, a subset of ((Σ  N)*N(Σ  N)*) x (Σ  

N)*, that is a finite set of hyper-rules, and L  N that is the start notion, and (M, MR) is 

called the meta-level and consists of M, a finite set of meta-nonterminals for which M  

T = , and MR, a subset of ((T  M)*M (T  M)*) x (T  M)*, that is a finite set of 

meta-rules. In a two-level grammar, a hyper-notion in the left-hand side of the hyper-

rules is surrounded by any number of elements from either the set of terminals or hyper-

notions. A meta-nonterminal in the meta-rules is surrounded by any number of elements 

from either the orthovocabulary or the set of meta-nonterminals. Consider the following 

TLG example [Saacks and Hassell 1989]: 

Σ = {else}, T = {arith, Boolean, designational, exp, simple, if clause}, N = {<X 

exp>, <simple X exp>, <if clause>}, and M = {X}. 

Hyper-rule:  

<X exp> ::= <simple X exp> | <if clause><simple X exp>else<X exp> 

Meta-rule:  

X ::= airth | bool | designational 
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The above TLG will produce for instance “ <arith exp> ::= <simple arith exp> | 

<if clause><simple arith exp>else<arith exp>” since the hyper-rules “<X exp> ::= 

<simple X exp> | <if clause><simple X exp>else<X exp>” expands into : 

<arith exp> ::= <simple arith exp> | <if clause><simple arith exp>else<arith exp> 

<bool exp> ::= <simple bool exp> | <if clause><simple bool exp>else<bool exp> 

<designational exp> ::= <simple designational exp> | <if clause><simple 

designational exp>else< designational exp> 

A TLG has two sets of production rules: hyper-rules and meta-rules. Hyper-rules 

form the prototype for the context-free productions that are used in conjunction with the 

meta-rules to form the infinite number of productions. In other words, these two sets of 

rules define “the set of type domains and the set of function definitions operating on 

those domains” [Caol et al. 2002]. Meta-rules are context-free productions containing 

two kinds of symbols: meta-notions as the non-terminals and proto-notions as the 

terminals. Each meta-rule or meta-production specifies all the production alternatives for 

a given meta-notion. Meta-notions define the type domains and hyper-rules define the set 

of function operating on the domains defined by the meta-notions.  

It has been proven that the production rules of two-level grammars can be used to 

simulate a Turing machine [Sintzoff 1967]. Therefore, TLG is capable of providing a 

complete formal specification of programming languages and systems [Edugupanty 

1987]. So, it makes sense to use two-level grammar as a formal specification language for 

design patterns. Moreover, TLG could be used to define the operational and axiomatic 

semantics of programming languages and systems [Uzgalisn1973], which means that 

TLG specifications can be implementable when appropriate interpretation algorithms are 
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provided. Specifications written in TLG are understandable due to their natural-language-

like vocabulary, and the close correspondence between a TLG specification and the 

corresponding problem description further enhances the understandability of the 

specification [Edupuganty 1987] [Maluszynski 1984] [Lee 2003] [Bryant et al. 1986].  

The descriptive power of two-level grammars enabled their use as a general 

model for computation [Sintzoff 1967]. TLGs have been used as a tool for defining 

programming languages [Maluszynski 1984] and one of the software reusable units 

called programming scheme [Saacks and Hassell 1989]. Significant work by Sintzoff  

[Sintzoff 1967] and van Wijngaarden [Wijngaarden 1975] demonstrated that production 

rules of a two-level grammar can be used to simulate a Turing machine, which resulted in 

using TLGs for the specification and generation of programming languages such as A 

Simple Programming Language (ASPLE) [Cleavland and Uzgalis 1977] and Subject 

Language (SL) [Edupuganty 1987]. Two-level grammars have been used to define the 

syntax and both the static and dynamic semantics of programming languages [Cleavland 

and Uzgalis 1977]. TLGs have also been used as implementable meta-languages for 

implementing the axiomatic, operational, and denotational semantics of programming 

languages [Edupuganty 1987]. More recently, two-level grammars have been used as an 

executable formal specification language for programming languages [Bryant et al. 

1986], database applications [Furtado et al. 1983], knowledge-base systems, and general 

software systems [Bryant and Pan 1992].  

Formal definitions of TLG found in the literature have small variations, although 

all of them maintain the same basic structure [Edupuganty 1987].  For example, in 

formalizing programming schemes, a restriction is imposed on the hyper-rule and the 
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restricted two-level grammar is used to project the representation of programming 

schemes [Saacks and Hassell 1989]. The definition of a restricted two-level grammar as 

given by Saacks and Hassell is: a triple W = [(Σ, T), (N, HR, L), (M, MR)], where Σ is a 

finite alphabet of terminals and T is a finite alphabet called orthovocabulary, (N, HR, L) 

is called the hyper-level and consists of N, a subset of (T U M)*, that is a finite set of 

hyper-notions, HR, a subset of (N(Σ U N)
+
) X (Σ U N)*, that is a finite set of hyper-rules, 

and L N is the start notion, and (M, MR) is called the meta-level and consists of M, a 

finite set of meta-nonterminals for which M ∩ T =  , and MR, a subset of M X T is a 

finite set of meta-rules [Saacks and Hassell 1989]. So, the left-hand side of the hyper-rule 

of a restricted two-level grammar always has a hyper-notion first and then at least one 

element from either the terminals or from the hyper-notions. The left-hand side of the 

meta-rules will only have meta-nonterminals, and the right-hand side only hyper-notions. 

The hyper-rules and the meta-rules of the general two-level grammar are less restrictive 

[Saacks and Hassell 1989]. As already mentioned earlier (see the TLG definition given in 

Section 2.7), in a conventional two-level grammar, a hyper-notion in the left-hand side of 

the hyper-rules is surrounded by any number of elements from either the set of terminals 

or hyper-notions. A meta-nonterminal in the meta-rules is surrounded by any number of 

elements from either the orthovocabulary or from the set of meta-nonterminals. 

In addition to the changes proposed on the formal properties of TLGs, there are 

some changes imposed on the structure of the two-level productions as well. For 

example, Saacks and Hassel imposed some changes to the structure of the TLG 

production rules and called the resulting grammar as the Restricted Two-Level Grammar 

(RTLG) to formalize programming schemes [Saacks and Hassel 1989]. Edupuganty made 
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some changes to the structure of the TLG production rules to use TLG as an 

implementable metalanguage for axiomatic semantic of the programming language called 

as Subject Language [Edupuganty 1987]. Example 1 below provides an example of a 

RTLG and Example 2 provides an example of the TLG.  

 

Example 1: Consider a search scheme with binary and linear search approaches. The 

hyper-rule of the TLG for formalizing the first level of this search scheme, as given by 

Saacks and Hassel [Saacks and Hassel 1989], is as follows: 

HR: SP<search> ::= SP<init_search> while SP<succful_cond> AND 

SP<unsuccful_cond> do SP<get_next> endwhile if 

SP<succ> then SP<found> else SP<not_found> endif 

The meta-rule for this level is: MR: SP ::= <linear> I <binary> 

 

Example 2: In the formal specification of the semantics of a programming language 

called the Subject Langugae (SL), Edugupany specified hyper-rules as functions and 

meta-rules as arguments to those functions [Edupuganty 1987]. What follows is the set of 

hyper-rules and meta-rules that specify the declaration of a programming block. 

Program ID DECLARATIONS SEMICOLON begin 

 CONCRETE_STMTS end with input FILE1: 

 Synthesize environment ENV1 from DECLARATIONS with initial env EMPTY 

 Check static semantics of CONCRETE_STMTS giving ABSTRACT_STMTS  

given end ENV1, 

Allocate storage for variables in env ENV1 giving STORE1 and env ENV2, 

Execution of ABSTRACT_STMTS transforms state env ENV2 store STORE1 
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 Input FILE1 output EMPTY into state env ENV2 store STORE2 

 Input FILE2 output FILE3 

Result of interpretation is FILE3. 

 The starting hyper-rule of a programming block declaration is: Program ID 

DECLARATIONS SEMICOLON begin where capitalized words are the meta-rules and 

the lower case letters are the proto-notions. The starting rule starts with the word 

Program then it assigns an identifier (ID) to the program, then there is a meta-rule to 

specify the declarations, then the last meta-rule SEMICOLON is the semicolon symbol 

(;), and the last word of the starting hyper-rules is begin which marks the starting line of 

the program body. Line 2 (CONCRETE_STMTS end with input FILE1) is a hyper-

hyper-notion which has three hyper-alternatives:  

1. Synthesize environment ENV1 from DECLARATIONS with initial env EMPTY. 

Check static semantics of CONCRETE_STMTS giving ABSTRACT_STMTS 

given end ENV1 

2. Allocate storage for variables in env ENV1 giving STORE1 and env ENV2 

3. Execution of ABSTRACT_STMTS transforms state env ENV2 store STORE1 

Input FILE1 output EMPTY into state env ENV2 store STORE2 

Input FILE2 output FILE3 

The first hyper-alternative synthesizes the variables in environment (ENV1) 

which are in the declarations (DECLARATIONS) and checks the static semantics of the 

concrete statements in the program body. The second hyper-alternative allocates storage 

for the variables in STORE1, and the third hyper-alternative executes the statements and 
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stores the results in FILE3. A number of the meta-rules that can be used in the hyper-

rules are listed below. 

PROGRAM :: program ID SEMICOLON BLOCK 

BLOCK :: DECLARATIONS begin CONCRETE_STMTS end 

CONCRETE_STMTS :: CONCRETE_STMT SEMICOLON 

CONCRETE_STMTS; CONCRETE_STMTS 

These structural differences to TLGs occur when the domain of applications of the 

two-level grammar changes. In Example 1, the domain of the two-level grammar is 

programming schemes. Therefore, the meta-notions and the hyper-rules reflect the 

structure of the programming schemes. In Example 2, the domain of the two-level 

grammars is block-structured programs, therefore the structure of the TLG reflects the 

structure of the block-structured program. This close correspondence between the TLG 

specification and the structure of the application domain that it describes, enhances the 

understandability of the problem [Edupuganty 1987]. 

Since the formalization of object-oriented design patterns requires the formalism to 

provide support for object-oriented constructs, the domain of the TLG will have to be of 

objects and thus the TLG can be defined in the context of classes [Lee 2003]. 

 

2.7.1 Formal Specification of Reusable Units Using Two-Level Grammars 

TLGs have been used for the formal specification of reusable software units 

called programming schemes [Saacks and Hassell 1989]. According to Saacks and 

Hassell, a programming scheme is a problem solving approach that contains “only the 

essential features of the process that are needed to solve the problem”. A programming 
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scheme is an abstraction of a problem solving scenario in programming. Initially, 

programming schemes were described in natural languages. It soon became apparent that 

ambiguous, imprecise, and indefinite description of programming schemes needed a more 

formal approach. Saacks and Hassell [Saacks and Hassell 1989] worked on formalizing 

programming schemes utilized two-level grammars toward the formal specification of the 

context-free and context-sensitive syntax of programming schemes. The semantics of 

programming schemes were defined using the denotational semantics approach. 

Two-level grammars were used for defining the syntax of programming schemes 

because TLGs can accurately capture and represent the hierarchies inherent in 

programming schemes [Saacks and Hassell 1989]. The hyper-rules represent the common 

rules applicable for a specific programming scheme and the meta-rules represent various 

decision options that are essential in generating the scheme representation. A scheme 

representation is the concrete machine-dependent representation of an abstract 

programming scheme [Saacks and Hassell 1989]. The elegance of two-level grammar is 

that the hyper-rules can be used to capture and represent the basic structure of the abstract 

unit being formalized, and the meta-rules can be used to provide the design choices and 

decisions that are essential for the concrete realization of the abstract units by passing to 

them as arguments [Edupuganty 1987] [Saacks and Hassell 1989]. Hyper-rules and meta-

rules together can be used to enforce content-dependent conditions. Meta-rules can also 

be used to specify data-types and variables [Edupuganty 1987]. This capability of data 

and procedural abstractions provided by the TLG makes it suitable as a formal 

specification language for programming languages, general software systems, and 

reusable units. 
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2.7.2 Formal Specification Language for Design Patterns 

The concept of using the two-level grammar notation as a formal specification 

language is not new. TLGs have been used as a formal specification language for general 

software systems [Bryant et al. 1986]. TLG specifications use the generative approach to 

automatically generate a software system from its TLG specification. This research work 

focused on refining this concept into using the TLG as a formal specification language 

for design abstractions. TLG specifications of languages and general software systems 

are actually descriptions of recursive functions, and a TLG representation of a system can 

be derived by using a recursive definition of a given problem [Edupuganty 1987].  

TLGs have been used as a specification language for object-oriented software 

systems [Lee 2003], where the hyper-rules of the TLG specifications define the functions 

that operate on the object-oriented domain. Lee defines the grammars in the context of a 

class where the meta-notions define the instance variables of the class and the hyper-rules 

define the methods that take part in the classes [Lee 2003].  

Since TLGs are used as a specification language for representing object-oriented 

design patterns in this thesis work, this work deal with the TLGs whose hyper-rules 

define functions that will act on the object-oriented constructs. Therefore, the TLGs are 

represented in the context of a class, in other words, the hyper-rules of the TLGs act as 

the methods of a class, and the meta-notions and the proto-notions act as instance 

variables of a class. A detailed representation of the TLG in the context of a class is 

described in Chapter III.  
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CHAPTER III 

 

TLG IN THE CONTEXT OF A CLASS 

 

This research work is in the same scope of some of the existing formal 

specification approaches of design patterns such as eLePUS, LePUS3 and Class-Z, 

DisCo, and BPSL (for a description of these specification schemes, see chapter II). These 

formal specification languages are based on object-oriented languages and have focused 

on a subset of the GoF design patterns [Eden et al. 2007] [Mikkonen 1998] [Taibi 2007]. 

The formal specification of this research work focuses on the solution element of a 

pattern (for a list of all the essential elements that are used to specify or represent a 

pattern, see Chapter II). The solution element corresponds to the structure, participants 

and collaborations sections of the GoF pattern form. 

Based on the related literature discussed in Chapter II, this chapter further 

describes the use of TLG as a specification language for the object-oriented design 

patterns. After presenting the TLG formal specification language in this chapter, the next 

chapter demonstrates the approach in the context of an example. The observer design 

pattern is used to demonstrate the use of TLG as a formal specification language.  
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3.1 Introduction 

Before starting the use of TLG as a formal specification language for the object-

oriented design patterns, the section elaborates on how the rules and notions of TLG 

should be read and written. As mentioned before (section 2.7), TLG has two sets of 

production rules: hyper-rules and meta-rules. Three kinds of notions are used in these two 

sets of production rules: hyper-notions, meta-notions, and proto-notions. Hyper-rules can 

contain meta-notions and proto-notions. The following section briefly explains about how 

to read and write rules and notions in TLG. These explanations are mostly based on the 

work of Cleaveland and Uzgalis [Cleaveland and Uzgalis 1977]. 

A hyper-rule is the first set of production rules in TLG that may contain proto-

notions and meta-notions. Hyper-rules should be written in the following way. 

 A colon separates the left-hand and right-hand side of a hyper-rule. 

 A comma is used to represent the set of symbols that can be included in the 

production rules.  

 A semicolon is used to indicate the alternative production rules for the right-hand side 

of a rule. 

 A period is used to indicate the end of a hyper-rule. 

A meta-rule is a production rule that defines a single meta-notion. In a meta-rule, 

the left-hand side is the meta-notion that needs to be defined and the right-hand side can 

have a sequence of proto-notions and meta-notions. A meta-notion is denoted by a string 

of upper and lower case characters, and the meta-rules are written using the following 

rules:   

 A double colon (::) is used to separate the left- and right-hand sides of a meta-rule. 
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 A semicolon is used to indicate alternative production-rules for the right hand side. 

 A period is used to indicate the end of a meta-rule. 

 Meta-notions may appear anywhere in a hyper-rule, i.e., they can appear either on the 

right-hand side or the left-hand side of a hyper-rule. 

 

For example, consider the following hyper- and meta-rules. 

Hyper-rule:                 

NOTION list: NOTION; NOTION, NOTION list. 

Meta-rule:  

NOTION :: identifier; digit; letter; numeral. 

A proto-notion is a sequence of lower case letters. Boldface characters are used to 

denote the non-terminals that correspond to a terminal symbol in the target language. 

block stands for nonterminal <block>. 

begin symbol stands for keyword begin. 

 

3.2 TLG and Design Patterns 

In order to represent object-oriented design patterns, TLG was modified by 

including in the vocabulary items such as class, inheritance, and member to represent the 

object-oriented building blocks and the relationships among classes, and functions [Lee 

2003] [Liu et al. 2005] [Edupuganty 1987] [[Bryant et al. 1986]. Lee used TLG as a 

formal specification language to represent the requirements of an object-oriented 

software system [Lee 2003]. Liu and his colleagues used TLG++ to represent object-

oriented software units [Liu et al. 2005]. TLG++ is an object-oriented extension of TLG 
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[Zhao 2006]. In these methods, the hyper-rules define the set of functions and the meta-

rules define the set of type domain in the domain of objects. Function definitions act on 

the type domains to produce the target language. The target language in the research 

work presented in this thesis report is design patterns. So, the functions and type-domains 

are defined in the context of object-oriented units. This is based on the fact that design 

patterns are recurring themes in object-oriented software systems. Therefore, TLG in this 

thesis work is defined in the context of a class, where hyper-rules define the functions in 

a class and the type domains define the instance variables of the class.  

The following subsections introduce the essential concepts and basic building-

blocks of object-oriented design that can be used to construct design patterns. They also 

outline how these building blocks can be represented in TLG. 

 

3.2.1 Building Blocks of Object-Oriented Design Patterns 

The basic building blocks of object-oriented design patterns are the classes, 

objects, operations, attributes, and relations between classes such as inherit and 

implements. A class defines the available characteristics and behavior of a set of similar 

objects. A class is an abstract definition. It is made concrete at run-time when objects 

based upon the class are instantiated and take on the class‟ behavior. In the TLG 

representation of design patterns, both classes and operations are primitive elements. The 

predominant participants of all the GoF design pattern are classes, methods, and objects 

[Eden 2002]. Classes and methods are static entities and object is a run time entity. This 

research work focused only on capturing static aspects.  
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3.2.2 Static vs. Dynamic 

Object-oriented design patterns have two kinds of properties: structural and 

behavioral. Structural aspects are the static elements of design patterns that can be dealt 

with at compile time. For example, classes, interfaces, attributes, operations, and 

association are structural elements of a design pattern. Behavioral aspects of design 

patterns are elements of patterns that can only be dealt with during run time. For 

example, run time events and message passing among classes and objects can be 

considered as behavioral aspects. This research work focused on capturing the static 

aspects of design patterns because static aspects serve as the foundation to build the 

dynamic properties. Capturing the dynamic aspects of design patterns is beyond the scope 

of this thesis and it is part of the future work. Since this research works‟ focus is on 

capturing the static aspects, the following section discusses the representation of classes 

and methods in TLG. 

 

3.2.3 Classes 

To represent object-oriented units, a TLG definition can be structured into a class. 

The syntax of a TLG class is: 

Class Identifier [extends Identifier-1, Identifier-2, Identifier-3,  . . . , Identifier-n] 

 {instance variable and method declaration} 

End Class [Identifier-1] 

Identifier designates the name of the class. Identifier-1 through Identifier-n 

specify the names of the classes from which the current class inherits. In the above class 

structure, square brackets are used to indicate the optional specification part.  Identifier-1 



69 

can inherit from Identifier-2 to Identifier-n. So, the extends clause is optional. The 

instance variables defined in a class are the meta-rules, and the methods are the hyper-

rules. The TLG class is not a class as defined in an object-oriented programming 

language, rather it just an abstract representation of a participant in patterns that can be 

eventually implemented as a class. The TLG class declaration encapsulates the meta-rules 

and the hyper-rules. The Meta-rules specify the instanced variables and objects in the 

class, and the hyper-rules define the functions that would operate on the meta-rules. 

There are situations in which a class should declare the structure of an abstraction 

without providing a complete definition for all or some of the hyper-notions, also all the 

classes that inherit from this base structure should provide the details for each hyper-

notion. Such an abstract structure is an abstract class that determines the nature of the 

hyper-rules that the inheriting classes must implement. The difference between a class 

and an abstract class is that a class is a structure in which all the meta-rules and hyper-

rules are defined, whereas in an abstract class, some of the hyper-notions can be left 

undefined. In other words, the right-hand side of some hyper-notions can be left 

undefined. All hyper-notions whose right-hand side is empty will be overwritten by the 

classes that inherit from the abstract class. If any of the hyper-notion specified by a 

hyper-rule in the abstract class is empty, then it is an abstract hyper-rule, and the 

inheriting classes should provide a definition for that hyper-notion. 

abstract Class abstract-class-name-1  

abstract abstract-hyper-notion: . 

hyper-notion: hyper-alternative-1; hyper-alternative-2; . . . ; hyper-

alternative-n. 
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End Class 

Class derived-class-name extends abstract- class-name-1  

abstract-hyper-notion: hyper-alternative-1; hyper-alternative-2; . . . ; 

hyper-alternative-n. 

 // other hyper-notions and meta-notions 

End Class 

Hyper-rules are declared abstract when they are required to be present in the 

classes that inherits the abstract class. The inheriting classes can provide their own 

definition for the hyper-notions. To declare a hyper-notion as abstract, the following 

structure is used: 

 abstract abstract-hyper-notion: . 

The right-hand side of an abstract notion is empty and the overriding classes 

provide the necessary hyper-alternatives to this hyper-notion. Any structure that contains 

one or more abstract methods will also be declared abstract. These abstract classes can be 

assigned any object of the same type, i.e., the abstract class objects can be assigned an 

object of a class that inherited from this abstract class. As an example, consider the TLG 

specification of the observer pattern given below. It has one abstract class and an 

interface definition followed by the implementations of the abstract class and the 

interface. The meta-notion of the class concreteObserver assigns the object of any 

concrete subject class to the object of the abstract class Subject. 

Class abstract Subject 

 //meta-notions 

List observers_list :: (concreteObserver)*. 

 

 //hyper-rules 

  Attach: observers_list.Add. 
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  Detach: observers_list.Remove. 

  Notify: observers_list.Update. 

End Class 
 

Class concreteSubject extends Subject 

 //hyper-rules 

setState: this.Notify. 

  getState: this.currentState. 

End Class 
 

Interface Observer 

 //hyper-rules 

Constructor: . 

  Destructor: . 

  Update: . 

End Interface 

 

Class concreteObserver implements Observer 

 //meta-notions 

Subject subObject:: (concreteSubject)
+
. 

//hyper-rules 

Constructor: subObject.Attach. 

  Destructor: subObject.Detach. 

  Update: subObject.getState. 

End Class 

A class in TLG can inherit from another TLG class when additional methods need 

to be included. A class can inherit from any number of parent classes. Inheritance allows 

a class to extend another class. Two kinds of inheritance can be represented using TLG: 

class inheritance and interface inheritance. In class inheritance, a new class extends from 

another class, i.e., there is a base class and the new class inherits the hyper-rules and 

meta-rules of the base class. In interface inheritance, a new class implements the hyper-

rules defined as part of the interface. Class inheritance is represented as follows:  

Class base-class-idetifier-1  

 //meta-rules and hyper-rules  

End Class 
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Class Identifier-1 extends base-class-idetifier-1 

 {instance variable and method declaration} 

End Class  

Class inheritance is represented using the keyword extends. The identifier 

following the keyword extends is the name of the base class(es) from which class 

Identifier-1 inherits. If a class inherits form more than one class, the base classes are 

listed separated by commas.  

Class Identifier-1 extends base-class-idetifier-1, base-class-idetifier-2, . . . , base-

class-identifier-n 

 {instance variable and method declaration} 

End Class 

Interface inheritance is represented using the keyword implements. An interface is 

a specification for a set of hyper-rules that a class, which implements the interface, must 

conform to. In other words, an interface fully abstracts a class specification from its 

implementation. The class that implements the interface must provide an implementation 

for each hyper-notion specified in the interface.  So, by making a class an interface, the 

hyper-rules can specify what has to be done and not how it has to be done.  

Sometimes in a pattern, all the objects that are created during run time should 

conform to the same interface. Consider the Abstract Factory pattern discussed by 

Gamma et al. [Gamma et al. 1995]. The intend of the Abstract Factory pattern is that to 

provide “an interface for creating families of related or dependent objects without 

specifying concrete classes” [Gamma et al. 1995]. For example, let‟s examine the 

following situation as discussed by Gamma et al. [Gamma et al. 1995]:  
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Consider a user interface toolkit that supports multiple look-and-feel 

standards such as Motif and Presentation Manager (PM). Different look-

and-feels define different appearances and behaviors for user interface 

"widgets" like scroll bars, windows, and buttons. To be portable across 

look-and-feel standards, an application should not hard-code its widgets 

for a particular look and feel. Instantiating look-and-feel-specific classes 

of widgets throughout an application make it hard to change the look and 

feel later. We can solve this problem by defining an abstract 

WidgetFactory class that declares an interface for creating each basic kind 

of widget. There is also an abstract class for each kind of widget, and 

concrete subclasses implement widgets for specific look-and-feel 

standards. The WidgetFactory's interface has an operation that returns a 

new widget object for each abstract widget class. Clients call these 

operations to obtain widget instances, but clients are not aware of the 

concrete classes they are using. Thus clients stay independent of the 

prevailing look and feel.  

 

The WidgetFactory has the following participants: 

AbstractFactory (WidgetFactory): declares an interface for operations that create 

abstract product objects. 

ConcreteFactory (MotifWidgetFactory, PMWidgetFactory): implements the 

operations to create concrete product objects. 

AbstractProduct (Window, ScrollBar): declares an interface for a type of product 

object. 

ConcreteProduct (MotifWindow, MotifScrollBar): defines a product object to be 

created by the corresponding concrete factory and implements the AbstractProduct 

interface. 
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Figure 3.1: Structure of Abstarct Factory Pattern [Gamma et al. 1995] 

 

By defining an interface, the abstract factory pattern declares the specification that 

should be present for creating each basic kind of class that wants to use the interface. So, 

when clients call these classes to obtain the functionality, the clients can get the needed 

functionality conforming to the specifications of the interface [Gamma et al. 1995]. This 

point can be clarified further by understanding the following representation of the 

Abstract Factory pattern.  
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Figure 3.2: Representation of the Widget Factory in LePUS3 [Eden et al. 2007] 

 

There is an interface that declares the specifications of the widgets, which is the 

WidgetFactories interface and there is an interface for each kind of widget such as 

ScrollBars, Windows, etc. that extend from the WidgetFactories interface. When an 

application needs an instance of a scrollbar, the particular concrete scrollbar instance 

overrides the methods (such as dimensions and alignment (horizontal or vertical)) in both 

interfaces WidgetFactories and ScrollBars to create the new instance of a scrollbar. So, 

the hyper-rules and the meta-rules can be defined in a very general way with the 

guarantee that, by only using the hyper-rules defined in the interface, all the classes 

which implement that interface will have defined implementations for all the hyper-rules.  
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In a TLG specification, interfaces are syntactically similar to classes but they lack 

meta-notions and the right-hand side of the hyper-rules will be empty. So, interfaces 

specify the hyper-notions without making assumptions about how the hyper-notions will 

be defined by the classes that will use this interface. Once an interface is defined, any 

number of classes can use it and any number of other interfaces can inherit from it. To 

use an interface, a class must provide definition for the set of hyper-notions specified in 

the interface. However, each class can provide its own definition for each of the hyper-

notions. Structure of an interface is as follows: 

Interface interface-name-1  

 meta-notion:: . 

 hyper-notion::. 

End Interface 

To implement an interface, a class should include the implements clause in its 

definition, and then provide the definition for each hyper-notion defined by the interface. 

The identifiers following the keyword implements are the names of the interfaces from 

which class Identifier-1 inherits.  

The general form of a class that includes the implements clause follows: 

Class Identifier-1 implements interface-name-1 

 {instance variable and method declaration} 

End Class  

If a class implements more than one interface, the interfaces are separated with 

commas.  
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Class Identifier-1 implements interface-name-1, interface-name-2, . . . , 

interface-name-n 

 {instance variable and method declaration} 

End Class  

Interfaces can be extended. When an interface is extended, the implementing class 

of that inherited interface should provide definition for the hyper-notions defined in the 

base interfaces and the inheriting interface. For example, consider the specification of 

two interfaces A and B and a class D. Class D provides the definitions for the hyper-

notions A, B, and C that are declared in the Interfaces A and B. 

Interface A 

 A:. 

 C:. 

End Interface 

Interface B extends A 

 B:. 

End Interface 

 Class D implements B 

  A: hyper-alternative-A1; hyper-alternative-A2; . . . ; hyper-alternative-An. 

  B: hyper-alternative-B1; hyper-alternative-B2; . . . ; hyper-alternative-Bm. 

  C: hyper-alternative-C1; hyper-alternative-C2; . . . ; hyper-alternative-Cl. 

 End Class 
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3.2.4 Functions 

 As mentioned earlier (see Section 3.1), the TLG definition of a class consists of 

hyper-rules and meta-rules. Hyper-rules define the function that operates on the meta-

rules to produce the target language, i.e., patterns. The general form of hyper-rules is: 

 Hyper-notion : hyper-alternative-1; hyper-alternative-2; . . . ; hyper-alternative-n. 

The hyper-alternatives specify the alternative rules that can be chosen when a 

hyper-notion or a function is invoked. Hyper-alternatives have the same format as the 

hyper-notions. If each hyper-alternative consists of multiple rules, they are separated 

using commas as shown below: 

hyper-notion-1 : hyper-alternative-11, hyper-alternative-12, . . . , hyper-alternative-1i; 

hyper-alternative-21, hyper-alternative-22, . . . , hyper-alternative-2j; 

hyper-alternative-31, hyper-alternative-32, . . . , hyper-alternative-3k. 

So, when hyper-notion-1 is invoked, it can either choose hyper-alternative-11, 

hyper-alternative-12, . . . , hyper-alternative-1i or hyper-alternative-21, hyper-

alternative-22, . . . , hyper-alternative-2j or hyper-alternative-31, hyper-alternative-32, . . 

. , hyper-alternative-3k. 

 In object-oriented languages, functions are defined inside a class. Functions can 

have no parameters or they can take one or more parameters, and the parameters are 

variables that take the value of the arguments passed to functions when they are called. 

When a function is defined in the form of a TLG, a parameter list is not provided to it 

because meta-notions act as parameters to the functions. For example, 

 T :: int; string; Boolean. 
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 T Expression: simple T expression; if <simple T expression> else <simple T 

expression> 

 Where T Expression is a hyper-rule and there are two hyper-alternatives given for 

the hyper-rules: one is the simple T expression and the other alternative is if <simple T 

expression> else <simple T expression>. Based on the value of T, the hyper-rule will be 

generated. If the meta-notion T is int, the hyper-rule will be: 

 int Expression : simple int expression; if <simple int expression> else <simple int 

expression>.  

Therefore, meta-notions act as a parameter list for the hyper-rules.  

 A hyper-notion in a class is represented using the class name in which the method 

is present, followed by a „dot‟ operator which in turn is followed by the name of the 

hyper-notion. Consider the following example with two classes: class-name-1 and class-

name-2.  

 class class-name-1 

  hyper-notion-1:hyper-alternative-1. 

 end class 

 class class-name-2 

  hyper-notion-2: class-name-1.hyper-notion-1. 

 end class 

The class class-name-1 has a hyper-notion hyper-notion-1. To access hyper-

notion-1 in the class class-name-2, the representation class-name-1. hyper-notion-1 is 

used. 
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Since hyper-rules are representing methods in the design patterns, they are 

considered to have return types, including void and other return values, to the assigning 

routines. Consider the following example: 

 Class abstract Subject 

 

  //meta-notions 

List observers_list:: (concreteObserver)
*
. 

 

  //hyper-rules 

   Attach: observers_list.Add. 

   Detach: observers_list.Remove. 

   Notify: observers_list.Update. 

 

End Class 
 

Class concreteSubject extends Subject 

 

 //hyper-rules 

setState: this.Notify. 

 getState: this.currentState. 

 

End Class 

 

Here, the values returned by the functions Add, Remove, and Update in the 

abstract class Subject are void. The currentState function (in the right-hand side of the 

getState function) in concreteSubject will return the current state of the object of the class 

concreteSubject. 

 Hyper-notions can also be defined based on a type. For example, 

Subject concreteSubject : concreteSubejct-1. 

Here the hyper-notion concreteSubject is of type Subject and it can be assigned any 

objects of the type Subject. 
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3.2.5 Types 

When meta-notions are defined in a TLG class, strong typing of the meta-notions 

are achieved by assigning a types to each meta-notion. These meta-notions can be 

identifiers or collections such as lists and has-tables. The types can be primitive data 

types, i.e., int, string, char, and Boolean. Structure of a meta-notion is given below. 

meta-notion :: meta-notion-1; meta-notion-2; . . . ; meta-notion-n; proto-notion-1; 

proto-notion-1; . . . ; proto-notion-n. 

Meta-notions can also be called domain identifier. Domain identifiers are used in 

conjunction with the functions (i.e., hyper-rules) to produce the target language. The 

right-hand side of the meta-notions can contain a combination of meta-notions and proto-

notions. Proto-notions are terminal symbols of TLG, they are represented using lower 

case letters.   

Type :: int; char, string; Boolean. 

int :: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. 

char :: a; b; c; d; . . . ; z. 

Boolean :: true; false. 

string : char, char. 

 The right-hand side of the hyper-rules above, int, char, and Boolean are proto-

notions.  

Domain identifiers can be assigned a type using the following format: 

Type meta-notion :: meta-notion-1; meta-notion-2; . . . ; meta-notion-n; proto-

notion-1; proto-notion-2; . . . ; proto-notion-n. 

Type :: int; char, string; Boolean. 
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int :: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. 

char :: a; b; c; d; . . . ; z. 

Boolean :: true; false. 

string : char, char. 

 When assigning a meta-notion to another meta-notion, it is important to keep in 

mind that the type of hyper-alternative assigned to the hyper-notion must be compatible 

with the hyper-notion. For example, consider the following class.  

Class concreteObserver implements Observer 

 //meta-notions 

Subject subObject :: (concreteSubject)
+
 

//hyper-rules 

Constructor: subObject.Attach. 

 Destructor: subObject.Detach. 

 Update: subObject.getState. 

End Class 

The meta-notion subObject can be assigned one or more concreteSubject objects if and 

only if the concreteSubject objects extends the abstract class Subject. 

A domain identifier can also be a type of collection. A collection is the same as 

the concept of a set in mathematics. If a meta-notion can be assigned more than one 

abstract object, then the meta-notion should be configured as a sequence of abstract data 

structure that is simply an ordered collection of values. So, this abstract data structure can 

be treated as a special case. These collection variables can be a List or a Set. Collection 

interfaces are considered to have predefined hyper-rules that provide basic operations 

such as adding new elements to the collection, removing elements from the collection, 

and updating elements in the collection. These functions are considered to be functions in 

the target language and as a result they will be written as bold characters. For example, 

Class abstract Subject 
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  //meta-notions 

List observers_list:: (concreteObserver)
*
. 

 

  //hyper-rules 

   Attach: observers_list.Add. 

   Detach: observers_list.Remove. 

   Notify: observers_list.Update. 

End Class 
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CHAPTER IV 

 

TLG SPECIFICATION OF THE OBSERVER DESIGN PATTERN 

 

4.1 Introduction 

To illustrate the TLG specification approach, TLG specification of the observer 

pattern, which was given in Chapter II, is given below. The TLG specification of the 

observer pattern was derived based on its natural language specification as given by 

Gamma et al.  [Gamma et al. 1995]. 

  

4.2 Observer Pattern 

 The TLG specification of the observer design pattern is split into four subsections 

to represent the four participants in the pattern, namely, Subject, ConcreteSubject, 

Observer, and ConcreteObserver. Before proceeding with the TLG specification of the 

observer pattern, the structure and the informal description of the participants and 

collaborations of the observer pattern, as given by Gamma et al. [Gamma et al. 1995], 

listed below. Also, the LePUS3 [Eden et al. 2007] specification of the observer pattern is 

included below since it gives a less ambiguous representation of the structure of the 

pattern compared to the UML representation of the structure of the observer pattern as 

given by Gamma et al. [Gamma et al. 1995]. 
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Figure 4.1: Structure of the Observer Pattern [Gamma et al. 1995] 

 

Participants:  

 Subject:  

o Knows its observers. Any number of Observer objects may observe a 

subject. 

o Provides an interface for attaching and detaching Observer objects. 
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 Observer: defines an updating interface for objects that should be notified of 

changes in a subject. 

 ConcreteSubject:  

o Stores state of interest to ConcreteObserver objects. 

o Sends a notification to its observers when its state changes. 

 ConcreteObserver:  

o Maintains a reference to a ConcreteSubject object. 

o Stores state that should stay consistent with the subject's state. 

o Implements the Observer updating interface to keep its state consistent 

with the subject's state. 

 

Collaborations: 

 ConcreteSubject notifies its observers whenever a change occurs that could make 

its observers' state inconsistent with its own. 

 After being informed of a change in the concrete subject, a ConcreteObserver 

object may query the subject for information. ConcreteObserver uses this 

information to reconcile its state with that of the subject. 

 

There are four participants in the observer pattern: Subject, concreteSubject, 

Observer, and concreteObserver. Among the four participants, concreteSubject and 

concreteObserver are concrete classes, subject is an abstract class, and Observer is an 

interface. Each participant has its own methods. These four participants are described in 

more detail, along with their TLG representations, in the four subsections that follow. 
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Figure 4.2: LePUS3 Specification of the Observer Pattern [Eden et al. 2007] 

 

4.2.1 Abstract Class Subject 

Based on the specification of the observer pattern given in Section 2.2 in Chapter 

II, Subject is an abstract class and it can be inherited by any number of subclasses to 

extend its functionalities provided. Subject has three methods that are not abstract (see 

Figure 4.1 and Figure 4.2). The abstract class should have a variable to keep the list of 
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observes that are observing any concrete subject (a concrete subject is a class that extends 

the abstract Subject). Whenever a new observer starts to observe a concrete subject, it is 

added to a list inside the concrete subject. This list can be specified in TLG as follows: 

 List observer_list :: (concreteObservers)
*
. 

Each subject can be observed by zero or more observers. Whenever an observer is 

created based on a subject or whenever an observer is set to observe a subject, the 

observer gets attached to the subject and the subject keeps track of the observers using 

the collection of observer objects (i.e., a list of observer objects) that it has. 

The Subject abstract class defines three methods that are used to keep track of the 

observers that are observing the subject and that are also used to notify the changes to the 

observers. The attach method is used to attach the observer that is created based on this 

subject. The detach method is used to detach the observer that is leaving the system or 

stops observing the subject. The notify method is used to notify all the observers, which 

are observing the current subject, about any changes that have happened to the subject. 

 Attach: observers_list.Add. 

 Detach: observers_list.Remove. 

 Notify: observers_list.Update. 

Add, Remove, and Update are used to denote that observer objects can be added, 

deleted, and updated to the observers_list. So, the TLG specification of the abstract class 

Subject could be given as follows: 

Class abstract Subject 

 

 //meta-notion 

List observers_list:: (concreteObserver)
*
. 

 

 //hyper-rules 

  Attach: observers_list.Add. 

  Detach: observers_list.Remove. 
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  Notify: observers_list.Update. 

End Class 

 

4.2.2 Observers Interface 

The Observers interface defines methods that can be implemented by the concrete 

observers that want to observe a subject. This interface defines three methods for the 

concrete observers to implement: constructor, destructor, and update. Since interfaces do 

not provide methods definitions, the Observer interface can be written in TLG as follows: 

Interface Observer 

 //hyper-rules 

Constructor: . 

  Destructor: . 

  Update: . 

End Interface 

A concrete observer that implements this Observer interface can specify the 

functionalities to the methods. The three methods specified by the interface are: the 

constructor method that attaches a concrete observer to the subject by calling the Attach 

method of the subject, the destructor method that detaches the concrete observer from the 

subject by calling the Detach method of the concrete subject; and update updates the 

concrete observer object by calling the getState method of the concrete subject. 

 

4.2.3 Concrete Observers 

The specifications for the concrete observers are defined in the Observer 

interface. So, whenever a concrete observer is created, it implement the specifications 

given in the Observer interface. The structure of a class implementing the Observer 

interface in TLG can be written as follows: 
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 Class concreteObserver implements Observer 

//hyper-rules 

Constructor: //functionality of the constructor. 

   Destructor: //functionality of the destructor. 

   Update: //functionality of update function. 

 

 End Class 

Each function of the concreteObserver should be called with respect to the 

appropriate subject that it is interested in. Concrete observers have a reference to the 

subject(s) they are observing and this is achieved by providing a meta-notion: 

Subject subObject :: (concreteSubject)+. 

Here, subObject represent the subject(s) that the concreteObserver is observing, 

and subObject is an object of the abstract class Subject. The objects of any concrete 

subject can be assigned to the object of type Subject since the concrete subjects inherit 

from Subject. A concrete observer can observe one or more subjects and, when there is a 

change to any or all of the subjects that the concrete observer is observing, the changes 

will be conveyed to the concrete observer. The concrete observers can also check for 

every certain interval with the concrete subjects for any changes in the state of the subject 

that the observer is interested in. Finally, any concreteObserver class in TLG will look 

like: 

Class concreteObserver implements Observer 

 //meta-notions 

Subject subObject:: (concreteSubject)
+
 

//hyper-rules 

Constructor: subObject.Attach. 

  Destructor: subObject.Detach. 

  Update: subObject.getState. 

End Class 
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4.2.4 Concrete Subject 

Based on the specification given in Section 2.2 and Chapter III, the interface for 

the concrete subjects is given by the abstract class Subject. So, the concrete classes can 

use the functions defined in the abstract class Subject instead of defining their own 

methods. In addition to the methods defined in Subject, the concrete subjects can also 

have two more methods of their own: setState and getState. These two methods are the 

accessors and mutators of the concrete subject class. In addition to the functionality of a 

mutator, the setState methods also perform the following: when there is a change made to 

the current state of the subject, setState is used to update the state of the subject and also 

to notify the observers, which are observing the subject, about the changes by using the 

Notify method defined in the abstract class.  

The TLG specification of the concreteSubject is given below: 

Class concreteSubject extends Subject 

 //hyper-rules 

setState: this.Notify. 

  getState: this.currentState. 

End Class 
 

 

The following section lists out the complete TLG specification of the observer 

pattern i.e., TLG specification of all the four participants (Subject, concreteSubject, 

Observer, and concreteObserverr) of the observer pattern. 

Class abstract Subject 

  //meta-notions 

List observers_list:: (concreteObserver)
*
. 

 

  //hyper-rules 

   Attach: observers_list.Add. 

   Detach: observers_list.Remove. 

   Notify: observers_list.Update. 
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End Class 

 

Class concreteSubject extends Subject 

 //hyper-rules 

setState: this.Notify. 

  getState: this.currentState. 

End Class 
 

Interface Observer 

 //hyper-rules 

Constructor: . 

  Destructor: . 

  Update: . 

End Interface 

 

Class concreteObserver implements observer 

 //meta-notions 

Subject subObject:: (concreteSubject)
+
. 

//hyper-rules 

Constructor: subObject.Attach. 

  Destructor: subObject.Detach. 

  Update: subObject.getState. 

End Class 
 

One of the objectives of using the TLG is formal specification scheme was to be 

able to represent different levels of abstraction, i.e., to be able to capture and represent 

the different levels of abstraction involved in the concrete realization of the patterns. The 

TLG specification given above represents the core of the observer pattern. When 

additional details have to be implemented, more hyper- and meta-rules can be added to 

the specification given above to make it more concrete. For example, in the specification 

of the participant concreteObserver, additional predicates can be included to the hyper-

rule update such as the following predicate: 

Update: where currentSubjectState!=oldSubjectState, concreteObserver.setState. 
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Here, currentSubjectState represents the current state of the subject(s) that the observer is 

observing and oldSubjectState represents the state of the subject that was observed 

previously.  

So, when the update hyper-rule is invoked, the predicate where 

currentSubjectState!=oldSubjectState is checked and, upon satisfaction of the predicate, 

control can be passed to the next function, i.e., concreteObserver.setState. If the predicate 

where currentSubjectState!=oldSubjectState fails, the control will not be passed to 

concreteObserver.setState. Here, setState is the mutator of concreteObserver.  

 The concreteObsever class with the predicate where in the Update hyper-rule is 

given below: 

 Class concreteObserver implements observer 

  //meta-notions 

Subject subObject:: (concreteSubject)
+ 

   oldSubjectState:: subObject.getState. 

   currentSubjectState:: subObject.getState;  

//hyper-rules 

Constructor: subObject.Attach. 

   Destructor: subObject.Detach.   

Update: where currentSubjectState!=oldSubjectState,       

concreteObserver.setState; . 

  End Class 

Other details can be added to the specification by including additional hyper- and 

meta-rules to the existing core specification to represent different levels of abstraction 

involved in the concrete realization of the observer pattern or, in general, other patterns. 
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CHAPTER V 

 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

5.1 Summary 

Chapter I discusses the disadvantages of natural language representation of design 

patterns, followed by how those disadvantages can be overcome by using formal 

specification schemes. This chapter contains a brief discussion of the drawbacks of some 

of the existing formal specification schemes.  

Chapter II provides background knowledge on design patterns as well as detailed 

descriptions of some of the existing formal schemes used to formalize patterns. This 

chapter also elaborates on the disadvantages of natural-language representation of design 

patterns by providing the GoF representation of the observer pattern. A description of 

some existing formal specification schemes along with their representation of the 

observer pattern is also included in Chapter III followed by a comparison of three 

existing specification schemes. Overall, this chapter provides justification for another 

formal specification scheme.  

Chapter III describes the use of TLG as a formal specification language for 

object-oriented design patterns. This chapter provides information on how the building 
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blocks of object-oriented software systems can be represented in TLG.  

Chapter IV provides a representation of the observer pattern in TLG. It elaborates 

on how each participant of the observer pattern can be represented in TLG. 

 

5.2 Conclusions 

TLG was used as a formal specification language to capture and represent the 

structural aspects of design patterns. It has been demonstrated that the TLGs have the 

capability to represent the building blocks of object-oriented software systems. The 

primary advantage of TLGs in defining design patterns is that specifications written in 

TLGs are understandable due to the natural-language-like vocabulary [Bryant et al. 1986] 

[Edupuganty 1987] [Lee 2003] [Maluszynski 1984]. TLGs could help pattern users 

understand the formalized version of patterns more readily compared to other formal 

specification methods that are difficult to understand due to their arcane mathematical 

notations.  

 

5.3 Future Work 

This work offers a number of possible future research directions to the software 

pattern community ranging from formal analysis of the behavioral elements of patterns 

through probably automatic implementation of patterns. 

The behavioral semantics of design patterns could be analyzed to capture the key 

properties exhibited by each design pattern in order to validate the two-level 

representation of each pattern and in order to test whether or not the two-level grammar 

representation captures all the key aspects of design patterns. A classification scheme 
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based on the key properties of patterns could be developed and a process to implement 

this scheme to form a pattern catalog system could be provided. An algorithm could be 

developed to automatically implement design patterns from their TLG representations. 

The entire process, from formal specification of the structural elements of patterns to 

their implementation, could be a tool, which would generate an intermediate 

representation of design patterns form their two-level grammar representation, on the way 

to automatic realization of patterns. 
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APPENDIX A:GLOSSARY 
 

Abstract Class  A class whose primary purpose is to define an interface. It defers 

some or all of its implementation to subclasses. An abstract class 

cannot be instantiated [Gamma et al. 1995]. 

 

Action  A syntactic unit of execution in DisCo which consists of a name, a 

list of participants and parameters, a guard, and a body. Actions are 

disjoint and atomic. An action can be executed when it is enabled. 

The execution of an action can only change the states of the 

participating objects. In a logical sense, an action is a relation 

between two adjacent states in an infinite sequence of states 

[Mikkonen 1998].  

 

BPSL Balanced Pattern Specification Language [Taibi 2006] is a formal 

specification language that attempts to formalize both the structural 

and behavioral aspects of design patterns using a subset of First 

Order Logic (FOL) and a subset of Temporal Logic of Actions 

(TLA). 

 

Class  A class defines an object's interface and implementation. It 

specifies the object's internal representation and defines the 

operations the object can perform [Gamma et al. 1995]. 

 

Concrete Class A class having no abstract operations. Contrary to an abstract class, 

a concrete class can be instantiated. 

 

Constructor  In object-oriented programming languages, a constructor is an 

operation that is automatically invoked to initialize new object 

instances. 

 

Design Pattern  A design pattern systematically names, motivates, and explains a 

general design that addresses a recurring design problem in object-

oriented systems. It describes the problem, the solution, when to 

apply the solution, and its consequences. It also gives 

implementation hints and examples. The solution is a general 

arrangement of objects and classes that solve the problem. The 

solution is customized and implemented to solve the problem in a 

particular context [Gamma et al. 1995]. 

 

http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%202.3
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Destructor In object-oriented programming languages, a destructor is 

an operation that is automatically invoked to finalize an 

object that is about to be deleted [Gamma et al. 1995]. 

 

DisCO Distributed Cooperation [Mikkonen 1998] is an object-

oriented specification language for specifying the 

behavioral aspects of reactive systems. 

 

eLePUS  Extended LanguagE for Pattern Uniform Specification 

[Eden et al. 2007] is an extension of LePUS (see entry for 

LePUS3). 

 

Fairness Liveness properties are obtained by stating fairness 

requirements. In DisCo, fairness requirement indicates that 

it is not possible for an action to be enabled infinitely often 

without being executed infinitely often [Mikkonen 1998].  

 

Guard Every DisCo action has a boolean expression called the 

guard. If there exist participants and parameters so that the 

guard evaluates to true, the action is said to be enabled 

[Mikkonen 1998].  

 

Implementation Overhead  When used in the context of programming languages, 

pattern users are required to implement a pattern again and 

again in different systems because classes and objects of 

patterns represented using programming languages are 

tightly coupled with other functionalities of the system. 

 

Inheritance A relationship that defines one entity in terms of another. 

Class inheritance defines a new class in terms of one or 

more parent classes. The new class inherits its interface and 

implementation from its parents. The new class is called a 

subclass or (in object-oriented programming languages) a 

derived class. Class inheritance combines interface 

inheritance and implementation inheritance. Interface 

inheritance defines a new interface in terms of one or more 

existing interfaces. Implementation inheritance defines a 

new implementation in terms of one or more existing 

implementations [Gamma et al. 1995]. 

 

Instance Variable  A piece of data that defines part of an object's 

representation [Gamma et al. 1995]. 

 

Interaction Diagram  A diagram that shows the flow of requests among objects 

[Gamma et al. 1995]. 

 

http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%202.6
http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%201.1
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Interface  The set of all signatures defined by an object's operations. 

The interface describes the set of requests to which an 

object can respond [Gamma et al. 1995]. 

 

LePUS3 and Class-Z LanguagE for Pattern Uniform Specification 3 and Class-Z 

are object-oriented Design Description Languages (DDL) 

that are intended to abstract, model, and formalize object-

oriented programs, design patterns, and application 

frameworks. LePUS3 is an extension of LePUS. 

 

Liveness Property A property of a potentially infinite execution which is of 

the form “something good will eventually occur” 

[Mikkonen 1998].  

 

Object A run-time entity that packages both data and the 

procedures that operate on that data [Gamma et al. 1995]. 

 

Overlap An overlap between two patterns P1 and P2 means that 

there exists at least one element in pattern P1 which is also 

in pattern P2. 

 

Overriding Redefining an operation (inherited from a parent class) in a 

subclass [Gamma et al. 1995]. 

Parent Class The class from which another class inherits in object-

oriented programming languages. 

Participant Execution of an action needs object(s) to participate in it. 

The number of participants and their classes are indicated 

in the action definition [Gamma et al. 1995].  

Pattern  A pattern is a named description of a problem, a solution, 

when to apply the solution, and how to apply the solution in 

new contexts. 

Reactive System Reactive system is a system that is in constant interaction 

with its environment [Mikkonen 1998].  

 

Reusability  When used in the context of programming languages, 

design patterns are represented at the implementation level, 

i.e., they are represented as classes and objects. Since these 

classes and objects are typically associated with other 

functionalities of the systems, it is hard to reuse the design 

pattern again without modification. 

 

Self Problem  The implementation of several design patterns requires 

forwarding messages from an object receiving a message to 

an object implementing the behavior that is to be executed 

in response to the message. The receiving object can, for 

http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%201.2
http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%202.3
http://disco.cs.tut.fi/tutorial/Tutorial.html#Section%201.2
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example, be an application domain object that delegates 

some messages to a strategy object. However, once the 

message is forwarded, the reference to the object originally 

receiving the message may no longer be available and the 

references to self refer to the delegated object, rather than 

to the original receiver of the message. This problem is 

known as the self problem [Lieberman 1986]. 

 

Semantics The assignment of meaning to various entites. 

Traceability  The traceability of a design pattern is often lost between 

classes and objects, i.e., the pattern, which is a conceptual 

entity at the design level, is scattered over different parts of 

an object or even multiple objects. This problem was first 

identified by Soukup [Soukup 1995]. 

 

UML Unified Modeling Language, a standard notation for 

modeling systems using object-oriented concepts. 
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APPENDIX B 

Terms in LePUS3 and Class-Z 

 

This appendix contains the symbols and terms used in the LePUS3 and Class-Z 

specification scheme [Eden et al. 2007].  

 

Type 

 

Symbol in LePUS3 

 

Symbol in Class-Z 

 

Symbol Name 

 

CLASS (a class) 

 
 

 

 
 

cls 

 

 
0-dimensional class 

constant 

 
 

 
 

 cls 

 

 

0-dimensional class 
variable 

 

 

 

PCLASS (set of 

classes) 
 

 

Classes 
1-dimensional class 

constant 

PCLASS (a set of 

classes) 

 

 
 

 

Classes 
1-dimensional class 
variable 

 

 

 

cls 

 

cls 

 

Classes 

 

Classes 
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SIGNATURE (a 

method declaration) 

 
 

 

 sig 

 

0-dimensional 
signature constant 

 

 

 

 
sig 

0-dimensional 
signature variable 

 

 

 

 

PSIGNATURE (a 

set of method 

declarations)  
 

Signatures 

 

 

1-dimensional 
signature constant 

 

 

 

 
Signatures 

 
 

1-dimensional 

signature variable 
 

 

 

HIERARCHY (a set 

of classes which 
contains one class 

such that all other 

classes inherit 
(possibly indirectly) 

from it) 

 

 
Hrc 

 

 
1-dimensional 

hierarchy constant 

 
 

 

 
Hrc 

 

 

1-dimensional 
hierarchy variable 

 

 

PHIERARCHY (a set 

of hierarchies) 
 

 
 

Hrcs 

 
 

 

 
2-dimentional 

hierarchy constant 

 
 

 

Hrcs 
2-dimentional 

hierarchy variable 

     sig 

     sig 

   Signatures 

Signatures 

Hrc 

Hrc 

 
Hierarchies 

Hierarchies 
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METHOD (a method 

with signature sig 
which is a member of 

(or inherited by) class 

cls) 
 

 

sig cls 

 

 
0-dimensional 

method constant term 

 

 

 

sig  cls 

0-dimensional 

method variable 

terms 

PMETHOD (A tribe 

(a set of methods with 
signatures Signatures 

) that are members of 

(or inherited by) class 
cls) 

   
 

 
 

 

 

Signatures cls 
 

 

1-dimensional 

superimposition 

(method) constant 

terms 

 
 

 
 

 

sig Classe 

 
 

 

 
 

 

 

 
 

sig Hrc 

 
 

 

 
 

 

Signatures cls 
 

 

 

 

 

 

 

 

sig Classes 

 

 
 

 

 
 

 

 

 

sig Hrc 

 

 

cls 

   sig 

cls 

   sig 

cls 

Signatures 

Classes 

Sig 

     Hrc sig 

cls 

Signatures 

Classes 

sig 

   Hrc 
  sig 

1-dimensional 

superimposition 

(method) variable 

terms 
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Relation Symbols in LePUS3 and Class-Z 

 

Symbol in LePUS3 Symbol in Class-Z 

 

Symbol name 

 

 
UnaryRelation 

 

Unary relation symbol 

 

 BinaryRelation 

 

Binary relation symbol 

 

 BinaryRelation
+
 

 

Transitive binary relation symbol 

 

 
ALL 

 

ALL predicate symbol 
 

 TOTAL 

 

TOTAL predicate symbol 
 

 ISOMORPHIC 

 

ISOMORPHIC predicate symbol 

 

 

 

Predicate Formulas in LePUS3 and Class-Z 

 
 
Predicate formulas in Class-Z 

 

 
Predicate formulas in LePUS3 

 

 

ALL(UnaryRelation,T1) 

 
An ALL predicate symbol marked with 

UnaryRelation placed over T1 

 

 

TOTAL(BinaryRelation,τ1,τ2) 

 
A TOTAL predicate symbol marked with a 

BinaryRelation connecting τ1 to τ2 

 

 

ISOMORPHIC(BinaryRelation,T1,T2) 

 
An ISOMORPHIC predicate symbol marked 

with a BinaryRelation connecting T1 to T2 
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APPENDIX C 

TLG Specification of the GoF Design Patterns 

This appendix contains the TLG specification of the GoF design patterns [Gamma et al. 

1995] along with the descriptions of the pattern elements intent, structure, and 

participant of each GoF design patterns. 

Abstract Factory 

Intent: Provide an interface for creating families of related or dependent objects without 

specifying their concrete classes. 

Structure: 

 

 

 

 

 Figure A-1: UML Representation of the Abstract Factory Pattern [Gamma et al. 1995] 

Legend 

 

                

  dependency    abstract class    concrete class   inheritance   generalization (points               

to a higher abstraction)              
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Participants: 

 AbstractFactory (WidgetFactory): Declares an interface for operations that create 

abstract product Objects. 

 ConcreteFactory (MotifWidgetFactory, PMWidgetFactory): Implements the 

operations to create concrete product objects. 

 AbstractProduct (Window, ScrollBar): Declares an interface for a type of product 

object 

 ConcreteProduct (MotifWindow, MotifScrollBar): Defines a product object to be 

created by the corresponding concrete factory; Implements the AbstractProduct 

interface 

 Client: uses only interfaces declared by AbstractFactory and AbstractProduct classes. 

TLG Specification of the Abstract Factory Pattern:  

 

Interface Factories 

 FactoryProducts:. 

End Interface 

 

Products: Product-1; . . . ; Product-n. 

Interface Products 

 Product:. 

End Interface 

 

Class concreteFactory implements Factories 

Products: Product-1; . . . ; Product-n. 

 Products: create and return concrete Products. 

End Class 

 

Class concreteFactoryProducts implements Products 

 Product: specification of Product. 

End Class 
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Factory Method 

Intent: Define an interface for creating an object, but let subclasses decide which class to 

instantiate. Factory Method lets a class defer instantiation to subclasses. 

Structure: 

 

 

 

 

 

 Figure A-2: UML Representation of the Factory Method Pattern [Gamma et al. 1995] 

Participants: 

 Product (Document): Defines the interface of the objects that the factory method 

creates. 

 ConcreteProduct (MyDocument): Implements the Product interface. 

 Creator (Application): Declares the factory method which returns an object of type 

Product: Creator may also define a default implementation of the factory method that 

returns a default ConcreteProduct object, it may call the factory method to create a 

Product object. 

 

 

    

   

    pseudo code     abstract class        concrete class       inherits     dependency       

                    

 

Legend 
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 ConcreteCreator (MyApplication): Overrides the factory method to return an instance 

of a ConcreteProduct. 

TLG Specification of the Abstract Factory Method Pattern:  

 

Interface Creator 

FactoryMethod:. 

End Interface 

 

Class concreteCreator implements Creator 

 concreteProduct :: concreteProduct-1; . . . ; concreteProduct-n. 

 FactoryMethod : create and return concreteProduct. 

End Class 

 

Interface Product 

 Ops:. 

End Interface 

 

concreteProduct :: concreteProduct-1; . . . ; concreteProduct-n. 

Class concreteProduct implements Product 

 Ops: create concreteProduct specific Ops. 

End Class 
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Adapter 

Intent: Convert the interface of a class into another interface as desired by the clients. 

Adapter lets classes work together that couldn't otherwise, because of incompatible 

interfaces. 

Structure: 

 

 

 

 

 

Figure A-3: UML Representation of the Adapter Pattern [Gamma et al. 1995] 

Participants: 

 Target (Shape): Defines the domain-specific interface that Client uses. 

 Client (DrawingEditor): Collaborates with objects conforming to the Target interface. 

 Adaptee (TextView): Defines an existing interface that needs adapting. 

 Adapter (TextShape): Adapts the interface of Adaptee to the Target interface. 

 

TLG Specification of the Adapter Pattern:  

 

Abstract Class target 

 Requests: client specific requests. 

End Class 

Legend 

 

    

   

 pseudo code   abstract class    concrete class    inherits      generalization (points 

to a higher abstraction) 
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Class Client 

 Target target :: concreteTarget. 

 Operations : target.Request. 

End Class 

 

Class adapter extends target, adaptee  

//The Request operation in adapter modifies the Request operation in the target to 

//make it reusable by the adaptee. 

 Request: adaptee.SpecificRequests 

End Class 

 

Class adaptee 

 SpecificRequests: adaptee specific requests. 

End Class 

 

Class concreteTarget extends Target 

 //concreteTarget specific operations 

End Class 
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Bridge 

Intent: Decouple an abstraction from its implementation so that the two can vary 

independently. 

Structure: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-4: UML Representation of the Bridge Pattern [Gamma et al. 1995] 

Participants: 

 Abstraction (Window): Defines the abstraction's interface and maintains a reference 

to an object of type Implementor. 

 RefinedAbstraction (IconWindow): Extends the interface defined by Abstraction. 

 Implementor (WindowImp): Defines the interface for implementation classes. This 

interface doesn't have to correspond exactly to Abstraction's interface. In fact, the two 

Legend 

 

 

    

pseudo code          abstract class         concrete class       inherits      

 

                    

generalization (points             aggregation relationship         

to a higher abstraction) 
 

Abstraction 

 

Operation() 

Implementor 

 

OperationImp() 

RefinedAbstractionb 

ConcreteImplementorA 

 

OperationImp() 

ConcreteImplementorB 

 

OperationImp() 

ImpOperationImp(); 
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interfaces can be quite different. Typically, the Implementor interface provides only 

primitive operations, and Abstraction defines higher-level operations based on these 

primitives. 

 ConcreteImplementor (XWindowImp, PMWindowImp): Implements the 

Implementor interface and defines its concrete implementation. 

TLG Specification of the Bridge Pattern:  

 

Abstract Class abstraction 

 AbstractOps: concreteImplementations.ConcreteOps. 

End Class 

 

Class refinedAbstraction extends abstraction 

abstraction  concreteAbstraction :: concreteAbstarction-1; . . . ; 

concreteAbstarction-n. 

CompisiteOps: concreteAbstraction.AbstractOps. 

End Class 

 

Interface Implementations 

 concreteOps:. 

End Interface 

 

Class concreteImplementations 

 concreteOps:concreteImplementationsOps. 

End Class 
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Composite 

Intent: Compose objects into tree structures to represent part-whole hierarchies. 

Composite lets clients treat individual objects and compositions of objects uniformly. 

Structure: 

 

 

 

 

 

 

 

Figure A-5: UML Representation of the Composite Pattern [Gamma et al. 1995] 

 

Participants: 

 Component (Graphic): Declares the interface for objects in the composition. 

Implements default behavior for the interface common to all classes, as appropriate. 

Declares an interface for accessing and managing its child components. Defines an 

Legend 
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interface for accessing a component's parent in the recursive structure, and 

implements it if appropriate (optional). 

 Leaf (Rectangle, Line, Text, etc.): Represents leaf objects in the composition. A leaf 

has no children and defines behavior for the primitive objects in the composition. 

 Composite (Picture): Defines behavior for the components having children, stores 

child components, and Implements child-related operations in the Component 

interface. 

 Client: Manipulates objects in the composition through the Component interface. 

TLG Specification of the Composite Pattern:  

 

Abstract  Class component 

 componentOps: create and return component. 

End Class 

 

Class levaes extends component 

 componentOps: create and return leaves component. 

End Class 

 

Class composite extends component 

 Component:: (component)
+
. 

 Leaves:: (leaves)
+
. 

compositeComponent :: Component; Leaves; Component, Leaves; Leaves, 

Component. 

componentOps: create and return Component. 

 compositeOps: create and return compositeComponent. 

End Class 
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Decorator 

Intent: Attach additional responsibilities to an object dynamically. Decorators provide a 

flexible alternative to subclassing for extending functionality. 

Structure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

  

 

  

Figure A-6: UML Representation of the Decorator Pattern [Gamma et al. 1995] 

 

Participants: 

 Component (VisualComponent): Defines the interface for objects that can have 

responsibilities added to them dynamically. 

Legend 
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 ConcreteComponent (TextView): Defines an object to which additional 

responsibilities can be attached. 

 Decorator: Maintains a reference to a Component object and defines an interface that 

conforms to the Component's interface. 

 ConcreteDecorator (BorderDecorator, ScrollDecorator): Adds responsibilities to the 

component. 

TLG Specification of the Decorator Method Pattern:  

 

Abstract Class Component 

 Abstract Ops:. 

End Class 

 

concreteComponents :: concreteComponent-1; . . . ; concreteComponenet-n. 

 

Class concreteComponents extends Component 

 Ops:ops specific to this concreteCompoenet. 

End Class 

 

Abstract Class Decorator extends Component 

 Component component :: concreteComponents. 

 Ops : component.Ops. 

End Class 

 

concreteDecorator :: concreteDecorator-1; . . . ; concreteDecorator-n. 

 

Class concreteDecorator extends Decorator 

 Ops: concreteDecorator.Ops. 

End Class 
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Flyweight 

Intent: Use sharing to support large numbers of fine-grained objects efficiently. 

Structure:  

 

 

 

 

 

 

 

 

     Figure A-7: UML Representation of the Flyweight Pattern [Gamma et al. 1995] 

 

Participants: 

 Flyweight: Declares an interface through which flyweights can receive and act on 

extrinsic state. 

Legend 
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 ConcreteFlyweight (Character): Implements the Flyweight interface and adds storage 

for intrinsic state, if any. A ConcreteFlyweight object must be sharable. Any state it 

stores must be intrinsic, that is, it must be independent of the ConcreteFlyweight 

object's context. 

 UnsharedConcreteFlyweight (Row, Column): Not all Flyweight subclasses need to be 

shared. The Flyweight interface enables sharing, it doesn't enforce it. It is common 

for UnsharedConcreteFlyweight objects to have ConcreteFlyweight objects as 

children at some level in the flyweight object structure (as the Row and Column 

classes have). 

 FlyweightFactory: Creates and manages flyweight objects. Ensures that flyweights 

are shared properly. When a client requests a flyweight, the FlyweightFactory object 

supplies an existing instance or creates one if none exists. 

 Client: Maintains a reference to flyweight(s); Computes or stores the extrinsic state of 

flyweight(s). 

TLG Specification of the Flyweight Pattern:  

 

Interface FlyWeights 

 extrinsicState::. 

extrinsicState Operation ::. 

End Interface 

 

Class concreteFlyWeight extends FlyWeights 

 extrinsicState:: extrinsicState-1; . . . ; extrinsicState-n. 

extrinsicState Operation :: //some operation 

End Class 

 

Class flyweightFactory 

 getFlyWeight : create and return a concreteFlyWeight. 

End Class 

Class Client 

 Requests : flyWeightFactory.getFlyWeight. 

End Class 
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Class unsharedConcreteFlyWeight 

 intrinsicState:: extrinsicState-1; . . . ; extrinsicState-n. 

intrinsicState Operation :: //some operation 

End Class 
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Proxy 

Intent: Provide a surrogate or placeholder for another object to control access to it. 

Structure: 

 

 

 

 

 

 

 

    

         Figure A-8: UML Representation of the Proxy Pattern [Gamma et al. 1995] 

 

Participants: 

 Proxy (ImageProxy): Maintains a reference that lets the proxy access the real subject, 

Proxy may refer to a Subject if the RealSubject and Subject interfaces are the same. 

Proxy also provides an interface identical to the Subject's interface so that a proxy can 

be substituted for the real subject. A proxy controls access to the real subject and may 

be responsible for creating and deleting it.  

 Subject (Graphic): Defines the common interface for RealSubject and Proxy so that a 

Legend 
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 Proxy can be used anywhere a RealSubject is expected. 

 RealSubject (Image): Defines the real object that the proxy represents. 

TLG Specification of the Proxy Pattern:  

 

Abstract Class Subject 

 Request: 

End Class 

 

Class Proxy extends Subject 

 Subject realSubject :: realSubject-1; . . . ; realSubject-n. 

 Request : realsubject.Request. 

End Class 

 

realSubject :: realSubject-1; . . . ; realSubject-n. 

 

Class realSubject extends Subject 

 Request :: //some ops. 

End Class 

 

Class Client 

 Subject concreteSubject :: realSubject-1; . . . ; realSubject-n. 

 Ops : concreteSubject.Request. 

End Class 
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Iterator 

Intent: Provide a way to access the elements of an aggregate object sequentially without 

exposing its underlying representation. 

Structure: 

 

 

 

 

 

 

 

       Figure A-9: UML Representation of the Iterator Pattern [Gamma et al. 1995] 

 

Participants: 

 Iterator: Defines an interface for accessing and traversing elements. 

 ConcreteIterator: Implements the Iterator interface and keeps track of the current 

position in the traversal of the aggregate. 

 Aggregate: Defines an interface for creating an Iterator object. 

Legend 
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 ConcreteAggregate: Implements the Iterator creation interface to return an instance of 

the proper ConcreteIterator. 

TLG Specification of the Iterator Pattern:  

 

 

Interface Aggregates 

 createIterator: 

End Interface 

 

concreteAggregate :: List; ArrayList; . . . ; Array; . . . concreteAggregate-1; . . . 

concreteAggregare-n. 

 

Class concreteAggregate 

 concreteAggregate_Iterator : create and return concreteAggregateIterator. 

End Class 

 

Interface Iterator 

 First:. 

 Next:. 

End Interface 

 

Class concreteAggregate_Iterator implements Iterator 

 First : return first element of concreteAggregate. 

 Next: return next element of concreteAggregate. 

End Class 
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State 

Intent: Allow an object to alter its behavior when its internal state changes. The object 

will appear to change its class. 

Structure: 

 

 

 

 

 

         Figure A-10: UML Representation of the State Pattern [Gamma et al. 1995] 

 

Participants: 

 Context (TCPConnection): Defines the interface of the interest to clients and 

maintains an instance of a ConcreteState subclass that defines the current state. 

 State (TCPState): Defines an interface for encapsulating the behavior associated with 

a particular state of the Context. 

 ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed): Each subclass 

implements a behavior associated with a state of the Context. 

 

TLG Specification of the State Pattern:  

 

Abstract Class State 

Legend 
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 Abstract Request:. 

End Class 

 

Class concreteState extends State 

 Requests: 

End Class 

 

Class Context 

 State concreteState :: concreteState-1; . . . ; concreteState-n. 

 Requests : concreteState.Requests. 

End Class 

 

 Class Client 

 Ops:Context.Request. 

End Class 
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Strategy 

Intent: Define a family of algorithms, encapsulate each one, and make them 

interchangeable. The strategy lets the algorithm vary independently from clients that use 

it. 

Structure: 

 

 

 

 

 

    Figure A-11: UML Representation of the Strategy Pattern [Gamma et al. 1995] 

 

Participants: 

 Strategy (Compositor): Declares an interface common to all supported algorithms. 

Context uses this interface to call the algorithm defined by a ConcreteStrategy. 

 ConcreteStrategy (SimpleCompositor, TeXCompositor, ArrayCompositor): 

Implements the algorithm using the Strategy interface. 

 Context (Composition): Is configured with a ConcreteStrategy object, maintains a 

reference to a Strategy object, and it may define an interface that lets Strategy access 

its data. 

Legend 
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TLG Specification of the Strategy Pattern:  

 

Class context 

 Context :: concreteStrategy-1; . . . ; concreteStrategy-n. 

 Strategy newStrategy :: Context. 

 Request : newStrategy.AlgorithmInterface. 

End Class 

 

Interface Strategies 

 Context AlgorithmInterface:. 

End Interface 

 

Class concreteStrategy-1 implements Strategies 

 Context :: Strategy-1. 

 Context AlgorithmInterface: algorithm for Strategy-1. 

End Class 

 

Class concreteStrategy-n implements Strategies 

 Context :: Strategy-n. 

 Context AlgorithmInterface: algorithm for Strategy-n. 

End Class 
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Template Method 

Intent: Define the skeleton of an algorithm in an operation, deferring some steps to the 

subclasses. The template Method lets subclasses redefine certain steps of an algorithm 

without changing the algorithm‟s structure. 

Structure: 

 

 

 

 

 

 

 

 

 

 

 

Figure A-12: UML Representation of the Template Method Pattern [Gamma et al. 1995] 

 

Participants: 

 AbstractClass (Application): Defines abstract primitive operations that concrete 

subclasses define to implement the steps of an algorithm, and implements a template 

method defining the skeleton of an algorithm. The template method calls primitive 

operations as well as operations defined in AbstractClass or those of other objects. 

AbstractClass 

 

TemplateMethod() 
PrimitiveOperation1() 

PrimitiveOperation2() 

ConcreteClass 
 

PrimitiveOperation1() 

PrimitiveOperation2() 

 
. . .  

PrimitiveOperation1() 

PrimitiveOperation2() 

. . .  

Legend 
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 ConcreteClass (MyApplication): Implements the primitive operations to carry out the 

subclass-specific steps of the algorithm. 

TLG Specification of the Template Method Pattern:  

 

Abstract Class abstract 

PrimitiveOps :: primitiveOps-1; . . . ;primitiveOps-n. 

 Abstract PrimitiveOps:. 

templateMethod : primitiveOps. 

End Class 

 

Class concrete extends abstract 

PrimitiveOps :: primitiveOps-1; . . . ;primitiveOps-n. 

 PrimitiveOps: some primitive operation. 

End Class 
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Visitor 

Intent: Represent an operation to be performed on the elements of an object structure. 

Visitor lets you define a new operation without changing the classes of the elements on 

which it operates. 

Structure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-13: UML Representation of the Visitor Pattern [Gamma et al. 1995] 
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Participants: 

 Visitor (NodeVisitor): Declares a Visit operation for each class of ConcreteElement 

in the object structure. The operation's name and signature identifies the class that 

sends the Visit request to the visitor. The visit request lets the visitor determine the 

concrete class of the element being visited. Then the visitor can access the element 

directly through its particular interface. 

 ConcreteVisitor (TypeCheckingVisitor): Implements each operation declared by 

Visitor. Each operation implements a fragment of the algorithm defined for the 

corresponding class of objects in the structure. ConcreteVisitor provides the context 

for the algorithm and stores its local state. This state often accumulates results during 

the traversal of the structure. 

 Element (Node): Defines an Accept operation that takes a visitor as an argument. 

 ConcreteElement (AssignmentNode,VariableRefNode): Implements an Accept 

operation that takes a visitor as an argument. 

 ObjectStructure (Program): Can enumerate its elements, may provide a high-level 

interface to allow the visitor to visit its elements and it may either be a composite or a 

collection such as a list or a set. 

TLG Specification of the Visitor Pattern:  

 

Interface Visitor 

 Visit:. 

End Interface 

 

concreteVisitors :: concreteVisitor-1; . . . ; concreteVisitor-n. 

 

Class concreteVisitors 

Elements elements :: concreteElement-1; . . . ; concreteElement-n. 

 Visit: elements. 

 End Class 
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Interface Elements 

 abstractVisitor::. 

 abstractVisitor Accept:. 

End Interface 

 

Class concreteElements 

Visitor concreteVisitors :: concreteVisitor-1; . . . ; concreteVisitor-n. 

Accept: concreteVisitors.Visit.  

 End Class 

 

Class client 

Visitor concreteVisitors :: concreteVisitor-1; . . . ; concreteVisitor-n. 

 Elements elements :: concreteElement-1; . . . ; concreteElement-n. 

 Ops: elements.Accept. 

End Class 
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Patterns are Object-Oriented reusable units. The principal idea behind patterns is to 
capture and reuse the abstractions that have been formed by expert programmers and 
designers to solve problems that occur in particular contexts. These abstractions capture 
the valuable experiences of experts in solving problems. Although patterns are currently 
being used successfully, there is no general agreement among the software community as 
to how patterns should be formalized or represented. Various formal specification 
schemes have been proposed to complement the natural language description of patterns 
in order to alleviate the ambiguities inherent in the natural language description by 
rigorously reasoning about the structural and behavioral aspects of patterns. Existing 
formal specification languages of design patterns have generally failed to provide a 
standard definition, specification, or representation for patterns because there is no 
general agreement as to how patterns should be formalized. Also, each formal 
specification is generally based on a different mathematical formalism and when pattern 
users want to understand a pattern, first they have to understand the respective 
mathematical formalism. 
 
In addition to comparing three existing formal specification schemes, the main objective 
of this research work was to lay the foundation for developing a formal specification 
scheme that could be understandable without having to delve into the details of the 
underlying formalism. This research work attempted to capture and represent the 
structural aspects of design patterns since capturing the behavioral aspects of design 
patterns is a semantic issue and is beyond the scope of this work. Two-Level Grammar 
(TLG) was used to capture and represent the structural aspects of design patterns. This 
study was conducted using the GoF design patterns [Gamma et al. 1995]. It has already 
been demonstrated that TLGs have the capability to represent the building blocks of 
object-oriented software systems. The primary advantage of TLGs in defining design 
patterns is that specifications written in TLGs are understandable due to their natural-
language-like vocabulary [Edupuganty 1987] [Lee 2003] [Maluszynski 1984]. The TLG 
representation of the observer pattern was developed to gauge the feasibility of the 
proposed pattern representation scheme. TLGs could help pattern users understand the 
formalized version of patterns more readily compared to other formal specification 
methods that are difficult to understand due to their arcane mathematical notations. 


