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CHAPTER I

INTRODUCTION

Software development is usually very time consuming. Especially with the increasing

demand for high computational capability in various fields, parallel processing becomes

an important approach, which requires the development of complicated parallel software.

Nowadays, the advances of computer technology have led to the large scale parallel

computing not only accessible to all researchers in computational sciences, but also

makes massive parallel application affordable and more reliable. Parallel computing is

the evolution of serial computing. Naturally, many complex, interrelated events happen at

the same time, yet within a sequence. The simulation of such process normally requires

the processing of large amount of data in sophisticated ways [1].

Parallel computing requires both specific hardware configuration and software

support. There exist many different architectures among parallel computers. For example,

multiple instruction multiple data (MIMD) structure is one of the most popular models. In

a MIMD machine, the number of processors might not be very large, but they are capable

of acting independently on different pieces of data. MIMD machines can be further

divided into two categories: multiprocessors (also called tightly coupled machines) which

have a shared memory, and multi-computers (or loosely coupled machines) which have

distributed memory and are connected with each other using an interconnection network

[2].
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In addition to multiprocessor machines, parallel computing must have a parallel

algorithm, so that a parallel computer system can perform multiple operations

simultaneously. A parallel software handles parallel data structures, functions, job

scheduling and memory management besides data computation. Programming languages

have been developed specifically to implement parallel algorithms. In scientific

computation, most programs are developed using one or more of compiled languages,

like Fortran, C, C++, etc. A message passing interface (MPI) is the most widely

employed tool to implement parallel software using the compiled languages. This

message-passing scheme has many advantages with respect to both performance and

flexibility. There are standard libraries for developing parallel programs using C or C++.

MPI can be used on networks of workstations and most parallel computers available

today.

However, in general, it is very time consuming to write a parallel program using MPI

to achieve the high-speed performance. It takes a tremendous amount of effort to convert

a serial code to a parallel one. In recent years, many computational scientists and

engineers have moved from compiled languages to interpreted problem solving

environments, such as Python. Figure 1.1 shows the importance of being earnest

(TIOBE) programming community index for August 2006. The index gives an indication

of the popularity of programming languages by the rating, which are calculated by

counting hits of the most popular engines (Google, MSN, Yahoo). C and Python are both

in the top 10 programming languages in the TIOBE programming community index.

More concisely, C is the top 2; Python is rated 7 in that month (Figure1.1).
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Figure 1.1. The long-term trends for the first 10 programming languages [15].
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Python is an interpreted and scripting language; however it can be used to write high-

level parallel programs. It can also act as a connecting language that links many separate

software components in simple and flexible manners to construct efficient software to

solve complicated problems. Python is an ideal choice of a single language with the

features of both an interpreted and a scripting language. It can also act as a guiding

language in which high-level Python modules control low-level operations implemented

by libraries in compiled languages such as C or C++.

As an interpreted language, the Python interpreter carries out most of the tasks that

are carried out by a compiler in a compiled language. Python, however, is an intermediate

language that provides the features of both compiled and interpreted languages. It can be

compared with many other languages mainly because it provides many salient features in

other languages and is derived from many languages, such as C, C++. Python is often

compared with C and C++ because it has syntax that is similar to those of these two

languages. Python is considered a good tool to test C and C++ applications. It can also

glue different components of C/C++ contributions to C/C++ projects. However, in many

ways, Python has merits over C/C++. For example, memory allocation and reference

errors that often occur in C/C++ are eliminated by the Python interpreter, which performs

automatic memory management. Codes written in Python are usually much easier and

smaller than those in C or C++. Python’s array constructs generate much fewer problems

than the array constructs in C and C++ [3].

Python has a broad range of applications in diverse areas. It can be used for system

administration, dynamic web applications, etc. It can also be used in a distributed system
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for scientific parallel computations. Compared to compiled languages, the main drawback

of Python in scientific computation is the fact that it runs much slower. Typically,

scientific applications have simple structures, including both data structure and

controlling structure, but large number of floating-point arithmetic operations. The most

common data structures are arrays and matrices; the most common controlling structures

are counting loops and selections [12]. The first language for scientific applications was

FORTRAN. C and C++ are also very popular languages used in scientific applications.

However, Python offers a quite convenient environment for developing numerical

applications, especially the introduction of two python modules, Pypar and NumPy,

makes Python more like a powerful and convenient computing language in parallel

program design.

Pypar is one of the most widely used packages that provide Python wrappers to the

MPI routines. The package concentrates only on an important subset of the MPI library,

offering a simple syntax and sufficiently good performance. It is an easy-to-use module

that allows programs written in Python to run in parallel on multiple processors and

communicate using message passing. However, unlike MPI in C/C++, users of Python

need only to specify what to send and to which processor or from which processor to

receive by using pypar.send and pypar.receive. Pypar takes care of the details about data

type, size, dimension and the required MPI specifics such as tag, communicators and

buffers. There are a number of other Python bindings to MPI that are more

comprehensive than Pypar (PyMPI, Scientific Python). However, Pypar stands out by
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being very easy to install and to hide many details involving data types. It provides

bindings to an important subset of the message passing interface in standard MPI [8].

The following example illustrates the simplicity of parallel programming using Pypar

compared to MPI in C. In this example, each processor other than the root (processor 0)

sends a greeting message to the root processor, then, the root processor receives all the

messages, and print them separately indicating whom the sender is. Figure 1.2 shows the

program written in Python. Its implementation using MPI in C is given in Figure 1.3.

#!/bin/env python
#------------------------------------------------
# This is very simple MPI program in Python.
# In this program each processor other than
# processor 0 send a message to processor 0.
# processor 0 print the message out.
#
# To run the program with N processors:
# mpirun -c N python greeting.py
#
# The output for N=5 are:
# greeting from process 1!
# greeting from process 2!
# greeting from process 3!
# greeting from process 4!
#
#------------------------------------------------
import Numeric
import pypar # The Python-MPI interface

numproc = pypar.size()
myid = pypar.rank()
destination=0

if myid != 0:
message= "greeting from process %d!" % myid
pypar.send(message, destination)

else:
for source in range (1, numproc):
msg=pypar.receive(source)
print "%s"% msg

pypar.finalize()

Figure 1.2. A simple parallel example using Pypar.
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/*------------------------------------------------
/* This is a very simple C program using MPI.
/* In this program each processor other than
/* processor 0 send a message to processor 0.
/* processor 0 print the message out.
/*
/* To compile the program:
/* cc -o greeting greeting.c -lmpi
/*
/* To run the program with N processors:
/* mpirun -c N greeting
/*
/* The output (N=5):
/* greeting from process 1!
/* greeting from process 2!
/* greeting from process 3!
/* greeting from process 4!
/*
/*------------------------------------------------
#include <stdio.h>
#include <string.h>
#include "mpi.h"

main(int argc, char* argv[])
{ int my_rank;
int p;
int source;
int dest;
int tag = 0;
char message[100];
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &p);

if (my_rank != 0)
{ sprintf(message, "greeting from process %d!",my_rank);
dest = 0;
MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
else
{ for (source = 1; source < p; source++)
{
MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
printf("%s\n",message);
}
}
MPI_Finalize();
}

Figure1.3. The same example as in Figure 1.2 written in C using MPI [6].

Both examples complete the same task that print out a greeting message. However,

even for such a simple example, we find that the Python code is much simpler. In the C

program, the data type, size and tags must be specified explicitly. In python, these

information is included automatically in the package. Furthermore, MPI_Init must be

called once and only once before calling any other MPI functions in the C program. After
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a program has finished calling the MPI library, it must call MPI_Finalize to finalize. In

Pypar, initialization and finalization are optional.

Numeric Python (Numpy) adds a fast multidimensional array facility to Python. The

Numeric Python extensions are a set of extensions to the Python programming language

which allow Python programmers to manipulate large arrays organized in grid-like

fashion efficiently, because large numbers of lists, tuples or classes are too slow and take

too much space in plain Python. In addition, NumPy provides many modules to simplify

array operations [9].

In this thesis, we will investigate the applicability to combine the advanced features

of Python and C to design parallel software, so that a complicated parallel software can

be designed conveniently and performs effectively. In Chapter II, we will briefly review

the structure of a parallel software. Especially, we will discuss data partition issues.

Chapter III will be used to discuss the parallel programming using Python when

communications can be avoided. As an example, we will discuss the development of a

parallel software to solve the ray equation. In chapter IV, we discuss a more complicated

problem that requires data communication using Python and C. Chapter V will discuss a

2D problem. In Chapter VI, we will solve the same 2D problem by combining the Python

and C. The entire thesis will be summarized in Chapter VII.
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CHAPTER II

REVIEW OF THE STRUCTURE OF A PARALLEL PROGRAM

A parallel algorithm is a sequence of instructions for solving a problem that identifies

the parts of a process [3]. There are several key steps in designing a parallel program. The

first step is to determine whether or not a problem can be parallelized. Although many

things happen concurrently, some of them are naturally ordered which may not be

optimal if they are solved in a parallel program.

The second step in designing a parallel program is the workload partitioning, which is

one of the most important steps in a parallel problem. Workload partitioning (or

decomposition) is to partition the problem into smaller discrete parts that can be

distributed to multiple tasks. Generally, the algorithms for workload partitioning can be

classified into two categories: data partitioning and function partitioning. In the

following sections, we will discuss them in detail.

2.1. Data Partitioning

Data Partitioning is also often called data decomposition. In this type of partitioning,

the data associated with a problem are decomposed into several relatively isolated parts.

Each parallel task then works on a part of the partitioned data sets. As an example, in
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Figure 2.1, the original data set is divided into four sub sets. Each of them is processed by

a separate task.

The basic assumption in performing the partition is that the partitioned tasks ought to

be equal or close to be equal size in term of computation effort required to complete the

task, so that the workload on each machine can be balanced. The partitioned data sets are

then processed on different processors. Therefore, distributing the data sets among the

processors is another step following the partitioning. This is another important step in

designing data decomposition based parallel schemes. It largely determines the efficiency

of a parallel program.

Let T represent the data to be processed in a problem, and P be the set of processors.

Data distribution can then be formally described by a function such as,

PTDT →: .

Task1 Task2 Task3 Task4

Figure 2.1. A data partitioning example, where the data is partitioned
to 4 parts.
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Therefore, )(1 pDT
− gives the subset of the data T that will be processed by processor

p. Assume the number of the partitioned data segments is N and the number of processors

is M, i.e., },,,,{ 321 NddddT L= and },,,,{ 321 MppppP L= . Many different schemes

can be employed to distribute these N data segments among the M processors. Two of the

most fundamental ones are block distribution and round robin distribution, which are

discussed in the following subsections.

a). Block distribution

A block distribution refers to a scheme shown in Figure 2.2, i.e., sub-datasets 1, 2, …

1i go to processor 1, 1i +1, 1i +2…, 2i are allocated to processor 2, etc.

….

Mathematically, this scheme can be formulated as follows,

1/)1(: +∗−=→ NMipdD iT .

Therefore, the partition to be processed by processor p will be

Data: 1, …, 1i , 1i +1, …, 2i , …, 1−Mi +1,…, Mi

p1 p2 pMProcessors:

Figure 2.2. A block data distribution scheme.
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}{ MNpMNppDT /,...,1/)1()(1 ∗+∗−=−

It is obvious that each processor will have N/M data elements if N is dividable by M.

This can be verified by [ ] MNMNpMNp /11/)1(/ =++∗−−∗ . However when N is

not dividable by M, some processors will have floor(N/M) elements, others will have

floor(N/M)+1 elements. Those having more data have an index )(lp , such that

).,mod(,...,2,1,1
),mod(

)1()( MNl
MN

M
llp =+








−=

Using this block distribution scheme, the distribution of 20 (i.e. N=20) elements on 6

(i,e., M=6) processors is shown in Figure 2.3.

Here, 2)6,20mod( = , 3
)6,20mod(
=

M
. Therefore, 1)1( =p , 4)2( =p , i.e., the first and the

4th processor has 4 elements, each of the rest has 3 elements.

Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,14, 15,16,17,18,19,20

p2p1 p3 p6p5p4Processors:

Figure 2.3. Block distribution of 20 elements among 6 processors.
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b). Round-robin distribution

Another convenient method to distribute N elements to M processors is the round-

robin scheme as shown in Figure 2.4.

Mathematically, the formula describing the round-robin distribution scheme is given

as follows:

1),1mod(: +−=→ MipdD iT .

Therefore, the data sets for processor p will be

{ },...2,,)(1 pMpMppDT ++=− .

It is easy to show that each processor will have N/M elements if M is a factor of N. In

the case that N is not dividable by M, each of the first mod(N,M) processors will have

floor(N/M)+1 elements, the rest has floor(N/M) elements on each processor.

Data : 1, 2, …, M, M+1, M+2, …, 2M, 2M+1, …..

Processor:

Data : 1, 2, …, M, M+1, M+2, …, 2M, 2M+1, …..

Processor: ….P1 P2 PM

Figure 2.4. A round robin data distribution scheme.
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Using the round-robin distribution scheme, the 20 data elements are distributed

among the 6 processors as shown in Figure 2.5, most of the processors have 3 elements,

but 1p and 2p have 4 elements.

Data distribution among processors is often relatively simpler than processing the

data on each processor. In a parallel system, data on different processors may not be

completely independent from others, certain communication may be required to complete

a task. This problem will be addressed in detail from Chapter III through Chapter V.

2.2. Function partitioning

In this approach, the main focus is on the performed computation rather than on the

data manipulated by the computation. The problem is decomposed based on the work that

must be done. Each task then manipulates a portion of the work. A function partition

decomposes not only the computation but also the performing code to reduce the

complexity [3]. As an example, we explore a search tree that looks for nodes

corresponding to a “solution”. The algorithm does not have any obvious data structure

Processor:

Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16, 17,18,19, 20

P3P1 P2 P4 P5 P6Processor:

Data

P3P1 P2 P4 P5 P6

Figure 2.5. Distributing 20 data elements to 6 processors using a round-robin scheme.
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that can be decomposed. Initially, a single task is created for the root of the tree. A task

evaluates its node first, if that node is not a leaf, then it creates a new task for each search

call (sub-tree). [17]

Figure 2.6. The structure of a search tree, in which each circle represents
a node in the search tree and hence a call to the search procedure. A task is
created for each node in the tree as it is expanded.

As shown in Figure 2.6, each circle represents a node in the search tree, and a call to

the search procedure. A task is created for each node in the tree as it is explored. At any

one time, some tasks are actively engaged in expanding the tree further; others that have

reached solution nodes are terminating, or are waiting for their offsprings to report back

with solutions.

In addition to above two commonly used partitioning schemes, sometime it is

convenient to use such a scheme that employs both data and function decomposition.

This is called mixed partitioning, which will be discussed in the following section.
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2.3. Mixed partitioning of data and function

Combining the above two type of partitioning schemes is also common and natural.

In many problems, a large amount of data is required to process. Data partitioning

becomes a step that has to be implemented in order to complete the task. On the other

hand, processing each partitioned data set may involve a significant amount of

computation, which is very time consuming. An efficient algorithm requires the

partitioning of the computation for each data set.

One example is the computation of wave propagation starting at different locations.

Mathematically, the wave propagation is described by a wave equation given below,

),,(),,(),,(
2

2

2

2

2

2

yxtu
t

yxtu
y

yxtu
x ∂

∂
=

∂
∂

+
∂
∂

. (2.1)

where, ),,( yxtu is the wavefield at a spatial location ),( yx at time t .

To solve equation (2.1), we need to define two initial conditions for t , and four

boundary conditions, two for x and two for y . The initial conditions define the initial

state of the wave field; the boundary conditions, on the other hand, define constrains to

the wave fields. For each initial state, the wave equation needs to be solved separately.

The solution can be obtained using a 7-stencil method, which normally requires a large

memory and computation.

Typical stencil methods include 5-stencil, 7-stencil, 9-stencil, etc. In general, a stencil

is stylized matrix computation in which data at a group of neighboring elements are

combined to calculate the one at a new location. They are typically combined in the form
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of linear products. This type of computation is common in solving partial differential

equations given in equation (2.1).

When the computation area is large, the large memory requirement becomes an issue.

This problem can be overcome in a parallel program by partitioning the computation. On

the other hand, in real applications, there are often a large number of such problems to be

solved corresponding to a large number of different initial and boundary conditions. Then

parallelization over the jobs is often required to get the job completed efficiently. The

implementation of such a problem, which is often encountered in many applications,

utilizes the partitioning of both the data and the functional computation.

In parallel computing, some programs require data communication or movement,

while some others do not, where each processor will have sufficient information to

complete its own task. Such parallel program is the easiest one to implement. Especially,

by employing Python, the development of such a parallel code becomes trivial once a

serial version of the code is available. In the following chapter, we will demonstrate the

implementation of such a parallel code by solving a simple ray equation using Python to

schedule and manage the serial executable that is built by the C compiler.
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CHAPTER III

PARALLEL IMPLEMENTATION OF THE RAY EQUATION

Data communication is the most difficult part in designing a parallel program.

Fortunately, in some applications, data communication can be avoided. One of these

examples is to solve the ray equation given as follows,

)cos()()(

)sin()()(

1

1

k
N

cykyky

k
N

cxkxkx

nn

nn

∗∗+=

∗∗+=

+

+

π

π

, (3.1)

where,

)sin(
2

1
)(0 k

N
sxkx ∗+=

π
, )cos(

2

1
)(0 k

N
syky ∗+=

π
, (3.2)

and k = 0,1,2,3…K, n = 0,1,2,3,…N. sysxcycx ,,, are all constants.

3.1. A serial C program

For any given sysxcycx ,,, , the serial code to compute the ray points, )(1 kxn+ and

)(1 ky n+ is very simple. Figure 3.1 gives the pseudo-code that implements the ray

equation in a serial mode. Assume this serial code produces an executable, ray.x. The job

takes the starting location ),( sysx , the scalars cycx, and the numbers K and N as input,

and runs the executable to compute the values at all points defined by equation (3.1).
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header file
initialize
define parameters
/*loop over the number of points to compute equation 3.2 */
when k<=K:
{
x[k]=sx+0.5*sin(PI/N*k);
y[k]=sy+0.5*cos(PI/N*k);
}
/*loop over the number of iteration to compute equation 3.1 */
when n<=N:
for (k=0;k<=K;k++)
{
x[k]=x[k]+cx*sin(PI/N*k);
y[k]=y[k]+cy*cos(PI/N*k);

write the results to a file
}

Figure 3.1, A serial pseudo-code to compute the ray equation defined in equation 3.1 and 3.2.

Figure (3.2) shows one of the solutions. In this example, 50,10,2,1 −==== sysxcycx

and 20,25 == NK .

Figure 3.2. One example of the ray equation generated by a serial C code,
where, cx =1, cy = 2, sx =10, sy = -50, and K = 25, N = 20.
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Even though the computation of one job at one location is rather small, the

computation can be accumulated dramatically if a large number of jobs are required to

compute the rays which corresponds to different input parameters; i.e., different starting

points. Apparently, the task can be simply set up by paralleling over the jobs using any

language, since no communication is required between jobs for different points. Here we

use it as an example to demonstrate the applicability of combining Python with the serial

executable, ray.x. In this example, Python is used to design a script to set up and manage

the jobs over different processors.

3.2. A Parallel Python Script

In the above example, as no communication is needed among different jobs that

compute rays for different starting locations, parallel computation of different jobs can be

simply implemented by executing the serial job on each processor. For that purpose, the

serial executable, ray.x, and the parameters required by each job need to be copied to

each processor so that each job can execute locally on each processor.

Obviously, the structure of a parallel code heavily depends on the hardware

configuration. As an example, we implement it on a computer system that has distributed

memory. In fact, they are independent machines connected together through a network.

There are no shared resources among the different machines at all.

Since different processors do not share any resources, we first distribute the

executable to those processors so that the serial code can run independently on different

processors. A pseudo Python script that distributes the executable, ray.x, is shown in



21

Figure 3.3. It invokes the “rcp” command to copy it remotely to each processor. The job

is started up on each processor by a system command call:

commands.getstatusoutput(cmd).

for machine in machinelist:
cmd="rcp /home/folder/ray.x machine:directory "
stat,out=commands.getstatusoutput(cmd)

Figure 3.3. A pseudo Python script to distribute the executable to remote machines

Next, we need a similar python script to distribute the required parameters to those

processors and start the executable on each machine. Here we assign the jobs among the

different computers in a round-robin fashion. The execution of the jobs is initiated by the

system call, commands.getstatusoutput(cmd). The pseudo Python script that

completes this task is shown in Figure 3.4.

get the parameter file
get the machine name list

separate the parameters
distribute the job

cmd0="/home/directory/ray.x + parameters+ job_id
for machine in machinelist:
cmd="rsh "+machine + cmd0 /* submit the job to a remote machine */
stat,out=commands.getstatusoutput(cmd)

Figure 3.4. A pseudo Python script to execute the job on different processors.

Each job will produce an output file with a unique name consisting of a base name

“result_” and a unique number (this is defined in the C executable). However, those

output files may locate on the local disks of different computers, which need to be

collected to a central location. This is also implemented through a Python script by

executing the “rcp” command as shown in Figure 3.5.
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for machine in machinelist:
cmd="rcp machine:directory/result*.txt /home/directory/central directory "
stat,out=commands.getstatusoutput(cmd)

Figure 3.5. A pseudo Python script to collect the results to a machine.

As an example, Figure 3.6 shows the results of the ray equation for 5 different jobs

corresponding to 5 different starting points. They are computed in parallel on 3 different

machines.

Figure 3.6. Ray tracing results of 5 different jobs computed on 3 different
machines using a parallel Python script. Job a, d are executed by machine 1. Job b, e
are executed by machine 2. Job c is executed by machine 3. They differ each other by
different combination of sx, sy, cx and cy.

a

b

c

d e
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In this simple example, we demonstrate that when no communication is required, a

parallel software can be implemented simply from a serial code using Python script,

which largely simplifies the development effort needed using a compiled language.

The above example is very simple, but quite illustrative, it demonstrates the

robustness of combining Python with a compiled language C to design a parallel program

that virtually has no data communication during execution. However, most parallel

applications are not that simple. In most cases, they do require different processors to

share data and communicate with each other during the execution. For example, the wave

propagation problem in equation (2.1) requires a processor to know the information

calculated by its neighboring processors if it is solved in parallel. This problem is

investigated in detail in the following chapters.
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CHAPTER IV

PARALLEL IMPLEMENTATION OF THE 1-D PARTIAL DIFFERENTIAL WAVE

EQUATION USING PYTHON AND C

Partial differential equations (PDE) describe a wide range of phenomena in science

and engineering [7]. Efficiently solving these PDEs has significant importance for both

scientific research and engineering applications. Typically, solving a PDE involves a

large amount of data and computation. A parallel program that solves this problem is

usually developed in a compiled language such as C/C++ by using message passing

interface (MPI). However, similar to the demonstration in the last Chapter, Python offers

a quite convenient environment to solve the PDE.

In this chapter, we use Python to implement a parallel program on multiple processors

to solve the PDE. Since the one-dimensional problem is much simpler and still

illustrative, we focus on discussing the one-dimensional partial differential equations in

this chapter.

4.1. The One-dimensional Partial Differential Equation

The basic one dimensional partial differential equation (PDE) is a second order wave

equation as follows,
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Where t stands for time, x is the spatial variable and C is the wave propagation velocity.

Solving this equation requires two initial conditions for variable t, as given below,

)(|),( 0 xfxtu t == , (4.2)

)(|),( 0 xgxtu
t t =
∂
∂

= , (4.3)

and two boundary conditions for x, such as,

)(|),(
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tsxtu xx == ,

)(|),(
max

trxtu xx == . (4.4)

Equations (4.1)-(4.4) can be used to model waves on a string, waves in a flute, and in a

rod, etc. Here, f(x) and g(x) define the initial state. )(ts and )(tr define the constrains at

both ends.

4.2. Numerical method

In order to numerically solve the PDE in equations (4.1) - (4.4), we need to use a

finite difference scheme to approximate the 2nd order derivatives with respective to t and

x. A finite difference approximation to the derivatives in equation 4.1 can be written as,

2

2

2

2

2

),1(),(2),1(

),(),(

t

jiujiujiu

xjtiu
t

xtu
t

∆
−+−+

=

∆∆
∂
∂

=
∂
∂

, (4.5)



26

and

2
2

2

2
2

2

2
2

)1,(),(2)1,(

),(),(

x

jiujiujiu
C

xjtiu
x

Cxtu
x

C

∆
−+−+

=

∆∆
∂
∂

=
∂
∂

. (4.6)
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Where
2

2
2

x

t
CA

∆
∆

= , i is the index for t , and j is the index for x.

As shown in Figure 4.1, the finite difference equation (4.8) defines the relationship

among the 5 points, which is typically called a 5-stencil. From the given equation (4.2),

we know the values at 0=i . Together with equation (4.3), we can compute all the values

at 1−=i . Then using equation (4.8), we can compute all the values at 1=i . Similarly,

from the known values at 0=i and 1, we can use equation (4.8) again to compute all the

values at 2=i , and so on. Such process can be represented in a matrix form concisely as

follows,

11 −+ += iii UBUU . (4.9)

Where,

T
x

i iNuiuiuiuU )],(),...,,3(),,2(),,1([= is a vector with xN entries,

and
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is a XX NN × tri-diagonal matrix, which has at most 3 non-zero elements in each row.

Figure 4.1. A 5-stencil diagram used in solving equation (4.8).

4.3. Numerical solution

A parallel program can be developed using Python to solve the one dimensional PDE

approximated by the iterative matrix equation (4.9). For simplicity, we choose

)sin()( xxf = , 0)( =xg , 1=C and 0)( =ts , 0)( =tr .

The range for x is (0,10π). This problem has an exact solution, which is,

i-1

i+1

i

j-1 j j+1
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CtxCtxCtxxtu cossin)sin()sin(
2

1
),( =++−= .

For each constant t, ),( xtu is a sine function scaled by Ctcos . We use 91 discrete grid

points in the range (0,10π) for x; therefore, the sample interval in the x-direction

is )191/(10 −= π∆x . The sample rate along the t-direction is chosen as xt ∆=∆ . Figures

4.2 – 4.4, show this exact function at 3 different times t =1∆t, 3∆t and 6∆t, respectively.

Figure 4.2. An exact solution of the PDE in equation 4.1 at t =1∆t.

Figure 4.3. An exact solution of the PDE in equation 4.1 at t =3∆t.
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Figure 4.4. An exact solution of the PDE in equation 4.1 at t =6∆t.

In designing this parallel program, we partition the computation grids among the

multiple processors. For this 1-D problem, this task is rather simple. Nevertheless, it is

still illustrative to understand the partitioning scheme and the power of Python in parallel

numerical computation. As we can see in the iterative matrix equation (4.9) and the 5-

stencil scheme in Figure 4.1, the values at tit ∆+= )1( are fully defined by the values at

tit ∆= and tit ∆−= )1( . Therefore, a natural way to partition the problem is along the x-

direction, as shown in Figure 4.5.

Assume the total number of grid points xN is dividable by the number of

processors pN . We use the block distribution scheme discussed in chapter 2 to partition

them; i.e., define pxx NNN /= . So, grid nodes 1, 2, … xN will be assigned to processor

1, grid nodes ( xN +1), ( 2+xN ), … 2 xN will be assigned to processor 2, …

xp NN ∗− )1( +1, 2)1( +∗− xp NN , … xp NN ∗ will be assigned to processor pN .

Suppose we are going to implement the computation on 3 processors and iterate 10 steps.

i.e., 901 ≤≤ j , 101 ≤≤ i . Each processor has 30 nodes in the x-direction. Processor kP ’s
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Figure 4.5. Partitioning scheme in solving the 1-D PDE. a): All the interior
nodes for each processor can be computed easily from equation (4.8), since all
the required information is available in the same processor. b): The data at the
two ends of each processor are shared by neighboring processors, which should
be communicated between the nodes. These shared grid points form “ghost”
layers.
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nodes are from 30∗(k-1)+1 to 30∗k. All the interior nodes for each processor can be

computed easily from equation (4.8), since all the required information is available in the

same processor (see Figure 4.5 a). However problems arise for the grid nodes at both

ends as we can see in Figure 4.5, where, to compute the first node of processor kP on the

left, one needs the information of the last node on the right of processor 1−KP ; Similarly,

to compute the last node on the right of processor KP , one requires the data at the first

node on the left of processor 1+KP . Therefore, the data at the two ends of each processor

are shared by neighboring processors. These shared grid points form “ghost” layers (see

Figure 4.5 b). Communications are required between neighbor processors in the ghost

layers. Python makes this communication quite easy by using pypar.send and

pypar.receive. Those constructs are equivalent to MPI_Send and MPI_Recv in C. The

pseudo code that solves the one-dimensional partial differential equation is shown as

follows.

Define the number of nodes n
define the number of processors pronum
partition the work to the processors, each processor contains x_sml=n/pronum nodes
Allocate memory, each processor should hold x_sml+2 nodes

t=0

Set Initial condition: u[ ix ]= sin( ix ), i=0,…,x_sml+1

Set the boundary condition

Define the value of one time before and one time after the u as um & up
while t<t_stop

exchange the ghost layer value, communication is needed here
update all inner point:
save the result to a disk file
plot result if requested
initialize for the next step: um=u, u=up
update the time step: t=t+dt

Figure 4.6. A pseudo code for the one-dimensional partial differential equation.

We develop two separate codes, one using Python and another using C, to do the

computation and compare the results. Because the 1-D PDE can be partitioned along the
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1D space direction, the code is quite simple, the ghost layer communication can be

implemented using the following pseudo-code,

If it has right neighbor:
copy u[:,x_sml] to right neighbor’s first column u[:,0]

If it has left neighbor:
copy u[:,1] to left neighbor’s last column u[:, x_sml+1]

Figure 4.7. A pseudo-code for updating the ghost layers

4.4 Numerical results

To verify the program, we show the computed wave field ),( xtu at t = 1∆t, 3∆t, 6∆t,

respectively in Figure 4.8 – 4.10. Comparing with the exact theoretical results shown in

Figure 4.2 – 4.4, we see that the code produced the expected results.

Figure 4.8. Numerical result of the 1D PDE at t =1∆t from the python code.
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Figure 4.9. Numerical result of the 1D PDE at t =3∆t from the python code.

Figure 4.10. Numerical result of the 1D PDE at t =6∆t from the python code.

To Compare with the Python code, we also show the results of the program

developed in C at t = ∆t, 3∆t, 6∆t, (∆t=0.05) respectively in Figure 4.11 – 4.13. We can

see that the results of both the python and the C programs are the same.
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Figure 4.11. Numerical result of the 1D PDE at t =∆t from the C code.

Figure 4.12. Numerical result of the 1D PDE at t =3∆t from the C code.

Figure 4.13. Numerical result of the 1D PDE at t =6∆t from the C code.
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CHAPTER V

PARALLEL IMPLEMENTATION OF THE 2-D PARTIAL DIFFERENTIAL WAVE

EQUATION USING PYTHON AND C

In this chapter, we investigate the applicability of Python for designing parallel

programs to solve a more complicated 7-stencil problem, which solves the two-

dimensional partial differential equation. This equation describes the propagation of

water waves, seismic waves, etc. As expected, this problem is much more complicated

compared to the 5-stencil problem discussed in the previous chapter.

5.1. Two-dimensional partial differential wave equation

The two-dimensional partial differential wave equation is formulated as,
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Cyxtu
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∂
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Where, t stands for time, yx, are the two spatial variables. Similar to the 1-D case,

Solving equation (5.1) requires two initial conditions at 0=t , such as,

),(|),,( 0 yxfyxtu t == ,

),(|),,( 0 yxgyxtu
t t =
∂
∂

= . (5.2)

In addition, it also requires boundary conditions for both x and y, such as,
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),(|),,( 1min
ytayxtu xx == ,

),(|),,( 2max
ytayxtu xx == . (5.3)

and

),(|),,( 1min
xtbyxtu yy == ,

),(|),,( 2max
xtbyxtu yy == . (5.4)

Where, ),(),,( yxgyxf define the initial state of the wave described by equation (5.1),

2,1),,(),,( =ixtbyta ii define the boundary constrains to the field.

5.2. Numerical Method

Like the 1-D problem discussed in chapter IV, solving equation (5.1) to (5.4) requires

finite difference approximations to all the partial derivatives. In addition to the difference

operators defined in equations (4.5) and (4.6) that approximate the derivatives to t and

x , we also need a similar operator for the derivative with respect to y, i.e.,
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and
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After substituting (5.5), (5.6) and (5.7) to equation (5.1), we get,
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where,
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Equation (5.8) defines the relationship among 7 neighboring grid points as shown in

Figure 5.1, which is a typical example of a 7-stencil problem.

Figure 5.1. A 7-stencil diagram used in solving the 2D partial differential equation.
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5.3. Data partitioning

Like the 1-D case, in designing a parallel program to solve the two-dimensional PDE,

a natural way to partition the data is to partition it on the x-y plane. In this plane, the grid

points form a 5-stencil problem. Generally, this 2D plane can be partitioned in one of the

three different ways shown in Figure 5.2.

a)

b)

c)

Figure 5.2. Three partitioning schemes for a 2D plane to solve the 2D PDE.

Partitioning methods b) and c) are similar to the scheme used in the 1-D problem

(Figure 4.5). Thus, to avoid the redundancy, in this chapter, we use method a) to

demonstrate the implementation of a parallel program on multiple processors using

Python. As an example, we define the sampling dimensions as 108912 =×=× yx NN ,

which are divided among 933 =×=×
yx PP NN processors (see Figure 5.3). Therefore,
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each processor has 4 nodes in the x-direction, and 3 nodes in the y-direction. More

specifically, the partition parameters are given as follows,

yx PP NNP ×= = 9 is the total number of processors,

xPN = 3 is the number of partitions in x-direction,

2

Figure 5.3. One partitioning scheme for a 2D plane used in solving a 2D PDE.
ipx, ipy represent the processor index along x and y direction, respectively.

yPN = 3 is the number of partitions in y-direction,

xN = 12 is the number of nodes in x-direction,

yN = 9 is the number of nodes in y-direction,

smlxN _ = xN /
xPN = 12 / 3 = 4 is the number of nodes in each processor in x-direction,
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smlyN _ = yN /
yPN = 9 / 3 = 3 is the number of nodes in each processor in y-direction.

If we use 2-dimensional matrices to represent the nodes in each processor, we have,
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Suppose we use ipyipx, to represent the processor index along x and y direction

respectively. Then the index of each processor can be represented as ipxNipyP
xPk +×= .

The index of the nodes belonging to one processor will range from 1)1(_ +−× ipxN smlx

to ipxN smlx ×_ along the x direction and from 1)1(_ +−× ipyN smly to ipyN smly ×_ along

the y direction.
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5.4. Data communication

Similar to the one-dimensional problem in Chapter IV, communication along the

boundary of each processor is required to solve the 7-stencil problem. However, the 2D

case is much more complicated. As we need to combine the values on a 5-stencils at

tit ∆= and one value at tit ∆−= )1( to compute one value at a new location at

tit ∆+= )1( (equation 5.8). Communication is required on the nodes of the 5-stencil

plane (Figure 5.4) at tit ∆= . Those operations are carried out on the entire two-

dimensional plane. The partition in Figure 5.2 a) requires communication along both x

and y directions. As in the one-dimensional case, the communicated nodes form ghost

layers. However, in this case the ghost layers run along both x and y directions as shown

in Figure 5.4 by the dotted-boxes. Because of the “data sharing” on the internal

boundaries between neighboring processors for the 5-stencil operation, the actual data

each processor needs must include those within the ghost layers.

5.5. Numerical Results

In this section, we complete a numerical experiment of a parallel code developed

using Python to solve the 2D PDE. In this example, we use 8 processors, 4 in x and 2 in y

direction. We choose
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discretize the range to 40 grid points in each direction. Therefore, the sample interval
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25.0)140/(10 ≈−=∆=∆ yx . For numerical stability, we choose the sample rate along t-

direction as ∆t = 0.2, c = 1.

Figure 5.4. A two dimensional grid map partitioned for solving the 2D partial
differential equation in parallel. The dotted boxes include the communicating
nodes between 2 adjacent processors, which form ghost layers.

The pseudo-code for the 2D partial differential equation is given as follows,

Define the number of points nx,ny
define the number of processors Np
define the partition in both x and y directions, Npx,Npy
distribute the work to the processors,
each processor contains x_sml = nx/Npx nodes in x direction

and y_sml = ny/Npy nodes in y direction
Allocate enough memory, each processor can hold (x_sml+2)*(y_sml+2) nodes
Define function exchmsg(), which exchange data in ghost layers

Set Initial condition: u[ ji yx , ]=
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e , i=0,…,x_sml+1, j=0,…,y_sml+1

Set the boundary condition

compute the value of one time step before t=0 using the initial conditions
while t<t_stop
call exchmsg() to exchange the ghost layer
update all inner point using equation 5.8

for i=1,…,x_sml, j=1,…,y_sml
concatenate result from each processor send its result to the first one

ghost layer
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save the result to a disk file
update the time step by t=t+dt
plot result
_____________________________________________________________________

Figure 5.5. A pseudo code to solve the 2D PDE.

Although the pseudo-code is easy and can be implemented in both C and Python,

there are several key differences when it is implemented using the two languages. Some

of them are listed below,

1. 2D array memory allocation in Python is much easier than in C.

Allocation in Python:
u=zeros((nx_sml+2,ny_sml+2),Float)
um=zeros((nx_sml+2,ny_sml+2),Float)
up=zeros((nx_sml+2,ny_sml+2),Float)

Allocation in C:
u=(double**)malloc((nx_loc+2)*sizeof(double*));
up=(double**)malloc((nx_loc+2)*sizeof(double*));
um=(double**)malloc((nx_loc+2)*sizeof(double*));

for(i=0;i<nx_loc+2;i++){
u[i]=(double*)malloc((ny_loc+2)*sizeof(double));
up[i]=(double*)malloc((ny_loc+2)*sizeof(double));
um[i]=(double*)malloc((ny_loc+2)*sizeof(double));
}

Therefore, Python directly allocates space for 2D arrays, while C has to complete this

in 2 steps, where, a 2D array is defined as an array of pointers. In the first step,

memory is allocated to the array of pointer, then memory is allocated to each of the

pointers.

2. Message exchanging in Python is easier than in C as we mentioned in Chapter I.

Python only needs to know what is the source for receiving data and what is the

destination for sending data. But, MPI_Send and MPI_Recv both require to specify

the size, data type, communicator in addition to the source and destination.
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#--------------------------
# exchange y - boundary
#--------------------------
source
destination

if ipy!=nyproc-1:
pypar.send(u_loc[:,ny_sml],destination)

if ipy==0:
u_loc[:,0]=0

else:
u_loc[:,0]=pypar.receive(source)

Part of a Python code to exchange data in the y direction.

/* exchange y - boundary */
if (ipy!=nyproc-1) {
/* send to upper neighbor */
MPI_Send (syrbd,nx_loc+2,MPI_DOUBLE,destination,Tag,MPI_COMM_WORLD);
}

if (ipy==0){
for (i=0; i<=nx_loc+1; i++)
rylbd[i]=0;
}
/* receive from upper neighbor */

else {
MPI_Recv(rylbd,nx_loc+2,MPI_DOUBLE,source,Tag,MPI_COMM_WORLD,&status);
}

Part of a C code to exchange data in y direction.

3. The concatenation function defined in Python makes the handling of output very

convenient. Python can call function concatenate to glue the results together.

#-------------------------
# concatinate the result
#-------------------------
source=myid-1 

 destination=(myid+1)%numproc

if ipx==0:
pypar.send(a, destination)

elif ipx==nxproc-1:
result = pypar.receive(source)
result=concatenate((result,a))

source = myid-nxproc
destination = (myid+nxproc)%numproc

if ipy==0:
pypar.send(result,myid+nxproc)

elif ipy==nyproc-1:
result0 = pypar.receive(source)
result1=concatenate((result0,result),1)

else:
result0 = pypar.receive(source)
result1=concatenate((result0,result),1)
pypar.send(result1, destination)

else
result= pypar.receive(source)
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result= concatenate((result,a))
pypar.send(result,destination)

___________________________________________________________________
Python code to concatenate the result from all processors.

4. Implementing a visualization software in C is time consuming, but it is very simple in

Python. In fact, this is one of the many advantages that makes Python popular. The

outputs for the Python and the C programs are discussed in the next section.

5.6. Visualization

Scientific applications often involve graphic visualization of the results. Professional-

looking graphs need fine tunings of tick-marks on axis, colors and line-styles, etc [7].

Developing a plotting program that gives a professional look to graphs is a challenging

and very time-consuming task for most programming languages. Gnuplot is a popular

and easy to use open-source plotting program. It is a portable command-line driven

interactive data and function plotting utility for UNIX and many other platforms. It

supports many different types of plots in both 2D and 3D. It can draw lines, points,

boxes, contours, vector fields, surfaces etc. It also supports various specialized plot types

[16].

By interfacing Python to Gnuplot, we can easily design a visualization software for

data files or mathematical functions. In the 2D PDE Python program, we directly import

Gnuplot package to the python code, and display the results, which are actually 3D data

volumes. Some of the results are shown in Figure 5.6.
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For comparison, we also developed a separate Python script, which is an interface for

Gnuplot to plot the result of the C program designed using MPI. In this script, it reads the

results of the C program from a disk file; then, it initiates the Gnuplot to plot the result.

Some of the C program results are shown in Figure 5.7. They are exactly the same as the

corresponding results shown in Figure 5.6. Therefore, both the Python and C codes

produce the same results, but the implementation using Python is much simpler.
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a b

c d

e f

Figure 5.6. Numerical results of the 2D PDE implemented using Python, where a)
to f) are the solution at t = 0.0, 0.6s, 1.2s, 1.8s, 3.2s, 4.6s, respectively.
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a b

c d

e f

Figure 5.7. Numerical results of the 2D PDE implemented in C using MPI, where
(a) to (f) are the solutions at t = 0.0, 0.6s, 1.2s, 1.8s, 3.2s, 4.6s, respectively.
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CHAPTER VI

EXTENDING PYTHON WITH C FOR SCIENTIFIC COMPUTATION

In Chapter IV and Chapter V, we have implemented the parallel software for the 1D

and 2D partial differential wave equations using Python and C separately. However, C is

optimized for speed of execution, but a C program is complicated to develop, especially

in parallel implementation. Python is optimized for speed of development, but the

execution of a numerical computation software developed in Python is much slower.

In this chapter, we are going to optimize the program by combing Python and C

together. Most languages offer the possibility to call functions written in other languages.

In Python, this is a particularly simple and smooth process, since Python was initially

designed for integration with C and C++. Integration of Python with C or C++ codes

requires a communication layer, called a wrapper. The integration includes: 1) migration

of slow code; 2) accessing to the existing numerical codes. In both cases, we want to

benefit from using Python for non-numerical tasks. In most scientific computing

programs, only a small part of the total code is CPU time intensive. Writing a scientific

computing application in Python and moving CPU-time critical parts to a compiled

language like C can take advantages of both languages [7]. As an example, we will repeat

the implementation of the software to solve the 2D PDE.
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Calling a function written in a compiled language from Python is not a trivial task. In

Python, each variable is an object, it does not have a specific type. However, in a

compiled language, each variable can only hold one type, like int, float etc in the C

language. It needs a wrapper as the interface between a language with strong typing like

C and dynamically typed language like Python. There are rules available for sending

variables between Python and C [7]. A wrapper function, written in C, typically takes two

arguments, self and args, where self only deals with instance methods, while args holds a

tuple of the arguments sent from Python. Writing wrapper functions requires knowledge

of how Python objects are manipulated in a C code. Fortunately, when combining Python

with C, there is no need to concern about different storage schemes. In the next section,

we are going to discuss the issues in writing the wrapper in C.

6.1. Implementing a C wrapper

It is quite easy to add new built-in modules to Python when one knows how to

program in C. Such extending modules can do two things that can’t be done directly in

Python: they can implement new built-in object types, and they can call C library

functions and initialize system calls [4]. The structure of an extending file usually

contains the following parts:

• The functions that make up the module

• A method table that lists the functions to be called from Python

• The module’s initialization function
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In our extended program, we convert the computational part to C from Python in a

file named cloops.c, where, we create a function stencil_pde, which is the accessing point

from Python, and it gives the complete control of all details of the Python-C interface.

Head files are needed to access the Python and NumPy C API in our extension

module. Since Python can contain some pre-processing definitions that may affect the

standard headers on some system, it is usually required to include the Python.h in the first

line of the C file cloops.c. To make Numpy arrays available to an extension module in C,

it must include the header file arrayobject.h in the C function.

The function stencil_pde provides straightforward translation from the argument list

in Python to the arguments passed to the C function. It first uses PyArg_ParseTuple

function to parse arguments and extract the individual variables, then proceeds

computations and returns the results to the Python caller.

Method table lists all the C functions to be called from Python. Names in the table

become muddle attribute names that Python code uses to call the C function. Pointers in

this table are used by interpreter to dispatch C function calls.

Initialization function is provided by C function cloops.c. Once initialized, calls from

Python are routed directly to the C function through the method table’s function pointer.

The pseudo-code of cloops.c is showed as follows, where stencil_pde(…) is the

function which can be called from Python directly.

Header file
Method function:
static PyObject *stencil_pde(PyObject *self, PyObject *args)
{
define variables
parse the input arguments coming from the Python program
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using PyArg_ParseTuple(args,"O!O!O!dd:stencil_pde",
&PyArray_Type,&u_array,
&PyArray_Type,&um_array,
&PyArray_Type,&up_array,
&Cx2,&Cy2))

get array lenth nx and ny
let direct access to the data as 1D array
u=(double*)u_array->data;
um=(double*)um_array->data;
up=(double*)up_array->data;

define offset
calculate the result
return to Python caller

}

The method table
- it lists the functions that should be callable from Python:
static PyMethodDef MethodTable[] = {

{"stencil_pde", stencil_pde, METH_VARARGS },
{NULL, NULL} /* required ending of the method table */
};

Initialization function
void initcloops(void)
{

PyObject *m = Py_InitModule("cloops", MethodTable);
import_array() /*which is required for NumPy initialization */

}

Figure 6.1. A pseudo code for the computation intensive core extended in C.

6.2. Compiling and linking

Compiling and linking are the two important steps to do before we can use the

extension. Here, we use a sh file to create a .so file cloops.so that Python can

automatically find. The sh file is given in the following:

#!/bin/sh -x 
# build the C extensions modules cloops
# from cloops.c

root=`python -c 'import sys; print sys.prefix'`
ver=`python -c 'import sys; print sys.version[:3]'`
module=cloops
gcc -O3 -g -I$root/include/python$ver \

-I$/home/directory \
-c $module.c -o $module.o

gcc -shared -o $module.so $module.o

# test the module:
python -c "import $module; print dir($module)"
if [ $? -ne 0 ]; then

echo "Unsuccessful build of $module"
exit

fi

Figure 6.2. A sh file to compile the C file and link it with the Python file.
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6.3. Calling a C function from Python

To use the C function stencil_pde inside a Python file, only two lines of code given

below are needed comparing to the original Python code in chapter V:

from cloops import stencil_pde

stencil_pde(u,um,up, …)

The pseudo python code that extends the C function is shown below.

Import useful functions
...
from cloops import stencil_pde
...

Define the number of nodes nx,ny
define the number of processors Np, and in x , y directions Npx,Npy
Divide the work to the processors,

each processor contains x_sml=nx/Npx nodes in x direction
each processor contains y_sml=ny/Npy nodes in y direction

Allocate enough memory, each processor can hold (x_sml+2)*(y_sml+2) nodes
Define function exchmsg(), which changes data in ghost layer

t=0

Set Initial condition: u[ ji yx , ]=
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e , i=0,…,x_sml+1, j=0,…,y_sml+1

Set the boundary condition

Compute the value of one time step before t=0 as um
while t<t_stop

call exchmsg()
update all inner point:

using equation (5.8) for i=1,…,x_sml, j=1,…,y_sml
call stencil_pde(u_loc,um_loc,up_loc,Cx2,Cy2) to calculate the result

store the result to file
plot result
update the time step t=t+dt

Figure 6.3. The pseudo Python code with C extension to solve the 2D PDE.

We can see that in this code, only the two blue lines are different with Figure 5.5.

6.4. Run time comparison

As we know, interpreted languages do not produce efficiency for computation. Pure

Python code is very slow for scientific computing, but when the Python code extends
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with C, the execution speed increase significantly. Table 1 is the running time

comparison that is spent to compute the 2-D Partial differential equation (including

memory allocation, array computations).

run 100 times run 500 times

Python 92.99 sec. 431.42 sec.

C 0.66 sec. 3.32 sec.

Python extend with C 3.53 sec. 17.05 sec.

Table 1. Run time comparison

From the table, it is fair to say that the Python programming language is not suitable

for scientific computation applications; however, computing applications do not only

includes the computing part, there are lot of work to do. Using Python extending with C,

the computing speed is 5 times slower than a pure C code. However, the design of the

application is often much faster than what is accomplished purely in C. The components

of user interface, report generation, and management of the entire application in Python

make it fast and convenient to modify and test codes. In addition, the non-numerical parts

in Python are faster than a C code does because Python has many extending modules to

do that. It makes the execution time of the whole application written in Python with C

extension very close to a pure C code.
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CHAPTER VII

CONCLUSIONS

With the numerous library modules, visualization and extending capabilities, Python

can be used in large scientific computing applications. In this thesis we have not only

showed that Python is an easy and powerful language, but also discussed two ways to

mix Python and C to solve the complicated scientific computation problems.

First we showed that by employing Python, the complicated work to convert a serial

code to a parallel one is significantly simplified in Chapter III using the example of ray

equation. In this example, we use a distributed memory computer to compute the ray

equations. This gives a typical example that shows the applicability to combine python

and C to design parallel software when no data communication is needed.

Then in Chapter IV and V, we discussed the Python’s advantages by comparing it

with C in solving partial differential wave equations. We first investigated the simple

one-dimensional partial differential wave equation in Chapter IV. In chapter V, we

extend the discussion to the more complicated two-dimensional PDE in detail.

Since Python is an interpreted language, the program written in Python executes

much slower than a C code. Finally in Chapter VI, we demonstrated that combining
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Python and C offers a powerful and efficient approach to solve complicated scientific

computing problems in parallel.

Parallel computing is a huge topic, there are a lot of challenging problems waiting for

us to solve. This thesis uses only very simple cases by solving the ray equation and

partial differential wave equations on multiprocessors using data partition method. In the

future, we will concentrate on the distributed system by using function and mixed

partitions.
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