

MINING FOR PATTERNS IN

PROGRAM DEPENDENCE GRAPHS

By

IMRAN AFZAL

Bachelor of Science in Electrical Engineering

University of Engineering and Technology

Lahore, Punjab, Pakistan

1995

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of
MASTER OF SCIENCE

July 2010

 ii

 MINING FOR PATTERNS IN

 PROGRAM DEPENDENCE GRAPHS

Thesis Approved:

 Dr. M. H. Samadzadeh

 Thesis Adviser

 Dr. N. Park

 Dr. Xiaolin Li

 Dr. Mark E. Payton

 Dean of the Graduate College

 iii

PREFACE

Program graphs display programs from different perspectives. Some patterns repeat

themselves in program graphs. By looking at these frequent patterns, one can make

informed inferences about the underlying characteristics of programs. Searching for

frequent patterns can be a challenging task due to the complexity and size of these

graphs. An effort has been underway to apply data mining techniques to unsupervised

discovery of these frequent patterns in graphs and then analyzing the output to deduce

rules that can provide useful information about programs.

This thesis work concerned the discovery of patterns in program dependence graphs.

Program dependence graphs of different versions of open source Java programs were

extracted and mined for patterns. Analysis of the discovered patterns pointed out the

existence of relationships between the discovered patterns and the changes made in the

program code. It was found that the patterns can be grouped into at least six different

classes based on the code changes they represent. These patterns can prove to be useful in

program maintenance.

 iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my graduate advisor Dr. M. H.

Samadzadeh for his continued guidance, support, and encouragement throughout my

thesis work. This thesis work would not have been possible without his valuable insight

and direction. I would also like to thank Dr. Jonyer for introducing me to the field of data

mining.

My sincere appreciation extends to Dr. Nophill Park and Dr. Xiaolin Li for their advice

and for serving on my graduate committee.

Finally, I thank my parents, my wife Ayesha, and my two sons Mustafa and Ibraheem for

their encouragement and patience throughout my studies.

 v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. BACKGROUND ...7

 2.1 Knowledge Discovery from Data (KDD) ..7

 2.2 Association Analysis ..7

 2.3 Itemsets ..7

 2.4 Association Rules...8

 2.5 Performance Evaluation ...9

III. GRAPH MINING ..10

 3.1 Frequent Patterns ...11

 3.2 Program Dependence Graphs (PDG) ...11

 3.2.1 System Dependence Graph (SDG) ...12

 3.2.2 Abstract System Dependence Graph (ASDG) ..12

 3.3 Graph Mining Algorithms..14

 3.3.1 Apriori Based Algorithms ...14

 3.3.1.1 AGM ..15

 3.3.1.2 FSG ..15

 3.3.1.3 FAT Miner ...15

 3.3.1.4 PATH ...16

 3.3.1.5 FFSM ...16

 3.3.2 Pattern Growth Algorithms ...16

 3.3.2.1 gSpan..16

 3.3.2.2 MoFa ..17

 3.3.2.3 GASTON ...17

 3.3.3 Un-Categorized Algorithms ..17

 3.3.3.1 Subdue..18

 3.3.3.2 Warmr ..18

 vi

Chapter Page

IV. DESIGN AND IMPLEMENTATION ..19

 4.1 Overview ..19

 4.2 Abstract System Dependence Graph (ASDG) Extraction21

 4.3 Transformation ...21

 4.4 Pattern Generation ...22

 4.5 Tools ..24

 4.5.1 Structure 101 ...24

 4.5.2 WEKA ...24

 4.5.3 Graphviz ..25

V. ANALYSIS OF DISCOVERED PATTERNS ...26

 5.1 Overview ..26

 5.2 Pattern Classification ...33

 5.3 Class Description and Function ...34

 5.3.1 C1 – Newly Formed Patterns ..34

 5.3.2 C2 – Patterns Disappearing Right After Their Creation35

 5.3.3 C3 – Impermanent Patterns ...37

 5.3.4 C4 – Omnipresent Patterns ...38

 5.3.5 C5 – Disappearing Omnipresent Patterns ...38

 5.3.6 C6 – Reincarnated Patterns ...42

VI. SUMMARY AND FUTURE WORK ...43

REFERENCES ..45

APPENDICES ...49

 APPENDIX A - GLOSSARY ...50

 APPENDIX B - PSEUDO-CODE 53

 APPENDIX C - TRANSACTIONAL REPRESENTATION OF GRAPHS 55

 APPENDIX D - RESULTS ...57

 EXPERIMENT 1 ...58

 EXPERIMENT 2 ...79

 EXPERIMENT 3 ...98

 EXPERIMENT 4 ...103

 APPENDIX E - PROGRAM CODE ...145

 vii

LIST OF TABLES

Table Page

 1. JDOM Package Description ..4

 2. Sample Table Representing PDGs in Transactional Form 21

 3. Sample Summary Table of KnowledgeFlowApp.java for Pattern Discovery23

 4. Classes of Patterns ..33

 viii

LIST OF FIGURES

Figure Page

 1. Sample Package Level Abstract System Dependence Graph3

 2. Sample Class Level Dependence Graph ...5

 3. Sample Member Level Dependence Graph ..5

 4. A Sample Program and its ASDG ..13

 5. Graph G1 and Its Corresponding Transaction T1 ..20

 6. A Pattern Discovered in KnowledgeFlowApp.java (Version 4804)27

 7. A Pattern Discovered in KnowledgeFlowApp.java (Version 4966)31

 8. A Class C2 Pattern Discovered in KnowledgeFlowApp.java (Version 4786) ...36

 9. A Class C3 Pattern Discovered in Evaluation.java (Version 5197)37

 10. A Class C4 Pattern Discovered in KnowledgeFlowApp.java (Version 6140) ...38

 11. A Class C5 Pattern Discovered in GridSearch.java (Version 6263)39

 12. A Class C1 Pattern Discovered in GridSearch.java (Version 6263)41

 13. A Class C6 Pattern Discovered in GridSearch.java (Version 4829)42

 1

CHAPTER I

INTRODUCTION

The past decade has seen a tremendous growth in the size and complexity of computer

programs, which in turn has made it impractical to analyze program graphs through

traditional techniques. This has created a need for study and unsupervised discovery of

interesting structures in program graphs [Fischer and Meinl 04].

Data mining techniques have been successfully employed in different disciplines to mine

graph databases. For example, different chemical structures have been mined to discover

new antibiotics and graphs representing social networks have been mined to discover

communities [Du et al. 07].

This thesis concerns the discovery of frequent patterns in program graphs of various open

source Java programs. Java is an open source programming language which is widely

used in different kinds of applications ranging from servers to clients running on mobile

devices. It is fast becoming the lingua franca of software. Mining graphs of Java

programs can prove to be useful for program comprehension, for aiding program

maintenance, and in general for tackling the problem of software complexity.

 2

A central issue to any data mining experiment is data. In a graph mining experiment, the

first step is the extraction and processing of program graphs from source code.

Unfortunately, a publicly available database of program graphs of Java programs does

not seem to exist.

The first part of the research included in this thesis report addresses the issue of

extracting program graphs from Java source code. A major chunk of time in data mining

is typically spent on what can be generally classified as massaging the data, e.g.,

accounting for missing values and normalizing imprecise or inaccurate values. This is a

critical and time consuming part of the knowledge discovery process. In the overall

process, the time spent on careful inspection of data pays off many folds down the road

[Witten and Frank 05].

For this thesis work, program graphs were extracted from two open source projects:

WEKA [WEKA 08] and Derby [Derby 04]. Due to the design of Java, which is a strict

object oriented language, abstract system dependence graphs (ASDG) were used in this

thesis. ASDGs abstract away statement level dependencies and provide a higher level of

dependency view of a program that makes them better suited for the purpose of this

thesis. Dependencies exist at different levels, e.g., in a Java program there can be

dependencies at package, class, and member levels. The following three sample

dependence graphs, one at package level, one at class level, and one at member level,

were generated for JDOM [JDOM 09], which is an open source Java based library for

manipulating XML data. These graphs were generated using structure101 [Headway

Software 07]. Structure101 is a tool created by Headway Software which is used to

generate dependence graphs of Java class files.

 3

Figure 1. Sample Package Level Abstract System Dependence Graph

Figure 1 depicts a sample package level dependence graph of open source project JDOM

[JDOM 09]. It is a directed graph in which the edges point from a dependent to a

predicate package. For example, the code in org.jdom.transform uses code in

org.jdom.input which creates a dependency of org.jdom.transform on org.jdom.input.

This dependency is represented by an edge pointing from dependent package

org.jdom.transform to predicate package org.jdom.input.

 4

JDOM code is divided into eight packages [JDOM 09]. A brief description of each

package appears in the table below.

Package Description

org.jdom This package contains classes that represent the components of an XML

document, e.g., nodes and attributes.

org.jdom.adapters This package contains classes to interface with various DOM implementations.

org.jdom.filter This package contains classes to filter elements of a document based on type,

name, and value.

org.jdom.input This package contains classes to build JDOM documents from various inputs.

org.jdom.output This package contains classes to output JDOM documents to various

destinations such as text files.

org.jdom.transform This package contains classes to help with transformations, based on the JAXP

TrAX classes.

org.jdom.xpath This package contains classes that provide support for XPath.

Default This package includes classes that do not belong to any package. This package

is comprised of only one class JDOMAbout.

Table 1. JDOM Package Description [JDOM 09]

 5

 Figure 2. Sample Class Level Dependence Graph

Figure 2 depicts a sample class level dependence graph of package org.jdom.filter. This

package contains six classes and one interface. These classes and interface are used to

filter the elements of a document based on type, name, and value. The nodes and edges in

the graph represent classes and dependencies, respectively. For example, class

ElementFilter extends class AbstractFilter which creates a dependency from class

ElementFilter to class AbstractFilter.

Figure 3. Sample Member Level Dependence Graph

Figure 3 depicts a sample member level dependence graph of class

org.jdom.filter.ElementFilter. This class is used to filter elements in an XML document.

 6

It contains 190 lines of code. In the above figure, each node represents a member method

or a variable of class ElementFilter.java. An edge is directed from a dependent member to

a predicate member. For example, method hashCode contains a reference to variable

name which is represented by an edge from hashCode to name in Figure 3.

 7

CHAPTER II

BACKGROUND

2.1 Knowledge Discovery from Data (KDD)

KDD is the process of extracting knowledge from data. It consists of data cleaning, data

integration, data selection, data mining, pattern evaluation, and knowledge representation

[Han and Kamber 06].

2.2 Association Analysis

Market basket is the collection of items purchased by a customer in a trip to a store. One

of the initial applications of association analysis was in market basket analysis in

studying the relationships among items purchased by customers in retail stores. Simply

put, it is the methodology used to discover the rules that represent the probability of

appearance of different items together in an itemset [Tan et al. 06].

2.3 Itemsets

Let the set of all transactions be T = {t1, t2, t3,..., tN} and the set of all items be I = {i1, i2,

i3,..., iM}, tj ⊆ I for 1 ≤ j ≤ N [Tan et al. 06]. A collection of zero or more items is called

an itemset, and a collection of k-items is called a k-itemset, e.g., {i1, i3} is a 2-itemset. In

a market basket, an itemset can consist of the items purchased by a customer during a

visit to the retail store [Tan et al. 06]. .

 8

2.4 Association Rules

Tan, Steinbech, and Kumar define association rules as follows [Tan et al. 06].

An association rule is an implication expression of the form X →Y, where X and Y are

disjoint itemsets, i.e., . The strength of an association rule can be measured in

terms of its support and confidence, as defined below.

If we represent support count by then the support count of an itemset X can be

expressed as:

So, the support count of an itemset is the number of transactions in T that contain all of

its items.

Support is the measure of occurrence of a rule in a given set of transactions T, where N is

the total number of elements in T. Specifically, for an association rule X→Y, the support

s can be defined as [Tan et al. 06]:

Confidence is the measure of frequency of occurrence of all items in itemset Y, whenever

all items of X occur in a transaction tn. The confidence c of an association rule X→Y can

be defined as [Tan et al. 06]:

 9

Support is used to separate rules that might occur only by chance from the ones that

actually represent some underlying phenomenon. The minimum support of a rule is

determined through feedback from domain knowledge experts in several iterations of rule

generation.

Confidence is used as a measure of how reliable a rule is. As stated by Tan et al., the

confidence of the association rule X→Y “represents the conditional probability of Y

occurring every time X does” [Tan et al. 06].

The frequent itemsets are the itemsets whose frequency of occurrence in the data set is

greater than a minimum support specified by a domain expert.

2.5 Performance Evaluation

Evaluating the results of data mining can be tricky. One notable method, which has

started to emerge as the standard in many data mining experiments, is cross-validation

[Witten and Frank 05]. In cross-validation, the data is divided into n equal parts. One part

is put away as the testing data set and the rest of the data is used to generate rules. Then

the generated rules are tested against the test data that was initially held out from the

training dataset. This process is repeated n times so that every part is used as the test data.

This method of evaluating the test results is called n-fold cross-validation [Witten and

Frank 05]. .

 10

CHAPTER III

GRAPH MINING

In the real world, not everything can be represented by simple transactions. A large

number of applications require more complex data structures [Han and Kamber 06] and

graphs can be used to model these structures.

Graphs have become increasingly popular in modeling complicated structures such as

circuits, images, chemical compounds, protein structures, biological networks, social

networks, the Web, workflows, and XML documents [Han and Kamber.06].

These graph models are well studied and a lot of effort has been put into their analysis.

By using data mining techniques, the hidden patterns in the data collected as graphs can

be discovered and analyzed.

In the past few years, much attention has been paid to mining graphs and the techniques

learned in mining transactional data have been modified to mine graph data [Han and

Kamber.06].

 11

3.1 Frequent Patterns

Frequent patterns are the graph counterpart of transactional itemsets (for a definition, see

Section 2.3) : a set of nodes and edges appearing multiple times in a graph dataset with

their support being greater than or equal to a minimum threshold specified by the user.

Similar to frequent itemsets, frequent patterns represent some underlying association rule

hidden in the structure of the data.

3.2 Program Dependence Graphs (PDG)

A PDG is a directed graph whose nodes represent the statements of a program, and each

edge connecting two nodes represents the dependence of one statement on another

[Ferrante et al. 87].

A program dependence graph represents two types of dependence: data dependence and

control dependence, as explained below.

a. Data Dependence: If the order of execution of two statements s1 and s2 is inverted in a

program and this affects the values of their variables, then the two statements have a data

dependency on each other.

b. Control Dependence: If the execution of one statement depends on the values of

variables of the other (predicate) statement, then a control dependency exists between the

two statements.

 12

3.2.1 System Dependence Graph (SDG)

The program dependence graphs represent dependencies at the statement level. These

graphs were originally used in compiler optimization but were later adopted by

researchers to study other software engineering problems such as program slicing and

maintenance. Horwitz et al. [Horwitz et al. 88] extended PDGs by including procedures

and procedure calls. They called these graphs System Dependence Graphs (SDG) and

used them in program slicing.

3.2.2 Abstract System Dependence Graphs (ASDG)

Chen and Rajlich proposed abstract system dependence graphs to study the feature

location in program code [Chen and Rajlich 00]. Feature location is the process of

identifying which components of a software system will implement a certain feature. For

example, a feature request by a product team can be the addition of a new parameter to

the routing logic of a transaction processing system, the feature location for such a

request will be the identification of parts of the system where this feature will be

implemented [Chen and Rajlich 00]. They argued that by abstracting away the statement

level dependence, the resulting higher level of abstraction is more useful in feature

location and statement level dependency is not required. What follows is a sample C

program and its corresponding ASDG.

 13

Figure 4. A Sample Program and Its ASDG [Chen and Rajlich 00]

In the above figure, the nodes of the ASDG represent functions or global variables in the

code. A continuous edge represents a function call and a dotted line represents a data

flow edge [Chen and Rajlich 00].

Software systems are becoming increasingly large and the amount of information

provided by PDGs (Program dependence Graphs) can be overwhelming. Therefore,

ASDGs (Abstract System Dependence Graphs) were considered more suitable for

modeling the dependencies of Java programs, and hence they were used in this study. The

tool used for extracting graphs from programs is called Structure101 [Headway Software

07] (for details, please refer to Section 4.5.1). It generates added annotation for an edge

including the number of edges and type of dependency, e.g., “uses”, “implements”, and

“extends”. However, for the purpose of this research, the types of the dependencies were

ignored since they did not contribute to mining for patterns.

 14

3.3 Graph Mining Algorithms

Graph mining algorithms can be divided into two groups: Apriori Based Algorithms and

Pattern Growth Algorithms [Han and Kamber.06]. These two groups are briefly

explained in the following subsections.

3.3.1Apriori Based Algorithms

Apriori based algorithms extend the Apriori algorithm [Agrawal and Srikant 94] for

discovering association rules in transactional data.

Agrawal and Srikant made an important discovery that became the foundation of all

Apriori Based algorithms [Agrawal and Srikant 94]. They called this property Apriori

and described it as follows: A k-itemset is frequent only if all of its sub-itemsets are

frequent.

Utilizing this property, they proposed an algorithm that discovered all the 1-itemsets and

used these 1-itemsets to create all 2-itemsets, eliminating the itemsets whose support and

confidence were less than the established threshold. These steps were repeated till all the

frequent k-itemsets were discovered [Agrawal and Srikant 94].

In a similar manner, the discovery of frequent graphs uses frequent patterns of size 1 and

then builds on them, where the size of a pattern is defined by the number of its nodes.

After each repetition, the size of frequent patterns is incremented by one and patterns

with support less than the threshold are eliminated [Tan et al. 06]. The generation of

patterns at the beginning of each repetition is called candidate generation .

The following five subsections briefly describe different Apriori-Based algorithms.

 15

3.3.1.1 AGM

AGM (Apriori Based Graph Mining Algorithm) discovers the association rules hidden in

the frequent patterns in a graph. It uses an adjacency matrix to model the graph and then

mines it for frequent patterns by using a typical extension of the algorithm proposed by

Agrawal [Agrawal et al. 93] [Inokuchi et al. 00].

3.3.1.2 FSG

FSG (Frequent Subgraph Discovery) discovers frequent patterns in a graph. It has a linear

execution time. It uses adjacency lists to store input graphs, intermediate candidates, and

frequent subgraphs. This representation improves the algorithm's efficiency when input

graphs are sparse. The candidate generation process has been improved by using different

optimization techniques [Kuramochi and Karypis 04].

3.3.1.3 FAT Miner

The FAT (Frequent Attribute Tree) Miner algorithm is used to find frequent patterns in

attribute trees. Knijf defines an attribute tree as “a labeled rooted ordered tree, with a

non-empty attribute node” [Knijf 07]. In certain real life applications such as XML

databases and HTML pages, a lot of information can lay hidden in the attributes of nodes,

unless these attributes are taken into account while discovering frequent subgraphs. FAT

Miner does not ignore node attributes and mines nodes as well as their attributes to

generate frequent subgraphs [Knijf 07].

 16

3.3.1.4 PATH

PATH (Path-join edge-disjoint) is another variation of the Apriori Graph algorithm. It

considers only edge-disjoint paths in candidate generation and then joins the candidates

to create bigger patterns. This method also uses a novel definition of support to mine

graph patterns [Vanetik et al. 02].

3.3.1.5 FFSM

FFSM (Fast Frequent Subgraph Mining) reduces the number of candidate patterns

generated during the candidate generation process. It uses a novel framework that

restricts the generation of useless candidates [Huan et al. 03].

3.3.2 Pattern-Growth Algorithms

A pattern-growth mining algorithm starts with an already discovered frequent graph „g‟.

It keeps on extending g by appending one edge at a time in all possible positions. If the

resultant graph does not exist in the dataset or its support is less than the threshold, it is

discarded. The edge is added to the frequent candidates and the whole process is repeated

recursively until all of the frequent patterns containing g are discovered [Han and

Kamber 06].

3.3.2.1 gSpan

gSpan (Graph Based Substructure Pattern Mining) is the first algorithm that uses DFS

(Depth First Search) to discover frequent patterns. It also safeguards against the possible

rediscovering of the same graph multiple times. gSpan employs a new lexicographic

 17

ordering technique for DFS trees in graphs and using this order performs depth first

search to mine frequent subgraphs [Yan and Han 02].

3.3.2.2 MoFa

MoFa (Mining Molecular Fragments) was developed to discover frequent molecular

fragments in different chemical compounds. This algorithm employs an inductive

technique to prune the search tree by eliminating the molecular substructures that violate

the natural laws of chemistry. Compared to the brute force method, when provided with a

set of base rules, the efficiency of the algorithm is increased substantially [Borgelt and

Berthold 02].

3.3.2.3 GASTON

GASTON (Graph Sequence Tree extraction) divides the frequent pattern discovery

process into phases to speed up frequent pattern mining. It is based on the assumption

that frequent patterns discovered in any graph dataset are mostly free trees, where a free

tree is an undirected graph that is both connected and acyclic. It first searches for frequent

free trees in the dataset and then, using these discovered frequent free trees, it discovers

other frequent patterns by employing the pattern growth technique [Nijssen and Kok 04].

3.3.3 Un-Categorized Algorithms

Besides the above Apriori Based and Pattern Growth algorithms, there are two

noteworthy algorithms that do not fall into any category.

 18

3.3.3.1 Subdue

This algorithm was one of the initial attempts to discover substructures. It removes

previously discovered patterns from the graph dataset and mines the graphs again. It

keeps on repeating this process till it is unable to find any more subgraphs [Holder et al.

94].

3.3.3.2 Warmr

Warmr (a data mining tool for chemical data) was the first inductive logic programming

algorithm that was used for data mining [King et al. 01]. The value of Warmr lies in its

ability to find all frequent substructures in the database and the high accuracy of the rules

discovered by it. As reported by King et al., the results of the application of this

algorithm to a well-studied database of chemical compounds, put a lower bound on the

complexity of the relationship between chemical structure and carcinogenicity.

 19

CHAPTER IV

DESIGN AND IMPLEMENTATION

This chapter starts with an overview of the approach taken to discover frequent patterns

from programs. Then the entire process is described by using a sample Java class and

mining it for patterns.

4.1 Overview

The earliest techniques to discover association rules were developed by Agrawal et al. in

the first half of the 90s [Agrawal et al. 93]. These techniques were employed to mine the

data gathered by retailers to study the purchasing behavior of their customers. Later on,

having seen the benefits of the knowledge discovered, new algorithms were invented to

mine more complex data structures such as graphs.

This thesis work concerned the use of techniques developed for mining transactional data

to mine program graphs by first transforming these graphs to a representation which

mimicsItransactions.

 20

This approach was initially proposed by Inokuchi [Inokuchi et al. 99]. In this approach,

for each 3-tuple of an edge label l(e) and its two corresponding vertex l(v) labels, there

exists an item Ii in Transaction Ti . So, for example, graph G1 depicted below can be

represented by a corresponding transaction T1.

The size of transaction T will be equal to the number of edges in the corresponding graph

G. This approach can only work if every 3-tuple is unique. The program graphs used for

this study fulfill this requirement (for more details, please see Appendix C).

Once these graphs are modeled accurately, the existing techniques of transactional data

mining can be employed to find the itemsets that represent frequent graph patterns.

A Java class (KnowledgeFlowApp.java) was used as an example. This class belongs to

the WEKA (Waikato Environment for Knowledge Analysis) project which is an open-

source data mining platform. The class had 3169 lines of code in its latest version and it

was changed 19 times as of 2008 [WEKA 08].

r

s

u
t

a

c

e

d

b

p

q

Figure 5. Graph G1 and Its Corresponding Transaction T1

T1 = {(a,b,p), (a,c,q), (c,b,r), (b,e,s), (b,d,t), (e,d,u)}

 21

4.2 ASDG (Abstract System Dependence Graph) Extraction

All 19 versions (4698, 4762, 4786, 4796, 4804, 4806, 4829, 4899, 4953, 4966, 4984,

5134, 5226, 5244, 5396, 5611, 6013, 6015, 6140) of the Java class

KnowledgeFlowApp.java were downloaded from their subversion source code

repository. Using structure101 (for a description, see Section 4.5.1), an abstract system

dependence graph was extracted for each version. We shall refer to each ASDG (Abstract

System Dependence Graph) by the notation ASDG (N), where N is the subversion

revision number associated with a specific version of the class.

4.3 Transformation of Graphs to Transactions

Each ASDG (Abstract System Dependence Graph) was transformed from a graph to a

transaction by using the method mentioned in Section. 4.1 Overview.

After the transformation, all ASDGs with nodes A1,A2,A3, …, An appeared as rows in a

table with their edge label l(e) as the columns.

VERSION ID REVISION NUMBER A1→A2 A2→A3 A3→A4 ….. An-1→An

4698 0 1 0 0 0 1

…… …… …… …… …… …… ……

6140 18 1 1 1 1 1

Table 2. Sample Table Representing PDGs in Transactional Form

 22

Table 2 shows the transactional representation of PDGs. A value of 1 represents the

presence, and 0 the absence of a particular edge in the graph corresponding to a specific

version of a Java class.

4.4 Pattern Generation

Pattern generation took place every time a program was modified and committed to the

code repository. Pattern mining algorithms were used to mine for patterns incrementally

by starting from the oldest version and working to the newest version. At each step, only

the current and previous versions were considered for mining and all the subsequent

versions were ignored. This stepwise approach allowed us to study the changes in the

discovered patterns from one version to another, e.g., patterns discovered in version n of

a class were compared with the patterns discovered in version n-1 of the same class.

To speed up the analysis, a summary table was maintained which was updated with the

support count (for the definition and calculation, see Section 2.4) and value of each edge

for the respective version. This way, instead of calculating the support count of each edge

from the scratch for every new version of the class, the support count of the previous

version was used. For example, the support count of an edge A→B for version n, was

obtained by adding one to its support count in version n-1.

 23

VERSION ID REVESION NUMBER EDGE SUPPORT COUNT VALUE

4698 0 A1→A2 1 1

4698 0 A2→A3 1 1

4698 0 A3→A4 1 1

…… …… …… …… ……

4698 0 An-1→An 1 1

4762 1 A1→A2 2 1

4762 1 A2→A3 2 1

4762 1 A3→A4 2 1

…… …… …… …… ……

4762 1 An-1→An 1 0

…… …… …… …… ……

6140 18 A1→A2 16 1

6140 18 A2→A3 19 1

6140 18 A3→A4 19 1

…… …… …… …… ……

6140 18 An-1→An 18 1

Table 3. Sample Summary Table of KnowledgeFlowApp.java for Pattern Discovery

Table 3 shows a sample summary table of Java class KnowledgeFlowApp. Each row of

the table shows the support count and value of edge label l(e) for each version of the

program. Appendix B lists the pseudo-code of the algorithms used to discover the

patterns.

 24

4.5 Tools

The following subsections contain a brief description of the tools that were used to

generate and analyze program graphs from source code. There are mainly three tools that

were used to gather and analyze data: Structure101, WEKA, and Graphviz.

4.5.1 Structure 101

Structure101 is a product of Headway Software [Headway Software 07]. Its focus is

allowing the teams developing applications in Java to pin-point the dependencies that

might exist among different pieces of code. One feature of this software, which was of

interest to this research, was its ability to generate ASDGs (Abstract System Dependence

Graphs) of programs at different levels (package, class, etc.) and to export them to xml

files.

As part of this thesis work, Java programs were written to transform graphs generated by

Structure 101 to ARFF (Attribute-Relation File Format) files that can be loaded to

WEKA, the data mining tool, and to mySQL database.

4.5.2 WEKA

WEKA (Waikato Environment for Knowledge Analysis) is a data mining platform

[WEKA 08]. It was developed at the University of Waikato, New Zealand. It is written in

Java and is available under GNU GPL (General Public License). It has tools for each

phase of the knowledge discovery process. It supports data pre-processing, data

visualization, and result evaluation. It also contains a library of association, classification,

and clustering algorithms [Witten and Frank 05].

 25

4.5.3 Graphviz

Graphviz (Graph Visualization) is an open-source collection of graph drawing tools

[Ellson et al. 02]. It is distributed as an add-on package for SUSE Linux, Debian,

Mandrake, SourceForge, and Open BSD. The input can be provided in the form of XML

or text files, and graphs can be generated and exported in different formats, e.g., jpeg, gif,

and png. .

 26

CHAPTER V

ANALYSIS OF DISCOVERED PATTERNS

In the previous chapter we discussed different steps involved in discovering patterns in

the abstract system dependence graphs (ASDG) of Java classes. This chapter contains the

results and analysis of the discovered patterns.

While studying the discovered patterns, it was observed that they can be grouped into

classes to better represent the underlying program. The patterns were classified into six

groups, C1 through C6, based on the support count and value of the edges in the graph.

These six groups are: newly formed patterns (C1), patterns disappearing right after their

creation (C2), impermanent patterns (C3), omnipresent patterns (C4), disappearing

omnipresent patterns (C5) and reincarnated patterns (C6).

5.1 Overview

Each pattern maps to some characteristic related with the program. This can be better

explained by taking a few examples from the patterns generated from a sample class.

 27

Figure 6. A Pattern Discovered in KnowledgeFlowApp.java (Version 4804)

The above figure shows a pattern that was discovered in version 4804 of the class

KnowledgeFlowApp.java. This pattern belongs to the C1 class of newly-formed

dependencies in the program. An examination of the pattern reveals that dependencies

were created from various nodes to stopFlow. A close scrutiny of the previous versions of

the class and comparing them with the new version indicates that the code in the

anonymous class represented by node 8 in the pattern had a code segment which was

removed and moved to a new function called stopFlow. This explains why there was a

new node in the pattern and also that there were multiple references to that node from

already existing nodes.

The code in version 4796 and what it got replaced by in version 4804 are given below.

The code in the following figure is part of method setUpToolbars. In this code fragment,

an action named listener is defined. When this listener action is called, it stops all the

running bean instances.

 28

The code segment in the following figure shows the modified listener action. In this

version of the class, the code dealing with stopping of the beans is replaced by the call to

a new method stopFlow. This method now contains the code used to stop all the objects

of type BeanInstance.

m_stopB.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 m_logPanel.statusMessage("[KnowledgeFlow]|Attempting to stop all components...");

Vector components = BeanInstance.getBeanInstances();

for (int i = 0; i < components.size(); i++) {

Object temp = ((BeanInstance) components.elementAt(i)).getBean();

 if (temp instanceof BeanCommon) {

 ((BeanCommon) temp).stop();

 }

 }

 m_logPanel.statusMessage("[KnowledgeFlow]|OK.");

 }

 });

Code in version 4796

 29

The following code segments represent the newly formed edge from clearLayout to

stopFlow. In version 4796, method clearLayout did not have the code to stop the objects

of type BeanInstance. In version 4804 a call to method stopFlow was added in method

clearLayout.

public void clearLayout() {

 BeanInstance.reset(m_beanLayout);

 BeanConnection.reset();

 m_beanLayout.revalidate();

 m_beanLayout.repaint();

 }

Code in version 4796

m_stopB.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 m_logPanel.statusMessage("[KnowledgeFlow]|Attempting to stop all

components...");

 stopFlow();

 m_logPanel.statusMessage("[KnowledgeFlow]|OK.");

 }

 });

private void stopFlow() {

 Vector components = BeanInstance.getBeanInstances();

 for (int i = 0; i < components.size(); i++) {

 Object temp = ((BeanInstance) components.elementAt(i)).getBean();

 if (temp instanceof BeanCommon) {

 ((BeanCommon) temp).stop();

 }

 }

 }

Code in version 4804

 30

The three newly formed edges 8→stopFlow, clearLayout→stopFlow, and

loadLayout→stopFlow appear to point towards a scenario where a programmer wrote the

code to accomplish a certain task in one method and then realized that the same task

needed to be done in other methods in the program. This resulted in the creation of a new

method stopFlow and three calls to this method.

The rest of the two edges 14→m_LogPanel and clearLayout→m_LogPanel represent

statements to display messages in m_LogPanel which is a Java swing GUI control

JScrollPane.

The following code shows the statements which are represented by the edges

14→m_LogPanel and clearLayout→m_LogPanel in the pattern in Figure 6.

public void clearLayout() {

 stopFlow(); // try and stop any running components

 BeanInstance.reset(m_beanLayout);

 BeanConnection.reset();

 m_beanLayout.revalidate();

 m_beanLayout.repaint();

 m_logPanel.clearStatus();

 m_logPanel.statusMessage("[KnowledgeFlow]|Welcome to the Weka Knowledge

Flow");

 }

Code in version 4804

 31

The figure below represents a pattern that was discovered in version 4966 of the sample

class KnowledgeFlowApp.java. This pattern represents three newly formed

dependencies.

Figure 7. A Pattern Discovered in KnowledgeFlowApp.java (Version 4966)

deleteItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 BeanConnection.removeConnections(bi);

 bi.removeBean(m_beanLayout);

 if (bc instanceof BeanCommon) {

 String key = ((BeanCommon)bc).getCustomName()

 + "$" + bc.hashCode();

 m_logPanel.statusMessage(key + "|remove");

 }

 revalidate();

 notifyIsDirty();

 } });

public void clearLayout() {

 stopFlow(); // try and stop any running components

 BeanInstance.reset(m_beanLayout);

 BeanConnection.reset();

 m_beanLayout.revalidate();

 m_beanLayout.repaint();

 m_logPanel.clearStatus();

 m_logPanel.statusMessage("[KnowledgeFlow]|Welcome to the Weka

Knowledge Flow");

 }

Code in version 4804

 32

In Figure 7, node m_flowEnvironment represents a member variable of type

Environment, and node setEnvironment represents a member method of the class

KnowledgeFlowApp.java. The signature of method loadLayout was changed to take an

input parameter of type Environment. This change is represented by edges

loadLayout→m_flowEnvironment and loadLayout→setEnvironment.

In the above code segment, m_flowEnvironment is a new member variable introduced in

version 4966 and a new function setEnvironment is used to initialize it. An interesting

point to note is that setEnvironment node is referencing itself. A pattern like this

represents a recursive call.

/** Environment variables for the current flow */

 protected Environment m_flowEnvironment;

 /**

 * Set the environment variables to use. NOTE: loading a new layout

 * resets back to the default set of variables

 *

 * @param env

 */

 public void setEnvironment(Environment env) {

 m_flowEnvironment = env;

 // pass m_flowEnvironment to all components

 // that implement EnvironmentHandler

 Vector beans = BeanInstance.getBeanInstances();

 for (int i = 0; i < beans.size(); i++) {

 Object temp = ((BeanInstance) beans.elementAt(i)).getBean();

 if (temp instanceof EnvironmentHandler) {

 ((EnvironmentHandler) temp).setEnvironment(m_flowEnvironment);

 }

 }

 }

Code in version 4966

 33

5.2 Pattern Classification

If we represent support count by (for a definition of and examples for support count,

please see Section 2.4), the item by i, and the version index as n, where version index

start from 0 and increments by 1 every time a new version of class is committed in the

repository, we can list the different types of patterns, i.e., C1, C2, C3, C4, C5, and C6, in

a table as follows:

Class value() value -

C1 1 NA 1 NA

C2 1 NA 0 1

C3 ≥ 1 NA 0 1

C4 n+1 NA NA NA

C5 n N NA NA

C6 >1 NA 1 0

Table 4. Classes of Patterns

In this table, is the support count of an item i in version index n of a class, e.g., the

support count of an item i =A5→A6 in the third revision will be represented by

 34

. An edge in a graph is represented by an item in the transaction, for

reference, please see Section 4.1 Overview.

5.3 Class Description and Function

This classification of patterns into six groups was made as a result of observation and

experience, and no claim is made as to the completeness or consistency of this

classification. The existence of these patterns was manifested as a result of the generation

of patterns of different levels of support and confidence over and over again. After doing

and redoing the same experiments with different parameters, it became apparent that the

patterns with minimum and maximum support count tended to bind closely to the

changes made in the program code. Beyond the grouping of patterns into six classes,

further classification of the patterns is possible, and some such categorizations are

suggested as future work towards the end of this thesis report.

The following six subsections briefly describe the classes, i.e., newly formed patterns,

patterns disappearing right after their creation, impermanent patterns, omnipresent

patterns, disappearing omnipresent patterns, and reincarnated patterns.

5.3.1 C1 – Newly Formed Patterns

The patterns of this type represent newly-created dependencies. Both of the patterns

discussed above in Section 5.1 belong to this class.

 35

5.3.2 C2 – Patterns Disappearing Right After Their Creation

These patterns represent pieces of code which were incorrect and were removed based on

changes in the design. For example, in our sample class (see Section 4.1) a lot of such

patterns were formed in the second revision of the class in version 4786. This can be the

result of a change in design approach by the author early in the development phase. An

example of such a pattern appears below.

 36

F
ig

u
re 8

. A
 C

la
ss C

2
 P

a
ttern

 D
isco

v
ered

 in
 K

n
o
w

led
g
eF

lo
w

A
p

p
.ja

v
a
 (V

ersio
n

 4
7
8
6
)

(V
ersio

n
 4

8
0
4
)

 37

5.3.3 C3 – Impermanent Patterns

This class of patterns is similar to C2 because it also contains items that disappeared in

the current version. The basic difference between the two patterns is that C2 includes

only items that appeared for the first time in the previous version and disappeared in the

current version, whereas C3 includes any disappeared items irrespective of which version

they appeared in. The C3 group was created to capture the dependencies that disappeared

after having been there for one or more versions. Patterns in this class could represent

code written by one developer who is constantly wrong and is being asked to change

his/her code, or it could represent some functionality that is constantly being second-

guessed. Such patterns might also appear in projects where the customer requirements

were either not completely understood or were constantly changing. In any case, such

patterns represent a trouble spot that requires involvement by the senior team members.

The following example is taken from the patterns discovered in version 5197 of

Evalauation.java. Evaluation.java also belongs to WEKA [WEKA 08]. This class is

revised 17 times and its latest version contains 3643 lines of code.

Figure 9. A Class C3 Pattern Discovered in Evaluation.java (Version 5197)

 38

In this pattern we see all the dependencies that were removed from the program in

version 5197.

5.3.4 C4 - Omnipresent Patterns

These patterns are always present, starting from the inception of the program. These

patterns can represent code segments that describe the basic foundation of the code.

These patterns represent dependencies that have always been present in the code. An

example of omnipresent patterns from version 6140 in KnowledgeFlowApp.java appears

below.

Figure 10. A Class C4 Pattern Discovered in KnowledgeFlowApp.java (Version 6140)

Admittedly, this figure is not readable, however it is indicative in that it shows that a

comparatively large part of the code stays virtually intact. In this case out of 296 edges in

the first revision (version 4762) of KnowledgeFlowApp.java 196 edges remained

unchanged.

5.3.5 C5 – Disappearing Omnipresent Patterns

A pattern in this class represents a dependency which, after being present in every

previous version, for some reason disappeared. Patterns with very high support count that

appear very early in the life of a project, could disappear after a few versions. For

example, in KnowledgeFlowApp such patterns were not encountered after revision 2. A

 39

pattern must be included in this category only after careful consideration. Unexpected

appearance of patterns belonging to this class can be used to alert managers and leads

who can then talk to the developer to find out why this change was made and if there are

any unforeseen consequences. It has also been observed that these patterns are generally

accompanied by some new patterns of type C1 in the same or the next revision to replace

the functionality that was provided by this dependency. Subsequent example from

version 6263 from GridSearch.java appears below. This class also belongs to WEKA

[WEKA 08]. It was revised 5 times. Version 6263 is the latest version of this class.

Figure 11. A Class C5 Pattern Discovered in GridSearch.java (Version 6263)

The above pattern represents dependencies that were present in all previous version of the

class but disappeared in version 6263. The code was modified to take advantage of multi-

core machines and during this change the dependencies in the above pattern were

removed.

In the same version 6263 patterns belonging to C1 appeared which do appear to be

replacing some of the dependencies that disappeared. For example, edges

evaluate→getXStep, evaluate→getYBase, evaluate→getYExpression,

evaluate→getYMax, evaluate→getYMin, evaluate→getYProperty in Figure 11 seem to

 40

have been replaced by edges SetupGenerator→getXStep, SetupGenerator →getYBase,

SetupGenerator→getYExpression, SetupGenerator→getYMax,

SetupGenerator→getYMin, SetupGenerator →getYProperty in Figure 12, which contains

patterns of group C1.

 41

F
ig

u
re 1

2
. A

 C
la

ss C
1

 P
a
ttern

 D
isco

v
ered

 in
 G

rid
S

ea
rch

.ja
v
a
 (V

ersio
n

 6
2
6
3
)

 42

5.3.6 C6 - Reincarnated Patterns

Patterns in this class point to appearance, disappearance, and then re-appearance of

dependencies. They are meant to represent interesting changes and can be used to ask the

following questions about the code segments that they represent: What function did they

perform? Why did they disappear? What brought them back? These patterns almost

always represent contentious code and should be paid close attention to. In the

experiments for this thesis, none of these types of patterns were found but, edge

clearLayout->m_beanLayout of KnowledgeFlowApp.java class was manipulated to

mimic conditions which caused it to appear as a reincarnated pattern. This edge existed in

three consecutive versions 4804, 4806, and 4829. It was removed from version 4806 and

it appeared in group C6 of version 4829.

Figure 13. A Class C6 Pattern Discovered in KnowledgeFlowApp.java (Version 4829)

 43

CHAPTER VI

SUMMARY AND FUTURE WORK

Chapter I discusses the need for unsupervised discovery of patterns in program graphs.

Chapter II contains information about knowledge discovery from data (KDD). Chapter III

describes program graphs and various graph mining algorithms. Chapter IV is about

program graph extraction from Java source code and discovery of patterns. Chapter V

includes the analysis of patterns discovered in the program graphs.

In this thesis work the potential that lies in the use of program graphs for software

maintenance and comprehension was explored. Graph patterns can prove to be an

invaluable tool for architects, designers, managers, and team leads in effectively

monitoring the changes in the code.

The possibility of using the discovered patterns to control changes in code segments was

discussed in Chapter V. For example, if it is not desirable to change a dependency, then

one needs to make sure that it does not appear as a removed dependency in group C5.

Similarly, if it is desirable for certain objects in a project not to have any dependency on

each other, then one would need to do so by reviewing the C1 patterns. Any changes to

the contrary (i.e., creation of a new dependency among the objects) will be immediately

 44

 reflected in the patterns generated after the code is committed to the repository by the

development team.

 Work needs to be done towards integrating the pattern discovery process with the nightly

builds. The patterns can be generated as part of the daily run of the automated regression

suite and reviewed in conjunction with the test results.

 In this study, the focus was on abstract system dependence graphs (ASDG). There are

other program graphs, e.g., control dependence graphs (CDG), control flow graphs

(CFG), and data flow graphs (DFG) that can be used and analyzed in a similar fashion.

.

 45

REFERENCES

[Agrawal and Srikant 94] Rakesh Agrawal and Ramakrishnan Srikant, “Fast Algorithms

for Mining Association Rules”, Proceedings of the International Conference on Very

Large Databases, pp. 487-499, Santiago, Chile, September 1994.

[Agrawal et al. 93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami, “Mining

Association Rules Between Sets of Items in Large Databases”, Proceedings of the

ACM SIGMOD International Conference on Management of Data, pp. 207-287,

Washington, District of Columbia, May 1993.

[Borgelt and Berthold 02] Christian Borgelt and Michael R. Berthold, “Mining Molecular

Fragments: Finding Relevant Substructures of Molecules”, Proceedings of the

International Conference on Data Mining, pp. 211-218, Maebashi, Gumma, Japan,

December 2002.

[Chang et al. 08] Ray-Yaung Chang, Andy Podgurski, and Jiong Yang, “Discovering

Neglected Conditions in Software by Mining Dependence Graphs”, IEEE

Transactions on Software Engineering, Vol. 34, No. 5, pp. 579-596, September

2008.

[Chen and Rajlich 00] Kunrong Chen and Václav Rajlich, “Case Study of Feature

Location Using Dependence Graph”, Proceedings of the 8th International Workshop

on Program Comprehension (IWPC'00), pp. 241-249, Limerick, Ireland, June 2000.

[Dean et al. 01] Thomas R. Dean, Andrew J. Malton, and Ric Holt, “Union Schemas as a

Basis for a C++ Extractor”, Proceedings of the Eighth Working Conference on

Reverse Engineering, pp. 59-67, Stuttgart, Germany, October 2001.

[Derby 04] Apache Derby Project, URL: http://db.apache.org/derby/, date created:

August 2004, date accessed: December 2009.

[Doctor Garbage 09] Dr. Garbage Ltd. & Co., Control Flow Graph Factory 3.4, In 2008,

Sergej Alekseev and Peter Palaga founded Dr. Garbage that specializes in debugging

and development tools for Java. URL: http://www.drgarbage.com/control-flow-

graph-factory-3-4.html, date created: unknown, date accessed: February 2009.

.

http://www.drgarbage.com/control-flow-graph-factory-3-4.html
http://www.drgarbage.com/control-flow-graph-factory-3-4.html

 46

[Du et al. 07] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu, “Community

Detection in Large-Scale Social Networks”, Proceedings of the 9th WebKDD and 1st

SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 16-25,

San Jose, California, August 2007 .

[Ellson et al. 02] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C.

North, and Gordon Woodhull, “Graphviz - Open Source Graph Drawing Tools”,

Lecture Notes in Computer Science, pp. 594-597, 2002.

[Ferrante et al. 87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, "The Program

Dependence Graph and Its Use in Optimization”, ACM Transactions on

Programming Languages and Systems, Vol. 9, No. 3, pp. 319-349, July 1987.

[Fischer and Meinl 04] Ingrid Fischer and Thorsten Meinl, “Graph Based Molecular Data

Mining - An Overview”, Proceedings of the IEEE Conference on Systems, Man &

Cybernetics, Vol. 5, pp. 4578-4582, The Hague, South Holland, Netherlands,

October 2004.

[Free Software Foundation 09] Free Software Foundation, Inc., Introduction to CFlow,

Free Software Foundation, URL:http://www.gnu.org/software/cflow, date created:

unknown, date accessed: July 2009.

[GrammaTech 05] GrammaTech Inc., CodeSufer Overview, GrammaTech Inc., URL:

http://www.grammatech.com/products/codesurfer/overview.html, date created:

unknown, date accessed: February 2009.

[Han and Kamber 06] Jiawei Han and Micheline Kamber, Data Mining - Concepts and

Techniques, Second Edition, Morgan Kaufmann Publishers, San Francisco,

California, 2006.

[Headway Software 07] Headway Software, “Controlling Architecture with

Structure101”, White Paper, Headway Software, Newton, Massachusetts, URL:

http://www.headway-software.com/products/structure101/.ControllingArchitectur

ewithStructure101.pdf, July 2007.

[Holder et al. 94] Lawrence B. Holder, Diane J. Cook, and Suranjani Djoko,

“Substructure Discovery in the Subdue System”, Proceedings of the AAAI Workshop

on Knowledge Discovery in Databases, pp. 169-180, Seattle, Washington, July 1994.

[Horwitz et al. 88] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using

Dependence Graphs”, Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, pp. 35-46, Atlanta, Georgia,

June 1988.

[Huan et al. 03] Jun Huan, Wei Wang, and Jan Prins, "Efficient Mining of Frequent

Subgraphs in the Presence of Isomorphism", Proceedings of the Third IEEE

International Conference on Data Mining, pp. 549-552, Washington, District of

Colombia, November 2003.

 47

[Inokuchi et al. 99] Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda1, Kouhei

Kumasawa, and Naohide Arai, “Basket Analysis for Graph Structured Data”,

Proceedings of the Third Pacific-Asia Conference on Methodologies for Knowledge

Discovery and Data Mining, pp. 421-433, Beijing, China, April 1999.

[Inokuchi et al. 00] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda, “An

Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data”,

Proceedings of the 4th European Conference on Principles of Data Mining and

Knowledge Discovery, pp. 13-23, Lyon, Rhône-Alpes Region, France, September

2000.

[JDOM 09] JDOM
TM

 Project, An open source Java based library for manipulating XML

data. URL: http://www.jdom.org, date created: unknown, date accessed: Novemeber

2009.

[King et al. 01] Ross D. King, Ashwin Srinivasan and Luc Dehaspe, “Warmr: A Data

Mining Tool for Chemical Data”, Journal of Computer-Aided Molecular Design, Vol.

15, No. 2, pp. 173-181, February 2001.

[Knijf 07] Jeroen De Knijf, “FAT-Miner: Mining Frequent Attribute Trees”, Proceedings

of the 2007 ACM Symposium on Applied Computing, pp. 417-422, Seoul, South

Korea, March 2007.

[Kuramochi and Karypis 04] Michihiro Kuramochi and George Karypis, “An Efficient

Algorithm for Discovering Frequent Subgraphs”, IEEE Transactions on Knowledge

and Data Engineering, Vol. 16, No. 9, pp. 1038-1051, Piscataway, New Jersey,

September 2004.

[Nijssen and Kok 04] Siegfried Nijssen and Joost N. Kok, “A Quickstart in Frequent

Structure Mining Can Make a Difference”, Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 647-652,

Seattle, Washington, August 2004.

[Tan et al. 06] Pang-Ning Tan, Mihael Steinbach, and Vipin Kumar, Introduction to Data

Mining, Addison-Wesley Publishers, Upper Saddle River, New Jersey, 2006.

[Vanetik et al. 02] N. Vanetik, E. Gudes, and S. E. Shimony, “Computing Frequent

Graph Patterns from Semistructured Data”, Proceeding of the 2002 International

Conference on Data Mining, pp. 458-465, Maebashi City, Japan, December 2002.

[WEKA 08] Waikato Environment for Knowledge Analysis, URL:

https://svn.scms.waikato.ac.nz/svn/weka, File Path: weka\src\main\java\weka\gui\

beans\KnowledgeFlowApp.java date created: November 2008, date accessed:

December 2009.

[Witten and Frank 05] Ian H. Witten and Eibe Frank, Data Mining: Practical Machine

Learning Tools and Techniques, Second Edition, Morgan Kaufmann Publishers, San

Francisco, California, 2005.

 48

[Yan and Han 02] Xifeng Yan and Jiawei Han, “gSpan: Graph-Based Substructure

Pattern Mining”, Proceeding of the 2002 International Conference on Data Mining, pp.

721-724, Maebashi, Japan, December 2002.

 49

APPENDICES

 50

APPENDIX A

GLOSSARY

AGM Apriori Based Graph Mining Algorithm – An extension of algorithm

proposed by Agrawal [Agrawal et al. 93] [Inokuchi et al. 00] which

discovers the association rules hidden in the frequent patterns that

exist in a PDG (Program Dependence Graph).

ANT Another Neat Tool - A Java library that is used to build and configure

both Java and non-Java based applications. ANT is the part of apache

project and is distributed under apache open source license.

ASSOCIATION A rule representing the co-occurrence of data items in the same

instance. It is in the form of a predicate and an antecedent, e.g., if a

customer buys beer then he/she is going to buy diapers as well.

ASSOCIATIVE The branch of data mining that deals with the analysis of association

ANALYSIS rules discovered from datasets.

CONFIDENCE For an association rule X→Y, confidence is the measure of frequency

of occurrence of all items in itemset Y, whenever all items of X occur

in a transaction.

COVERAGE The measure of how many times an association rule's antecedent

appears in the data transactions.

CROSS A result validation method in which part of the dataset is held back

VALIDATION and used to validate the results of the experiments. Sometimes the

experiment is repeated several times while the part held out is rotated

and used to validate the results. This variation of cross validation is

called n-fold cross validation.

DATA MINING The process of gleaning hidden knowledge nuggets from the cleansed

data. It is the discovery part of the Knowledge Discovery Process.

DBMS DataBase Management System – software which implements a data

store and provides data manipulation tools that helps in storing and

manipulating data.

DOM Document Object Model – A standard for modeling and manipulating

document object in HTML, XHTML, XML and XSLT.

 51

HTML Hyper Text Markup Language - A markup language that is used to

define the structure of a document. It is widely used to publish

documents on the internet.

INSTANCE See TRANSACTION.

ITEMSET A collection of one or more items in a transaction.

JDOM Java Document Object Model - An open source library that is used

for modeling and manipulating XML DOM trees.

KDD Knowledge Discovery in Data - KDD is the process of extracting

knowledge from data. It consists of data cleaning, data integration,

data selection, data mining, pattern evaluation, and knowledge

representation.

MACHINE The branch of computer science that studies ways of enabling

LEARNING machines to learn from their previous experience, thus modifying

their behavior by exhibiting good judgment in similar situations

afterwards.

MAVEN Maven (yi.=meyvn) is a Yiddish word which means accumulator of

knowledge. It is a software project management tool. It provides

facilities throughout the software project lifecycle from requirements

definition to nightly builds, regression testing, and production

deployment. Maven is a project of apache foundation and is

distributed under apache open source software license.

PDG Program Dependence Graph - A directed graph whose nodes

represent the statements of the programs and each edge connecting

two nodes represents the dependence of the respective statements on

each other.

SAMPLING The process of picking a small part of the data that accurately exhibits

the properties of the data under investigation. Sampling is especially

useful in studying large datasets whose size makes the brute force

analysis prohibitively costly in terms of time and space.

SUPPORT The percentage of the occurrence of the antecedent of an association

rule (see Association).

TRANSACTION A group of items that co-occur in a single instance. For example, in

the case of market basket analysis, the items purchased during a

single visit to the grocery store would represent a transaction.

 52

WEKA Waikato Environment for Knowledge Analysis - A library developed

at the University of Waikato which implements common data mining

algorithms and also provides useful tools to assist various data mining

tasks.

XHTML Extensible Hyper Text Markup Language - It belongs to the family of

extensible markup language (XML). Like hypertext markup language

(HTML), it is used to format and structure documents. It provides a

mean to extend HTML.

XML Extensible Markup Language - A language used to describe the

structure of data. Due to its ability to separate data from presentation,

it is widely used by applications to present data as well as to

communicate with other applications.

XSLT XML (Extensible Markup Language) Stylesheet Language for

Transformations - A language used to manipulate XML documents. It

is mainly used to transform XML documents to HTML pages.

 53

APPENDIX B

PSEUDO-CODE

This appendix contains the pseudo code of the program used to discover frequent items

from a transaction dataset.

The following pseudo-code of function MAIN() depicts the steps used in the process of

frequent pattern discovery.

MAIN ()

{

N = Total number of revisions;

count = 0;

sort all program dependence graphs in the ascending order of

version;

while (count < N)

 do{

 Add PDG to dataset;

 UPDATE_SUMMARY_TABLE();

 GENERATE_PATTERNS ();

 count++;

}

}

 54

The following function is used to update the summary table.

UPDATE_SUMMARY_TABLE()

{

 I = {Set of all columns in Table 1 MINUS version id, revision

number}

 N = Total number of revisions;

 count = 0;

 while (count < N){

 For each element of I

 do{

 SUM = SUM(SUPPORT COUNT) OF I for VERSION ID(count);

 VAL = VALUE OF I for VERSION ID(count);

 INSERT/UPDATE SUMMARY TABLE SET

 SUPPORT COUNT = SUM, SET VALUE = VAL,

 WHERE VERSION ID = COUNT AND ITEM = Ii ;

 }

 }

}

 55

APPENDIX C

TRANSACTIONAL REPRESENTATION OF GRAPHS

Tan et al. explain the transactional representation of graphs as follows [Tan et al. 06]:

TID Items

1 {Bread, Milk}

2 {Bread, Diapers, Beer, Eggs}

3 {Milk, Diapers, Beer, Cola}

4 {Bread, Milk, Diapers, Beer}

5 {Bread, Milk, Diapers, Cola}

The above table represents data collected in a supermarket. Each transaction shows the

items purchased by customers. By analyzing the above data, different relationships can be

discovered. For example, Diapers appear in four out of five transactions and in three out

of those four transactions Beer also occurs. Therefore, looking at this data one can deduce

that there is a high probability of a customer buying beer to buy diapers as well.

Market basket data can be represented in a binary format as shown in the following table,

where each row corresponds to a transaction and each column corresponds to an item. An

item can be treated as a binary variable whose value is one if the item is present in a

transaction and zero otherwise.

TID Bread Milk Diapers Beer Eggs Cola

1 1 1 0 0 0 0

2 1 0 1 1 1 0

3 0 1 1 1 0 1

4 1 1 1 1 0 0

5 1 1 1 0 0 1

Now, let us consider an example of some graphs and their corresponding transaction-like

representation.

 56

TID A→B A→C A→D A→E B→A B→C B→D C→B C→D D→E E→D

1 0 1 1 0 0 0 0 1 1 0 1

2 0 1 0 1 1 0 1 0 0 0 1

3 1 1 1 1 0 0 0 0 0 0 0

4 0 0 1 1 0 0 0 0 0 1 0

5 1 0 1 1 0 1 0 0 0 1 0

Why does this approach work only when every edge is unique (every 3-tuple is unique) ?

Imagine that in Graph G2 we have two A→B nodes. Then either we should add two

columns for A→B or put the value of 2 for A→B. Both of these approaches will interfere

with the way we are calculating the support count and hence in frequent pattern

generation.

Graph G1 Graph G2

Graph G3 Graph G4 Graph G5

 57

APPENDIX D

RESULTS

This appendix contains the results of data mining experiments conducted to discover

frequent patterns.

Abstract System Dependence Graphs (ASDG) of four classes from two open source

projects WEKA [WEKA 08] and Derby [Derby 04] were mined for patterns. The name,

number of revisions, and version numbers of these classes appear in the following table.

Class Number of

Revisions

Version Number

KnowledgeFlowApp.j

ava

19 4698, 4762, 4786, 4796, 4804, 4806, 4829,

4899, 4953, 4966, 4984, 5134, 5226, 5244,

5396, 5611, 6013, 6015, 6140.

GridSearch.java 5 4698, 4828, 5803, 5928, 6263.

Evaluation.java 17 4698, 4838, 4842, 4899, 4997, 5072, 5093,

5162, 5197, 5678, 5685, 5688, 5714, 5928,

5987, 6041, 6344.

DRDAConnThread.ja

va

34 497748, 515102, 515563, 515793, 517131,

534610, 534985, 542925, 545454, 556589,

557032, 562524, 570663, 574870, 581012,

611272, 613169, 614549, 617186, 631593,

631997, 632413, 632456, 633011, 642707,

666088, 674354, 700948, 701199, 703170,

734190, 899733, 901219, 924746.

 58

EXPERIMENT 1 – KnowledgeFlowApp.java

In this experiment, different versions of class KnowledgeFlowApp.java were mined for

patterns.

Details about the class and its versions appear below.

Name: KnowledgeFlowApp.java

Number of Revisions: 19

Location: /trunk/weka/src/main/java/weka/gui/beans/

Subversion URL: https://svn.scms.waikato.ac.nz/svn/weka

Version

Number

Lines of

Code

Date and Time Author Message

4698 2961 2:39:21 PM, Thursday,

November 13, 2008

mhall Move out of top level

4762 2984 4:41:48 PM, Sunday,

November 23, 2008

mhall clear all results/plots now

needs confirmation from

user

4786 3020 6:40:20 PM, Thursday,

November 27, 2008

mhall Updates for new log/status

panel

4796 3037 11:31:23 PM, Friday,

November 28, 2008

mhall Added support for

ConfigurationConstraints

4804 3061 12:49:38 AM, Sunday,

November 30, 2008

mhall More improvements to

logging and status

messages.

4806 3061 1:28:41 PM, Sunday,

November 30, 2008

mhall Updated for changes to

BeanCommon.

4829 3061 2:18:21 PM, Thursday,

December 04, 2008

mhall Changed the fonts for

component labels and

connection labels from

monospaced to default to

improve readability under

Windows

4899 3052 5:09:05 PM, Thursday,

December 25, 2008

fracpete fixed Javadoc

documentation errors that

showed up during Javadoc

generation ("ant docs")

4953 3052 11:15:44 PM, Thursday,

January 15, 2009

mhall Fixed nasty bug that

prevented a MetaBean that

had been stored in the user

tab from being binary

serialized when the flow

was saved.

4966 3081 4:57:53 PM, Monday,

January 19, 2009

mhall Altered to reflect changes

to Environment.java

4984 3085 6:06:18 PM, Thursday,

January 22, 2009

mhall More changes to support

local environment

variables

5134 3085 7:27:41 PM, Tuesday,

March 03, 2009

mhall Removed a superfluous

method from

BeanCommon

 59

5226 3128 8:41:44 PM, Tuesday,

April 07, 2009

mhall Now checks to see if a

component is Startable and

adds it's startMessage to

the contextual popup

menu. Components that are

Startable or implement

userRequests get started or

requests executed in a

separate thread. This

should remove the burden

of launching

computationally expensive

tasks in separate threads

from individual

components (unless, like

Classifier, they launch

multiple tasks in parallel).

5244 3128 7:59:06 PM, Tuesday,

April 14, 2009

mhall Small fix for handling of

Startable and

UserRequestAcceptor.

5396 3136 9:54:56 PM, Sunday,

May 24, 2009

mhall Modifications to support

GUI access to environment

variables.

5611 3151 7:16:39 PM, Tuesday,

June 16, 2009

mhall Managed to break the

linking in and out of

MetaBeans - now fixed

again. Plus some

improvements to the

labeling of events, actions

etc. for MetaBeans.

6013 3155 6:36:55 PM, Thursday,

October 01, 2009

mhall Now allows outgoing

connections to be made

from all beans

encapsulated in a

MetaBean and not just

those defined to be

"output" beans.

6015 3164 12:24:33 AM, Friday,

October 02, 2009

mhall Added some code to ensure

that an input in the subflow

of a MetaBean is

disconnected as a source

for any target beans that

are outside of the subflow

(was causing serialization

problems when adding to

the user tab).

6140 3169 7:12:33 AM, Friday,

December 11, 2009

mhall Now creates the plugins

directory (if not already

existing) on exit.

Patterns discovered in each version of the class are grouped into classes (for a definition

of the six classes, please see Section 5.2).

 60

VERSION 4698 – Failed Build. There was some issues with the build of this

version and the project did not compile.

 61

VERSION 4762 (Revision 0)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 –Impermanent patterns

 NONE FOUND

C4 - Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 - Reincarnated patterns

 NONE FOUND

 62

VERSION 4786 (Revision 1)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

C3 – Impermanent patterns

C4 - Omnipresent patterns

C5 – Disappearing omnipresent patterns

C6 - Reincarnated patterns

 NONE FOUND

 63

VERSION 4796 (Revision 2)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 64

VERSION 4804 (Revision 3)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 65

VERSION 4806 (Revision 4)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 66

VERSION 4829 (Revision 5)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 67

VERSION 4899 (Revision 6)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 68

VERSION 4953 (Revision 7)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 69

VERSION 4966 (Revision 8)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 70

VERSION 4984 (Revision 9)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 71

VERSION 5134 (Revision 10)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 72

VERSION 5226 (Revision 11)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 73

VERSION 5244 (Revision 12)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 74

VERSION 5396 (Revision 13)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 75

VERSION 5611 (Revision 14)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 76

VERSION 6013 (Revision 15)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 77

VERSION 6015 (Revision 16)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 78

VERSION 6140 (Revision 17)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 79

EXPERIMENT 2 – Evaluation.java

In this experiment, different versions of class Evaluation.java were mined for patterns.

Details about class Evaluation.java and its versions appear below.

Name: Evaluation.java

Number of Revisions: 17

Location: /trunk/weka/src/main/java/weka/classifiers

Subversion URL: https://svn.scms.waikato.ac.nz/svn/weka

Version

Number

Lines of

Code

Date and Time Author Message

4698 3650 2:39:21 PM, Thursday,

November 13, 2008

mhall Move out of top level

4838 3706 12:28:31 AM, Tuesday,

December 09, 2008

mhall Added a general option to

output the global

information (synopsis) for

the classifier.

4842 3713 6:46:31 PM, Tuesday,

December 09, 2008

mhall Now no longer prints

classification summary and

confusion matrix when -p

option is selected (i.e. now

more like what the book

version outputs in this

situation).

4899 3713 5:09:05 PM, Thursday,

December 25, 2008

fracpete fixed Javadoc

documentation errors that

showed up during Javadoc

generation ("ant docs")

4997 3713 5:52:20 PM, Sunday,

January 25, 2009

fracpete added new

Instances.equalHeadersMs

g(...) method to errors

message for more

informative output (why

the equality test failed)

5072 3713 1:29:03 PM, Sunday,

February 15, 2009

mhall Now suppresses detailed

class information when

printing predictions.

5093 3752 7:11:05 PM, Monday,

February 23, 2009

mhall Added George Forman's

unweighted micro and

macro averaged F-measure

methods.

5162 3764 2:33:54 PM, Wednesday,

March 18, 2009

fracpete fixed source code

generation: generated

classifier didn't implement

getRevision() method

5197 3539 6:52:13 PM, Sunday,

March 29, 2009

fracpete I unified the generation of

predictions in Explorer and

on command-line by

introducing now class

hierarchy derived from

weka.classifiers.evaluation.

 80

output.prediction.Abstract

Output

this allows the

implementation of custom

output generators; initially:

PlainText (original

format), CSV and HTML

5678 3619 8:42:02 PM, Wednesday,

June 24, 2009

eibe Implemented code for

evaluation of conditional

density estimates and

interval estimators and

reduced code redundancy.

Note that SF_* statistics in

numeric prediction case

have changed---they can

now be used to evaluate

conditional density

estimates---and are based

on a simpler kernel

estimator as well.

5685 3624 5:33:24 PM, Thursday,

June 25, 2009

eibe Entropy statistics are now

output again for nominal

class problems. Also

outputs coverage statistics

and rel. interval widths for

nominal class problems

now.

5688 3624 8:52:41 PM, Thursday,

June 25, 2009

eibe Small bug fix for case

where classifier

implements only one of

IntervalEstimator and

ConditionalDensityEstimat

or: now the correct

statistics are output in that

case.

5714 3645 11:22:47 PM, Thursday,

July 02, 2009

fracpete NumericPrediction class

can store the prediction

intervals returned by

IntervalEstimator

classifiers now as well

Evaluation class now

records numeric

predictions as well (and

prediction intervals

returned by

IntervalEstimator

classifiers); added member

variable to store header

information of dataset

(m_Header, getHeader()),

which means that one can

generated classifier errors

visualizations based on an

Evaluation object now (for

nominal and numeric class

attributes)

 81

Patterns discovered in each version of the class are grouped into classes (for a definition

of the six classes, please see Section 5.2). .

moved code for generating

classifier errors and cluster

assignments in Explorer

into separate classes

(AbstractPlotInstances,

ClassifierErrorsPlotInstanc

es,

ClusterAssignmentsPlotIns

tances); the

KnowledgeFlow's

ClassifierPerformanceEval

uator uses this code now as

well; the labels for the

cluster assignments now

start at 1, to be consistent

with the AddCluster filter

5928 3647 5:07:59 PM, Wednesday,

September 02, 2009

eibe Classifier.java is now an

interface. Added new class

AbstractClassifier.java.

5987 3647 3:44:39 PM, Thursday,

September 24, 2009

eibe Instance is an interface

now. There is also an

AbstractInstance, with two

concrete sub classes

DenseInstance and

SparseInstance.

DenseInstance objects are

now used wherever

Instance objects where

used previously.

6041 3641 5:40:33 PM, Thursday,

October 22, 2009

mhall Code formatting tidy up

courtesy of Michael C.

Harris. Trailing space

removed; reformat to two-

space indent; join

statements that are split

over multiple lines if the

result is less than 80

characters.

6344 3642 11:27:25 PM, Friday,

March 12, 2010

mhall Made the computation of

training/test split size when

doing a percentage split

consistent with how it is

done in the Explorer and

TrainTestSplitMaker.

 82

VERSION 4698 – Failed Build. There were some issues with the build of

this version and the project did not compile.

 83

VERSION 4838 (Revision 0)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 84

VERSION 4842 (Revision 1)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 85

VERSION 4899 (Revision 2)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 86

VERSION 4997 (Revision 3)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 87

VERSION 5072 (Revision 4)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 88

VERSION 5093 (Revision 5)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 89

VERSION 5162 (Revision 6)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 90

VERSION 5197 (Revision 7)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

 91

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 92

VERSION 5685 (Revision 8)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 93

VERSION 5688 (Revision 9)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 94

VERSION 5714 (Revision 10)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 95

VERSION 5928 (Revision 11)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 96

VERSION 5987 (Revision 12)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 97

VERSION 6041 (Revision 13)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 98

EXPERIMENT 3 – WEKA (GridSearch.java)

In this experiment, different versions of class GridSearch.java were mined for patterns.

Details about class GridSearch.java and its versions appear below.

Name: GridSearch.java

Number of Revisions: 5

Location: /trunk/weka/src/main/java/weka/classifiers/meta

Subversion URL: https://svn.scms.waikato.ac.nz/svn/weka

Version

Number

Lines of

Code

Date and Time Author Message

4698 3487 2:39:21 PM, Thursday,

November 13, 2008

mhall Move out of top level

4828 3505 3:05:36 PM, Wednesday,

December 03, 2008

fracpete added the "kappa statistic"

to the list of measures that

one can evaluate on

5803 3507 3:48:37 PM, Tuesday,

July 28, 2009

mhall Enabled missing class

values capability.

5928 3508 5:07:59 PM, Wednesday,

September 02, 2009

eibe Classifier.java is now an

interface. Added new class

AbstractClassifier.java.

6263 3866 12:58:29 PM, Sunday,

February 07, 2010

fracpete can take advantage of

multi-core machines now

Patterns discovered in each version of the class are grouped into classes (for a definition

of the six classes, please see Section 5.2).

 99

VERSION 4828 (Revision 0)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 100

VERSION 5803 (Revision 1)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 101

VERSION 5928 (Revision 2)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 102

VERSION 6263 (Revision 3)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 103

EXPERIMENT 4 – DRDAConnThread.java

In this experiment, different versions of class DRDAConnThread.java were mined for

patterns.

Details about class DRDAConnThread.java and its versions appear below.

Name: DRDAConnThread.java

Number of Revisions: 34

Location: /db/derby/code/trunk/java/drda/org/apache/derby/impl/drda

Subversion URL: https://svn.apache.org/repos/asf/db/derby/code/trunk

Version

Number

Lines of

Code

Date and Time Author Message

495543 8216 2:49:44 AM, Friday,

January 12, 2007

kahatlen DERBY-2121: Remove

JDK 1.3 build dependency

in network server

497748 8223 1:13:10 AM, Friday,

January 19, 2007

bernt DERBY-2166 Implement

proper handling of

SocketTimeoutException

in DRDAConnThread.

Submitted by Bernt M.

Johnsen

515102 8222 4:27:05 AM, Tuesday,

March 06, 2007

kristwaa DERBY-2405: Remove

@author tags from the

source files.

Patch contributed by

Saurabh Vyas.

515563 8228 5:40:14 AM,

Wednesday, March 07,

2007

kristwaa DERBY-2347: Add code

to support request and

return of locators over

DRDA.

Patch contributed by

Øystein Grøvlen.

515793 8228 2:01:37 PM, Wednesday,

March 07, 2007

Fuzzylogic DERBY-2400 (partial):

Replace references to

Cloudscape with Derby.

This commit

takes care of the rest of the

separate source trees,

except for engine, build

and testing.

517131 8234 Date: 1:40:06 AM,

Monday, March 12,

2007

kahatlen Message:

DERBY-2220:

Uncommitted transactions

executed through

XAResource will

hold locks after the

application terminates (or

crashes during the

transaction). Abort the

global transaction on a

derby server when the

 104

network socket is closed.

534610 8270 1:45:17 PM, Wednesday,

May 02, 2007

rhillegas DERBY-2506: Committed

Narayanan's

PreparedCallable_DRDA_

v5.diff, adding some

BLOB locator support.

534985 8277 1:39:18 PM, Thursday,

May 03, 2007

kmarsden DERBY-2381

ParameterMappingTest

fails due to

ArrayIndexOutOfBoundsE

xception executing a

procedure

Formerly, the server would

rely on the input parameter

type information received

from the client to

determine the output

parameter type. This patch

changes the server to look

at the parameter metadata

to determine the drda type

to send.

It also enables the test

ParameterMappingTest for

client.

542925 8289 1:26:17 PM, Wednesday,

May 30, 2007

rhillegas DERBY-2695: Oystein's

soft upgrade support for

LOB locators.

545454 8289 1:22:47 AM, Friday,

June 08, 2007

bernt DERBY-2748 TimeSlice

and Socket-Timeout

bounds checking wrong

556589 8289 4:16:45 AM, Monday,

July 16, 2007

kahatlen Fixed javadoc.

557032 8291 12:21:22 PM, Tuesday,

July 17, 2007

kmarsden DERBY-2941 With 10.2,

Closing a resultset after

retrieving a large > 32665

bytes value with Network

Server does not release

locksPort to 10.4. Verified

with 10.2 client running

LargeDataLocksTest

562524 8321 10:26:38 AM, Friday,

August 03, 2007

kmarsden DERBY-2933 (partial)

When network server

disconnects due to an I/O

Exception it does not

always log the exception

that caused the error

Committing change for

IOExceptions during

writeScalarStream().

There also may be

exceptions during

disconnect of a session

when the server shuts

down and I left these

 105

unlogged.

570663 8321 12:02:03 AM,

Wednesday, August 29,

2007

kahatlen DERBY-3025: NPE when

connecting to database

with securityMechanism=8

Use an internal attribute

name when passing

security mechanism from

the network server to the

embedded driver. This

prevents confusion if

an embedded connection is

established with

securityMechanism

specified (in which case

the security mechanism

should be ignored).

574870 8393 2:50:43 AM,

Wednesday, September

12, 2007

oysteing DERBY-3060: Network

Server incorrectly assumes

that all SQLExceptions

with error code 08004 are

caused by an

authentication

failure.Contributed by

Jørgen Løland

581012 8402 9:49:37 AM, Monday,

October 01, 2007

kmarsden DERBY-3085 Fails to

handle BLOB fields with a

PreparedStatement with

size >32750 bytes Store a

reference to the stream for

the streamed parameter in

the

DRDAStatement.paramSta

te and then drain the

stream after statement

execution if needed. There

is only one parameter ever

streamed, so only one field

needed to be added. I

added a test for both

BLOB's and CLOB's to

Blob4ClobTest.java.

611272 8397 11:30:48 AM, Friday,

January 11, 2008

djd Cleanup unnecessary check

in

DRDAConnThread.writeS

QLCINRD() and remove

code that fetched the

prepared statement but

never used it.

613169 8404 6:19:59 AM, Friday,

January 18, 2008

dyre DERBY-3311: Client

ResultSet.getHoldabilty

will return incorrect value

when the ResultSet is

obtained from a procedure

call

Patch contributed by

Daniel John Debrunner

 106

Patch file:

derby_3311_diff.txt

614549 8412 6:36:10 AM,

Wednesday, January 23,

2008

oysteing DERBY-3184: Add error

handling to SlaveDatabase.

Contributed by Jorgen

Loland

617186 8415 10:48:30 AM, Thursday,

January 31, 2008

kmarsden DERBY-3365 Network

Server stores a duplicate

entry in the lob hash map

for every lob

Change network server to

use existing lob hash map

entry instead of creating a

second entry.

631593 8502 5:52:59 AM,

Wednesday, February

27, 2008

dyre DERBY-3192: Cache

session data in the client

driver

Piggy-backs the current

isolation level and the

current schema onto

messages going back to the

client. The client caches

this information so that

it can be returned to a user

(app) without an extra

round-trip.See also

http://wiki.apache.org/db-

derby/Derby3192Writeup

Patch file: derby-3192-

mark2.v8.diff

631997 8513 7:20:49 AM, Thursday,

February 28, 2008

bernt DERBY-3435 Added some

live data to the network

server MBean

632413 8513 11:17:53 AM, Friday,

February 29, 2008

djd DERBY-3484 For JDBC

3.0 java.sql.Types

constants use directly

instead of through

JDBC30Translation as

JSR169 supports all the

types

632456 8513 2:02:27 PM, Friday,

February 29, 2008

djd DERBY-3484 For JDBC

2.0/3.0 java.sql.ResultSet

constants use directly

instead of through

JDBC[2,3]0Translation as

JSR169 supports all the

types

633011 8509 1:50:46 AM, Monday,

March 03, 2008

dyre DERBY-3192: Cache

session data in the client

driver

Remove special handling

of SYNCCTL in sanity-

check ASSERT. Since the

final

version of the real patch

 107

piggy-backs changes

caused by SYNCCTL there

is no

longer any need to omit the

sanity check after

SYNCCTL.

Patch file: derby-3192-

fup.v1.diff

642707 8506 4:09:05 AM, Sunday,

March 30, 2008

kristwaa DERBY-3576: Merge

EngineBlob and

EngineClob into a single

interface.

Merged the two interfaces

and added the method

'free'. There was no need to

sepearate between a Blob

and a Clob where the

interface was used. If such

a need arises, one should

consider adding new

interfaces extending

EngineLOB.

Patch file: derby-3576-1b-

enginelob_interface.diff

666088 8586 5:46:11 AM, Tuesday,

June 10, 2008

kristwaa DERBY-3596: Creation of

logical connections from a

pooled connection causes

resource leak on the server.

Exposed method

'resetFromPool' through

EngineConnection.

The network server now

detects when a client is

requesting new logical

connectio

ns. This triggers some

special logic, where the

physical connection on the

serve

r side is kept and reset

instead of being closed and

opened again (this caused

resources to leak earlier).

The special logic must

not be triggered for XA

connections, as the XA

code is

already well-behaved.

Patch file: derby-3596-5a-

complex_skip_creds.diff

674354 8586 3:04:55 PM, Sunday,

July 06, 2008

kmarsden DERBY-3706

NetworkServer console

messages should print a

time stamp

Contributed by Suran

Jayathilaka

 108

700948 8601 3:07:48 PM, Wednesday,

October 01, 2008

myrnavl DERBY-3390; preventing

ClassCastException and

disconnect on

SQLException thrown

from a user function

701199 8601 10:53:43 AM, Thursday,

October 02, 2008

myrnavl DERBY-3390; adjust

javadoc after fix

703170 8599 7:16:32 AM, Thursday,

October 09, 2008

myrnavl DERBY-1411 - remove

never-thrown SQLState

NO_SUCH_DATABASE

and check for it

734190 8610 9:21:57 AM, Tuesday,

January 13, 2009

kmarsden DERBY-4004 Remove

required RDBNAM from

ACCSEC. Use SECCHK

RDBNAM if none is

provided on ACCSEC

899733 8697 9:54:20 AM, Friday,

January 15, 2010

rhillegas DERBY-4491: Correct the

network metadata for

UDTs and make it possible

to pass UDT values across

the network.

901219 8697 6:42:57 AM,

Wednesday, January 20,

2010

rhillegas DERBY-4491: Fix javadoc

error introduced by

subversion revision

899733.

924746 8699 5:27:32 AM, Thursday,

March 18, 2010

kahatlen DERBY-4483: Provide a

way to change the hash

algorithm used by

BUILTIN authentication

Added more comments

about the incompatibility

between the configurable

hash scheme and strong

password substitution.

Changed a symbol that still

referred to the SHA-1

based authentication

scheme as the new scheme.

Builds for versions from year 2006 and before failed. Therefore, class versions from

January 2007 and onwards could be mined for patterns.

Patterns discovered in each version of the class are grouped into classes (for a definition

of the six classes, please see Section 5.2).

 109

VERSION 495543 (Revision 0)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 110

VERSION 497748 (Revision 1)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 111

VERSION 515102 (Revision 2)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 112

VERSION 515563 (Revision 3)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 113

VERSION 515793 (Revision 4)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 114

VERSION 517131 (Revision 5)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 115

VERSION 534610 (Revision 6)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 116

VERSION 534985 (Revision 7)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 117

VERSION 542925 (Revision 8)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 118

VERSION 545454 (Revision 9)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 119

VERSION 556589 (Revision 10)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 120

VERSION 557032 (Revision 11)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 121

VERSION 562524 (Revision 12)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 122

VERSION 570663 (Revision 13)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 123

VERSION 574870 (Revision 14)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 124

VERSION 581012 (Revision 15)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 125

VERSION 611272 (Revision 16)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 126

VERSION 613169 (Revision 17)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 127

VERSION 614549 (Revision 18)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 128

VERSION 617186 (Revision 19)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 129

VERSION 631593 (Revision 20)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 130

VERSION 631997 (Revision 21)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 131

VERSION 632413 (Revision 22)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 132

VERSION 632456 (Revision 23)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 133

VERSION 633011 (Revision 24)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 134

VERSION 642707 (Revision 25)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 135

VERSION 666088 (Revision 26)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 136

VERSION 674354 (Revision 27)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 137

VERSION 700948 (Revision 28)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 138

VERSION 701199 (Revision 29)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 139

VERSION 703170 (Revision 30)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 140

VERSION 734190 (Revision 31)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

C4 – Omnipresent patterns

 141

C5 – Disappearing omnipresent patterns

C6 – Reincarnated patterns

 NONE FOUND

 142

VERSION 899733 (Revision 32)

C1 – Newly formed patterns

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 143

VERSION 901219 (Revision 33)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 144

VERSION 924746 (Revision 34)

C1 – Newly formed patterns

 NONE FOUND

C2 – Patterns disappearing right after their creation

 NONE FOUND

C3 – Impermanent patterns

 NONE FOUND

C4 – Omnipresent patterns

C5 – Disappearing omnipresent patterns

 NONE FOUND

C6 – Reincarnated patterns

 NONE FOUND

 145

APPENDIX E

PROGRAM CODE

This appendix contains the source code of the program that was used to

discover patterns in program graphs.

 146

/**

* @author imran

* ParserMain.java takes the output files generated by structure101 and

converts

* them to an ARFF.

*

*/

package edu.okstate.cs.imran.DDGraphParser;

import java.io.*;

import java.util.ArrayList;

import java.util.Collections;

import java.util.HashMap;

import java.util.Hashtable;

import java.util.List;

import java.util.Set;

import org.jdom.Document;

import org.jdom.JDOMException;

import org.jdom.input.SAXBuilder;

import org.jdom.xpath.XPath;

import org.jdom.Element;

import sun.java2d.loops.DrawGlyphListAA.General;

import java.sql.*;

public class ParserMain {

/**

* @param args

* @throws JDOMException

* @throws SQLException

* @throws ClassNotFoundException

* @throws IOException

*

* ParserMain

set fos

set dir

set filter

set out

*/

public static void main(String[] args) throws JDOMException,

SQLException, ClassNotFoundException, IOException {

genARFF gen = new genARFF();

gen.generate();

}

 147

}

/*

* This class generates ARFF files from the graph output files

* generated by structure101.

*

*/

class genARFF{

/*

* attribList arrayList contains the names of attributes (meaning

nodes/items).

*/

ArrayList<String> attribList = new ArrayList<String>();

/*

* attribRows contains all the versions of the graphs.

*/

ArrayList<HashMap> attribRows = new ArrayList<HashMap>();

BufferedReader in;

BufferedWriter out;

FileOutputStream fos;

ObjectOutputStream oos;

FileInputStream fis;

ObjectInputStream ois;

File dir;

/*

* constructor - It creates an object of type genARFF

* and initializes:

* 1) fos with the location of attribList.dat (the dat file used to

keep track of all the edges)

* in the program we are using attributes to represent edges.

* 2) oos with the newly created fos to serialize it.

* 3) dir with the directory where all the files are located.

*/

public genARFF() throws IOException{

/*

* initialization and creation of a genARFF object.

*/

fos = new

FileOutputStream("C:/deleteit/API/WEKA/GridSearch/attribList.dat");

oos = new ObjectOutputStream(fos);

//dir is the directory where all the input files are stored.

dir = new File("C:/deleteit/API/WEKA/GridSearch");

}

/*

* generate() actually generates the arff file. the name of the file is

the current datetime

* to avoid overwriting the older files.

*

*/

public void generate() throws IOException, ClassNotFoundException{

/*

 148

* This filter returns only the files that should be used for

* the ARFF generator.

*

*/

FilenameFilter filter = new FilenameFilter() {

public boolean accept(File dir, String name) {

return name.contains("Grid_");

}

};

//create an array which will conatin the files that need to be

processed.

ArrayList<File> files = new ArrayList<File>();

//get all the files from the directory that need to be processed.

File[] filteredFiles = dir.listFiles(filter);

for (File iFile: filteredFiles){

files.add(iFile);

}

/*

* Create ARFF file in the increasing number of instances.

*

*/

List<File> fToBeProcessed = files;

/*

* Files must be sorted to make sure that we process the files

* with the older versions first and newer versions later.

*/

Collections.sort(fToBeProcessed);

/*

* This for loop takes all the attributes from the files.

* These attributes need to be listed in the start of the ARFF file.

* Process all files one by one.

*/

for (File inFile : fToBeProcessed) {

/*

* For each attribute in the file translate it into a the format A->B

* and store them in a map.

*

*/

System.out.println("FileName:"+inFile.getName());

in = new BufferedReader(new FileReader(inFile));

in.readLine();

while (in.ready()) {

String strLine = in.readLine();

String attribItem = strLine.split("\t")[0] + "->"/*

* +strLine.split

 149

* (

* "\t")[1]+

* "_"

*/

 + strLine.split("\t")[2];

/*

 * If it doesnt exist add attribList

 * or dont do anything. just print already exists.

 */

boolean rslt = attribList.contains(attribItem);

if (!rslt) {

 attribList.add(attribItem);

} else {

 System.out.println(attribItem + " already exists");

}

}

}

/*

* This for loop gathers data for the second part of the ARFF file which

* list the instances. One row represents on version of the source file.

*/

for (File inFile : fToBeProcessed) {

in = new BufferedReader(new FileReader(inFile));

String strLine2 = in.readLine();

HashMap<String, String> attribMap = new HashMap<String, String>();

/*

* initialize the map to set the value of the map as n. n reperesents 0

* or absence of the attribute. If the attribute exists we set the value

for attribute

* as y.

*/

for (String strAttrib : attribList) {

attribMap.put(strAttrib, "n");

}

while (in.ready()) {

strLine2 = in.readLine();

String attribItem = strLine2.split("\t")[0] + "->"/*

* +strLine.split

* (

* "\t")[1]+

* "_"

 150

*/

 + strLine2.split("\t")[2];

/*

 * Set the value as y for the attribute.

 */

attribMap.put(attribItem, "y");

}

/*

* add the attribMap which represents an instance/ version of the class.

*/

attribRows.add(attribMap);

}

/*

* put all the attributes in oos.

*/

oos.writeObject(attribList);

oos.close();

/*

* print the string in the file.

*/

this.printString();

}

/*

* this function takes the values in attribRows and

* writes them in the ARFF file.

*/

public void printString() throws IOException{

out = new BufferedWriter(new

FileWriter("C:/deleteit/API/WEKA/GridSearch/dep_graph_output_"+ (new

java.util.Date()).getTime()+".arff"));

out.write("@relation dependence\n");

/*

* write the firtst part of the ARFF file by listing all

* the attributes and all the possible values for the attributes.

*/

Set tempKeySet = attribRows.get(0).keySet();

for(Object strKeySetItem : tempKeySet){

out.write("@attribute '"+strKeySetItem.toString()+"' {'n', 'y'}\n");

}

/*

* write the second part of the ARFF file. List one instance in each

row.

*/

out.write("@data\n");

 151

for(HashMap<String, String> attribMapItr : attribRows){

out.write(attribMapItr.values().toString().replaceAll("\\[",

"").replaceAll("]","")+"\n");

}

out.flush();

out.close();

}

}

 152

/**

* @author imran

* This class reads the ARFF file and loads it into WEKA.

* The instances are then stored in the database.

*/

package edu.okstate.cs.imran.MLearner;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.Serializable;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import weka.core.Instances;

public class LearnerMain implements Serializable {

/**

* @param args

* @throws Exception

*

*

* Change reader

* loadDataToDB

*/

public static void main(String[] args) throws Exception {

/*

 * Loading the ARFF file to WEKA.

 * WEKA models the data in the ARFF file as

 * Instances (type).

 */

BufferedReader reader = new BufferedReader(new FileReader(

 "C:/deleteit/API/WEKA/GridSearch/dep_graph_output_1270371172138.a

rff"));

Instances data = new Instances(reader);

reader.close();

System.out.println("Total Number of instances in

data:"+data.numInstances());

//Load instances to database and populate summary table.

loadDataToDB(data, "GRIDSEARCH");

}

 153

/*

* This function takes the data from Instances and

* stores it into the database.

*/

public static void loadDataToDB(Instances data, String dataSetName)

throws ClassNotFoundException, SQLException{

//Make the connection to the database and initialize

Class.forName("com.mysql.jdbc.Driver");

String url = "jdbc:mysql://localhost:3306/graphdb";

Connection con = DriverManager.getConnection(url, "root","Lahore123");

Statement stmt = con.createStatement();

/*

 * try to create a database GRAPHDB. If the database

 * already exists then move on.

 */

try{

stmt.executeUpdate("CREATE DATABASE GRAPHDB");

}catch(java.sql.SQLException ex){

 System.out.println("Message:"+ ex.getMessage());

 System.out.println("SQLState:"+ ex.getSQLState());

 System.out.println("Stack Trace:"+

ex.getStackTrace().toString());

}

/*

 * Create a table for the dataset. Each experiment is represented

 * by a dataset. For example, data for KnoweledgeFlowAPP.java is stored

 * in KFLOWAPP table.

 */

try{

 stmt.executeUpdate("CREATE TABLE "+dataSetName+"(ID INT,BUILD

VARCHAR(30)) ");

 }catch(java.sql.SQLException ex){

 System.out.println("Message:"+ ex.getMessage());

 System.out.println("SQLState:"+ ex.getSQLState());

 System.out.println("Stack Trace:"+

ex.getStackTrace().toString());

 }

 /*

 * For each attribute (item or edge) in the ARFF file

 * create a column in the table.

 */

 try{

 for(int i=0; i< data.numAttributes(); i++){

 String colName = data.attribute(i).name().replace("-

>", "_TO_").replaceAll("<","_").replaceAll(">","_");

 stmt.execute("ALTER TABLE "+dataSetName+" ADD

"+colName+" INT");

 }

 }catch(java.sql.SQLException ex){

 System.out.println("Message:"+ ex.getMessage());

 154

 System.out.println("SQLState:"+ ex.getSQLState());

 System.out.println("Stack Trace:"+

ex.getStackTrace().toString());

 }

 /*

 * For each instance insert the attribute values in the table.

 * If the value in the ARFF file for an attribute is y

 * then insert 1 otherwise insert 0.

 */

 try{

 for(int i=0; i< data.numInstances(); i++){

 String colVals = "";

 for(int k=0; k < data.numAttributes(); k++){

 String numVal = "0";

 if(data.instance(i).stringValue(data.attribute(k)).equalsIgnoreCa

se("y")){

 numVal = "1";

 }

 colVals += "'"+numVal+"'";

 }

 colVals =

colVals.replaceAll("''",",").replaceAll("'", "");

 //System.out.println("colSize:"+colVals.split(",").length);

 System.out.println("colVals:"+colVals);

 String strStmt = "INSERT INTO "+dataSetName+"

VALUES("+i+",'build_ver',"+colVals+")";

 System.out.println("strStmt:"+strStmt);

 stmt.execute(strStmt);

 }

 }catch(java.sql.SQLException ex){

 System.out.println("Message:"+ ex.getMessage());

 System.out.println("SQLState:"+ ex.getSQLState());

 System.out.println("Stack Trace:"+

ex.getStackTrace().toString());

 }

}

}

 155

/*

 * @author imran

 * This class calculates the support count of each attribute

 * in each instance and stores it into the database then

 * it uses this data to discover attributes based on the

 * different conditions for support count and value.

 */

package edu.okstate.cs.imran.MLearner;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class DataAnalyzer {

/**

* @param args

*/

private static Connection con = null;

public static void updateBuildStats(int buildId, String tableName)

throws SQLException{

ResultSet rSetColName = null;

Statement stmt = null;

stmt = con.createStatement();

/*

 * Calculate support count for each attribute

 */

//Get the name of all the attributes from the informationschema

String query = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_NAME ='"+tableName +"' and COLUMN_NAME NOT IN

('ID','BUILD')" ;

rSetColName = stmt.executeQuery(query);

while(rSetColName.next()){

 String columnName = rSetColName.getString("COLUMN_NAME");

 /*

 * Get the value of the attribute for that build

 */

 query = "SELECT "+columnName+" AS ATTRIBVAL FROM "+tableName + "

where ID = "+buildId;

 Statement attribValStmt = con.createStatement();

 ResultSet rsAttribVal = attribValStmt.executeQuery(query);

 rsAttribVal.next();

 156

 String strAttribVal = rsAttribVal.getString("ATTRIBVAL");

 query = "SELECT SUM("+columnName+")AS SCOUNT from "+tableName + "

where ID <= "+buildId;

 Statement tempStmt = con.createStatement();

 ResultSet rsTemp = tempStmt.executeQuery(query);

 rsTemp.next();

 String sCount = rsTemp.getString("SCOUNT");

 try{

 query = "INSERT INTO BUILD_STATS

(DATASET,BUILD_ID,ATTRIBNAME, SCOUNT, VALUE) VALUES('"+tableName+"','"+

buildId+"','"+columnName+"','"+sCount+"','"+strAttribVal+"')";

 tempStmt.execute(query);

 //

 }catch(java.sql.SQLException ex){

 if(ex.getMessage().contains("Duplicate entry")){

 tempStmt.executeUpdate("UPDATE BUILD_STATS SET SCOUNT

= '"+sCount+"' , VALUE = '"+strAttribVal+"' WHERE DATASET = '"+

tableName+"' AND BUILD_ID = '"+buildId+"' and ATTRIBNAME = '"+

columnName+"'");

 }

 else{

 System.out.println("***************"+ex);

 throw ex;

 }

 }

}

}

public static String generateGraph(String itemsets, String graphName){

String outStr = "digraph "+graphName+"{\n";

if(itemsets != ""){

 for(String str : itemsets.split("\\|")){

 str = str.replaceAll("_TO_", "->")+";\n";

 outStr += str;

 }

}

outStr += "}";

return outStr;

}

public static void printGraph(String strGraph, String graphName, String

dirFullPath) throws IOException{

BufferedWriter out = new BufferedWriter(new

FileWriter(dirFullPath+graphName));

out.write(strGraph);

 157

out.close();

}

public static void main(String[] args) throws ClassNotFoundException,

SQLException, IOException {

// TODO Auto-generated method stub

/*

 * Parameters that need to go to a config file or some other input

 */

String dataSet = "gridsearch";

int buildId = 3;

String dir = "c:/deleteit/API/WEKA/GridSearch/FPs/";

/*

 * Create DB Connection

 */

Class.forName("com.mysql.jdbc.Driver");

String url = "jdbc:mysql://localhost:3306/graphdb";

con = DriverManager.getConnection(url, "root","Lahore123");

/*

 * Update stats. buildId is the row number the index starts at 0.

 */

for(int i=0; i<= buildId; i++){

 System.out.println("Updating build "+i);

 updateBuildStats(i, dataSet);

}

/*

 * Calling the analyzer methods

 */

for(int i=0; i<= buildId; i++){

 System.out.println("Analuzing build "+i);

 String itemSets = newlyBornThisVersion(i, dataSet);

 itemSets = generateGraph(itemSets, "newlyBornThisVersion_"+i);

 printGraph(itemSets, "newlyBornThisVersion_"+i+".gv", dir);

 itemSets = justDiedAge1(i, dataSet);

 itemSets = generateGraph(itemSets, "justDiedAge1_"+i);

 printGraph(itemSets, "justDiedAge1_"+i+".gv", dir);

 itemSets = omnipresent(i, dataSet);

 itemSets = generateGraph(itemSets, "omnipresent_"+i);

 printGraph(itemSets, "omnipresent_"+i+".gv", dir);

 itemSets = justDeceasedOmnipresent(i, dataSet);

 itemSets = generateGraph(itemSets, "justDeceasedOmnipresent_"+i);

 printGraph(itemSets, "justDeceasedOmnipresent_"+i+".gv", dir);

 158

 itemSets = reincarnated(i, dataSet);

 itemSets = generateGraph(itemSets, "reincarnated_"+i);

 printGraph(itemSets, "reincarnated_"+i+".gv", dir);

 itemSets = justDied(i,dataSet);

 itemSets = generateGraph(itemSets, "justDied_"+i);

 printGraph(itemSets, "justDied_"+i+".gv", dir);

}

}

/*

* NEWLY BORN INFANT

* Just spits out in println all the items with supportcount1 with

value(N)=y

* It represents a dependency which just appeared in this version.

* Newly born infant dependency age1

*/

public static String newlyBornThisVersion(int buildId, String

tableName) throws SQLException{

String outStr = "";

String query = "SELECT ATTRIBNAME FROM build_stats WHERE DATASET='"+

tableName+"' AND BUILD_ID = "+buildId+" AND SCOUNT=1 AND VALUE=1";

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

while(fRsltSet.next()){

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") +"|";

}

return outStr;

}

/*

* DECEASED INFANTS

* Deceased Infant age1

* Represents dependency that had support count1 and value(N)=n and

value(N-1)=y

*

*/

public static String justDiedAge1(int buildId, String tableName) throws

SQLException{

String outStr = "";

/*

 * If buildId is 0 then there is nothing before 0 to compare with

 */

if(buildId == 0){

 return outStr;

}

String query = "SELECT ATTRIBNAME FROM build_stats WHERE DATASET='"+

tableName+"' AND BUILD_ID = "+buildId+" AND SCOUNT=1 AND VALUE=0";

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

 159

while(fRsltSet.next()){

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 query = "SELECT VALUE FROM build_stats WHERE DATASET='"+

tableName + "' AND BUILD_ID = "+ (buildId - 1) + " AND

ATTRIBNAME='"+fRsltSet.getString("ATTRIBNAME")+"'";

 //System.out.println(query);

 Statement prevStmt = con.createStatement();

 ResultSet preRsltSet = prevStmt.executeQuery(query);

 preRsltSet.next();

 if(preRsltSet.getString("VALUE").equalsIgnoreCase("1"))

 {

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") + "|";

 }

}

return outStr;

}

/*

* OMNIPRESENT

* SupportCount = N: Omnipresent dependency

*/

public static String omnipresent(int buildId, String tableName) throws

SQLException{

String outStr = "";

String query = "SELECT ATTRIBNAME FROM build_stats WHERE DATASET='"+

tableName+"' AND BUILD_ID = "+buildId+" AND SCOUNT="+(buildId+1);

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

while(fRsltSet.next()){

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") + "|";

}

return outStr;

}

/*

* JUST DECEASED OMNIPRESENT

* SupportCountN-1 with value(N)=n and value(N-1)=y:just deceased

omnipresent

*/

public static String justDeceasedOmnipresent(int buildId, String

tableName) throws SQLException{

String outStr = "";

/*

 * If buildId is 0 then there is nothing before 0 to compare with

 */

if(buildId == 0){

 return outStr;

}

 160

String query = "SELECT ATTRIBNAME FROM build_stats WHERE DATASET='"+

tableName+"' AND BUILD_ID = "+buildId+" AND VALUE=0 AND

SCOUNT="+(buildId);

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

while(fRsltSet.next()){

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") + "|";

}

return outStr;

}

/*

* RE_INCARNATED

* SupportCount > 1 and with value(N)=Y and value(N-1)=N

* How to find the previous incarnation of this dependency?

*/

public static String reincarnated(int buildId, String tableName) throws

SQLException{

String outStr = "";

/*

 * If buildId is 0 then there is nothing before 0 to compare with

 */

if(buildId == 0){

 return outStr;

}

String query = "SELECT ATTRIBNAME FROM build_stats where DATASET = '"+

tableName+"' AND BUILD_ID = "+buildId+" AND VALUE=1 AND SCOUNT > 1";

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

/*

 * If in the previous build the same attribute had a value n then its a

reincarnation provided its support count > 1

 */

while(fRsltSet.next()){

 query = "SELECT VALUE FROM build_stats WHERE DATASET='"+

tableName + "' AND BUILD_ID = "+ (buildId - 1) + " AND

ATTRIBNAME='"+fRsltSet.getString("ATTRIBNAME")+"'";

 //System.out.println(query);

 Statement prevStmt = con.createStatement();

 ResultSet preRsltSet = prevStmt.executeQuery(query);

 preRsltSet.next();

 if(preRsltSet.getString("VALUE").equalsIgnoreCase("0"))

 {

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") + "|";

 }

}

return outStr;

 161

}

/*

* JUST DIED

* value(N)=N and value(N-1)=Y

*

*/

public static String justDied(int buildId, String tableName) throws

SQLException{

String outStr = "";

/*

 * If buildId is 0 then there is nothing before 0 to compare with

 */

if(buildId == 0){

 return outStr;

}

String query = "SELECT ATTRIBNAME FROM build_stats where DATASET = '"+

tableName+"' AND BUILD_ID = "+buildId+" AND VALUE=0";

Statement fStmt = con.createStatement();

ResultSet fRsltSet = fStmt.executeQuery(query);

/*

 * If in the previous build the same attribute had a value n then its a

reincarnation provided its support count > 1

 */

while(fRsltSet.next()){

 query = "SELECT VALUE FROM build_stats WHERE DATASET='"+

tableName + "' AND BUILD_ID = "+ (buildId - 1) + " AND

ATTRIBNAME='"+fRsltSet.getString("ATTRIBNAME")+"'";

 //System.out.println(query);

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 Statement prevStmt = con.createStatement();

 ResultSet preRsltSet = prevStmt.executeQuery(query);

 preRsltSet.next();

 //System.out.println(preRsltSet.getString("VALUE"));

 if(preRsltSet.getString("VALUE").equalsIgnoreCase("1"))

 {

 //System.out.println(fRsltSet.getString("ATTRIBNAME"));

 outStr += fRsltSet.getString("ATTRIBNAME") + "|";

 }

}

return outStr;

}

}

 162

VITA

Imran Afzal

Candidate of the Degree of

Master of Science

Thesis: MINING FOR PATTERNS IN PROGRAM DEPENDENCE GRAPHS

Major Field: Computer Science

Biographical:

Personal Data: Born in Abbotabad, Pakistan, on March 11, 1973, son of Mr. and

Mrs. Muhammad Afzal.

 Education: Received the Bachelor of Electrical Engineering Degree from University

of Engineering and Technology, Lahore, Pakistan in December 1995.

Completed the requirements for the Master of Science Degree in Computer

Science at the Computer Science Department at Oklahoma State University

in July 2010.

 Experience: Employed by Safeguard Packages, Lahore, Pakistan, as System

Engineer, January 1996 to July 1998; employed by Xavor Pvt. Limited,

Lahore, Pakistan, as Software Engineer, August 1999 to August 2000;

employed by Habib Bank Limited, New York, NY, USA, as IT Manager,

December 2002 to April 2007; employed by Infonox, A Tsys Company,

CA, USA, as Client Server Applications Analyst Lead, April 2007 to

present.

