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ABSTRACT 

 
 
The sequence stratigraphy of the Upper Jurassic (Oxfordian) Smackover marine 

carbonate sequence was investigated from a chemostratigraphic analysis of samples of the 

Conecuh Embayment and the Manila Embayment of southwest Alabama, Gulf Coast of the 

United States. The analytical approaches were based upon an integration of core descriptions, 

petrography of thin sections, elemental compositions, oxygen and stable carbon isotopes from 

carbonate and organic materials. The results demonstrate the effectiveness of using stable carbon 

isotope chemostratigraphy for a ramp sequence stratigraphic model which allows possible local 

and global stratigraphic correlations.    

During the Oxfordian, core and petrographic data indicated that the Smackover 

depositions in the southwest Alabama basins occurred in different depositional environments and 

diagenetic conditions related to the structural setting and paleotopography. Early carbonate 

deposition took place in the Conecuh Embayment, although in partially restricted conditions 

owing to basement highs, as low-energy, restricted lagoonal to shallow marine conditions. The 

mudstone, algal mudstone and peloidal, pelletoid wackestones are dominant from the lower to 

middle Smackover and show small relative diagenetic changes into stable diagenetic calcite. In 

the upper Smackover, increasing depositional energy and an open less restricted connection to 

normal marine waters permitted the deposition of high energy oolitic packstone and grainstones 

of a barrier-shoal environment. Changes of the original carbonate phase associated with changing 

subsurface environmental conditions increased diagenesis.  The shallower structural setting of the 

Manila Embayment affected pervasive dolomitization of sediment deposited under a tidal shallow 

water environment. The shallowing-upward cycles are dominated by intertidal mudstone and 

wackestone “ribbon rock”. Dark organic-rich subtidal sediments commonly overlie the anhydritic 

dolostone of the previous cycle. In the upper Smackover, intercalation between siliciclastic 
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sandstone and carbonate intervals revealed similar increasing depositional energy. During the 

Smackover sequence, siliciclastic sediment interruptions occurred, but are only distinctive in the 

sediment from Conecuh Embayment owing to a higher siliciclastic background which was 

present in the Manila Embayment.  However, subaerial exposure superimposed on the 

dolomitized upper intertidal to supratidal sediments is detectable. Based upon a carbonate ramp 

stratigraphic model, the variation between carbonate-siliciclastic sedimentation and variable 

Smackover facies are interpreted to record the variations of relative sea level cycles, depositional 

environment and paleowater-depth conditions.  

Elemental compositions of the Smackover sediments from the two areas are variable, but 

support the differences in the two embayments which can be shown by the normalized ratios and 

the cross-plot correlation among the elements.  Local variations such as higher siliciclastic 

background and dolomitization in carbonates of the Manila Embayment are clearly manifested. 

The depositional environment, as interpreted from redox elements and Sr, suggests that the 

Manila Embayment occurred under oxic conditions. Sedimentary cycles are recognized only in 

the Smackover sequence from the Conecuh Embayment and were likely related to both local and 

regional/global controls. A long-term regressive cycle with an increase in depositional energy is 

illustrated in four shorter cycles. The variation of unusual high Mn and Sr contents observed in 

Smackover in the Conecuh Embayment suggests possible global events which affected a variation 

of seawater elemental concentrations. In the lower Smackover, the depositional environment 

which formed during a marine transgression was probably not anoxic but possibly became 

restricted during the periods of falling relative sea level.  

Oxygen isotopes (δ18Ocarb) of the Smackover sediments illustrated variations which are 

interpreted to be controlled by differing diagenetic environments. Stronger diagenetic effects 

observed in the Smackover of the Manila Embayment are interpreted to be affected by shallower 

conditions which were subjected to subsequent subsurface meteoric diagenesis. In contrast, 

similar variations in carbon isotopes ( δ13Ccarb) suggests that local diagenetic environments and 
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sedimentary facies were not the exclusive factors but instead, regional and, probably, global sea 

level changes were most important. During the falling of relative sea level, recycling of the 

organic carbon materials from land into the ocean affected a global scale shift which increased 

the abundance of the lighter carbon isotope (12C) in the ocean and caused a negative carbon 

isotope excursion to be observed. For the Smackover carbonate, organic carbon isotopes appear 

to be locally affected by the mixed organic carbon sources between marine, terrestrial and algal 

materials during the sea level fluctuation and vary with distance from land. 

Correlation between the δ13Ccarb variations of the two Smackover cores suggests that 

regardless of the effect of variable depositional environments and diagenetic alteration, δ13Ccarb 

stratigraphy is a strong signal that can be applied to the Smackover carbonate sequences. Short-

term depositional cycles are detected and correlated by the fluctuation of the δ13Ccarb values. 

During the Smackover long-term sequence (second order?), carbon isotope stratigraphy indicates 

there were four smaller and third-order eustatic sea level cycles superimposed. Owing to different 

local variations on sedimentary facies and elemental composition, cyclicity might not be always 

clearly manifested.  However, using multiple techniques, it may be possible to correlate short-

term depositional cycles and their boundaries. Chemostratigraphy and lithological observation 

suggest that the lowest Smackover carbonate sequence was possibly formed and cut across the 

lithostratigraphic boundary between the Norphlet and Smackover Formations of the two study 

areas. The lower Smackover occurred in the Conecuh Embayment was time-correlative with the 

reworked siliciclastic marine sandstone of the Norphlet Formation interpreted as regressive 

sandstone in the Manila Embayment. During a lowstand sea level associated with a 

disconformable sequence boundary, a combination of both local and global effects caused a 

negative δ13Ccarb excursion. In the transgression and relative sea level highstand, low to absent 

siliciclastic contamination increased carbonate sedimentation and resulted in heavier δ13Ccarb 

values. During the third-order shorter Smackover sequences, transitional surfaces, such as a 

marine flooding surface and a maximum flooding surface, were not clearly visible due to a low 
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slope gradient on a ramp structural setting where rising sea level was laterally more effective than 

vertically effective in determining facies trends. While lateral paleoenvironment changes during 

the Smackover sequence were recorded by lithological and elemental composition variations, the 

sequence stratigraphy of the Smackover can be vertically revealed by applying a δ13Ccarb 

stratigraphic approach, which is shown by a global correlation of the Smackover with other 

Oxfordian rock sequences and to the third-order eustatic cycles.  

Chemostratigraphy is a powerful tool for helping to decipher global effects from local 

effects in carbonate sequence analysis, providing correlative insight into the timing of intrabasinal 

depositional events, and in discriminating the original from the overprinted diagnentic signal. 

Carbonate ramp platforms such as the Smackover, owing to gradational facies changes which can 

occur laterally under small vertical changes in relative sea level, make ideal proxies for testing 

hypotheses of global versus local effects of sea level upon carbonate sequence development. 
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CHAPTER 1 

 

1.1   INTRODUCTION  

 

The Upper Jurassic Smackover Formation is a limestone unit which occurs extensively in 

the subsurface around the rim of the Gulf of Mexico (Figure 1-1). It is well known not only for 

its hydrocarbon productivity but also for serving as a template for  the classic carbonate ramp 

platform model (Ahr, 1973; Read, 1985). According to Salvador (1987), Smackover deposition 

occurred during the major flooding event related to the opening of the future Gulf of Mexico 

basin from the Late Triassic-Jurassic breakup of Pangea. Imlay and Herman (1984) interpreted 

the age of the Smackover sedimentation to be between 144 to 151 Ma from the Middle to the Late 

Oxfordian. In the northern Gulf of the United States, the Smackover deposit is only found in the 

subsurface but extends from central Texas, Arkansas, through  Louisiana and  central Mississippi, 

and continues into southwest Alabama and terminates in the panhandle of northwest Florida 

(Figure 1-2).  

Early regional studies which described the Smackover include those by Imlay (1943), 

Swain (1949) and Dickinson (1968). Within the U.S. Gulf Coast, the spatial geometry of 

Smackover deposition has been redefined numerous times by different authors (e.g. Mancini and 

Benson, 1980; Moore, 1984, Wade and Moore, 1993; Heydari, 2002). Owing to the importance of 

the Smackover relative to  hydrocarbon generation, many more local investigations on the field 

level have also been conducted. For example, the Smackover has been studied in Texas (e.g. 

Barrett, 1998), south Arkansas and north Louisiana (e.g. Troell and Robinson, 1987), Mississippi 

(e.g. Meendsen et al., 1987; Rhode and Maxwell, 1993; Shew, 1991), southwest Alabama (e.g. 

Sigsby, 1976; Bradford, 1984; Benson and Mancini, 1984; Wade et al., 1987; King and Hargrove, 

1991) and Florida (e.g. Vinet, 1984; Lloyd et al., 1986).  
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Figure 1-1. Paleogeographic map during the Late Oxfordian illustrating sediment deposits where mostly
limestone and shales and the oolite bars distributions represent the Smackover Formation (from Salvador, 1987). 
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Figure 1-2. Location map of the Smackover trend along the states of the northern US Gulf Coast rim 
(from Moore, 1984).
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1.2    BACKGROUND STUDIES  

 

General hypotheses based on a study which contains limited data can be at risk unless 

comparable results have been presented elsewhere. In contrast, conclusions can be drawn from 

the results of many studies by determining the differences between those studies. Numerous 

reports of Smackover Formation from individual interior basins along the U.S. Gulf rim have 

presented variable conclusions for the effects of sea level changes on the Smackover depositional 

system. In southwest Alabama, the results of sequence stratigraphic studies of the Smackover 

Formation are rather different from those proposed for the Upper Jurassic Oxfordian sequence in 

the Gulf of Mexico Basin and in the nearby interior basin (i.e. the Mississippi Interior Salt basin) 

under the control of eustatic sea level cycles. A brief review of some of these studies is necessary 

in order to understand the purpose of this research. 

Deposition of the Smackover Formation in southwest Alabama occurred in three separate 

basins which are now called the Conecuh Embayment, the Manila Embayment and the 

Mississippi Interior Salt Basin (Figure 1-3). Depositional environment and sedimentary facies 

were believed to be principally controlled by the third order eustatic sea level cycle but were also 

modified by paleotopography related to structural low and high in the area and the local 

movement of the Louann Salt (Benson, 1988).  

Starting from the Conecuh embayment, sedimentary facies of the Smackover Formation 

were analyzed and mapped by Sigsby (1976) into a time-slice basis using a large number of core 

samples . A long term transgressive-regressive sequence was proposed and during the lower 

Smackover a paleoenvironment  of deposition was suggested to occur under restricted marine 

conditions. A change of paleowater-depth was believed to be associated with a variation in 

siliciclastic sediment influx  and a short term sea level fluctuation during the Smackover long-

term event (Sigsby, 1976). Later, a local study by Bradford (1984) characterized the Smackover 

Formation from lower to middle and upper into ten different facies and also suggested a long-  
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Figure 1-3.   Sedimentary basins in southwest Alabama where Smackover depositions
occurred; the Mississippi Interior Salt Basin, the Conecuh Embayment, and the Manila
Embayment (from Kopaska-Merkel and Mann, 1992). 
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term transgressive-regressive sequence.  According to Bradford (1984), the lower Smackover, 

dominated by laminated mudstone and packstone, was deposited during the transgressive cycle 

under an open-marine environment. The middle Smackover, characterized by fossiliferous 

mudstone and intercalated with black laminated mudstone, was interpreted to record deposition 

restricted marine conditions. The upper Smackover was suggested to represent a regressive 

sequence comprised of ooid shoal, lagoonal and sabkha facies. In 1987, Esposito and King 

reported the same interpretation but observed six major sedimentary facies. Comparing with the 

early global eustatic sea level cycle, which had just been proposed for the Upper Jurassic 

sequence in the Gulf Coast basins by Vail et al. (1984) (later revised by Haq et al., 1988), a 

eustatic J3.1 cycle was believed to be a major control for Smackover deposition of southwest 

Alabama. The lower and upper Smackover depositions were affected by a long-term sea level rise 

of two different increasing rates.  The sequence stratigraphic model of the Smackover deposition 

in the Conecuh Embayment and the adjacent areas was proposed again by the work of Prather 

(1992; Figure 1-4). In this study, the Buckner Anhydrite, the Smackover and the upper Norphlet 

Formation were related under the single eustatic sea level control.  Sequence boundaries and 

important bounding surfaces were interpreted from the lithological marker units observed on the 

time-slice facies map which had been created from electrical well-log correlations and core 

observations. The uppermost Norphlet sandstone was interpreted to result from a reworking 

process during the initial Smackover rapid sea transgression. The Smackover Formation was 

deposited during a transgressive system tract and a highstand system tract which were separated 

from each other by a maximum flooding surface or a condensed section of the middle Smackover 

interval. The Buckner Anhydrite was part of the Smackover regressive sequence during the 

highstand system tract and the Smackover carbonate was separated from the main part of the 

Norphlet Formation by a type 2 sequence boundary. It is necessary to note that the Vail et al., 

(1984) global sea level cycles were modified and corrected to the Haq et al., (1988) global sea 

level model. The single third-order Oxfordian eustatic sea level J3.1 cycle was divided into four 
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Figure 1-4.   Sequence stratigraphic framework of the Smackover Formation in southwest 
Alabama proposed by Prather (1992). The alpahabets A to H are represented the lithological key 
markers that were used to define the chronostratigraphic surfaces for the model (from  Prather, 
1992).  
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smaller third-order cycles, the LZA 4.1 to LZA 4.4, according to later and additional coastal 

onlap data. 

In the Manila Embayment, Smackover lithofacies correlations were also used for 

interpreting the Smackover depositional framework and relating to its eustatic sea level cycle. In 

1987, Wade et al. interpreted the sedimentary facies of the Smackover deposition from east to 

west and north to south in the Manila Embayment, starting as a shelf facies in the lower 

Smackover and passing into ramp facies in the upper Smackover with some modification from 

basin topography. In their study, it was also suggested that the Manila Embayment, which is now 

a separate basin, was once connected to the Mississippi Interior Salt Basin during the Smackover 

time. Similarly, a Smackover deposition of the northern part of the Manila Embayment was 

reported by King and Hardgrove (1991) to start as carbonate shelf system and later became a 

ramp platform. The Smackover carbonate sequence formed under a single sea level cycle but 

contained two different genetic packages which were controlled by two different rates of sea level 

rise. The Late Jurassic third-order eustatic cycle expanded from the early Oxfordian to early 

Kimmeridgian was suggested as the Smackover primary control. The lower and upper Smackover 

packages were interpreted as a transgressive system tract and a highstand system tract separated 

by a maximum flooding surface, or a condensed section. A similar interpretation was from the 

Smackover study of southern part of the Manila Embayment reported by King and Moore (1992). 

Two depositional packages were termed a parasequence set and were described for the 

Smackover sequence as being controlled by a single third-order eustatic sea level cycle. The 

depositional systems were affected by different rates of sea level rise which started as a lower 

carbonate shelf and changed into a ramp carbonate facies. The two packages were separated by 

the second flooding surface, or a maximum flooding surface, in the middle of the Smackover 

Formation.  

A sequence stratigraphic model for the Upper Jurassic Smackover deposition of 

southwest Alabama was proposed primarily by Wade and Moore (1993).  An example of a 
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reference well showing sequence boundaries and bounding surfaces was taken from the Manila 

Embayment. Within a sequence framework, the lower Smackover was defined as a transgressive 

system tract (TST) and the upper Smackover was defined as a highstand system tract (HST). The 

uppermost reworked sandstone of the Norphlet Formation was part of the Smackover sequence 

during initial transgression. According to Wade and Moore (1993), the siliciclastic Norphlet 

Formation was not a separate sequence from the Smackover Formation but was instead a 

lowstand system tract (LST) of a long-term Smackover sequence. However, they concluded that 

the different interpretation for the sequence framework and depositional system tract of the 

Smackover sequence in southwest Alabama from those interpretations in the other basins of the 

central and western Gulf of Mexico resulted from a strong local lithofacies variation caused from 

paleotopography and salt tectonics. Furthermore the depositional bounding surfaces and sequence 

boundaries might not generally coincide with the formation boundaries. Lithofacies 

interpretations alone might not be sufficient to constrain a sequence framework in southwest 

Alabama compared to other sequence interpretation from broader areas owing to sediment 

modification resulting from variable local controls.  

So far, most Smackover sequence-stratigraphic models based on sedimentation in the 

Conecuh and in the Manila Embayments have not been significantly different from each other. 

Other regional sequence models of the Smackover Formation in southwest Alabama which were 

characterized from the sediment deposited in the Mississippi Interior Salt Basin located in 

southwest Alabama and Mississippi  included examples from Mancini and Benson (1980) and 

Mancini et al., (1991; 1992; 1993). Based upon these studies, the stratigraphic framework of 

Smackover sequence in the Mississippi Interior Salt Basin appeared to be similar to that applied 

to the sequence in the Conecuh and the Manila Embayments. Mancini et al., (1990 and 1993) also 

proposed their model for the Smackover deposition for the entire Gulf area. Hydrocarbons found 

in the upper Smackover grainstone and packstone of the highstand system tract were derived from 

the source rocks which were believed to be the condensed section occurring in the middle 
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Smackover during the maximum flooding surface.  The sea level cycle model of Mancini et al. 

(1990 and 1993) assumed the Upper Jurassic strata along the Gulf rim were controlled by eustatic 

sea level changes similar to the model proposed earlier by Vail et al. (1984). The Smackover 

Formation was characterized as a transgressive system tract and highstand system tract formed 

under a single third-order eustatic sea level cycle during the Oxfordian period. It appears that this 

Smackover model has also been similar to the sequence concept applied to the Smackover 

depositions in both the Conecuh and the Manila Embayments in most studies reported thus far.   

However, not all studies of the Smackover stratigraphic framework of the Mississippi 

Interior Salt Basin are in agreement. One study from Shew (1991) compared and interpreted 

continuous Smackover cores from central Mississippi and from the eastern part of Louisiana. 

Shew (1991) proposed a long-term regressive sequence for the Smackover stratigraphic model 

related to relative sea level changes. The upper part of the Smackover core characterized the 

upwardly shoaling carbonate cycles of carbonate packstone and grainstone. During the 

Smackover period, siliciclastic influxes influenced and caused interruption of carbonate 

sedimentation several times. In his report, it was proposed that an ancestral Mississippi river 

could have played a significant role in delivering terrigenous material from the continent during 

fluctuations of relative sea level. The interfingering between the sandstone and carbonate 

lithofacies might also be recorded in both the basin and in the nearshore environment due to the 

influence from longshore currents and storm processes. Another sequence model was reported 

from many subsequent studies (Heydari and Moore, 1994; Heydari et al., 1995 and 1997; 

Heydari, 2002; Heydari and Wade, 2002), where several core samples from the Mississippi, 

Lousiana and Arkansas were used for correlations.  According to Heydari et al. (1995 and 1997), 

a time-stratigraphic model interpreted from Smackover lithofacies and petrographic observations 

suggested the Smackover Formation is comprised of three upwardly shoaling cycles controlled by 

changes in relative sea level and paleoclimates. These three cycles from lower to upper called C, 

B and A occurred during an evolution of the Smackover platform from an early ramp to a shelf 
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carbonate system (Figure 1-5). During an early period, the paleoenvironment of the lower 

Smackover was anoxic and marked by high organic matter accumulation in the laminated and 

thin bedded lime mudstones and wackestone. The major hydrocarbons found in  the upper 

Smackover reservoir rocks were believed to be derived from the organic source in this lowest 

Smackover cycle source rock. The middle and the upper Smackover cycles are mainly packstone 

and grainstone formed during progradation of the barrier shoal complex after the end of the 

lowest cycle shelf margin deposit. Relative sea level fall occurred by the end of these separated 

cycles but an exposure surface could only be observed by the end of the uppermost cycle. High 

organic accumulation observed in the lowest cycle was suggested as a result from increased 

productivity of algal blooming cycles controlled by paleoclimate and paleoceanography variation. 

An increased nutrient was associated with a freshwater influx from the ancestral Mississippi river. 

Meteoric diagenesis occurred during upper Smackover time, evident from carbon and oxygen 

isotopes values and elemental data of the ooid grainstones. Lately, a sequence-stratigraphic model 

for the Smackover Formation of the north and central U.S. Gulf Coast basins, proposed by 

Heydari (2002), consisted of three separate depositional sequences which were controlled by 

three third-order relative sea level cycles, paleoclimate, and carbonate production rate. 

Clearly, there is discrepancy in the sequence stratigraphy of the Upper Jurassic sequence, 

especially the Smackover of the southwest Alabama basins. This study is therefore proposed to 

address and analyze such issues by reinvestigating the stratigraphic framework of the Smackover 

sequence in this area. It is believed that in order for the Oxfordian Smackover sequence to be 

correlated with the other global Oxfordian sequences, such as the Corallian group from the Dorset 

Coast of southern England (Sun, 1989) or the deep-shelf carbonate from southern Germany and 

southern Spain (Pittet et al., 2000), a better understanding about controls and variations observed 

in the Smackover sequence of this particular area can be very useful.  
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Figure 1-5. The Late Triassic-Jurassic stratigraphic column of the northern Gulf of Mexico 
showing showing dark organic source rock correlation with the other Upper Jurassic sedimentation
of different areas. According to Heydari et al. (1995), the Smackover Formation consists of three
shoaling upward cycles from lower to upper called C, B, A cycles (from Heydari et al., 1997). 
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1.3   DEFINITION OF THE PROBLEM 

   

From the preceding paragraphs, the variation in the sequence stratigraphic interpretation 

model proposed for Smackover deposition in southwest Alabama can be summarized into the 

following questions. 1) Is the Smackover a long term regressive sequence (third order sea level 

cycle) or controlled by shorter term sea level fluctuations?  2) Were relative sea level changes of 

the Smackover controlled by global eustasy and/or local tectonic activity and/or 

plaeoclimate/paleoceanography? 3) Can a sequence framework of a modified Smackover 

deposition by paleotopography of different basins be possibly compared?  4)  Is there different 

approach beside lithofacies that can be used to correlate the Smackover depositional framework ? 

5) If Smackover depositional system in southwest Alabama and in the northern Gulf basins were 

primarily controlled by eustatic sea level changes, why are the depositional models of the 

Smackover in these adjacent basins variable? 6) Is there any stratigraphic approach which would 

allow the depositional system of the  Smackover from the Conecuh and/or the Manila 

Embayment to be correlated with the other Oxfordian sequences? It is assumed that the answers 

to these questions probably hinge upon lithofacies and depositional environments that varied 

through time and space and were related to their local paleotopographic variation and/or different 

subsidence rate.  

The interpretation of the Smackover depositional sequences can be problematic for other 

reasons.  First, it could be due to a lack of well defined absolute age biostratigraphic data which 

could help to refine any correlation. Second, a non-coincidence between sequence boundary and 

lithological formation has possibly leads to difficulties in interpretation. Third, a lithological 

modification by a pre-Jurassic paleotopography and a gradational boundary and facies change on 

a carbonate ramp platform setting also affected  the interpretation for the depositional system tract 

boundary. Therefore, a solely stratigraphic correlation based upon sedimentary facies analysis 

may not be sufficient to provide constraint under variable local effects on a conformable 
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boundary-based sedimentary sequence between different basins in this area. This dissertation 

attempts to investigate the sequence stratigraphy  of the Smackover Formation in southwest 

Alabama by using  lithostratigraphic and chemostratigraphic approaches based upon elemental 

and stable carbon isotopic analyses. 

    

1.4   OBJECTIVES 

 

Initially, the purpose of this study was to examine, in detail, the organic matter in a 

defined depositional framework of the Smackover sequence of southwest Alabama (i.e. Mancini 

et al., 1990 and1993; Prather, 1992). The preliminary results from organic geochemical and 

elemental analysis, however, did not appear to be consistent with the established sequence 

framework. Biomarkers in the sediment derived from a condensed section were not representative 

of a maximum sea transgression and results indicated mixing of terrestrial material input with 

marine organism. A subsequent literature survey indicated that the Smackover framework in 

southwest Alabama basins did not appear to be in accord with the framework proposed from the 

nearby Mississippi Interior Salt Basin and the global sea level cycle model for the Gulf of Mexico 

basin. Therefore, the objective of this study changed to characterizing the sequence framework of 

the Smackover deposition in southwest Alabama, i.e. the Conecuh and the Manila Embayment, 

by using multi-stratigraphic approaches and combining lithological observations, elemental 

analyses, stable carbon isotope stratigraphy and organic geochemistry. The premise is that, under 

the same major control (i.e. sea level changes), even though sedimentary facies were altered by 

paleotopography and depositional conditions (i.e.diagenesis), it should be possible to correlate the 

time-stratigraphic framework for a depositional sequence such as the Smackover Formation in the 

southwest Alabama basins using various chemical parameters.  



 15

CHAPTER 2 

 

2.1 GEOLOGIC SETTING 

The geologic setting of the northern U.S. Gulf Coast region was primarily controlled by 

tectonic activities during the opening of the Gulf of Mexico from the Late Triassic to Middle 

Jurassic (Wood and Walper, 1974; Martin, 1978; Buffler, 1980; Walper, 1980). Different 

continental blocks combined with the horst and graben system were created in response to the 

tensional stresses associated with supercontinent riftings. The Jurassic sedimentation and 

depositional environments were affected by differential basement subsidence and 

paleotopography of the pre-Jurassic and mid-Jurassic structures (Wilson, 1975). On the eastern 

Gulf Coast region, the Jurassic strata were significantly influenced by the inherited framework 

that resulted from the combined effects of the earlier continental collision and suturing during the 

Late Paleozoic and subsequent extension during continental rifting in the later Late Triassic-

Jurassic (Martin, 1978; Salvador, 1987). Major positive and negative structures were created 

generally normal to the axis of the main Gulf basin. Some of these structures which were 

particularly important in the northern Gulf Coast basins were the San Marcos, Sabine and Monroe 

Uplifts. Halokinetic effects created by local Louann Salt movements increased lithologic 

complication by adding the formation of salt diapers, pillows, anticlines, grabens and several 

peripheral en echelon extensional faults. In general, most basins and sedimentation along the 

northern Gulf Coast are commonly associated with the salt-related fault systems and/or high-rise 

salt structures. The major fault system caused by local salt movement, and which extended from 

Mississippi to southwest Alabama, is the Pickens-Gilbertown, the West Bend, Pollard, and 

Forshee Fault.  Moore (1984) indicated that most fault movement activities probable occurred 

after Smackover Oxfordian stage but during the Late Jurassic Haynesville-Cotton Valle 

deposition and the development of the Cretaceous deposits.  
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On the southeastern Gulf Coast area of Mississippi and southwest Alabama, the three 

sedimentary basins, the Mississippi Interior Salt Basin, the Conecuh Embayment, and the Manila 

Embayment, were formed and associated with the local major positive basement features; the 

Wiggins Arch Complex, the Wiggins Arch, the Baldwin High, the Choctaw Ridge complex, the 

Conecuh Ridge complex, and the Pensacola-Decartur Ridge complex (Figure 2-1). The positive 

structure which separated the Mississippi Interior Salt Basin from the Manila Embayment on the 

east was the Mobile Graben. According to Wade (1987), during the Late Jurassic, a depositional 

area in Mississippi was probably connected to southwest Alabama as a main a large, active, 

subsided depocenter caused by a prominent depression of the basement surface. The Manila 

Embayment was probably not separate from the Mississippi Interior Salt Basin during the 

Smackover time but instead affected by a slower subsidence rate. The very thick sediment 

sequence in Mississippi was also associated with thick local salt diapirs especially in the central 

part of the basin. To the south of the Wiggins and on the east side of the Mississippi Interior Salt 

Basin, the Conecuh Basin and embayment was another depocenter for sedimentation. This 

embayment is separated from the Manila Embayment by the Paleozoic Conecuh-Wiggins Arch, a 

positive structure.  

2.2 STRATIGRAPHY 

Sedimentary strata in the central and eastern Gulf Coast, including southwest Alabama, 

consist of pre-Mesozoic basement rocks, the Triassic-Early Jurassic Eagle Mills Formation, the 

Jurassic Werner Formation, the Louann Salt (including Pine Hill Anhydrite Member), the 

Norphlet Formation, the Smackover Formation,  the Haynesville Formation (including the 

Buckner Anhydrite Member), and the Jurassic Cotton Valley Group (Figure 2-2). The pre-

Mesozoic basement that provided the surface upon the Mesozoic and Cenozoic sedimentation 

was comprised of the Proterozoic and Paleozoic igneous, metamorphic and some sedimentary 

rocks of the Wiggins basement complexes (Mink et al., 1990). The Eagle Mills Formation, the 
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oldest Mesozoic non-marine strata present, is represented by a red bed siliciclastic sequence 

which was interpreted to be an eroded graben-fill sediment associated with diabase and basalt 

dikes and sills (Salvador, 1987). Disconformably overlying either the Eagle Mill Formation or the 

basement rock is the Werner Formation which consists of mainly anhydrite with some minor 

shale, sandstone, and conglomerate at its base. Tolson et al. (1983) interpreted the Werner 

sediment to be the result of the initial incursion of marine water into the nascent Gulf of Mexico 

basin. The major marine inundation occurred later and allowed the development of the Louann 

Salt on top of the Werner Formation, or the Eagle Mill Formation, or the basement rock. The 

Louann Salt thickness varies locally depending upon the related structures and topography but 

generally to consist of silty, sandy, massive halite and anhydrite (Tolson et al., 1983). According 

to Bishop (1973), the updip limit of thick Louann Salt might be coincidence with the peripheral 

fault complex along the Gulf margin. The Norphlet Formation overlying the Louann Salt, or the 

Werner Formation, or the Eagle Mill Formation or basement rocks is dominated by the 

siliciclastic alluvial, redbed wadi deposits, eolian dune and interdune subarkose sedimentation 

(Benson, 1988). In southwest Alabama, the thickness of the Norphlet Formation can vary greatly 

from less than 1 ft to over 800 ft (Mancini et al., 1985). The uppermost Norphlet sedimentation is 

found locally to consist of the massive and clean sandstone which has been interpreted to result 

from the marine reworking process during an intitial marine transgression during the Oxfordian 

period. 

The Smackover Formation, which overlies the Norphlet Formation, was named by 

Bingham (1937) for the carbonate strata of the Smackover field in south Arkansas. The 

Smackover carbonate sedimentation occurred extensively across the northern rim of the Gulf of 

Mexico basins continuing from south Texas through Florida. It represents the sedimentary record 

formed during the complete marine invasion throughout the northern Gulf Coast region (Moore, 

1984, Salvador, 1987). According to Ahr (1973), the Smackover was deposited as a carbonate 
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Figure 2-2.  Generalized Mesozoic stratigraphy from the United States 
northeastern Gulf Coast (from Prather, 1992).    
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ramp platform along the gentle slope of the Gulf of Mexico passive margin. The variation of 

Smackover sediment thickness in different basins characterizes the influence and/or the 

modification from the pre-Jurassic paleostructure (Benson, 1988). The carbonate lithofacies, 

including those deposited in southwest Alabama, were interpreted to be primarily controlled by 

depositional environments which were altered, either alone, or in combination, by the inherited 

basement structures and the Louann salt movements. In southwest Alabama, the thickness of the 

Smackover locally exceeds 550 ft in the Mississippi Interior Salt Basin  (Mancini et al., 1990) but 

are between 300 ft to 500 ft in both the Conecuh and the Manila Embayments (Wade and Moore, 

1993). In the Manila Embayment, sediments are thicker near the flank where is the depocenter 

located and become thinner along the paleostructural highs (Figure 2-3). Tew et al. (1993) has 

suggested the Smackover deposition of southwest Alabama occurred in the inner ramp facies 

which were highly modified. The outer ramp sedimentary facies were interpreted for sediment 

deposited on the south of Pensacola-Decartur Ridge Complex which are in the offshore areas of 

southwest Alabama and the Florida Panhandle (Figure 2-4). 

Conventionally, the Smackover is divided into three members, the lower, the middle and 

the upper Smackover (Benson, 1988; Figure 2-5).  The lower Smackover, either gradationally or 

abruptly adjacent next to the siliciclastic Norphlet sandstone (Mancini et al., 1990), characterizes 

an  intertidal to subtidal, microbial laminated mudstone and intraclastic, peloidal, oncoidal 

wackestone and packstone sediments which are partially dolomitized (Mancini and Benson, 1980; 

Benson, 1985; Claypool and Mancini, 1989). Some carbonate organic-rich laminated mudstone 

and/or organic-rich microbial layers alternately occur forming planar to wavy wackestone and 

packstone facies of this member contain tabular intraclasts of light gray to tan color microbial 

laminated mudstone. The peloidal, oncoidal packstone and wackestone facies can be bioturbated 

and abundant of allochems and skeletal materials. The middle Smackover were interpreted as 

subtidal laminated mudstone interbedded with peloidal, skeletal wackestone and packstone 
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Figure 2-3.  Isopach map of the Smackover Formation of southwest Alabama, 
showing major depocenters and basinal areas (from Kopaska-Merkel and Mann, 1992).  
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Figure 2-4. The regional structural map of the Smackover Formation top in  
southwest Alabama, showing slope gadient on the depositional carbonate 
platform (from Kopaska-Merkel and Mann, 1992).  
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Figure 2-5.  Typical log characteristic (gamma ray and neutron/density logs) of   
the lower, middle and upper member of the Smackover Formation in southwest 
Alabama described by Benson (1988). 
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(Mancini and Benson, 1980; Benson, 1985; Claypool and Mancini, 1989). The sediment color 

varies from light- to medium-brown showing signs of pervasive to absent bioturbation (Benson, 

1988) and also argillaceous and locally silty.  According to Benson (1988) and Sassen and Moore 

(1988), a nonfossiliferous laminated mudstone was observed and exhibits dark-gray to back with 

slight bioturbated sedimentary structure. Mancini and Benson (1980), Claypool and Mancini 

(1989), and Sassen (1989) interpreted the microbial and amorphous organic matter in this middle 

unit as the major source rock for Smackover hydrocarbons in the Gulf Coast basins  The upper 

Smackover, extensively dolomitized throughout southwest Alabama, primarily consists of oolitic, 

oncolitic, peloidal grainstone, packstone, interbeded supratidal laminated mudstone and some 

anhydritic dolostone in the uppermost part of the unit (Mancini and Benson, 1980; Benson, 1985; 

1988; Claypool and Mancini, 1989; Sassen, 1989). On the paleohigh structures such as the areas 

around the Wiggins Arch complex and across the Conecuh Ridge complex, microbial 

boundstones can be abundant (Baria et al., 1982; Benson, 1988). Depositional environments of 

the upper Smackover are interpreted to vary from subtidal to supratidal characterizing the 

multiple shallowing-upward cycles (Benson, 1988; Mancini et al., 1990; Mann and Kopaska-

Merkel, 1992). The nodular to massive anhydrite observed in the uppermost part was 

conformably beneath the Buckner Anhydrite (Benson, 1988; Mann and Kopaska-Merkel, 1992).  

Several investigations, e.g. Barrett (1987), Benson (1988), Mancini et al. (1990) reported the 

presence of subarial exposure features such as  mudcracks, fenestra and dissolution fabrics, 

vadose pisoids and gravitational cements. 

Conformably overlying the upper Smackover is the Buckner Anhydrite and the 

Haynesville Formation (Tolson 1983). Salvador (1987) interpreted this sedimentary unit to be 

Kimmeridgian in age. The Buckner Anhydrite at the base of the Haynesville Formation consists 

of massive anhydrite, intercalated with dolomite, shale or anhydritic shale and anhydritic 

sandstone. On the onshore location, where the Buckner Anhydrite is absent, the basal part of the 
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Haynesville is dominated by the anhydritic shale and sandstone and/or thin anhydrite beds and 

salt stringers (Tolson et al., 1983). The upper part of the Haynesville Formation includes 

interbedded fine and coarse siliciclastic rocks associated with anhydrite imbedded or containing 

clastic materials. On the flank of Wiggin Arch complex, in the Mississippi Interior Salt Basin and 

in the Conecuh Embayment, thin beds of carbonate deposition are associated with the Haynesville 

sedimentation (Tolson et al., 1983)  

 

2.3   SMACKOVER STRATIGRAPHIC SEQUENCE 

 

Along the Gulf Coast basins, the eustatic sea level cycles were interpreted to affect the 

distinctive changes in coastal onlap and sequence stratigraphic records throughout the 

Phanerozoic time including the post-Triassic period (Todd and Mitchum, 1977; Vail et al., 1984; 

Haq et al., 1988). The Jurassic strata from the Lower to the Upper in this region were 

characterized by Todd and Mitchum (1977) as four sequences. The Upper Jurassic sequence 

included the Werner, Louann Salt, Norphlet, Smackover and Haynesville Formations were 

grouped into three unconformity-bound depositional sequences, which was later proposed by Vail 

et al. (1984) to be controlled by the third eustatic sea level cycles designated as the J2.4, (from 

155-151ma), the J3.1 (from 151-144ma), and the J3.2 (from 144-141.5ma). Later, with additional 

global data and greater resolution, Haq et al. (1988) modified the Vail et at. (1984) global sea 

level cycles and updated the Upper Jurassic sediments into six depositional sequences and the 

long J3.1 cycles were divided into small four third-order sea level cycles of shorter time periods. 

Based upon Haq’s global eustatic cycles, the Upper Jurassic strata thus consist of six depositional 

sequences. These sequences were redesignated as the Lower Zuni A or the LZA-3.2 (155.5-

150.5ma), the LZA-4.1 (150.5-149.5ma), the LZA-4.2 (149.5-148.5ma), LZA-4.3 (148.5-146.5), 

the LZA-4.4 (146.5-144) and the LZA-4.5 (144-142ma). The Smackover Formation which is 
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Oxfordian in age and was equivalent to the long-term third-order J.1 sequence under the Vail et 

al. (1984) model would possible consist of four depositional sequences controlled by third-order 

relative sea level changes . However, in southwest Alabama, the shorter third-order cycles during 

Smackover deposition were not recognizable. Therefore, most sequence stratigraphic 

interpretations of Smackover deposition in southwest Alabama have proposed that the Smackover 

deposition was controlled by a single long term third-order relative sea level cycle equivalent to  

the J3.1 cycle (e.g. Esposito and King, 1987; Mancini et al., 1990; King and Moore, 1992; 

Prather, 1992). 

The early  regional stratigraphy of the Smackover along the Gulf rim has also been  

proposed by  Budd and Loucks (1981) from south Texas into three Smackover members of 

progradational sedimentation  which characterized  the stacking of regressive cycles. Later, 

Moore (1984) added that relative sea level changes should have increased at different rates 

because of the varying sedimentary thickness of each interval. He suggested that rapid sea level 

rise must have occurred during earliest Smackover deposit and the evidence was the presence of 

deep and anoxic pelagic laminated carbonated mudstone. This initial rapid sea transgression 

likely bypassed some sediment into basinal area and formed a non-deposition on the upslope due 

to the very quick migration of high-energy up-ramp sedimentary facies. In the next stage, sea 

level rise slowed and after the normal oxic environment had terminated, moderate biological 

activities for carbonate sedimentation became dominant.  Later, when relative sea level reached a 

standstill, the development of a high energy shoal deposit took place at the sediment- water 

interface under the high-energy wave base condition. According to Moore (1984), the upper 

Smackover sediment, although not entirely progradational, was accommodated during a period of 

time when subsidence and sedimentation rate were in equilibrium which was supported by the 

coarsening-upward stacking packages. In southwest Alabama, Mancini et al. (1990) also 

proposed a stratigraphic framework of the Smackover sequence to be controlled by eustatic sea 
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level cycles into three sequences called as the Lower Zuni A Gulf Coast (LZAGC). Based upon 

their report, the Upper Jurassic strata model consists of three unconformity-bounded depositional 

sequences controlled by third-order eustatic sea level cycles and were called the LZAGC-3.1, the 

LZAGC-4.1 and the LZAGC-4.2. The Smackover Formation and the upper Norphlet 

sedimentation were interpreted to have been deposited during the LZAGC-4.1 sequence which is 

equivalent to the J3.1 under the Vail et al. (1984) model (Figure 2-6).  Under the Mancini et al. 

(1990) model, the long-term Smackover sequence was controlled by a single third-order eustatic 

sea level cycle and comprised the transgressive and the highstand system tracts. The boundary 

between the transgressive and the highstand system tract  was the condensed section or the 

maximum flooding surface which represented the middle Smackover and a high organic 

accumulation interval (Figure 2-7). This Smackover stratigraphic model which has been accepted 

in the southwest Alabama basins was also proposed by Mancini et al. (1993) for the Smackover 

sequence for the entire Gulf Coast area.  

 

2.4   A DEPOSITIONAL SEQUENCE  

 

In order to learn more about the stratigraphic sequences of Smackover Formation, at first, 

it is helpful to introduce the general concept of a depositional sequence and a eustatic sea level 

cycle. A depositional sequence is interpreted as rock sequence deposited during a cycle of relative 

sea level changes from a starting to an ending inflection point on the sea level curve. It is usually 

defined as a succession of genetically related strata, bound at the top and bottom by 

unconformable or conformable surfaces termed a sequence boundary (van Wagoner et al., 1988 

and 1990). There can be two different types of sequence boundaries within a depositional 

sequence called as type 1 and type 2.  A type 1 sequence boundary is formed when the rate of 

eustatic fall exceeds the rate of basin subsidence at the bank or platform margin. It is usually 

characterized by subaerial exposure and erosion of the platform, concurrent submarine erosion on  
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Figure 2-6.  A  comparison of sequence stratigraphic frameworks of the Upper Jurassic 
strata of the Gulf of Mexico basins which includes the Smackover Formation proposed by 
Vail et al.(1984), Haq et al.(1988) and Mancini et al.(1990) (from Mancini et al.,1990). 

Mancini et al., 1990 
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Figure 2-7. Depositional system tracts and lithological records of the Upper  Jurassic 
sequences characterized by Mancini et al. (1990). 
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the foreslope and a downward shift of the coastal onlap. Unlike type 1, the type 2 sequence 

boundary is formed when the rate of eustatic fall is less than or equal to the rate of basin 

subsidence. It is commonly marked by subarial exposure of the inner platform peritidal and shoal 

areas.  There are five orders of relative sea level changes that could occur depending upon time 

intervals and the processes which control them (Figure 2-8).  Two major controls upon sea level 

changes (i.e. recorded changes in vertical accommodation space which are termed “relative” 

when used within an intrabasinal perspecstive, but with the term “global” when used within a 

correlative interbasinal or global perspective), the tectonic activities and climate, can be very 

sensitive to the third-order eustatic sea level changes and sediment supply by different processes 

and different magnitudes (Figure 2-9).  While the orders might not be rigidly defined owing to 

the wide range of conditions, the basic building block for the depositional system in a sequence 

which may be recognized especially in the high frequency sequence (the 4th and the 5th order) are 

defined as a parasequence. A stacking of parasequences is called a parasequence set which is 

equivalent to a depositional system which is the building block system for a sequence and is 

called a system tract (van Wagoner et al., 1988). A system tract is a linkage of contemporaneous 

depositional systems or a parasequence set which is defined by the types of bounding surfaces, 

stratal geometry, and position or time interval during the relative changes in  sea level cycle. 

There are four types of system tracts that occur in a sequence and these are the lowstand system 

tract (LST), the transgressive system tract (TST), the highstand system tract (HST) and/or the 

shelf margin wedge system tracts (SMW). In a sequence, a lowstand system tract deposits 

basinward above the preceding platform/bank margin. It is separated from a preceding highstand 

system tract or a shelf margin wedge of the earlier sequence the type 1 or type 2 sequence 

boundary. The transgressive system tract represents a rising of relative sea level and is separated 

from the lowstand system tract by the first transgressive surface or what is known as the first 

flooding surface. The transgressive system tract consists set of sedimentations occurring during 

the rise of relative sea level (i.e. backstepping or retrogradational units) which is usually thicker  



 31

 

 

 

Figure 2-8. The hierarchy and different time-scale of the stratigraphic depositional
sequences related to eustatic sea level cycles, showing with different key features 
(from Duval, 1992). 
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Figure 2-9. The influence of tectonic and climatic processes on the relative sea level changes and 
 sediment supply (from Church and Coe, 2003). 
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shelfwardly and thin basinwardly. The highstand system tract is separated from the transgressive 

system tract by the maximum flooding surface or a condensed section zone.  The condensed 

section typically characterized period of high organic accumulation and low sediment from the 

shelf. A very slow sedimentation rate in the deep basin affects the formation of the deep marine 

hemipelagic or pelagic deposition (Loutit et al., 1988). The shelf margin wedge system tract is 

formed above the highstand system tract if sea level fall is not beyond the major slope break 

point. The formation of the sequence boundary either type 1 or type 2 is dependent upon the rate 

of eustatic fall and the rate of sediment subsidence (e.g. van Wagoner et al., 1988).    

 

2.5  CARBONATE RAMP STRATIGRAPHIC SEQUENCE  

 

A carbonate ramp depositional setting was first introduced by Ahr (1973) using the 

Upper Jurassic Smackover carbonate platform of the Gulf of Mexico as an example. In this 

concept, a carbonate ramp is simply a carbonate platform with a low gradient slope (<1˚) from 

shoreline to basin. There are two ramp platform categories depending upon the slope gradient 

from the shoreline to the deeper basin which are a homoclinal ramp and a distal steepened ramp 

(Read, 1982 and 1985).  Burchette and Wright (1992) reported carbonate ramps are formed in all 

types of sedimentary basins, but are best developed where subsidence is flexural and local 

gradients are slight over large stable areas. Due to a low platform gradient, a major slope break is 

not commonly recognizable in the shallow water depth environments. Sedimentary facies on the 

ramp platform simply vary gently downdip from proximal shallow-, high-energy water facies to a 

distal-, low-energy facies.  Depositional boundaries are controlled by two critical interfaces which 

are the products of the wave energy conditions (Markello and Read, 1981; Aigner, 1984; Calvert 

and Tucker, 1988; Burchette and Wright, 1992) known as the fair weather wave base (FWWB) 

and the storm wave base (SWB).  From these boundaries the carbonate ramp depositional profile 

is subdivided into the inner ramp, mid-ramp, outer-ramp and basinal settings. The water-depth 
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conditions of these settings are related to the distant between these two interfaces and the slope 

gradient of the platform (Figure 2-10). Sedimentary facies in the depositional zone are variable 

depending upon controlling factors related to carbonate sediment factory and water energy along 

the platform slope. Burchette and Wright (1992) also indicated that tectonic activity proximal to 

where carbonate ramp platforms develop can be very important as it can amplify or diminish 

environmental conditions that are favorable to carbonate production and deposition (e.g. high rate 

of clastic input, hypersalinity, or cool climate). 

The depositional sequence of carbonate platforms consists of variable carbonates 

depositing during different system tracts which are controlled by changes in relative sea level or 

between the accommodation space and the sedimentation rate. For a carbonate ramp system, the 

simple platform geometry creates a simple and relatively straightforward concept when compared 

to the siliciclastic and the shelfal or rimmed type carbonate platform (Burchette and Wright, 

1992; Tucker et al., 1993; Figure 2-11). Because of the gentle and slight gradient on a platform 

slope with no major break, sedimentary facies which are usually formed parallel to the platform 

strike (Imlay, 1973) can be sensitive primarily to even a small change of relative sea level. During 

a major sea level change, sedimentary facies along the stable platform will, in principle, be 

correlative for a wide horizontal scale. Tucker et al. (1993) suggested depositional conditions of 

simple carbonate ramp platforms can be used to diagnose sea level changes due to the control of 

the facies belts which move up and down along the low slope gradient.   The internal sequence 

architecture and sequence stacking patterns usually reflect a frequent change of small cyclic scale 

due to base-level excursion that responds to the change of slope accommodation space (Burchette 

and Wright, 1992).  The sequence boundary on the carbonate ramp system is different from that 

which occurs in other carbonate systems and is affected by its small slope gradient. The sequence 

boundary on a ramp system can be associated with fluvial incision and/or siliciclastic influx 

rather than expressed by typical exposure surfaces and/or karstification which observed on a 

rimmed or shelf system (Tucker et al., 1993). The other transitional surfaces occurred between 
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different system tracts are  the maximum flooding surface and the first transgressive surface.  

Because carbonate production is highly sensitive to sea level changes, for most carbonate 

sequences, the TST and HST are more important depositional systems than the LST. During the 

lowstand sea level, carbonate production can be highly affected by siliciclastic sediment dilution 

showing low carbonate sedimentation. In the TST which deposited during a following sea 

transgression, variable sediment geometries (i.e. retrogradation, aggradation or progradation) can 

be produced depending upon the rates of relative sea level changes which are controlled by the 

accommodation space and carbonate sedimentation rate.  For the HST, the high and stable sea 

level promotes thicker carbonate sedimentation of aggradation and progradation. Because of a 

very small slope platform angle, Burchette and Wright (1992) suggested that a dramatic change in 

sediment characteristics between the ramp HST and LST might not be recognizable and a distinct 

transitional surface for the change on vertical lithofacies may not be observed. Unless the sea 

level fall is substantial, a distinctive marked exposure surface on the inner ramp facies and a 

downward shift of a shallower sedimentary facies can represent the carbonate ramp sequence 

boundary.  During the LST, an evaporite deposition, a meteoric diagenesis, and/or high amount of 

siliciclastic influx can be very common due to a basinal restriction, a mixing zone between 

meteoric-marine water and/or an increase of the continental river discharge that approaches the 

ocean (Figure 2-12). Because of the lower solubility of evaporites in seawater, some LST 

evaporites may have a greater chance of being preserved when buried by an ensuing rapidly 

advancing TST.  For a ramp HST evaporite, with the ensuing LST, it will eventually be exposed 

to meteoric waters and and thus can be subjected to stronger early meteoric diagensis. Burchette 

and Wright (1992) reported that preserved evaporites, especially if subaqueous, may be a 

potential indicator of a ramp LST, while increased carbonate production rate is correlated with 

the TST and definitely with the HST. Thus for a ramp there are lithofacies occurrences which can 

potentially be diagnostic indicators of sea level excursions. 
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CHAPTER 3 

 

3.1 CORE ANALYSIS AND SAMPLES 

 

The core samples that were used for investigating the Smackover depositional framework 

were collected from single wells in the Conecuh Embayment and in the Manila Embayment 

(Figure 3-1). These two cores have been used elsewhere as a reference well for framework of the 

Smackover deposition in the two basins. From the Conecuh Embayment, the Smackover core for 

study is from the T.R. MILLER MILLS 17-11, #1 well (17-2N-11E, Escambia County, permit 

2465) which was earlier described by Esposito and King (1987) and Prather (1992; Figure 3-2). 

From the Manila Embayment, the Smackover core is from the #1 NEAL ET AL UNIT 30-1 well 

(30-7N-4E, Clark County, permit 3648) which has been investigated by Manicini et al. (1990) 

and Wade and Moore (1993; Figure 3-3).  The vertical distribution of organic content has been 

characterized on the depositional system tract for the Smackover sequence. By correlating these 

two cores on a sequence framework, both lateral and vertical variations can also be examined. 

Both cores contain almost the complete Smackover carbonate interval and include the Norphlet 

Formation and the Buckner Anhydrite at the bottom and the top, respectively. Therefore these 

cores are ideal for providing data to compare the Smackover between the two study areas.  

 Cores were drilled and collected by different oil companies and were stored in part as the 

permanent core collection of the Alabama Geological Survey in Tuscaloosa, Alabama. Core 

description and photos were undertaken at the core facility unit and then small pieces of core 

samples were taken back to the University of Oklahoma for petrographic and geochemical 

analyses. Core derived from the T.R. MILLER MILLS 17-11, #1 well are from depths labeled as 

13504 ft to 13863 ft and contain the total thickness of Smackover carbonate sediment of about 

1335.8 ft. The other core from the  #1 NEAL ET AL UNIT 30-1 well is from depths labeled as 

13093 to 13596.3 ft and the total thickness of the Smackover carbonate was about 442.8 ft.
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#1  NEAL ET AL  UNIT 30-1
30-7N-4E, CLARK CO. 

  T.R.  MILLER MILLS 17-11, #1  
17-2N-11E, ESCAMBIA  CO. 

Figure 3-1   Locations of two Smackover cores examined in this study.  
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Figure 3-2. A sequence depositional framework of the Smackover   
Formation from southwest Alabama based on the Smackover core of the 
 T.R. MILLER MILLS17-11, #1 well similar to the core used in this study
(Prather, 1992). 
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Figure 3-3.  The Smackover depositional  system  tracts during relative sea level changes 
interpreted by Mancini et al. (1993) from the  #1 NEAL ET AL UNIT 30-1 well in the 
Manila Embayment.  Well log characteristics and the TOC were suggested to correspond to 
changes of the third-order relative sea level.    
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Photomicrographs of thin sections from samples of both cores were taken to compare lithofacies 

and paleoenvironment and  paleowater-depth interpretations.  

 

3.2  METHODS AND INSTRUMENTS 

 

For chemical, isotopic, and organic geochemical analysis, whole rock samples from 

different Smackover lithofacies and variable core depth were selected randomly. Seventy-five 

samples were taken from the T.R. MILLER MILLS 17-11, #1 well and eighty-three samples were 

from the #1 NEAL ET AL UNIT 30-1 well. A few samples were also derived from the Norphlet 

sandstone and the Buckner Anhydrite.  Small pieces of individual samples, after cleaning with 

water and methanol were dried and subsequently crushed into powder (grain size 200 mesh) using 

a shatter box (SPEX Industries, 2-3 min, at ca. 900 rpm). Between each crushing process, the 

shatter box was thoroughly cleaned by detergent, rinsed with water and distilled water, and dried 

by methanol or acetone in order to prevent cross-mixing and contamination.  

Prior to the subsequent analyses, each crushed rock sample was also analyzed for 

carbonate (and dolomite) minerals using acid dissolution technique (HCl).  Approximately 2 gm 

of sample (duplicated)  was weighed and placed into individual porous crucibles which were in a 

glass tray in order to allow acid dissolution reaction to proceed. Ten percent hydrochloric acid 

(10% HCl) was used to fill each crucible. Each crucible frequently refilled for period of at least 

72 hours or longer until no more CO2 from carbonate or dolomite dissolution was observed. The 

samples were removed from the tray and the insoluble residue, or a non-carbonate fraction, left in 

the crucible was washed and rinsed by distilled water several times using a vacuum suction until 

acid was completely removed (checked by a listmus paper for neutral). The samples were 

subsequently dried in the oven and weighed after cooling to room temperature. The insoluble 

residue (if any) was weighed. The exact weight loss of each sample caused by acid dissolution is 

assumed as the carbonate and/or dolomite fractions.  Finally, the percentages of  dissolved 
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carbonate minerals and the non-carbonate fraction were calculated and averaged between the two 

analyses using precision no greater than +/- 0.5 %.  These insoluble residues were later used for 

total organic carbon and organic carbon isotope analysis.   

 

3.2.1 ELEMENTAL ANALYSIS   

 

All of the whole crushed rock samples were analyzed for carbonate and siliciclastic 

minerals and related elements using X-ray Fluorescence Spectrometry. Before analysis, whole 

rock powder samples were prepared into pressed borate powder pellets of approximate 0.5 cm 

thick. The measurement was later performed at the Laboratory of the Geological Department at 

the Northern Illinois University, Illinois through the operation and assistance of Dr. Neil Dickey. 

The spectrometer X-ray fluorescence instrument was a Siemen (Bruker) SRS300 with a Rhodium 

end-window tube detector. The intensity of a characteristic line of a specific element of interest in 

each samples was measured after samples were loaded into the instrument. The intensity value 

was corrected by substracting the peak intensity from that of the background measurement taken 

nearby but away from the influence of the peak. Each element intensity was then calibrated with 

the standard curve created from several known standards and converted into percent (for the 

major elements) and parts per million (ppm). For the major elements (Al, Si, Ca, Mg, Mn, Ti, P, 

Na and K), the percentages of each elements were first derived as the oxide mineral contents 

using a program developed by Dr. Barry Weaver (personal comm., 2004). However, the data 

reported in the Appendices of this thesis are percentages of individual elements after a 

recalculation from the element weight percent in each oxide minerals.  

 

3.2.2 STABLE CARBON AND OXYGEN ISOTOPES 

 

Carbon isotope analyses were performed for both inorganic carbonate (δ13Ccarb) and 

organic carbon (δ13Corg). Oxygen isotopes (δ18Ocarb) were measured on the same sample that was 
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analyzed for carbonate carbon isotopes. Carbonate carbon and oxygen isotopes were analyzed on 

the whole crushed rock samples while organic carbon isotopes were analyzed on the non-

carbonate fraction. All of the isotope analyzes were determined in the isotope laboratory of the 

School of Geology and Geophysics, University of Oklahoma by Rick Maynard with permission 

from Professor Michael Engel.  

For carbonate carbon and oxygen isotope analyses, approximately 2-3 mg of the crushed 

sediment were placed in the hand-made Pyrex glass sample boat. The sample boat was then 

dropped into a Pyrex tubes (22cm x 7 mm i.d) for the reaction with the 100% H3PO4 at 90˚C for 

1.5 to 2 hours. For all samples, the temperature was set at 90˚ C by using the online-automated 

system in order to ensure that all of the CO2 would be released from the calcite and/or dolomite 

minerals (in general, 50˚C is usually assigned if only calcite mineral is presented). The resulting 

CO2 gas was isolated and purified cryogenically in a vacuum line before continuing to the inlet of 

the Finnigan Mat Delta E Isotope Ratio Mass Spectrometer.  Both inorganic carbon and oxygen 

isotope compositions were detected and calculated using the following equations. 

δ13C   = [ (Rsample / Rstandard) - 1 ]  x 1000    as         R  = C13/ C12   

δ18O   = [ (Rsample / Rstandard) - 1 ]  x 1000    as         R  = O18/ O16   

For the organic carbon isotopes, unlike the carbonate carbon, the non-carbonate 

component from the decarbonization process of approximately 1 mg was used.  Initially, this 

sample was placed into the Pyrex glass in a similar manner to the inorganic carbon process, but 

with the temperature of the preheated tube at  550˚C.  Fired cupric oxide (3 gm-CuO, 850 ˚C) was 

loaded into the tube as a catalyst to insure complete combustion of organic carbon combustion 

that occurs at 550 ˚C for two and a half hours. The CO2 gas from the combustedorganic material 

was subsequently analyzed in steps similar to those described for carbonate carbon above. The 

composition of the organic carbon isotope was calculated using a similar equation applied for the 

carbonate carbon. All the carbon and oxygen isotope compositions of samples were reported in 



 46

the delta notation (δ) in parts per thousand unit (‰) relative to the PeeDee Belemnite (PDB) 

standard after being corrected for O17 contribution to mass 45 and C13 contribution to mass 46 

(Craig, 1957). Oxygen isotopes were also corrected to a temperature of 25 ˚C reaction through the 

fractionation factors of calcite or dolomite with 100 % H3PO4 at 25 ˚C and 50 ˚C (Swart et al., 

1991). 

 

3.2.3 TOTAL ORGANIC CARBON (TOC) ANALYSIS  

 

Total organic carbon (TOC) analyses were performed at the laboratory of the 

Environmental Science Department of the University of Oklahoma with a permission of 

Associate Professor Mark Nanny. The TOC instrument was a Shimadzu TOC 5050 Total Organic 

Carbon Analyzer. Residual fractions from decarbonized samples from acid dissolution step were 

used. Some of these samples were subsequently used for organic carbon isotope analysis. In the 

first step, each sample was precisely weighed on a pre-cleaned (heated) ceramic boat. The sample 

was then pushed into a combustion chamber to combust at 900 ˚C using oxygen gas and a 

platinum catalyst. The yield of organic carbon materials in the sample as CO2 was subsequently 

detected by the combined IR spectrometer. For each measurement, the released CO2 was 

converted into organic carbon percent on the calibration curve using glucose as standard 

(C6H12O6( solid) of 40% C by wt.). During the analysis, the accuracy of the glucose standard curve 

was also repeatedly checked with the carbonate standard (CaCO3  of 12%C by wt.). Each sample 

was measured in duplicate with a precision of  +/- 0.05 % wt. 

 

3.2.4 EXTRACTION AND FRACTIONATION OF ORGANIC MATTER 

 

In addition, a few whole crushed rock samples selected from both cores were analyzed 

for biomarkers and determine their organic geochemical characteristics. Sample preparation and 
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analysis were conducted at organic geochemical laboratory of Professor Richard P. Philp, the 

supervisor of this dissertation, at School of Geology and Geophysics, the University of 

Oklahoma. Before extraction, the powdered rock sample was weighed. Although the 

recommended weight is typically 50 to 100 gm, for this study it was dependent upon sample 

availability (sample size ranged between 20 to 70 gm). The sample was placed in the extract 

thimble in the Soxhlet apparatus which had been previously cleaned. Solvent extraction was 

performed for 48 hours using approximate 350 ml of mixed 1: 1 (v/v) solvent of methylene 

chloride (CHCl3) and methanol (CH3OH). After finishing, the solvent was removed using a 

rotoevaporator under low pressure and temperature (~ 40 ˚C).  The whole extract was transferred 

into a small vial by small amount of solvent, dried under nitrogen (N2) gas, and weighed. In the 

next step, a known weight of organic extract was treated by addition of a 40 fold volume of 

pentane (C5H10) solvent. The mixture agitated using an ultrasonic shaker and allowed to stand for 

at least 12 hours to permit the asphaltene to precipitate in a glass centrifuge tube. The non-

dissolved asphaltene component was separated from the dissolved component (called maltene) by 

centrifuging. The pentane/maltene solution after centrifugation was transferred into the flask and 

was evaporated using a rotoevaporator. The asphaltene precipitate in the centrifuge tube was 

washed with pentane at least two times for complete maltene separation. After pentane 

evaporation, the maltene was transferred into small vial using a small amount of pentane and 

dried under N2 gas before weighing. At the same time, the asphaltene fraction was transferred 

into small vial using a small amount of methylene chloride, dried and then weighed.  

 After removal of asphaltenes, the maltene fraction was separated into saturates, aromatics 

and polar (NSOs) compounds. The fractionation was performed using high performance liquid 

chromatography (HPLC, Eldex Model 9600, equipped with Whatman Partisil 5Pac Column, 

25cm). The maltenes were dissolved in hexane (50mg/20ml) prior to injection in the HPLC 

system. The fractionation process was achieved with a timed program using different mixtures of 

hexane, methylene chloride, and ethylacetate as eluents at designated time periods (McDonald 
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and Kennicutt, 1992). The eluent containing each fraction was evaporated using low temperature 

and low pressure rotoevaporator. After drying under N2 gas, each fraction was weighed. The 

saturate fraction was analyzed by gas chromatography as described below.    

 

3.2.5 GAS CHROMATOGRAPHY (GC) 

 

The saturate and aromatic fractions of each rock sample were analyzed by gas 

chromatography using a Hewlett Packard 5890A GC and Varian 3300 GC, respectively. For the 

saturates, the HPLC-5890A-GC with a split/splitless capillary injection system was equipped with 

a 30m x 0.32 mm (i.d.) J&W Scientific DB-1HT fused silica capillary column of 0.1µm film 

thickness of dimethylene polysiloxane. The injector temperature was fixed at 300 °C. The 

temperature program for saturates was from 40 to 360 °C, with 1.5min initial holding time and 

then increased with the rate of 4°C/min to final temperature of 360 °C, and held 37.5min for a  

total running time 120 min. In the GC analysis, helium gas (H2) was used for a carrier gas. For 

identification and quantification, the fully deuterated C24 alkane ( n-C24D50) was used as an 

internal standard for saturate fraction.  
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CHAPTER 4 

 

4.1   LITHOLOGY AND CORE OBSERVATIONS 

 

 In the first instance, the two Smackover cores were examined for their lithology and 

sedimentary facies.  The paleoenvironments and paleowater-depths are interpreted from core 

descriptions and photomicrographs of thin sections. Because of the distinct intervals marked by 

an increase in sliciclastic influx and/or dolomitization observed in both cores, sedimentary facies 

of the Smackover were combined into facies associations recorded by depth unit. The general 

criteria for the paleoenvironment and paleowater-depth interpretations were taken from published 

literature (i.e. Wilson, 1975; Read 1980; Tucker, 2001).  The specific lithofacies concepts which  

will be used within a carbonate environment setting are summarized as follows:  

 

Observed Sedimentary Facies    Interpreted Paleoenvironment and  

  Water-depth Interpretation 

 

Texturally supermature quartz sand  Terrestrial (eolian)/proximal to  

 displaying cross –stratification   shoreface 

 

Sediment grading (fining-upward)  Terrestrial-fluvial/ tidal channel 

 

Anhydrite nodules              Supratidal/ tidal flat environment  

and/or gypsum ghosts                or back barrier lagoon 

 

Planar stratification,    Lower supratidal/ strandplain/ 

submature sandstones    shoreface (beach) 

   

Finely wavy laminated algal   Low energy lower intertidal 

boundstones and mudstones   to subtidal, tidal environment 

“ribbon rock” characteristic 
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Pelloidal grainstones    Moderate energy intertidal 

 

Ooid grainstones    High energy intertidal 

 

Limpid dolomite    Schizohaline intertidal 

      (intermittent fresh/saline water zone) 

 

Textural inversion or    Low energy subtidal behind barrier  

mixed grain size (bimodal )   (lagoon) with washovered sediment  

from high energy (storm surge) 

 

 Green/gray calcareous algal packstones              Shallow subtidal 

 Bioturbated pack/wackestones               Moderate depth subtidal 

 

 Mixed carbonate siltstone and mudstone, Moderate depth subtidal proximal 

 (clastic inputs such as metamorphic  to distal deltaic sediment input  

 rock fragments, quartz, etc)  

 

Sparse silty quartz wacke/mudstone  Moderate depth subtidal 

with windblown quartz detritus 

 

 Spiculiferous calcarenite   Moderate to deep subtidal of 

low energy sponge community 

  

 Brachipod pack/wackestone   Open marine (normal saline water) 

 Mudstone (micrite)    Restricted peritidal (lagoon) or 

             subtidal 

 

 Sparse fossil mudstone/wackestone   Stressed environment (restricted) 

        e.g. hypersaline water 

 

 Bioturbated and     Destruction from biogenic action 

 massive carbonate    during primary deposition 
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 Euhedral limpid dolomite    Primary dolomite, mixed 

       salinity waters 

  Massive dolomite    Post depositional diagenetic 

       replacive dolomite 

 

Massive/nodular evaporite   Likely subtidal in restricted basin 

      associated with high evaporation rate 

 

4.2   CORE ANALYSIS 

 

The Smackover Formation from the Conecuh and the Manila Embayment consists of 

different thicknesses at different depth intervals. Sedimentary facies exhibit variations between 

the two depositional environments which were probably affected by paleotopography and relative 

sea level. The photographs of both cores are shown in Appendix A and Appendix B and the 

photomicrographs of thin sections are shown in Appendix C and Appendix D. 

In both cores, the Smackover carbonates overly the siliciclastic sandstone of the Norphlet 

Formation. In the Conecuh Embayment, although some samples were missing, a distinct 

boundary contact is observed and illustrates a sharp change from sandstone to carbonate 

sedimentation (from 13845-13847 ft). In the Manila Embayment, a thin bed of carbonate lies 

above the oxidized red bed sandstone. The major part of the Smackover carbonate however 

overlies the top of the clean massive sandstone interval which marks the upper boundary of 

earlier sedimentation of a thin carbonate bed (13557.5 ft). Between these two cores, there were 

different sedimentary facies that occurred during the Norphlet deposition. In the Conecuh 

Embayment, the sediments from 13860 ft (bottom of core) to 13845 ft exhibit graded bed of 

fining- upward structure, heavy mineral partings, tabular cross beds and changes from grayish 

pink to light gray color. The heavy mineral partings are abundant along the stratifications. In the 

Manila Embayment, sediments from (13596.3 ft) (bottom of core) to (13557.5 ft) exhibit the 

mixed siltstone and sandstone with different sedimentary structures. Underlying the carbonate the 
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massive, white sandstone is observed.  Under thin sections, metamorphic rock fragments are 

noticeable in the Norphlet sediments deposited in both areas.    

 

4.2.1 T. R. MILLER MILLS 17-11, #1 (17-2N-11E, ESCAMBIA CO.) 

  

During the Smackover period, carbonate deposition in the Conecuh and the Manila 

Embayment exhibited similar and variable carbonate facies. Mudstone, algal laminated mudstone 

and fecal pellet materials, peloidal mudstone/wackestone are dominant in the lower Smackover 

sediment. Esposito (1987) and Moore (1991) had also reported that 60 to 80 percent of 

sedimentary facies of the Smackover carbonates in the Conecuh and the Manila Embayment are 

comprised of carbonate mud.  

From the core depth 13845 ft to 13740 ft, carbonate sediments illustrate small 

sedimentary cycle (meter scale and smaller) changes from algal laminated mudstone to massive 

carbonate mudstones/ wackestones.  A thin section from the base of the Smackover of this core 

(13845 ft) illustrates an abundance of fossils but with diagenetic calcitization the sediments were 

unable to identify thoroughly. Between 13800 ft and 13797 ft, a biogenic bounded structure 

consists of oncoidal wackestone/mudstone and peloidal wackestone, anhydrite nodules, algal and 

microbial components and terrestrial materials was occurred and mixed with the gray mudstone. 

Kopaska-Merkel (1994) identified this type of biogenic structure in the Smackover and called 

organic microreef (Figure 4-1). The abundance of the microreef  in the lower Smackover 

sedimentation in the southwest Alabama, including the Conecuh and the Manila Embayments, 

was also previously reported by many others (Baria et al., 1982; Bradford, 1984; Cunningham, 

1984; Markland, 1992; Kopaska-Merkel, 1994). For the non-structural mudstone, horsetail 

stylolites and pressure solutions are very common and some also exhibit layering organic 

accumulation. At about 13787.5 ft, the thin section shows pelletoid mudstone with broken 

spicules, scattered medium to fine silty quartz and abundant fenestra. During this interval, 
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(a)

(b) (c) 
Microbial boundstone

Anhydrite

Oncoid 

Figure 4-1. 
(a) Algal boundstone (microreefs) incorporated oncoids, packstone, wackestone 
and anhydrite nodules, (b)  The sketched structures of microreefs. Arrows 
indicate oncoids that formed as the nucleus part of the microreefs  which grew on 
top of the previous one (Kopaska-Merkel, 1994), (c). Algal boundstone 
incorporated with oncoids, wackestone, anhydrite and terrestrial sediment 
observed in the Smackover deposition in the T. R. MILLER MILLS 17-11, #1 
core (this study) 
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some fossils, bioturbation and small abundant of terrigeneous materials are observed in the core. 

Most of the silt size quartz appears to be associated with algal laminations but become more 

visible at the end of this interval. 

 From 13740 ft to 13675 ft, the sediment deposition of the T.R. MILLER MILLS 17-11, 

#1 well exhibits significantly increased fine grain terrigeneous clay fraction. Carbonate sediments 

show fissility and become contorted or split apart along these terrigeneous bedding planes. Thin 

sections from sediments at 13737 ft, 13712 ft, and 13703 ft, illustrate mudstone mixed with 

claystone, scattered organic material and pyrite. Beside gray bluish mudstone and argillaceous 

shale alternation there is no organic-rich black shale that can be observed in this part of the core.  

From 13675 ft to 13622 ft, the carbonates consist of massive wackestone/mudstone and 

packstone/wackestone with very low or no terrigeneous input. At the base of this interval there is 

little terrigeneous material observed, large coated grains (e.g. oncolites) are visible. In the core, 

some marine fossils (e.g. brachiopod) can be observed on the dark bluish gray to black brownish 

gray sediment. Microstylolites with concentrated organic material are common. Near the top of 

this interval, in the packstone and wackestone facies, small anhydrite nodules and terrigeneous 

material become visible. Photomicrograph of a thin section at 13622.5 ft exhibits a sparse 

peloidal microcrystalline wackestone of dissolved grains filled with precipitated calcite. 

From 13622 ft to 13589 ft, the carbonates of the Smackover Formation received an 

increase in terrigeneous sediment influx similar to that observed between 13740 ft to 13675 ft. 

The sediments become increasingly fissile with contorted structures or even broken. The thin 

section at 13600.7 ft illustrates sediments of mixed siltstone and wackestone with coarse to fine 

silty quartz grains and scatter micaceous phyllarenite. Some carbonate grains (e.g. peloids, 

Favreina pellet), fossils (ostracods) and shell fragments are also observed.  

From 13589 ft to 13510.2 ft, the Smackover sediment is mainly dominated by carbonate 

deposition and terrigeneous materials are rare. In the lower part of this core interval, sediments 

are dominated by wackestone and mudstone but at shallower depths, packstones and grainstones 
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are abundant and dominated by oolitic and peloidal carbonate grains. Sediment colors vary from 

bluish gray in the wackestone and mudstone to light gray and tan in the packstone and grainstone 

facies. The carbonates and dolomitized carbonates of this interval illustrate some grading 

sediment structures and show fining upward grainstone.  Photomicrographs of thin sections show 

dolomitized algal laminated mudstone (13555 ft), porous peloida/ oolitic packstone (13526 ft), 

and nonporous dolomitized oolitic grainstone (13516 ft). At the end of this interval, a sharp 

boundary occurred separating an overlying anhydrite from carbonate sedimentation.  The 

Buckner anhydrite overlying the Smackover exhibit mixed anhydritic mudstone and anhydrite 

(thin section at 13505.8 ft).   

 

4.2.2  #1  NEAL ET AL UNIT 30-1 ( 30-7N-4E, CLARK CO.) 

 

 At the base of the Smackover Formation of this core, some flaser lens of carbonate 

sedimentation are present lying next to the white and massive sandstones of the Norphlet 

Formation. Under these sandstones and above the poorly cemented siliciclastic red bed sands, the 

thin carbonate bed is also observed intercalating between the sandstones.  The Smackover 

carbonates of the #1 NEAL ET AL UNIT  30-1 illustrate different sedimentary facies when 

compared to those occurring in the Conecuh Embayment. In this core, the carbonates generally 

exhibit a higher abundance of terrigeneous sediments and are dolomitized. Large and small 

anhydrite nodules are abundant throughout the core. The centimeter small carbonate cyclicity is 

observed alternating between the wackestone and mudstone of a ribbon rock characteristic. 

Within this core, dark organic-rich layers (millimeters) and sediments (centimeters) occur. 

Shallowing upward cycles are noticeable. Each cycle consists of interbedded dark organic-rich 

mudstone interval at base, alternating mudstone and wackestone small centimeter cyclicity, which 

could be dolomitized in the middle, and dolomitic wackestone mixed with evaporite and 

siliciclastic sediments at the top. Between these cycles, a sharp transition may or may not be 
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recognizable. In the upper part of this Smackover sedimentation, carbonates exhibit strong 

dolomitization and obscured original carbonate grains and sedimentary structures. There is a 

major difference between the upper Smackover sediments in the Manila Embayment and the 

Conecuh Embayment.  In the #1NEAL ET AL UNIT, 30-1, the oolitic packstone and grainstone 

sediments which predominate in the T.R. MILLER MILLS 17-11, #1 are absent. Instead, the 

dolomitized carbonates alternate with several sandstone beds. In the following description, the 

carbonate sedimentation of the #1 NEAL ET AL UNIT 30-1 well is examined and separated into 

core depth intervals.  

The first interval starts from the lower Smackover next to the white and massive sands of 

the Norphlet Formation and is from 13557.5 ft to about 13435.5 ft.  At least two sedimentary 

cycles of different thickness occur. The sedimentary facies of these cycles consist of alternating 

planar laminated organic rich intervals and mudstone near the base, alternating wackestone and 

mudstone centimeters scale cycles contain ribbon rocks characteristic in the middle and dolomitic 

limestone to dolostone in the top. A sharp contact can be observed between the cycles which the 

dolomitic carbonate is overlain by the dark organic rich sediment (13460 ft). Within these 

sediments, terrigeneous components are readily observable (thin section at 13516 ft) compared to 

the lower Smackover from the Conecuh Embayment area. Photomicrographs of the other thin 

sections illustrate spiculiculous dolomitic mudstone/wackestone (13532.2 ft and 13515.5 ft). 

Sparse peloid and pyrite are also observable (13592 ft and 13532 ft).  

From 13435.5 ft to 13339 ft, the carbonate sediments illustrate pervasive dolomitization. 

Sedimentary structures although are obscure but are comparable to which observed in the 

previous section. Organic rich sediments are less abundant and are thinner. Sediments become 

dolomitized and many evaporite nodules are observable.  Photomicrographs of thin sections 

illustrate the organic rich layer in the mudstone (13434 ft), the variable detrital quartz in a 

dolomitic wackestone (13407 ft and 13388.5 ft), the fine crystalline anhydritic and evaporitic 

ghost dolospar in dolosparite (13372.5 ft). In the upper dolostone, probably originally 
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wackestone/packstone, thin sections exhibit medium crystalline dolosparite with abundant limpid 

dolomite crystals (13345 ft). 

From 13339 ft to 13213 ft, the carbonate sediments illustrate a sharp contact concentrated 

with thin dark organic material at the base at 13339 ft. Overlying this contact, sediment is missing 

from 13332 ft to 13313 ft. At least two sedimentary cycles of variable thickness occur. Within 

each cycle, dark organic-rich layers mixed with mudstone and wackestone are present at the base. 

The top of the lower cycle consists mostly of bioturbated dolomitic wackestone. Sediment near 

the base of the shallower cycle (thin section at 13302 ft) characterizes silty dolomitic algal 

boundstone/mudstone with an abundance of mica flakes. In the upper part of this cycle, 

bioturbated dolomitic wackestone and mudstone display the partially preserved ribbon rock 

characteristic. A photomicrograph of a thin section (13275 ft) shows a fine crystalline dolosparite. 

Within this interval, biogenic structures interpreted as root casts and  burrows and small evaporite 

filled fenestral pores are observed. At the top from 13215 ft to 13213 ft, two sandstone intervals 

are interbedded with the carbonate sediments. 

In the upper Smackover of this core from 13213 ft to 13117 ft, the carbonates illustrate an 

increase of siliciclastics. Sediments are mixed dolomitic carbonate mudstone, wackestone and 

siliciclastic sandstone. Sedimentary structures are primarily bioturbation. In the sandstone, planar 

lamination may be observable. Dark organic-rich sediments are apparent and alternate with 

dolomitic carbonate, and dolostone. Thin section photomicrograph of sandstone (13143 ft) 

illustrates medium subarkose with silica cements and sparse chert metamorphic rock fragments. 

The contact between grains shows compaction. Another photomicrograph (13130 ft) indicates 

fossiliferous/spiculitic wackestone with sparse organic materials and abundant coarse to fine silty 

detrital quartz.  

 At the top of this Smackover sequence, a sharp boundary is recognizable. Evaporitic 

sedimentation becomes dominant mixing carbonate mud and then turns into nodular anhydrite 

with abundant terrigenous input.   
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4.3  DISCUSSION  

 

The sedimentary description of the Smackover deposition from the Conecuh Embayment 

and the Manila Embayment, represented by the T.R. MILLER MILLS 17-11, #1 well and the #1 

NEAL ET AL UNIT 30-1 well, and their paleoenvironment and paleowater-depth interpretations 

are summarized in Table 4-1 and Table 4-2. For the stratigraphic model, the interpretation was 

based upon sedimentary facies formed and discussed on a ramp stratigraphic sequence proposed 

by Burchette and Wright (1992) and Tucker et al. (1993). There is a significant limitation to the 

stratigraphic interpretation based on a limited number of core samples. Paleoenvironment and 

paleowater depth indications vary due to lateral sedimentary facies variation which is very 

common in a carbonate depositional system. Relative sea level changes, nevertheless, are 

believed to be one of the main factors controlling the sedimentation pattern on carbonate ramp 

platform in addition to climate and tectonic controls. For the Smackover Formation, carbonate 

deposition was believed to form during a stable tectonic activity period (Salvador, 1987).  Even 

though the local factors such as a pre-Jurassic paleotopography or the Louann salt movements 

could be associated, it was possible that relative sea level variation would still have the major 

effect among the other parameters. It is assumed that a Smackover stratigraphic framework which 

was observed in the two cores may be comparable based on similar relative sea-level control. The 

interpretation will be constrained later by an elemental analysis and carbon isotope stratigraphy. 

 

4.3.1 SMACKOVER  DEPOSITIONAL ENVIRONMENT AND A 

         STRATIGRAPHIC FRAMEWORK  

 

Sedimentary facies and paleoenvironment interpretation for the Smackover deposition 

that occurred in the Conecuh Embayment and the Manila Embayment suggest lateral and vertical 

variations due to different structural settings on the carbonate platform. At the base of the  



 59

Table 4-1  Core and thin section description and paleoenvironment and paleowarer-depth interpretation 

                  of the Smackover well T.R. MILLER MILLS 17-11, #1 of the Conecuh Embayment.  
 

Core 
Thinsection 

(ts) 
Sediment- 
structure Macro-lithology 

Micro-lithology and 
description Paleo- 

Inferred 
paleo- 

Interval 
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* environment 

water 
depth 

              
13500-
13510.2 

13505.8 ft (ts)     
13506 ft (cp) 

Nodular;               
gray/white 

Anhydrite Calcilutite: nodular anhydritic 
sandy quartz dolomicrosparite 

Sabkha                 Supra-
tidal 

  13508.8 ft (ts)   Dolomicro-sparite Siltstone:  nodular anhydritic 
immature micaceous 
litharenite 

    

      Anhydrite Nodules 
Pellets, 

      

13510.2 -
13522 

13516.7 ft (ts) Massive and 
occasional 
lamination;          
Tan, gray 

Ooid grainstone        
(dolomitized) 

Calcarenite : sparse quartz 
silty oodolomicrosparite 
(fitted ooids ghosts, coatings 
unaltered) with some 
anhydritic replacement  

Beach,      high 
energy 

Intertidal 

13526 ft (ts) Light tan, gray Packstone Calcarenite: 
oomicrodolosparite (most 
ooids are now vugs; 
originally oomicrite) textural 
inversion 

High energy 
shoal                 

Shallow 
subtidal 

    Occasional 
gastropods, 
ooids 

Oolitic packstone     

13522-
13538.5 

13535 ft (ts)   
13537 ft (cp)   
13538 ft (cp) 

Textural 
inversion;       
Light to 
medium gray 

Wackstone Calcarenite: foram, peloidal 
(ooids?) microsparite  

Lower 
shoreface 

  

13538.5-
13540.5 

13553.5 ft (ts) Massive;               
dark gray 

Packstone Calcarenite: green calcareous 
algal peloidal (ooids?)   
foram, microdolosparite 

Intermediate 
energy marine, 
lower shoreface    

Lower 
intertidal 
to shallow 
subtidal 

13540.5-
13569 

13555 ft (ts) Massive and 
occasional 
stylolites;             
Tan gray 

Laminated algal 
Boundstone-
Wackestone 

Calcarenite: peloidal (ooids?) 
blue-green algal intraclasts, 
limpid dolomite biolithite 

Tidal mudflat 
proximal to 
tidal channel;  
Low to 
moderate enegy 

Upper 
intertidal 
to 
supratidal 

13569-
13589 

  Massive;               
Gray 

Mudstone      Subtidal 

13589-
13615 

13600.7 ft (ts)   
13601 ft (cp)    
13615 ft (cp) 

Fissile with 
muddy clastic 
layers       
(~2-3cm);         
Gray, brown 

Mudstone Siltstone: immature ostracods, 
micaceous phyllarenite 

Marine                  Subtidal 
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Core 
Thin 

section(ts) 
Sediment- 
structure Macro-lithology 

Micro-lithology and 
description Paleo 

Inferred 
paleo- 

Interval 
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* environment 

water 
depth 

       
13615-
13622 

  Massive;              
Gray 

Wackestone     Shallow 
Subtidal 

13622.5 ft (ts) Massive;               
Dark gray 

Wackestone Calcarenite : sparse peloid 
calcareous algae microsparite 

Shallow marine    Shallow 
Subtidal 

13622-
13675 

13646 ft (ts)    
13674 ft (cp) 

Sparse algal 
laminae,   
brachiopods 

Mudstone Calcilutite: algal laminae in 
micrite  

Normal marine subtidal        
(open 
marine?) 

13675-
13700 

  Interbedded  
terrigeneous 
mudstone, 
contorted beds;    
Dark brown  

Mudstone   Carbonate 
marine with 
intermittent  
(deltaic?) 
clastic input          

Subtidal 

13700-
13730 

13703.5 ft (ts)    
13707 ft (cp) 

Fissile, silty 
lenses (1cm); 
Alternated dark 
gray and brown  

Mudstone 
(Claystone) 

Claystone: laminated calcite 
cemented miaceous clay 

Marine                Subtidal 

  13712 ft (ts) Algal laminae Algal Boundstone/ 
Mudstone 

Calcilutite: peloidal, pelletoid 
intramicrudite 

Lower shore 
face 

Shallow 
subtidal 

13737.5 ft (ts) Massive with 
sparse algal 
laminae;               
Dark gray 

Calcilutite: pelmicrite  Low energy  
shallow marine     

Shallow 
subtidal 

13730-
13773 

13765 ft (ts) Occasoinal 
gypsum ghosts, 
peloid 

Mudstone 

Calcilutite: mottled micrite Restricted 
marine 

Supra-
tidal 

Silty Mudstone Subtidal 13773-
13774 

  Clastic 
interbedded 
with carbonate, 
contorted 
layers; Gray 

Gypsum ghosts 

  Distal clastic 
input into 
carbonate 
marine 

Inter-
supra-
tidal 

  Brachiopod, 
sparse algal 
laminae 

Peloidal 
Mudstone/ 
Wackestone 

  Moderated 
energy, 
carbonate 
marine                  

13774- 
13787 

13787.5 ft (ts) Dark gray   Calcarenite: algal peloidal 
micrite 

                            

Subtidal 
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Core 
Thin 

section(ts) 
Sedimentary 

structure Macro-lithology 
Micro-lithology and 

description Paleo 
Inferred 
paleo- 

Interval 
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* environment 

water 
depth 

       
13787-
13789 

  Oncolites, 
pellets, 
Tubiphytes 
algal; Dark 
gary  

Boundstone/     
Mudstone 

    Intertidal 

13789-
13791 

13789 ft (cp) Tubiphytes and 
blue-green algal 
oncolites in 
planar, 
deformed 
laminae, 

Sparse   Sabkha                  Inter-
supratidal 

    Parallel algal 
laminated 

Algal Boundstone   Upper tidal 
mudflat,  low 
energy  

  

13791-
13793 

  Massive;               
Gary 

Mudstone     Shallow  
subtidal 
(?) 

13793-
13796.5 

13795 ft (cp) Gray Agal Boundstone   Low energy, 
tidal mudflat 

Upper 
intertidal 

13796.5-
13801 

 

Massive, 
anhydrite 
nodules, 

Mudstone/ 
Wackestone 

    Shallow 
subtidal 

  13797 ft (cp) Anhydritic 
nodules in 
massive to 
sparsely coarse 
laminae;                
Gary and white 

Mudstone   Restricted 
marine, low 
energy 

Intertidal 
to supra-
tidal 

13801-
13805 

13804.9 ft (ts) Planar to slight 
wavy, algal 
laminae;                
Gray 

Algal Boundstone/ 
Mudstone 

Mixed siltstone: immarture 
micaceous litharenite and 
calcilutite; algal laminated 
pelleted microspar biolithite 

Low energy Upper 
intertidal 

13805-
13816 

  

Massive, 
horsetail 
stylolites, 
organic layers;      
Gray 

Mudstone/ 
Wackestone 

  

Moderate 
energy 

Lower 
intertidal 

13816-
13827 

13820.5 ft (ts) Wavy 
lanminated;          
Gray 

Foram 
Wackestone 

Calcilutite: sparse foram 
dolomitic biomicrite 

Shallow marine Shallow 
subtidal to 
lower 
intertidal 

  13826 ft (cp) Massive at the 
top and 
coarsely 
laminated at the 
base with 
sparse 
bioturbation 

Algal laminated 
mudstone 

   Shallow 
marine                  

Shallow 
Subtidal 
to lower 
intertidal 

13827- 
13834 

13830 ft (cp) Pallarel to 
slight wavy, 
bioturbated and 
burrow filled 

Algal laminated 
mudstone/  
Wackestone 

  Shallow marine Lower 
intertidal 
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Core 
Thin 

section(ts) 
Sedimentary 

structure Macro-lithology 
Micro-lithology and 

description Paleo 
Inferred 
paleo- 

Interval 
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* environment 

water 
depth 

       
13834 - 
13834.5 

13834 ft (cp) Oncolites, algal 
fragments;        
Gray 

Wackestone  Shallow marine Shallow 
subtidal to 
lower 
intertidal 

13834.5-
13840 

13838 ft (cp) Parallel to 
slightly wavy 
fine laminae  

Algal Boundstone/  
Mudstone 

    Lower 
intertidal 

13840-
13843.5 

13843 ft (ts) Planar fine 
settle out 
laminae;        
Gray 

Parallel bedded  
dolomitic algal 
Boundstone 

Calcilutite: blue green algal 
dolomitic biolithite 

Tidl mudflat Upper 
intertidal 

13843.5 - 
13844 

  Massive, 
intraclasts;       
Gray 

Wackestone   Low to 
moderate 
energy 

Lower 
intertidal  

Planar fine  
algal laminae 

13844-
13845.2 

13845.5 ft (ts)  

Gray 

Dolomitic 
Boundstone 

Calcilutite: Sparse ostracod 
mollusk bearing blue-green 
algal biolithite 

Low energy 
tidal flat 

Upper  
intertidal 

13847.2 ft (ts) 
13845-7 ft (cp) 

Tabular cross 
bedded;           
Light gray  

Sandstone: submature 
metamorphic litharenite 

High enery 
beach to eolian  
dune 

Upper 
supra-
tidal 

13845.2 - 
13860 

13851 ft (cp) 
13856.5 ft (ts) 

Gravel to sand 
to silt tabular 
bedsets with 
heavy minerals 
concentrated 
along laminae;  
Grayish pink to 
pink 

Sandstone 

Sandstone: submature 
metamorphic rock fragment, 
micaceous bearing 
phyllarenite 

Alluvial 
braided stream 

Terres-
trail 

 Note:  *  Microlithology and Folk classification was based upon microscopic picture of thin section when there is available   
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Table 4-2.  Core and thin section description and paleoenvironment and paleowarer-depth interpretation 
                    of the Smackover well #1 NEAL ET AL UNIT 30-1 of the Manila Embayment.  
 

Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

  Paleoenvironment 
 

Inferred 
Paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

Water 
 Depth 

              
13100-
13101 

  Massive;               
Gray 

Anhydrite with 
sand lens 

  Sabhkha Supratidal 

13101-
13104 

  Faint bedding;   
Gray            
(broken core) 

Sandstone/  
Anhydrite 

  Sabkha to intertidal Supratidal 

13105-
13116 13110 ft (cp) 

Nodular to  Anhydrite 
  

Sabkha Supratidal 

  13114.5 ft (ts)  
13114.5 ft (cp) 

Massive;               
Gray 

        

13116-
13117 

131117 ft (cp) Finely 
laminated 

Sandstone   Sabkha Intertidal 

13117-
13124 

  Coarsely 
laminated;  
Light to 
medium pink 

Mudstone   Low energy marine 
carbonate 

Lower 
intertidal 

13124-
13135 

  

Massive;              
Light pink 

Mudstone/  
Wackestone 

  Low energy marine Subtidal 

  13130 ft (ts)  
13130 ft (cp) 

    Silty quartz 
spicuferous 
wackestone 

    

13135-
13139 

  Alternating 
coarse and fine 
laminated;  
Light pink to 
brown, organic 
materials 

Mudstone   Low energy marine Low to 
upper 
intertidal 

13139-
13140 

13140 ft (ts) Interbedded; 
Dark gray to 
black 

Black organic rich 
mudstone 

Sparse spicule silty 
quartz micrite 

Low energy marine Subtidal 

13140-
13152 

13143 ft (ts)   
13143 ft (cp) 

Massive;               
White to light 
pink 

Sandstone Medium sandstone: 
silica cemented, 
sparse chert 
metamorphic rock 
fragment subarkose 

High energy beach to 
eolian dune 

Supratidal 

13152-
13165 

13153 ft (cp) Coarsely 
laminated with 
sand interbeds 

Algal boundstone 
and sandstone 

  

Low energy 
carbonate ramp 
proximal to clastic 
input 

Intertidal  

  13159 ft (ts)     Quartz medium 
sandy algal biolithite 

    

13165-
13174 

  Faint cross-
stratification to 
massive;           
White and 
brown stains 

Sandstone   Beach Supratidal 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
Paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

Water 
 Depth 

       
13174-
13179 

13175 ft (cp) Massive with 
occasional fine 
laminations 

Mudstone/   
Wackestone 

  Low energy marine 
carbonate 

Shallow 
subtidal to 
intertidal 

13179-
13180 

  Massive;          
White 

Sandstone   Beach sand Supratidal 

13180-
13185 

13181 ft (ts)   
13181 ft (cp) 

Massive               
Gray 

Wackestone Silty quartz 
spiculiferous micrite 

Low energy marine 
carbonate 

Subtidal 

13185-
13186 

  Massive;               
Very light gray 
to white 

Sandstone   Beach Supratidal 

13186-
13188.5 

  Discontinuous 
algal mass, 
bioturbated;        
Gray 

Mudstone   Low energy marine 
carbonate ramp 

Subtidal 

13188.5-
13196.5 

13191.5 ft (ts) Coal Interbeds, 
bioturbated;          
Gray 

Mudstone Dolomicrite with 
evaporitic ghosts, 
faint laminae 

Sabkha Supratidal 

13196.5-
13213 

13208 ft (cp) Interbedded to 
massive,  
bioturbated 

Mudstone/ 
Wackestone 

  Low energy  Intertidal 

13213 - 
13215 

  

Interbedded, 
planar 
laminated, dark 
organic layer; 
Brown to gray 

Sandstone/     
Mudstone 

  

Low Energy upper 
shore 

Intertidal 

13215-
13216 

  Coal interbeds;   
Gray to dark 
gray 

Mudstone   Low energy marsh 
and swamp 

Subtidal  

13216 -
13224 

  Massive;               
Gray 

 Mudstone   Low energy marine Intertidal 
to subtidal 

13224-
13240 

13230 ft (ts)  
13230 ft (cp) 

Coal interbeds, 
sparse 
evaporite;             
Gray to dark 
gray 

 Mudstone Dolospar with 
evaporate ghosts 

Sabkha or low enery 
marsh 

Supratidal 
to 
intertidal 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
Paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

Water 
 Depth 

       
13240-
13293 

13240 ft (cp)  Wackestone      Intertidal 

  

13256 ft (ts) 

  

Sparse silty quartz, 
algal laminated 
microdolospar 
biolithite; 

Low energy 
carbonate ramp 
proximal to clastic 
input (windblown 
quartz?) 

  

  13275 ft (ts) Wackestone Sparse silty quartz 
algal laminated 
peolidal micrite; 

Moderate energy 
shallow marine 

Intertidal 

  

13280.2 ft (ts) 

Coarsely wavy 
interbedded, 
dessicated 
cracks, 
burrows, 
bioturbated, 
sparse 
evaporite;            
Gray 

 Mudstone Dolosparite Low energy marine Subtidal if 
replacive 
dolomite 
supratidal 
 
 

13293-
13303 

13298 ft (ts) Algal laminated 
Mudstone 

Algal laminated 
muddy biolithite, 
sparse quartz; 

Subtidal 

  13302 ft (ts)   
13302 ft (cp) 

Finely 
laminated; Dark 
organic patches 
alternating with 
white patches 
increasing 
vertically; 
Quartz 
diminishing 
vertically              
Gray to dark 
gray                      

Algal laminated 
Mudstone 

Silty quartz,  algal 
laminated dolospar 
biolithite 
 
 

Low energy 
carbonate ramp 
proximal to clastic 
input (windblown 
quartz?) 

Subtidal 
to 
Intertidal 

13303-
13310 

13305 ft (ts) Massive;               
Pinkish gray 

Algal boundstone Silty quartz, slightly 
algal laminated 
biolithite 

Low energy 
carbonate ramp 
proximal to clastic 
input 

Intertidal 

13310-
13339    
(missing 
core from 
13313-
13332) 

  planar 
laminated, 
Interbedded 
coal layers, 
pyrite;                   
Green, 
Gray 
 
 

Rich-organic 
Mudstone 

  Low energy, 
reducing 
environment 

Subtidal  

13339-
13365 

13339 ft (cp) Coarse, wavy 
interbedded, 
evaporites, 
anhydrite filled 
vugs              

Dolostone   Moderate energy 
shallow marine 

Subtidal 
origin, 
and later 
subkha to 
subaerial 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
Paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

water 
depth 

       

 

13345 ft (ts)  
13345 ft (cp) 

Pink to pinkish 
brown, dark 
brown stain 
next and along 
horizontal 
cracks 

  

Silty quartz, slightly 
muddy evaporitic 
ghost dolospar 

Low energy 
carbonate ramp 
proximal to clastic 
input 

  
 13353 ft (ts) Quartz silt dolomitic 

microspar; 
    

   13364.5 ft (ts) 

    

Fine sandy quartz, 
evaporitic ghost 
dolospar   

  

13365-
13388  

13372.5 ft (ts)  
13372.5 ft (cp) 

Coarsely 
interbedded 
with occasional 
large anhydrite 
nodules, fainted 
"ribbon rock" ;     
brown and 
 gray alternated 

Dolostone Evaporite ghost 
dolospar, dolomitic 
wackestone/ 
packstone  

Low energy  Intertidal  

13388-
13412.51 

13388.5 ft (ts) 
13398 ft (cp) 
13407 ft (ts) 
13410 ft (cp) 

Coarsely 
laminated, 
discontinuous 
algal mass, 
occasionally 
anydrite 
nodules;                
brownish gray 
 

Silty dolomitic 
Boundstone/ 
Mudstone 

Quartz silt dolomitic 
slight clay parting 
microspar 

Low energy 
carbonate ramp with 
distal clastic influx 

Intertidal 
to 
moderate 
subtidal 

13412.5-
13432 

13422.5 ft (cp) Intraclasts of 
algal fragments, 
burrows, 
anhydrite 
nodules, 
grain texural 
inversion 
 

Mudstone/ 
Wackestone 

Quartz silt dolomitic 
microspar 

moderate energy 
marine with 
occasionally high 
energy 

lower 
Intertidal 
to subtidal 

13432-
13435 

13434 ft (ts) Finely 
laminated,  dark 
organic-rich 
layers;                  
Gray to dark 
gray 

Algal laminated  
Mudstone 

Quartz silt algal 
laminated biolithite 

Low energy Subtidal 

13435-
13439 

13435 ft (cp) Interbedded;         
Alternated 
brown and dark 
gray 

Mudstone/ 
Wackestone 

  Low to moderate 
energy (alternated) 

Subtidal 
to 
Intertidal 
and then 
subkha 

13439-
13445 

13443 ft Large 
evaporite/ 
anhydrite 
nodules, 
Tubiphytes 
algal,                  
Pinkish brown 
with dark stain 
layers 
 

Evaporite/ 
Wackestone 

Quartz sand, 
spiculiferous, 
intraclast peloidal 
dolospar 

Moderate energy in 
origin and then to 
low energy later  

Shallow 
subtidal 
then 
sabkha or 
close to 
subaerial 
exposure 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

water 
depth 

       
13445-
13453 

13452 ft (cp) Massive and 
Interbedded 
algal mass , 
finely 
laminated mud;   
Alternated 
brown and gray 
and dark gray 

Algal boundstone/ 
Wackestone/  
Mudstone 

  

Low energy shallow 
marine 

 Upper 
Intertidal 
to shallow 
subtidal 

13453-
13460 

13460 ft (ts)  
13460 ft (cp) 

Fine, planar, 
laminated, 
peloids, silty 
quartz, organic 
rich layers;   
Brownish gray 
to dark gray 

Mudstone/ 
Wackestone 

Calcilutite: silty 
pelmicrite 

Low energy  Subtidal 

13460-
13481  

13461 ft (ts),   
13472.5 ft (ts) 

Faintly 
interbedded to 
massive,   
abundant small 
anhydrite filled 
vugs; Pinkish 
gray to gray 

Dlomitic 
mudstone 

Sparse quartz silt and 
sparse spicule 
dolospar; 

Low energy shallow 
marine carbonate 
ramp 

Shallow 
subtidal to 
intertidal 

13481-
13498     
(missing 
core 
13481-
13482) 

13492 ft (ts)  
13492 ft (cp) 

Coarse wavy 
interbedded 
"ribbon rock", 
algal layers, 
peloids, 
burrows, sparse 
small 
anyhydrite;          
Alternated dark 
gray and gray 

 Algal boundstone/ 
Mudstone 

Interbedded quartz 
silt blue green algal 
biolithite and 
pelmicrite 

Low energy mudflat Shallow 
subtidal to 
lower 
intertidal 

13498-
13499 

  Massive;           
Gray 

Mudstone Micrite Low energy shallow 
marine 

Shallow 
subtidal 

13499-
13512 

  Massive to fine, 
planar 
interbedded to 
wavy "ribbon 
rock", burrows, 
sparse 
anhydrite filled 
vugs;            
Light brown to 
gray 

Algal boundstone/ 
Mudstone/ 
wackestone 

Micro biolithite Low energy mudflat Upper 
intertidal 
to lower 
intertidal 

13512-
13513 

13513 ft (cp) Nodular 
anhydrite, algal 
mass;           
Gray 

Algal boundstone   Lowto moderate  
energy 

Intertidal 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

water 
depth 

       
13513-
13515 

13515 ft (ts)  
13515 ft (cp) 

Massive to 
faintly 
laminated;            
Brownish gray 

Silty Mudstone Calcilutite: Quartz 
silt, spiculiferous 
laminated micrite 

Low energy shallow 
marine ramp 

Shallow 
subtidal to 
lower 
intertidal 

13515-
13516 

13516 ft (ts)  Mixed grain 
size, intraclasts, 
organic 
material, algal 
fragments, 
anhydrite;             
Gray 

Mudstone/ 
Wackestone 

Anhydrite nodules in 
micrite 

moderate energy 
intertidal, high 
energy storm surge 

Shallow 
subtidal 

13516-
13524 

  13522 ft (cp) Massive to 
coarse to fine 
interbedded, 
wavy to planar 
laminae, 
interbeddd dark 
organic layers, 
anhydrite;         
Pinkish gray to 
dark gray  

Sandy Mudstone/ 
Wackestone 

Calcarenite: 
quartz sand 
dolomitic 
microsparite-micrite 

Low energy to 
moderate 

Lower 
intertidal 

13524-
13544 

13532.2 ft (ts)   
13532 ft (cp) 

Massive to 
fainted coarse 
interbedded, 
bioturbated, 
burrows, sparse 
dark organic 
layers; 
Brownish gray 
to gray  

Silty Mudstone Mixed quartz silty 
calcilutite: spicule 
micrite 

Low energy mixed 
clastic-carbonate 
marine 

Upper to 
Lower 
intertidal 

13544-
13552.5 

13545.5 ft (ts)  
13545.5 ft (cp) 

Fine laminated 
to thin 
interbedded, 
organic silt 
layers;  
Brown and  
gray 
 

Algal boundstone/ 
Mudstone 

Calcilutite: quartz silt 
algal biolithite 
interbedded with 
micrite 

low energy Lower 
intertidal 

13552.5 -
13554 

13554 ft (ts)  
13554 ft (cp) 

Finely 
laminated and 
bioturbated;          
Gray 

Algal boundstone Calcilutite: quartz silt 
green calcareous and 
blue green algae 
biolithite 
 

Low energy mudflat Shallow 
subtidal 

13554-
13557.5 

  Laminated to 
massive, ripped 
up clasts at 
lower;        
Gray to 
medium gray 
 
 
 

Peoloidal algal 
boundstone/ 
Mudstone 

Calcilutite: sparse 
peoloid and algal 
laminated micrite 

Moderate energy  Lower 
intertidal 

13557.5-
13568.5 

13558 ft (ts)  
13558 ft (cp) 

Massive,           
White to very 
light gray 

Sandstone Bimodal medium and 
fine sandstone: mica 
and chert bearing 
subarkose 

High energy beach  Supratidal 
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Core 
Thinsection 
(ts) 

Sedimentary 
structure Macro-lithology 

Micro-lithology and 
Description 

Paleoenvironment 
 

Inferred 
paleo- 

Interval  
(ft) 

Core 
photos(cp) and color (Dunham Name) (Folk Name)* Interpretation 

water 
depth 

       
13568.5       
(~2.5 
inch) 

13568.5 (ts) White sand 
lens, layers, 
interbeded with 
medium gray  

Sandstone/ 
Mudstone 

  High energy beach  Shallow 
intertidal 

13568.5-
13577 

  Massive with 
clay partings,   
Pinkish to light 
brown 

Sandstone Fine sandstone: 
immature mica 
bearing phyllarenite 

Low energy lagoonal Supratidal 

13577-
13587 

13587 ft (ts) Massive 
bioturbated to 
laminated with 
evaporite 
nodule; Dark 
brown to brown 

Sandstone-
siltstone 

Medium sandstone: 
poorly sorted 
immature mica 
bearing phyllarenite 
(metamorphic quartz, 
mica flakes, feldspar) 

Restricted shallow 
sabkha lagoonal or 
interdistributary bay 

Supratidal 

13587-
13590.5 

  Low angle 
cross 
stratification to 
massive;               
Gray 

Sandstone Medium coarse 
sandstone: quartz 
cemented mature 
chloritic subarkose 

Eolian Supratidal 

13590.5-
13596.3 

13591 ft (cp) Poorly 
cemented;  
Light gray 

Sandstone   Alluvial Supratidal 

  

13594 ft (ts)  
13594 ft (cp) 

Low angle 
cross 
stratification to 
massive,         

  

Fine sandstone: 
submature mica-
bearing subarkose   

  

  

            
 

Note:   *  Microlithology and Folk classification was based upon microscopic picture of 
thin section when there is available   
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Smackover Formation in the Conecuh Embayment, a sharp discontinuity surface and abrupt 

change from siliciclastic Norphlet sandstone to dominant carbonate mudstone indicates a rapid 

rise of relative sea level permitting a full marine carbonate condition. This interpretation is 

supported by an abundance of marine fossils observed in the carbonate at the base just above the 

erosional contact. The low angle tabular cross-bedded sandstone with a heavy mineral parting 

suggests an eolian environment. According to Wilkerson (1981), the Norphlet Formation in 

southwest Alabama started updip in an alluvial-braided stream environment and continued 

downdip through subsequently sediment reworking process to deposit in a desert dune and inter-

dune environments. In different local areas, the massive, clean and structureless sandstone exists 

just below the contact of the Smackover and the Norphlet Formations. The contact between the 

Norphlet and the Smackover Formations was interpreted by Wade and Moore (1993) as a 

ravinement surface representing a coarse transgressive lag during initial Smackover deposition. In 

the T.R. MILLER MILLS 17-11, #1, at this contact, coarse and unconsolidated sediments suggest 

a possible an erosional surface. However with missing core sample the interpretation is uncertain.  

 

4.3.1.1  Conecuh Embayment 

 

For the Conecuh Embayment, low fossil diversity, a dominant mudstone with an 

abundance of algal lamination, a variety of peloid, pellet and oncolitic coated grains associated in 

the mudstone, and a presence of microbial boundstone or microreef  observed in the lower and 

middle part of the Smackover core, are interpreted to represent a restricted and probably a high 

salinity lagoonal environment of the shallow inner ramp facies. During Smackover deposition, 

paleowater depth in the Conecuh Embayment probably fluctuated between subtidal and intertidal 

but never became a supratidal environment. Compared to the ramp geometry and facies dynamics 

of the Middle Jurassic carbonate ramp system from the west central Portugal reported by Aceredo 

(1998), sedimentary facies of an inner ramp lagoon are comprised of mudstone, wackestone and 
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floatstone associated with oncoids and algal-cyanobacteria nodules with diverse benthic 

foraminifera, ostracods but restricted in macrofauna.   

 The presence and abundance of algal lamination in the lower Smackover of the T.R. 

MILLER MILLS 17-11, #1 core indicates that initial Smackover sedimentation occurred in a 

tidal-flat environment adjacent to the carbonate lagoon behind a beach barrier or some locally 

high structures. The majority of carbonate mud associated with peloidal and pelletal grains and a 

low diversity of normal marine fauna observed in this core and the restricted environment 

interpretation are similar to the other Smackover investigations reported from this area (e.g. 

Sigsby, 1976; Bradford, 1982; Esposito and King, 1987). The structural high features which are 

believed to partially restrict the Conecuh Embayment during Smackover deposition were 

indicated by Bradford (1982) to be the igneous and metamorphic Paleozoic structural highs to the 

north and east and probable the eolian dune to the west. From the basal Smackover (13845 ft to 

13740 ft), vertical facies variation suggests a possible lateral facies changes that formed along the 

platform slope in the inner ramp setting. These sediments were probably deposited above the fair-

weather wave base (FWWB) of the intertidal to subtidal conditions during shallow marine 

lagoonal - tidal flat environments. An absence of supratidal mud flat facies, however, suggests 

carbonate production rate was outstripped by rate of sea level rise. Because of a restriction by the 

adjacent structure highs, the embayment was probably less open to the normal marine ramp 

condition. The embayment would probably not be effectively connected to open marine 

conditions until sea level rise continued at a later time. A partial restriction means that during the 

relative sea level lowstand, high evaporation and no marine water circulation would increase 

water salinity. Carbonate sediments at this time could be affected by some episodically fresh-

water diagenesis and increase the small fenestral pores which were filled later with evaporite 

from the ensuing marine water.  

The two tidal cycles of algal laminated mudstone mixed with wackestone/mudstone and 

anhydritic micritic oncoidal-peloidal wackestone/packestone facies at the top observed from 
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13805 ft to 13785 ft suggest a possible stillstand or decreasing rate of relative sea level rise.  

According to Tucker and Wright (1990), oncoids occurring as biogenic forming structures can be 

formed by trapping and binding of sediment by the filaments of algal mats (Tucker and Wright, 

1990, references therein). The oncoidal structures occurred as cyanobacteria bioherms and were 

prominent in many Paleozoic and Mesozoic limestones of shallow marine peritidal environment 

(Tucker, 2001) are the micritic and a spongy fabric oncoids (Riding, 1983), which could be 

similar to those observed in the lower Smackover.  Kopaska-Merkel (1994) reported the small 

reef structures in the Smackover are a combination of microbial boundstones incorporating the 

oncoids and peloids and their cavities are subsequently filled with fossils, oncoidal Favriena 

pelletoid packstone (Figure 4-1). Many of these reefs, but of larger sizes and higher abundance 

and diversity of organisms, are also observed in the lower Smackover of Arkansas and Louisiana. 

The different characteristics of the reefs that occurred in southwest Alabama was suggested to be 

due to the restricted condition in the area which affected the salinity, circulation and turbidity of 

the marine water (Baria et al., 1982). The formation of the organic reef was suggested by 

Kopaska-Merkel (1994) to be affected by two different water energy conditions; the low energy 

for the algal boundstone formation and high energy for the oncoid transportation during its 

structural growth. Relative to sea level changes, these microreefs could have formed during a 

highstand to stillstand sea level and with subsequently brief falling sea level. The presence of 

evaporite filled pores and evaporite nodules infer that the embayment could possibly become 

hypersaline condition. On a carbonate ramp sequence model, Tucker (1993) had indicated that 

small organic structures or isolated reefs could be found on the ramp platform during highstand 

sea level and continue to lowstand. The example was from the Silurian Michigan basin where 

small patch reefs were observed along a dipping ramp during a falling sea level and associated 

with the type 2 sequence boundary (Sarg, 1982 and 1983). Sarg (1983) also commented that 

during a relative sea level lowstand, hypersaline environment could have been initiated and 

associated with evaporitic replacement and dolomitization. Therefore, the presence of the organic 
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reefs observed in the T.R. MILLER MILLS 17-11, #1 is interpreted to form during the late 

relative sea level highstand continued to the small relative sea level falling. The lacking of a 

distinct contact or sequence boundary surface was affected by insignificant change in sedimentary 

facies on a lateral variation as a relative sea level fall might have occurred in a small magnitude. 

A non-deposition or subaqueous omission condition probably occurred during this first relative 

falling of sea level in the lower Smackover.  This relative sea level fall interpretation will later be 

compared with different observations. In Sigsby (1976), the short-term regression occurred 

during the long-term Smackover sequence in the Escambia County of  southwest Alabama had 

also been interpreted by the presence of the partial to complete dolomitized micritic-pelletal-

oncoidal limestones (which vary from mudstone to packstone) which appeared to be the 

microreefs observed in this study. Sigsby (1976) had noted that during this brief regressive period 

in the lower Smackover, a subaerial exposure and leaching occurred in the other area caused the 

collapse of breccias on some stable positive areas.  

 The prominent peloidal mudstone/wackestone facies with normal marine fossils that 

occurs between 13785 ft to about 13740 ft are interpreted as a transgressive to a highstand sea 

level deposit when the normal marine water had reached into the embayment. Large fossils of 

normal marine water i.e. brachipods, are observed in the core. Terrigeneous sediments are 

minimal. The absence of major packstone and grainstone sediments and variable bioclasts or 

sediments with hummocky cross-stratification, or graded tempestite structures, which usually are 

indicators of the open mid-ramp facies (Burchette and Wright, 1992) suggests that these 

sediments were still deposited in a partially protected, low energy environment. The protection 

described by Sigsby (1976) was due to a deeply embayed shoreline of the Conecuh Embayment. 

An open lateral marine current circulation was interpreted to be still partially impeded by the 

Pensacola arch to the southeast and by the other local topographic highs to the northwest. 

Although high-energy waves could have occurred next to the ridge areas, where packstone and 
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grainstone would have developed, most wave energy was dissipated over the large restricted area 

in the embayment where only most non-skeletal carbonate grains were productive.  

 The presence of terrigeneous sediments intercalated with mudstone between 13740 ft to 

13675 ft is interpreted to result from an incoming and increasing terrigeneous influx during the 

late highstand to relative sea level fall. Due to a very low slope angle on the ramp platform, a 

major exposure or sequence boundary and flooding surface can be unusually diachronous  

(Burchette and Wright, 1992).  A drowning of sequence boundary could have occurred and 

exhibits an abrupt upward facies changes from inner ramp carbonates to outer ramp terrigeneous 

mudstones or argillaceous limestones that then shoal or prograde upward to the inner ramp facies 

of another sea level cycle. It is proposed that during this relative sea level falling period, the 

carbonate mud of Smackover was still continuously delivered from the tidal flats of the restricted 

inner ramp to the northeast of the embayment. Terrigeneous sediments, however, were 

transported to the distal area by the prograding delta front and rivers. Falling relative sea level 

resulted in decreased accommodation space forming a restricted inner ramp of low energy 

depositional condition in the entire embayment. Because of the partial stagnation of water 

circulation and effect of periodical siliciclastic contamination, carbonate production rate and 

accumulation became very low marked by thin sediment intercalated with siliciclastics. It is 

suggested that falling relative sea level did not affect a simple shift of sedimentary facies on this 

low gradient platform condition but instead affected the depositional environment by increased 

siliciclastic input which has been reported in the Smackover elsewhere (Chimene, 1976; Ahr and 

Palko, 1981; Judice and Mazzullo, 1982). An increased siliciclastic sediment during falling 

relative sea level is not uncommon on a carbonate ramp platform. An example in a field study 

was reported from the Northern Sinai Cretaceous ramp by Bachmann and Kuss (1998). During 

relative sea level fall, an offlapping delta progradational process increases the amount of 

siliciclastic sediments to mix with carbonate sedimentation. For the Smackover, evidence for 

subaerial exposure was probably restricted to areas over which the inner ramp prograded, 
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suggesting the Smackover ramp may be responding to only relatively minor changes in relative 

sea level which forced strong progradation followed by abrupt deepening  rather than extensive 

ramp exposure. The interpretation that falling relative sea level occurred during the middle 

Smackover has also been observed and was reported from the Appleton Field of the Escambia 

County, the Conecuh Embayment (Benson et al., 1996). 

An increasing mudstone/wackestone facies and coated grain components in the 

Smackover from 13675 ft to 13622 ft are interpreted to reflect a subsequent rise of relative sea 

level. A transgressive event with increasing water energy is marked by an abrupt facies change 

from mixed argillaceous mudstone to the onciodal wackestone/packstone facies (13675 ft). In 

rising sea level, the distal inner ramp become open to normal marine conditions and left the 

siliciclastic delta front and rivers behind. A decrease terrigeneous input thus gave way to a 

carbonate factory to become productive. Open marine fossils are more abundant and can be 

observed macroscopically in the core. However, a partial enclosure setting of the embayment 

probably did not permit enough wave action for a shoal sediment formation, thus only 

wackestone and mudstone are observed. No sedimentation (e.g. tempestite) and/or sedimentary 

structure (e.g. hummocky stratification) could be recognized as an indication of a storm or strong 

wave action. A sedimentary cycle or parasequence and the transgressive/ highstand boundary are 

not distinguishable. A maximum flooding surface, or condensed section, is not detectable as the 

Smackover deposition in this particular area occurred mainly on a shallow carbonate condition 

where the carbonate precipitation rate was rather high and environment of deposition was likely 

an oxic. However, a gradational transition from inner ramp mudstone to wackestone suggests an 

increased carbonate production which kept-up with accommodation space under more open 

marine environment during maximum relative sea level rise. The upper part, where wackestone 

diminished and sediment mixed with terrigeneuous material, is interpreted to be the time when 

the embayment was approached again by prograding delta and rivers from the north. Depositional 

environment from 13675 ft to 13589 ft is interpreted as an inner ramp facies that occurred during 



 76

late highstand to falling sea level. Most carbonate sediment formed in an earlier condition became 

mixed mudstone, siltstone/wackestone and argillaceous shale with abundant shallow environment 

grains and fossils such as pellet, peloid, ostracods, some shell fragments.  

Wackestone to packstone facies lying above the siliciclastic influx at 13589.5 ft is 

interpreted to be an early transgressive sedimentation. Oolitic packstone and grainstone had 

formed as sea level continued rising adding accommodation space and increasing wave energy 

during the transgressive and highstand deposition. The interrelationship between accommodation 

space and the formation of ooids has been mentioned by Jenkyns and Strasser (1995) and Pittet et 

al. (1995) and also by Bachmann and Kuss (1998). These studies suggested that a favorable ooid 

formation to skeletal grains deposition occur during the transgression where there were an 

increasing accommodation space and increasing extension of flat, high energy areas. In this upper 

Smackover interval, a minimal siliciclastic sediment suggests a shallow inner ramp depositional 

environment of lagoon which received higher terrigeneous influx probably occurred farther or 

more landward side behind the ooid shoal bar or barrier. The isopach map of oolitic grainstone 

formed in the Conecuh Embayment (Bradford, 1982) illustrates an oolite shoal complex which is 

thicker to the west of the basin area and becomes thinner to absent when it moved further to the 

east. During the upper Smackover, the packstone/grainstone deposit characterizes a regressive 

shoaling sequence where accommodation space and strong wave energy were available. In this 

interval, oolitic packstone and grainstone exhibit more carbonate diagenetic alteration including 

dolomitization. Thin section photomicrographs show aragonite, which is most common mineral 

of ooid grains, was dissolved away and/or altered to calcite. The calcite and their pore vugs or 

have been replaced by dolomite precipitation. Diagenesis and dolomitization of grainstone in the 

upper Smackover were interpreted by several studies to be associated with meteoric or mixed-

meteoric water system. Based upon Smackover deposition from Lousiana, Humphrey et al. 

(1986) suggested early mineralogical stabilization  of the non-porous interval occurred in a high 

flow, near-surface, meteoric phreatic lens. From the Jay Field in Escambia County, Vinet (1984) 
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indicated that dolomitzation of the Smackover Formation occurred as a result of mixed marine-

meteoric water influence during subaerial exposure near the end of Smackover depositional 

period. Another Smackover dolomite study by Haywick et al. (2000) discovered four different 

textural types of dolomites formed in the Smackover Formation of the Appleton Field, Escambia 

County.  They suggested that three types out of four were formed during early relative diagenesis 

conditions varied from meteoric to hypersaline process. Two types, which are mostly observed 

dolomite in the Smackover, occurred in a mixed condition between meteoric and hypersaline 

water (Figure 4 in Haywick et al., 2000). In this Smackover core, dolomite is observed to be 

abundant in the upper part of the core near the end of the Smackover deposition where the 

mudstone stone content is low. At the transition between the Smackover and the Buckner, a sharp 

interface also shows an abrupt facies changes between sediments below and above the contact 

which is possible a subaerial exposure during a drop of sea level or sequence boundary. 

The interpretation of the boundary between the upper Smackover and the lower Buckner 

is also controversial. For example, from the Mississippi Interior Salt Basin, Badon (1973) and 

Ottman et al. (1973) interpreted the lower Buckner anhydrite as a supratidal environment which 

continued shallowing during falling sea level and was equivalent to the upper Smackover. 

However, Oglesby (1976) concluded, from the same study area, that either marine regression or 

salt tectonic must have previously occurred and elevated the oolitic sediment in the upper 

Smackover into meteoric diagenetic environment before another sea transgression cycle was 

resumed. From Moore (1984), the Buckner/Haynesville Formation was interpreted as a separate 

sedimentological package from the Smackover Formation which occurred during the next sea 

level cycle. Prather (1992) suggested that the anhydrite of the Buckner Member to prograde 

basinward on top of the Smackover shoreface and tidal-flat units and took place as an subaqueous 

anhydrite deposition within a salinas on a coastal sabkha environment. However, Prather (1992) 

noticed that an apparent absence of shoreface and tidal mud units at the top of the Smackover 

grainstone could be an indicator to a drop of relative sea level and erosion of shoreline sediments. 
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Nevertheless, because there is no evidence of preserved sedimentary structures in a conventional 

core along the edge of the Conecuh basin, Prather (1992) summarized that a relative sea level fall 

by the end of the Smackover period could not be confirmed. 

  

4.3.1.2  Manila Embayment 

  

The variable sedimentary structures and carbonate facies observed from the #1NEAL ET 

AL UNIT 30-1 well suggest that the Smackover deposition in the Manila Embayment probably 

occurred in a shallow marine peritidal and shoreline environment.   

In the Manila Embayment, the transition from the Norphlet siliciclastic to the basal 

Smackover carbonate in the #1NEAL ET AL UNIT 30-1 characterize sediments which are 

produced of initial marine transgression overlying the eolian sandstone sedimentation of the 

Norphlet Formation.  The initial marine transgression for carbonate deposit is evident at 13568.5 

ft shown by a formation of thin carbonate bed associated with some flaser sand lens. The 

boundary between the lowest Smackover and the previous sequence, however, is interpreted to 

occur at about 13587 ft. As part of the Smackover sequence, the red bed sandstone of the 

Norphlet formation is interpreted as supratidal wadi deposit. This sediment then graded into the 

first sedimentation of marine carbonates, which was previously mentioned, before sharply 

changing into a clean and massive marine reworked sandstone. At the top, this massive marine 

sand is overlain by a continuous carbonate deposit of the lower Smackover. The intercalation of 

the marine reworked sandstone between the first carbonate deposit and the carbonate of the lower 

Smackover indicates that the formation boundary is not coincident with the sequence boundary in 

this area. This incidence supports an earlier reported from Wade and Moore (1993) which noted 

that, in southwest Alabama, the Smackover sequence boundary may not necessary coincide with 

the formation boundary. During an initial sea transgression, sedimentary characteristics suggests 

sea level rise fluctuated and its height was probably not sufficient or stable enough for a  
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carbonate factory to be establish and continually produce carbonate in this area. 

In this well, initial carbonate sedimentation with the sedimentary structure of flaser sand 

lens, earlier mentioned at 13557.5 ft, indicates possible isolated ripples caused by increased 

marine wave energy (Tucker, 2001) during the major Smackover transgression. This earlier 

carbonate deposition probably occurred in a shallow marine carbonate tidal environment. The 

abundance of algae, sponge spicules, and peloids, in the sediments suggests the carbonate 

environment was still shallow and low energy. The sedimentary structure of ribbon rock suggests 

depositional occurred under subtidal to intertidal environment. Alternation between the peloidal 

mudstone to wackestone and algal boundstone/mudstone represent a fluctuation of sea level 

which could be additionally affected from climate variation. Interlaminated algal mats formed 

during shallow intertidal trapped more silt size quartz through windblown process during the low 

sea level period. The stacking of smaller (centimeters scale) shallowing cycles may be 

recognizable. Within these shallowing cycles, sedimentation began with peloidal mudstone to 

wackstone interpreted to occur in a lower intertidal to subtidal and then changed to probable 

wackestone which was highly dolomitized and was interpreted to occur during shallowing 

condition where meteoric water zone could become effective. The dark organic-rich sediments, 

occurred mostly at the base of these cycles and characterized as algal-laminated mudstone, are 

interpreted as the transgressive deposit formed during a stagnant, euxinic to anoxic condition. 

Algal boundstones (Tuiphytes; Moore, 1991) were later built up above this mudstone after sea 

level continued to rise. During the late relative sea level highstand, a shallowing conditions and 

an influence from meteoric water environment caused pervasive dolomitization. Increasing 

siliciclastic input was probably transported from the Mississippi Interior Salt basin or from the 

landward to the north while relative sea level was low. Under shallow water conditions, the 

formation of evaporite nodules occurred and was associated with the algal fragments or the 

microreef structures due to the effect from freshwater dissolution which had been subsequently 

filled by evaporite precipitation probably during increasing evaporation. The shallowing trend 
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toward the end of the lower Smackover was also recorded in the in Smackover Formation from 

the southeast part of Mississippi Interior Salt Basin (Meendsen et al., 1987) and from the 

Conecuh Embayment (Sigsby, 1987). On ramp stratigraphy, Burchette and Wright (1992) has 

pointed out that the sedimentary characteristic of sequence boundary (i.e. karst, calcretization or 

zone of meteoric diagenesis) or during the transition between the highstand to the lowstand 

sediment deposits might not be distinguishable as the very low slope angle of the platform unless 

sea level drop is significant. A study report from Hillgartner (1998) revealed  the characteristic of 

the discontinuity surfaces on the ancient  shallow carbonate ramp platform in France and  

Switzerland during the falling sea level of the third order eustatic cycle.  From his observation, 

the sequence boundary surface which  commonly influenced by topographic variations and lateral 

facies changes does not necessary to be a one widespread single zone; rather it appears to be 

expressed by zone of small-scale discontinuities or repeated environment changes due to the 

superposition of high frequency, low-amplitude sea-level fluctuation. Based upon Hillgartner’s 

observation, the Smackover sedimentation occurred between 13534.5 ft to 13545 ft is interpreted 

as the transitional sediment deposit occurred during the relative lowstand sea level associated 

with a sequence boundary.  

After a brief period of falling sea level, an increase in sea level resumed from 13435.5 ft 

to 13339. Rising sea level was interpreted by the deposition of the tidal-flat ribbon rock dolomitic 

wackestone/packstone to dolostone. On this Smackover squence, tidal ribbon characteristic is less 

distinctive; bioturbation and carbonate diagenesis especially dolomitization appeared to be 

pervasive. An abundance of intraclast algal fragments also suggests that sedimentation likely 

occurred above the fair weather wave base (FWWB) where wave actions can be common. The 

presence of anhydrite nodules, mixed of fine to coarse siliciclastic grains associated with prism 

crack sedimentary structure suggest to a shallow flat deposition. The subtidal environment 

probably occurred briefly at the beginning after sea level rise and then become shallower into 

upper intertidal as carbonate sediment caught up and kept up with sea level. Haywick et al. (2000) 
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has reported the majority of dolomites which observed spanning during Smackover deposition 

were the types which occurred under mixing water conditions during the meteoric diagenesis 

exposure and the marine water zone. The presence of dolostone associated with large pore vugs 

filled by evaporite precipitation is interpreted as the influence of mixed meteoric-marine water 

which could have occurred during the late highstand to lowstand sea level. Meteoric diagenesis 

was possible occurred and overprinted the earlier marine diagenesis. 

A sharp contact observed at 13339 ft in the #1 NEAL ET AL UNIT 30-1 core is 

interpreted as a transgressive surface overlying the highstand deposit of the previous sequence 

which probably had been overprinted by meteoric diagenesis during  subaerial exposure because 

of falling relative sea level.  The stacking pattern of small sediment cycles observed from 13339 

ft to 13213 ft is interpreted to have resulted from resuming of relative sea level rise. There is no 

distinguishable maximum flooding surface or a condensed section because of shallow carbonate 

deposition, but it could have been characterized by the intercalation between subtidal dark 

laminated mudstone intervals and peloidal mudstone/wackestone facies mixed with glauconite 

minerals. During this interval, biogenic structures exhibit bioturbation with the abundance of 

borings and horizontal burrows, rhizoliths and dark organic material sediment layers filled with 

evaporites. Increasing of mixed terrestrial materials suggest a shallow deposition proximal to a 

coastal environment. The first presence of planar laminated siliciclastic sandstone bed (13213 ft) 

observed in the upper Smackover of the #1 NEAL ET AL UNIT 30-1 is interpreted as the strand 

plain barrier deposition. The multiple sandstone intervals interbedded with the bioturbated 

mudstone to wackestone carbonate sediments suggests the middle and upper shoreface 

deposition. Although the upper Smackover occurred in the Conecuh Embayment was mostly 

carbonate shoal sediments (packstone and grainstone), the intercalation between carbonate and 

sandstone sediments has been earlier recognized in the Mississippi Interior Salt Basin (Shew, 

1991). According to Shew (1991), in the Mississippi Interior Salt Basin, the siliciclastic influx 

become decreasing along the north-south trend or the distant from its proximal source provenance 
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of the deltas (Dinkins et al., 1968), ancestral Mississippi rivers, (Mann and Thomas, 1968) or the 

failed rifting arm formed during an opening of the Gulf of Mexico (Ervin and McGinnis, 1975). 

The lateral effect of the longshore current and storm processes could have transported the finer 

grains of the siliciclastic sediment eastwardly and deposited in the Manila Embayment area. Shew 

(1991) reported the absence of finer grains and clay component in the large sandstone influx in 

the Misssissippi Interior Salt Basin was due to the extreme current reworking and/or sediment 

bypassing to the distal and probably the nearby basin.     

At the top the Smackover Formation, a sharp contact illustrates abrupt facies changes 

from the upper Smackover carbonate to the Buckner Member of the Haynesville Formation and is 

interpreted as possible sequence boundary. Mixed carbonate-evaporite sedimentation with some 

lenticular structures indicates a  transgressive surface next to the erosional surface at the end of 

the long term Smackover sequence.  

The estimated paleowater-depth variations during the Smackover depositions in the 

Conecuh and in the Manila Embayments are approximately sketched and shown in Figure 4-2. 

Because of a tidal environment and likely a strong effect exerted by a tidal current, sediment 

deposition of the Smackover carbonate in the Manila Embayment occurred on a shallower and 

high-frequent fluctuated-water conditions. Nevertheless, a comparison can still be made with the 

sedimentation occurred in the Conecuh Embayment. The label spaces on the diagrams are 

recognized from the core intervals which were used to describe both cores in this study.  

The short-term third-order sea level cycles during the Oxfordian period affected the 

regressive-transgressive cycles has been reported and illustrated by the paleowater-depth recorded 

in the sediments. Reported from the Corallian Group of the Coast, England, four depositional  

sequences of regressive-transgressive cycles occurred on the three different lithological units, the 

limestone,  argillceous,and the sandstone, and started from the lower Oxfordian to middle and upper 

Oxfordian-Kimeridgian times (Sun, 1989; Figure 4-3). A regressive cycle was characterized by a 

shallowing-upward succession and was separated from a transgressive cycle, or a deepening upward 
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Figure 4.2. Approximated paleowate-depth interpretation of the #1 T.R. MILLER MILL 17-11 core and the #1 NEAL ET AL. 30-1 core 
from the Conecuh Embayment and the Manila Embayment. Lithologic column was based upon core description presented in Table 4-1
and Table 4-2.  
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Figure 4-3. Depositional cycles recorded by relative water depth variation of the Corallian Oxfordian sequence 
from the Dorset Coast, England (Sun, 1989). The sediment sequence is equivalent age to the Smackover 
Formation on the United States and illustrated variation of paleowater-depth related to third-order relative sea 
level changes.   
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sequence, by a sharp-erosional surface. Compared to the Corallian Group, although the Smackover 

deposition was possibly controlled by the same eustatic sea level cycles,  a different depositional 

environment and a setting of the Smackover carbonate on a ramp platform would make the carbonate 

and siliciclastic variation during the Smackover to be different pattern. Nevertheless, the similarity of 

sedimentary cycles that occurred on this large scale between sediments of different continents seems 

to support that the global relative sea level changes could be their major control in addition to local 

variation of depositional condition.  

 

4.3.2  A COMPARISON BETWEEN THE SMACKOVER CORES  

   

A summary of the core lithofacies observations made from macroscopic and thin section 

analysis for the two locations is: 

 

  T.R. MILLER MILLS 17-11, #1  #1 NEAL ET AL UNIT 30-1 

    (Conecuh Embayment)  (Manila Embayment) 

 

Predominant     Algal laminate mudstone,  Mudstone and wackestone  

carbonate facies mudstone, peloidal wackestone;   ribbon rocks; laminated to   

   ooid packstone and grainstone   massive sandstones 

 

Depositional   Partial restricted lagoonal-  Shallow marine peritidal,  

environment  shoal barrier, open marine  coastal/shoreline  

 

Diagenesis   Cementation, micritization in the  Cementation, micritzation  

   lower smackover; dissolution and  and dolomitization throughout 

   dolomitization in the upper ooid  the core but were intense 

packstone and grainstone  in particular depth interval 

     associated with evaporite 

     replacement nodules 

 

Interpreted  Subtidal lagoonal mudstone/wacke-  Lower intertidal  
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highstand   stone with normal marine fossils;  mudstone/wackestone; 

deposit   shoaling packstone/grainstone              shoreface siliciclastic  

sandstones 

 

Interpreted  Adjacent to late higstand  Intense diagenesis of 

lowstand  carbonate sedimentation,  inter-  dolomitization superimposed of 

deposit   calation between carbonates and  previous highstand deposit; 

silciclastic intervals, algal laminate increase suliciclastic input; 

mudstone, small fenestral pores   abundance of large evaporite, 

filled with evaporite minerals  anhydrite nodules  

 

Interpreted  Subtidal planar laminate mudtone  Subtidal laminate mudstone on 

trangressive  or normal marine carbonate on top   top of partial structureless 

or flooding  mixed carbonate and   dolomitized wackestone 

surface   siliciclastic interbedded   to packestone  

 

Interpreted    Undifferentiated; amalgamated  Sharp contact of deeper facies  

dscontinuity  between late highstand to   overlying intensive dolomitized 

contact or  lowstand deposit;   shallow facies; multiple 

sequence boundary repetitive carbonate and    cycles   

                                       siliciclastic intercalation   

 

4.4  CONCLUSIONS 

 

Core observations suggest that depositions of the Smackover in the T.R. MILLER 

MILLS 17-11, #1 well of the Conecuh Embayment and the #1 NEAL ET AL UNIT 30-1 of the 

Manila Embayment of southwest Alabama occur under different depositional environments and 

paleowater-depth. In the Conecuh Embayment the Smackover carbonate abruptly overlies the 

eolian sandstone of the Norphlet Formation. The sharp contact is interpreted as a possible 

sequence boundary and the missing sediment could probably result from a weathering process 

during subaerial exposure. During the Smackover period, the Conecuh Embayment was probable 
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partially restricted to a normal marine environment by the paleostructural highs of the Paleozoic 

basement. The depositional environment during the lower Smackover was mostly restricted to the 

lagoonal-tidal flat system where carbonate sediments were dominated by algal laminated 

mudstone, peloidal mudstone/ wackestone and  micritic pelletoid-oncoidal wackestone to 

packstone. Diversity of marine fossils was very low but a few normal marine fossils could be 

observed during a high relative sea level cycles. Dolomitization is limited in the lower Smackover 

mudstone and the uppermost Smackover grainstone and packstone. The evaporite anhydrite 

nodules were mainly associated with the algal boundstone and micritic, pelletoid-oncoidal 

wackestone to packstone of a microreef. The presence of microbial boundstone or microreef in 

the lower Smackover of the T.R. MILLER MILLS 17-11, #1 core is found to be similar to other 

Smackover reports which were interpreted as a brief relative sea level falling period near the end 

of the lower Smackover deposition. Ensuing sea level rises in the next period affected the 

restricted condition in the Conecuh Embayment and permitted a better condition to normal 

marine environment.     

In the Conecuh Embayment, the periods of relative sea level falling exhibit an abundance 

of siliciclastic sediment influx interrupting carbonate deposition. The incoming of siliciclastic 

influx was initially observed during the late highstand sea level and increased during the lowstand 

as sea level also regressed.  A sequence boundary is not distinguishable in this embayment area as 

the sea level falling was probable not substantial due to a lack of the subaerial exposure. Organic-

rich sediments deposited during the transgression period deposited adjacent to the mixed 

siliciclastic-carbonate lowstand sediment with or without the distinct transgressive surface.  In the 

middle Smackover, in the vicinity of the T.R. MILLER MILLS 17-11, #1 well, the relative sea 

level fall allowed argillaceous clays and fine grain siliciclastic components from the river systems 

in the area to be transported farther onto the exposed platform and into the ocean. Because of 

lowstand sea level, a partial restriction affected from structural high would decrease water energy 

and water level in the embayment.  Water evaporation without or small normal marine water 
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recharge could promote hypersaline condition during the late highstand and the falling period of 

relative sea level. After sea level was rising again, the increased paleowater depth and decreasing 

siliciclastic input gave way to carbonate sediment to catch up and keep up illustrating an 

abundance of more carbonate grains in sediments. The shallowing carbonate cycles are not really 

recognizable but the presence of scattered fenestral features filled with evaporite minerals might 

be indicative a shallowing condition or warmer climates. The next relative sea level falling cycle 

characterized an interruption of this carbonate sedimentation with an increase of fine grained 

siliciclastic and clay influx which appeared to occur periodically during river discharges cycles. A 

lowstand deposit of mixed siliciclastic/carbonate or a siltstone and wackestone exhibit 

bioturbation and abundant fossils from shallow and low energy conditions. In the upper 

Smackover, when sea level was relatively high, high energy and normal marine environments 

prevailed and allowed a shoal barrier to be established. Diagenetic alterations are distinctive as 

carbonate mineral in most grains (aragonite) was highly unstable and subject to dissolution 

showing ooid vugs where reprecipitation occurred. The mixing between seawater and freshwater 

became prominent as dolomite formation occurred.   

In the Manila Embayment, the Smackover depositional environment was significantly 

different from that in the Conecuh Embayment due to a geographic separation caused by a 

paleohigh structure of the Conecuh Ridge. During the Smackover period, the partial connection 

between the Manila Embayment and the Mississippi Interior Salt Basin (Wade et al., 1987) could 

affect larger distant for wave and current transporting siliciclastic influx from the Mississippi 

Interior Salt Basin to the Manila Embayment. Carbonate sedimentation in the Manila 

Embayment, thus, illustrates higher content of the terrigeneous component. Core observation 

from the #1 NEAL ET AL UNIT 30-1 suggests the Smackover deposition in the Manila 

Embayment occurred in a shallow marine tidal environment.  Carbonate deposits illustrate 

sedimentary structures of shallow tidal-flat from upper to lower intertidal which dominated by 

ribbon rocks, biogenic structures, pore vugs filled with evaporites, and prism cracks. Subtidal 
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sedimentation with a dark laminated mudstone occurred during the repeated transgressive events 

adjacent to the lowstand deposit of the previous sea level cycle. The pervasive dolomitization in 

this core suggests the diagenetic environment could be influenced by meteoric water during 

falling relative sea level in the late highstand and lowstand. In the #1 NEAL ET AL UNIT 30-1 

Smackover core, two sediment intervals illustrated a highstand deposit which probably had been 

overprinted by meteoric diagenesis during the period of relative sea level fall. The 

disconformable surface, or possibly a sequence boundary, did not exhibit a single surface but 

instead comprised of repeated smaller cycles which were probably influenced by a higher 

frequency of sea level fluctuation. In the upper Smackover, the interbedded siliciclastic sandstone 

intervals with carbonate sedimentation characterized the shoreface deposition during a long-term 

regressive Smackover sequence.   

Core observations of the Smackover sequence from the Conecuh Embayment and the 

Manila Embayment suggest the lower Smackover sequence boundary is not necessary coincident 

with the formation contact. The sharp contact and abrupt facies changes from shallow to a deeper 

facies in the upper Smackover next to the Buckner anhydrite in both cores, however, suggest to 

possible fall of relative sea level where erosion probably also involved 

Although the paleoenvironments between the Smackover deposition in the Conecuh 

Embayment and in the Manila Embayment differed because of paleotopography, geological 

settings, diagenetic environments, and siliciclastic distribution and influx, core observations 

suggests the sequence stratigraphic framework between the two depositional areas can be 

correlated.  The Smackover Formation in both cores illustrate three possible shorter regressive- 

transgessive cycles superimposed on single long-term regressive sequence. During these three 

shorter cycles, a time span for each sea level cycle and the rate of rise and fall sea level were 

probably the major controls for carbonate sediment accumulation and sedimentary facies 

component between the two areas.  
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CHAPTER 5 
 

5. 1   SILICICLASTIC AND CARBONATE RELATED ELEMENTS  

 

Sedimentary rocks deposited in an ocean basin consist of a number of different 

components and minerals derived from different sources which are detrital, authigenic and 

biogenic (Kastner, 1999). Evidence for the origin and subsequent recycling processes of these 

materials in the ocean can be examined either directly or indirectly from the rock fragments and 

from disassociated minerals or chemical elements. In general, the detrital components are rock 

fragments of aluminosilicates primarily derived from the continent by weathering, and supplied to 

the ocean by rivers, ice or wind. The original source rocks of the continent may include exposed 

metamorphic, igneous and/or older sedimentary rocks. The inorganic authigenic components are 

comprised of different types of precipitates formed in the nearshore or offshore areas and 

materials which formed after deposition of the bulk sediment. The biogenic components are 

commonly derived from the inorganic skeletal remains of marine organisms or come from 

dispersed organic materials produced by degradation of organic tissues. In marine carbonate 

environments, although the sediment accumulations are primarily of a biogenic and authigenic 

origin, the proportion of non-carbonate detrital grains (terrigenous clastics) can be present 

depending upon the geological setting and conditions which affected the transportation and 

depositional processes.  In this chapter, variations of carbonate and siliciclastic elements in the 

Smackover deposition from the Conecuh and the Manila Embayments will be investigated for the 

information related to their sources, existing environment and post-depositional diagenetic 

environments.  

Major, minor, and trace elements are basic constituents in minerals which in turn become 

basic constituents of sedimentary rocks. Different types of sedimentary rock consist of variable 

concentrations of major and minor elements which are governed by their relative proportions in 
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minerals. Siliciclastic sediments usually results from physical and chemical rock weathering 

where the weathered grains are transported by different processes to sedimentary basins with 

different types of depositional environments. With increasing transportation distant, the grains 

from the original rocks generally become enriched in aluminosilicate and feldspar minerals such 

as Al2O3, Fe2O and K2O and depleted in SiO2, FeO, CaO, and Na2O. The detrital grains which are 

abundant in the clastic sediments and predominate in silt-size, sand-size, or larger, are quartz, 

feldspar, rock fragment and heavy minerals.  Smaller size fractions which can be transported for 

longer distances are the detrital clay size particles consisting primarily of different clay minerals. 

In carbonate sediments which are products of biogenic and inorganic processes, the major 

minerals (more than 50%) are carbonate minerals such as calcite (high and low magnesium 

CaCO3), dolomite (CaMg(CO3)2 ) and aragonite (CaCO3). The constituent elements in these 

minerals are Ca, Mg and C. Other minor and trace elements can be incorporated with carbonates 

during and after burial depending upon their distribution coefficient relative to the Ca ions 

(Veizer, 1983). For example, with larger crystal lattices (e.g orthorhombic) such as aragonite, the 

larger elements such as Sr, Na, Ba and U are more readily incorporated while smaller crystal 

lattices (e.g. rhomhbohedral) of calcite prefer to accommodate the smaller elements such as Mg, 

Fe, Mn, Zn, Cu and Cd (Brand and Veizer, 1980).  

In carbonate deposition, factors important to carbonate production and sedimentation are 

sea level changes, climate, light, temperature, and nutrients (Wilson, 1975; Tucker and Wright, 

1990). An interruption of carbonate production can be affected by an increase in terrigenous 

sediment input which can cause water turbidity. In addition, if the amount of light that can reach 

the sea floor is diminished, photosynthesis, which is necessary for growth of calcareous algae and 

sea grasses and other marine organisms, is discouraged and affects the overall carbonate 

precipitation. Therefore, it is not uncommon to observe a reverse correlation between carbonate 

and siliciclastic sediments or elements which are associated with them.  A number of studies of 

recent and ancient sediments grouped major and minor elements and used them as indicators for 



 92

provenance and transport processes. The element groups are Al, K, Na, Rb, Ga, Cr, Li, B, Ba,  Pb 

for aluminosilicate minerals, Ca, Sr, Mg, CO2 for carbonate, Fe Co, Mn, V, P for the dispersed 

oxide minerals,  Na, B, Ba, Be for clay minerals and glauconite, and Ti and Zr for heavy mineral 

input (Hirst, 1962a and b; Spencer, 1968; Price and Wright, 1971;  Calvert, 1976). Some of those 

elements may also reflect conditions of paleoenvironment deposition, i.e. oxic and anoxic 

environment and these are Cu, Cd, Ni, Zn, V, Cr, Pb, Re, and U (Calvert and Pedersen, 1993). 

The relation among many of these elements in the recent sediment has been illustrated by Calvert 

(1976) on a cluster analysis (data from Hirst, 1962a and b; Figure 5-1).  

 

5.2   CARBONATE DIAGENETIC EFFECTS 

 

During and after deposition, sedimentary rocks undergo diagenetic alteration affected by 

pore water chemistry and burial conditions associated with elevated temperature and pressure. 

For carbonates, diagenetic processes include micritization, cementation, neomorphism, 

dissolution, compaction and dolomitization (Tucker and Wright, 1990; Chapter 7). Diagenesis in 

carbonate sediments usually starts at the seafloor during sedimentation and continues with 

increasing burial depth. Upon diagenesis, concentrations of major and minor elements 

incorporated in the carbonate minerals also change from their original concentrations. The 

chemical composition of ancient carbonate rocks can be used as a parameter for evaluating the 

diagenetic effect and deducing the stabilization of the original carbonate minerals. Stabilization of 

metastable carbonate assemblages during diagenesis is also achieved through complimentary 

textural, mineralogical and chemical changes. The original carbonate precipitation will usually 

incorporate major and trace elements from the ambient seawater conditions. The initial 

precipitated inorganic components are therefore in equilibrium with those in the sea water (Brand 

and Veizer, 1980). Under diagenetic conditions, the three original carbonate minerals: a low-Mg 

calcite, high-Mg calcite and aragonite, can be dissolved partially or fully, exchange, and/or mix  
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Figure 5-1.   Cluster analysis illustrating relationship of different elements on chemical compositions of recent 
sediments from the gulf of Paria (from Calvert, 1976, with original data from Hirst,1962).
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with trace elements and stable isotopes of those in the interstitial water. The stabilized calcite 

mineral, which is the diagenetic low magnesium calcite, usually accompanies some changes in 

variable element concentrations. If exposed under meteoric water, diagenetic low-Mg calcite can 

consist of trace elements and stable carbon isotope values which are comparable in their ratios to 

the compositions of interstitial meteoric water. The carbonate-related elements which could be 

affected under this condition are Sr, Na, Mg, Mn, Fe, and Zn (Brand and Veizer, 1980).  Due to 

the concentration differences between  seawater and meteoric water elements (Table 5-1), 

carbonate sediments of diagenetic low-Mg calcite generally become depleted in Sr and Na (and 

lighter δ18O and δ13C) but enriched in Mn, Fe and Zn concentrations (Veizer 1983). These altered 

concentrations, however, can still be used to infer the depositional environments and, to some 

degree, the changes of chemical composition during relative sea level fluctuation. It was 

recommended by Veizer (1983) that an alteration of the carbonate trace elements by diagenesis 

would usually occur below or would not exceed the concentration limits which existed in the 

primary rocks. This is because the sediment pore volumes are relatively smaller compared to the 

larger volume of the bulk rocks. Therefore, the relative differences between the original 

concentrations of individual elements during variable mineralogical phase can still be preserved, 

to some degree, even though the absolute concentrations have been changed. Examples of 

diagenetic studies of ancient carbonate rocks can be found by Rachold and Brumsack (2001) and 

Dolenec et al. (2001).  In this study, chemical compositions of Smackover sedimentation from the 

two study areas have been investigated. The purpose of the study is to clarify differences and 

similarities between sediments of the two depositional locations in term of depositional 

environments and diagenetic effects which may lead to an understanding of the controlling 

factors on the Smackover sedimentary sequence.   
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Table 5.1  Chemical compositions of major and minor elements in the sea water and freshwater 

streams (from Veizer, 1983). 

 

         Seawater   Freshwater (Stream) 

 

Major elements (mg/kg or ppm) 
 
    Chloride (Cl)     19,350 
    Sodium (Na)     10,760    5.1 
    Sulfate (SO4

2-)    2,710 
    Magnesium (Mg)         1,290    3.8 
   Calcium (Ca)     411    14.6 
   Potassium (K)     399 
   Bicarbonate (HCO3

-)    142 
   Strontium (Sr)    8    60 
   Silica (Si)     0.5-10 
   Oxygen (O2)     0.1-6 
   Nitrate (NO3

2-)    0.005-2 
   Phosphate (PO4

3-)    0.001-0.05 
   Dissolved  organic matter  (as C)  0.3-2  
 
Minor elements (µg/kg or ppb) 
 
   Lithium (Li)     180    10 
   Beryllium (B)     6 x 10-4     20 
   Aluminium (Al)    2    50 
   Titanium (Ti)     1    10 
   Vanadium (V)    2    1 
   Chronium (Cr)    0.3    1 
   Manganese (Mn)    0.2    8 
   Iron (Fe)     2    40 
   Copper (Cu)     0.5    7 
   Cobalt (Co)      0.05    0.2 
   Zinc (Zn)     2    30 
   Nickel (Ni)     0.5    2 
   Zirconium (Zr)    0.03     
   Barium (Ba)     2    50 
   Lead (Pb)     0.03    1 
   Molydenum (Mo)    10    0.5 
   Cadnium (Cd)     0.05 
   Iodine (I)       60 
   Gold (Au)     4 x 10-3     0.002 
   Silver (Ag)     0.04     0.3 
   Mercury (Hg)     0.03  
   Radium (Ra)     1 x 10-7 
   Uranium (U)     3.3    0.1 
   Thallium (Th)     0.01    0.1 
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5.3  SMACKOVER ELEMENTAL ANALYSIS  

 

Whole rock samples of the Smackover carbonate, including the Norphlet sandstone and 

the Buckner anhydrite, are used for the analysis of their major, minor and trace elements by X-ray 

fluorescence (XRF) techniques. A total of sixty five samples from the T.R. MILLER MILLS 17-

11, #1 well of the Conecuh Embayment and seventy five samples are from the #1 NEAL ET AL 

UNIT 30-1 well of the Manila Embayment were characterized in this study.  Twenty-three 

samples from the total sixty-five samples of the Conecuh Embayment were also analyzed by X-

ray diffraction (XRD) for carbonate and evaporite minerals for confirmation. Techniques and 

instrumentation have been previously described in Chapter 3. The elements which are associated 

with carbonate and/or siliciclastic origins investigated in this study are Al, Si, Ti, Fe, Mn, Mg, 

Ca, Na, K, P, Sr, Pb, Ba, Zn, Cu, Ni, Cr and V. Most major and minor elements are measured as a 

percentages of oxide minerals which are subsequently recalculated and converted into 

percentages of each element based on their atomic weights. In this study, the concentration of an 

element which is less than the instrument detection limits (2 ppm) is approximated to 0.5 ppm in 

order to permit normalization with respect to major elements. For terrigenous components, 

aluminium (Al) is used as proxy for additional input from the current background (Calvert, 1990; 

Murray and Leinen, 1996).  Although Al can also have authiginic origin, from the early X-ray 

diffraction (XRD) and scanning electron microscopy (SEM) analysis of Amy et al. (1995), it was 

been shown that the authigenic clay content in the Smackover carbonates (from the Manila 

Embayment) is relatively low and insignificant. In order to eliminate the effects from sediment 

dilution and the mixed influence from either carbonates or siliciclastics, most of analyzed 

elements are normalized and reported as ratios with respected either to Al or Ca. The siliciclastic 

elements normalized to Al are Ti, Si, Fe, K, Na, Mn and P.  The carbonate minor, and trace 

elements Mg and Sr and Mn will be normalized with respected to Ca. For Mn, its presence will be 
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discussed separately as Mn concentration in sediments were used not only for indicating the 

redox conditions of depositional environments (Calvert and Pedersen, 1993; 1996) but it has been 

recently related to the changes of eustatic sea level cycles (third order) associated with the 

hydrothermal activities during the oceanic ridge spreadings (Corbin et al., 2000; De Rafelis et al., 

2001). The presence of the Na and P are also reported as ratios normalized to Ca so that 

diagenetic effects of these elements are constrained with trends of oxygen isotope variation. The 

results from elemental analysis from samples derived from the two Smackover cores are 

presented in Appendix 5-1 and Appendix 5-2. 

 

5. 4   RESULTS AND DISCUSSION 

 

 5.4.1  Siliciclastic related elements 

 

The carbonate and siliciclastic distributions for the Smackover carbonates of the Conecuh 

and the Manila Embayments are compared in the ternary diagrams of the three elements, Ca, Al 

and Si (Figure 5-2). These diagrams exhibit the sedimentation in the two embayments consisted 

of similar relative proportions of carbonate (Ca) and aluminosilicate (Al), although the measured 

concentrations of these three elements are variable.  An inverse relationship between Al and Ca is 

observed in samples from both Smackover core sequences. In the Manila Embayment, samples 

with increased silica (Si) content and presented near the axis point correspond to multiple 

sandstone units interbedded with carbonate sediments in the upper Smackover. 

 The negative vertical covariations between siliciclastic related elements, Al, Ti, Si, Fe, K 

and Ca (Figure 5-3a and b) suggested that Smackover sedimentation related to the presence of 

these elements was controlled by a simple two-component mixing model. With increasing 

siliciclastic influx, carbonate production became interrupted along with carbonate content in the 

samples.  However, other factors such as depositional energy, redox conditions and weathering 
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Figure 5-2 Ternary diagrams illustrating relative content of the Ca, Si and Al elements in the Smackover 
samples from the Conecuh and the Manila Embayments. 
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Figure 5-3a. The vertical distributions of siliciclastic related elements compared to Ca of the Smackover samples
from the Conecuh Embayment. Data are listed in Appendix E. 
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Figure 5-3b.  The vertical distribution of siliciclastic related elements compared to Ca content of the Smackover
samples from the Manila Embayment. Data are listed in Appendix F. 
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 etc. may also involved with individual elements as discussed later. In the Conecuh Embayment, 

the inverse correlation between siliciclastic input based upon Al content and carbonate 

sedimentation is clearly observed (Ca/Ca+Al ratios are used for carbonate component in order to 

minimize Ca from CaO from the siliciclastic fraction). Although some positive covariation of Al 

is observable between the two Smackover cores, the concentrations of Al are variable between 

these two Smackover cores. The higher Al content in the Smackover sedimentation of the Manila 

Embayment suggests a proximal geological setting to terrigenous sources as compared to the 

Conecuh Embayment. During lower Smackover deposition, shallow and adjacent coastal 

conditions of the Manila Embayment, interpreted as tidal-flat environment in the previous 

chapter, continued to receive an abundant siliciclastic input from land compared to the Conecuh 

Embayment which was probably located farther seaward and under deeper conditions. Less 

contamination from siliciclastic sediments in the Conecuh Embayment therefore permitted higher 

carbonate growth and accumulation.  During Smackover deposition in the Conecuh Embayment, 

carbonate sedimentation illustrates distinct intervals of increasing sililiciclastic influx (13740 ft to 

13765 ft; 13622 ft to 13589 ft). This increasing siliciclastic influx also occurred during 

Smackover sedimentation in the Manila Embayment, but because of a larger siliciclastic content 

in the background, this variation was less distinguishable in the #1 NEAL ET AL UNIT 30-1 core 

sequence. The variation in siliciclastics between Smackover deposited in the Manila and the 

Conecuh Embayments could be influenced by different structural settings which affected a 

transportation and availability of siliciclastic sediment source on these inner ramp depositional 

environments.  

For each individual element, additional influences may also be recognized when the 

normalized ratios with Al are considered (Figure 5-4a and b). Because of a stronger variation 

between the carbonate and siliciclastic components, these other influences can be better  

recognized from the element variation that occurred in the T.R. MILLER MILLS 17-11, #1 core 

from the Conecuh Embayment than the #1 NEAL ET AL UNIT 30-1 from the Manila  
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Figure 5-4 b.  Al and Al-normalized siliciclastic major elements in comparison with Al-normalized Ca on eliminated siliciclastic
influence on the Smackover samples from the Manila Embayment. Data are listed in Appendix F. 
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Embayment.  Except for a higher fluctuation in the upper Smackover, samples of the Manila 

Embayment illustrate a trend which is rather uniform that suggests a primary siliciclastic control 

of these elements under variable depositional conditions. In the Conecuh Embayment, higher 

normalized ratios of Ti to Al indicate an increased depositional energy in the carbonate 

environment from the lower to upper Smackover period. This interpretation is in agreement with 

the formation of the shoaling environment observed in the upper Smackover in the Conecuh 

Embayment. An almost uniform Si to Al trend (interpreted as Al increasing, Si also increasing 

correlatively) with some slightly higher values in the lower Smackover (probably affected by 

different larger grain size) suggests the Si content was primarily associated with siliciclastic 

component.  For the Fe/Fe+Al ratio, the long-term fluctuation trend and the variation in 

correlation with Al and Ca/Ca+Al suggest Fe was probably not entirely bound to aluminosilicate 

minerals but instead may have been associated with pyrite or oxyhydroxide minerals that were 

affected by the depositional environment. An almost inverse correlation between the K/K+Al and 

Al indicates most siliciclastic inputs in the Smackover sediment of the Conecuh Embayment are 

likely silt or clay size particles dominated by clay minerals instead of feldspar minerals which are 

higher in K element. This observation could be interpreted by saying that siliciclastic influx 

during Smackover deposition in the Conecuh Embayment area represented the distal sediment 

from the river discharge or deltaic system. The smaller size particles were transported farther 

away from the original source location. This event could be interpreted to occur during falling 

relative sea level by seaward migration of these rivers of the deltaic system. The other possibility 

was it occurred due an enhanced chemical weathering on the continent area without relative sea 

level changes, or by the combination of both effects. Reinhardt and Ricken (2000) suggested 

K/Al ratio, in comparing with Ti/Al and Si/Al ratios, as an indicator for siliciclastic input due to 

weathering process.  With increasing chemical weathering the K/Al ratio in the rock could 

become different.  Higher weathering would lower the K/Al (or K/K+Al) ratio as increasing Al 

content. In reverse, when low to absence weathering processes, siliciclastic fraction could have 
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higher K/Al values. Therefore it is possible that variation of K/Al ratio observed in the 

Smackover sedimentation, especially the Conecuh Embayment, may refer to the changing 

conditions during sea level fluctuation and/or variation in chemical weathering processes. 

Because the variation of the K/K+Al  values is not distinctive in the Smackover in the Manila 

Embayment which received higher siliciclastic  influx, this enhanced chemical weathering effect, 

although possible, needs more investigation.   

 

5.4.2 Carbonate related elements  

 

The ternary diagrams for Ca, Sr and Mg illustrate variable carbonate chemical 

compositions between the Smackover deposition in the Conecuh and Manila Embayments 

(Figure 5-5). Arbitrary multipliers are applied to the Sr and Mg concentrations in order to 

relocate the data for better display. In the Conecuh Embayment, Smackover samples are 

dominated by samples with relative high Ca content which have a low to moderate Sr and Mg 

content. In contrast, the Smackover of the Manila Embayment is comprised of samples which are 

much higher in Mg, but low and variable in Ca and Sr. The variation of the Ca and Mg 

concentrations between the two Smackover wells are believed to be affected by different 

diagenetic conditions especially for dolomitization. In general, the diagenetic conversion of the 

original mixed carbonate phases (high-Mg calcite, low-Mg calcite and aragonite) to the stable 

low-Mg calcite phase generally leads to a decrease in Sr, Mg and Na concentrations in the 

sediment sample (Brand and Veizer, 1980). Except for dolomitization, Mg contents can increase 

by the replacement of Ca by Mg element during reprecipitation. In the Manila Embayment, 

evidence from core observations suggest dolomitization effects would be the cause for high Mg 

and low Ca concentrations in the samples due to a replacement of Mg 2+ to Ca2+  molecules. The 

higher Mg/Mg+Ca in the #1 NEAL ET AL UNIT 30-1 samples confirm this interpretation. 
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Figure 5-5. Ternary diagrams illustrating relative content of carbonate related elements, Ca, Mg and Sr, in  
the Smackover samples from the Conecuh and the Manila Embayments. The arbitrary numbers are applied 
in order to balance data on the diagrams. 
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On the vertical trend, the Ca, Mg, Sr, Mn, Na and P elements exhibit different variations 

that suggest variable depositional environments from the lower to the upper Smackover (Figure 

5-6 a and b; Figure 5-7 a and b). In the Conecuh Embayment, the Mg/Mg+Ca values, used as 

indicator for dolomitization, were high in the lower and upper Smackover adjacent to the 

Norphlet and the Buckner anhydrite and during the intervals with increased siliciclastic influx.  It 

is assumed that Mg content in the Smackover carbonate was mainly controlled by carbonate 

phase, therefore this observation suggests the increased dolomitization during the high 

siliciclastic influx could form during the falling relative sea level period when the freshwater 

mixing zone became closer. Under marine-fresh water mixing conditions, dolomites can form as 

the Mg/Ca in the mixed water increased by adding fresh-water which consists, relatively, of a 

much lower Mg/Ca ratio (between  0.1 to 0.3) compared to marine water (about 3) (Folk and 

Land, 1975). However, another possible interpretation is dolomite formed in this Smackover area 

occurred under the restricted to hypersaline conditions during relative sea level lowstand. Folk 

and Land (1975) explained that under a shallow marine, hypersaline environment, the 

precipitation of evaporite minerals (e.g. CaSO4) and a consequence loss of Ca would increase 

Mg/Ca values to above the normal values in the sea water (5 to 10 times) and dolomite 

precipitation could thus form. For the #1 NEAL ET AL UNIT 30-1 in the Manila Embayment, 

the high Mg and Mg/Mg+Ca values on the long trends support pervasive dolomitization. The 

smaller dolomitization in the lower Smackover in the #1 NEAL ET AL UNIT 30-1 sequence 

could be interpreted as lesser effect from the freshwater mixing zone due to more seaward (and 

probable deeper) location during the earlier Smackover deposition in this embayment. As sea 

level continued rising and fluctuating, shallowing carbonate condition on a long-term Smackover 

regressive sequence promoted higher dolomitization in the area. 

Sodium and phosphorous contents in the Smackover sediments of both cores illustrate 

negative covariation with Ca and suggest their primary influence was not associated with  
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Figure 5-6a.  Major and minor carbonate related elements of the Smackover samples from the Conecuh Embayment. Na and P 
plotted in this group to compare their distributions in a carbonate environment. Data are listed in Appendix E. 
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Figure 5-6b.  Major and minor carbonate related elements of the Smackover samples from the Manila Embayment. Na and P
plotted in this group to compare their distributions in a carbonate environment. Data are listed in Appendix F. 
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Figure 5-7a.  Al-normalized and Ca-normalized major and minor of carbonate related elements for carbonate and
diagenesis in the Smackover samples from the Conecuh Embayment  Data are listed in Appendix E. 
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carbonate depositional conditions, but rather siliciclastic control. In the terrigenous component, 

Na can be associated with the illite and glauconite  minerals (Spencer et al.,1968). P can come 

from the terrigenous apatite grains which were delivered into the Embayment by river discharges 

during deltaic progradation. Because Na and P elements were also present in the seawater, the 

positive covariation of the Na/Na+Al and P/P+Al with the Ca/Ca+Al values in Smackover 

samples from the Conecuh Embayment support the shorter-cyclicity of the Smackover 

depositional sequence in the Conecuh Embayment. Under these shorter cycles, both Na and P 

elements illustrate a long term increasing trend from lower to the upper Smackover. A diagenetic 

effect can be excluded for Na content as Na should decrease as carbonate mineral (aragonite) in 

the upper Smackover grainstone and packstone were more subjected to higher diagenetic 

alteration. The possible explanation for higher Na and P in the upper Smackover could be related 

to increased evaporation on the seawater surface as the climate became more arid which was 

evident by increasing evaporite formation of the Buckner anhydrite on top of the Smackover.  

Strontium (Sr) 

During carbonate deposition, the original strontium (Sr) concentrations in carbonate 

sediments can decrease from several diagenetic reactions including dolomitization. Thus, Sr can 

be used as an indicator for carbonate diagenesis study (e.g. Baker et al., 1982; Veizer, 1983). 

Based upon the information published by Rachold and Brumsack (2001), calculated Sr 

concentrations of the pure carbonate materials were about 500 ppm for diagenetically 

recrystallized carbonate chalks (diagenetic low-Mg calcite; Scholle, 1977), 1100 ppm for low-Mg 

calcite (Morse and Mackenzie, 1990), 1600 ppm for recent marine carbonate (Scholle, 1977) and 

more than 2500 ppm up to 10,000 ppm for aragonite (Morse and Mackenzie, 1990). In the 

Conecuh Embayment, Smackover samples illustrate Sr variations from less than 500 ppm to 

higher than 10000 ppm. Most samples with Sr contents less than 500 ppm and between 500 ppm 

to 1000 ppm are observed in the lower Smackover and in sediment intervals where there is an 

increased siliciclastic input. The high Sr concentrations (>1500 ppm) occurred in samples which 
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are high in Ca or low in Al content. Carbonate samples which contain > 10,000 ppm Sr occur in 

the upper Smackover where the carbonate packstone and grainstone are dominant. For this 

interval, the Sr content was unlikely influenced by siliciclastic components as they were relatively 

low compared to the carbonate component. Diagenetic alteration which could be significant in the 

upper Smackover oolitic packstone and grainstone already decreased the Sr from its original 

content. However, as these packstone and grainstone ooids were likely dominated by aragonite 

which generally consists of high Sr content, suggestting high Sr in the upper Smackover can also 

be related to the original carbonate phase. Nevertheless, the Sr values in the upper Smackover 

sediments are too high as most of the original aragonite in these sediment grains have been  

converted into the stable diagenetic low-Mg calcite. Therefore, the unusually high Sr in this upper 

Smackover interval could reflect an increased Sr content in the seawater during late highstand sea 

level near the end of a long-term Smackover regressive cycle caused by an increased Sr delivery 

from an exposed or a shallow aragonitic platform drowning. For the Smackover deposition in the 

Manila Embayment, most samples from the #1 NEAL ET AL UNIT 30-1 core contains less than 

500 ppm Sr. Diagenetic effects including dolomitization are interpreted to decrease Sr contents in 

the stabilized carbonate phase in the Smackover samples of this core. The relationships of Sr (as 

Sr/Sr+Ca) with Al (siliciclastic control), Ca (carbonate control) and δ18Ocarb   values (diagenetic 

effect) are illustrated in Figure 5-8.  The cross-plot correlations between Sr/Sr+Ca and Al content 

and between Sr/Sr+Ca and  the δ18Ocarb  values are slightly different between the two Smackover 

units. In the Conecuh Embayment, a stronger negative correlation between Sr/Sr+Ca and Al 

content and a weaker positive correlation between Sr/Sr+Ca and the δ18Ocarb  support the concept 

that Sr concentrations were not principally affected only from siliciclastic influx and diagenetic 

effect.  Instead, the covariation between Sr/Sr+Ca and Ca/Ca+Al ratios indicates high Sr could 

have coprecipitated with carbonate precipitation. In the Manila Embayment, although similar 

correlations occurred between Sr/Sr+Ca and Al and between Sr/Sr+Ca and Ca/Ca+Al ratios, the 

cross-plots between Sr/Sr+Ca and δ18Ocarb show distributions which suggest a different diagenetic  
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(a) (b) (c)

(a) (b) (c)



 115

environment from the Conecuh Embayment. 

Manganese (Mn)  

Although varying in the measured concentrations, Mn distributions from both Smackover 

core sequences exhibit similar decreasing-upward concentrations on their long-term vertical 

trends (Figure 5-7a and b). In the Conecuh Embayment, the cyclicity of Mn variation is also 

observable. The Mn contents (Mn/Mn+Al) are relatively higher in Smackover deposited in the 

Conecuh Embayment than in the Manila Embayment. Although Mn can increase due to 

diagenesis (Brand and Veizer, 1980), diagenetic alteration cannot be the sole explanation for the 

higher Mn in the T.R. MILLER MILLS 17-11, #1 well samples. If diagenesis was primarily 

responsible for an enrichment of Mn in the Smackover sediment, one would expect that the 

higher Mn concentration should present in samples from the #1 NEAL ET AL UNIT 30-1 well 

instead from the T.R. MILLER MILLS 17-11, #1 well. Siliciclastic factor (as MnO; Spencer, 

1968) could not able to explain this high Mn in the Conecuh Embayment Smackover either as 

higher siliciclastic component also occurred in samples from the #1 NEAL ET AL UNIT 30-1 

well. In addition, the reducing depositional environment during the lower Smackover probably 

was not applied to these high Mn concentrations. Based upon Arther and Dean (1991); Calvert 

and Pederson (1993 and 1996), high Mn content in sediment sample also occurs in oxic 

conditions. An enrichment of Mn in marine carbonates can be influenced by increasing terrestrial 

input or by direct precipitation as authigenic Mn from sea water during carbonate precipitation 

(Krishnaswami, 1976). According to Calvert and Pederson (1993), solid phase Mn in marine 

carbonate can occur not only as manganese oxide (MnO2) but also as manganese oxyhydroxide 

(MnOOH) phase. Mn2+ which is observed to be related with a reducing or anoxic condition was 

due to the diffusion of the Mn2+ from the MnOOH in the sediment into the suboxic water zone as 

the sediment/water interface became anoxic but not necessarily in the water column as a result of 

high organic productivity (Calvert and Pederson, 1993).  
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From the study of Rachold and Brumsack (2001), Mn concentration was reported in an 

average shale sediment to be around 0.09 %. In this study, Mn contents in the lower Smackover 

especially for the T.R. MILLER MILLS 17-11, #1 core are up to 3.3 % and around 0.6 % for the 

#1 NEAL ET AL UNIT 30-1 core. As previously mentioned, siliciclastic contribution and 

diagenetic alteration are not effective to explain the high Mn observed in the Conecuh 

Embayment Smackover. The relationship between Mn (Mn/Mn+Ca and Mn/Mn+Al) and Ca 

(Ca/Ca+Al), or Al or δ18Ocarb values are also illustrated by cross-plots in Figure 5-9. Mn/Mn+Al 

values plotted with Ca/Ca+Al values illustrate that Mn contents in samples of the Conecuh 

Embayment show a different correlation with carbonates compared to samples from the Manila 

Embayment and have less variation with the Ca content. The correlation between the Mn/Mn+Ca 

and Al suggests that Mn in samples from the Manila Embayment was more or less influenced by 

siliciclastic component than Mn recorded in samples from the Conecuh Embayment. A poor 

correlation between Mn and δ18Ocarb values in both cores suggests that Mn was not only affected 

by diagenetic alteration. Different distributions between Mn and δ18Ocarb values between the two 

sample set confirm different diagenetic depositional environments. Because Mn  variation in the 

Smackover samples was not principally controlled by siliciclastic and/or diagenetic effect, it is 

possible that these high Mn samples were directly influenced by an increased Mn content in the 

seawater during the Oxfordian ocean conditions. In that case, separation of the Mn content 

observed on both vertical scale with depth and on the cross-plot with the δ18Ocarb values indicate 

there were at least three shorter cycles of the Mn fluctuation which related to sea level variation 

during the long-term Smackover sequence.  

Dissolved Mn in seawater is primarily of hydrothermal origin. According to von Damm 

(1995), a hydrothermal event can increase the input of Mn to 30 times higher than that 

contributed from a terrigenous supply alone. In general, the average Mn concentration under 

normal marine conditions is quite low, varying between 0.5 to 5 nmol/kg or about 3 to 30 (x10-5) 

mg/kg (ppm) (Chester, 1990). With increasing hydrothermal activity, Mn in the seawater can  
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Figure 5-9. Cross-plots between (a) Ca/Ca+Al and Mn/Mn+Al, (b) Al and Mn/Mn+Ca to investigate the variation of  Mn to Ca 
and Al. Diagenetic effect on Mn concentration (c) is examined by plotting with δ18Ocarb. Data including δ18Ocarb values are listed  
in Appendix E and F. 
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increase up to 33-41 mg/kg (Klinkhammer et al., 1986; Lyle et al., 1986; Edmond et al., 1990). 

This Mn increase can still be observed in sediments which are located more than 2000 km from 

the spreading ridge source (Lyle 1976; Klinkhammer et al., 1980) and vertically more than 1500 

m above the sea floor with a factor of 3 per 1000 m above the hydrothermal plumes (Gordeev and 

Demina, 1979).  For the Smackover deposition, it was possible then that an initial sea level 

transgression which was rapid and pervasive throughout the US Gulf margin in the Early 

Oxfordian period was a result of an event related to an increasing spreading ridge accretion which 

not only raised the relative sea level but also increased Mn content in the seawater during this 

period of time. An increase of Mn content in the Oxfordian carbonates has been recorded in 

pelagic sediments from basins in France (Corbin et al., 2000; De Rafelis et al., 2001). According 

to Corbin et al. (2000), there was a long-term variation of Mn concentrations which were related 

to the second-order sea-level changes and controlled by mid-oceanic activities from the Late 

Toarcian to the Oxfordian period. A decreasing Mn trend was recorded under the Oxfordian  

regressive phase of the second-order eustaic sea cycle. A major event of the very sharp increase 

of Mn content (above 1000 mg/kg), which was recognized in the Late Callovian and continued to 

the Early Oxfordian, could be equivalent to the high Mn which occurred at the base of the 

Smackover carbonates. Corbin et al. (2000) interpreted the increased Mn as corresponding to the 

first occurrence of oceanic crust (in Corbin et al., 2000; Figure 4). In De Rafelis et al. (2001), 

where the sediment sequence from Upper Oxfordian to Lower Kimmeridgian was investigated, 

the concentrations of Mn detected at the Upper Oxfordian were also lower (between 170 to 866 

ppm or mg/kg) compared to the Mn in lower Oxfordian (Corbin et al., 2000) which then suggests 

to decreasing trend from the Lower Oxfordian to the Upper Oxfordian and then Kimmeridgian 

period.  De Rafelis et al. (2001) illustrated the general trend of Mn variation relative to the 

changes in the third-order eustatic sea level cycle (Figure 5-10). During a lowstand system tract, 

Mn contents in the sediments are relatively constant with lowest values.  With a rise in relative 

sea level during the transgressive system tract, Mn increases in concentration and then becomes 
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highest at the maximum flooding surface or the condensed section. From the maximum flooding 

and up to a sea level highstand, Mn concentrations exhibit a decreasing trend and low values are 

typically observed at the sequence boundary between the highstand and the lowstand system 

tracts 

In order to support the correlation with the hydrothermal event during the Oxfordian 

period, the strontium isotopic composition (87Sr/86Sr) of the Smackover sample of the Conecuh 

Embayment has been analyzed by a commercial laboratory (Geochron Inc.).  The 87Sr/86Sr value 

of the Smackover samples at depth 13712 ft is reported of 0.706983. This number agrees with the 

values of the 87Sr/86Sr ratios which have been recorded between 0.7068 and 0.7070 in the 

Oxfordian sediments and used to represent the worldwide Oxfordian seawater strontium isotopes 

(Koepnick et al., 1990; Jones et al., 1994). The average and unusual low 87Sr/86Sr values of  the 

oceanic water during the Oxfordian period were suggested by Jones et al. (1994) as possibly  

representing the major pulse of hydrothermalism caused by the spreading ridges of the Atlantic 

ocean. The changing intensity of the mid-ocean ridge hydrothermal fluxes lead to a decreased 

87Sr/86Sr isotope ratios in the ocean. Therefore it might be possible that the high Mn 

concentrations in the sediments during this period, including in the Smackover sequence, were 

also associated with the increased Mn content in the seawater affected by those events. It can 

probably be reasonable to assume that the sharp increase of Mn in the lower Smackover and the 

variation of Mn concentration during Smackover deposition were primarily controlled by the 

global hydrothermal events relative sea level changes on the third-order scale. 

 

5.4.3    Redox Conditions  

 

Information concerning the redox state during and after deposition of sedimentary 

sequences may be obtained from selected trace elements and their abundances, such as Ba, Zn, 

Cu, Ni, Cr, V and Pb. According to Calvert and Pedersen (1993), these elements can occur by 
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precipitation, where the surface sediments are in contact with the anoxic or sulphidic water, 

and/or by the diffusion from sea water into anoxic sediments that lie below the surface oxic 

horizons. However, for continental margin sediments, these metals can also increase significantly 

with increasing local fluxes of detrital components.  The ambiguity for the presence of these 

elements is caused by the tendency of these elements to become enriched in the anoxic surface 

sediments and in the subsurface anoxic deposits underlying the surface oxic zone. Therefore it is 

probably more reliable for this study to use the presence and absence of these elements as a guide 

for sediment conditions. The absence of enrichments of these metals strongly suggests that 

sedimentation occurred under oxygenated bottom water conditions. The concentrations of the 

individual elements normalized to Al are used in order to subtract their contributions from, and 

during, the large siliciclastic sediment influxes and to indicate their contents which likely 

occurred during the Smackover carbonate precipitation.   

In the Smackover of the Conecuh Embayment, the vertical distributions of the 

normalized concentrations of these elements with respect to Al, except Zn/Zn+Al ratios, illustrate 

a similar fluctuation showing a long-term increasing trend (Figure 5-11a). The fluctuations of 

these elements are assumed to probably occur during carbonate precipitation. Usually, intervals of 

high concentrations were interpreted to represent conditions underlying the sediment-water 

interface becoming anoxic and diffusion of these elements from the seawater into the sediment 

occurred. If bottom sediment or the sediment-water contact was anoxic during Smackover 

deposition, the high ratios in these elements normalizing with Al would be expected and might 

not be covariant with increased siliciclastic sediments. However, increasing values shown in the 

upper Smackover might possibly suggest an increased concentration of these element due to 

changing seawater chemistry as changing depositional environment and/or paleoclimate 

conditions. However, for Cr and V, although they are eventually removed from the ocean into 

anoxic sediments, the propensity for the reduced species of both elements to precipitate as 

sparingly soluble oxides/hydroxides or to be absorbed on particle surfaces, also allow them to 
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Figure 5-11a.  Normalized ratios of trace elements with respect to Al of Smackover samples from the Conecuh Embayment. Data
including TOC values are listed in Appendix E. 
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exist under oxic sea water conditions (Calvert and Pedersen, 1993),   In contrast, the low contents 

of Cu, Ni, Cr, in the lower Smackover suggest that the depositional environments were not anoxic 

but could have been less oxygenated when compared to the upper Smackover sediment. When 

compared with the vertical distribution of total organic carbon (TOC), it was noted that intervals 

where these elements were absent in the lower and middle Smackover still correspond to those 

intervals of higher TOC content. This observation suggests that high TOC accumulation in 

samples did not occur under anoxic or reduced conditions, but were probably influenced instead 

by high terrigenous input.  However, it must also be noted that the absence of these elements was 

not always characterized by the high TOC samples either  such as in the upper Smackover where 

the packstone and grainstone predominated. The different trend of the Zn/Zn+Al suggests that 

high values in the lower and upper Smackover near the Norphlet and the Buckner anhydrite 

sedimentation were probably caused by other factors. From Calvert and Pedersen (1993), an 

increasing Zn concentration can be influenced not only by the anoxic condition of the bottom 

sedimentation but may also be supplied by the settling out of the particulate organic matter, or by 

the diffusion of the dissolved metals from the overlying oxygenated water, or the pore water from 

the adjacent intervals into the subsurface anoxic horizons.  

Because enrichments of these elements are not only affected by the magnitude of the 

precipitation from the oxic water column into the deep anoxic condition at the water-sediment 

contact but are also strongly controlled by the balance with the detrital aluminosilicates which are 

supplied in to the ocean (Jacob et al., 1987), the variation of these elements under different 

depositional environments and siliciclastic inputs can be different. This explanation might explain 

the different distributions of these elements observed in the Smackover sedimentation of the 

Manila Embayment (Figure 5-11b). The relatively low concentrations of these metals suggest 

that the environment in this embayment area was probably oxic. The small scale fluctuations of 

individual elements are not significantly different and are interpreted to be partially affected by 

the variable compositions of the aluminosilicate detrital supply during the Smackover in this  
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Figure 5-11b.  Normalized ratios of trace elements with respect to Al of Smackover samples from  the Manila Embayment. Data
including the  TOC values are listed in Appendix F. 
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embayment and there was also possibility that some of these elements (i.e.Cr and V) existed 

under oxic condition (Calvert and Pedersen, 1993). The low concentrations of Cr and V elements 

in Smackover sedimentation of the Manila Embayment can be interpreted by saying that these 

elements were not efficiently removed from the seawater as it would have been under anoxic 

conditions.  Usually, V and Ni can accumulate with organic molecules such as porphyrins, and 

the presence of a high concentration of organic matter which probably occurred under anoxic 

conditions will also lead to high V or Ni in the sediments. For the Manila Embayment deposits, 

the fluctuations and positive covariation of the V and Ni and with the TOC content suggest these 

two elements could be associated with the accumulation of organic matter. However, the lack of 

positive variation between the Cr and V in the lower Smackover samples of this core also 

supports that the depositional environment was not anoxic. A stronger variation of the Zn/Zn+Al 

values is interpreted to be influenced variable grain sizes of the siliciclastic sediments and 

different sediment particle settling processes.  

 

5. 5   CONCLUSIONS  

 

The bulk chemical composition of Smackover sedimentation in the Conecuh Embayment 

and the Manila Embayment from southwest Alabama was controlled by the variation of carbonate 

sedimentation which was affected by episodes of siliciclastic influx. In the Conecuh Embayment, 

the predominant carbonate deposition was interrupted by at least three major pulses of siliciclastic 

influx which are revealed  by increases in several major siliciclastic component major elements. 

(i.e. Al, Ti, Si, Fe, K). The normalized ratios with Al of these elements suggest to changes in 

deposition condition during the long term from the lower to the upper Smackover. The variation 

of the elemental compositions suggested Smackover deposition, especially the lower Smackover, 

occurred generally under oxic conditions. The depositional energy became higher toward the end 

of the Smackover Formation and it is possible that, during the Smackover deposition, the 
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fluctuation of chemical weathering processes could be involved.  The less distinctive patterns of 

these elements in Smackover sedimentation of the Manila Embayment resulted from a higher 

siliciclastic background content within the carbonate sedimentation which were controlled by the 

depositional environment and structural setting. The constant and high siliciclastic fraction supply 

lead to lower carbonate production and sedimentation in this area when compared to the Conecuh 

Embayment.  The normalized siliciclastic ratios (with respect to Al) in samples from the Manila 

Embayment became less effective in illustrating a shorter-cyclicity during Smackover deposition 

as compared to what observed in the Conecuh Embayment.  

Except in the upper Smackover, diagenetic alteration on the element concentrations is 

interpreted to be small in samples from the Conecuh Embayment owing to their more stable 

original carbonate phase in the mudstone (low-Mg calcite). Dolomitization indicated by 

Mg/Mg+Ca values could be distinguished in the lower and upper Smackover near the Norphlet 

Formation and the Buckner Anhydrite and was partially observed during intervals associated with 

increasing siliciclastic sediment influx. The increasing upward trend of the Sr elements and 

decreasing upward of the Mn element suggested a long-term Smackover regressive trend. While 

an increasing Sr content in the upper Smackover was probably affected by aragonite phase of the 

grainstones and increasing Sr in the seawater from shallow aragonite platform erosion during 

regressive trend of the Smackover, the high Mn observed in the lower Smackover is interpreted to 

be probably controlled by a direct increase of Mn in the seawater due to hydrothermal activities. 

The presence of cyclicity on the carbonate (Ca), siliciclastic (Al) and minor (Si, K, Na, P, Ti) and 

trace elements that occurred in the Smackover deposition in the Conecuh Embayment indicate 

that there were at least three short-term variations during the long term Smackover sequence.         

For the Smackover deposition of the Manila Embayment, high structural setting and 

nearshore location of this area permitted higher siliciclastic sediment input and promoted 

dolomitization by the approaching of the meteoric water zone. Siliciclastic elements are high and 

illustrate a very distinctive shorter-trend compared to the Smackover of the Conecuh Embayment. 
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Pervasive dolomitization is supported by high Mg and shows an increase towards the end of the 

Smackover. Sr and Mn concentrations can be partially affected by diagenesis but were probably 

also related to relative sea level variation conditions. Even though expressing relative lower 

concentration, Smackover samples from the Manila Embayment also present a decreasing-

upward trend of the Mn which is similar to that observed in the Conecuh Embayment. The small 

scale fluctuations of some elements in these Smackover core samples are interpreted to be 

affected from diagenesis, especially dolomitization. 

The major and minor elemental chemical composition of Smackover sedimentation of the 

Conecuh Embayment and the Manila Embayment indicate slightly differing redox conditions 

during deposition. In the Conecuh Embayment, low concentrations of Ba, Cu, Ni, Cr, V, and Pb 

elements suggest the environment was probably not anoxic. The low content of TOC and V in the 

oxic condition during upper Smackover and the different variation between Cr and V suggest that 

the Cr content could possibly affect by additional environment factor. Higher Zn contents 

observed near the upper and lower boundary were affected from the meteoric diagenesis from 

which additional Zn could have been derived. The fluctuations and increasing trend introduce the 

possibility that the bottom water at the water-sediment contact and/or subsurface deposit under 

the oxic sediment horizons did not entirely remain under oxic conditions. Increasing 

concentrations of these elements occurred during high carbonate production (high Ca content) 

which became dominant during relative sea level rise and highstand. It is also possible that during 

the rise in relative sea level, local rapid sedimentation rates could have caused the bottom water 

or subsurface sediment under the oxic sediment horizon to become anoxic. However, such 

conditions were unlikely to occur in the Manila Embayment where these elements illustrate much 

lower concentrations. The fluctuation of V also partially correlates with fluctuations in the TOC 

accumulation in the Smackover. The high variability of Zn might have been affected by 

diagenetic effects including dolomitization. The redox conditions of both Smackover areas show 

no anoxic conditions.  
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 The variation of the elemental component of the Smackover depositions in the Conecuh 

Embayment and in the Manila embayment indicate that the structural setting and depositional 

environment and diagenesis have significant impact on the distribution of these elements both 

laterally and vertically. However, the information about the possible original sediment and the 

conditions of their depositional environment during Smackover deposition from the lower to the 

upper Smackover can still be obtained. The effect from relative sea level changes can be 

speculated by comparing with related information from the literature. The key elements which 

could be very useful for relative sea level cycles and other related processes (weathering) are Mn, 

K and Sr.   

                     

5. 6  FURTHER SUGGESTED STUDIES 

 

These results suggest the Smackover depositional sequence was affected by both long 

term and a short term sea level fluctuations and modified by diagenetic alteration and mixing with 

siliciclastic influxes. Increasing chemical weathering and changes in paleoclimate are possibly 

involved.  In order to investigate the short term and long term sea level effect and their other 

parameters on the Smackover stratigraphy, an additional study is warranted. Such a study would 

investigate Smackover sedimentation in different locations such as in an updip and/or downdip 

areas of the same basin and from the nearby basin especially the Mississippi Interior Salt Basin. 

Such studies could be related to 1) siliciclastic and carbonate minor and trace element analysis 

especially the Sr values and Mn concentration; 2) oxygen and carbon isotope composition of the 

Smackover as well as the TOC content in a refiner scale sampling; and 3) siliciclastic grain size 

analysis and different clay mineral analysis and K variation.   
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CHAPTER 6 

 

6.1 CARBON ISOTOPE STRATIGRAPHY 

 

Carbon isotope stratigraphy concept  is based upon time-equivalent changes in 13C/12C 

ratios that serve as an additional powerful tool for stratigraphic correlation of carbonate 

sequences (e.g. Scholle and Arthur, 1980; Varenkamp, 1996; Ferreri et al., 1997; Jarvis et al., 

2001; Buggisch et al., 2003). The basic theory is that the carbon isotope signal of a particular 

carbon-containing material can be recorded during a global event which has been driven by large-

scale changes of the carbon cycle. The variation of carbon isotope composition in the rock record 

may possibly provide an analysis for the local and/or regional controls which occur in a time-

stratigraphic framework.  Studies have indicated carbon isotope stratigraphy of carbonate 

sediments could be comparable in stratigraphic resolution to biostratigraphy or magneto-

stratigraphy (Scholle and Arthur, 1980; Weissert et al., 1985; Margaritz, 1989; Weissert and Lini, 

1991; Lini et al., 1992; Follmi et al., 1994; Jenkyns., 1994). 

   In marine carbonate environments, carbonate sediments precipitate in depositional 

conditions which are directly associated with seawater composition.  Any changes which affect 

the carbonate sediment environment and composition of seawater, including carbon isotopic 

equilibrium of carbon in seawater, will affect basic carbonate minerals which are precipitated as 

well as the carbon isotopic composition of carbonate secreting organisms which live in the 

seawater and then eventually become carbonate sediments. For long-time scale variations, the 

change of the carbon isotope value of seawater occurs on a time scale of  > 105 years due to long-

term variations of carbon burial, continental weathering, sea surface temperature and oceanic 

water condition, i.e. pH and compositions (Kump and Arthur, 1999). On short time scales, the 

effect may come from changes in primary productivity, seawater composition, the release of 

methane gas hydrates, or changes in oceanic water circulation.  In this chapter, carbon isotope 
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variations of the Smackover sequences in the Conecuh Embayment and the Manila Embayment 

of southwest Alabama are investigated and correlated in a time-stratigraphic framework. Many 

shallow water carbonate studies also show that carbon isotope variations caused by changes in 

local and global events are recorded in a shallow-water carbonates on the platform and in the bulk 

carbonate sediments (Varenkamp, 1996; Ferreri et al., 1997). Oxygen isotope compositions of the 

carbonate samples were also analyzed but due to the instability from temperature effects and 

diagenetic alteration during and after sedimentation were not used for stratigraphic correlation.      

 

6.2 CARBON ISOTOPES (δ13C) 

 

Carbon isotope studies make use of the natural variation of stable isotopes of carbon 

elements (12C and 13C) within carbon containing materials (both organic and inorganic) in the bio- 

and geochemical carbon cycles of the Earth’s environment. The lighter 12C isotope is 

preferentially utilized by primary producers during photosynthesis, leaving the hydrosphere-

atmosphere relatively depleted in 12C and enriched in 13C. Variations in the level of primary 

productivity in oceanic surface waters and sedimentation rates or in the level of burial of organic 

materials affected by anoxia and/or accumulation rates can lead to temporal fluctuations in carbon 

isotope ratios. Temporal and spatial variations can be reconstructed from the carbon isotope 

analysis of carbonates and/or organic matter. 

The carbon isotope compositions (δ13C) of inorganic carbon in carbonate sediments are 

derived from a variety of pathways and operate on different temporal scales. According to 

Anderson and Arthur (1983), fractionation of carbon isotopes starts on a molecular or crystal 

level in sediments where partial separation of different isotopes related to the physio-chemical 

properties occurs during physical or chemical processes. This isotopic separation process is also 

known as “isotope fractionation”. Two types of isotope fractionations are kinetic isotope 

fractionation and thermodynamic fractionation. The kinetic fractionation occurs when the rate of 



 131

chemical reactions, or physical processes of isotope fractionation (e.g. evaporation), of isotope 

species differ from one another. Thermodynamic fractionation occurs as the thermodynamic 

equilibrium between components and phases of substance approach a state of minimum free 

energy in a natural system (Anderson and Arthur, 1983). For example, the isotope values (both 

δ13C and δ18O) of calcareous marine organisms which are basic constituents of carbonate 

sediment are a function of the equilibrium carbon and oxygen isotope compositions 

(thermodynamic) and temperature (kinetic rates of precipitation) of the ambient waters where 

organisms reside. With respect to kinetic process, the effect from temperature variation on the 

carbon isotope fractionation in stabilized calcite mineral in sediment is usually very small (0.035 

‰ per ˚C or 1‰ for every 27 ˚C) compared to alterations which occur to oxygen isotope 

compositions (Emrich et al., 1970). This reason thus underscores the potential utility of carbon 

isotopes for stratigraphic purposes.   

Equilibrium carbon isotope fractionations among the important carbonate species have 

been summarized by Denies et al. (1974). The general relationships predict the following order of 

13C enrichment from higher to lower: CaCO3 >HCO3
- > CO3 2- > H2CO3 = CO2.  In seawater at 

normal tropical surface water pH’s (~8) and temperatures (~28 oC) (Morse and Mackenzie, 1990),  

the dominant carbon component is dissolved bicarbonate ion.  Carbonate precipitated from the 

marine environment can then be +1 to +3 ‰ enriched in 13C relative to dissolved CO2 in the 

seawater.  The effect that may cause variable δ13C values in biogenic carbonates may come from 

different precipitation rates (Turner, 1982) and the vital effects of different organisms (Urey et 

al., 1951). 

The larger scale carbon isotope fluctuation is dependent upon variation in the Earth’s 

major carbon reservoirs from different environments. The carbon stored in these reservoirs 

consists of different average δ13C values (Figure 6-1 and Table 6-1).  Any global events that 

could cause major carbon mass storage shifts will therefore change the global thermodynamic 

carbon isotope equilibrium of the Earth system. In nature, two significant carbon reservoirs
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Figure 6-1. A diagram illustrating the global carbon cycle with the major carbon reservoirs and the related processes.
The estimated amount of carbon mass in each reservoirs, the rate of the mass transferring and the carbon isotope
compositions are reported in Table 6-1 (from Anderson and Arthur, 1980 with the original of Scholle and Arthur, 1980). 
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TABLE 6-1. The estimated mass of carbon (organic and inorganic) in various Earth’s reservoirs and the transfer fluxes 
of carbons between the different reservoirs and their average δ13C compositions (from Anderson and Arthur, 1980).   
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are the reservoirs of organic carbon and the reservoirs of inorganic or carbonate carbon 

(Mackenzie and Pigott, 1981). The organic carbon reservoir consists of the second largest volume 

of carbon which has a highly negative δ13C value. This value results from a large fractionation of 

carbon isotopes during photosynthetic fixation of carbon by plants and organic matter which 

preferentially incorporate 12C from atmospheric CO2.  For the carbonate reservoirs, precipitation 

of inorganic carbon (largely from total dissolved carbon of HCO3
- in the ocean) as carbonate 

minerals (i.e. high-Mg calcite, low-Mg calcite, aragonite, dolomite and others) either directly by 

organisms or from inorganic processes (e.g. cementation) usually contribute a much smaller 

isotope fractionation relative to the δ13C values of bicarbonate species in the seawater. Mackenzie 

and Pigott (1981) and later Veizer et al. (1999) have illustrated that the variation of carbon 

isotope compositions of carbonate minerals in either marine fossils or whole rock carbonates may 

be used to monitor the changes of the total dissolved carbon in seawater during the geologic past. 

The relationships among the major sedimentary or chemical carbon components and the ranges of 

δ13C values are illustrated in Figure 6-2 and Figure 6-3.  

 

6.3 CARBON ISOTOPES IN A SEQUENCE STRATIGRAPHIC FRAMEWORK 

 

6.3.1 Positive δ13Ccarb excursion  

 

Two types of  δ13Ccarb excursions may be observed on the vertical carbon isotope trend in 

a stratigraphic framework, the positive and negative excursions. The positive δ13Ccarb excursion 

which occurs on a global scale record is due to a worldwide increased organic carbon 

accumulation during oceanic anoxic conditions or an increased organic production indicating the 

Earth’s carbon cycle shifting towards the organic carbon reservoir (i.e. Scholle et al., 1980; 

Follmi et al., 1994; Jenkyns et al., 1994; Weissert et al., 1998; Jarvis et al., 2001).  Marine 

carbonates, and hence their carbon isotopic compositions, are basically controlled by seawater 
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composition at the time sedimentation occurred (Veizer and Hoefs, 1976; Given and Lohmann, 

1985; Popp et al., 1986; Lohmann, 1988). Studies have shown that the fluctuation of carbon 

isotope compositions of carbonates through geological time most likely resulted from variations 

in the carbon isotope composition of seawater (i.e. bicarbonates) due to the changes in carbon 

budget (e.g. Veizer and Hoefs, 1976; Scholle and Arthur, 1980; Poppe et al., 1986; Lohmann, 

1988; Margaritz, 1989; Weissert and Lini, 1991; Lini et al., 1992; Kaufman et al., 1993; Follmi et 

al., 1994; Jenkyns., 1994). Thus, carbon isotope composition of carbonate sediments or organisms 

which consist of stabilized carbonate mineral may be observable and correlated in a time- 

stratigraphic framework. The studies which initially introduced these data as useful tracer for the 

fluctuation of carbon cycling through time were conducted on Cretaceous pelagic sequences (e.g. 

Scholle and Arthur, 1980; Renard, 1986; Jenkyns, 1988; Weissert, 1989). During the Cretaceous, 

it was believed that there were low-frequency (>105 yrs) and high amplitude δ13Ccarb fluctuations 

(>1.5‰) which reflected mass being transferred between the global Corg and Ccarb burial rates 

(Schidlowski, 1987). During the Cretaceous oceanic anoxic event (OAE), the widespread black-

shale deposits, which increased the global sedimentary organic carbon accumulation rate, affected 

the global carbon cycle by transferring carbon to organic carbon reservoir. The large difference in 

carbon isotopic composition between these two carbon reservoirs thus affected the 13C/12C ratio 

shift in the atmosphere CO2 and in the seawater HCO3⎯ component. An increased 13C/12C ratio in 

the HCO3
 in the seawater and CO2 in the atmosphere as the 12C had been largely incorporated by ־

an increase of global organic carbon accumulations. Carbonates precipitated from marine water at 

this specific period of time, therefore, reflect the 12C depleted (or 13C enriched) seawater and 

exhibit the positive δ13Ccarb excursion. In δ13Ccarb stratigraphy, the positive δ13Ccarb excursion, if it 

occurred in parallel to δ13Corg variation, can be used to infer the time interval when the increased 

organic accumulation had occurred (Jenkyns, 1988 and 1995). In sequence stratigraphy, total 

organic carbon accumulation can be enhanced during the maximum flooding surface or a 

condensed section because of increasing productivity and/or anoxic conditions. Thus, the positive 
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δ13Ccarb excursion observed on the carbonate sequence is usually interpreted as the maximum 

flooding surface or a condensed section during period of increase 13C/12C in the seawater. 

Shackleton and Pisias (1985) suggested that an increase in the 13C/12C  in the seawater occurred 

not only in the deep ocean basin but was also in the global surface seawater as well. In addition to 

pelagic carbonates, the δ13Ccarb stratigraphy of carbonate sequences has been conducted 

successfully on shallow water carbonates or on a correlation between carbonate platform to basin 

(Vahrenkamp, 1996; Ferreri et al., 1997). However, the magnitude of positive δ13Ccarb excursion at 

the maximum flooding surface on the shallow-water carbonate sediments may not always be 

distinctive due to a limited ocean water circulation where the structural enclosure may prevent 

full connection to the open marine system (Vahrenkamp, 1996).    

 

6.3.2 Negative δ13Ccarb excursion  

 

In addition to positive excursions, negative excursions of δ13Ccarb can be observed in the 

carbonate carbon isotope stratigraphy (e.g. Buggisch et al., 2003; Stephens and Sumner, 2003).  

Even though carbon isotope variation in carbonates may possibly be used to infer a large scale 

fluctuation of major carbon reservoirs, the variation of carbon isotope compositions of ancient 

carbonates also reflect their carbonate deposition and diagenetic environments which occurred 

during changes in relative sea level and water salinity (e.g. Margaritz and Stemmerik, 1989; 

Joachimski and Buggisch, 1993; Saltzmann et al., 1995; Kaufman and Knoll, 1995; Saltzman et 

al., 1998). On a carbonate platform, it is not uncommon that its shallowing condition related to 

falling relative sea level fall or subaerial exposure can also be influenced by meteoric diagenetic 

alteration. On a local scale, carbonate diagenesis under meteoric water zone can affect δ13Ccarb 

values by causing a negative δ13Ccarb excursion which has also been suggested to be useful for 

local stratigraphic correlation (Allan and Matthews, 1982). Allan and Matthews (1977 and 1982) 

reported that during subaerial exposure meteoric diagenesis can have a significant role for 
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changing the δ13C values in ancient carbonates. They recognized that carbonates from 

immediately beneath a subaerial exposure surface generally consist of δ13C compositions that are 

more negative than values of sediments which are derived from greater depth below the exposure 

surface. These more negative and depth-dependent δ13C values are suggested to result from the 

incorporation of isotopically light carbon from soil gas carbon dioxide (CO2) into the carbonate 

lattice during recrystallization and cementation in the shallow meteoric vadose zone (Figure 6-4). 

The variations of carbon and also oxygen isotope compositions of carbonates produced during 

different diagenetic conditions and their distinct patterns, therefore, are useful for identifying the 

subaerial exposure horizons and zone of meteoric diagenesis within the ancient limestone 

sequences (Figure 6-5).  

According to Allan and Matthews (1982), six potential isotope patterns could be used to 

view stable isotope data within a stratigraphic framework on a local and/or a regional scale, if 

worldwide falling relative sea level occurs. These patterns are: 1) the strongly 12C-enriched (or 

13C-depleted) limestone at subaerial exposure surface and the heavier (more positive) δ13C 

compositions of the underlying carbonates; 2) the possibility of a slightly heavier δ18O value in 

carbonates at the subaerial exposure surface due to evaporation; 3) an abrupt shift in δ18O values 

from the deeper sediments to the shallow sediments at the exposure surface; 4) the positive 

covariance between the δ13C and the δ18O compositions of sediments which were altered in the 

marine-meteoric mixing zone; 5) the sharp increase of δ13C values at the boundary between the 

vadose to phreatic zones; and 6) a narrow variation of δ18O but a larger variation of δ13C values 

for a single contemporaneous meteoric diagenetic alteration occurring under a restricted 

environment. 

 Subsequently, Magaritz and Stemmerik (1989) reported the depleted δ13C values to be 

observed during the regressive phase or relative sea level lowstand. They suggested the more 

negative δ13C values in sediments were not always necessarily influenced only by the local 12C-

enriched organic-derived CO2, but might also be the reflection from a large scale variation in  
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Figure 6-5.  Figure illustrating potential patterns of δ18O and δ13C variations in the ancient 
carbonate rocks which can be useful for interpreting diagenetic depositional environments 
on  the vertical trends in a time-stratigraphic framework that possibly are relative to changes 
of sea level (from Allan and Matthews, 1982). 
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carbon budget. During a regressive period, because of decreased organic productivity and/or 

increased rate of organic material oxidation (12C-enriched) during the exposure of the platform, 

the dissolved inorganic carbon in the ocean would become depleted in 13C/12C ratios which would 

result in lighter δ13Ccarb values in carbonates. During the transgression, seawater HCO3-is more 

enriched in 13C so that carbonate precipitates consist of more positive δ13Ccarb values. Because 

carbonate transgressive-regressive cycles usually correspond to the changes in sea level cycles, 

the more negative δ13Ccarb values of the sediments can be used to infer the falling sea level cycle 

in addition to the heavier δ13Ccarb values (Magaritz and Stemmerik, 1989). Vahrenkamp (1996) 

described a correlation of carbon isotope trends, sea level and sediment depositional system 

which can be applied to carbonate deposition: 1) the positive δ13Ccarb trend characterizes the rising 

sea level during the transgressive system tract (showing backstepping sedimentation and a 

condensed section in the downdip area), 2) the constant δ13Ccarb trend characterizes the stable or 

stillstand sea level during the highstand system tract (high carbonate production of aggradation 

and progradation) and 3) the negative δ13Ccarb trend characterizes the falling relative sea level 

during forced regression or the lowstand system tract (this trend may not be present in the updip 

area due to exposure). Many sequence stratigraphy studies of carbonates from ramp platforms 

demonstrated that the δ13Ccarb variation of the carbonate sediments could be correlated to the 

relative sea level changes of the third-order eustatic cycles (e.g. Valladares et al., 1996; 

Varenkamp, 1996; Buggicsh et al., 2003). 

 

6.3.3 SAMPLE ANALYSIS  

 

The isotope composition values of material (both carbon and oxygen isotopes) in 

carbonate and organic components are denoted by a conventional notation δ in a unit of part per 

thousand (‰). This notation represents the difference of an isotopic ratio (i.e. 13C/12C or 18O/16O) 

in the sample compared to the ratio in the international standard which commonly is the Pee Dee 
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Belemnite (PDB) carbonates. Usually, even though the Standard Mean Oceanic Water (SMOW) 

is also used as a standard for oxygen isotope composition, the value relative to the SMOW 

generally is converted and reported to value relative to PDB standard. The equations for 

calculating the δ13C and δ18O  (‰) relative to the standard in each sample have been illustrated in 

Chapter 3. For this study, both carbon and oxygen isotope values are reported relative to the PDB 

standard.  

Carbonate samples that are used for investigating δ13Ccarb stratigraphy can come from 

calcareous fossils such as foraminifera (Popp et al., 1986; Bill et al., 1995; Li et al., 2000) or a 

bulk rock carbonates (Scholle and Arthur, 1980;  Weissert and Lini, 1991; Varenkamp, 1996). 

The advantages of using bulk samples are based upon the faster technique and homogeneity 

averaging the vital effect due to variable organisms and the diagenetic alterations (Scholle and 

Arthur, 1980). Even though original carbonate minerals (i.e. aragonite, high-Mg calcite, low-Mg 

calcite) can have different degrees of diagenetic alteration on their trace elements and isotopic 

compositions, in fact, the alteration of carbon isotope composition in the stable recrystallized 

(diagenetic) low-Mg calcite mineral is relatively minor because of much smaller volume of pore 

water compared  to the bulk rock volume (Brand and Veizer, 1980 and 1981; Allan and 

Matthews, 1982).  However, it is expected that if there was involved meteoric diagenesis effect, 

the 12C from a soil-dissolved CO2 would contribute to the more negative δ13C values (Brand and 

Veizer, 1981; Allan and Matthews, 1982). 

Core observations and elemental analyses of the Smackover described in the previous 

chapters have indicated that there are vertical and lateral variations in sedimentary texture and 

diagenetic environment between the Smackover deposits in the Conecuh Embayment and in the 

Manila Embayment. Although the low-Mg calcite mudstone samples are the most preferred 

materials, as they represent the more stable, potentially less diagenetically altered materials, to 

characterize Smackover δ13C stratigraphy, wackestone, grainstone, packstone and dolomite, 

which likely included more heterogeneous compositions of carbonate minerals, are also presented 
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in order to obtain results for the complete Smackover sequence. Indeed, this sedimentary 

indiscrimination of using samples from different lithofacies and diagenetic alteration might be an 

effective approach to investigate the δ13C composition of carbonates from different depositional 

environment if there is any correlation which is independent to a local variation including 

diagenesis and burial. It has been suggested by Emrich et al. (1970) that temperature effect in the 

burial environment has small effect on δ13C alteration compared to the effect on the δ18O values. 

Holser (1997) has also reported that late diagenesis including dolomitization might also have 

minimal effect on the changes of δ13C values of the sediment samples.  

 

6.4    RESULTS  

 

6.4.1 Carbon Isotopic Composition of the Smackover carbonates  

Carbon isotope values (δ13Ccarb) of the whole rock Smackover sediments from the T.R. 

MILLER MILLS 17-11, #1 of the Conecuh Embayment and from the #1 NEAL ET AL UNIT 

30-1 of the Manila Embayment illustrate the variation ranging from 1‰ to 6‰ (PDB) (Figure 6-

6). Exceptions occur in a few samples just above the reworked sandstone unit at the base of the 

Smackover in the #1 NEAL ET AL UNIT, 30-1 which consist of negative δ13Ccarb values of -

0.71‰ and -0.16‰. In the Conecuh Embayment, the sandstone samples of the Norphlet 

Formation underlying the Smackover carbonates were also analyzed but yielded too little 

carbonate carbon for δ13Ccarb analysis. On the long vertical trend, both Smackover units illustrate 

some comparable short-term δ13Ccarb variations regardless of the lithology, sediment thickness and 

diagenesis. In the T.R. MILLER MILLS 17-11, #1, three short-term negative and positive δ13Ccarb 

fluctuation trends are clearly observable. The first short-term negative δ13Ccarb trend (as the 

δ13Ccarb become more negative values) in the T.R. MILLER MILLS 17-11, #1 core starts from the 

base of the Smackover from 13845 ft to approximate 13795 ft. The δ13Ccarb values decrease from 

around 3.5‰ to about 2.3‰. The second trend is observed from 13737 ft to around 13680 ft and 
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the δ13Ccarb  vary from 4.5‰ to about 2.7‰. The third trend is from 13623 ft to around 13590 ft  

showing the δ13Ccarb values vary from about 5.4‰ to less than 3‰.The carbonates above this part 

to the top of the Smackover Formation illustrate constant and heavy δ13Ccarb  compositions 

ranging from 4.9‰ to around 6‰. The mixed anhydrite-carbonate sample of the Buckner 

Anhydrite have δ13Ccarb  values of 5.88‰.  In the #1 NEAL ET AL UNIT 30-1 core from the 

Manila Embayment, negative δ13Ccarb  excursions are also distinguished although showing some 

differences if compared to the Smackover in the Conecuh Embayment. In the #1 NEAL ET AL 

UNIT 30-1 core, the first negative δ13Ccarb  excursion to values of -0.71‰ and -0.16‰ is observed 

at the base of the Smackover. The negative δ13Ccarb trend then presents showing values which 

decreases from 3.2‰ to less than 2‰ to about 3‰ at depths from 13460 ft to 13420 ft. Again, 

smaller-scale fluctuations are observed during this interval. The next  δ13Ccarb negative trend 

begins around 13367 ft and extends to around 13298 ft showing δ13Ccarb values decreasing from 

above 4.5‰ to around 2.5‰ to 3.5‰. Above this interval the δ13Ccarb compositions of the 

carbonate to the top of the Smackover Formation exhibit heavier values from 4.4‰ to almost 

5.5‰, but with a small fluctuation to a lighter δ13Ccarb value of 3.88‰. In this well, the δ13Ccarb of 

carbonate from the Buckner Anhydrite is around 4.2‰.    

 

6.4.2 Oxygen isotopes  

 

The oxygen isotope compositions (δ18Ocarb, relative to PDB) of the Smackover carbonate 

samples from the T.R. MILLER MILLS 17-11, #1 and the #1 NEAL ET AL UNIT 30-1 cores in 

the Conecuh and the Manila Embayments illustrate different vertical fluctuations in the δ18Ocarb 

values (Figure 6-7). In the Conecuh Embayment, the δ18Ocarb values of the samples vary from      

-4‰ to 4‰ and show a relative narrow fluctuation in the middle part of the core compared to the 

carbonates from the Manila Embayment. Samples with heavier δ18Ocarb  values more than -1‰  

mainly occur  in the upper lower and the middle Smackover. The lighter δ18Ocarb values less than  
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Figure 6-7. Oxygen isotope variation (δ18Ocarb) from the whole rock samples of the 
Smackover Formation from the T.R. MILLER MILLS 17-11, #1  well of the Conecuh 
Embayment and from
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-1‰ occur near the base of the lower and in the upper Smackover  sedimentations. The Buckner 

Anhydrite samples above the Smackover have δ18Ocarb values ranging from 1‰ to 3‰.  In the 

Manila Embayment, the δ18Ocarb values vary from -7‰ to 4‰. A relative large negative δ18Ocarb   

value, greater than 6‰, is observed in sample above the reworked Norphlet sandstone unit. 

Compared to samples from the Conecuh Embayment, the Smackover sequence of the Manila 

Embayment generally reflects a larger δ18Ocarb fluctuation especially in the upper part of the core. 

A sample from carbonate mixed inside the Buckner anhydrite in the top part of the #1 NEAL ET 

AL UNIT 30-1 core consists of negative δ18Ocarb  value less of than -1‰.  

  

6.5  DISCUSSION 

 

6.5.1 Diagenetic Effects 

 

The ranges of carbon isotope values from 1‰ to 6‰ (relative to PDB) observed in the 

Smackover samples from the Conecuh Embayment and the Manila Embayment of this study are 

comparable to the δ13Ccarb values of the Smackover carbonates and dolomites from the Escambia 

County of Alabama (Vinet, 1984; Saller and Moore, 1986; Haywick et al., 2000). The oxygen 

isotope compositions of samples from the #1 NEAL ET AL UNIT 30-1 well exhibit some larger 

negative values (to -7‰), but samples from the T.R. MILLER MILLS 17-11, #1 well consist of 

the same δ18Ocarb distribution between -4‰ to 4‰ as previously reported.  Even though vertical 

variation of the δ13Ccarb values of shallow carbonates, especially the recrystallized low-Mg calcite 

have been indicated to be useful for stratigraphic correlation (Allan and Matthews, 1977 and 

1982; Given and Lohmann, 1985; Lohmann, 1988), the susceptibility of carbonates to diagenesis 

requires that the variation of δ13Ccarb, δ18Ocarb, and some trace elements in these Smackover 

samples should be examined for the diagenetic influence on their isotope compositions.   

For diagenetic stabilization of carbonate constituents, the processes are usually  
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accompanied by changes in sediment texture and chemical composition (Brand and Veizer, 

1981). Strong alteration from diagenesis occurs in the meteoric diagenetic environment because 

of difference in the chemical compositions between the interstitial pore waters and the sediments. 

With the increase in the degree of post-depositional alteration, the textural maturity of sediments 

changes from original carbonate phases i.e. aragonite (A), high-Mg calcite (HMC), low-Mg 

calcite (LMC), into the stabilized carbonate phase of diagenetic low-Mg calcite (dLMC). 

Carbonate diagenesis can take place in different depositional environments i.e. fresh water, near-

surface marine and deep burial environment. In general, there are six different processes that 

affect diagenesis and these are: dissolution, cementation, micritization, neomorphism, compaction 

and dolomitization (Tucker and Wright, 1990, Chapter 7). Although carbonate diagenesis varies 

due to the depositional environment, for a shallow-marine carbonate, early near-surface meteoric 

diagenesis is common due to the shallow paleowater depth condition. Several common reactions 

which occur in this meteoric diagenetic zone are dissolution, cementation and reprecipitation. 

Because of different chemical compositions of seawater in which the carbonate sediments were 

formed and in fresh water (as shown in Table 5-1), diagenetic reactions usually affect changes in 

chemical composition of the stabilized dLMC manifested by a decrease of Sr2+ and Na2+ and an 

increase in Mn2+ and Fe2+ concentrations. During these diagenetic, wet dissolution-reprecipitation 

steps (Bathurst, 1975), not only are the minor or trace elements in carbonates altered in order to 

reach equilibration with the meteoric water, but the isotopic composition of the oxygen and 

carbon in the minerals (18O/16O and 13C/12C ratios) are also affected. In a shallow carbonate, if the 

stabilization processes occur in the phreatic and vadose freshwater zones, changes in the δ13Ccarb 

and δ18Ocarb compositions result from diagenetic exchanges between an original marine carbonate 

phase and dissolved HCO3- of the meteoric water ( i.e. 13C18O3
2- + H2

16O + 12CO2  ↔ 12C16O3
2- + 

H2
18O + 13CO2 ) (Land, 1970; Matthews, 1974; Allan and Matthews, 1977; Brand and Veizer, 

1981). Depletions in δ18Ocarb  and δ13Ccarb  from diagenesis are affected by an enrichment of 16O 

and the 12C in dissolved CO2, if soil-derived, in meteoric freshwater (Vogel, 1959; Allan and 
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Mathews, 1977 and 1982 ). In general, the degree of isotopic exchange depends on the 

proportions of the isotopes in the stabilized phase derived from the carbonate precursor and in the 

interstitial water. The greater the influence of the interstitial water the more open the sediments 

are to the diagenetic environment, the closer the isotopic equilibrium between the water and the 

precipitate dLMC. The influences of meteoric diagenesis on changes in the carbonate components 

are briefly described in Figure 6-8.  The rate of changes in these chemical compositions are also 

dependent upon: 1) the stability of the original carbonate phases;  2) the water/rock ratio or the 

openness of the diagenetic system; 3) the difference in chemical composition of seawater and 

diagenetic meteoric water; and 4) the deviation of a particular partition coefficient (fractionation 

factor) (Brand and Veizer, 1981). Diagenetic effects on the Smackover samples therefore can 

play a partial role on the variations of sedimentary texture and chemical compositions. .  

  The variations of the δ13Ccarb and δ18Ocarb values with depth observed in the Smackover 

cores, shown in Figure 6-6 and Figure 6-7, suggest there were variable diagenetic environments 

during the Smackover depositional sequence. Similar fluctuations in the δ13Ccarb values between 

more negative and positive values suggest a possible stratigraphic correlation which could occur 

on a local and/or global scale variations. In contrast, the difference between the δ18Ocarb trends 

indicates the lateral variation which affected differences in isotope exchanges between the δ18O of 

the pore waters and carbonates. These observations support different sedimentary environments 

and facies in the core as described in the previous chapter. The Conecuh Embayment samples, the 

dominated mudstone and wackestone (from 13775 ft to 13650 ft) of low-Mg calcite minerals 

(micrite, pellet and peloid allochems) were probably not significantly affected by a large change 

in chemical composition because of their closer concentrations to the dLMC.  The semi-enclosed 

structural setting of the embayment likely restricted open-marine circulation and thus might 

induce slight hypersalinity of the water which would enrich the water to a heavier δ18Ocarb 

composition. Since the δ18Ocarb exchanges from recrystallization would likely occur from the 

same single freshwater reservoir in the subsurface, the δ18Ocarb values in most of this part of the 
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Figure 6-8.  Diagrams illustrating diagenetic influence on multi-component in carbonate systems. According to Brand 
and Veizer (1980 and 1981), geochemical reactions affect the shifting of concentration of these components into equilibrium
in diagenetic environment. It is noted that the schematic examples are given only the common diagenetic trends in
decreasing or increasing concentrations during meteoric and burial environments. The actual geochemical changes in
an individual carbonate or component are dependent upon the diagenetic history of the sediment and the availability 
of specific ions or isotopes (from Marshall, 1992).   
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Smackover core consisted of small variations but with a slightly heavier δ18Ocarb values compared 

to other ancient carbonate isotope compositions (Brand and Veizer, 1981; Figure 2 and Figure 4). 

On the contrary, the packstone and grainstone which dominated in the upper part of this core 

basically might have consisted of aragonite and high-Mg calcite mineral phases. The dissolution 

and reprecipitation processes occurred as a result of the passage of the freshwater pore-fluids 

undersaturated with respect to these mineral phases where the isotopic exchanges between the 

interstitial water in the pores and rock minerals became very effective. By increasing pore 

water/rock ratio, the δ18Ocarb of the recrystallized minerals become isotopically lighter due to the 

isotopically lighter meteoric water. In the present day, organic and inorganic carbonates in 

equilibrium with present-day seawater δ18Ocarb are between +1‰ to -2‰ (Milliam, 1974) and 

between -2‰ to -30‰ with the freshwater δ18Ocarb values. In the upper Smackover (from 13587 ft 

to the top of the Smackover) the lighter δ18Ocarb values (less than -1‰) are interpreted to be 

influenced by the susceptibility of the original mineral phases and an increased pore fluid/rock 

ratio for the 18O and 16O isotopic exchange in the meteoric water zone. This effect however could 

be much smaller for the δ13Ccarb  values in these samples since there is much more bulk carbon in 

the carbonate rock  relative to the pore fluids. Unless the δ13Ccarb composition of the pore-fluids is 

altered during subaerial processes, compared to oxygen isotopes, carbon isotope composition of 

the carbonate rock could be a reliable signature for the carbon isotope composition of the possible 

precursor sediment (Land, 1986).  

For the Manila Embayment, a large negative δ18Ocarb fluctuation observed throughout the 

core is also interpreted to result from isotopic exchanges of meteoric water diagenesis associated 

with less stabilized original carbonate mineral phases (i.e. high-Mg calcite and aragonite).  Burial 

diagenesis and elevated subsurface temperature might have affected on oxygen isotopes but they 

probably were not the major contribution to the different δ18Ocarb  values observed in these two 

Smackover sequences as both were derived from the same platform and comparable subsurface 

depth interval.  Located on a paleostructural high (Wade et al., 1987), the Manila Embayment 
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could have relative shallower paleowater-depth compared to paleoenvironment in the Conecuh 

Embayment. As described in Chapter 4, interpretation of the sedimentary facies suggested a tidal-

flat depositional environment for the Manila Embayment and the restricted marine-lagoonal 

systems for the Conecuh Embayment. The shallower paleowater depth in the Manila Embayment 

probably increases susceptibility of meteoric diagenesis to carbonate sediment under the 

shallower vadose zone than the phreastic zone. Because freshwater is undersaturated with respect 

to carbonate sediment, dissolution can also take place illustrating an abundance of possible 

dissolved pores and vugs, especially in the #1 NEAL ET AL UNIT 30-1 core.  As the water 

moved down through the vadose zone, its composition had become supersaturated with respect to 

carbonates and reprecipitations occur. From the phreatic zone, pore spaces were fluid-filled all 

the time. With increasing depth, the freshwater could move downwards to the more saline water 

at depths of several hundred meters or more where the mixing zone between phreatic meteoric 

water and the seawater occur and dolomites occurred. Dolomitization of carbonate sediments 

could have occurred under several conditions (i.e. evaporative-hypersaline, seepage- reflux, 

mixing zone, normal marine, and burial dolomitization) (Tucker and Wright, 1990, Chapter 8), 

but examination of the mechanism for dolomitization of the Smackover carbonate is beyond the 

scope of this study. From the literature, various models for dolomitization have been reported for 

Smackover deposition in the Escambia County of Alabama. For example, the evaporative-

hypersaline and the seepage-reflux or evaporative drawdown models from Saller and Moore 

(1986); and the hypersaline, mixing zone and hydrothermal models from Haywick et al. (2000). 

The similar ranges of the δ13Ccarb values observed in those above studies of dolomites (from 4.4‰ 

to 5.7‰ and 5.2‰ to 6.0‰ for δ13Ccarb  and from 1.4 to 4.5‰ and -1.8‰ to for δ18Ocarb  reported 

by Saller and Moore, 1986; from 2‰ to 6‰ for the δ13Ccarb and -7‰ to 4‰ for the  reported by 

Haywick et al., 2000) when compared to the δ13Ccarb values from the Smackover of this study, 

suggest that carbon isotope compositions of dolomite were probably not altered significantly from 

the original carbonate phase. The XRD analysis of some Smackover samples from the T.R. 
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MILLER MILLS 17-11, #1 core (Table 6 listed in Appendix 5-1) support that dolomitization is 

minor for the samples from the Conecuh Embayment in the vicinity of this well. 

Variations of δ13Ccarb values with the carbonate and dolomite components are examined 

in cross-plots of carbonate mineral content (include dolomite, from HCl dissolution) and the 

Mg/Ca ratio (Figure 6-9).  Mg/Ca value is used to indicate dolomitization based on the fact that 

dolomite consists of higher Mg2+ or MgCO3 (~50 mole%) than the common original carbonate 

minerals (i.e. LMC: less than 4 mol%; HMC: between 4-30 mol%) (Veizer, 1983).  According to 

Land (1986), naturally occurring dolomite (CaMg(CO3)2) can have variable compositions ranging 

from Ca1.16Mg0.84(CO3)2 to Ca0.96Mg1.04(CO3)2 resulting in Mg/Ca ratios varying from 0.72 to 

1.083. With increasing dolomitization, the Mg/Ca ratio in carbonate rocks is expected to increase 

at least 0.72. Most samples from the Conecuh Embayment illustrate Mg/Ca ratios even smaller 

than 0.1 which suggests insignificant dolomitization has occurred. Except for a few samples, the 

high Mg/Ca ratios around 0.3 to 0.5 could represent dolomites that occurred near the base and the 

top of the Smackover in this area.  In the Manila Embayment, samples from the #1 NEAL ET AL 

UNIT 30-1 have Mg/Ca ratios higher than 1.08 confirming dolomite observed in the core and thin 

sections.  

For both cores, the δ13Ccarb values range from 1‰ to 6‰ illustrate different distribution 

between the dominant carbonate sediment from the Conecuh Embayment and the dominant 

dolomite sediment from the Manila Embayment. However, with respect to the δ13Ccarb values, a 

similar range of the δ13Ccarb values between two cores indicate dolomite was not specifically 

responsible for changes in the δ13Ccarb values, especially in the #1 NEAL ET AL UNIT 30-1 

sample from the Manila Embayment. In contrast, for samples from the Conecuh Embayment, the 

distribution of data indicates positive correlation between carbonate contents and δ13Ccarb values 

and illustrates more than one positive trends. The correlation between carbonate contents and 

δ13Ccarb values is recognizable; the higher the carbonate content, the more positive the δ13Ccarb 

values. These observations not only suggest that dolomitization did not have significant 
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alteration on the δ13Ccarb values to these Smackover samples, but the more positive δ13Ccarb values 

tend to exist in samples with the higher carbonate contents.  Because the positive δ13Ccarb values 

in the high carbonate content samples appear to form during the relatively high sea level, the 

observation from the T.R. MILLER MILLS 17-11, #1 samples suggests there was variation of sea 

level conditions which affected carbonate sedimentation. In the case of the #1 NEAL ET AL 

UNIT 30-1 samples, it is possible that dolomitization had obscured this correlation or it was 

because carbonate sediments were derived from the tidal environment, where the fluctuation was 

principally controlled by the local tide currents (not from open marine condition), this correlation 

was then not distinctive. 

Again, the effects of dolomitization on these two Smackover set of samples are checked 

by the of δ18Ocarb variation and by the variation of elements, Mg and Sr, which are sensitive to 

carbonate diagenesis (Figure 6-10).  The plot with Mg/Ca (Figure 6-10a) shows that 

dolomitization did not have strong influence on the variation of the δ18Ocarb values in these 

Smackover rocks. Diagenesis also has an effect on the changes of the Mg and Sr concentrations 

in carbonate or dolomitized rocks. In carbonate-dominated rocks, diagenetic alteration would 

present a positive correlation between Mg and Sr (Figure 6-8). However, with the dolomitization 

effect, while the Sr concentration decreases, Mg would increase. This relationship is clearly 

observable for samples from the #1 NEAL ET AL UNIT 30-1 core (Figure6-10b). With respect to 

Sr concentration in carbonate rocks, Veizer (1983) reported that Sr concentrations in ancient 

dolomites usually should not exceed 600 ppm (from 20 to 600 ppm) unless dolomite 

precipitations occur from hypersaline solutions. In general, aragonite and high-Mg calcite 

minerals, which can dominate in shallow-water carbonates, can be enriched in Sr concentrations 

(compared to low-Mg calcite). Therefore, dolomites that evolve from an original aragonite phase 

may consist of high Sr concentration, but usually still less than 550 ppm. The ancient dolostones, 

if they were formed and affected by early diagenetic conditions, were reported to have Sr 

concentration ranging from 100-1000 ppm, and from 30-100 ppm if they were affected by late
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diagenetic condition (Veizer and Demovic, 1971; Veizer et al., 1974). In this study (Figure 6-

10b), the Sr concentrations in dolomitized samples from the #1 NEAL ET AL UNIT 30-1 show a 

variation from less than 100 ppm to about 400 ppm. Based upon the information above, the Sr 

concentrations in the #1 NEAL ET AL UNIT 30-1 samples suggest that dolomite precipitation in 

the Manila Embayment probably occurred during early diagenesis environment and did not occur 

under hypersaline conditions. If this is true for the dolomitization environment, it also means the 

mixing zone between meteoric fresh water and seawater under its shallow carbonate setting could 

have strong effect for the changes of Sr in the Smackover sediment of the Manila Embayment.  

While low Sr and Mg contents in samples from the Manila Embayment could be 

primarily affected by diagenesis and dolomitization, the relatively higher Sr contents in samples 

from the T.R. MILLER MILLS 17-11, #1 well  in the Conecuh Embayment can not be explained 

in a similar way. As shown earlier in Figure 6-8, stabilization processes, the three different 

original carbonate phases (A, HMC and LMC) to diagenetic low-Mg calcite (dLMC), will also 

involve with the presence of the elemental concentration during diagenetic alterations (decreasing 

or increasing). As previously discussed in Chapter 5, samples with high Ca contents also have 

high Sr concentrations of more than 1500 ppm. The original aragonitic mineral phase (i.e. oolitic 

packstone and grainstone in the upper Smackover) appears to have unusually high Sr contents (> 

5000 ppm). In these Smackover core samples, if Sr is primarily influenced by diagenetic 

alteration, the positive correlation with the Mg content and systematic decrease in concentration 

would be expected. The siliciclastic influence is excluded, since most samples with the significant 

Sr concentration occurred as carbonates (which means siliciclastic contamination would be 

minimal). Therefore, this leads to the possibility that the eustatic sea level variation could have 

influenced the cyclic variation on the Sr content but excluding the upper Smackover grainstones 

and packstones where original carbonate mineral was dominated by aragonite.   

Variation of the Sr and Mn concentrations, especially for samples from the T.R. MILLER 

MILLS 17-11, #1 core, are examined along with the variation of the δ18Ocarb values (Figure 6-
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11).  The different and unusual high Sr and Mn concentrations in the T.R. MILLER MILLS 17-

11, #1 samples from the Conecuh Embayment are interpreted to be influenced by additional 

factors besides original carbonate minerals and diagenetic alterations and sedimentary facies 

(Figure6-11a). The positive correlation between Sr and δ18Ocarb from the diagenetic effect in 

samples from both  of the study areas shows no clear correlation (Figure 6-11b). The correlation 

between Mn and δ18Ocarb values, especially from samples in the T.R. MILLER MILLS 17-11, #1 

core, (Figure 6-11c) suggests that Mn occurred in these Smackover samples by at least three 

separate environment depositional conditions during the long Smackover deposition. 

 

6.5.2 δ13Ccarb and δ18Ocarb correlation 

 

A correlation between the δ13Ccarb and δ18Ocarb values also helps to evaluate the effects 

from the original signals versus diagenetic overprinting. The cross-plots between the δ13Ccarb and 

δ18Ocarb from the two cores are illustrated in Figure 6-12. Except a few samples from the Manila 

Embayment, almost of the data from of the two cores are distributed in the same δ13Ccarb and 

δ18Ocarb ranges. The larger variation in the δ18Ocarb values than in the δ13Ccarb values is interpreted 

to result from different rates of oxygen isotope fractionation during diagenetic stabilization at 

early and probable at variable burial depths. The lateral and vertical variation of sedimentary 

depositional environment involves different stability of the major and minor original carbonate 

phases within different diagenetic environments during Smackover deposition. Due to the 

different structural setting and the distance from land, the openness of the diagenetic system 

(referred as the pore water/rock ratio) between the two embayments were probable different even 

though chemical compositions of seawater and diagenetic meteoric water would not be 

significantly different.  In the Manila Embayment, the higher degree of diagenetic alterations in 

the sedimentary texture and trace elements (from major aragonite and high-Mg calcite to 

stabilized diagenetic low-Mg calcite and dolomite) apparently resulted in more altered and more 
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Figure 6-11. Cross-plots between (a) the Sr and Mn concentrations, (b) the Sr concentration and δ18Ocarb values, and
(c) the Mn concentration and δ18Ocarb values illustrating diagenetic variation on chemical composition of the Smackover
depositions in southwest Alabama.  It is noted for the similar range of the δ18Ocarb values for diagenetic alteration. 
The greater concentrations of the Sr and Mn in the T. R. MILLER MILLS 17-11, #1 well samples are interpreted as 
a possible influence from changes of seawater composition as the Conecuh Embayment was probably more connected 
to an open marine condition during relative sea level rise and a highstand. Mn and δ18Ocarb correlation indicates 
separate trends of diagenetic effect on samples with  different range of Mn concentrations.
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Figure 6-12. Cross-plots between the δ13Ccarb and δ18Ocarb values from whole rock samples of the Smackover
Formation in the Conecuh Embayment and the Manila Embayment. Except in a few samples, the δ13Ccarb and
δ18Ocarb values of samples fall in almost similar ranges. Two distinctive trends are recognized; the first trend 
illustrates diagenetic alteration on both δ13Ccarb and δ18Ocarb values and the second trend illustrates diagenetic
effect mostly on the δ18Ocarb values.
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variable δ18Ocarb values. The large differences in concentrations of the major and trace element in 

carbonates (i.e. Mg, Mn and Sr) which are usually good indicators for carbonate diagenesis can 

be influenced by different degrees of diagenetic alteration and additional controls on the 

Smackover deposition. Even though the 18O content of the ocean water has been reported to 

probably decrease with increasing geologic age and thus the δ18Ocarb values of the carbonates 

(Brand and Veizer, 1980), it is not possible that this factor could be the cause for the δ18Ocarb 

difference in these Smackover samples. Diagenetic effects on different carbonate mineral phases 

can be variable. For recent sediments, Brand and Veizer (1980) reported that the δ18Ocarb 

depletion of about 2‰ occurred for the high-Mg calcite and aragonite and about 1‰ for the low-

Mg calcite. It is possible that differences in the original carbonate phase of these sediments can 

have different effects on changes of the δ18Ocarb values in addition to diagenetic environments.    

Diagenetic effects on the δ13Ccarb values show smaller variations.  On the cross-plots 

between δ13Ccarb and δ18Ocarb values, two distinct trends based on the δ13Ccarb values can be 

distinguished. The first trend was grouped by samples which illustrate the depletion in both 

δ13Ccarb and the δ18Ocarb values and are interpreted as the diagenetic equilibrium trend. The second 

trend was grouped by samples of variable δ18Ocarb values but illustrate less change in the δ13Ccarb 

values. From the Manila Embayment, Smackover sediments of this group are more or less stable 

in the δ13Ccarb values but they consist slightly heavier δ13Ccarb values in the Conecuh  Embayment. 

In the study of Brand and Veizer (1980), the separation of the δ13Ccarb values by about 1‰ apart 

into two distinct groups was also observed in the carbonate samples of their study. They pointed 

that this bimodal distribution was not likely affected by geological ages, original mineralogy or 

the degree of diagenetic alteration. Their speculation was that other factors, which related to 

environment of deposition and physiological conditions, could be important.  The higher rate of 

carbonate precipitation could occur during the concentration of organisms which were directly 

related to the high relative sea level and thus affected the positive shift of the 13C/12C ratio in the 

precipitated carbonates (a pers. comm with J. Turner (1980) by Brand and Veizer, 1980). Many 
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studies also reported the bimodal distribution on the cross-plot between δ13Ccarb and the δ18Ocarb  

values in recent and ancient carbonate sediments (e.g. Epstein and Lowenstam, 1953, Gross and 

Tracey, 1966; Ginsburg and Schroeder, 1973; Davies and Krouse, 1975). The explanation for the 

cause of this distribution was not clear until later when Allan and Matthews (1982) observed that 

the limestones which undergo mineralogical stabilization near the soil zone or under the influence 

of 12C enrichment of organic carbon can have δ13Ccarb values depleted by 2 to 4‰.  Magaritz and 

Stemmerik (1989) reported from their carbonate samples from the Paleozoic Permian sequence of 

East Greenland that the δ13Ccarb values could be related to the changes of sea level and seawater 

salinity. During the variation of relative sea level, the carbon isotope in carbonates could be 

different by 2-4‰ under the rising and falling sea level periods. Magaritz and Stemmerik (1989) 

believed that the variation of the δ13Ccarb values that occurred in carbonate samples was not 

primarily controlled by basinal conditions but rather by the changes of global carbon cycle. The 

enrichment of 13C in marine carbonates was suggested to increasing CO2 in the atmosphere and in 

the ocean water resulting from an increase in organic carbon storage either on land (in forests or 

soils) (Shackleton, 1977) or during marine flooding (Broecker and Takahashi, 1984). The relative 

fall in sea level which could cause the platform exposure increases the oxidation of organic 

matter on the platform and/or land (e.g coal beds) and increases the 12C in the seawater or 

depleted δ13Ccarb values in carbonates. From Magaritz and Stemmerik ’s report, the  δ13Ccarb values 

recorded  in carbonate deposited during the transgression were from 4‰ to 6‰, and during the 

regression were from 0‰ to 2‰. Therefore, the separation of δ13Ccarb data points on the plots in 

Figure 6-12 is interpreted to result from the changing in sea level cycles 

 

6.5.3 δ13Ccarb trends of the Smackover in a stratigraphic framework  

 

 The covariance of the δ13Ccarb  trends of the two Smackover depositions from the Conecuh  

Embayment and the Manila Embayment which appears to be independent of their different 
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sedimentary facies and diagenetic environments strongly suggests sequence stratigraphy of the 

Smackover Formation may be constrained by using a δ13Ccarb chemostratigraphic approach.   

The δ13Ccarb and δ18Ocarb variations on the depth scale of the two core samples are shown 

together and are correlated in a time-straigraphic framework (Figure 6-13).  The δ18Ocarb 

variations during the Smackover depositions were affected by diagenesis and carbonate mineral 

differences so they are not considered as a time stratigraphic marker.  Because of the depleted 

δ13Ccarb  samples represented carbonates form during the lowstand sea level and/or associated with  

sequence boundary, the correlation of the δ13Ccarb values between the two Smackover sequences 

complimented by their core observations indicate that the lowest sequence boundary occurred 

probably during Early Oxfordian is not coincident with the boundary between the Norphlet and 

the Smackover Formations. This observation has been pointed out by Wade and Moore (1993) 

from the Smackover deposition in the Manila Embayment as illustrated by #1 NEAL ET AL 

UNIT 30-1 core sequence. The boundary at the Norphlet-Smackover contact of the Smackover 

deposition was probably not equivalent in time when compared to the same boundary in the 

Conecuh Embayment area. On the T.R. MILLER MILLS 17-11, #1 core, the contact between the 

Norphlet-Smackover Formation (13845-13847 ft) might possibly be a sequence boundary where 

the rapid marine transgression (shown by positive δ13Ccarb values between 2‰ to 3‰) overlying 

the siliciclastic eolian sandstone on the erosional surface. The missing sample at this contact, 

however, limits this interpretation. The same boundary, which is interpreted as possible sequence 

boundary and being equivalent to the boundary of the Norphlet-Smackover contact of the T.R. 

MILLER MILLS 17-11, #1 core, is interpreted to occur in the #1 NEAL ET AL UNIT 30-1 core 

at depth about 13587 ft  (see core photographs in Appendix A and Appendix B).   The difference 

in this boundary is interpreted to be due to the different depositional setting of the Manila 

Embayment which was located on a structural high (Wade et al., 1987).  The first marine 

transgression into the Manila Embayment during the early Smackover time was probably not high 

nor stable enough for stable carbonate deposition to take place but only a thin carbonate interval 
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Figure 6-13. The correlation between the δ13Ccarb and δ18Ocarbvalues of  the 
Smackover Formation  
from the Conecuh Embayment and the Manila Embayment. The different variation 
between dark 
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occurred at around 13568.5 ft. The regression of sea level, however, caused marine reworking on 

the early sandstone deposits of the Norphlet Formation and resulted in clean and massive sand 

unit underlying the major Smackover carbonates. The reworked sandstone interval next to the 

Smackover carbonate in the #1 NEAL ET AL UNIT 30-1 is thus interpreted to occur at the same 

time of the lower Smackover carbonate near its base in the T.R. MILLER MILLS 17-11, #1 core. 

However, because no carbon isotopic data was applied for this interpretation, the correlation in 

this lower part of the sequence which includes the upper Norphlet Formation can be only partially 

conducted from the δ13Ccarb data which are available from the carbonate section.  

The first δ13Ccarb negative excursion observed in the T.R. MILLER MILLS 17-11, #1 core 

(13805ft to 13875 ft) is interpreted to correlate with the δ13Ccarb negative excursion at the base of 

the Smackover in the #1 NEAL ET AL UNIT 30-1 core.  Besides this first δ13Ccarb excursion, 

there are two other intervals where the δ13Ccarb compositions of the carbonates become 13C-

depleted. These intervals are around 13710-13675 ft and 13610-13588 ft in the T.R. MILLER 

MILLS 17-11, #1 core and around 13460-3420 ft and 13365-13293 ft in the #1 NEAL ET AL 

UNIT 30-1 core. It is important to note the values of δ13Ccarb  in sediments during these time 

intervals are relatively lighter by about 1‰ to 3‰ than the δ13Ccarb  values in the carbonates 

beneath or above. This observation may be compared to the carbonate diagenesis pattern near the 

exposure surface presented by Allan and Matthew (1982) (Figure 6-5). The difference is that in 

the Conecuh Embayment, the exposure surface was not occurred where the deeper part of the 

basin is located which means basinal can be just restricted and non-sediment surface instead of 

exposure condition. Increasing siliciclastic influx (on core observation and elemental analysis) 

should not be uncommon during this period of time as river channels could prograde more 

seaward.  However, the nearshore location affected high siliciclastic background in the carbonate 

sediment deposited in the Manila Embayment, cyclicity by siliciclastic input was therefore not so 

clear as it is shown in the Conecuh Embayment area. Nevertheless, the shallower conditions and 

stronger diagenetic freshwater effect affected dolomitization, evaporitic or/and anhydrite nodules 
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to be increased in the Manila Embayment area.  The variation of  δ13Ccarb  and δ18Ocarb patterns in 

these two cores are interpreted, using the pattern from Figure 6-5, to result from different 

conditions related to meteoric diagenesis. In the Manila Embayment, shallower structural setting 

could promote meteoric diagenesis under the vadose freshwater zone where larger negative 

fluctuations of δ18Ocarb values occurred. In the Conecuh embayment, subtidal conditions limited 

carbonate diagenesis in the phreatic zone because of smaller changes in pore fluid compositions 

relative to carbon isotope changes from the bulk sediment. The changes from low-Mg calcite 

minerals to diagenetic calcite in the T.R. MILLER MILLS 17-11, #1 sediments probable caused 

smaller changes of the  δ18Ocarb  values in addition that the restricted condition during the falling 

relative sea level in the Conecuh Embayment would also caused δ18Ocarb values to become 

heavier. The heavier δ13Ccarb  values with high carbonate concentration in samples above the three 

negative δ13Ccarb intervals indicate an increase relative sea level after a regression. Different trends 

between the δ18Ocarb  values and covariant trends between the δ13Ccarb  values confirm the cause for 

the δ13Ccarb  compositions was independent from sedimentary facies and diagenetic environments. 

Between these two sequences, carbonate intervals with heavier δ13Ccarb  composition can be 

correlated and suggest that they likely formed during the similar relatively high sea level cycles. 

Using the δ13Ccarb   correlation, four or three and a half smaller sea level cycles changes 

(depending on the contact of the Norphlet-Smackover) are interpreted to occur during the long 

term Smackover deposition in the Conecuh Embayment and three smaller sea level cycles 

occurred in the Smackover deposition in the Manila Embayment.  

In order to further investigate whether carbon isotope variations of the Smackover 

carbonates were the consequence of local effects and/or changes of the carbon isotopic 

composition of  the global reservoir, the correlation between the  δ13Ccarb and   δ13Corg   values and 

the correlation between the δ13Ccarb of the Smackover sequence and the other sediment sequences 

which are equivalent age to the Smackover (Oxfordian) also need to be discussed. 
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 6.5.4   TOC and the variations between the δ13Ccarb and   δ13Corg  values  

 

By comparing TOC with the variation of the δ13Ccarb and   the δ13Corg , the mixing between 

organic source inputs which could have affected the 13C/12C of the seawater and carbonate and 

organic carbon of the Smackover sediments can be estimated. Total organic carbon (TOC) 

content in the whole rock samples from the two cores are correlated with their carbonate 

(including dolomite) concentrations (CaCO3) and the δ13Ccarb values (Figure 6-14). Most of 

samples from both cores generally consist of TOC less than 1% and have negative correlation 

with the CaCO3 content.  The correlation between TOC content and δ13Ccarb values however was 

not clearly distinguished. On the TOC and CaCO3 correlation, the different slope between the two 

plots suggests the accumulation of the TOC in samples from the two cores were negative affected 

differently by the variation of the carbonate precipitation which indicates to different organic 

facies. It is important to reiterate that on a global scale, an increase TOC accumulation rate would 

result a positive shift in both δ13Corg  and δ13Ccarb compositions. Therefore, a positive correlation 

between δ13Corg  and δ13Ccarb values can be expected. The cross-plots between TOC and δ13Corg  and 

between the  δ13Ccarb and  δ13Corg  values are illustrated in Figure 6-15.  Data from the TOC and 

the δ13Corg   plots illustrate different correlations which suggest different organic accumulation 

during the Smackover depositions between the two areas. In the Conecuh Embayment, samples 

from the T.R. MILLER MILLS 17-11, #1 well  consist of TOC relatively lower compared to 

samples from the #1 NEAL ET AL UNIT 30-1 well of the Manila Embayment.  While a positive 

correlation is appeared for samples from the Manila Embayment, a negative correlation is 

observed between TOC and δ13Corg   for the Conecuh Embayment.  Although the positive 

correlation h observed in the #1 NEAL ET AL UNIT 30-1 might seem to indicate the global 

variation between the TOC and the δ13Corg  variation, the different organic source input could also 

have some effect on the δ13Corg  variation between samples derived from these two areas. For the 

T.R. MILLER MILLS 17-11, #1 samples, the δ13Corg  values vary from -27 ‰ to -21.5‰ and  
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Figure 6-14. Cross-plots illustrating the correlations between (a) the TOC and the CaCO3 concentration and,
(b) the TOC and the δ13Ccarb values. Negative correlation between the TOC and the CaCO3 is observed in 
both cores but with a  different relationship. The variation of the TOC content in the Smackover samples
illustrates indistinct correlation with the δ13Ccarb values.  
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Figure 6-15.  Cross-plots between (a) the TOC and the δ13Corg values and  (b) the δ13Ccarb and the δ13Corg values. Different 
correlations between the TOC and δ13Corg values suggest a possible variation in original organic carbon sources between the 
two Smackover depositional environments.  In the Conecuh Embayment, data plotted between the δ13Ccarb and the δ13Corg
values are separated into two groups; the first group illustrating a positive correlation which is interpreted to be affected by
increasing terrigenous organic source materials and the second group illustrating a negative correlation which possibly due 
to an increase in marine organic input. 
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samples are dominated by lighter or more negative δ13Corg  compositions. For the #1 NEAL ET 

AL UNIT 30-1 samples, the δ13Corg  values range from -26‰ to -20‰. The positive correlation 

between δ13Corg  and the TOC content observed in the #1 NEAL ET AL UNIT 30-1 samples 

indicates that increasing TOC probably has effect for the δ13Corg values to become more positive. 

The different variation on the TOC and δ13Corg values occurred in samples from these two well 

areas is interpreted to affect by variable organic source materials that consist of different carbon 

isotope compositions. The explanation will be later discussed in the next paragraph. From the 

cross-plots between δ13Ccarb and δ13Corg values, samples of the Manila Embayment illustrate no 

distinct correlation while samples of the Conecuh Embayment illustrate two separate correlations. 

The indistinctive correlation between the δ13Ccarb and δ13Corg  values in samples of the Manila 

Embayment cancel their TOC and the δ13Corg to be related to the global scale effect caused by 

shifting of the organic carbon reservoir.  From the Conecuh Embayment, the δ13Ccarb and δ13Corg  

positive correlation is observed in samples with δ13Ccarb values higher than 4‰ whereas the 

negative correlation is observed in samples with δ13Ccarb values less than 4‰. These different 

correlations therefore suggest the variation of organic source types could play a significant role 

for the δ13Corg variation in these samples.  In addition, different correlations among the CaCO3, 

TOC, δ13Ccarb and δ13Corg support a speculation that the variation of the δ13Corg and the TOC 

occurred on a local organic facies control rather than the global control which affected the δ13Ccarb 

of the carbonates. Maturation effect on the δ13Corg values is excluded since these two Smackover 

wells are similar in age and occurred on the same carbonate platform. Therefore it is possible to 

theorize that whereas relative sea level changes could be a major control for the δ13Ccarb variation, 

the different depositional settings between Smackover depositions in the Conecuh and the Manila 

Embayments affect organic facies and variable organic source inputs and/or organic processes.   

 

6.5.5 δ13Corg  Variation and Organic Carbon Sources 
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In order to confirm that the difference of the organic carbon sources can be a primary 

effect for the δ13Corg variation between samples from these two Smackover core areas, organic 

carbon compositions in the saturate carbon fraction of some samples from these two cores are  

examined. The vertical and lateral variations of the n-alkane distribution in samples of these two 

cores are illustrated in Figure 6-16 and Figure 6-17.  

According to Hayes (1993), carbon isotopic compositions of naturally synthesized 

organic compounds depend on four different factors during biosynthesis. These factors are the 

original carbon source; the isotope effect during carbon assimilation by organisms, the isotope 

effect during metabolism and biosynthesis, and carbon budget at each step of these processes. 

Different types and quantities of carbon sources can affect the δ13C values in sedimentary organic 

carbon. Many studies (i.e. Arthur et al., 1985; Dean et al., 1986; Popp et al., 1989; Kenig et al., 

1994; Hofmann et al., 2000) have reported that carbon isotope compositions of marine and 

terrestrial organic carbon were different in the past relative to today. In the present day, the δ13C 

composition of marine organic matter is more positive than it was in ancient times. On average, 

δ13C values reported for contemporary marine organisms and terrestrial organic matters are 

between -20‰ to -23‰ and between -27‰ to -30‰, respectively (Galimov, 1975). In contrast, 

the δ13C values of organic matter in sedimentary rocks of the Late Albian  (Early Cretaceous) 

from different sites of the North Atlantic Ocean, on average, were  -29‰ for the marine derived 

liptinite and -23.3‰ for the terrigenous derived vitrinite and intertinite components (Hofmann et 

al., 2000). Algal material, which can also be a significant component for organic carbon in TOC 

has δ13C values around       -18‰ (Hollerbach et al., 1977). From a study of the Oxford Clay 

sediments (Middle Callovian to Lower Oxfordian) of central and southern England (Kenig et al., 

1994), δ13C value of terrestrial materials are estimated to be around -23.5‰ while the δ13C value 

estimated for the marine primary input material was -28.2‰.  In the study of Kenig et al.(1994), 

due to the dominant marine organic input and the limited contribution from the terrestrial organic 

matter observed in the samples, the variation of the δ13C values from -23.1‰ to -27.7‰ was  
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Figure 6-16. Gas chromatograms of the saturate fraction from the extracted organic matter of the Smackover samples from
the two depositional areas. The T.R.MILLER MILLS 17-11, #1 samples from the Conecuh Embayment characterize major
marine organic matter (n-C22) with mixed algal (n-C17) and terrigenous (n-C26-30) materials. The #1 NEAL ET AL
UNIT 30-1samples from the Manila Embayment illustrated the dominant algal source (n-C17) and the terrigenous organic
material (n-C26-30). 
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Figure 6-17. Vertical distribution of saturated fractions of
the organic carbon component and the δ13Corg values of  the
Smackover samples from the two study cores.
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 was interpreted as being affected from the heterotrophic reworking processes causing an 

oxidative remineralization of organic carbons. For the Gulf of Mexico area, the δ13C values of 

land-derived organic matters in surface sediment from the Gulf of Mexico have been reported by 

Goni et al. (1998) were between -19.7‰ to 21.7‰. In this study, the Smackover samples from 

the two cores consist of variable δ13Corg values range between -27‰ to -20‰ which are 

interpreted to be affected by mixing organic carbon sources. According to Hayes (1993), 

biological reworking of organic carbon could affect the enrichment of the 13C in organic carbons 

due to the loss of lighter of the 12C carbons. Although the effect from organic reworking 

processes can not be excluded for the Smackover δ13Corg values, it is reasonable to believe that 

local primary organic source variation could have a  significant effect on these δ13Corg values. 

Gas chromatograms of the saturate fraction from the extracted fraction at different depths 

indicate that both lateral and vertical differences for the major organic inputs occurred between 

these two Smackover cores (Figure 6-16). In the Conecuh Embayment, one major organic input 

was derived from marine organisms which are dominated by the n-C22 alkane. However, marine 

algae and the terrestrial material are also present at different depths and characterized by a 

predominance of n-C17 and n-C26  to n-C30. In the Manila Embayment, saturate distributions 

illustrate that the influence of marine organic input characterized by n-C22 is limited when 

compared to the n-C22 concentrations observed in the Conecuh Embayment. The dominant n-

alkane components occur around n-C17 and around n-C25 to n-C30 which suggests that major 

organic inputs for the TOC accumulation of this area were mainly marine algae and terrestrial 

organic material. The vertical distributions of n-alkane organic components shown in Figure 6-17 

indicate the δ13C values of the TOC can possibly be related to the ratio of different primary inputs 

which varied spatially at the same times. However, the δ13C values are measured from the TOC 

which consists of different volume fractions of all organic compounds, i.e.aromatic, asphaltene, 

reworked organic materials and others with more complex structures,  which could have different 

δ13C values. Unless, the δ13C values and the fractions of the organic carbon components are 
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known, all effects, from variable ratios of primary organic inputs, environment conditions during 

and after organic burial including reworking processes, are still possible. In order to conclude 

which major control(s) that vertically and laterally affected δ13Corg variations on the Smackover 

Formation from the Conecuh Embayment and the Manila Embayment, more details from the 

isotope and geochemical investigations are needed. However, those data are beyond the purpose 

of this study for characterizing the Smackover stratigraphic framework at this time. The essential 

point in illustrating the correlation between the TOC and the δ13C values and the distribution of 

organic components (saturate fraction) from the TOC is to support the speculation that the δ13Corg 

values of the Smackover principally resulted from local variation rather than the global control.  

The variation between the TOC, δ13Corg and  δ13Ccarb values in the two Smackover cores 

are plotted on the vertical scale and correlated based upon the δ13Ccarb stratigraphy (Figure 6-18). 

The δ13Corg  of the Smackover illustrates shorter trends where δ13Corg  values become heavier 

during the depleted δ13Ccarb values of the carbonates. The heavier δ13Corg values are interpreted to 

result from increased terrestrial organic material associated with higher siliciclastic input during 

relative sea level lowstand periods rather than the increasing in 12C-enriched TOC which could 

cause 13C-enriched in the sea water and positive δ13Ccarb excursion. Unless organic carbon has 

been shown to be derived from a single organic source, the variation of the δ13Corg values in the 

TOC might not truly reflect the global variation. It was not only an increased TOC (12C-enriched) 

which could cause positive excursion in the δ13Corg but also by an increased terrigenous organic 

input during relative low sea level. For the Smackover deposition in southwest Alabama basins, 

while the δ13Corg variation can not be used to represent the global variation due to local variation 

of the organic facies, the δ13Ccarb variation and the correlation between the two study areas suggest 

that the regional or a combination of both regional and local effects did not obliterate its potential 

for using in a time-stratigraphic framework on a local and probably also on a global scale.  
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Figure 6-18. The vertical variations of the TOC, δ13Corg and  
δ13Ccarb values of the Smackover carbonate depositions in the 
Conecuh Embayment and in the Manila Embayment. The 
variations of the δ13Corg  in the Smackover sedimentary organic 
matter in these Smackover samples illustrate the mixing in the 
primary organic input and probably reworking processes 
during organic matter burial rather than changes by global 
increased 
of TOC accumulation. The δ13Corg shifts to heavier values are 
caused by increasing algal and terrigenous material during 
shallower paleowater-depth and relative low sea level where 
the δ13Ccarb values become depleted due to diagenetic 
alteration.    
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6.5.6  The δ13Ccarb stratigraphy of the global Oxfordian sequences 

 

To identify the possibility of global variation on the δ13Ccarb signals recorded in the 

Smackover sequence, the δ13Ccarb trend of the Smackover should be compared to the δ13Ccarb 

variations of the other Upper Jurassic Oxfordian sequences. In Jenkyns (1996), δ13Ccarb 

stratigraphy of different sediment sequences aged from Upper Callovian to Upper Oxfordian from 

southern France and north Italy were reported (Figure 6-19).  Although Jenkyns (1996) only 

emphasized the positive δ13Ccarb excursion in the Lower-Middle Oxfordian which he suggested as 

an evidence of the synchronized global bathymetric deepening, several short-term negative-

positive δ13Ccarb  trends can be recognized in these sequences. The values of the δ13Ccarb and the 

δ18Ocarb illustrated in the cross-plots vary from 1‰ to 4‰ and from -2.5‰ to 0.5‰, respectively 

(in Figure 6, Jenkyns, 1996). Carbon isotopes from several fossil groups using echinoids and 

crinoids from four different sections of the Liesberg Beds (Lower Oxfordian to Middle 

Oxfordian) were reported by Bill et al. (1995). In the study of Bill et al. (1995), a negative δ13Ccarb 

shift of 1‰ to 1.5‰ was observed near the base of the Liesberg Beds before increasing toward 

the middle and the upper part of section. These δ13Ccarb negative shifts were interpreted as an 

original signal resulting from variation of isotopic compositions of dissolved HCO3
- in the 

seawater. They proposed that the negative shift to the lowest δ13Ccarb values correspond to a large 

input of dissolved nutrients to the platform under oxidizing conditions. An ensuing positive 

δ13Ccarb shift to about 2-2.3‰ in the middle and upper part of the Liesberg Beds was interpreted 

as a general trend for the opening up of the platform and a connection to open marine water. In 

Bartolini et al. (1996 and 1999), details of the Callovian-Oxfordian sequence, which is part of the 

continuous carbon isotope stratigraphy of the Middle-Upper Jurassic pelagic carbonate rocks 

from central Italy, also illustrated the short negative-positive δ13Ccarb trends. It is noted that in 

these reports mainly positive δ13Ccarb shifts would be emphasized as a global variation due to an 

increased organic carbon extraction from the ocean reservoir. It was not until Padden et al. (2001)
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Figure 6-19. Carbon isotope stratigraphy of the Callovian to the Oxfordian sequences from (a) the Rovere Veronese,
north Italy, (b) the Camposilvano, north Italy, (c) the Chabrieres, southern France (from Jenkyns, 1996) and, (d) the Smackover 
Sequence (the Conecuh Embayment, southwest Alabama, USA; this study). 
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proposed from the δ13Ccarb stratigraphic records from the northern continental margin of the 

ancient Tethys Sea, that the negative δ13Ccarb excursion in the middle Oxfordian (defined as the 

transversarium zone) was affected by the release of the frozen methane hydrate along the 

continental margin. For supporting their theory from the US Gulf Coast area, the negative carbon 

isotope excursion observed in the Upper Smackover from Louisiana reported by Humphrey et al 

(1986) was suggested as a possible result from a releasing of these methane gas hydrates. 

However, according Humphrey et al (1986) these depleted 13C values (by 1.5‰) which occurred 

in the porous Upper Smackover suggested to result from an isotopically depleted soil gases from 

the meteoric water vadose zone. For the Smackover sequence of southwest Alabama in this study, 

the results from core observation, elemental and isotopic analysis suggest the variation of the 

δ13Ccarb values of the Smackover sequence were probably affected from local and larger scale 

variations which could have been related to relative sea level changes. These variations were 

meteoric diagenetic alteration, changes in seawater composition due to widespread organic 

oxidation during period of exposed platform and changes of siliciclastic weathering rate on the 

continent.  

 

6.6    CONCLUSIONS 

 

The preceding observations suggest a degree of interdependence between sea level 

change, sedimentary facies, and diagenesis. The observed vertical variations of the δ18Ocarb values 

and  cross-plot correlations with δ13Ccarb values and elements with variable diagenetic 

susceptibilities suggest different diagenetic environments which in turn are related to sedimentary 

facies variations between the two embayments. Under the long-term trends interpreted as a 

regressive sequence, the δ13Ccarb stratigraphy of the Smackover sequence in southwest Alabama 

illustrates four shorter negative-positive cycles which do not chronologically coincide with the 

formation boundary observed in one of the two Smackover cores. Core observations and δ13Ccarb 
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values suggest that the lowest Smackover sequence boundary, possibly a type 2 boundary, might 

occur at the base of the Smackover in the Conecuh Embayment, but possibly occurs during the 

siliciclastic Norphlet deposition in the Manila Embayment. The lower Smackover in the T.R. 

MILLER MILLS 17-11, #1 core of Conecuh Embayment was interpreted to be time-equivalent to 

the reworked marine sandstone at the top of the Norphlet Formation in the #1 NEAL ET AL 

UNIT 30-1 core of the Manila Embayment. During the early Oxfordian, the first rapid marine 

transgression established a carbonate environment in the Conecuh Embayment, but it was 

probably of insufficient amplitude and stability for carbonate precipitation to occur in the area of 

the Manila Embayment. The base of the Smackover from the #1 NEAL ET AL UNIT 30-1 

characterized predominant  marine reworked sands of the earlier siliciclastic sediments of the 

Norphlet Formation which resulted in the white, massive marine sandstone unit underlying the 

Smackover carbonates.  Cross-plots of δ13Ccarb, δ18Ocarb values and carbonate related elements (i.e. 

Sr, Mn, Mg) suggest different diagenetic environments between the two Smackover depositional 

areas. The relation between the δ18Ocarb values and Mn illustrated the separation which could be 

related to third-order sea level cycles. An unusually high Mn concentration in samples from the 

Conecuh Embayment suggests a possibility of a direct increase in Mn content in the seawater 

where carbonate precipitation occurred. The cross-plot between δ13Ccarb  and δ18Ocarb values 

suggest two different groups of Smackover samples. The first group consists of samples affected 

by diagenetic alteration showing decreasing both δ13Ccarb and δ18Ocarb values. The second group 

illustrates high carbonate samples of more positive and stable δ13Ccarb values with variable δ18Ocarb 

values from diagenesis. 

A correlation between the δ13Ccarb vertical trends of the two Smackover cores suggests 

δ13Ccarb values can be used as time stratigraphic constraints. During a long term Smackover 

sequence, four (or possibly three and a half) and three short-term negative-positive δ13Ccarb cycles 

are observed in the T.R. MILLER MILLS 17-11, #1 and #1 NEAL ET AL UNIT 30-1 cores, 

respectively, and suggest possible combined effects on global and local- scale variations. On a 
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global scale, a positive δ13Ccarb excursion which represents a stratigraphic interval where there is 

an increased burial rate of organic carbon is not distinguishable in these two Smackover core 

sequences which could be due to shallow marine conditions. On the contrary, depleted δ13Ccarb 

values are more evident under these cores. In the Conecuh Embayment, three negative δ13Ccarb 

intervals occurred and are associated with carbonate sediments which received higher siliciclastic 

materials. In the Manila Embayment, the first negative δ13Ccarb interval occurred at the base of the 

Smackover and the other two intervals were observed in sediment of increasing dolomitization 

and evaporitic anhydrites. The depleted δ13Ccarb values suggest diagenetic alteration might be 

associated from mixing organic rich (12C-enriched) water from the near surface or from the 

increasing of riverine influx to the ocean during relative sea level lowstand. The regional and 

global variation would occur due to changes of seawater composition and become enriched in 12C 

by organic oxidation during increasing weathering of the exposed platform. The ensuing shift to 

positive δ13Ccarb values above these depleted δ13Ccarb intervals is interpreted to be an open to more 

open marine environment during the transgressive and highstand sea level.   

The variation of δ13Corg values in the sedimentary organic matter of the Smackover 

samples suggest variable ratios in the marine/terrestrial organic input during changes of 

depositional environment and probably distant from the land. The different carbon isotopic 

composition of the marine (-27‰) and terrigenous (-23‰) materials reported in the Oxfordian  

sediments (Kenig et al., 1994) and the δ13Corg values derived from terrigenous source (-20‰) of 

the Gulf Coast region area support the possibility of mixed organic sources and recycled organic 

material during burial processes. Increasing positive value of the δ13Corg values is interpreted to be 

influenced by an increasing input of terrigenous organic material associated with an enhanced 

silciclastic influx during relative sea level lowstand period. The differences in the cross-plots 

between δ13Corg values and TOC content of the two areas suggest different major organic inputs. 

In the Manila Embayment, with increasing sedimentary organic carbon, TOC, the δ13Corg values 

become more positive (-23‰ to -20‰) suggesting a possibility of an increased of terrigenous and 
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algal organic materials under the tidal flat environment. In the Conecuh Embayment, affected by 

a more distal paleoenvironment setting and deeper lagoonal-marine system, marine organic 

material was more abundant when relative sea level was highstand and a times of high carbonate 

precipitation. The organic carbon derived from marine organic source is reflected in the δ13Corg 

values of the TOC showing more negative carbon isotope values (less than-25‰). The organic 

carbon analysis from saturate fraction of the extracted organic component from the two 

Smackover core samples supports the variation of the major organic carbon source during 

Smackover deposition. It is therefore concluded that while the δ13Corg variation characterizes the 

mixed isotope signals derived from variable organic source ratios (i.e marine vs. terrigenous vs. 

algal) including a possible reworking of organic material  in the sedimentary environments, only 

the δ13Ccarb variation of the Smackover sequence can be used to constrain both the local and global 

effects on a time-stratigraphic framework. 

 

6.7  FURTHER SUGGESTED STUDIES 

 

The correlation between the δ13Ccarb trends in the T. R.  MILLER MILLS  17-11, #1 and 

the #1 NEAL ET AL UNIT 30-1 cores from the Conecuh Embayment and the Manila 

Embayment suggests that sequence stratigraphic framework of the Smackover deposition on the 

U.S. Gulf Coast can possibly be constrained using the δ13Ccarb  isotope stratigraphic concept. 

Variation of the δ13Corg values, which show no parallel variations with the δ13Ccarb trend and vary 

with changes of organic composition, however, suggest a possible local effect resulting from 

mixed original organic carbon sources (marine vs. terrestrial vs. algae). Padden (2001) declared 

that the negative δ13Corg  excursion during the Oxfordian period resulted from the release of 

methane gas hydrates due to global climate changes. To improve the detail of this Smackover 

stratigraphic study, the following studies are suggested:  1) sample at shorter intervals in order to 

increase stratigraphic resolution  which would also to increase number of samples of both 
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carbonate and organic carbon isotope for higher resolution; 2) clarify the local and 

regional/global variation on theδ13Ccarb of these Smackover samples by conducting the δ13Ccarb 

stratigraphic correlation of many Smackover wells from platform to basin; 3) compare the δ13Ccarb 

values analyzed from variable fossils (different original calcite mineral) and compared to the 

whole rock for vital effect; 4) clarify the theory that the decreased δ13Ccarb during the Oxfordian 

was a global effect caused by the released methane gas hydrates by isotope analysis (hydrogen 

and carbon) of both carbonate and organic carbons; 5) identify the local mixing in organic 

sources in more detail by the organic (biomarkers) and isotope geochemical analysis, 6) 

incorporate other time-stratigraphic parameters (i.e. biostratigraphy on nannofossils,  87Sr/86Sr 

ratios) for global correlation and absolute time precision.  
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CHAPTER 7 

 

7.1   SYNTHESIS: THE SMACKOVER DEPOSITIONAL MODEL 

 

This study has presented chemostratigraphic and lithostratigraphic evidence that 

carbonate platform sedimentation is dynamic owing to a variety of different variables that 

occurred in the depositional system. The vertical accumulation of platform sediment is usually 

governed by the interplay between carbonate growth, rate of sea level change and platform 

morphology (Jones and Desrochers, 1992). The rate of sea level change is important because 

different rates of flooding will provide different responses from the carbonate factory on the 

platform. For southwest Alabama, sedimentary facies and chemostratigraphy from the Smackover 

Formation in the Conecuh Embayment and the Manila Embayment suggest although the 

structural setting and platform morphology had significant effect on carbonate depositional and 

diagenetic environments, eustatic sea level change was likely the primary control. Therefore, both 

in order to synthesize the preceding analysis and interpretations and to provide a test for future 

studies of the Jurassic, it is appropriate that a model be constructed for the Jurassic Smackover 

ramp. The models are proposed based upon parameters interpreted on a depositional setting of a 

carbonate ramp platform for Smackover deposition. Chemostratigraphic correlations used to 

constrain the proposed Smackover depositional models which were time-equivalent between the 

two study areas are summarized in Figure 7-1 to 7-3.    

The proposed depositional model and changes of the Smackover sequence that occurred 

in the Conecuh Embayment and which combine the major observations made from the core 

lithofacies, elemental composition and carbon isotope variations are illustrated in Figure 7-4. In 

the Conecuh Embayment, the lowest boundary of the first sequence (Sm-S1) may or may not be 

coincident with the boundary between the Smackover and the Norphlet Formations. This is 

dependent upon the nature of missing core (~2 ft) at the contact. However, in the underlying 
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Figure 7-1. Carbon isotope and elemental stratigraphic correlations used for synthesizing the Smackover depositional models corresponded to
relative sea level changes. (a) δ18Ccarb for local and global variation of relative sea level rise and fall (transgressive-refressive cycle) due to changes
of carbon budgets,  (b) Mn for a possible global hydrothermal activities and (c) Sr for local and global variation of Sr in the seawater.  
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Figure 7-2. Elemental and oxygen isotope correlations between the Smackover sequences during local variations used for synthesizing
depositional model for the Conecuh and the Manila Embayments, (a) and (b) carbonate and siliciclastic component (Ca and Al) for depositional
environments, (c) δ18Ocarb for diagenetic environment.  
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Figure 7-3.   Elemental, organic carbon content and δ13Corg correlations between Smackover sequences from the Conecuh and the Manila Embayments
(a) K/K+Al ratios for siliciclastic variation of different related minerals because of local (and global?) chemical weathering cycle, (b) TOC for organic
carbon accumulation associated with source input and/or depositional condition, (c) δ13Corg for local effect caused from mixed organic source input
during relative sea level variation. 
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DEPOSITONAL MODEL - CONECUH EMBAYMENT (T.R. MILLER MILLS 17-11. #1)

Figure 7-4. Schematic depositional model related to relative sea level changes proposed for the Smackover deposition in the Conecuh Embayment. The
lowest sequence, the Sm-S, formed during the major flooding for Smackover carbonates may include the upper siliciclastic Norphlet as the lowstand deposit.
The Sm-S2 sequence earlier occurred in a partially restricted condition but became more normal marine during the later stage of high sea level. The Sm-S2
and the Sm-S3 sequence were interrupted by falling sea level period showing increasing siliciclastic influx. The Sm-S43 deposited on top of the next lowstand
cycle occurred during  long-term Smackover progradation where depositional energy became high. At the top of the Smackover Formation of the Sm-S4
sequence, relative sea level fell illustrated by an erosional surface and increased dolomite and evaporite. Different parameters can be used to recognize
the variation of sea level and sediment deposition of different system tracts. 
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Norphlet sediment interval (~13 ft), that absence of a distinct discontinuity surface might suggest 

a sequence boundary similar to that appearing in the #1 NEAL ET AL UNIT 30-1 in the Manila 

Embayment. The major Oxfordian marine flooding which established the carbonate Smackover 

could have occurred on top of the erosional surface in the Conecuh Embayment. From this 

contact, a sufficient accommodation space allowed subtidal carbonate sedimentation. According 

to Jones and Desrochers (1992), shallow carbonate depositional cycles on the platform, especially 

on ramps, could occur as the repetitive meter-scale subtidal cycles without either an erosional 

break or subaerial exposure. Shorter Smackover cycles (meter scale) are typified by an upward 

increase in grain size, bed thickness and high energy sedimentary structure.  These types of 

shallowing upward cycles have been recorded in many carbonate sedimentary sequences (i.e. 

Lohmann, 1976; Aigner, 1985; Calvet and Tucker, 1988; Osleger, 1991). During the Sm-S1 

sequence, the abundance of carbonate mud and scarcity of normal marine fossils indicate that the 

Smackover deposition in the Conecuh Embayment area at this period of time was still under low 

energy and partially restricted conditions likely caused from the nearby paleostructural highs. 

During the transgressive sea level to highstand, where terrigenous input was minimal, some 

organic algal biohermal build-ups could have formed and continued into the late highstand phase. 

It is not uncommon for the late highstand organic build-ups to reflect the higher frequency sea 

level fluctuations and later to be partially drowned by the following sea level transgressive event. 

These build-up structures may only exhibit shallowing, but not necessarily exposure (Burchette 

and Wright, 1992). In the lower Smackover, a brief falling or decreased rate of eustatic sea level 

rising probably occurred but was insufficient to expose the highstand deposit of the Sm-S1 

sequence. However a fluctuation of higher-frequency sea level cycles appeared to superimpose a 

stacking of several small cycles (centimeters scale) (13787 ft to 13805 ft). These  

small upward-shoaling cycles consist of algal laminated mudstone and the algal organic reef 

structures associated with evaporite nodules and some terrestrial materials. 
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As the eustatic sea level resumed rising again, interpreted as the Sm-S2 sequence, the 

subtidal carbonate deposit continued without distinct transitional sedimentation. Carbonate 

precipitation became productive under open marine waters, as evidenced by the presence of 

normal marine fossils. The condensed section is interpreted from the core (13755 ft to 13761 ft) 

as the carbonate mudstone intercalated with dark very thin layers that are probably the marine 

organic black shale. In the late highstand and the next lowstand periods where the rate of eustatic 

sea level changes started to fall, although the mean sea level was probably still above the fair-

weather wave base, river channels that transported siliciclastic sediments (aluminosilicate, Al) to 

the ocean (from the ancestral Mississippi river or small rivers to the northeast), could prograde 

seaward along the platform. The fine grain siliciclastic sediments were transported by wave and 

ocean currents from the channel mouth in the Mississippi area to be deposited farther away. 

Increased siliciclastic sediment influx has been shown to be associated with period of relative sea 

level fall for many carbonate ramp stratigraphic sequences (i.e. Choi and Simo, 1998; Pittet et al., 

2000; Spalletti et al., 2000). Burchette and Wright (1992) pointed out that because of the low 

slope angle of the platform, change in the character of the ramp sediment between highstand and 

lowstand system tracts might be minimal and hardly distinguishable if the relative sea level fall is 

small. The type 2 sequence boundary which was formed on the low gradient platform might show 

no greater contrast in the nature of the facies above and below the boundary (Tucker et al., 1993). 

The sabkha, lacustrine, fluvial and other supratidal/non-marine environments which commonly 

develop during the lowstand sea level occurred predominantly under the type 1 sequence (with 

sea level falling below the shelf break). 

In the next sea level cycle, interpreted as Sm-S3, depositional energy increased as it 

prograded landward toward the carbonate shoal/barrier. Some higher energy grains i.e. oncoids, 

packstones and wackestones under an open marine environment developed. Under these 

conditions where depositional energy was high with very low to no siliciclastic contamination, 

carbonate deposition was dominant but without a condensed interval or distinguishable maximum 
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flooding surface. Toward the falling period of the next sea level, small evaporite replacement 

became noticeable in the highstand carbonate deposit.  The increasing of siliciclastic sediment 

and evaporite nodules in the carbonate deposit at this time was interpreted as the lowstand deposit 

in which more siliciclastic sediment was brought into the platform. 

Under the next sea level cycle, the upper Smackover deposition was formed and is 

interpreted as the Sm-S4. In this sequence, depositional energy in the environment became high 

as sedimentation approached a shoaling environment. Although siliciclastic sediment was still 

low, siliciclastic elements interpreted as being associated with high energy conditions (Ti/Ti+Al) 

increased. The Sr content became unusually high owing to the precipitation and deposition of 

aragonitic carbonate minerals of the carbonate grains. At the end of the upper Smackover, a large 

eustatic sea level fall occurred and caused some exposure in the grainstone highstand sediment 

before deposition of the Buckner Anhydrite formation. The effect of eustatic sea level changes on 

the T.R. MILLER MILLS 17-11, #1 Smackover core is interpreted based upon the variation of 

the δ13Ccarb variation which can be globally correlated with the other rock sequences of equivalent 

Oxfordian age. On a local scale, during the lowstand when the ramp was more attached to the 

land, meteoric input with high 12C from organic material from the surface soils might affect 

decreasing of the δ13Ccarb values in addition to their original isotopic signal. At the same time, the 

regional scale (and global) falling eustatic sea level increased sediment erosion and organic 

matter oxidation from land into the ocean and caused the bicarbonate ions to become enriched in 

12C  which would lower the 13C/12C  or the δ13Ccarb values of the carbonate and thus negative 

δ13Ccarb values. The δ13Ccarb depleted values for shallow platform carbonate sedimentation during 

the falling relative sea level are believed to be a distinctive stratigraphic marker which can cut 

across the variation of sedimentary facies and diagenetic environment in the Conecuh 

Embayment and the Manila Embayment areas where the Smackover deposition occurred. 

Analogously, the proposed depositional model for explaining the changes of the 

Smackover sequences of the Manila Embayment is illustrated in Figure 7-5.  For the Manila  
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Figure 7-5. Schematic depositional model related to relative sea level changes proposed for the Smackover deposition in the Manila Embayment. The
lowest sequence, the Sm-S1, formed during the major flooding for Smackover carbonates but consists mostly the massive, marine reworked siliciclastic
sandstone in the uppermost Norphlet Formation. The next two sequences, the Sm-S2 and the Sm-S3, illustrate shallowing-upward cycles in a peritidal
environment where the sediments in the uppermost intervals were affected from meteoric diagenesis and subaerial exposure. The Sm-S4 sequence formed
during the high energy sea level condition of the long term progradational Smackover sequence. Coastal/shoreface mixed siliciclastic-carbonate intercalation
occurred near the shoreline. Because of the high structural setting condition, Smackover depositional sequences experienced strong diagenetic alteration and 
dolomitization. Similar parameters can be recognized during the variation of sea level and sediment deposition of different system tracts. 
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Embayment location, the data suggest a depositional model where the Smackover was deposited 

on a tidal flat environment which was attached to the coastal and shoreline environment. During 

the early and late Smackover periods, although the Smackover developed in different 

environments, the depositional energy was still low as it was in the Conecuh Embayment.  A 

high-energy environment occurred later in the upper Smackover deposition under higher-energy 

shoreface/beach conditions. Sedimentary facies and elemental compositions differ in 

characteristics of the shorter Smackover sequences in the Manila Embayment and occur as 

peritidal cyclicity, especially in the lower and middle Smackover. Upwarding shoaling 

successions on meters scale from subtidal to supratidal are observable but for the majority of the 

sediment there are repeated facies representing intertidal conditions (“ribbon rocks”). Due to the 

characteristic of the cycle which was capped by subaerial diagenesis during the supratidal, these 

shorter depositional sequences (of long meters scale) for the Smackover of the Manila 

Embayment might be characterized as diagenetic cycles (Jones and Desrochers (1992).  

The relationship between sea level fluctuation and the stacking characteristic of the 

peritidal shallowing-upward succession is illustrated in Figure 7-6 and Figure 7-7.  During the 

Smackover long-term sequence, there were several shallowing-upward cycles that probably were 

controlled by the higher frequency sea level cycles occurred as sea level fluctuated up and down 

and thus back and forth across the platform. During the relative sea level falls, the highstand 

sediments became strongly overprinted by diagenetic alteration including dolomitization due 

possible subaerial exposure. A sequence boundary can be observed but instead of exhibiting a 

single surface, it instead presents as a zone where the sediment deposition illustrates higher sea 

level fluctuation and early meteoric diagenetic effects. The δ13Ccarb  values become depleted and 

can be correlated with the δ13Ccarb values of the lowstand deposit intervals in the Conecuh 

Embayment. The variation of the elemental composition on the siliciclastic sediment is less 

obvious as higher siliciclastic sediment background which has already mixed with the carbonate 

sedimentation in this area. The relatively higher siliciclastic sediments in the carbonate 
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Figure 7-6.  A diagram illustrating the possible relationship between the fluctuation of sea level 
and the short-term peritidal cycles observed during the long-term Smackover sequence in the #1 
NEAL ET AL UNIT 30-1 well of the Manila Embayment. In the NEAL ET Al. 30-1 core 
sequence, the stacking of these cycles formed during the higher order eustatic sea level cycles can 
be observed but it is interpreted that only during the major fall in relative sea level (third order) 
which interrupted the continuous carbonate production and resulted in subaerial exposure and 
diagenesis (from Pratt et al., 1992). 
         

Figure 7-7.  A diagram illustrating the hypothetical stratigraphy of meter-scale, peritidal, successions which 
could possibly occurred between the two sequence boundaries in the #1 NEAL ET AL UNIT 30-1 core of the
Manila Embayment. Each succession formed by sediment progradation, which was most likely associated 
with the higher frequency sea level fluctuation. The balance between sea level changes, sedimentation and 
subsidence rate affected the stacking pattern of the tidal flat sediment succession (from Pratt et al., 1992). 
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environment of the Manila Embayment might have been transported from the Mississippi Interior 

Salt Basin as Shew (1991) had earlier reported the influx of several large silciclastic sandstones 

which interrupted Smackover carbonate deposition (Figure 7-8). From core observations and 

δ13Ccarb correlations, the lowest short-term Smackover sequence in the Manila Embayment (Sm-

S1) is interpreted as the upper sandstone deposits of the Norphlet Formation.  In the Manila 

Embayment, three short sequences are interpreted as being controlled by the relative sea level 

changes and can be correlated with the Smackover sequences in the Conecuh Embayment. These 

short sequences are interpreted as being affected by third-order eustatic sea level fluctuation 

controlling carbonate diagenetic cycles in this embayment. The upper boundaries of the cycles, 

affected by eustatic sea level falls, are manifested as sediment deposition which associated with 

subaerial exposure and diagenesis. In the #1 NEAL ET AL UNIT 30-1 core sequence, the 

variation between carbonate and siliciclastic influx as shorter Smackover cyclicity was not as 

clearly distinguished as in  the T.R. MILLER MILLS 17-11, #1 of the Conecuh Embayment. 

However, the diagenetic alteration during the allocyclic peritidal cycles (affected by relative sea 

level change) is distinctive and does illustrate the stratigraphy which can be correlated between 

the Smackover depositional sequence in these two southwest Alabama basins. During the 

fluctuation of relative sea level, the organic carbon content and its carbon isotope composition 

were locally affected by the depositional environment, structural setting of the embayment and 

distance from the land. Because of the different carbon isotope compositions between algae, 

marine organisms and terrigenous higher plants, the mixing ratio between these original organic 

carbon sources for the Smackover TOC appeared to have dominated influence on the δ13Corg 

values rather than the 13C/12C variation in the ocean. The regional stratigraphy and depositional 

model of the Smackover in southwest Alabama interpreted by using the δ13Ccarb values in this 

study can be correlated to the Smackover stratigraphy interpreted from south Arkansas and north 

Louisiana. Troell and Robinson (1987) detected four progradational carbonate sequences of the 

Smackover which occurred parallel to the ancestral Gulf shoreline. Each progradation consisted  



 197

 

Figure 7-8. Depositional model proposed for the Smackover upward-shoaling sequence in the Mississippi Interior Salt Basin, central 
Mississippi and described as the lower, middle and upper Smackover by Shew (1991). It is noted that the Smackover carbonates were 
interrupted by several episodes of siliciclastic sediment influx which probably contributed to siliciclastic observed in the Smackover 
deposition of the Manila Embayment (from Shew, 1991).  

THE MISSISSIPPI INTERIOR SALT BASIN  DEPOSITIONAL MODEL
(SHEW, 1991)
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of calcarenite rock bodies or banks which prograded basinward on top of the previous cycles. For 

southwest Alabama area, the higher structural setting which was less open to normal marine high 

energy environment lead to a weakening of the marine wave energy during the three lower 

Smackover sequences required for high energy grainstone formation. Not until the last 

Smackover cycle (Sm-Sq4), where the long term Smackover sea level was high and marine wave 

energy was increased close to the shoal area or the shoreface did  the high-energy Smackover 

sediment became recognizable in the southwest Alabama area.  

 

7.2  OXFORDIAN SEA LEVEL VARIATION AND TECTONIC ACTIVITY 

 

In general, the two possible causes of global sea-level change are the melting and the 

freezing of the polar icecaps (glacioeustasy) and the changing volume of oceanic basin bound up 

with the creation and destruction of the oceanic ridges (tectonoeustasy) (Hallam, 1992). Hallam 

(2001) reported that the change associated with the change of the oceanic volume due to the 

oceanic ridge activities are usually three times lower than glacioeustatic changes. According to 

Frakes et al., 1992; Hallam, 1993), during the Jurassic period the influence from the changing of 

the polar ice volume affecting eustatic sea level changes had no evidence compared to the 

significant ice volume on this present day. Wignall (1991) earlier suggested from the upper 

Jurassic, Kimmeridgian of England and northern France, that the synchronous development of 

unconformities in several basin margins especially in northwest Europe could have been affected 

from sea level falling or widespread tectonic movements which were unrelated to the local 

intrabasinal tectonic activities. The opening of the Atlantic Ocean in its central sector between the 

North America and north-western Africa was speculated to be possibly associated with the rise in 

the late Callovian to the Early Oxfordian (Hallam, 2001). However, the pulses of the subsequent 

rising in the Late Oxfordian and Kimmeridgian were not believed by Hallam (2001) to be caused 

by activities from the central Atlantic Ocean through its opening owing to a more or less uniform 
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rate of the sea floor spreading (Kiltgord and Schouten, 1986). Halam (2001) instead hypothesized 

that the effect might come from the initial breakup of the eastern Gondwanaland which led to an 

opening and creating the new sea floor of the Indian Ocean. 

The effects of the tectonoeustasy on the Oxfordian eustatic sea level variation have also 

been reported. Allenbach (2002) suggested from sedimentary facies and structure observation of 

the Oxfordian sediment sequence occurred from the Swiss Jura Mountain in northern Switzerland 

that the active local and regional tectonisms could have play the role in addition to eustasy and 

sedimentation rate on the developments of the Oxfordian epicontinental basins as well as on the 

shallow-water deposition. Allenbach (2002) also suggested that eustatic sea level fluctuations 

might have an important role on the development of shallow-water facies patterns, but 

subordinately on a role for the creation of accommodation space in the basin. He proposed that  

tectonic activities could possibly still be active and affect differential basin subsidence. This 

synsedimentary tectonic movement could lead to a diachronous boundary between the two 

shallow basins. In the Gulf of Mexico region, Llinás (2002) interpreted from a seismic data 

derived from the eastern margin of the Manila basin and embayment and suggested that the 

tectonic subsidence associated with faulted basement blocks could contribute and thus affected 

the Smackover deposition in the southwest Alabama area. He reported that a differential 

subsidence resulting from salt movement accompanying the tectonic movements could have a 

strong role for rapid and significant marine inundation for the Smackover deposition instead of 

eustatic sea level changes. However, from this study, the shorter depositional cycles are observed 

in a long-term Smackover sequence from the deeper part of the Manila Basin in the #1 NEAL ET 

AL UNIT 30-1. The stratigraphic evidences illustrated by a δ13Ccarb  correlation with the 

Smackover sequence in the Conecuh Embayment and the subaerial exposure intervals observed in 

the #1 NEAL ET AL UNIT 30-1 core tend to support that sea level fluctuation was still likely the 

primary control for Smackover depositions in these southwest Alabama basins.  
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7.3  LATE JURASSIC PALEOCLIMATES 

 

Climate conditions can be important and affect the magnitude on carbonate productivity 

in shallow carbonate environments because of changing carbonate favorable factors (e.g. Lees, 

1975; Isern et al., 1996; Riding 1996; Homewood, 1996). Under the climate major control, an 

increased siliciclastic influx which is usually associated with falling sea level may not necessarily 

be directly controlled by the falling of the sea level but instead become accelerated  by an 

increased intensity of weathering processes on the continent (Weissert and Mohr, 1996). During 

humid and wet periods, weathering processes can affect the water, nutrient and organic carbon 

recycling from land to the ocean (Cecil, 1990; Weissert, 1990). According to Hallam (1984), Late 

Jurassic climate was exceptionally warm and humid compared to the earlier Mesozoic climates. 

The intense humidity corresponded to an elevated energy level of the biosphere and the 

distribution of an increased rainfall was controlled by the seasonal (monsoonal) climate which 

was progressively replaced by a more zonal climate by the beginning of the Cretaceous (Weissert 

and Mohr, 1996). The widespread carbonate sedimentation which peaked during the Late 

Oxfordian and Early Kimmeridgian still suggests a global high sea level. Weissert and Mohr 

(1996) believed that an increased organic carbon accumulation in the ocean and high siliciclastic 

influx during the Late Jurassic was influenced by the specific conditions of increased weathering, 

erosion and water run-off from land.  In contrast, increasing siliciclastic and fine grain suspension 

as well as nutrient loads in the coastal waters would interrupt the carbonate factory in the shallow 

water environment. A high global sea level and more open paleoceanographic conditions become 

favorable for both carbonate platform growth and increases organic carbon burial rate. Because of 

the fluctuating carbonate and organic carbon burial rate during the Late Jurassic, Weissert and 

Mohr (1996) suggested the positive δ13Ccarb  variation during the Upper Jurassic time might not be 

an accurate proxy from an increased global organic carbon accumulation rate which affected the 

change on the 13C and 12C of global reservoirs.  Weissert and Mohr (1996) proposed the global 
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paleoclimate change model in which an elevated atmospheric CO2 was the cause for change of 

the global climates related to water cycling, rainfall and the seasonality. An increase in chemical 

weathering during the warm and humid climate owing to the elevated CO2 level in the 

atmosphere caused weathering and thus increased silciclastic influx and nutrients transferred into 

the oceans. An increase of organic carbon production rate in the ocean thus affected the δ13C 

composition in the carbonate to fluctuate showing trends which were controlled by changes in 

paleoclimate and paleoceanic conditions. The relation of various components related to driving 

mechanism for the cycles of the Weissert and Mohr (1996) model is illustrated in Figure 7-9.  

 

7.4 CONCLUSIONS 

 

On a gently sloping carbonate ramp, small vertical changes in sea level could lead to 

large lateral changes in marine transgressions and regressions. Distinguishing the effects of global 

causes and local causes for the major and minor elemental compositions, organic carbon content, 

and stable isotopic ratios of carbon and oxygen can be complicated by a variety of factors, 

especially diagenesis and climatic effects. However, a few clear signals from this study of  

Smackover carbonate sedimentation of southwest Alabama as analyzed from two wells of the 

Manila Embayment and the Conecuh Embayments can be defined. In general, δ13Ccarb  

corresponds to vertical global changes in sea level whereas δ13Corg corresponds to local horizontal 

changes in transgressions and regressions, while δ18O mostly provide a tell-tale signal of 

diagenetic alteration. Certain minor elemental associations clearly indicate the proximity of 

clastic influx and help track trangressions and regressions. The sedimentation  was primarily 

controlled by relative sea level cycles and modified by the paleotopography associated with basin 

configuration and depositional environments related to paleowater-depths. The variation of the 

sedimentary facies and diagenetic environments of the Smackover depositions could be the 

reason the carbonate depositional sequence, relative to changes of sea level and/or climates in this  
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Figure 7-9. The global paleoclimate model proposed by Weissert and Mohr (1996) and illustrated
the link between different components during the Late Jurassic global water and carbon recyclings
due an increased atmospheric CO2.
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particular area, not being clearly distinguishable and the inability to be correlated to the 

Smackover sequence stratigraphy proposed from a nearby basin (i.e. the Mississippi Interior Salt 

Basin) and to the sea level model which has been applied to other sedimentary basins of the Gulf 

of Mexico.  

 In particular, the conclusions that can be drawn from this depositional sequence study of 

the Smackover Formation in the two southwest Alabama basins are: 

1) Although sea level was a primary control for sedimentary cycles, the 

paleotopography and depositional setting affected sedimentation and subsidence rates and 

modified the basic components (the system tract) of the depositional sequence. 

2) The low slope gradient on the platform and the variation in the structural setting in 

the two embayments caused the changes between system tracts to become less distinctive. The 

bounding surface does not show an abrupt facies change or a discontinuity surface but instead a 

change due to depositional energy and type of carbonate sedimentation. The sequence boundary 

is not always a subaerial exposure but is disconformable or shows a subaqueous omission or the 

superimposition of the higher frequency sedimentary cycles which could be related to climate 

effects.  

3) On the shallow platform carbonate, because the markers or keys for a stratigraphic 

boundary (i.e. first transgressive surface, maximum flooding surface, sequence boundary) were 

not always distinguishable, the correlation based upon these component might not be explicit. 

4) Diagenetic effects of carbonates on a shallow platform can be variable. The 

extensive alterations can obliterate early sedimentary characteristics (texture, fabric and structure) 

which are important for lateral  stratigraphic observation.  

5) Sequence interpretation from sedimentary facies and elemental analysis can be 

variable if sedimentary facies and elemental variation affected by local modification under 

different conditions.   
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6) Sequence boundaries which are not coincident with the formation boundary could 

make correlation problematic. 

7) For ramp sequence stratigraphy with a disconfomable transition, during an early 

transgressive system tract, increasing accommodation space with carbonates trying to catch-up 

with sea level and increased siliciclastic by a landward sea transgression could possibly end up 

with mixed carbonate-siliciclastic sediment depositing on top of the lowstand siliciclastic 

sediment. However, because of no distinguishable surface, the condensed intervals resulting from 

low sedimentation rates and mixing of sediments may be hardly separated from the lowstand 

sediment from the previous sea cycle unless they are marked by dark organic rich marine 

sediment deposit. 

8) The superimposition of the high frequency sea level cycle effects which is not 

necessary expressed in every core sequence, especially sedimentation that occurred some distant 

from the land, reduce the effectiveness of the higher frequency sea level cycle correlation. 

9) On a shallow carbonate platform, the effects from mixing primary organic carbon  

sources (marine vs. terrestrial vs. algae) and organic oxidation or reworking process can affect the 

organic total organic accumulation rate and the carbon isotope values. 

10) While sedimentary facies, depositional environment and diagenesis might be 

problematic for the correlation due to several related effects, the carbon isotope stratigraphy can 

be used for the stratigraphic correlation. By combining the different results (core characterization, 

element compositions, oxygen and carbon isotopes), the effects of these variations during the 

sedimentary cycles related to relative sea level changes are recognizable. 

11) Carbon isotope stratigraphy of the Smackover depositional sequence was recorded 

on the carbonate carbon isotope composition controlled by the effects of regional/global scale sea 

level variation (or climate?) and/or local diagenesis during falling relative sea level period. The 

organic carbon isotope varied along the long-term Smackover trend and was controlled by 

different ratios of mixed marine and terrigenous organic materials which contained variable 
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carbon isotope compositions. The correlation between carbonate and organic carbon isotope 

would illustrate positive covariation  to changes of global carbon reservoirs if the organic carbon 

content was derived primarily from a single organic source (i.e. marine or terrestrial) which has to 

be clarified.  

12) Global climate conditions could be an important factor for the variation of 

carbonate deposition and the δ13Ccarb  variation in addition to sea level changes. To verify this 

conclusion, the correlation between carbonate and organic carbon isotopes on a straigraphic 

framework related to chemical weathering cycles during the Smackover sequence need  to be 

further studied.  

13) The δ13Ccarb  stratigraphy of the Smackover carbonate in southwest Alabama 

indicates four short-term sequences which were probably controlled by third-order eustatic sea 

level cycles during the long-term Smackover regressive sequence (second order?). The sequence 

boundaries, especially of the lowest sequence, were not coincident with the formation boundary 

between the Norphlet and the Smackover Formations. 

14) Regional sequence stratigraphic correlation of the Smackover deposition on the 

northern Gulf of Mexico basins using the major and minor elemental analyses as well as the 

δ13Ccarb  stratigraphy should be expanded in order to study the effects of both local and global 

controls    
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13526 ft : Ooid packstone showing pore vugs from 
dissolution. Medium to fine calcarenite: finely to very 
finely crystalline, sparse fine sand quartz, peldolooosparite. 
Most ooid grains are now vugs, but peloids are still 
Preserved (10x10; cross nicol) 

0.5 

13505.8 ft : Interbedded anhydrite and mudstone. 
Upper: fibrous anhydrite, Lower: coarse to fine 
calcilutite,coarse to fine silty quartz dolo- 
Microsparite (10x10; cross nicol) 

13516.7 ft : Dolomitized ooid grains with no porosity. 
Medium calcarenite: sparse silty quartz, oodolo 
microsparite (ooid grainstone)(10x10; plane light). 

13555 ft : Algal lamination showing schizohaline 
condition during dolomitization. Sparse silty quartz,  
peloidal (ooid?), blue-green algal, limpid dolomitic 
Pelbiolithite (10x10; plane light) 

13600.7 ft : Mixed siltstone/wackestone showing coarse 
to fine silty quartz grains, micaceous phyllarenite, pyrite 
replacement in the Favreina pellet, peloid, ostracods and 
shell fragments (10x10; cross nicol) 

13622.5 ft : Wackestone showing sparse peloid that was 
recrystallized. Micrite shows very finely crystals. Fine to  
very fine silty quartz are also abundant (10x10;  cross 

l)

 

Photomicrographs of thin sections from the T. R. MILLER MILLS17-1, #1 core 
of the Conecuh Embayment (1) 
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0.5 

13646 ft :  Algal laminae in the sparse algal mudstone. 
Brachiopod shells and abundant medium to fine silty 
quartz grains, very fine spicules in the algal layers  
(10x10;  cross nicol). 

13703.5 ft :  Mixed claystone/mudstone showing clay  
partings and pellets (10x10;  cross nicol). 

13712 ft :  Algal boundstone/mudstone with pellets, 
sparse coarse to fine silty quartz and pyrite  
(10x10;  cross nicol). 

13737 ft :  Mudstone showing intraclast of algal fragments 
(10x10;  cross nicol) 

13765 ft :  Mudstone (finely crytalline)with very sparse 
medium to fine silty quartz (10x10;  cross nicol). 

13787.5 ft :  Pelletoid mudstone with scattered medium 
to fine silty quartz. Fenestral pores and broken spicules 
abundant (10x10;  cross nicol) 

Photomicrographs of thin sections from the T. R. MILLER MILLS 17-11, #1 core 
of the Conecuh Embayment (2)  
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13845.5 ft :  Algal boundstone showing growth layers. 
Abundant fossils are dolomitized. Ostracods is 
Sparsely present as well as scattered fine silty 
(10x10;  cross nicol). 

0.5 

13787.5 ft :  Pelletoid mudstone showed under 
plane light (10x10, plane light). 
 

13804.9 ft :  Algal boundstone/mudstone with 
abundant medium to fine silty quartz along the 
layers (10x10;  cross nicol). 

13843 ft :  Algal layers in the agal laminated 
mudstone.  Abundant and scattered fine silty 
quartz in the mud which was partially dolomitized 
under schizohaline (brackish) condition 
(10x10;  cross nicol). 

13847.2 ft :  Sandstone showing submature metamorphic 
litharenite and small organic materials 
(10x10) plane light). 

13856.5 ft :  Sandstone showing well sorted, very fine grains,  
with submature croase sand size metamorphic rock fragment 
and micaceous bearing (10x10;  cross nicol) 

Photomicrographs of thin sections fromf the T. R. MILLER MILLS 17-11, #1 core 
of the Conecuh Embayment (3) 
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0.5 

13114.5 ft :  Nodular anhydrite with intermixed mudstone. 
Sparse very fine sand size quartz and organic materials 
are within the micrite (10x10;  cross nicol). 

13130 ft :  Fossiliferous/spiculiferous wackestone with 
sparse organic materials and abundant coarse to fine 
silty quartz (10x10;  cross nicol). 

13143 ft : Medium sandstone with silica cement and  
sparse chert metamorphic rock fragments subarkose. 
Grain contact suggests strong compaction  
(10x10;  cross nicol). 

13230 ft : Dolomitic mudstone with evaporitic ghost  
Dolospar and coarse to fine silty quartz  
(10x10;  cross nicol). 

13275 ft : Finely crystalline dolosparite (probaple 
originally wackestone) with abundant coarse to fine 
silty quartz (10x10;  cross nicol). 

13302 ft : Silty dolomitic algal boundstone with mica 
Flakes and slight mud (10x10;  cross nicol) 

Photomicrographs of thin sections from the #1 NEAL ET AL UNIT 30-1 of the
Manila Embayment (1)  
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0.5 

13345 ft : Medium crystalline dolosparite (probaple 
originally wackestone to packstone). Dolomite 
crystal 
is called limpid dolomite suggesting schizohaline or 

13345 ft : Medium crystalline dolosparite similar to 
above, but under cross nicol (10x10). 

13354.5 ft : Medium to fine crystalline anhydritic 
dolosparite (probaple originally wackestone) 
with. 

13372.5 ft : Evaporitic ghost dolospar crystal in a 
dolosparite (probaple originally 
wackestone/mudstone) 

13388.5 ft : Dolomitic wackestone with abundant 
medium 
to fine silty quartz and small algal fragments 

13407 ft : Dolomitic wackestone with abundant 
fine 
silty quartz and small algal fragments 

Photomicrographs of thin sections from the #1 NEAL ET AL UNIT  30-1 of the 
Manila  Embayment (2)  
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0.5 

13434 ft :  Algal boundstone/mudstone with 
abundant medium to fine silty quartz and some pellet 
and spicules (10x10;  cross nicol). 

13443 ft : Spiculiferous/fossiliferous dolomitic wackestone 
with abundant medium to fine silty quartz, pellets 
and organic materials (10x10;  cross nicol). 

13460 ft :  Pelloidal mudstone with scattered fine 
silty quartz and significant fenestral pores 
(10x10;  cross nicol). 

13461 ft :  Spiculiferous dolomitic mudstone with high  
abundant medium to fine silty quartz, spicules and 
organic materials (10x10;  cross nicol). 

13472.5 ft : Spiculiferous dolomitic mudstone with   
abundant medium to fine silty quartz, spicules and 
organic materials (10x10;  cross nicol). 

13492 ft :  Dolomitic peloidal mudstone part in the  
alternated algal mudstone (ribbon rock), also showing 
sparse fine to very fine silty quartz and pellets 
(10x10;  cross nicol) 

Photomicrographs of thin sections from the #1 NEAL ET AL UNIT 30-1 of the Manila
Embayment (3)  
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 0.5 

13532.2 ft :  Spiculiferous mudstone with high abundant 
medium to fine silty quartz, spicules and organic materials 
(algal fragments) (10x10;  cross nicol). 

13516 ft :  Mudstone with abundant fine to very fine 
sandy and silty quartz and some spicules 
(10x10; cross nicol). 

13515 ft :  Mudstone with abundant spicules, small
laminated algal organic materials (10x10;  cross 

13554 ft :  Peloidal algal mudstone with sparse fine to
very fine silty quartz  (10x10;  cross nicol). 

13558 ft :  Sandstone showing bimodal grain sizes 
(of coarse sand and fine to very fine sand) with small 
mica and chert bearing (10x10; cross nicol). 

13594 ft :  Sandstone showing submature, moderated
sorted grains with mica bearing (10x10; cross nicol). 

Photomicrographs of thin sections from the #1 NEAL ET AL UNIT 30-1 of the 
Manila Embayment (4)  
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Table 1. Measured concentrations of major, minor and trace elements of the Smackover  samples 
from the T.R. MILLER MILLS 17-11, #1 well of the Conecuh Embayment  by XRF analysis. 
 

Depth Ca Al Ti Si Fetotal K Mg Mn Sr Na P 
(ft) (%) (%) (%) (%) (%) (%) (%) (%) (ppm) (%) (%) 

13505.8 30.384 2.356 0.117 13.442 1.306 1.811 11.862 0.082 537 0.198 0.023 

13508.8 44.788 2.809 0.106 12.861 0.821 1.648 0.446 0.019 1589 0.285 0.029 

13511.5 39.895 0.440 0.016 3.495 0.430 0.404 20.676 0.098 477 0.240 0.011 

13516.4 62.026 0.287 0.006 1.672 0.071 0.278 5.113 0.036 4092 0.076 0.014 

13520 56.013 0.076 0.006 0.381 0.426 0.027 11.927 0.048 1934 0.138 0.008 

13526 70.796 0.054 0.006 0.140 0.007 0.024 0.269 0.009 17778 0.098 0.011 

13535 66.888 0.504 0.007 1.720 0.117 0.409 0.562 0.009 59524 0.105 0.017 

13538.5 54.346 2.016 0.072 6.803 0.452 1.770 1.491 0.015 385 0.124 0.025 

13546.5 70.047 0.101 0.006 0.448 0.007 0.102 0.336 0.008 15734 0.094 0.011 

13551.8 70.902 0.052 0.006 0.117 0.007 0.027 0.227 0.008 5032 0.088 0.007 

13553.5 66.177 0.307 0.006 1.766 0.059 0.347 1.450 0.013 7437 0.078 0.008 

13555 66.472 0.355 0.008 1.327 0.469 0.353 1.337 0.014 2620 0.102 0.011 

13561.9 67.398 0.320 0.006 1.677 0.031 0.317 0.548 0.019 896 0.083 0.014 

13562.3 67.997 0.048 0.006 0.279 0.112 0.055 2.293 0.023 1506 0.069 0.010 

13568 55.142 1.630 0.048 7.307 0.385 1.410 0.927 0.020 1230 0.146 0.027 

13570 66.052 0.448 0.016 1.837 0.159 0.451 1.119 0.011 10775 0.086 0.011 

13576.9 67.013 0.384 0.014 1.833 0.019 0.390 0.545 0.016 1003 0.089 0.012 

13583 65.425 0.508 0.014 2.213 0.242 0.484 0.987 0.012 19979 0.099 0.016 

13589.5 27.755 4.749 0.199 19.748 1.576 3.464 1.663 0.035 1108 0.239 0.059 

13600.7 23.768 5.161 0.235 21.039 2.351 3.850 1.935 0.041 781 0.226 0.060 

13608 9.667 7.598 0.389 26.007 2.909 4.526 3.390 0.054 212 0.378 0.068 

13618 61.234 0.856 0.020 4.395 0.595 0.858 0.710 0.022 2719 0.107 0.026 

13620.2 53.496 1.769 0.048 7.994 0.676 1.654 0.857 0.026 1723 0.123 0.033 

13622.5 68.902 0.182 0.006 0.795 0.159 0.173 0.572 0.019 2001 0.090 0.011 

13627 69.806 0.074 0.006 0.427 0.007 0.068 0.626 0.010 2000 0.089 0.008 

13632.9 69.366 0.101 0.006 0.687 0.007 0.104 0.597 0.029 1255 0.083 0.008 

13640.5 68.584 0.137 0.006 0.976 0.072 0.121 0.766 0.012 2127 0.104 0.008 

13646 67.117 0.448 0.020 1.628 0.106 0.411 0.531 0.020 1108 0.105 0.017 

13673.9 34.297 4.284 0.151 16.550 1.340 3.168 1.230 0.037 914 0.290 0.048 

13681.5 19.000 6.359 0.277 22.676 2.795 3.916 1.756 0.081 755 0.504 0.065 

13686 22.542 6.000 0.238 21.054 2.515 3.784 1.728 0.058 626 0.433 0.055 

13698 19.922 6.322 0.261 22.218 2.755 3.814 1.751 0.062 739 0.511 0.060 

13703.5 19.792 6.534 0.267 21.998 2.813 4.022 1.692 0.054 660 0.527 0.060 

13706.1 59.063 1.114 0.022 5.526 0.374 0.977 0.839 0.022 965 0.165 0.027 

13712 47.210 2.600 0.071 10.993 0.695 1.888 1.007 0.021 2026 0.295 0.029 

13721.9 57.635 1.251 0.051 6.286 0.424 1.000 0.788 0.038 774 0.192 0.024 

13726.5 57.542 1.245 0.052 6.336 0.425 1.005 0.809 0.039 767 0.186 0.024 

13730.2 47.808 2.519 0.076 10.573 0.708 2.071 0.983 0.076 685 0.234 0.036 

13731 53.546 1.832 0.046 8.004 0.509 1.503 0.872 0.098 3097 0.198 0.027 

13734 67.066 0.266 0.006 1.789 0.021 0.268 0.674 0.145 1230 0.097 0.019 

13737.5 64.318 0.637 0.007 2.709 0.157 0.629 0.923 0.203 580 0.133 0.021 

13745.8 61.997 0.637 0.021 4.399 0.110 0.653 0.701 0.208 2208 0.152 0.013 

13756.8 67.869 0.221 0.006 1.241 0.007 0.231 0.711 0.261 3110 0.090 0.021 
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Depth Ca Al Ti Si Fetotal K Mg Mn Sr Na P 

(ft) (%) (%) (%) (%) (%) (%) (%) (%) (ppm) (%) (%) 

13765 51.169 2.065 0.056 8.861 0.517 1.899 1.026 0.298 474 0.207 0.037 

13781.2 61.310 0.540 0.013 3.508 0.227 0.529 1.573 1.463 6566 0.135 0.016 

13787.5 52.873 1.499 0.063 8.342 0.461 1.341 1.039 0.706 5499 0.216 0.025 

13793.5 25.552 4.665 0.232 20.361 1.860 3.621 1.645 0.817 638 0.493 0.046 

13795.5 36.550 3.575 0.123 15.272 1.267 2.885 1.302 0.965 302 0.369 0.042 

13797.4 53.081 1.218 0.049 8.295 0.566 1.201 0.998 1.051 1434 0.215 0.031 

13800.5 57.903 0.789 0.022 5.680 0.470 0.801 0.842 1.587 370 0.151 0.017 

13804.5 25.552 4.665 0.232 20.361 1.860 3.621 1.645 0.817 263 0.493 0.046 

13811.9 48.685 1.434 0.062 7.976 0.677 1.537 3.562 2.291 366 0.210 0.030 

13816.2 44.478 1.114 0.056 6.552 1.131 1.254 8.339 3.336 257 0.211 0.025 

13820.5 54.378 0.930 0.035 5.798 0.387 1.110 2.754 2.316 562 0.158 0.022 

13826.5 52.710 1.230 0.055 8.175 0.236 1.472 1.059 1.673 1326 0.198 0.026 

13832 48.306 1.515 0.066 9.708 0.651 1.695 2.365 1.126 251 0.216 0.024 

13834.5 31.295 1.452 0.086 11.953 0.682 1.596 13.085 2.098 208 0.305 0.029 

13838 43.647 2.020 0.095 12.045 0.865 2.060 2.314 0.965 242 0.264 0.029 

13841.5 29.972 1.576 0.097 13.243 0.835 1.841 12.267 1.901 202 0.268 0.026 

13843 35.664 1.248 0.054 7.684 0.862 1.492 14.984 2.355 120 0.205 0.025 

13843.5 31.676 1.733 0.101 9.856 1.091 2.036 14.369 2.297 117 0.241 0.031 

13845.5 29.536 2.263 0.133 11.973 1.357 2.303 12.416 2.207 141 0.293 0.033 

13847.2 0.758 4.960 0.368 37.486 0.836 2.587 1.076 0.021 165 1.926 0.033 

13851.5 0.715 4.765 0.291 37.555 0.937 2.375 1.614 0.024 166 1.665 0.027 

13856.5 1.025 5.376 0.440 34.886 1.981 2.561 2.574 0.041 204 2.081 0.040 
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Table 2. Trace element concentrations of Smackover samples from the #1 T.R. MILLER MILLS 
17-11 of the Conecuh Embayment analyzed by XRF. 
 

Depth Ca Pb Ba Zn Cu Ni Cr V Nb Rb Th 

(ft) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

13505.8 30.384 5.880 50.042 10.793 98.053 15.138 13.468 19.450 2.768 25.985 0.500 

13508.8 44.788 6.727 35.324 6.422 49.283 15.963 13.823 16.885 1.607 23.184 0.500 

13511.5 39.895 2.971 27.010 2.130 6.764 <2 4.164 3.197 0.821 10.043 0.500 

13516.4 62.026 1.630 30.419 <2 8.462 3.854 6.688 2.558 <1 4.400 0.500 

13520 56.013 2.530 24.583 25.432 10.506 <2 4.334 <2 <1 3.907 0.500 

13526 70.796 2.648 58.047 <2 7.949 10.527 6.518 <2 <1 <1 0.500 

13535 66.888 9.198 171.816 3.691 <2 28.539 19.609 12.411 <1 <1 0.500 

13538.5 54.346 7.320 34.601 6.671 17.378 9.913 12.637 15.482 2.002 20.359 2.165 

13546.5 70.047 2.870 47.822 <2 10.042 11.399 6.662 <2 <1 0.919 0.500 

13551.8 70.902 <2 31.658 <2 10.098 3.807 3.269 <2 <1 2.606 0.500 

13553.5 66.177 3.077 33.259 <2 9.825 8.502 3.257 1.910 <1 2.054 0.500 

13555 66.472 2.654 23.240 <2 12.684 8.445 5.468 3.707 <1 6.602 0.500 

13561.9 67.398 <2 38.320 <2 11.880 6.146 2.697 <2 <1 5.361 0.500 

13562.3 67.997 <2 20.142 <2 10.982 <2 <2 2.812 0.529 2.799 0.500 

13568 55.142 2.754 35.583 2.004 17.339 10.892 9.950 15.800 1.569 15.920 1.868 

13570 66.052 3.369 63.004 2.565 11.364 10.738 9.990 6.956 <1 2.990 0.500 

13576.9 67.013 <2 34.240 <2 13.930 7.582 5.012 2.256 <1 5.883 0.500 

13583 65.425 3.576 81.131 3.066 11.853 15.277 12.434 5.039 <1 2.661 0.500 

13589.5 27.755 6.318 105.351 18.382 23.061 21.123 32.887 49.209 6.500 59.421 2.000 

13600.7 23.768 9.942 110.567 24.279 32.472 28.594 36.007 55.309 7.011 72.275 1.899 

13608 9.667 3.893 218.812 36.540 38.406 33.776 57.609 102.203 11.634 114.406 9.463 

13618 61.234 1.894 33.362 2.523 14.155 7.926 8.447 2.286 0.937 10.868 0.500 

13620.2 53.496 1.973 37.390 4.333 15.274 8.400 9.591 17.156 1.689 20.506 0.500 

13622.5 68.902 <2 25.358 <2 12.488 5.287 4.619 <2 <1 4.025 0.500 

13627 69.806 <2 13.738 <2 10.546 3.664 4.123 <2 <1 2.709 0.500 

13632.9 69.366 <2 12.912 <2 9.573 5.341 3.339 <2 <1 2.989 0.500 

13640.5 68.584 <2 18.748 <2 12.477 6.645 3.666 3.684 <1 3.470 0.500 

13646 67.117 2.099 13.480 6.685 13.490 8.430 5.366 <2 0.858 6.497 0.500 

13673.9 34.297 5.185 87.689 14.565 25.085 23.947 27.612 38.815 4.967 52.242 3.427 

13681.5 19.000 9.062 155.858 33.851 37.599 33.562 46.996 75.131 8.753 84.445 5.101 

13686 22.542 6.635 119.760 28.106 33.509 36.253 41.731 64.128 7.138 74.935 5.342 

13698 19.922 6.480 144.083 25.755 34.280 33.020 46.230 78.549 7.915 82.247 4.278 

13703.5 19.792 7.961 134.426 31.392 36.817 34.536 49.231 74.970 7.919 85.759 5.629 

13706.1 59.063 2.128 30.109 2.026 13.254 8.311 6.338 9.543 1.301 13.541 0.500 

13712 47.210 3.257 56.911 17.315 18.880 16.477 15.399 29.123 0.829 22.981 3.709 

13721.9 57.635 3.177 33.259 2.941 16.310 12.143 9.842 14.225 1.317 12.709 0.500 

13726.5 57.542 1.923 34.963 4.174 16.035 13.919 11.337 16.831 1.606 13.399 1.569 

13730.2 47.808 4.133 46.995 10.881 18.314 19.048 16.060 24.771 3.075 26.784 1.991 

13731 53.546 3.248 78.807 7.306 16.813 15.409 12.307 19.772 0.780 17.446 1.635 

13734 67.066 <2 42.967 <2 11.889 5.403 5.333 3.086 <1 3.611 0.500 

13737.5 64.318 <2 21.433 2.536 13.435 6.339 6.302 5.507 1.067 8.329 0.500 

13745.8 61.997 <2 34.601 <2 11.761 8.369 6.358 <2 <1 7.400 0.500 

13756.8 67.869 1.724 57.995 <2 10.338 6.376 4.537 3.812 <1 4.641 0.500 
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Depth Ca Pb Ba Zn Cu Ni Cr V Nb Rb Th 

(ft) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

13765 51.169 2.602 36.151 7.150 16.586 15.316 11.120 18.389 2.292 22.433 2.434 

13781.2 61.310 2.831 459.269 <2 10.290 15.325 7.996 12.820 <1 5.522 0.500 

13787.5 52.873 4.703 198.102 5.171 14.350 35.137 11.950 12.515 <1 10.349 0.500 

13793.5 25.552 5.474 72.403 8.084 18.096 23.219 15.133 35.735 2.656 17.590 2.865 

13795.5 36.550 16.557 74.004 13.257 25.875 27.970 22.138 73.288 3.782 42.226 3.390 

13797.4 53.081 6.526 83.765 2.321 14.502 24.197 10.873 10.177 0.576 13.938 0.500 

13800.5 57.903 6.703 27.475 <2 14.840 13.305 5.499 12.652 1.492 9.513 0.500 

13804.5 25.552 30.728 130.553 22.396 35.973 45.933 41.016 143.582 7.576 60.483 2.256 

13811.9 48.685 13.397 43.484 8.216 15.053 24.517 12.078 31.894 2.792 16.608 0.500 

13816.2 44.478 12.802 43.897 36.243 12.065 26.577 11.685 17.536 2.317 14.238 0.500 

13820.5 54.378 4.749 49.629 <2 13.168 14.155 9.856 11.702 1.589 11.663 0.500 

13826.5 52.710 2.780 136.853 117.276 12.901 12.475 12.078 15.989 2.489 14.960 0.500 

13832 48.306 21.125 45.343 3.969 15.066 15.425 9.682 25.083 2.131 20.242 2.866 

13834.5 31.295 4.574 53.606 4.771 8.421 9.665 10.135 10.936 2.295 21.141 0.500 

13838 43.647 22.030 58.357 6.811 18.334 24.353 13.861 41.361 3.576 25.943 0.500 

13841.5 29.972 15.757 60.319 5.704 15.108 20.729 12.730 17.114 3.053 25.262 1.662 

13843 35.664 11.654 38.733 3.017 38.044 12.056 9.334 11.338 2.655 16.572 0.500 

13843.5 31.676 17.842 68.169 8.834 32.334 16.840 13.874 16.901 3.529 25.992 0.500 

13845.5 29.536 24.142 88.258 8.016 35.201 24.716 17.531 25.271 3.906 27.488 2.877 

13847.2 0.758 3.271 320.242 10.572 9.265 7.143 34.334 60.271 10.389 58.956 5.423 

13851.5 0.715 3.949 302.734 10.170 7.539 7.942 22.383 46.674 8.544 59.427 3.137 

13856.5 1.025 4.905 304.232 16.614 8.904 12.679 37.016 78.536 9.132 59.942 4.911 
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Table 3.  Major, minor and trace elements of the Smackover from  T.R. MILLER MILLS 17-11, 
#1 of the Conecuh Embayment normalized with respect to Al.   
 

Depth Ca/Ca+Al Ti/Ti+/Al Si/Si+Al Fe/Fe+Al K/K+Al Na/Na+Al P/P+Al Sr/Sr+Al Mn/Mn+Al Mn/Mn+Ca Mg/Ca 

(ft)                 (x100) (x1000)   

13505.8 0.928 0.047 0.851 0.357 0.435 0.078 0.010 3.356 3.370 2.697 0.390 

13508.8 0.941 0.036 0.821 0.226 0.370 0.092 0.010 3.809 0.656 0.414 0.010 

13511.5 0.989 0.034 0.888 0.494 0.479 0.353 0.024 1.440 18.281 2.459 0.518 

13516.4 0.995 0.021 0.854 0.198 0.492 0.208 0.046 1.287 11.039 0.574 0.082 

13520 0.999 0.071 0.834 0.848 0.264 0.644 0.091 1.076 38.526 0.851 0.213 

13526 0.999 0.102 0.722 0.120 0.312 0.646 0.165 1.054 14.381 0.127 0.004 

13535 0.993 0.013 0.773 0.189 0.448 0.173 0.032 1.504 1.809 0.139 0.008 

13538.5 0.964 0.035 0.771 0.183 0.467 0.058 0.012 3.016 0.738 0.276 0.027 

13546.5 0.999 0.056 0.816 0.067 0.504 0.482 0.100 1.101 7.228 0.112 0.005 

13551.8 0.999 0.102 0.694 0.120 0.346 0.630 0.115 1.052 12.765 0.107 0.003 

13553.5 0.995 0.018 0.852 0.161 0.530 0.203 0.026 1.307 4.144 0.201 0.022 

13555 0.995 0.021 0.789 0.569 0.498 0.223 0.029 1.355 3.725 0.207 0.020 

13561.9 0.995 0.017 0.840 0.089 0.498 0.206 0.043 1.320 5.699 0.287 0.008 

13562.3 0.999 0.108 0.852 0.699 0.532 0.588 0.173 1.048 31.711 0.331 0.034 

13568 0.971 0.029 0.818 0.191 0.464 0.082 0.016 2.630 1.237 0.370 0.017 

13570 0.993 0.034 0.804 0.262 0.502 0.161 0.024 1.448 2.474 0.172 0.017 

13576.9 0.994 0.034 0.827 0.047 0.504 0.187 0.031 1.384 4.010 0.239 0.008 

13583 0.992 0.026 0.813 0.322 0.488 0.163 0.030 1.508 2.391 0.190 0.015 

13589.5 0.854 0.040 0.806 0.249 0.422 0.048 0.012 5.749 0.741 1.276 0.060 

13600.7 0.822 0.043 0.803 0.313 0.427 0.042 0.011 6.161 0.788 1.723 0.081 

13608 0.560 0.049 0.774 0.277 0.373 0.047 0.009 8.598 0.711 5.596 0.351 

13618 0.986 0.023 0.837 0.410 0.500 0.111 0.030 1.856 2.558 0.367 0.012 

13620.2 0.968 0.026 0.819 0.276 0.483 0.065 0.019 2.769 1.433 0.480 0.016 

13622.5 0.997 0.031 0.814 0.466 0.487 0.330 0.055 1.182 9.274 0.270 0.008 

13627 0.999 0.072 0.852 0.086 0.479 0.547 0.100 1.074 11.938 0.144 0.009 

13632.9 0.999 0.054 0.872 0.065 0.507 0.451 0.071 1.101 22.228 0.416 0.009 

13640.5 0.998 0.040 0.877 0.347 0.469 0.432 0.058 1.137 7.994 0.173 0.011 

13646 0.993 0.042 0.784 0.191 0.479 0.189 0.038 1.448 4.295 0.299 0.008 

13673.9 0.889 0.034 0.794 0.238 0.425 0.063 0.011 5.284 0.865 1.088 0.036 

13681.5 0.749 0.042 0.781 0.305 0.381 0.073 0.010 7.359 1.252 4.225 0.092 

13686 0.790 0.038 0.778 0.295 0.387 0.067 0.009 7.000 0.951 2.549 0.077 

13698 0.759 0.040 0.778 0.304 0.376 0.075 0.009 7.322 0.977 3.120 0.088 

13703.5 0.752 0.039 0.771 0.301 0.381 0.075 0.009 7.534 0.815 2.704 0.085 

13706.1 0.981 0.020 0.832 0.251 0.467 0.129 0.023 2.114 1.896 0.364 0.014 

13712 0.948 0.026 0.809 0.211 0.421 0.102 0.011 3.600 0.786 0.436 0.021 

13721.9 0.979 0.039 0.834 0.253 0.444 0.133 0.019 2.251 2.944 0.658 0.014 

13726.5 0.979 0.040 0.836 0.255 0.447 0.130 0.019 2.245 3.002 0.669 0.014 

13730.2 0.950 0.029 0.808 0.219 0.451 0.085 0.014 3.519 2.932 1.589 0.021 

13731 0.967 0.024 0.814 0.217 0.451 0.098 0.014 2.832 5.075 1.826 0.016 

13734 0.996 0.021 0.871 0.075 0.502 0.268 0.067 1.266 35.230 2.152 0.010 

13737.5 0.990 0.011 0.810 0.198 0.497 0.173 0.032 1.637 24.175 3.147 0.014 

13745.8 0.990 0.031 0.873 0.147 0.506 0.193 0.020 1.637 24.573 3.337 0.011 

13756.8 0.997 0.025 0.849 0.030 0.511 0.290 0.086 1.221 54.179 3.838 0.010 

13765 0.961 0.026 0.811 0.200 0.479 0.091 0.018 3.065 12.616 5.792 0.020 
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Depth Ca/Ca+Al Ti/Ti+/Al Si/Si+Al Fe/Fe+Al K/K+Al Na/Na+Al P/P+Al Sr/Sr+Al Mn/Mn+Al Mn/Mn+Ca Mg/Ca 

(ft)                 (x100) (x1000)   

13781.2 0.991 0.023 0.867 0.295 0.495 0.200 0.028 1.540 73.038 23.312 0.026 

13787.5 0.972 0.040 0.848 0.235 0.472 0.126 0.016 2.499 32.019 13.179 0.020 

13793.5 0.846 0.047 0.814 0.285 0.437 0.096 0.010 5.665 14.910 30.997 0.064 

13795.5 0.911 0.033 0.810 0.262 0.447 0.094 0.012 4.575 21.252 25.720 0.036 

13797.4 0.978 0.039 0.872 0.317 0.497 0.150 0.024 2.218 46.318 19.408 0.019 

13800.5 0.987 0.028 0.878 0.373 0.504 0.161 0.021 1.789 66.791 26.676 0.015 

13804.5 0.846 0.047 0.814 0.285 0.437 0.096 0.010 5.665 14.910 30.997 0.064 

13811.9 0.971 0.041 0.848 0.321 0.517 0.128 0.021 2.434 61.506 44.943 0.073 

13816.2 0.976 0.048 0.855 0.504 0.530 0.159 0.022 2.114 74.974 69.773 0.187 

13820.5 0.983 0.036 0.862 0.294 0.544 0.145 0.023 1.930 71.346 40.856 0.051 

13826.5 0.977 0.043 0.869 0.161 0.545 0.138 0.021 2.230 57.621 30.758 0.020 

13832 0.970 0.042 0.865 0.300 0.528 0.125 0.016 2.515 42.641 22.786 0.049 

13834.5 0.956 0.056 0.892 0.320 0.524 0.173 0.020 2.452 59.101 62.836 0.418 

13838 0.956 0.045 0.856 0.300 0.505 0.116 0.014 3.020 32.334 21.637 0.053 

13841.5 0.950 0.058 0.894 0.346 0.539 0.145 0.016 2.576 54.667 59.632 0.409 

13843 0.966 0.042 0.860 0.409 0.545 0.141 0.020 2.248 65.369 61.942 0.420 

13843.5 0.948 0.055 0.850 0.386 0.540 0.122 0.017 2.733 57.001 67.611 0.454 

13845.5 0.929 0.055 0.841 0.375 0.504 0.114 0.014 3.263 49.373 69.524 0.420 

13847.2 0.133 0.069 0.883 0.144 0.343 0.280 0.007 5.960 0.430 27.485 1.419 

13851.5 0.130 0.058 0.887 0.164 0.333 0.259 0.006 5.765 0.500 32.411 2.257 

13856.5 0.160 0.076 0.866 0.269 0.323 0.279 0.007 6.376 0.757 38.499 2.512 
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Table 4. Ca and trace element ratio normalized with respect to Al of the Smackover from the 
T.R. MILLER MILLS 17-11, #1 of the Conecuh Embayment.   
 

Depth Ca Pb/Pb+Al Ba/Ba+Al Zn/Zn+Al Cu/Cu+Al Ni/Ni+Al Cr/Cr+Al V/V+Al V/Cr 

(ft) (%) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000)   

13505.8 30.384 0.250 2.120 0.458 4.145 0.642 0.571 0.825 0.692 

13508.8 44.788 0.239 1.256 0.229 1.751 0.568 0.492 0.601 0.819 

13511.5 39.895 0.675 6.106 0.484 1.536 0.114* 0.946 0.727 1.303 

13516.4 62.026 0.568 10.490 0.174* 2.940 1.341 2.325 0.891 2.615 

13520 56.013 3.313 31.295 32.341 13.619 0.657* 5.663 0.657* 4.334 

13526 70.796 4.907 97.558 0.930* 14.588 19.229 11.993 0.930* 6.518 

13535 66.888 1.821 32.954 0.731 0.099* 5.628 3.874 2.456 1.580 

13538.5 54.346 0.363 1.713 0.331 0.861 0.491 0.626 0.767 0.816 

13546.5 70.047 2.843 45.353 0.496* 9.878 11.198 6.575 0.496* 6.662 

13551.8 70.902 0.966* 57.715 0.966* 19.163 7.311 6.285 0.966* 3.269 

13553.5 66.177 1.000 10.701 0.163* 3.185 2.757 1.058 0.621 1.706 

13555 66.472 0.746 6.499 0.141* 3.557 2.371 1.537 1.042 1.475 

13561.9 67.398 0.156* 11.840 0.156* 3.701 1.918 0.843 0.156* 2.697 

13562.3 67.997 1.030* 39.880 1.030* 22.145 1.030 1.030* 5.765 0.356 

13568 55.142 0.169 2.179 0.123 1.063 0.668 0.610 0.969 0.630 

13570 66.052 0.751 13.858 0.572 2.528 2.389 2.223 1.549 1.436 

13576.9 67.013 0.130* 8.839 0.130* 3.615 1.971 1.304 0.587 2.222 

13583 65.425 0.703 15.709 0.603 2.326 2.996 2.440 0.990 2.468 

13589.5 27.755 0.133 2.214 0.387 0.485 0.445 0.692 1.035 0.668 

13600.7 23.768 0.193 2.138 0.470 0.629 0.554 0.697 1.070 0.651 

13608 9.667 0.051 2.872 0.481 0.505 0.444 0.758 1.343 0.564 

13618 61.234 0.221 3.880 0.295 1.650 0.925 0.985 0.267 3.695 

13620.2 53.496 0.112 2.109 0.245 0.863 0.475 0.542 0.969 0.559 

13622.5 68.902 0.274* 13.726 0.274* 6.807 2.893 2.529 0.274* 4.619 

13627 69.806 0.675* 18.233 0.675* 14.056 4.929 5.543 0.675* 4.123 

13632.9 69.366 0.495* 12.630 0.495 9.395 5.264 3.297 0.495* 3.339 

13640.5 68.584 0.366* 13.539 0.366* 9.052 4.841 2.676 2.690 0.995 

13646 67.117 0.469 3.001 1.491 3.003 1.879 1.197 0.112* 5.366 

13673.9 34.297 0.121 2.043 0.340 0.585 0.559 0.644 0.905 0.711 

13681.5 19.000 0.142 2.445 0.532 0.591 0.528 0.739 1.180 0.626 

13686 22.542 0.111 1.992 0.468 0.558 0.604 0.695 1.068 0.651 

13698 19.922 0.102 2.274 0.407 0.542 0.522 0.731 1.241 0.589 

13703.5 19.792 0.122 2.053 0.480 0.563 0.528 0.753 1.146 0.657 

13706.1 59.063 0.191 2.695 0.182 1.188 0.745 0.569 0.856 0.664 

13712 47.210 0.125 2.184 0.666 0.726 0.633 0.592 1.119 0.529 

13721.9 57.635 0.254 2.652 0.235 1.303 0.970 0.786 1.136 0.692 

13726.5 57.542 0.154 2.799 0.335 1.286 1.116 0.909 1.350 0.674 

13730.2 47.808 0.164 1.862 0.432 0.726 0.755 0.637 0.982 0.648 

13731 53.546 0.177 4.283 0.399 0.917 0.840 0.671 1.078 0.622 

13734 67.066 0.188* 15.902 0.188* 4.451 2.028 2.002 1.159 1.728 

13737.5 64.318 0.079* 3.354 0.398 2.105 0.994 0.989 0.864 1.144 

13745.8 61.997 0.078* 5.402 0.078* 1.842 1.312 0.997 0.078* 12.716 

13756.8 67.869 0.779 25.555 0.226* 4.653 2.875 2.047 1.721 1.190 
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Depth Ca Pb/Pb+Al Ba/Ba+Al Zn/Zn+Al Cu/Cu+Al Ni/Ni+Al Cr/Cr+Al V/V+Al V/Cr 

(ft) (%) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000)   

13765 51.169 0.126 1.748 0.346 0.803 0.741 0.538 0.890 0.605 

13781.2 61.310 0.524 78.354 0.093* 1.901 2.829 1.478 2.368 0.624 

13787.5 52.873 0.314 13.041 0.345 0.956 2.338 0.796 0.834 0.955 

13793.5 25.552 0.117 1.550 0.173 0.388 0.498 0.324 0.766 0.423 

13795.5 36.550 0.463 2.066 0.371 0.723 0.782 0.619 2.046 0.302 

13797.4 53.081 0.536 6.832 0.191 1.190 1.983 0.892 0.835 1.068 

13800.5 57.903 0.849 3.470 0.063* 1.877 1.683 0.697 1.601 0.435 

13804.5 25.552 0.658 2.791 0.480 0.771 0.984 0.879 3.069 0.286 

13811.9 48.685 0.933 3.024 0.573 1.049 1.707 0.842 2.219 0.379 

13816.2 44.478 1.148 3.926 3.244 1.082 2.381 1.048 1.572 0.666 

13820.5 54.378 0.510 5.307 0.054* 1.413 1.519 1.058 1.256 0.842 

13826.5 52.710 0.226 11.002 9.443 1.048 1.013 0.981 1.298 0.755 

13832 48.306 1.392 2.984 0.262 0.993 1.017 0.639 1.653 0.386 

13834.5 31.295 0.315 3.678 0.328 0.580 0.665 0.697 0.753 0.927 

13838 43.647 1.089 2.881 0.337 0.907 1.204 0.686 2.043 0.335 

13841.5 29.972 0.999 3.812 0.362 0.958 1.313 0.807 1.085 0.744 

13843 35.664 0.933 3.095 0.242 3.040 0.965 0.748 0.908 0.823 

13843.5 31.676 1.029 3.919 0.510 1.863 0.971 0.800 0.974 0.821 

13845.5 29.536 1.066 3.885 0.354 1.553 1.091 0.774 1.115 0.694 

13847.2 0.758 0.066 6.415 0.213 0.187 0.144 0.692 1.214 0.570 

13851.5 0.715 0.083 6.314 0.213 0.158 0.167 0.470 0.979 0.480 

13856.5 1.025 0.091 5.627 0.309 0.166 0.236 0.688 1.459 0.471 

    Note:     * Samples that contain trace elements less than 2ppm and were given the 0.5 ppm concentration 
for the calculation purposes 
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Table 5.  Carbonate, non-carbonate (residue) components, TOC and isotopic compositions  
of the Smackover samples from the T.R. MILLER MILLS 17-11, #1 of the Conecuh Embayment.   
 

Depth CaCO3
1 nonCaCO3 TOC 2 TOC* 3 δ13Ccarb δ18Oocarb δ13Corg 

(ft) (%) (%) (%) (%) (‰) (‰) (‰) 

13505.8 59.18 40.82 0.50 1.23 5.32 1.67 n.a. 

13508.8 2.66 97.34 0.21 0.22 5.88 3.02 n.a. 

13511.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

13516.4 95.61 4.39 0.02 0.44 5.71 -2.67 n.a. 

13520 99.00 1.00 0.02 1.75 n.a. n.a. n.a. 

13526 97.69 2.31 0.04 1.91 5.6 -2.92 -24.69 

13535 89.75 10.25 0.08 0.79 5.5 -2.21 n.a. 

13538.5 90.26 9.75 0.17 1.71 5.51 -1.94 -23.48 

13546.5 97.78 2.22 0.04 1.65 5.68 -1.98 n.a. 

13551.8 99.82 0.18 0.01 7.59 n.a. n.a. n.a. 

13553.5 96.64 3.36 0.08 2.47 n.a. n.a. n.a. 

13555 97.59 2.41 0.19 7.78 5.54 -3.02 -25.07 

13561.9 97.53 2.47 0.12 4.78 4.94 -1.02 n.a. 

13562.3 99.20 0.80 0.01 1.85 n.a. n.a. n.a. 

13568 90.33 9.67 0.45 4.68 n.a. n.a. n.a. 

13570 96.56 3.44 0.10 3.04 5.44 -1.19 n.a. 

13576.9 97.19 2.81 0.18 6.50 n.a. n.a. n.a. 

13583 94.97 5.03 0.11 2.25 5.26 -1.73 -24.95 

13589.5 63.16 36.84 0.18 0.49 3.25 -0.38 -22.55 

13600.7 84.10 15.90 0.09 0.60 2.77 -0.85 -22.55 

13608 37.59 62.41 0.18 0.28 3.53 1.04 -22.43 

13618 79.93 20.07 0.18 0.91 5.09 0.79 -23.44 

13620.2 n.a.   n.a. n.a. n.a. n.a. n.a. 

13622.5 98.65 1.35 0.10 7.42 5.42 0.52 n.a. 

13627 99.49 0.51 0.03 6.74 n.a. n.a. n.a. 

13632.9 98.98 1.02 0.07 6.83 5.17 -0.37 -25.15 

13640.5 98.23 1.77 0.08 4.68 n.a. n.a. n.a. 

13646 97.13 2.87 0.27 9.47 4.96 -1.06 -25.97 

13673.9 70.90 29.10 0.56 1.92 4 0.48 -25.36 

13681.5 49.12 50.88 0.46 0.90 2.64 0.13 -24.12 

13686 56.10 43.90 0.58 1.32 3.29 -0.06 n.a. 

13698 51.83 48.17 2.64 5.49 2.9 0.42 -25.75 

13703.5 50.66 49.34 0.51 1.04 3.6 0.63 -24.16 

13706.1 93.36 6.64 0.16 2.48 n.a. n.a. n.a. 

13712 85.10 14.90 0.64 4.27 4.32 0.26 -23.94 

13721.9 90.55 9.45 0.55 5.86 4.06 0.66 -24.46 

13726.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

13730.2 67.00 33.00 1.15 3.48 3.96 0.56 -24.55 

13731 89.33 10.67 0.46 4.31 n.a. n.a. n.a. 

13734 97.25 2.75 0.47 17.13 n.a. n.a. -25.1 

13737.5 96.18 3.82 0.18 4.81 4.53 1 n.a. 

13745.8 93.91 6.09 0.11 1.86 4.12 0.28 -26.79 
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Depth CaCO3
1 nonCaCO3 TOC 2 TOC* 3 δ13Ccarb δ18Oocarb δ13Corg 

(ft) (%) (%) (%) (%) (‰) (‰) (‰) 

13756.8 98.42 1.58 n.a. n.a. n.a. n.a. n.a. 

13765 86.67 13.33 0.40 2.99 4.34 0.17 n.a. 

13781.2 95.01 4.99 0.05 0.93 3.37 -0.73 -23.66 

13787.5 91.66 8.34 0.11 1.38 2.82 -0.82 n.a. 

13793.5 87.97 12.03 0.22 1.80 n.a. n.a. n.a. 

13795.5 73.88 26.12 0.44 1.69 2.32 -1.85 -23.92 

13797.4 n.a. n.a. n.a. n.a. n.a. n.a. -25.67 

13800.5 91.82 8.18 0.12 1.48 n.a. n.a. n.a. 

13804.5 58.30 41.70 1.26 3.02 2.29 -0.63 n.a. 

13811.9 89.30 10.70 0.25 2.29 3 -1.5 -25.17 

13816.2 89.98 10.02 n.a. n.a. n.a. n.a. -24.84 

13820.5 92.31 7.69 0.15 1.99 2.82 -3.39 n.a. 

13826.5 88.76 11.24 0.13 1.17 n.a. n.a. n.a. 

13832 85.62 14.38 0.34 2.38 2.94 -0.25 -25.54 

13834.5 82.88 17.12 0.09 0.51 n.a. n.a. n.a. 

13838 81.03 18.97 0.47 2.50 2.99 -0.27 -25.36 

13841.5 80.02 19.98 0.08 0.39 n.a. n.a. n.a. 

13843 89.47 10.53 n.a. n.a. 3.51 1.4 -25.43 

13843.5 85.65 14.35 0.16 1.09 n.a. n.a. n.a. 

13845.5 82.23 17.77 n.a. n.a. 3.57 0.58 n.a. 

13847.2 5.43 94.57 n.a. n.a. n.a. n.a. n.a. 

13851.5 5.31 94.69 0.09 0.10 n.a. n.a. n.a. 

13856.5 8.95 91.05 n.a. n.a. n.a. n.a. n.a. 
 
Note:   CaCO3

1 an average value from two analysis by HCl digestion  of the whole rock samples. 
             TOC2   an average content of TOC in the whole rock from two analysis by TOC analyzer. 
             TOC3  a calculated TOC content in  the non-carbonate (residue) fraction.  
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Table 6.  Relative distribution of minerals presented in the core samples analyzed by XRD 
from the T.R. MILLER MLLS 17-11, #1  well of the Conecuh Embayment. 
 

Depth Anhydrite Calcite Dolomite Quartz Quartz Pyrite    δ13Ccarb δ18Ocarb 
 (ft)                (‰)     (‰) 

13505.8 550.1 0 938.2 207.3 49.7   5.32 1.67 
13508.8 1685.7 0 81.7 88.6 20.3   5.88 3.02 
13516.4 137.9 793.3 263.4 28.1     5.71 -2.67 
13526   1208.6         5.6 -2.92 
13535   942.9         5.5 -2.21 

13538.5   984.2 60.5 42.2     5.51 -1.94 
13555   1334 75.3       5.54 -3.02 
13583   1065.8 31.6 28.3     5.26 -1.73 

13600.7   511.9 17 285 43.1 36.4 2.77 -0.85 
13622.5   1082.9         5.42 -0.52 
13646   1307.7         4.96 -1.06 

13681.5   976.8         2.64 0.13 
13703.5   609.5   249.2 80.6 35 3.6 0.63 
13710   664.4   198.5 76.7 26.3 4.32 0.26 

13737.5   997.3   68.2     4.53 1.00 
13765   1087.9   63.7     4.34 0.17 

13787.5   690.7 194.7 88.1 17.7   2.82 -0.82 
13804.9   757.5   331.1 53.8   2.29 -0.63 
13820.5   874.2 136.3 83.8     2.82 -3.39 
13843   116.5 1246 106.4 29.9 21.2 3.51 1.40 
13845   46.1 757.6 173.9 42.4 23.6 3.64 0.57 

13847.2   44.8 33.1 2317.2 444.5   too small   
13856.5   34.4 52 1859.2 465.5   too small   
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Table 1. Measured concentrations of major, minor and trace elements of the Smackover  samples 
from the #1 NEAL ET AL UNIT 30-1 well of the Manila Embayment  by XRF analysis. 
 

Depth Ca Al Ti Si Fetotal K Mg Mn Sr Na P 

(ft) (%) (%) (%) (%) (%) (%) (%) (%) (ppm) (%) (%) 

13100 70.847 0.101 0.011 0.259 0.014 0.062 0.115 0.015 1436 0.149 0.018 

13114.5 52.519 1.284 0.052 7.883 0.400 0.890 2.996 0.035 1332 0.324 0.028 

13117.1 23.717 2.012 0.106 16.440 1.109 1.830 13.836 0.148 210 0.529 0.033 

13122 33.384 1.244 0.072 7.935 1.144 1.232 18.139 0.132 134 0.346 0.026 

13130 24.885 2.521 0.171 14.887 1.529 2.078 13.769 0.115 126 0.452 0.033 

13135 23.432 2.546 0.162 15.679 1.564 2.091 13.877 0.106 130 0.505 0.034 

13140 22.117 3.279 0.217 15.255 1.965 2.303 14.222 0.086 136 0.436 0.038 

13140.5 6.770 6.925 0.517 24.089 3.722 4.413 8.033 0.052 121 0.801 0.051 

13143 2.464 3.125 0.090 38.610 0.245 2.125 1.983 0.018 108 1.216 0.021 

13154 18.884 3.512 0.240 16.918 2.503 2.530 13.794 0.096 114 0.554 0.041 

13159 8.608 3.147 0.164 29.718 1.309 2.257 7.363 0.057 119 0.941 0.033 

13175 26.036 2.717 0.179 12.535 1.513 2.226 15.535 0.097 124 0.431 0.034 

13180.2 11.379 4.420 0.255 24.050 1.762 3.374 9.670 0.067 169 0.834 0.044 

13180.5 6.156 3.562 0.130 32.609 0.754 2.445 5.386 0.042 149 1.201 0.037 

13181 16.434 3.918 0.295 19.336 2.138 3.248 11.971 0.090 117 0.604 0.041 

13187.5 34.123 1.289 0.073 7.262 1.054 1.303 18.387 0.135 129 0.306 0.025 

13191.5 36.878 0.829 0.045 5.668 0.846 0.767 19.253 0.127 137 0.299 0.018 

13199 34.177 1.519 0.067 6.864 0.829 1.477 18.674 0.098 115 0.320 0.026 

13208 25.279 2.758 0.180 13.161 1.573 2.310 15.176 0.079 123 0.493 0.031 

13214 4.843 3.210 0.115 36.799 0.681 1.950 1.970 0.017 357 1.187 0.027 

13216.3 28.719 2.246 0.116 11.733 1.224 1.803 15.513 0.092 114 0.376 0.027 

13236.4 33.995 1.529 0.086 7.942 0.750 1.219 17.650 0.086 102 0.351 0.022 

13244.2 40.748 0.487 0.014 3.693 0.415 0.447 19.639 0.099 247 0.220 0.015 

13256 31.697 1.796 0.102 9.937 0.797 1.356 16.525 0.080 107 0.393 0.023 

13275 34.325 1.276 0.061 7.368 0.714 1.183 18.540 0.081 106 0.289 0.019 

13280.2 36.703 0.998 0.046 5.451 1.705 0.800 18.767 0.095 93 0.294 0.025 

13298.2 33.714 1.323 0.066 8.790 0.548 0.972 17.381 0.099 97 0.353 0.024 

13295.2 26.445 2.868 0.148 12.896 1.249 2.183 14.804 0.109 101 0.449 0.039 

13297 20.439 4.419 0.221 16.393 2.028 3.177 12.100 0.097 116 0.505 0.049 

13300 15.575 5.243 0.297 19.803 2.541 3.555 10.032 0.089 111 0.580 0.049 

13302 29.809 2.028 0.114 11.337 1.004 1.519 15.707 0.110 98 0.402 0.028 

13305 22.885 2.958 0.178 16.784 1.161 2.103 12.730 0.096 114 0.547 0.033 

13310 25.233 2.936 0.155 14.485 1.624 2.123 13.358 0.115 114 0.512 0.046 

13310.5 1.412 9.080 0.560 28.299 4.636 5.072 3.367 0.065 118 0.796 0.058 

13334.1 8.927 6.991 0.408 24.176 3.531 4.388 6.354 0.084 149 0.705 0.059 

13339 26.359 2.692 0.152 14.290 1.309 1.852 13.397 0.197 107 0.464 0.030 

13345 37.022 0.850 0.040 6.593 0.572 0.616 18.171 0.232 111 0.304 0.018 

13348.2 24.343 3.200 0.156 15.119 1.316 2.393 12.994 0.246 122 0.466 0.039 

13353 21.906 3.907 0.193 16.736 1.672 2.659 11.658 0.215 122 0.455 0.044 

13353.6 27.661 2.745 0.134 14.207 1.376 2.007 12.195 0.174 146 0.458 0.047 

13354 2.861 8.793 0.534 27.433 4.366 4.991 3.872 0.078 135 0.804 0.064 

13364.5 24.432 2.797 0.158 15.643 1.041 2.014 13.237 0.180 150 0.504 0.030 
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Depth Ca Al Ti Si Fetotal K Mg Mn Sr Na P 

(ft) (%) (%) (%) (%) (%) (%) (%) (%) (ppm) (%) (%) 

13367 32.523 1.434 0.072 9.309 0.610 1.230 17.222 0.210 141 0.400 0.023 

13372.5 34.627 1.182 0.049 8.903 0.497 0.878 16.654 0.248 140 0.341 0.020 

13378.5 29.146 2.222 0.103 12.357 0.765 1.684 14.716 0.236 121 0.406 0.031 

13386.2 32.816 1.521 0.082 9.179 0.586 1.169 17.208 0.085 106 0.380 0.024 

13388.5 26.093 2.934 0.167 14.980 1.164 2.116 12.303 0.212 145 0.520 0.037 

13402.5 25.978 2.851 0.137 15.509 0.990 2.211 11.966 0.187 179 0.475 0.043 

13407 23.852 3.072 0.174 17.550 1.142 2.015 10.837 0.184 196 0.517 0.032 

13410.5 31.189 2.289 0.093 12.453 0.859 1.895 12.566 0.216 188 0.422 0.036 

13417 31.606 3.387 0.186 16.761 1.237 2.616 4.498 0.159 257 0.439 0.040 

13422.5 30.984 2.677 0.153 15.813 1.292 2.158 7.328 0.218 185 0.451 0.033 

13434 20.722 5.366 0.273 21.611 2.291 3.619 3.314 0.208 283 0.568 0.052 

13436 0.920 9.463 0.578 28.131 5.203 5.548 2.700 0.049 140 0.841 0.059 

13436.3 1.044 8.693 0.536 28.942 5.402 5.272 2.525 0.058 128 0.810 0.058 

13436.6 2.121 7.791 0.512 30.676 3.718 4.806 2.167 0.041 130 0.810 0.071 

13437.5 19.265 3.831 0.230 19.836 1.858 2.888 9.399 0.360 213 0.581 0.045 

13443 19.749 3.638 0.226 20.615 1.364 2.476 8.793 0.525 240 0.585 0.042 

13452 24.644 3.792 0.230 20.324 1.614 2.853 4.395 0.537 196 0.554 0.042 

13460 21.504 5.042 0.255 22.697 2.051 3.812 1.517 0.397 245 0.599 0.061 

13461.5 16.438 4.607 0.273 22.895 2.169 3.168 6.283 0.573 174 0.580 0.046 

13472.5 11.956 5.434 0.333 24.855 2.420 3.522 6.060 0.515 161 0.640 0.047 

13480 20.756 4.138 0.246 22.368 1.480 3.098 4.474 0.611 191 0.587 0.043 

13492 27.742 3.608 0.206 19.857 1.369 2.712 2.975 0.514 247 0.512 0.041 

13508.5 15.771 4.495 0.275 23.216 3.109 3.219 5.647 0.609 181 0.652 0.048 

13516 12.020 4.819 0.282 24.868 2.051 3.657 6.916 0.577 128 0.623 0.047 

13522 19.816 4.363 0.255 23.774 1.841 3.446 2.911 0.284 218 0.556 0.045 

13537 52.157 1.360 0.061 9.144 0.503 1.586 0.910 0.247 322 0.217 0.027 

13537.5 21.186 4.317 0.256 24.026 1.629 3.545 1.639 0.188 385 0.577 0.048 

13545.5 36.521 2.799 0.151 17.193 0.795 2.488 0.754 0.478 415 0.391 0.038 

13554 1.973 8.726 0.537 27.866 4.372 6.055 3.415 0.070 108 0.720 0.079 

13554.5 63.780 0.509 0.015 3.336 0.325 0.618 0.367 0.472 278 0.134 0.019 

13557.5 7.672 3.153 0.104 36.296 0.304 2.613 0.356 0.125 99 0.816 0.028 

13568.5 0.959 8.325 0.548 29.351 3.418 5.099 4.156 0.054 110 0.918 0.069 

13586.5 1.872 6.807 0.354 30.257 4.473 4.398 2.676 0.048 190 2.303 0.049 
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Table 2. Trace element concentrations of Smackover samples from the #1 NEAL ET AL UNIT 
30-1 of the Manila Embayment analyzed by XRF. 
 

Depth Ca Pb Ba Zn Cu Ni Cr V Nb Rb Th 

(ft) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

13100 70.847 <2 13.790 <2 13.530 5.475 4.566 4.817 0.818 2.171 2.356 

13114.5 52.519 3.850 45.601 3.548 12.470 9.272 9.308 9.217 1.200 12.357 <2 

13117.1 23.717 6.048 88.671 8.490 8.386 4.502 9.180 16.148 3.005 26.089 <2 

13122 33.384 5.333 44.620 8.945 8.561 2.530 7.668 10.790 2.348 15.829 <2 

13130 24.885 9.321 100.084 11.940 10.937 7.748 13.998 23.918 3.613 30.767 1.503 

13135 23.432 8.852 109.948 10.299 9.510 9.490 15.926 24.002 4.048 33.212 <2 

13140 22.117 9.460 120.896 16.258 11.278 11.729 19.946 33.471 4.899 40.274 2.204 

13140.5 6.770 25.049 312.805 45.205 21.987 36.668 57.033 103.137 13.277 102.219 8.167 

13143 2.464 4.654 298.705 3.240 2.980 <2 9.020 12.448 3.473 45.360 <2 

13154 18.884 12.475 152.347 16.925 13.244 15.787 23.342 42.270 5.943 48.892 2.807 

13159 8.608 10.772 214.577 10.684 9.562 7.348 18.942 22.926 5.778 46.910 <2 

13175 26.036 9.248 109.483 13.144 11.113 9.295 15.970 29.183 4.558 36.000 <2 

13180.2 11.379 10.965 221.239 19.114 13.310 10.664 23.811 45.826 6.910 60.979 3.647 

13180.5 6.156 8.201 235.854 5.264 5.551 3.686 12.305 19.852 4.237 47.810 <2 

13181 16.434 15.585 168.666 24.449 14.296 15.724 25.759 43.297 6.380 57.934 2.596 

13187.5 34.123 5.588 62.075 5.019 7.369 1.663 5.784 14.899 1.698 17.267 <2 

13191.5 36.878 5.019 36.099 <2 7.068 3.318 4.596 6.184 2.290 11.163 <2 

13199 34.177 6.928 50.611 11.301 8.701 3.601 7.309 11.386 1.704 19.683 <2 

13208 25.279 13.193 116.610 15.377 11.651 12.344 17.248 29.882 3.962 37.611 <2 

13214 4.843 10.866 223.614 6.219 5.064 <2 10.213 16.651 3.933 44.944 <2 

13216.3 28.719 6.608 69.253 9.401 8.566 8.493 10.006 17.426 3.496 25.992 <2 

13236.4 33.995 5.577 63.934 14.455 7.034 2.774 8.125 14.044 2.657 17.577 <2 

13244.2 40.748 <2 29.437 3.577 6.951 <2 2.394 3.772 0.642 6.776 <2 

13256 31.697 6.407 61.869 5.720 9.050 3.116 7.472 14.259 2.857 19.551 <2 

13275 34.325 5.000 53.503 4.373 6.154 3.137 5.695 12.858 2.092 16.003 <2 

13280.2 36.703 5.921 75.089 3.017 7.113 4.645 7.489 11.194 2.016 12.778 <2 

13298.2 33.714 4.541 60.681 4.537 5.807 4.303 8.813 7.033 1.882 14.210 <2 

13295.2 26.445 7.861 85.211 10.133 12.641 14.272 13.929 28.743 3.474 34.921 2.679 

13297 20.439 10.006 145.633 22.340 19.148 16.936 25.221 45.712 6.281 61.237 3.514 

13300 15.575 8.458 176.980 30.266 24.099 24.965 33.987 61.700 8.254 77.386 5.796 

13302 29.809 2.989 94.610 6.306 10.241 7.807 9.488 20.587 3.203 22.699 <2 

13305 22.885 4.994 106.229 12.116 9.316 9.196 16.350 23.473 4.190 34.859 3.421 

13310 25.233 4.542 113.304 10.575 12.342 10.352 14.348 33.120 3.944 32.970 2.341 

13310.5 1.412 19.143 366.982 65.552 47.422 48.864 74.828 156.179 13.879 150.021 15.554 

13334.1 8.927 12.839 245.254 46.607 38.695 36.199 52.989 110.404 11.229 116.915 11.494 

13339 26.359 3.319 94.300 8.098 9.845 7.426 13.873 21.985 3.778 29.874 <2 

13345 37.022 2.084 39.508 1.550 7.433 <2 4.101 9.803 0.632 10.098 <2 

13348.2 24.343 3.953 99.361 11.301 10.869 12.084 16.845 31.727 4.706 37.055 2.351 

13353 21.906 5.351 115.628 15.389 13.235 13.805 21.142 36.122 4.722 43.951 3.625 

13353.6 27.661 3.533 93.009 11.040 10.747 11.586 13.257 26.480 3.800 28.457 <2 

13354 2.861 18.233 341.107 64.509 48.331 53.436 74.723 144.784 13.728 148.842 15.435 
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Depth Ca Pb Ba Zn Cu Ni Cr V Nb Rb Th 

(ft) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

13364.5 24.432 3.711 85.263 11.446 8.428 6.006 14.493 19.990 3.719 32.445 3.312 

13367 32.523 2.998 57.376 3.098 7.045 3.754 7.480 10.522 2.273 17.532 <2 

13372.5 34.627 2.259 43.691 2.476 7.061 5.578 5.393 6.699 1.087 13.518 <2 

13378.5 29.146 4.027 72.765 4.911 8.997 6.621 10.210 17.808 3.147 22.435 1.783 

13386.2 32.816 5.484 54.948 4.679 8.542 2.825 7.321 9.635 2.542 16.679 1.849 

13388.5 26.093 5.423 104.473 10.747 12.238 13.489 15.381 29.677 4.161 33.261 5.904 

13402.5 25.978 4.633 85.056 9.200 11.323 10.329 15.382 20.766 3.909 34.141 2.637 

13407 23.852 4.600 107.675 9.700 9.896 12.916 17.814 27.073 5.366 33.462 3.339 

13410.5 31.189 2.426 58.460 6.241 10.073 8.648 9.838 22.668 2.680 26.215 2.013 

13417 31.606 5.636 102.717 15.619 16.476 17.726 20.611 31.618 4.629 41.458 <2 

13422.5 30.984 5.775 79.169 12.471 13.238 13.617 16.474 23.150 3.984 32.098 2.010 

13434 20.722 13.254 177.083 25.389 31.168 35.603 40.501 82.431 7.697 70.898 6.064 

13436 0.920 23.099 400.809 75.581 54.855 53.729 100.881 196.014 16.378 187.926 17.425 

13436.3 1.044 17.988 375.503 68.172 58.165 53.549 85.649 161.805 13.940 153.380 13.866 

13436.6 2.121 16.206 305.833 41.259 32.072 39.806 56.879 98.189 13.096 109.646 13.523 

13437.5 19.265 8.477 131.793 19.096 14.739 14.194 25.026 43.945 7.041 48.703 5.093 

13443 19.749 6.077 139.642 13.838 8.891 12.701 19.717 32.817 5.706 42.459 3.100 

13452 24.644 7.399 122.497 17.662 16.013 23.354 25.523 42.622 5.994 45.930 3.337 

13460 21.504 11.557 158.853 24.924 29.670 32.281 36.348 72.660 6.853 59.889 5.898 

13461.5 16.438 6.955 160.093 19.575 15.658 17.948 28.900 47.949 6.830 50.968 7.240 

13472.5 11.956 8.690 202.492 38.920 19.142 26.095 38.911 63.615 9.159 66.462 5.808 

13480 20.756 9.385 141.346 19.764 19.090 25.605 30.211 44.803 7.409 52.931 6.360 

13492 27.742 7.281 129.468 17.414 17.254 23.621 27.054 43.970 4.986 42.487 3.891 

13508.5 15.771 16.046 225.216 23.877 28.788 32.595 32.021 65.910 7.991 57.185 7.511 

13516 12.020 7.575 186.225 25.859 11.457 14.962 34.047 46.378 8.105 69.476 4.475 

13522 19.816 9.636 150.229 21.513 18.141 20.508 32.590 50.511 7.731 58.383 6.372 

13537 52.157 4.719 65.173 5.308 12.353 9.452 11.776 14.816 2.498 16.928 <2 

13537.5 21.186 11.618 191.233 20.351 17.136 17.063 30.051 48.409 7.342 53.946 6.283 

13545.5 36.521 12.014 118.158 28.530 15.817 18.156 23.377 19.222 4.800 33.114 2.527 

13554 1.973 14.057 352.572 77.003 192.897 61.964 89.648 190.782 14.707 193.119 13.784 

13554.5 63.780 7.543 21.949 <2 21.952 7.365 4.352 7.269 1.104 7.724 <2 

13557.5 7.672 7.564 198.773 6.111 26.826 4.012 10.203 21.145 3.998 48.371 1.509 

13568.5 0.959 10.368 365.071 44.376 557.445 58.369 82.359 132.321 12.298 109.493 11.367 

13586.5 1.872 13.484 315.388 35.943 10.417 36.790 56.492 108.744 9.258 104.425 9.071 
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Table 3.  Major, minor and trace elements of the Smackover from  #1 NEAL ET.UNIT 30-1well 
of the Manila Embayment normalized with respect to Al.   
 

Depth Ca/Ca+Al Ti/Ti+/Al Si/Si+Al Fe/Fe+Al K/K+Al Na/Na+Al P/P+Al Sr/Sr+Al Mn/Mn+Al Mn/Mn+Ca Mg/Ca 

(ft)         (x100) (x1000)  

13100 0.999 0.102 0.720 0.120 0.382 0.597 0.148 0.934 12.765 0.208 0.002 

13114.5 0.976 0.039 0.860 0.237 0.409 0.201 0.021 0.509 2.619 0.657 0.057 

13117.1 0.922 0.050 0.891 0.355 0.476 0.208 0.016 0.094 6.866 6.216 0.583 

13122 0.964 0.055 0.864 0.479 0.498 0.218 0.020 0.097 9.613 3.946 0.543 

13130 0.908 0.063 0.855 0.378 0.452 0.152 0.013 0.047 4.347 4.583 0.553 

13135 0.902 0.060 0.860 0.381 0.451 0.165 0.013 0.049 4.009 4.517 0.592 

13140 0.871 0.062 0.823 0.375 0.413 0.117 0.011 0.040 2.570 3.894 0.643 

13140.5 0.494 0.069 0.777 0.350 0.389 0.104 0.007 0.017 0.739 7.553 1.187 

13143 0.441 0.028 0.925 0.073 0.405 0.280 0.007 0.033 0.559 7.076 0.805 

13154 0.843 0.064 0.828 0.416 0.419 0.136 0.012 0.031 2.655 5.046 0.730 

13159 0.732 0.050 0.904 0.294 0.418 0.230 0.010 0.036 1.787 6.610 0.855 

13175 0.906 0.062 0.822 0.358 0.450 0.137 0.012 0.044 3.462 3.728 0.597 

13180.2 0.720 0.055 0.845 0.285 0.433 0.159 0.010 0.037 1.504 5.897 0.850 

13180.5 0.634 0.035 0.902 0.175 0.407 0.252 0.010 0.040 1.175 6.833 0.875 

13181 0.808 0.070 0.832 0.353 0.453 0.134 0.010 0.029 2.247 5.451 0.728 

13187.5 0.964 0.053 0.849 0.450 0.503 0.192 0.019 0.091 9.498 3.948 0.539 

13191.5 0.978 0.052 0.872 0.505 0.481 0.265 0.022 0.142 13.276 3.429 0.522 

13199 0.957 0.042 0.819 0.353 0.493 0.174 0.017 0.071 6.069 2.864 0.546 

13208 0.902 0.061 0.827 0.363 0.456 0.152 0.011 0.043 2.768 3.096 0.600 

13214 0.601 0.035 0.920 0.175 0.378 0.270 0.008 0.100 0.531 3.523 0.407 

13216.3 0.927 0.049 0.839 0.353 0.445 0.143 0.012 0.048 3.941 3.197 0.540 

13236.4 0.957 0.053 0.839 0.329 0.444 0.187 0.014 0.062 5.306 2.515 0.519 

13244.2 0.988 0.028 0.883 0.460 0.478 0.311 0.029 0.336 16.932 2.432 0.482 

13256 0.946 0.054 0.847 0.307 0.430 0.179 0.013 0.056 4.278 2.526 0.521 

13275 0.964 0.046 0.852 0.359 0.481 0.185 0.015 0.076 5.935 2.341 0.540 

13280.2 0.974 0.044 0.845 0.631 0.445 0.228 0.024 0.085 8.715 2.589 0.511 

13298.2 0.962 0.048 0.869 0.293 0.423 0.211 0.018 0.068 6.974 2.933 0.516 

13295.2 0.902 0.049 0.818 0.303 0.432 0.135 0.013 0.034 3.671 4.116 0.560 

13297 0.822 0.048 0.788 0.315 0.418 0.103 0.011 0.026 2.148 4.724 0.592 

13300 0.748 0.054 0.791 0.326 0.404 0.100 0.009 0.021 1.660 5.650 0.644 

13302 0.936 0.053 0.848 0.331 0.428 0.165 0.014 0.046 5.143 3.675 0.527 

13305 0.886 0.057 0.850 0.282 0.416 0.156 0.011 0.037 3.141 4.174 0.556 

13310 0.896 0.050 0.831 0.356 0.420 0.149 0.015 0.038 3.784 4.556 0.529 

13310.5 0.135 0.058 0.757 0.338 0.358 0.081 0.006 0.013 0.708 43.828 2.385 

13334.1 0.561 0.055 0.776 0.336 0.386 0.092 0.008 0.021 1.181 9.276 0.712 

13339 0.907 0.054 0.841 0.327 0.408 0.147 0.011 0.038 6.807 7.405 0.508 

13345 0.978 0.045 0.886 0.402 0.420 0.264 0.021 0.116 21.472 6.240 0.491 

13348.2 0.884 0.046 0.825 0.291 0.428 0.127 0.012 0.037 7.143 10.013 0.534 

13353 0.849 0.047 0.811 0.300 0.405 0.104 0.011 0.030 5.222 9.732 0.532 

13353.6 0.910 0.046 0.838 0.334 0.422 0.143 0.017 0.051 5.947 6.237 0.441 

13354 0.246 0.057 0.757 0.332 0.362 0.084 0.007 0.015 0.882 26.613 1.353 
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Depth Ca/Ca+Al Ti/Ti+/Al Si/Si+Al Fe/Fe+Al K/K+Al Na/Na+Al P/P+Al Sr/Sr+Al Mn/Mn+Al Mn/Mn+Ca Mg/Ca 

(ft)         (x100) (x1000)  

13364.5 0.897 0.054 0.848 0.271 0.419 0.153 0.011 0.051 6.050 7.318 0.542 

13367 0.958 0.048 0.867 0.299 0.462 0.218 0.016 0.090 12.770 6.413 0.530 

13372.5 0.967 0.040 0.883 0.296 0.426 0.224 0.016 0.106 17.334 7.107 0.481 

13378.5 0.929 0.044 0.848 0.256 0.431 0.154 0.014 0.052 9.617 8.047 0.505 

13386.2 0.956 0.051 0.858 0.278 0.435 0.200 0.016 0.065 5.304 2.589 0.524 

13388.5 0.899 0.054 0.836 0.284 0.419 0.150 0.013 0.047 6.734 8.053 0.472 

13402.5 0.901 0.046 0.845 0.258 0.437 0.143 0.015 0.059 6.147 7.136 0.461 

13407 0.886 0.054 0.851 0.271 0.396 0.144 0.010 0.060 5.651 7.655 0.454 

13410.5 0.932 0.039 0.845 0.273 0.453 0.156 0.015 0.076 8.607 6.863 0.403 

13417 0.903 0.052 0.832 0.268 0.436 0.115 0.012 0.071 4.492 5.015 0.142 

13422.5 0.920 0.054 0.855 0.326 0.446 0.144 0.012 0.065 7.518 6.976 0.237 

13434 0.794 0.048 0.801 0.299 0.403 0.096 0.010 0.050 3.731 9.935 0.160 

13436 0.089 0.058 0.748 0.355 0.370 0.082 0.006 0.015 0.518 50.872 2.936 

13436.3 0.107 0.058 0.769 0.383 0.378 0.085 0.007 0.015 0.658 52.220 2.417 

13436.6 0.214 0.062 0.797 0.323 0.382 0.094 0.009 0.016 0.521 18.865 1.021 

13437.5 0.834 0.057 0.838 0.327 0.430 0.132 0.012 0.053 8.588 18.338 0.488 

13443 0.844 0.059 0.850 0.273 0.405 0.138 0.011 0.062 12.605 25.884 0.445 

13452 0.867 0.057 0.843 0.299 0.429 0.127 0.011 0.049 12.401 21.317 0.178 

13460 0.810 0.048 0.818 0.289 0.431 0.106 0.012 0.046 7.307 18.147 0.071 

13461.5 0.781 0.056 0.832 0.320 0.407 0.112 0.010 0.036 11.063 33.685 0.382 

13472.5 0.688 0.058 0.821 0.308 0.393 0.105 0.009 0.029 8.657 41.298 0.507 

13480 0.834 0.056 0.844 0.263 0.428 0.124 0.010 0.044 12.869 28.603 0.216 

13492 0.885 0.054 0.846 0.275 0.429 0.124 0.011 0.064 12.459 18.175 0.107 

13508.5 0.778 0.058 0.838 0.409 0.417 0.127 0.011 0.039 11.933 37.184 0.358 

13516 0.714 0.055 0.838 0.299 0.431 0.115 0.010 0.026 10.689 45.782 0.575 

13522 0.820 0.055 0.845 0.297 0.441 0.113 0.010 0.048 6.114 14.136 0.147 

13537 0.975 0.043 0.871 0.270 0.538 0.138 0.019 0.191 15.396 4.722 0.017 

13537.5 0.831 0.056 0.848 0.274 0.451 0.118 0.011 0.082 4.182 8.815 0.077 

13545.5 0.929 0.051 0.860 0.221 0.471 0.123 0.013 0.129 14.594 12.926 0.021 

13554 0.184 0.058 0.762 0.334 0.410 0.076 0.009 0.012 0.795 34.225 1.731 

13554.5 0.992 0.028 0.868 0.390 0.548 0.208 0.035 0.353 48.074 7.339 0.006 

13557.5 0.709 0.032 0.920 0.088 0.453 0.206 0.009 0.030 3.814 16.032 0.046 

13568.5 0.103 0.062 0.779 0.291 0.380 0.099 0.008 0.013 0.648 53.547 4.333 

13586.5 0.216 0.049 0.816 0.397 0.393 0.253 0.007 0.027 0.700 24.991 1.429 
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Table 4. Ca and trace element ratio normalized with respect to Al of the Smackover from the #1 
NEAL ET AL UNIT 30-1 of the Manila Embayment.   
 

Depth Ca Pb/Pb+Al Ba/Ba+Al Zn/Zn+Al Cu/Cu+Al Ni/Ni+Al Cr/Cr+Al V/V+Al V/Cr 

(ft) (%) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000)  

13100 70.847 0.496* 13.494 0.991* 13.242 5.401 4.509 4.756 1.055 

13114.5 52.519 0.300 3.540 0.276 0.970 0.722 0.725 0.717 0.990 

13117.1 23.717 0.300 4.387 0.422 0.417 0.224 0.456 0.802 1.759 

13122 33.384 0.429 3.575 0.719 0.688 0.203 0.616 0.867 1.407 

13130 24.885 0.370 3.954 0.473 0.434 0.307 0.555 0.948 1.709 

13135 23.432 0.348 4.300 0.404 0.373 0.373 0.625 0.942 1.507 

13140 22.117 0.288 3.674 0.496 0.344 0.358 0.608 1.020 1.678 

13140.5 6.770 0.362 4.497 0.652 0.317 0.529 0.823 1.487 1.808 

13143 2.464 0.149 9.468 0.104 0.095 0.016* 0.289 0.398 1.380 

13154 18.884 0.355 4.319 0.482 0.377 0.449 0.664 1.202 1.811 

13159 8.608 0.342 6.772 0.339 0.304 0.233 0.601 0.728 1.210 

13175 26.036 0.340 4.013 0.484 0.409 0.342 0.587 1.073 1.827 

13180.2 11.379 0.248 4.981 0.432 0.301 0.241 0.538 1.036 1.925 

13180.5 6.156 0.230 6.579 0.148 0.156 0.103 0.345 0.557 1.613 

13181 16.434 0.398 4.287 0.624 0.365 0.401 0.657 1.104 1.681 

13187.5 34.123 0.433 4.794 0.389 0.572 0.129 0.449 1.155 2.576 

13191.5 36.878 0.605 4.337 0.060* 0.852 0.400 0.554 0.746 1.346 

13199 34.177 0.456 3.320 0.743 0.572 0.237 0.481 0.749 1.558 

13208 25.279 0.478 4.210 0.557 0.422 0.447 0.625 1.082 1.732 

13214 4.843 0.338 6.919 0.194 0.158 0.016* 0.318 0.519 1.630 

13216.3 28.719 0.294 3.075 0.418 0.381 0.378 0.445 0.775 1.742 

13236.4 33.995 0.365 4.163 0.944 0.460 0.181 0.531 0.917 1.728 

13244.2 40.748 0.103* 6.004 0.733 1.424 0.103* 0.491 0.773 1.575 

13256 31.697 0.357 3.433 0.318 0.504 0.173 0.416 0.793 1.908 

13275 34.325 0.392 4.174 0.343 0.482 0.246 0.446 1.006 2.258 

13280.2 36.703 0.593 7.468 0.302 0.712 0.465 0.750 1.120 1.495 

13298.2 33.714 0.343 4.567 0.343 0.439 0.325 0.666 0.531 0.798 

13295.2 26.445 0.274 2.962 0.353 0.441 0.497 0.485 1.001 2.064 

13297 20.439 0.226 3.285 0.505 0.433 0.383 0.570 1.033 1.812 

13300 15.575 0.161 3.364 0.577 0.459 0.476 0.648 1.176 1.815 

13302 29.809 0.147 4.644 0.311 0.505 0.385 0.468 1.014 2.170 

13305 22.885 0.169 3.579 0.409 0.315 0.311 0.552 0.793 1.436 

13310 25.233 0.155 3.844 0.360 0.420 0.352 0.488 1.127 2.308 

13310.5 1.412 0.211 4.025 0.721 0.522 0.538 0.823 1.717 2.087 

13334.1 8.927 0.184 3.496 0.666 0.553 0.518 0.757 1.577 2.084 

13339 26.359 0.123 3.491 0.301 0.366 0.276 0.515 0.816 1.585 

13345 37.022 0.245 4.625 0.182 0.873 0.059* 0.482 1.152 2.390 

13348.2 24.343 0.123 3.095 0.353 0.339 0.377 0.526 0.990 1.883 

13353 21.906 0.137 2.951 0.394 0.339 0.353 0.541 0.924 1.709 

13353.6 27.661 0.129 3.376 0.402 0.391 0.422 0.483 0.964 1.997 

13354 2.861 0.207 3.864 0.733 0.549 0.607 0.849 1.644 1.938 

13364.5 24.432 0.133 3.039 0.409 0.301 0.215 0.518 0.714 1.379 

13367 32.523 0.209 3.986 0.216 0.491 0.262 0.521 0.733 1.407 

13372.5 34.627 0.191 3.683 0.209 0.597 0.472 0.456 0.566 1.242 
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Depth Ca Pb/Pb+Al Ba/Ba+Al Zn/Zn+Al Cu/Cu+Al Ni/Ni+Al Cr/Cr+Al V/V+Al V/Cr 

(ft) (%) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000) (x1000)  

13378.5 29.146 0.181 3.264 0.221 0.405 0.298 0.459 0.801 1.744 

13386.2 32.816 0.360 3.600 0.308 0.561 0.186 0.481 0.633 1.316 

13388.5 26.093 0.185 3.548 0.366 0.417 0.460 0.524 1.010 1.929 

13402.5 25.978 0.162 2.975 0.323 0.397 0.362 0.539 0.728 1.350 

13407 23.852 0.150 3.493 0.316 0.322 0.420 0.580 0.881 1.520 

13410.5 31.189 0.106 2.548 0.273 0.440 0.378 0.430 0.989 2.304 

13417 31.606 0.166 3.024 0.461 0.486 0.523 0.608 0.933 1.534 

13422.5 30.984 0.216 2.948 0.466 0.494 0.508 0.615 0.864 1.405 

13434 20.722 0.247 3.289 0.473 0.580 0.663 0.754 1.534 2.035 

13436 0.920 0.244 4.218 0.798 0.579 0.567 1.065 2.067 1.943 

13436.3 1.044 0.207 4.301 0.784 0.669 0.616 0.984 1.858 1.889 

13436.6 2.121 0.208 3.910 0.529 0.411 0.511 0.730 1.259 1.726 

13437.5 19.265 0.221 3.429 0.498 0.385 0.370 0.653 1.146 1.756 

13443 19.749 0.167 3.823 0.380 0.244 0.349 0.542 0.901 1.664 

13452 24.644 0.195 3.220 0.466 0.422 0.616 0.673 1.123 1.670 

13460 21.504 0.229 3.141 0.494 0.588 0.640 0.720 1.439 1.999 

13461.5 16.438 0.151 3.463 0.425 0.340 0.389 0.627 1.040 1.659 

13472.5 11.956 0.160 3.712 0.716 0.352 0.480 0.716 1.169 1.635 

13480 20.756 0.227 3.404 0.477 0.461 0.618 0.730 1.082 1.483 

13492 27.742 0.202 3.575 0.482 0.478 0.654 0.749 1.217 1.625 

13508.5 15.771 0.357 4.985 0.531 0.640 0.725 0.712 1.464 2.058 

13516 12.020 0.157 3.849 0.536 0.238 0.310 0.706 0.961 1.362 

13522 19.816 0.221 3.431 0.493 0.416 0.470 0.746 1.156 1.550 

13537 52.157 0.347 4.770 0.390 0.908 0.695 0.865 1.088 1.258 

13537.5 21.186 0.269 4.410 0.471 0.397 0.395 0.696 1.120 1.611 

13545.5 36.521 0.429 4.204 1.018 0.565 0.648 0.834 0.686 0.822 

13554 1.973 0.161 4.024 0.882 2.206 0.710 1.026 2.182 2.128 

13554.5 63.780 1.479 4.291 0.098* 4.291 1.444 0.854 1.425 1.670 

13557.5 7.672 0.240 6.266 0.194 0.850 0.127 0.324 0.670 2.072 

13568.5 0.959 0.125 4.366 0.533 6.652 0.701 0.988 1.587 1.607 

13586.5 1.872 0.198 4.612 0.528 0.153 0.540 0.829 1.595 1.925 

 
Note:  * Samples which consist of element concentration smaller than 2 ppm and were assigned 
            value of 0.5 ppm in order to be able to be calculated. 
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   Table 5.  Carbonate, non-carbonate (residue) components, TOC and isotopic compositions  
    of the Smackover samples from the #1 NEAL ET AL UNIT 30-1 of the Manila Embayment. 
 

Depth CaCO3
1 nonCaCO3 TOC 2 TOC* 3 δ13CCaCO3 δ18OCaCO3 δ13Corg 

(ft) (%) (%) (%) (%) (‰) (‰) (‰) 

13100 2.03 97.97 0.00 0.00 n.a. n.a. n.a. 

13114.5 17.43 82.57 0.03 0.04 4.22 -1.29 n.a. 

13117.1 66.30 33.70 0.07 0.19 n.a. n.a. -23.99 

13122 86.86 13.14 0.09 0.67 n.a. n.a. n.a. 

13130 72.58 27.42 0.08 0.29 n.a. n.a. n.a. 

13135 68.24 31.76 0.11 0.35 n.a. n.a. n.a. 

13140 65.52 34.48 0.18 0.51 4.67 2.12 n.a. 

13140.5 34.06 65.94 0.53 0.80 4.86 2.57 -22.92 

13143 8.98 91.02 0.00 0.00 4.19 -1.3 n.a. 

13154 64.21 35.79 0.23 0.65 4.4 1.7 -23.7 

13159 36.08 63.92 0.08 0.12 n.a. n.a. n.a. 

13175 74.84 25.16 0.17 0.69 4.85 1.95 -24.66 

13180.2 32.12 67.88 0.20 0.29 n.a. n.a. n.a. 

13180.5 18.18 81.82 0.00 0.00 4.58 -0.11 n.a. 

13181 53.16 46.84 0.28 0.60 n.a. n.a. n.a. 

13184.5 4.06 95.94 0.00 0.00 3.88 -6.95 n.a. 

13187.5 88.03 11.97 0.11 0.96 n.a. n.a. n.a. 

13191.5 90.57 9.43 0.16 1.73 n.a. n.a. n.a. 

13199 87.05 12.95 0.32 2.49 5.48 1.77 -24.77 

13208 74.97 25.03 0.20 0.79 n.a. n.a. n.a. 

13214 11.53 88.47 0.00 0.00 4.94 -3.46 n.a. 

13216.3 78.86 21.14 0.10 0.49 n.a. n.a. n.a. 

13236.4 88.14 11.86 0.14 1.22 n.a. n.a. n.a. 

13244.2 94.02 5.98 0.09 1.57 4.93 0.6 -25.44 

13256 84.54 15.46 0.15 0.98 n.a. n.a. -25.35 

13275 88.66 11.34 0.11 0.95 4.82 0.71 -25.48 

13280.2 90.75 9.25 0.18 1.98 n.a. n.a. n.a. 

13298.2 82.00 18.00 0.22 1.22 4.46 0.83 -24.83 

13295.2 67.85 32.15 1.13 3.50 n.a. n.a. n.a. 

13297 66.93 33.07 1.14 3.44 3.28 1.73 -20.78 

13300 57.42 42.58 1.02 2.41 n.a. n.a. n.a. 

13302 82.01 17.99 0.43 2.36 n.a. n.a. n.a. 

13305 69.71 30.29 0.29 0.97 3.58 1.09 -24.7 

13310 75.45 24.55 1.43 5.84 2.44 1.11 -20.87 

13310.5 9.21 90.79 3.32 3.65 4.25 1.94 -20.38 

13334.1 53.08 46.92 0.81 1.72 3.06 1.15 -22.84 

13339 75.90 24.10 0.66 2.74 n.a. n.a. n.a. 

13345 91.72 8.28 0.08 0.95 3.94 -1.12 -24.37 

13348.2 72.33 27.67 0.38 1.36 n.a. n.a. n.a. 

13353 69.99 30.01 0.31 1.02 n.a. n.a. n.a. 

13353.6 77.15 22.85 0.67 2.94 3.14 0.02 n.a. 

13354 15.21 84.79 0.99 1.16 3.16 0.22 -23.59 

13356.2 86.28 13.72 0.14 1.05 n.a. n.a. n.a. 

13364.5 71.53 28.47 0.17 0.60 4.36 -2.41 n.a. 
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Depth CaCO3
1 nonCaCO3 TOC 2 TOC* 3 δ13CCaCO3 δ18OCaCO3 δ13Corg 

(ft) (%) (%) (%) (%) (‰) (‰) (‰) 

13367 86.03 13.97 0.09 0.65 4.55 -2.29 -24.5 

13372.5 88.14 11.86 0.11 0.89 n.a. n.a. n.a. 

13378.5 82.04 17.96 0.17 0.97 n.a. n.a. n.a. 

13386.2 81.19 18.81 0.20 1.07 n.a. n.a. n.a. 

13388.5 75.13 24.87 0.25 1.00 4.46 -1.52 -23.8 

13393.5 81.60 18.40 0.14 0.75 n.a. n.a. n.a. 

13398 77.81 22.19 0.21 0.92 n.a. n.a. n.a. 

13402.5 74.22 25.78 0.11 0.44 n.a. n.a. n.a. 

13407 68.54 31.46 0.17 0.54 n.a. n.a. n.a. 

13410.5 81.21 18.79 0.13 0.70 4.39 -1.55 n.a. 

13417 70.74 29.26 0.27 0.92 n.a. n.a. n.a. 

13422.5 72.97 27.03 0.17 0.64 3.03 0.73 -24.99 

13434 54.42 45.58 0.89 1.95 n.a. n.a. n.a. 

13436 10.18 89.82 1.09 1.22 4.89 0.06 -23.62 

13436.3 1.56 98.44 0.76 0.78 n.a. n.a. n.a. 

13436.6 10.33 89.67 0.61 0.68 n.a. n.a. n.a. 

13437.5 61.88 38.12 0.28 0.73 4.59 -0.2 n.a. 

13443 62.04 37.96 0.14 0.38 2.99 1.15 -24.99 

13452 61.03 38.97 0.23 0.60 n.a. n.a. n.a. 

13460 11.51 88.49 1.96 2.22 1.23 -5.84 -23.26 

13460.5 54.21 45.79 0.58 1.28 n.a. n.a. n.a. 

13461.5 55.94 44.06 0.21 0.47 n.a. n.a. n.a. 

13472.5 46.40 53.60 0.36 0.68 n.a. n.a. n.a. 

13480 56.64 43.36 0.17 0.40 n.a. n.a. n.a. 

13492 65.87 34.13 0.21 0.62 3.05 1.52 n.a. 

13508.5 50.58 49.42 0.75 1.51 n.a. n.a. -23.53 

13513 43.29 56.71 0.33 0.58 3.63 -0.53 n.a. 

13516 48.5434 51.46 0.20 0.38 n.a. n.a. n.a. 

13522 51.88536 48.11 0.24 0.50 3.18 -0.41 -24.66 

13537 84.68 15.32 0.08 0.54 3.34 0.39 -24.52 

13537.5 50.58084 49.42 0.26 0.52 3.24 0.53 n.a. 

13545.5 73.16 26.84 0.14 0.52 3.27 0.75 n.a. 

13554 16.19 83.81 0.13 0.15 -0.16 -0.31 -23.76 

13554.5 94.76 5.24 0.04 0.86 2.74 0.3 n.a. 

13557.5 15.48 84.52 0.00 0.00 -0.71 -6.55 n.a. 

13565 6.39 93.61 0.00 0.00 n.a. n.a. n.a. 

13568.5 7.59 92.41 0.02 0.02 n.a. n.a. n.a. 

13586.5 8.60 91.40 0.00 0.00 n.a. n.a. n.a. 

13594 4.55 95.45 0.00 0.00 n.a. n.a. n.a. 
 
       Note:   CaCO3

1 an average value from two analysis by HCl digestion  of the whole rock samples. 
                   TOC2   an average content of TOC in the whole rock from two analysis by TOC analyzer. 
                   TOC3  a calculated TOC content in  the non-carbonate (residue) fraction.  
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