
A PROTOCOL STACK FOR ADAPTABLE AND

SECURE COMMUNICATIONS

By

MADHUKAR ALLI

Master of Science in Computer Science Dept

Oklahoma State University

Stillwater, Oklahoma

2006

Submitted to the faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

May 2006

ii

A PROTOCOL STACK FOR ADAPTABLE AND

SECURE COMMUNICATIONS

 Thesis Approved:

 Dr. JOHNSON P THOMAS

Thesis Advisor

 Dr. JOHN P CHANDLER

 Dr. DEBAO CHEN

 Dr. GORDON EMSLIE

 Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

At this point I would like to express my sincere appreciation to my advisor, Dr.

Johnson P. Thomas for his continuous supervision, constructive guidance, inspiration,

motivation throughout the course of my thesis work. I would also like to express my

gratitude to Dr. Chandler, Dr. Debao Chen and Dr. GE Hedrick for their invaluable

suggestions and support.

 I thank Oklahoma State University for providing all the facilities needed for the

research. I would like to express my sincere thanks to the System Managers and the

Information Technology Division Team for their timely cooperation. I thank all my

friends here at Oklahoma State University and elsewhere for their support and

encouragement when I needed them the most.

I am ever thankful to my parents and my family for their continuous support and

encouragement.

iv

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION...01

1.1 Variables...02
1.2 Advantages of adaptability ..04

II PRELIMINARIES AND REVIEW...06

 2.1 Configuration Methods..06

 2.2 Control of Adaptation..07

 2.3 Run Time Environment..08

 2.4 Related Work...09

 2.4.1 System V STREAM..09

 2.4.2 X-Kernel...11

 2.4.3 Adaptive System Execution..13

 2.4.4 The DaCaPo Project..14

 2.4.5 DRoPS..15

III APPROACH..16

 3.1 Transport Layer Protocols..19

 3.1.1 UDP..19

 3.1.2 TDP………………………………………………………………….....19

 3.1.3 SCTP…………………………………………………………………...19

 3.1.4 Added Security Layer………………………………………………….21

 3.2 Adaptation Issues...21

 3.2.1 ANN as heuristic in Adaptation Strategy...22

 3.3.2 Activation Function…………………………………………....……....23

 3.3.2 Multi Layer Perceptron...……………………………………………....24

 3.3 Contributions of the thesis..…………...………………………………..........26

IV IMPLEMENTATION..27

 4.1 Operating Environment and Libraries..27

 4.2 Adaptation...29

v

 4.3 Traffic Shaping and Feedback…….………...………………………………. 30

 4.4 File type and Security requirements. ...31

 4.5 Synchronization between Client & Server………………………………….. 32

 4.5.1 Packet Sequence Number..……………………………………………. 34

 4.6 Network Monitoring …………………………………………………………34

 4.7 Overheads involved in the system……………………………………………35

V RESULTS…….………………………………………………………………….36

 5.1 Throughput Measurement..…………………………………………………...37

 5.1.1 Under Deteriorating network conditions……………...……………….37

 5.1.2 Under Random network conditions…...……………………………….42

 5.1.3 With Security………………………….……………………………….45

 5.2 Packet Loss readings…....…………………………………………………....48

VI CONCLUSION………………………………………………………………….51

 6.1 Future Work………………………………………………………………….52

REFERENCES…………………………………………………………………………53

vi

LIST OF FIGURES

Figure Page

1. Different Execution environments ……………………………………………......9

2. System V STREAMS…………………………………………………………....10

3. An Example Protocol graph and Session Objects …………………………….....12

4. Example Protocol graph of the three layers in DaCaPo………………………....14

5. Proposed Approach……………………..…………………………..……………17

6. An example Feed Forward neural network…..23

7. Sigmoid Function ……………………………………………..............................24

8. Interface with kernel functions……………………………………..................…28

9. Overview of the system ……………………………..…29

10. Client – Server Synchronization ………………………………...........................33

11. Throughput graph for deteriorating network conditions for Video Files………..37

12. Throughput graph for deteriorating network conditions for Audio Files …….…39

13. Throughput graph for deteriorating network conditions for Text Files. ..…….…41

14. Throughput graph for random network conditions for Video Files …………..…43

15. Throughput graph for random network conditions for Audio Files ……....…….44

16. Throughput graph for random network conditions for Text Files ……………....45

17. Throughput graph for random network conditions with conditional security…...46

18. Throughput graph for Video with security provided throughout the session…....48

vii

19. Loss graph for a Video File……………………………………………...………49

20. Packet loss graph for an Audio File………………………...........................……50

viii

LIST OF TABLES

Table Page

1. Throughput readings for deteriorating n/w conditions for Video Files….............36

2. Throughput readings for deteriorating n/w conditions for Audio Files….............39

3. Throughput readings for deteriorating n/w conditions for Audio Files….............40

4. Throughput readings for random n/w conditions for Video Files……..........…...42

5. Throughput readings for random n/w conditions for Audio Files……...........…..43

6. Throughput readings for random network conditions for Text Files…...........…..44

7. Readings for random n/w conditions with conditional Security……...........…….46

8. Readings for random n/w conditions for Video files with security…..........…….47

1

CHAPTER I

INTRODUCTION

This proposal presents a multiple protocol stack approach to the problem of meeting QoS

and security requirements and utilizing the network conditions to the maximum. The

main objective of this approach is to demonstrate the improvement in QoS and/or

security in having a protocol stack configured dynamically from a set of protocols as

opposed to a static stack which does not change during the session while transferring

packets over a congested network.

 Using a single protocol stack for the entire communication session is the process most

widely used in networking by user level applications. The protocol stack is generally

decided statically by the application depending on its requirements and it continues to use

it for the entire session. A common assumption traditionally made, while selecting a

network protocol by an application is that:

The network conditions support the selected protocol for the entire duration of the

communication session and hence it will be well suited and that there is no significant

over or under utilization of the bandwidth in using that protocol.

However a network may have:

• Highly dynamic network topology: The network is highly dynamic. The

conditions of network keep changing due to the addition or deletion of new nodes

2

 and servers, the neighbor relationship is only for a short time and is renewed after

 every few time frames.

• Varying network Load: Presence of various nodes each with varying traffic

requirements cause the load on the network to be highly fluctuating.

Hence a statically selected protocol may not be best suited given the varying network

conditions.

1.1 Variables

Some of the basic variables involved in a network communication are as follows:

• Bandwidth: It is the amount of data that can be transmitted in a fixed amount of

time over the network. For digital devices and in networking, the bandwidth is

usually expressed in bits per second (bps) or bytes per second. For analog devices,

the bandwidth is expressed in cycles per second, or Hertz (Hz).

Measurement of bandwidth:

The following algorithms have been used in determining the bandwidth:

a) Pathchar Algorithm: This algorithm works by sending packets of

various sizes starting from 64 bytes to the MTU (maximum transfer

unit) of the link layer and measuring their round trip times, correlating

the round trip times (RTT) with packet sizes to calculate bandwidth. It

increases the packet size by units of 32 bytes.

b) Packet Pair Algorithm: This algorithm relies on the fact that if two

packets are queued next to each other at a bottleneck link, then they

will exit the link with a separation time called “bottleneck separation”.

The algorithm uses the two packets of the same size as different sizes

3

may have different speeds. By measuring the bottleneck separation the

algorithm calculates the available bandwidth.

Other possible algorithms used are Packet Pair Filtering and Receiver and

Sender Based Packet Pair algorithms.

• Packet Loss: It indicates the number of packets being dropped or lost by the

network which is kept track of by attaching a sequence number at the server side

to each packet being relayed and by checking the same at the client side. The

Client keeps track of the sequence number of the previous packet Seqprev and

compares it with the current packet received. Hence the total packet loss is given

by:

∑ = == −−=
toNi previcuri SeqSeqPktLoss

0
1 , where N is the total number of

packets sent by the server, cur and prev denote sequence number of the

latest and previous packet received respectively.

• Latency: In a packet switched network it indicates the delay in either a one way

trip (source sending a packet and it being received at the receiving end) or a round

trip (that is the sender sending a packet till it receives an acknowledgement back

for the packet).

• QoS parameters: These include the following:

a) Security provided: We have provided with three levels of security to

the network communications, in terms of the strength of security

provided. The RSA Security algorithm has been used with 32 bit

4

encryption, and has been implemented in two schemes – Shared key

and Public / Private key.

b) Reliability: It indicates how much guarantee we provide for the

packets to reach the destination, within a time frame. It has been

categorized in to three levels again, as follows: No guarantee – when

using UDP protocol, acknowledgments and guaranteed transfer using

TCP and best guarantee provided by SCTP (Stream control transfer

protocol).

c) QoP: Quality of perception is a term used to measure how the user at

client side perceives a video or an audio transmission. For better QoP

it is observed that usage of UDP (connection less) protocol over TCP

and SCTP gives better perception. Hence the selection of a protocol

from the stack is also in part determined by the type of the file being

transferred.

1.2 Advantages of adaptability - Protocol Stack

The most important goal in a network communication is to achieve the maximum

throughput possible while maintaining the minimum QoS and/or security requirement for

that session. While a statically selected protocol may well be suited for the initial

conditions of the network that prevail like available bandwidth, less traffic and

henceforth, but it might not be the best choice for delivering the required quality of

service as the network conditions change dynamically. As a result switching over to a

protocol from the stack is preferable, such that the required quality of service is

5

maintained and the new protocol causes less traffic if the network is congested or

provides better QoS if the network bandwidth is underutilized.

To study the effect of such an adaptation we have done a real implementation using a

network of about four computers connected via a switch and the results were obtained by

shaping the traffic in that network as required. We have considered delay of the network

and the network bandwidth as our main parameters which play an important role in

determining the state of any network. These two parameters are measured from the

network using ping command and a network bandwidth measurement tool called Iperf.

We realize that different types of file have different transmission requirements and hence

have considered the three major file types: Text files, Audio files, and Video files. There

is a different adaptation policy for each type of file, suitable to their transfer using a

different neural network. Provision for giving security as a QoS or as a definite

requirement has been provided.

Following this introduction, is chapter 3 that explains the preliminaries and review of the

previous work related to the use of protocol stacks in different areas. Chapter 4 explains

our approach including the protocols used, adaptation issues. Chapter 5 provides

implementation details which include the operating environment, libraries used, client

server synchronization, feedback from the network and finally the overheads involved in

the system. Chapter 6 discusses the results obtained and Chapter 7 summarizes the main

conclusion of this research and scope present for future work in this area.

6

CHAPTER II

PRELIMINARIES AND REVIEW

The problem of bandwidth utilization has been addressed in many ways, most popular of

which are by developing multiple variations of TCP, i.e. TCP – Vegas, TCP – Reno, TCP

– SACK. A detailed modeling technique to mimic the structure of TCP source and the

interactions a source has with the network has been proposed in [3] using network

simulator software – ns2. Although the variants of the TCP exist, most of the previous

work has been done using only one of the variants for the entire transmission session.

2.1 Configuration Methods

The method to generate a configurable protocol has a significant effect on its

performance and its flexibility. The generation methods are classified as online or offline

methods. The online configuration occurs during the execution of an application. It may

be performed manually through an Application Processing Interface – API or

automatically. This approach requires negotiating of protocol functionality between the

participating hosts and server.

Offline configuration occurs before the execution of the application starts. Since

generation takes place before the application is run, the future network conditions cannot

be taken in to account. It can be put in to effect by having predetermined time slots for

7

each protocol and making a switch as the slot ends. The approach would have to guess

when the network might get congested or not and switch accordingly.

Unlike the offline approach, the online configuration is a time critical event, and the time

required to send a request for a connection and its processing should not be time

consuming and may not pose any obstructive overheads. In both the cases the manual

specification occurs under the direct control of an application or the user, through an

interface which can be a command line utility or a GUI based interaction. This proposal

concentrates on automatic online switching, which is performed without the interaction of

the user. Such a system would accept a set of QoS requirements and an appropriate

protocol is derived dynamically, using a heuristics approach which could be an analytical

approach or a trained neural network. Apart from QoS requirements the selection of the

functionality is also effected by available host resources and existing network conditions.

2.2 Control of adaptation

Many aspects of a communication system may be tuned at runtime. These include

parameters used internally by the protocol’s mechanism such as scheduling of data in

transmission queues, window sizes, maximum transfer units etc. Parameters effecting

how the protocol works will be controlled by its mechanism itself, although there exists a

scope for some user level customization. These include maximum transfer units (MTU),

various flow controls and number of connections such as multicast or unicast addresses

and their binding.

Manual control is the most straightforward approach to exert control over the protocol

selection, though this has a major drawback. It implies that end user has an up to date

8

feedback of current network conditions and also has a detailed knowledge of the

underlying functions calls or APIs to make the desired change. Also since the

configuration takes place at the user end, the user or the application is aware of the

appropriate function calls. Generally most users would not want to be concerned with

such specification and manipulation of these details. Given these facts we have chosen to

make the protocol configuration automated controlled by a selection engine. The runtime

system makes the decision based on a set of QoS parameters, which identify the user

requirements, and network characteristics. Some heuristic control mechanism is then used

to perform the reconfiguration. We have chosen a multi-layer neural network based

approach as our heuristic mechanism. The neural network unit takes feedback from the

network and required QoS as input and determines the configuration upon being called

by the selection engine.

2.3 Run time Environment

The execution environment can reside in either user space or kernel space, which has

been a source of debate. Embedding protocols and reconfiguration capabilities in kernel

space will lead us to what is known as a Monolithic Kernel, which includes all operating

system functionality and other features embedded in to single large executable kernel.

The other approach is that of Micro kernel, which is a core functional kernel on to which

other services can be added.

Most modern operating systems such as Windows, Solaris, fall between these two

approaches with moderate size kernels into which extra features can be added with the

9

help of libraries. The different approaches to implementing protocol in user or kernel

space have been depicted in the below shown figure:

Figure 1 Different Execution environments.

2.4 Related Work

Some of the work related to configurable communication systems:

2.4.1 System V STREAM

This architecture was conceptualized to support the composition of various UNIX

terminal drivers [4]. It was further extended to include inter-process

communication (IPC) via multiplexer drivers. The functional components of the

STREAM consist of: a) STREAM drivers: The driver accepts incoming messages

Application

Protocol

code

Application
Application

 +

Protocol code
 Protocol

 Server

 N/w

 Interface

User Space

Kernel Space

a) Traditional

 approach

b) Protocol Server

 approach

c) Compiled

 approach

Network

10

from the network and passes them upstream to the head of the STREAM. Also the

drivers pass the segments received from the STREAM module to the network.

b) STREAM heads: The head breaks the application data into discrete messages

that are passed down to the one or more STREAM modules to the drivers.

c) STREAM modules: Objects in STREAM are linked to others by a pair of

queues used to exchange control information and data. A module performs

processing on the data in the queues forwards the results on to the next module.

Modules and multiplexers can be inserted or removed between the head and the driver by

offering Push and Pop operations to the application. The STREAM approach was not

found to be the best choice for high entropy configurations which required many Push

and Pop operations from the stack. Further work on the STREAMs approach has been

done which include implementation of shared memory and multiprocessing techniques.

Figure 2 System V STREAMS

2.4.2 X-Kernel

Applications

Stream

Module

Stream Head

 Driver Driver
Network

11

The x-kernel is an object-based framework for implementing network protocols. It

defines an interface that protocols use to invoke operations on one another (i.e., to send a

message to and receive a message from an adjacent protocol) and a collection of libraries

for manipulating messages, participant addresses, events, associative memory tables

(maps), threads, and so on [7]. Within this model, a communication system is constructed

from functional units called microprotocols. These are mechanisms which implement

entire protocol layers such as TCP, UDP, and IP. Since these protocols are embedded in

to the kernel a kernel programmer configures an instance of x-kernel by specifying a

protocol graph using a graphical editor which defines the component functionality and

relations among the selected protocol layers. Like traditional protocols these micro

protocols communicate among themselves by adding headers to messages and de-

multiplexing them at the receiver end.

Since the kernel and the protocols exist as a core program, once the protocols are

configured no modifications can be made to its functionality. Though the presence of

objects called virtual microprotocols enables customization to a certain limited level.

Virtual protocols do not have any headers and in most cases do not have a peer at the

other end of the communication. An interaction between microprotocols and virtual

protocols has been shown in Figure 3.

12

 Figure 3 An Example Protocol graph and Session Objects [8]

X-kernel may be run in the two modes:

a) Operating system on its own: In this mode the X-kernel supports message based

process architecture, which means that it associates processes with messages, and allows

them to escort the incoming or outgoing messages through the appropriate protocol

graph. The kernel process is handed back to the kernel process pool, where it may be

reused to escort another incoming message.

b) User space protocol: In this mode the X-kernel adheres to the process architecture of

the host operating system deploying it.

2.4.3 Adaptive Service Execution (ASX)

13

The ASX aims at utilizing structural parallelism to reduce communication

overheads in shared memory multiprocessor platforms. The framework has been tested in

distributed applications that contain multiple network services executing concurrently in

one or more processor threads. This framework consists of architecturally independent

collection of communication components created in an object oriented methodology,

giving significance to inheritance. The protocol generation phase takes care of protocol

configuration and is divided into the following phases:

a) Protocol machine specification: This phase deals with the collection of QoS

requirements which might be passed on to the system during transport system

boot time or at run time as requests.

b) Protocol machine configuration: The configuration phase converts the QoS

requirements into a machine independent protocol graph.

c) Protocol machine instantiation: This phase converts the machine independent

configurations to machine dependent executables. The machine as mentioned

earlier might be a shared memory multiprocessor.

While ASX defines the framework for configurable protocols the internals of ASX

require either System V Streams or a X-kernel in order to be implemented. In the event of

reconfiguration the end points are notified of configuration changes through separate

signaling channels, which enables ASX to experiment with different protocol

architectures.

2.4.4 The DaCaPo Project

14

 This Dynamic Configuration of Protocols projects tries to configure the optimal

network protocol depending on the offered network services, the requirements of the

application and the available processing power. The project divides the communication

system in to three discrete sub systems which are Application layer, Communication

layer and Transport layer designated as A, C and T respectively and the detailed

interactions are given in [6].

Application exists at layer A, a transport system at level T, and a communication system

at level C as shown in figure 4.

Figure 4 Example Protocol graph of the three layers in DaCaPo

Protocol Configuration in DaCaPo: A configuration process selects the most suitable

functionality for the communication layer C, depending on the application requirements

and available services in transport layer T. The project has a proprietary language L, used

 Application

 Communication

 Transport

Protocol

function

Dependency

AC - Interface

CT - Interface

15

to specify the QoS parameters, the services provided by transport layer and the user

requirements. The DaCaPo protocols are more tailored to application needs and may be

adapted to dynamically changing network and have potential for handling high entropy

situations. Application requirements are specified in terms of tuples using the language L.

Initial and run time configurations at all the endpoints of the communication are managed

by a system called CoRA

Each DaCaPo application which includes all configured protocols is mapped on to a

single process and is implemented in message based protocol architecture. Additionally

the run time system is distinguished in three stages: Work, Lift, Monitor corresponding to

work done during configuration of the protocol, escorting any packets arriving at AC or

CT boundaries and monitoring the properties of the protocols.

2.4.5 DRoPS

This framework provides an adaptable communication system based on a suite of micro

protocols collectively called Reading Adaptable Protocol (RAP) [5]. It has a kernel

based architecture where the protocols and the adaptation system are implemented in the

kernel space. Hence the applications are forced to call these services through a system

call interface. In our approach we are implementing the automated adaptation mechanism

at application level, so that if in case the application needs to, it can modify the

adaptation mechanism and experiment for better results.

16

CHAPTER III

APPROACH

The thesis proposes constructing a framework that is optimized for performance and is

not based on a heavily restricted protocol model, without suffering from poor

performance due to the operating environment. The idea here is to have a set of protocols

in the kernel level considered as a stack of protocols and be able to dynamically select the

best suited protocol from it depending on the current network conditions and security

requirements, which is done by continuously measuring the network characteristics. The

dynamic selection of the protocol (or adaptation) is done with the help of a neural

network which is trained to make the best choice in similar situations.

17

Figure 5 Our Approach

The advantages of this approach are:

a) Integration of protocol mechanism and operating system

 The research done by current techniques are based on application or protocol server

mechanisms. However we aim to have a system with certain level of integration of the

protocols in to the operating systems kernel. The advantages of such integration are low

latency communication, compatibility, and less overhead.

b) Easily manageable protocol stack

 Application / User

 Protocol Stack in the Kernel

 Adaptation Mechanism -

Feed Forward - Neural Network

Feedback from the

Network

A Dynamic

Network

QoS, Security Requirements

Protocol Selection

18

 We are developing a flexible protocol stack where new mechanisms may be enabled,

disabled or removed. Since the management of protocols in the stack, is done at

application level we have a flexible system which can be modified without interrupting

the system.

c) Portability

 We have used the standard BSD socket library based bi-directional data stream sockets

and hence the code at the application can be ported to any of the flavors of UNIX /

LINUX operating systems having the standard protocols suite libraries. The SCTP library

is an add-on which can be added as a kernel module before initiating the framework. The

protocols are embedded in the kernel including the SCTP kernel patch and the

management of the protocols is done the user level.

d) Automation of protocol adaptation

Previous attempts at automation of the protocol adaptation policies have been done in

DRoPS[5] and in the DaCaPo project[6]. The DaCaPo project considers a search based

model and the DRoPS project has used neural network for the adaptation. The overheads

involved in the search based model consume a lot of processing power and hence prove

to be not a suitable method. The DRoPS project uses a Protocol specification language

APSL and an APSL parser which parses over the protocol configuration and resources. In

this thesis we realize that the protocol configuration data is already available internally to

the system, and the network parameters can be provided and measured at run time

directly. Hence, the need of a protocol/resource configuration language and the parser is

not required in our approach thus reducing the processing time and the time in which an

adaptation decision can be made.

19

3.1 The transport layer protocols

In this section we will look at the transport layer protocols which have been used in our

stack model. The protocols selected were:

3.1.1 User Datagram Protocol – UDP

It is most widely used non–connection oriented protocol in today’s networks. It offers

a minimal transport service – a non guaranteed datagram delivery. UDP is almost a

null protocol as the only services it provides over IP are checksum, and hence if the

application if needs be has to take care of issues such as retransmission for reliable

delivery, packetization and reassembly, flow control, congestion avoidance.

3.1.2 Transmission Control Protocol – TCP

It is a connection oriented, reliable-delivery byte-stream transport layer

communication protocol, which is the most widely used protocol on the internet

today. It uses three-way handshake to establish connections with a host and keeps a

count of each packet by having a sequence number for them and by expecting an

acknowledgement for each packet sent. No matter what the particular application,

TCP almost always operates full-duplex. All the scheduling and stream control

algorithms operate in both directions, in an almost completely independent manner. It

is more useful to think of a TCP session as two independent byte streams, traveling in

opposite directions.

3.1.3 Stream Control Transmission Protocol – SCTP

SCTP is a reliable transport protocol operating on top of a connectionless packet

network such as IP much like TCP. It was designed by the IETF Signaling Transport

20

(SIGTRAN) working group [7]. Though it is similar to TCP, in terms of ensuring

reliable, in-sequence delivery of messages with congestion control, while TCP is

stream or byte oriented SCTP deals with framed messages. The need for the

development of SCTP was realized by the SIGTRAN group whose aim was to create

an IP complement to the telephone switching's SS7 network. SCTP was designed to

address the following two major issues:

i) Head-of-line blocking – This is a problem where sending independent

messages over an order-preserving TCP connection causes delivery of

messages sent later to be delayed within a receiver's transport layer buffers

until an earlier lost or delayed message is retransmitted and arrives. These

delayed messages often establish telephone calls and such delay of critical

messages caused critical call control timers to expire thus resulting in

undesirable call setup failures.

ii) Multihoming – It is the capability where a host can have multiple points

of attachment to the Internet, for redundancy purposes. The protocol

mechanism then does not want to wait for a routing convergence (often on

the order of minutes) to communicate critical messages to its peer

communication endpoint. For call control signaling, such delay is

unacceptable when an alternate available path exists. A TCP connection

only binds a single point of attachment at either end point.

SCTP incorporates both these mechanisms in its routing policies. Also because of its

multihoming capabilities, four-way handshake connection establishment technique

21

(compared to three-way used by TCP), and 32 bit checksums against TCP’s 16 bit, SCTP

offers a more reliable and robust communication when compared to TCP.

3.1.4 Added security layer

Apart from the above three protocols, we have added an optional layer of security to all

the three protocols to have a wider range of protocols in the stack, meeting the security

requirement of the user or the application. Encryption and decryption of the data is done

using DES algorithm, which are present as a built in function call in the crypt.h library.

3.2 Adaptation issues

The term adaptation here refers to selection and configuration of a more suitable protocol

than the present, given the current network conditions and user security requirements. As

discussed earlier the two ways to approach this issue is either by manual adaptation or by

automating it. Manual adaptation allows the application the complete control over the

functionality of the communication system. This implies that the application needs to be

aware of protocol specific details and of the API calls to do so. This will put an extra

burden and requires every application to take care of the adaptation policies which

increases the complexity of the application and reduces its efficiency. It should also be

noted that the application developers might not have hands on information about the

adaptation strategies. Given these drawbacks the automation of the adaptation strategy

using a heuristic approach is more suitable.

22

3.2.1 Artificial Neural network as the heuristic in the adaptation strategy

An Artificial Neural Network (ANN) is an information processing paradigm which is

inspired and designed in the way the biological nervous systems in the brain processes

information and learns. Our brain is composed of a large number of highly interconnected

processing elements (neurons) in the range of 10
10
, working in unison to solve specific

problems. ANNs like people, learn by example and need training to take any correct

decision. An ANN is configured for a specific application, such as pattern recognition or

data classification, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurons. The most

fundamental difference between brain and computer is that today's computers operate

primarily sequentially, or with a small amount of parallelism while human brains are

massively parallel. The three key concepts involved here are inputs to the neuron,

weights present at each connection which determine how much effect the input will have

on that connection, and the activation function which indicates how an artificial neuron

responds to an input. The activation function limits the amplitude of output signal based

on the sum of all the weighted inputs arriving at the neuron.

23

Figure 6 An example Feed Forward neural network.

3.2.2 Activation function: This function’s primary goal is to introduce nonlinearity in to

the system. The activation function is useful when the neural network contains some

hidden units. Since we are incorporating a hidden layer in our design, choosing a good

activation function is important which makes it more powerful than a single perceptron

with linear inputs and outputs. For backpropagation, the activation function must be

differentiable that is it should be continuous as we need to adjust weights at each input

proportional to the effect the input had in the output generated. Sigmoidal functions such

as tangent-hyperbolic and the Gaussian function are the most common choices.

A simple continuous function is shown below in the figure:

I1

I2

I3

])*([∑ WiiF

I

N

P

U

T

S])*([∑ WiiF

])*[(∑ WiiF

Output

24

Figure 7 Sigmoid Function

The Sigmoid function we have used is:

Y = 1 / (1+ e
-x
) where x is the net input to the perceptron and Y is the output of the unit,

which is fed as input to the next layer neurons.

3.2.3 Multi Layer Perceptron (MLP) model

Perceptron Learning Rule: In a single-layer network, each neuron adjusts its weights

according to what output was expected of it and the weight adjustment of a neuron i is

given by:

δii xW =∆ , where δ = desired output – actual output, W is an array of weights and x is

an array of inputs at each neuron.

The Perceptron Learning Rule is not useful when we extend the network to multiple

layers to account for non-linearly separable problems. This is because adjusting a weight

at one neuron will have an effect on the output of all the subsequent neurons and hence

on the overall output of the system. So when we use a sigmoid activation function the

error function is linked to the derivative of the activation function.

Weight adjustment in a neuron i is mathematically given as follows:

∑
=

=∆
P

p

pipxPWi
1

/ δη

25

This equation is made more iteratively friendly, when it is broken up as follows:

δη ii xW =∆ , where))(1(pppp ydyy −−=δ

here, η is the learning rate, yp and dp corresponds to the actual output and the desired

output. This δ is for the output layer, but in order to adjust weights in the hidden layer we

need to calculate δ for the hidden layers also, which is determined using back

propagation as follows.

For a neuron q in hidden layer p, its δ is given as:

)(),()](1)[()(11 iiqWqxqxq ppppp ++∑−= δδ

Each delta value for hidden layers requires that the delta value for the layer after it be

calculated, hence the delta of layer (p+1) is being used in the above formula. 1+pW (q,i)

represents the weights of all the neurons in layer p+1, connected with the neuron q.

In this thesis we have used a 10 neuron - 3 layer architecture (2-2-6 ANN), where the first

layer takes the parameters from the application as the input, the next layer is an

intermediate- hidden layer and the third layer consists of the six neurons each

representing a particular protocol, is the output for the model. Among the output layer the

neuron whose value is closest to one represents the protocol to be used for the given

inputs. Training of the neural networks was done using a training data which was

composed of three parameters: bandwidth of the network, delay in the network followed

by the desired protocol for that combination. Each neural network is trained by repeatedly

calling a train function certain number of times with the training data, so that the weights

of the neural network connections are adjusted to such a value so that when called by the

program after training with the current parameters the desired protocol is selected.

26

The training data was obtained by observing which protocol performs the best (in terms

of throughput and packet loss) when the two input parameters are set to a different values

and the network is shaped accordingly, covering the possible ranges. The best performing

protocol then was used as the desired protocol in the neural network training data for the

corresponding values of bandwidth and delay.

3.3 Contributions of this thesis

a) Run-time selection and switching of protocols has been proposed while most of

the current systems choose to have statically pre-determined protocol for the

entire communication session.

b) We have added dynamic adaptation control to the communication system such

that the adaptation lies in the user level and the protocols themselves lie in the

kernel level. This allows the user / application to take part in the decision making

part while selecting a protocol.

c) With larger sets of QoS parameters taken from the network and user requirements

the neural networks will be able to take intelligent decisions even if not trained for

that particular scenario.

27

CHAPTER IV

IMPLEMENTATION

4.1 Operating Environment and Libraries

 We have used the LINUX – Fedora Core 3 environment, running 2.6.9 version of the

kernel to write and implement the code. The code was written in C and compiled using

GNU compiler gcc. Header files for the TCP and UDP protocols are provided bundled in

the packet library packet.h. Since SCTP is a relatively new protocol it was installed as a

kernel module provided by the - The Linux Kernel Stream Control Transmission Protocol

(LKSCTP) project and the version used was lksctp-2.6.14-1.0.4. The corresponding

kernel module is loaded every time the system is started using a kernel module program

called - modprobe. More information regarding the installing the SCTP protocol can be

found in [11].

Our system does integration between the user level code and the kernel level functions

using various system calls provided by the Linux environment present in the header files.

While the neural network, selection and reading of the file to be transferred, creating

sequence and protocol numbers etc are done at the user level, the actual socket creation,

send and receive packet functions for different protocols are implemented in the kernel

space which are accessed using system call interfaces.

28

User space

Kernel Space

 Figure 8 Interface with kernel functions.

To provide a security layer over the protocols, a built in library function was used which

does DES encryption on the passed string. The DES algorithm for encryption and

decryption is present as a header file - crypt.h in the Linux environment. With the

addition of the security layer we have a total of six protocols to choose from, as shown in

following figure.

Application Code: File reading /

writing, ANN, Synchronization b/n client

and server, etc.

System call Interface

Kernel Functions: Sockets, Packet

send / receive functions, etc.

29

Figure 9 Overview of the system.

4.2. Adaptation

The neural network is trained to adapt based on prevailing network conditions. Our

training set currently consists of three parameters which are the available bandwidth and

delay reading from the network and the desired protocol.

The feed forward network uses the sigmoid activation function which is Y = 1 / (1+ e
-x
).

The error propagation corresponds to the derivative of the sigmoid function and is given

as follows:

a) At the output layer: =outδ out (1-out) (dout – out)

No Encryption Encryption: DES

Kernel Space

 UDP TCP SCTP

Selection and switching

mechanism

Network

User Space

30

b) At the first neuron in the hidden layer: =1hδ i4*(1-i4)*(W[2][2])*()outδ

c) At the second neuron in the hidden layer: =2hδ i3*(1-i3)*(W[1][2])*()outδ

Where, i4 and i3 represent the net inputs to the first and second neuron in the hidden layer,

dout is the desired output and W [i, l] array represent the weight at i
th
 neuron in the l layer.

The ANN was trained using the data collected by shaping the network conditions to

different bandwidth and delay values and noting the performance of each of the protocol

in such conditions. The best performing protocol was used as the desired protocol for

such conditions.

Adaptation can be done using various techniques. A straight forward adaptation

technique is to use an analytical formula based on the input parameters from the network

for determining the required protocol for such conditions. Another technique employed

by a colleague working under Dr. Thomas was using an Analytical Hierarchical Process

for the decision process. Analytical Hierarchy Process is an effective multi-criteria

decision making process that aids in making a good decision by using set priorities

among all the alternatives, involving several levels of dependent and independent

information.

4.3 Traffic Shaping and Feedback

 Measuring the bandwidth available in the network is a complex task. While much

software exists in the market today, most of them provide us with only an approximation

of the actual bandwidth. We had chosen to use an open-source software called – Iperf,

which gives us an approximation of the achievable bandwidth rather than the measure of

total available bandwidth of the network and hence provides a more accurate bandwidth

31

measurement. Iperf uses no internal bandwidth determination algorithm but rather opens

up multiple socket connections and pumps a lot of packets in to the network and thus

measures the total achievable bandwidth. For shaping the bandwidth we needed to run

multiple instances of iperf on a single or more systems, depending on how much

bandwidth was desired to be shaped.

Iperf generates the bandwidth readings in an interval for which it is set, ranging from a

single second to multiple seconds. To read and input this bandwidth in to our program we

have redirected the output of iperf in to a text file and the program parses the text file to

obtain the last entry among all of the bandwidth values. Also to continuously loop iperf

for updated readings we have made use of the command line option through which we

can specify the number of times we can run it.

For measuring the current delay in the network we are using the system ping command

which reports the delay value in micro seconds. The ping reading is input into the

program by redirecting its results to a text file and then parsing that file, similar to the

method of obtaining bandwidth readings.

4.4 File type and Security requirements

We have considered three different file types: Video, Audio, and Text files. Each of the

file type has a different QoS requirement and the corresponding file transfer performs

better when using specific protocols under certain network conditions; which differ for

each file type under the same network conditions. Hence we trained three neural

networks separately to handle each file type. Transfer of video files requires the highest

throughput which is generally achieved by UDP under most network conditions. It should

32

be noted that UDP starts dropping packets as the network conditions worsen. In case of

text files, it is required to prevent any packet loss from occurring and requiring a high

throughput / bandwidth is not a necessity. Hence transfer of text files is generally done

using connection oriented and reliable TCP protocol or in some cases using HTTP. But

the very slow speed, at which HTTP works, does not make it a good choice for

transferring files. Throughput requirements for Audio files fall in between that of Video

and Text files.

The security requirement is taken from the user at the start of the file transfer and if

required all packets are encrypted before sending them across the network to the client

side. The client determines the security requirement from extracting the protocol number

from the packet and hence does the corresponding decryption of the packet before writing

it in to the file. Provision of security given is to show that the adaptation policy also

works in with variety of protocols, secure or non-secure.

4.5 Synchronization between the Client and the Server

Switching to a different protocol requires both the client and the server to do so at the

same instance which otherwise will lead to client to timeout waiting for packets of a

protocol other than what server is sending. This requires that both client and the server

keep notifying each other of the current protocol they are expecting and the also the type

of the next packet to be transferred. This synchronization was achieved by including

about two bytes of extra data over the packet, which represented the protocol to be used

for the next packet to be sent and also the packet sequence.

33

Figure 10 Client – Server Synchronization.

This figure explains the client – server synchronization, and shows the main events

concerning the protocol synchronization. The port corresponding to each protocol is

created initially and is sustained till the end of each complete file transfer session. If the

client recognizes that there is change of protocol for the next packet onwards it switches

over to the port corresponding to that particular protocol and listens on that port for

incoming packets.

4.5.1 Packet Sequence number

We have added a sequence number on top of every packet exclusively for tracking every

transmitted packet at the application layer at client side. This sequence number allowed

Add Sequence

& Protocol

Numbers

a) Server Side b) Network

c) Client Side

Extract Sequence,

Protocol Numbers

 Network

Parameters

Protocol

Decision

Create a Packet

with Data

Extract Data

and write to

File

Listens on the right

Port, Receives Packet

Packet flow

34

us to calculate the number of packets received or dropped. In case of UDP and UDP with

security any loss of packets was covered up for writing the last received packet

repeatedly in to the file at the client side till the corresponding loss of data was

compensated for. This provision allowed us to be able to open the files received even

though some packets are lost, which in normal case is not generally not possible as the

file fails to match the integrity checks for file size or just become corrupt.

Also packets are checked for arrival for a limited amount of period in the client side –

timeout period, and if no packet is received within this period the client stops listening for

anymore packets from the server and terminates that particular file transfer.

At the end of a file transfer, the client checks for consistency with the file size it has

received and the actual file size by checking with number of packets lost during the

transfer if any or if any time-outs have occurred.

4.6 Network Monitoring

 The primary monitoring tool used in this thesis was the Ethereal network analyzer [15].

This tool allowed for monitoring the actual packet flow, identifies the packet type, and

also source and destination address. We have chosen to run Ethereal in a promiscuous

mode so as to enable packet capture not only destined for its source on which it is

running but also the packets flowing through the interface on which it is listening. At the

end of every session it gives a total summary of number packets of each type which were

transferred in the network.

4.7 Overheads involved in the system

35

Some of the overheads are:

a) Continuous Network monitoring: Since the mechanism requires a constant

feedback from the network, there is a need to measure the bandwidth and the

delay in the network in regular intervals of time. Running the bandwidth

measurement algorithm is an overhead for the system in terms of CPU utilization.

b) Neural Network Training: We need to train the neural network prior to running

the system, which is an initial overhead. Neural network adaptation can be

achieved in real time and therefore it does not incur any considerable overhead

while the system is making a decision. The training overhead is offline and

therefore does not affect the online performance of the system in the file transfer

process.

c) Security overhead: The use of DES algorithm to encrypt each message at the

server side and decrypting the same at the client side is a processor overhead. The

delay it presents is a trade off as the throughput reduces, but considering security

requirements by the user this may be tolerated.

36

CHAPTER V

RESULTS

The results corresponding to our system are marked as X, in the graphs shown below. We

have taken results for each type of file and compared the results of file transfer of our

system against those obtained when using a single protocol (as in traditional systems) for

the file transfer. Firstly, we have shown the results in the scenario where the network

conditions are optimum to start with and they deteriorate with time. In the other case, we

have presented our results in a scenario where network conditions fluctuate randomly.

For streaming of video files, it is essential that there is constant flow of data at the

maximum rate possible. Use of UDP allows for a constant flow but at the cost of certain

packets which are lost. Traditionally Video file transfer in most cases is done using either

UDP or RTP. Real Time Protocol (RTP) is a derivative of UDP, and hence as unreliable

as UDP. RTP includes a time-stamp and sequence number added to the packet header

which allows it to detect packets lost.

In case of Video and Audio files, comparisons have been done against a system using just

UDP and SCTP protocols. This is done because UDP and SCTP deliver high throughput

in comparison to TCP and as mentioned are a requirement for streaming video and/or

audio files. In case of text files, we have compared with a system using TCP and SCTP

37

and not UDP, as TCP and SCTP are reliable transport protocols whereas UDP is not and

may lead to loss of packets and hence the valuable information in text files might be lost.

5.1 Throughput measurement

5.1.1 Under deteriorating network conditions

 Time (s) UDP (KBps) X (KBps)
SCTP
(KBps)

Optimum n/w
conditions 1 195 193 190

 10 197 196 192
Average n/w
conditions 11 182 181 175

 20 184 182 176
Unfavorable
n/w conditions 21 159 171 172

 29 158 169 171

Table 1 Throughput readings for deteriorating network conditions for Video Files.

UDP vs SCTP vs X - Throughput Graph for Video Files

100

120

140

160

180

200

220

Optimum n/w conditions Average n/w conditions Unfavorable n/w conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

l

UDP X SCTP

Figure 11 Throughput graph for deteriorating network conditions for Video Files.

38

In the graph we have shown throughput of UDP, SCTP and our system (X) in the

following three scenarios:

a) Optimum conditions (High bandwidth, Less Delay): The bandwidth reading from

running a single instance of iperf in this scenario ranged from about 50 to 75

Mbps and delay reading range from anywhere between 0.1ms to 4.5ms.

b) Average conditions (Medium bandwidth, Medium Delay): In this scenario we

restricted the bandwidth to the range of 25Mbps to about 50Mbps using at least 2

instances of iperf server on the file server and the iperf clients on the file

receiving client. Delay values were restricted to the range of 5ms to 15ms.

c) Unfavorable conditions (Less bandwidth, High Delay): Here the bandwidth is

drastically reduced to the range from 25 Mbps to less than 1Mbps, using at least 4

instances of iperf servers and clients. A third party machine was also used to clog

the network by pumping dummy packets in it. High delay in the network was

produced by pinging the client with large sized packets specified in the ping

command.

It is observed that UDP has better throughput than SCTP and also TCP (not shown) from

the graph when the network conditions are favorable. In our approach the adaptation

mechanism chooses to use UDP in both the best case and the average case scenarios

while the adaptation selects the SCTP protocol when the network conditions worsen. It is

seen that switching to SCTP when the network produces high delay and has clogged

bandwidth is an advantage as SCTP is able to provide more throughput than UDP, a

necessity for video files.

39

Audio Files:

Time (s) Time (s) UDP (KBps) X (KBps) SCTP (KBps)

Optimum n/w
conditions 1 195 193 190

 10 197 195 192

Average n/w
conditions 11 181 174 175

 20 183 175 175

Unfavorable n/w
conditions 21 158 168 172

 29 160 170 171

Table 2 Throughput readings for deteriorating network conditions for Audio Files.

UDP vs SCTP vs X - Throughput Graph for Audio Files

100

120

140

160

180

200

220

 Optimum n/w conditions Average n/w conditions Unfavorable n/w

conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

 l

UDP X SCTP

Figure 12 Throughput graph for deteriorating network conditions for Audio Files.

In case of Audio files, our system adapts to UDP under favorable conditions and switches

to SCTP during average and unfavorable network conditions. SCTP was chosen even

40

when network conditions are mediocre to prevent few packet losses which is experienced

by UDP and is a trade off for not using its higher bandwidth capacity. Here a little

reduction in bandwidth is traded off for achieving a better quality in sound by not loosing

data packets.

Text Files:

 Time (s) TCP (KBps) X (KBps) SCTP (KBps)

Optimum n/w
conditions 1 186 183 190

 10 184 182 192

Avg. n/w
conditions 11 161 177 175

 20 161 176 176

Unfavorable n/w
conditions 21 146 171 170

 29 147 167 171

Table 3 Throughput readings for deteriorating network conditions for Text Files.

41

TCP vs SCTP vs X - Throughput Graph for Text Files

100

110

120

130

140

150

160

170

180

190

200

Optimum n/w conditions Avg. n/w conditions Unfavorable n/w conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

l

TCP

X

SCTP

Figure 13 Throughput graph for deteriorating network conditions for Audio Files.

For text files, it is important to not loose any data packets during the file transfer as each

packet represents a critical part of the information contained in the file. Hence our system

does not to select UDP as its choice in any of the network conditions. As seen in the

graph we start with TCP when the network conditions are very favorable but as is seen

the throughput of TCP falls as the network experiences delay or clogging. Our system

switches to SCTP protocol in all the conditions of the network except the favorable one

for achieving higher throughput than TCP. It is also noted that adaptation may not be

needed as in this case, if a high performance protocol is supported to begin with (SCTP

achieves higher or as much throughput as TCP) in all the network conditions. But since

TCP is the standard transmission protocol at present for the transfer of data files, we can

start with TCP and only switch to SCTP if at all needed that is only if the network

42

conditions worsen (provided the client, server and the intermediate nodes can understand

and support SCTP sockets and packets).

5.1.2 Under Random network conditions

Since the original network conditions are always changing, either deteriorating or

improving we have tested our results by producing such conditions and running our

system. To denote the conditions we have used D for Delay in the network and B for

Bandwidth, and H, M, L stand for High, Medium, and Low values. The actual range of

values are as follows BH – 50 to 80 Mbps; BM - 50 to 20Mbps; BL – 20 to 0 Mbps; DH

> 15 ms; DM – 5 to 15ms; DL – 5 to 0ms.

Video:

N/w Conditions UDP (KBps) SCTP (KBps) X (KBps)

DH, BM 165 172 175

DM, BM 180 178 180

DM, BL 178 173 176

DL, BH 195 190 195

DL, BM 195 189 193

DH, BL 160 170 171

DL, BL 192 189 192

DM, BH 182 181 181

DH, BH 170 172 171

Table 4 Throughput readings for random network conditions for Video Files.

43

UDP vs SCTP vs X - Throughput Graph for Video Files

100

110

120

130

140

150

160

170

180

190

200

DH, BM DM, BM DM, BL DL, BH DL, BM DH, BL DL, BL DM, BH DH, BH

Random Network Conditions

T
h
ro
u
g
h
p
u
t
K
B
p
s

l

UDP SCTP X

Figure 14 Throughput graph for deteriorating network conditions for Video Files.

Here we see that our system always switches to the protocol which has higher throughput

between UDP and SCTP and TCP. In most cases X chooses to follow UDP, and switches

to SCTP only when the delay is high, as in those cases UDP’s throughput drops by a big

margin.

Audio:

N/w Conditions UDP (KBps) SCTP (KBps) X (KBps)

DH, BM 165 172 173

DM, BM 180 178 179

DM, BL 178 173 172

DL, BM 195 189 194

DL, BH 195 190 196

DH, BL 160 170 172

DL, BL 192 189 191

DM, BH 182 181 180

DH, BH 170 172 172

Table 5 Throughput readings for random network conditions for Audio Files.

44

UDP vs SCTP vs X - Throughput Graph for Audio Files

100

110

120

130

140

150

160

170

180

190

200

DH, BM DM, BM DM, BL DL, BH DL, BM DH, BL DL, BL DM, BH DH, BH

Random Network Conditions

T
h
ro
u
g
h
p
u
t
K
B
p
s

 l

UDP SCTP X

Figure 15 Throughput graph for deteriorating network conditions for Audio Files.

Here it is seen that X follows UDP only in good conditions and switches to SCTP when

the network conditions are average or worse.

Text:

N/w Conditions SCTP (KBps) TCP (KBps) X (KBps)

DH, BM 172 147 174

DM, BM 178 160 179

DM, BL 173 157 171

DL, BH 190 186 186

DL, BM 189 181 180

DH, BL 170 145 173

DL, BL 189 178 177

DM, BH 181 166 182

DH, BH 172 152 172

Table 6 Throughput readings for random network conditions for Text Files.

45

UDP vs SCTP vs X - Throughput Graph for Text Files

100

110

120

130

140

150

160

170

180

190

200

DH, BM DM, BM DM, BL DL, BH DL, BM DH, BL DL, BL DM, BH DH, BH

Random Network Conditions

T
h
ro
u
g
h
p
u
t
K
B
p
s

l

SCTP TCP X

Figure 16 Throughput graph for random network conditions for Text Files.

It is seen that we switch to SCTP from TCP when packet flow starts to experience a delay

in the network. Using SCTP in such conditions allows for higher throughput through the

network. Again it can be observed that adaptation may not be required in this case as

SCTP has higher performance than TCP but as mentioned earlier we can continue to use

TCP, switching to SCTP can be avoided and only done only when there is delay in the

network.

5.1.3 With Security

The adaptation can be such that when there is an available scope to provide an extra QoS

parameter such as security it can be done. The ANN was trained in this scenario to select

a secure protocol when the network conditions are best and to select non-secure protocols

otherwise. This is shown in case of transfer of text files as an example.

46

N/w
Conditions SCTP (KBps) TCP (KBps) X (KBps)

DH, BM 172 147 174

DM, BM 178 160 179

DM, BL 173 157 171

DL, BH 190 186 142

DL, BM 189 181 180

DH, BL 170 145 173

DL, BL 189 178 177

DM, BH 181 166 182

DH, BH 172 152 172

Table 7 Readings for random network conditions for a Text file with conditional security

provided.

SCTP vs TCP vs X - Throughput Graph for Text Files with

conditional Security

100

110

120

130

140

150

160

170

180

190

200

DH, BM DM, BM DM, BL DL, BH DL, BM DH, BL DL, BL DM, BH DH, BH

Random Network Conditions

T
h
ro
u
g
h
tp
u
t
(
K
B
p
s
)

)

SCTP TCP X

Figure 17 Throughput graph for random network conditions for a Text file with

conditional security.

The selection mechanism chooses secure TCP when delay is least and there is maximum

available bandwidth. In all other cases it chooses non secure protocols. With security

additionally provided we see that there is a considerable drop in throughput in that case,

47

which is a trade off for the security provided. The time overhead is of about 7 seconds

during the transfer of a 5Mb file with security provided all throughout its transmission.

Also, security is provided when the user specifically asks for it, in this case we choose a

secure version of the protocol selected. The following graph shows the result of providing

security throughout the session in case of video files, and the comparison has been done

with secure version of TCP and SCTP.

N/w Conditions UDP (KBps) SCTP (KBps)
X: Video
(KBps)

DH, BM 118 127 129

DM, BM 135 130 133

DM, BL 129 127 130

DL, BH 149 143 151

DL, BM 150 144 147

DH, BL 114 122 125

DL, BH 144 140 147

DM, BH 133 136 134

DH, BH 126 127 125

Table 8 Readings for random n/w conditions for Video files with security provided

throughout the session.

48

Throughput Graph for Video Files with Security

100

110

120

130

140

150

160

170

180

190

200

DH, BM DM, BM DM, BL DL, BH DL, BM DH, BL DL, BH DM, BH DH, BH

Random n/w conditions

T
h
ro
u
g
h
p
u
t
(K
B
p
s
)

 s

UDP SCTP X: Video

Figure 18 Throughput graph for random network conditions for Video with security

provided throughout the session.

Similar results were obtained in the case of using audio and text files. There is large drop

in throughput achieved by the additional security provided. This is because of the

overhead involved in encrypting the packets just before they are sent across the network

and decrypting the secure packets at the client side.

5.2 Packet loss readings

In this section we have provided the packet loss data when using UDP, in the case of

video and audio files. Since SCTP and TCP do are connection oriented protocols and do

not experience any packet loss, comparison is only done with UDP.

49

UDP vs X - Packet Loss Graph for 5Mb Video File

0

100

200

300

400

500

600

700

800

900

1000

Optimum Avgerage Unfavorable

Network Conditions

P
a
c
k
e
t
L
o
s
s

 s

UDP

X

Figure 19 Packet Loss graph for a Video File.

Here we have shown the packet loss value when a 5Mb video file is transferred between

the server and the client in three scenarios when using standard UDP and when using our

system which switches to SCTP to avoid packet loss only in the last case. High packet

loss is the reason for huge drop in UDP’s throughput in such conditions.

The following graph shows the same parameter for an audio file transfer in which it is

seen that since our system switches to SCTP whenever medium or worst case network

conditions arise so the packet loss in case of an audio file transfer is negligibly low when

compared to UDP.

50

UDP vs X - Packet Loss Graph for 5Mb Audio File

0

100

200

300

400

500

600

700

800

900

1000

Optimum Average Unfavorable

Network Conditions

P
a
c
k
e
t
L
o
s
s

UDP

X

Figure 20 Packet loss graph for an Audio File.

X does not loose any packets in the Average and worst conditions as it is using one of the

connection oriented protocol.

In case of text files since we are not using non-connection oriented protocols, hence there

is no packet loss during their transmission.

51

CHAPTER VI

CONCLUSION

In case of all the three type of files the throughput achieved by our system was equivalent

or greater than the throughput achieved for the file transfer using a single protocol, under

most conditions. The throughput and packet loss graphs show that there is considerable

increase in file transfer rate and better utilization of the network bandwidth. It is also

shown that adaptation system can be used with a variety of protocols, such as all secure

protocols, or all non secure protocols or a mix of both. Adaptation policy here takes in to

account different QoS parameters and human perception in to consideration for each type

of file. While Video files would benefit if a protocol providing higher bandwidth is used,

Text file transfer need preference be given to those protocols which are reliable. Audio

files requirements may lie intermediate to the Video and Text files.

Having a set of pre-configured protocols negotiated by the client and the server would

hence allow the communication to take place between them using a suitable protocol and

not be restricted to a single protocol as configuration of connection parameters can be

done on the fly. Adaptation decision is very small overhead though there is an initial

overhead to train the neural network but being completely offline it does not affect the

performance of the system. It is also noted that our adaptation technique may not be

52

always beneficial as is in a case where a certain protocol clearly performs better than the

remaining protocols under all network conditions.

6.1 Future Work

Further research associated with this thesis may focus on the following areas:

a) Testing the effect of such adaptation in a multicast scenario: Multicasting refers to

streaming data (generally multimedia) to more than a single host simultaneously.

In this scenario it is observed that each of the individual clients will have separate

network conditions and might need the server to use a more suitable protocol

according to the network conditions prevailing in their link. Here the adaptation

mechanism needs to take into account the prevailing network conditions at the

server, the client requests and also provide the pre-set QoS requirements.

b) Increasing the QoS input parameters to the neural network: Currently we are

using two parameters but more input parameters such as jitter in network would

allow the mechanism to make better decisions. If the structure of the neural

network is increased and hence their capability to take more number of inputs, the

network can be more efficiently trained for selecting a more appropriate protocol.

c) Hardware support: The neural network adaptation mechanism might be suited to

be implemented in the hardware level, to provide a much faster adaptation

mechanism then compared to the software implementation, if its structure grows

in size. The Field Programmable Gate Arrays – FPGA technology is an available

option for such research.

53

REFERENCES

[1] R. Fish, G. Ghinea, and J. Thomas: “Mapping Quality of Perception to quality of

service for a runtime adaptable communication system”, Proc. SPIE ACM

SIGMultimedia conference on Multimedia Computing and Networks, Vol. 3654, San

Jose, January 1999.

[2] Adam Wierman, Takayuki Osogami, and Olsen Olsen: "A Unified Framework for

Modeling TCP-Vegas, TCP-SACK, and TCP-Reno," mascots, p. 269, 11th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems (MASCOTS'03), 2003.

[3] Bandwidth measurement algorithms, http://mosquitonet.stanford.edu/~laik/projects

/nettimer/ publications/infocom1999/html/node4.html [Last accessed: 20
th
 September

2005].

[4] D. Ritchey: “A Stream Input Output System”, AT&T Bell Labs Technical Journal,

pp.311-324, Vol. 63(8), October 1984.

[5] Robert Simon Zachary Fish: “An Integrated Framework for Runtime Adaptable

Communication Systems”, Ph.D. thesis, Department of Computer Science, University of

Reading, 2001.

[6] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner, M. Vogt and

M. Waldvogel: DaCaPo++: “Communication Support for Distributed Applications”,

Technical report, Computer Engineering and Networks Laboratory (TIK), ETH Zurich.

54

[7] N. Hutchinson and L. Peterson: “The x-kernel: An architecture for implementing net-

work protocols”, IEEE Transactions On Software Engineering, Vol. 17(1), pp. 64-76,

January 1991.

[8] X-kernel research project, University of Arizona, http://www.cs.arizona.edu/xkernel/

[Last accessed: 24
th
 September 2005].

[9] D. Schmidt: “An Object-Oriented Framework for Experimenting with Alternative

Process Architectures for Parallelizing Communication Subsystems”, Ph.D. thesis

Department of Information and Computer Science, University of California, Irvine, 1995.

[10] Back Propagation in Neural networks, http://www.speech.sri.com/people/anand/771/

html/node37.html [Last accessed: 20
th
 September 2005].

[11] IETF, SIGTRAN working group, http://www.ietf.org/html.charters/sigtran-

charter.html [Last accessed: 30
th
 September 2005].

[12] Lksctp tools package installation notes, http://lksctp.sourceforge.net/INSTALL [last

accessed: 15
th
 September 2005].

[13] S. Saxena, J. Peacock, F. Yang, V. Verma and M. Krishnan: “Pitfalls in

Multithreading SVR4 STREAMS and other weightless processes”, Proc. Winter USENIX

Conference, pp. 85-106, San Diego, CA, January 1993.

[14] Ethereal network monitoring tool, www.ethereal.com [Last accessed: 20
th
 September

2005].

[15] Wei Lian, and Wenye Wang: “An analytical study on the impact of authentication in

wireless local area networks, Proc. IEEE ICCCN, 2004.

VITA

Madhukar Alli

Candidate for the Degree of

Master of Science

Thesis: A PROTOCOL STACK FOR ADAPTABLE AND SECURE

COMMUNICATIONS

Major Field: Computer Science

Biographical:

Personal Data: Born in Jaggayapet, Andhra Pradesh, India, on August 30, 1982,

the son of Mr. A.V. Brahmam and Mrs. A Jyothi.

Education: Obtained Senior High School Diploma from Andhra Education

Society, Delhi, India in May 1999. Received Bachelor of Engineering in

Computer Science & Engineering from M.S.Ramaiah Institute of Technology -

Viveswaraiah Technological University, Bangalore, India in August 2003.

Completed the requirements for the Master of Science Degree at Oklahoma State

University in May 2006.

Experience: Teaching Assistant, CS department OSU, Spring 2005. Part-time lab

monitor at HES computer labs, Oklahoma State University.

Name: Madhukar Alli Date of Degree: May 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A PROTOCOL STACK FOR ADAPTABLE AND SECURE

COMMUNICATIONS

Pages in Study: 54 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

Modern applications using network communications demand a large set of transport

service requirements. Although these requirements might be initially met at the server’s

end, traffic variations at intermediate nodes effect the overall connection requirements

thus resulting in non-optimal use of available network resources. Our thesis proposes

building a protocol stack so as to be able to have flexibility in selecting a more suited

protocol according to the current network conditions and deliver better communication in

terms of bandwidth utilization and QoS provided.

Approach, Findings and Conclusions:

In our approach we have implemented a set of protocols where each protocol is a slight

variation of the other in terms of one or more QoS parameters and security requirements.

The protocol to be used is dynamically decided based on traffic conditions such as delay;

bandwidth and also security requirements, in other words the system adapts itself

depending on the current traffic conditions and user preferences. The adaptation, which

involved configuring the protocol from the stack, was achieved by training based learning

and adaptation using neural networks. The neural network used is a feed forward network

which forwards the inputs to the output layer and the error is back propagated to the

initial layer till the desired output is received. When the system is initiated, the network is

measured for current conditions which are used as parameters in the decision making

process and the client and server connections are switched simultaneously to the protocol

selected. This automation enables the system to be self configuring and to adapt to the

changing network conditions without human intervention.

For our results we have used the system for different type of files which differ in terms of

QoS requirement. Our results demonstrate that adapting to a better protocol as the

network experiences fluctuations, result in higher utilization of the available bandwidth,

less packet loss and hence help to provide better QoS for the connection.

Advisor’s Approval: Dr. Johnson P Thomas

