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PREFACE

Humic substances, ubiquitous compounds in the environment, can facilitate redox 

processes by acting as electron mediators. Since electron mediators eliminate the 

necessity for direct contact between an electron donor and acceptor during redox 

processes, electron transfer via humic substances can enhance the reductive 

transformation of many organic contaminants as well as reductive detoxification of 

several toxic metals. Despite the extensive evidence of this capability, little is known 

about the redox functional groups of humic substances which directly involve electron 

transfer processes.

This dissertation described experiments that were carried out in order to identify 

and quantify the redox function groups of humic substances. It consists of four chapters. 

The first three chapters are written according to the guideline established for 

Environmental Science and Technology to which all of these manuscripts will be 

submitted. The last chapter contains the overall conclusions and recommendations 

derived from the results of each chapter.  The following discussion will briefly highlight 

each chapter.

The discussion in Chapter 1 focuses on the methodology developed to 

characterize and identify redox functional groups in fourteen humic substances. The 

analytic technique was based on three catalytic reduction methods. Results from these 

three methods reveal that not all humic substances are electron mediators. Landfill 

leachate humic substances apparently lack redox functional groups and thus can not act 

as electron mediators. For other humic substances, redox sites include functional groups 

both with and without a quinone structure. The identity of redox sites with nonquinone 
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structure could not be identified by the developed technique. These nonquinone sites are 

responsible for 21%-56% of electron carrying capacity of humic substances samples. 

There is evidence of the possibility that different types of microorganisms in a natural 

system might activate individual redox functional group of humic substances. 

Chapter 2 presents the attempt to identify redox functional groups in the 

nonquinone category. Two candidates for the redox sites, iron and sulfur, in humic 

substances were selected for detailed analysis. Both candidates were chosen because they 

are well-known redox centers of several proteins and enzymes in biological systems and 

both of them occur in humic substances. The role of iron in humic substances was 

investigated using cation exchange techniques whereas the significance of sulfur redox 

centers was evaluated by X-ray photoelectron spectroscopy. Results with Aldrich humic 

acid (the sample with the highest iron content) demonstrated that iron in this sample is 

not the redox site in the nonquinone category. Sulfur functional groups, on the other 

hand, are members of this category. They are responsible for 18%-120% of the electron 

carrying capacity of nonquinone redox sites.

Although results in Chapter 1 indicate the lack of redox functional groups of 

landfill leachate humic substances, it was unclear whether this deficit was permanent or 

temporary. Decomposition of municipal solid waste (MSW) in landfills occurs in several 

steps. Each step produces leachate of a different chemical composition. Current chemical 

characteristic of landfill leachate humic materials are distinct with the substantial 

enrichment of aliphatic carbon components. This characteristic does not occur in those 

humic substances that contain redox functional groups. It is possible that future 

degradation of refuse may change the chemical characteristic and produce redox 



xiii

functional groups of leachate humic substances. To evaluate this possibility, detailed 

investigation of variation in organic carbon OC component of MSW was investigated and

described in Chapter 3. MSW core samples that had been degraded to different extents 

were excavated from the Norman landfill and characterized for their OC composition. 

The observed 13C NMR spectra of the OC of MSW samples suggested the preferential 

preservation of an aliphatic carbon component during the refuse degradation processes in 

the landfill. This result suggests the continuing enrichment of the aliphatic carbon 

component of humic substances in the leachate, thus further implying that it is less likely 

that the redox functional groups of humic substances will be developed over time. 

Therefore, it is rather confirmed that landfill leachate humic substances are not electron 

mediators.  In addition to this result, the sources of OC, as well as an interaction between 

degraded MSW and hydrophobic contaminants in the landfill, are discussed in this 

chapter. In the final chapter, the overall conclusions are made based on the data from the 

preceding chapters. Recommendations for future research are also discussed in Chapter 4. 

In summary, it has been demonstrated that redox functional groups of humic 

substances include more than one redox species. At least two redox sites, quinone and 

sulfur functional groups, have been identified. This knowledge advances our 

understanding of the basic elements of the electron mediating function of humic 

substances and can help direct us towards a better understanding of the redox processes 

that are facilitated by the humic substances in a natural system. 
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CHAPTER 1

QUANTITATIVE CHARACTERIZATION OF THE REVERSIBLE ELECTRON 

CARRYING CAPACITY OF HUMIC SUBSTANCES

ABSTRACT

A new analytical technique based on palladium (Pd) and H2 catalytic system 

showed significant potential as a useful method for reliably assessing redox sites in 

humic substances. The technique identifies redox sites as a function of their resistance to 

the hydrogenolysis process. The test system consists of catalytic reduction process, the 

measurement of electron carrying capacity, and simple air oxidation.  The extent of 

hydrogenolysis, which occurs during the catalytic reduction, can be controlled by pH and 

the type of catalyst used in the system. Verification of the reversibility of the redox sites 

is also permitted due to the use of a removable catalyst that allows the test to be repeated. 

Eight quinone compounds and fourteen humic substance samples were examined using 

this technique. The tests with quinone compounds demonstrated that hydrogenolysis 

occurring in the pH 6.5-Pd/Al2O3 (Pd supported on Al2O3) redox system effectively 

removed quinone moieties in all model compounds. When the system’s pH was increased 

to 8, the extent of hydrogenolysis became less intense. Quinones with an electron 

withdrawing substituent were left intact. As hydrogenolysis was further compromised by 

removing Al2O3 from the system, quinones without substituents and quinones with 

adjacent electron donating functional groups also remained intact. At that point, only 
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quinones with an electron donating substituent located far away in a separate conjugated 

system suffered hydrogenolysis.  The humic substance samples’ tests showed that six 

landfill leachate humic substances, which were highly aliphatic, did not have redox sites. 

Therefore, they were not electron mediators. Eight other humic substance samples were 

capable of shuttling electrons, even in the pH 6.5-Pd/Al2O3 redox system, which, 

according to FT-IR data, had removed their quinone redox sites. Thus, the technique 

revealed that electrons could be transferred by multiple redox species in humic 

substances and not just by quinone moieties as is widely understood. The technique 

showed that redox sites in humic substance samples include both nonquinone (NQ) and 

quinone groups. Redox sites in the NQ group were responsible for 21%-56 % of the 

electron carrying capacity (ECC) of the samples. The technique further divided redox 

sites in the quinone group into two subgroups. The first subgroup includes redox sites 

with a neighboring electron withdrawing substituent (Q1), which was liable for 13%-58 

% of the ECC. The second subgroup contains redox sites characterized by having an 

adjacent electron donating substituent (Q2). Redox sites in the Q2 category were 

accountable for 8%-50% of ECC. The relative abundance of Q1 and Q2 redox sites is 

moderately related to the amount of carboxylic carbon, which is one of electron 

withdrawing functional groups in humic substances. The Q1 sites are relatively prevalent 

in humic substances with high carboxyl carbon content, such as fulvic acid samples. Q2 

sites, on the other hand, are relatively more abundant in humic acid samples, which 

generally have a lower carboxyl carbon content.
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INTRODUCTION

Natural attenuation of many pollutants relies on oxidation-reduction processes. 

For chlorinated compounds, such as hexachloroethane, and toxic metals, such as 

chromium VI, reductive transformation is the major mechanism to reduce their toxicity 

(1,2). The rate of the reduction process can be significantly increased in the presence of 

electron mediators. For example, when humic acids and quinone compounds were added 

as electron mediators, reductive transformation of carbon tetrachloride by anaerobic 

granular sludge was enhanced by a factor of six (1). In the natural environment, common 

electron mediators are humic substances, which are ubiquitous compounds of diverse 

origins. Many studies during the past decade have shown that humic substances may 

participate in a wide range of redox processes involving organic contaminants and metal 

ions in natural systems (3-7). The capability of humic substances to perform this function 

is measured as the number of mole equivalents of electrons transferred from a donor to an 

acceptor, which is termed electron carrying capacity (ECC). The ECC of humic 

substances varies from sample to sample (8-10). 

The differences in humic substances’ ECC are not surprising because the contents 

of their functional groups vary among samples. However, for the same sample, the 

inconsistency found in a humic substance’s ECC when measured by different analytical 

techniques is rather unexpected. ECC estimated using the I2 oxidation method for soil and 

Suwanee river humic acids (11) are one order of magnitude higher than reported in 

microbial reduction studies of the same samples (8-10). The difference could not be 

clearly explained because of the ambiguity of the redox functional group that governs the 
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ECC of humic substances. Currently, quinone moieties have been hypothesized as the 

primary redox functional group in humic substances (8-9). This hypothesis has been 

widely adopted. However, there are some issues that are not consistent with this 

hypothesis. Struyk and Sposito (11) pointed out that the content of quinone moieties 

calculated from the amount of free radicals (recognized as semiquinone radicals) in soil 

and Suwanee River humic acids were almost 1-3 orders of magnitude lower than the 

actual number of  electrons transferred to an acceptor. In a separate case, free radical 

content, which was measured by Electron Paramagnetic Resonance spectroscopy (EPR), 

was accountable for only 10 % of the vanadium reduced by a soil fulvic acid. Moreover, 

the participation of free radicals was doubted because there was no loss in the intensity of 

these radicals after reduction occurred (12). In addition, an electrochemical study (13), 

which examined redox properties of humic substances and several quinone compounds, 

showed that the two groups of compounds had different electrochemical properties.  

The ambiguity in the basic element of humic substances’ electron shuttling 

function has limited the understanding of the thermodynamic (i.e., reduction potentials) 

and kinetic (i.e., rate constants) aspects of the redox processes in which these materials 

are involved. To resolve this issue, an analytical method is necessary to clarify the redox 

functional groups in humic substances. In this study, an analytical technique based on a

redox system using Palladium (Pd) catalytic reduction has been developed to evaluate 

redox sites in humic substances. Unlike other techniques, use of a removable reducing 

agent provides an opportunity to test the redox reversibility of electron transfer sites in 

humic substances. This capability is essential because the ability to repeatedly cycle 

electrons is the most crucial character of electron mediators. The primary objectives of 
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the development were i) to characterize redox functional groups in humic substances and 

ii) to quantify the ECC of these functional groups. Since quinone moieties are widely 

understood as the primary redox sites in humic substances, this functional group was used 

as a starting point in this study. The hypothesis of the study is that humic substances can 

act as electron mediator due to the presence of quinone redox sites.

MATERIALS AND METHODS

Samples 

Eight humic substance samples were purchased from the International Humic 

Substance Societies (IHSS). They included Suwanee river fulvic acid (SRFA) and humic 

acid (SRHA), Elliot soil humic acid (SHA), Summit Hill soil humic acid (SHHA), 

Leonardite humic acid (LHA), peat humic acid (PFA) and fulvic acid (PFA). One sample, 

Aldrich humic acid (AHA), was purchased from Aldrich. Six additional samples were 

humic substances that were isolated from leachate collected from three municipal 

landfills. Details of the isolation procedures used and the chemical characteristics of these 

materials can be found elsewhere (14). These samples include Norman landfill humic 

acid (NHA) and fulvic acid (NFA), South East Landfill humic acid (SEHA) and fulvic 

acid (SEFA), East Oak landfill humic acid (EOHA) and fulvic acid (EOFA).

The following model quinone compounds were obtained from Sigma or Aldrich 

and were used as received: anthraquinone-2-carboxylate (AQC), 2,6-

dihydroxyanthraquinone (AQOH), anthraquinone-2,6-disulfonate (AQDS), 5-hydroxy-
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1,4-naphthoquinone (juglone), 2-hydroxy-1,4-naphthoquinone (lawsone), 2-methyl-5-

hydroxy-1,4-naphthoquinone (plumbagin), 1,4-naphthoquinone (NTQ), and 1,4-

naphthoquinone-2-sulfonate (NQS). The structure of these quinone compounds are given 

in Figure 1.1.

Redox Cycling Experiments

Experimental Procedures

Since redox reversibility is the most crucial property of an electron mediator, the 

redox experiment was designed to validate this aspect of an electron transfer site. In this 

experiment, a series of four tests was conducted in a cyclic manner. These four tests, 

which were finished in one cycle, included i) the catalytic reduction of the sample, ii) the 

ECC measurement of the reduced sample, iii) the reoxidation of the reduced sample, and 

iv) the ECC measurement of the oxidized sample. For each experiment, these four tests 

were repeated five times (five cycles). The details of each test are given in the following 

paragraphs.

Experimental Conditions

For each sample, the redox cycling experiment was carried out in three different 

conditions. Each condition was different in terms of the system’s pH and/or the type of 

catalyst used in the reduction step. In the first condition, the experiment was conducted at
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FIGURE 1.1 Chemical structures of quinone compounds used in the study.1 quinone with an electron 
withdrawing substituent, 2 quinone with an  electron donating substituent
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 pH 8 using Pd powder (Aldrich) as a catalyst in the reduction step. In the second 

condition, the experiment was also performed at pH 8 but used Pd support on Al2O3

(Pd/Al2O3; Aldrich) as the catalyst. For the third condition, the experiment was run at pH 

6.5 using Pd/Al2O3 as the catalyst. The two pHs (6.5 and 8) were selected as optimum 

conditions closest to the pH of the electron acceptor, iron (III) citrate (pH 6.8). The 

catalyst selection was based on the extent of hydrogenolysis, which is discussed in detail 

in the results and discussion section.

Experimental Details

In the first experimental condition, humic substance samples and quinone 

compounds were dissolved in a 10 ml buffer (0.3 M phosphate buffer prepared 

anaerobically with Nanopure water that was boiled for 15 min and cooled with N2) in an 

anaerobic chamber (Coy Instrument) filled with N2-H2 (95:5). The sample concentration 

was 0.5 mg/ml for each humic substance, but it varied among quinone compounds due to 

their differing solubilities. Pd powder was added to the solution, and the bottle was sealed 

and removed from the chamber. The mixture of N2-H2 gas in the sample bottle was 

evacuated and replaced with H2. The sample was shaken for 24 hrs and then returned to 

the anaerobic chamber. After removing the seal, 0.1 ml of sample was filtered with a 0.2 

µm cellulose acetate membrane (Whatman), and then its ECC was measured using the 

procedure described below. The remaining sample was removed from the chamber, and 

the catalyst was filtered from the solution. The sample solution was bubbled with air for 

30 min. Later, the dissolved oxygen was later removed by warming the sample solution 
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to 40°C in a water bath, bubbling with N2 for another 30 min, and then returning it to the 

anaerobic chamber. Now oxidized, this oxidized sample was measured for ECC in the 

same way as the reduced sample. After the ECC measurement, a new catalyst was added, 

and the process was repeated. 

In the second and third experimental conditions, clean Pd/Al2O3 pellets (Pd 

supported on Al2O3; Aldrich; catalyst was washed with Nanopure water twice, dried at 

50°C, and cooled to room temperature before use) were added to each sample solution (3 

pellets/ml) instead of Pd powder. After the sample was sealed and removed from the 

anaerobic chamber, catalytic reduction was initiated by introducing H2 into the sample 

solution via a needle inserted through the stopper. The reduction was maintained for 90 

min with constant shaking. Except for these changes, the procedure was identical to the 

first experiment. Each sample was tested under all three redox conditions, and each test 

was run in triplicate. Additionally, a blank solution, which contained no humic substance, 

was run. The times specified for the reduction period in each set-up was chosen to allow 

a steady-state ECC to be reached for both AQDS and AHA (9). All redox experiments 

were conducted at room temperature and ambient pressure.

Dextrose Experiment 

The concept of this experiment was adopted from the Blue Bottle Experiment 

described by Shakhashiri (15).  In the anaerobic chamber, the dextrose solution was 

prepared by mixing dextrose (0.5g/ml) with 0.3 M anaerobically prepared phosphate 

buffer pH 8. This solution was then used to dissolve the humic substance (0.5 mg/ml), 
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AQDS (0.5 mM), juglone (0.05 mM) and NQS (1 mM). After 24 hrs of continuous 

stirring, triplicate measurements of ECC for each sample solution were determined using 

the procedure described below. The dextrose solution was also tested as a blank. The 

sugar reduction experiment was conducted only once, since the sample could not be 

reoxidized due to the inability to remove the reductant (i.e., dextrose) from the system.

Electron Carrying Capacity (ECC) Measurement 

For each sample, this procedure was conducted in anaerobic chamber following 

the protocol described by Lovley et al. (8). Briefly, 0.01 ml of iron (III) citrate (50 mM, 

pH 6.8) was mixed with 0.1 ml of filtered sample and allowed to incubate for 15 min. 

Then 0.05 ml of the mixture was added to 2.5 ml ferrozine solution (1 mg/ml of 0.025 M 

HEPES buffer (N-[2-Hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]). This mixture 

was removed from the anaerobic chamber, and its absorbance was measured at 562 nm

(A562). The concentration of iron (II) was determined based on a standard curve prepared 

using a series of standard solutions of iron (II). In all catalytic redox experiments, the 

difference in the amount of iron (II) between the reduced and oxidized samples was 

considered to be the ECC of the sample. For the sugar experiment, the iron (II) produced 

by the sample was determined by subtracting the A562 of blank sugar solution and A562 of 

the blank sample solution (in phosphate buffer, no sugar added) from the A562 of the 

reduced sample solution. 
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Examination of Quinone Moieties

This part of the study was conducted differently for quinone compounds and 

humic substance samples. For quinone compounds, before starting the experiment and 

after finishing each redox cycle, the status of quinone moieties was examined using UV-

Vis spectroscopy (a single beam HP 8452 Diode Array Spectrophotometer, fixed grating 

with 512 detectors integrated on a photodiode array, deuterium discharge lamp for the 

full UV and visible range, scan range 190-820 nm). An additional experiment using FT-

IR spectroscopy (Bruker Equinox 55 FTIR, liquid nitrogen cooled MCT detector, Globar 

source; the experiments were run in transmission mode at 4cm-1 resolution, 120 scans 

were averaged for each sample examined) was performed with AQDS to supplement the 

results from the UV-Vis examination. The solution of AQDS after the 5th redox cycle was 

dialyzed (cellulose acetate membrane, MWCO 100; Spectrum; Spectra/Por) and freeze 

dried before subjecting it to the test. For humic substances, samples before starting the 

experiment were dissolved in Nanopure water and titrated with tetrabutylammonium 

hydroxide (TBA) to pH 10 (16), freeze-dried, and then examined by FT-IR spectroscopy 

(Bruker Equinox 55 FTIR). Identical procedures were performed on samples from the 5th

redox cycle (these samples were dialyzed (cellulose acetate membrane, MWCO 100; 

Spectrum; Spectra/Por) and freeze dried prior to the TBA titration).
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RESULTS AND DISCUSSION 

Basic Concepts

The essence of the redox system in this study is catalytic reduction. This reaction 

occurs in two steps. The first step is hydrogenation, which is the addition of H across π
bonds (Figure 1.2). The second step is hydrogenolysis, which is the insertion of H across 

σ bonds (Figure 1.2). These two steps do not occur simultaneously. Advancing from the 

first to the second step depends on the pH of the medium. An acidic medium promotes 

hydrogenolysis, while a basic solution inhibits the process (17-18). A good leaving group 

attached to the target carbon center is also required for hydrogenolytic cleavage. Better 

leaving groups undergo faster hydrogenolytic cleavage. For quinones, reductive 

hydrogenation, the first step, is the process that reduces quinone to hydroquinone. In an 

acidic medium, the reaction proceeds to the second step, in which H+ protonates the 

hydroxyl group of hydroquinone, and makes water the leaving group. Since water is a 

good leaving group, the hydrogenolysis of hydroquinone is favorable in an acidic 

medium (17). Pd was chosen for this study because it is the most widely used catalyst for 

the catalytic cleavage of benzylic C-O bonds (17), such as those found in hydroquinone. 

In addition, its catalytic effect toward quinones is sufficient even under mild conditions. 

At room temperature and ambient pressure, Pd/H2 assisted hydrogenation has been shown 

to successfully reduce benzoquinone to hydroquinone, and upon the addition of 5% HCl, 

the reaction proceeded to hydrogenolysis with cyclohexanol as a final product (19).
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Besides the pH of the medium, a catalyst support also shares a pivotal role in 

determining the rate of hydrogenolysis. γ-Al2O3, one of many materials used as a support 

for Pd is also a common catalyst by itself for hydrogenolysis of alcohol (dehydration). In 

an aqueous system, the surface of γ-Al2O3 is occupied by OH groups attached to Al 

atoms. The attraction between the O atoms in OH groups and Al atoms turns the OH 

groups into Brønsted acid sites (20). Coordination of an OH group of alcohol to this acid 

site leads to the cleavage of the C-O (21). The C-O bond breaking process is crucial 

because, when undergoing this reaction, hydroquinone loses its ability to be oxidized 

back to quinone. This results in the ending of the quinone-hydroquinone cycle. Since the 

cycling capability is the principal mechanism defining an electron mediator, losing it 

means the termination of the electron transfer function of the quinone.

Tests with Quinone Model Compounds

The effects of the pH and catalyst support, which are the controlling factors of 

hydrogenolysis, were first tested with quinone compounds. Redox experiments using 

three reduction methods with differing pHs  and catalyst types (i.e.,  a) pH 6.5-Pd/Al2O3, 

b) pH 8-Pd/Al2O3, and c) pH 8-Pd) were tested with eight quinone model compounds 

(structures given in Figure 1.1). The test assumed that, if hydrogenolysis occurs during 

the reduction process, OH functional groups of the reduced quinone would be cleaved, 

and the compound would not be able to change back to its original form. If this happened, 

quinone moieties will not be detected after the reduced compound was reoxidized. The 

examination of quinone moieties was done by verifying their characteristic UV 
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absorbance in the 290-nm region (A290; quinonoid electron-transfer absorption band 

(22)).  UV-Vis spectra of quinone compounds before and after undergoing each redox 

experiment (Figure 1.3 and Figure 1.4a, respectively) were used to determine the 

stabilities of quinone moieties. As shown in Table 1.1, all of the tested compounds lost 

their quinone moieties in the pH 6.5-Pd/Al2O3 reduction. Therefore hydrogenolysis had 

occurred. Loss of quinone moieties in AQDS was confirmed by results from FT-IR 

analysis (performed only with AQDS). In the FT-IR spectra of AQDS (Figure 1.4b), the 

well defined characteristic absorption band of quinone moieties, which was present at 

1650 cm-1 before the reduction (Figure 1.4b: B), disappeared after the sample was 

subjected to the pH 6.5-Pd/Al2O3 redox system (Figure 1.4b: A1). Therefore, the 

influence of Al2O3 and the available H+ at this pH were sufficient to remove quinone 

moieties in eight different configurations. 

Table 1.1 also shows that,  when pH of the testing system was increased to 8 with 

Pd/Al2O3 as a catalyst,  three compounds, AQDS, AQC, and NQS, were able to keep 

their quinone moieties intact (Figure 1.3). FT-IR analysis of AQDS confirmed that, 

unlike the result from the reduction at pH 6.5, the quinone moieties were not removed 

(Figure 1.4b: A2), and AQDS was able to function as an electron mediator for five redox 

cycles (Figure 1.4c). This outcome was not the same for other five quinones. AQOH, 

lawsone, juglone, plumbagin and NTQ lost their quinone moieties as indicated by the loss 

of A290  in Figure 1.3. This result indicates that hydrogenation still occurred at pH 8, but it 

was effective only on certain types of quinone compounds. Examinations of the 

structures of AQDS, AQC, and NQS revealed one common feature that may have been 

crucial to the compounds’ survival. As shown in Figure 1.1, quinone moieties in AQDS, 
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TABLE 1.1 The Stability of Quinone Moieties in Model Compounds Tested in Three Different Reduction systems. 

Quinones Stability of quinone moieties  
Pd/Al2O3:pH 6.5 Pd/Al2O3:pH 8 Pd :pH 8

AQDS no yes yes
AQOH no no no
AQC no yes yes

lawsone no no yes
juglone no no no

plumbagin no no yes
NTQ no no yes
NQS no yes yes
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FIGURE 1.3 UV-Vis spectra verifying the stability of quinone moieties in model compounds before the reduction (B); after pH 
6.5-Pd/Al2O3 reduction system (A1); after pH 8-Pd/Al2O3 reduction (A2); after pH 8-Pd reduction (A3). The arrow indicates 
the signal from quinone moieties. 
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AQC, and NQS all have a neighboring electron withdrawing group (EWG; SO3
- and 

COO -). The other five compounds, which lost their A290, either have no functional group 

(e.g. NTQ) or have an electron donating group (EDG; CH3, O-) nearby their quinone 

moieties. This suggests that the electronic property of any nearby substituent plays a 

crucial role in protecting quinone moieties in the pH 8-Pd/Al2O3 redox system. 

Substituent effects can be explained in a similar fashion as for a SN2-type reaction, which 

is the mechanism of the hydrogenolytic cleavage catalyzed by Pd (17). EWG, such as 

SO3
- and COO -, decrease the electron density of quinones moieties, which makes them 

less nucleophilic and consequently less attractive to electrophilic sites on the catalyst 

surface. 

Some of the active sites for hydrogenolytic cleavage are on the Al3O2 surface. 

Therefore, after Al2O3 was removed from the redox system (i.e., Pd powder with no 

Al3O2 support was used as the catalyst), the outcome was changed significantly. As 

shown in Table 1.1, the number of compounds surviving pH 8-Pd reduction was six 

compared to only three surviving pH-8-Pd/Al2O3 reduction. The three additional 

compounds that were able to keep their quinone moieties intact were lawsone, plumbagin 

and NTQ. Hydrogenolysis still occurred but affected only two compounds, juglone and 

AQOH. When looking at the structure of NTQ, one of the additional three survivors 

(Figure 1.1), it is apparent that the quinone functional group by itself is not susceptible to 

catalytic cleavage in the pH 8-Pd test. The vulnerability of the quinone moieties in 

juglone and AQOH, therefore, might be due to the addition of EDG. However, since 

lawsone and plumbagin, which also have EDG located adjacent to quinone moieties were 

intact, the position of the EDG relative to the quinone moieties must be critical. 
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In SN2 reactions, rates are slow when the carbon atom undergoing substitution is 

surrounded by large substituents (23). Although OH and CH3 in lawsone and plumbagin 

are both small molecules, their close proximity might obstruct the coordination of 

quinone moieties to the reaction sites on the catalyst surface. This event would impede 

hydrogenolysis of the quinone moieties. In addition, substituent effects from the EDG of 

lawsone and plumbagin should be less intense than those in juglone and AQOH. 

Compared to O- (deprotonated form of OH), CH3 is a weaker EDG. In lawsone and 

juglone, the O- substituent exerts different effects due to its position relative to quinone 

moieties. The inductive effect from the adjacent quinone moieties decreases the negative 

charge density of the O- of lawsone. Therefore, compared to juglone, the O- of lawsone is 

less nucleophilic and less attractive to the reaction site on catalyst surface. One result of 

this electronic effect from quinone moieties is the much lower pKa of 4.0 of lawsone as 

compared to juglone’s pKa of 6.9 (24).

It appears that the three redox systems tested can alter quinone moieties to 

different extents. The first system, pH 6.5-Pd/Al2O3, creates hydrogenolysis to the extent 

that all quinone moieties are eliminated. The second system, pH 8-Pd/Al2O3, generates 

hydrogenolysis that does not affect quinone moieties with EWG. The third system, pH 8-

Pd, produces hydrogenolytic conditions that remove only quinone moieties that have  

EDG in a separate conjugated system. These results have established analytical 

approaches to evaluate the contribution of quinone moieties, to characterize their 

chemical structures, and to quantify their ECC simultaneously.



21

Tests with Humic Substance Samples

Fourteen humic substance samples were subjected to the three redox systems. The 

hypotheses of the tests included; i) the ECC of HS samples measured by the pH 6.5-

Pd/Al2O3 method is zero, if quinone moieties are the only redox functional group of 

humic substances, ii) the ECC measured by the pH 8-Pd/Al2O3 and pH 8-Pd methods  are 

equal, if quinone moieties exist in one configuration. According to the average ECC 

value of each humic substance sample (from five test cycles; Figure 1.5) in Table 1.2, 

both hypotheses were rejected. As shown in Table 1.2, eight out of fourteen samples had 

measurable ECC values in all three test systems. The ECC of each sample increased as a 

function of the reduction system used, from pH 6.5-Pd/Al2O3 to pH 8-Pd/Al2O3 to pH 8-

Pd. This observation is consistent with previous findings with quinone compounds. 

None of the six landfill leachate humic substance samples showed a measurable 

ECC in any of the three systems, which indicated that they had no redox sites (at least not 

sites that could be detected using these test methods). Therefore, the landfill leachate 

samples are probably not electron mediators. This finding suggests that electron 

mediating function is limited to certain types of humic substances. Landfill leachate 

humic substances have a distinct chemical characteristics compared to the other eight 

samples. They are highly aliphatic (51%-70% aliphaticity) and have a low aromatic 

carbon content (10%-14% aromaticity (14); Table 1.2). The lack of electron transfer 

abilities in highly aliphatic samples suggests that redox sites in humic substances are 

unlikely to associate with aliphatic carbon functional groups.
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FIGURE 1.5 Electron carrying capacity of humic substance samples measured with three reduction systems. Key:  , pH 6.5-
Pd/Al2O3;      ,pH 8-Pd/Al2O3;   , pH 8-Pd. Each data point represents the value in each redox cycle. Suwanee River fulvic acid 
(SRFA): Suwanee River humic acid (SRHA): soil HA (SHA): peat humic acid (PHA): peat fulvic acid (PFA): Leonardite humic 
acid (LHA): Summit Hill humic acid (SHHA): Aldrich humic acid (AHA) 
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TABLE 1.2 Aromatic, Carboxyl Carbon Contents and Electron Carrying Capacity of Humic Substance Samples.

1 from the International Humic Substances Societies (IHSS)
2 from ref  22
3average values of five redox cycles  
4calculated from the free radical content available from IHSS and data reported by Struyk and Sposito (11)
na = data not available
Suwanee River fulvic acid (SRFA): Suwanee River humic acid (SRHA): soil humic acid (SHA): peat humic acid (PHA): peat fulvic 
acid (PFA): Leonardite humic acid (LHA): Summit Hill humic acid (SHHA): Aldrich humic acid (AHA) 

Electron carrying capacity (µmolequivalents/g-sample)
Sample Aromatic C(%) Carboxyl C(%) pH 6.5-Pd/Al2O3

3 pH 8-Pd/Al2O3
3 pH 8-Pd3 Calculated values4

AHA 451 151 132±8 167±12 260±13 na
SRFA 241 201 25±17 95±7 120±17 0.090
SRHA 371 191 100±12 140±18 179±15 0.106
SHHA 301 191 143±18 216±22 320±31 0.894
SHA 501 181 262±35 349±21 538±31 2.144
PHA 471 201 174±10 287±19 385±26 0.881
PFA 341 281 103±10 183±13 199±19 0.042
LHA 581 151 117± 9 213±15 429±28 3.323
NHA 142 102 0 0 0 na
NFA 102 112

0 0 0 na
SEHA 142 82

0 0 0 na
SEFA 132 112

0 0 0 na
EOHA 122 82

0 0 0 na
EAFA 112 122

0 0 0 na
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The most interesting data in Table 1.2 is the ECC measured in the pH 6.5-

Pd/Al2O3 redox system. Except for landfill leachate samples, humic substances showed 

measurable ECC values in this test. Due to the detrimental effects of hydrogenolysis in 

this system to all eight quinone compounds, the detected ECC should not relate to 

presence of quinone functional groups. To confirm this conclusion, samples taken before 

and after the redox test were esterified with TBA and analyzed by FT-IR. This method

determined the status of the quinone moieties by comprehensively checking them with all 

aromatic ketones (16). As shown in Figure 1.6, the disappearance of an aromatic ketone 

peak (resolved at 1630 cm-1) in FT-IR spectra of samples after the pH 6.5-Pd/Al2O3 redox 

process verified the loss of quinone moieties in the humic substance samples. This 

evidence shows that redox sites responsible for ECC in the pH6.5-Pd/Al2O3-redox system 

are not quinone moieties.

Similar to the increased number of quinone compounds that survived the test, the 

ECC of each humic substance sample (except the landfill leachate humic substances) 

improved when the pH of the test system was increased to 8 (pH8-Pd/Al2O3 redox 

system). Based on results from model compounds (AQDS, AQC, and NQS), the quinone 

moieties with EWG (now called Q1) should survive and be responsible for the increased 

fraction of ECC in this test system (Figure 1.7). Likewise, when Al2O3 was removed, 

quinone moieties with structures similar to lawsone, plumbagin, and NTQ (now called 

Q2) should account for the increased fraction of ECC in the pH8–Pd redox system. These 

two descriptions of quinone moieties are in contrast to the general concept that depicts 

quinone moieties in humic substances as only in AQDS format. 
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FIGURE 1.6 Examples of FT-IR spectra of humic substance samples before and after the redox experiment conducted at pH 
6.5 using Pd/Al2O3 as a catalyst. Samples were esterified with tetrabutylammonium hydroxide. The response from aromatic 
ketones, which include quinone moieties, is in the area between the two vertical lines. 
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FIGURE 1.7 Contribution of each redox functional group to the electron carrying capacity of humic substance 
samples. In each case, the electron carrying capacity was an average of the values measured in  5 redox cycles.
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It was observed that the ECC values of SRHA, PHA and SHA in this study are 

one to two orders of magnitude lower than their oxidation capacities measured by I2

titration at pH 7 (11,500, 4,600, 3300 µmolequivalents/g-sample, respectively; (11)). 

Since the I2 titration method could not verify the reversibility of the functional groups 

that were oxidized by I2, it is still inconclusive whether these oxidized functional groups 

were the actual redox centers. The strong oxidizing power of I2 might react with electron 

rich functional groups that were not involved in the electron transfer processes of these 

three humic substances.

Since reversibility is the key requirement for every electron mediator, the fact that 

nonquinone redox sites (abbreviated as NQ) demonstrated the fundamental act of adding 

and/or removing electrons through at least 5 redox cycles (pH 6.5-Pd/Al2O3 system; 

Figure 1.5) firmly proved that the NQ redox species are electron transfer sites. An 

interesting aspect regarding the NQ sites is that they survive hydrogenolytic cleavage that 

is intolerable for sites with quinone structures. Due to this property, they are considered 

more robust than sites with quinone structure. Natural attenuation of several organic 

contaminants, such as chlorinated compounds, occurs through hydrogenolysis processes 

(x). Under environmental conditions that promote hydrogenolysis, it is possible that 

electrons might be transferred by humic substances at the NQ sites, since they are robust 

in this situation. Q1 and Q2 sites might no longer be active because they are vulnerable to 

hydrogenolysis.  The contribution of NQ sites to the total ECC (values reported from the 

pH8- Pd redox system)   is substantial, ranging between 21%-56 %. Particularly in humic 

acid samples (except LHA), approximately 50 % of the total ECC can be attributed to NQ 

sites (Figure 1.7). The identities of these sites are unknown. The observed lack of ECC in 
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highly aliphatic samples, such as landfill leachate humic substances, makes aliphatic 

carbon functional groups unlikely NQ redox sites. However, as shown in Figure 1.8a, the 

correlation between aromatic carbon content and ECC attributed to NQ sites is not good 

either. An R2 of 0.75 suggests that NQ sites might not entirely relate to aromatic 

functional groups. The addition of the ECC of Q1 and Q2 sites to those of NQ improves 

the correlation between the total ECC and aromatic carbon (R2 increasing from 0.75 to 

0.89: Figure 1.8 b). This correlates well with the fact that quinone moieties are included 

in Q1 and Q2 sites. The combination of Q1 and Q2 sites is responsible for 44%-79% of 

the total ECC (Figure 1.7). Since quinone moieties form semiquinone radicals when 

undergoing one electron reduction (25), Scott et al. (9) related radical content to ECC and 

found a strong relation between these two parameters of humic substances (R2 = 0.91). 

However, Struyk and Sposito (11) calculated the ECC of SHA and SRHA based on the 

samples’ radical contents and obtained numbers two to four orders of magnitude lower 

than the ECC directly measured with I2 (reported as oxidation capacity) and the ECC 

reported from a microbial reduction study (9). This finding led them to conclude that 

quinone sites are not the only redox centers in humic substances. Since there are no 

details on their calculation procedure, it is not possible to evaluate their calculated results. 

In this study, a good correlation between the ECC of Q1 plus Q2 and the radical content 

is also found (R2= 0.91; Figure 1.9), which further substantiates that quinone sites are 

included in Q1 and Q2 categories. However,  the ECC values are still two to three orders 

of magnitude higher than numbers calculated from radical contents (Table 1.2; the 

calculation was performed based on results presented by Struyk and Sposito (11)).
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FIGURE 1.8 Correlation between aromatic carbon and electron carrying capacity of a)   , nonquinone sites, b)   , all sites 
(NQ+Q1+ Q2 ).
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Since hydrogenolysis still occurred in the pH 8-Pd redox system at a level that 

was harmful to quinone functional groups in juglone and AQOH, it is uncertain whether 

all sites with quinone structures were counted. In order to address this issue, an additional 

experiment, which used dextrose as a reducing agent, was tested with all humic substance 

samples. Prior to humic substances tests, AQDS, NQS (quinones with EWG) and juglone 

were subjected to the sugar experiment. All three quinones were fully reduced with their 

quinone moieties intact (Figure 1.10). As shown in Figure 1.11, the ECC of humic 

substance samples measured by the dextrose reduction method are comparable to the sum 

of the ECC from Q1 and Q2 sites. Note that the six landfill humic substances still did not 

have ECC in this experiment. Based on the results from quinone compounds and humic 

substance samples, quinone sites with structures similar to those in juglone and AQOH 

(with EDG in a separated conjugated system) are a minimal   part of the quinone 

functional group in humic substance samples.

Between Q1 and Q2 redox sites, the contribution from Q1 redox sites is relatively 

higher in two fulvic acid samples (PFA and SRFA; Figure 1.7). As demonstrated with 

AQDS, AQC, and NQS, EWG are a crucial factor in defending the destructive effects of 

hydrogenolytic cleavage in the pH 8-Pd/Al2O3 redox system. Carboxylic functional 

groups for instance, have shown to be an effective shield for quinone moieties in AQC 

during the hydrogenolysis in this system. Generally, fulvic acids are considered more 

acidic than humic acids due to their greater number of carboxyl functional groups  (Table 

1.2),   so redox sites with quinone structures in fulvic acid samples  should have more       

opportunities to locate close to a carboxyl substituent. Among humic substances that are 

electron mediators, a plot of carboxyl carbon content versus ECCQ1/ECCtot (Figure 1.12a) 
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FIGURE 1.10 UV-Vis spectra verifying the stability  of the quinone moieties in AQDS, NQS and juglone 
before and after the dextrose reduction experiment. The arrow indicates signal from the quinone moieties.
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shows a tendency for Q1 sites to be more abundant in samples with higher carboxylic 

carbon content. However, the opposite trend occurs for the prevalence of Q2 sites in a 

plot between carboxyl carbon content and ECCQ2/ECCtot (Figure 1.12 b). The weak 

correlation between a carboxyl carbon content and ECCQ1/ECCtot (R
2 = 0.31) is probably 

due to the fact that carboxylic functional groups are just one of many EWG that can 

associate with quinone moieties. 

Microbial Accessibility of Redox Sites 

It was observed that, although the total electron carrying capacity (ECC) reported 

in this study was in good agreement with the values measured with the microbial 

reduction method (18,9,26) (Figure 1.13, line a), based on the slope of line b in Figure 

1.13, the latter data set, was practically a 1:1 ratio with the ECC of all the quinone sites 

(Q1 plus Q2). Due to this observation, it would appear that the microorganism, 

Geobacter metallireducens, transfers electrons only via quinone sites in humic substance 

samples. The possibility that the nonquinone (NQ) redox sites might not be activated by 

the microbe could be due to many factors. One is the difference in redox potential of test 

systems. Redox potential for Pd-catalyzed reduction was -480 mV, which is significantly 

higher than -390 mV measured in the reduction of hydrous ferric oxide by Geobacter 

metallireducens (27). If this assumption is valid, the NQ redox sites would be activated at 

a redox potential that lower than quinone’s.  However, thiol, such as cysteine/cystine 

redox couple has a redox potential of approximately -340 mvV (28), which is still within 
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the range reported for Geobacter metallireducens. Thus, it seems that the redox potential 

should be irrelevant. 

The next plausible factor is type of bacteria. Different microorganisms might use 

different redox centers in humic substances. In the case of G. metallireducens, the 

microbe might not be able to use sulfur redox sites in humic substance because it is not a 

good sulfur reducer. During the microbial reduction of iron (III) oxides using elemental 

sulfur and cysteine as electron mediators, G. metallireducens was replaced by G. 

sulfurreducens because it was considered to be a less effective sulfur reducer (29). A 

previous study (26) showed that G. metallireducens transferred approximately 152 

µmolequivalents of electrons per gram of Aldrich humic acid (AHA). Meanwhile, 

Propionibacterium freudenreichii, fermenting bacteria reportedly transferred 191 µmol 

equivalents of electrons per gram of AHA (30) (data not available for other humic 

substance samples). P. freudenreichii contains the enzyme ferrochelatase, which has 

cysteinyl ligands for a [2Fe-2S] cluster (31).This microbe is one of microorganisms 

typically used in the production of cheese. P. freudenreichii produces several volatile 

sulfur compounds, which are the sources of cheese flavor, by utilizing sulfur-containing 

amino acids in milk (32). Due to this background, it is possible that P. freudenreichii

could use sulfur redox sites in humic substances. 

The other factor could be chemical structures of the redox sites. Some of sulfur 

reducing bacteria such as G. sulfurreducens can use cysteine as an electron mediator 

transferring electrons to Wolinella succinogenes (33). However, anthraquinone 

disulfonate (AQDS), a model quinone redox site in humic substances, could not be used 

for the same purpose (33). This finding is rather surprising because both Geobacter 
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sulfurreducens and W. succinogenes can reduce iron (III), AQDS and humic substances 

(34). Even more interesting than that, it is appeared that not every thiol compound can 

shuttle electrons between these two bacteria. Among several thiols and disulfides, which 

include L-cysteine, D-cysteine, L-homocysteine, cysteamine, glutathione, and 2,2'-

dithiodiethanesulfonic acid (Coenzyme M; Figure 1.14), only L-cysteine was reported to 

be the effective electron carrier (33). 

The performance of an electron mediator might depend on its molecular size. Air 

oxidation of the self-assembled monolayer of alkanethiols on silver and gold surfaces 

occurs at a different rate depending on the chain length of the thiols. Short chain thiols 

oxidize faster than the long chain ones (35). However, this is not the case for L-cysteine 

and D-cysteine. Both compounds are identical, different only the orientation of the amine 

group (Figure 1.14). Given these complications, it is clear that more studies on factors 

controlling the accessibility of the redox sites in humic substances are inevitably 

essential.

ENVIRONMENTAL SIGNIFICANCE

This new analytical technique proves to be a valuable tool in providing insightful

information about redox sites in humic substances. This technique revealed that electron 

transfer functions of humic substances are carried out by redox functional groups that can 

be divided into nonquinone and quinone redox sites. Since redox sites with a nonquinone 

structure are more resistant to hydrogenolysis than quinone moieties, these redox sites 

might be able to function in more varied environments than do the quinone redox centers. 
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For example, in a remediation process using zero valent iron, one of three reductive 

transformation pathways of pollutants included catalyzed hydrogenolysis by the H2 that is 

formed by the reduction of H2O during anaerobic corrosion of the iron (36). In such 

condition, if humic substances are involved, quinone redox sites would be disabling. 

Only nonquinone sites supposedly remain operable. For quinone redox sites, the finding 

that they exist with various neighboring substituents implies that this group has diverse 

redox activity abilities. As demonstrated by the microbial reduction of an azo dye (37), 

quinone compounds with different substituents facilitated the reaction with different 

relative activities. Therefore, even among quinone functional groups, redox activities 

could be different. Thus it is plausible that redox sites in humic substances might not 

work together simultaneously. It may depend on the environmental conditions that switch 

on some sites but not others. 
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CHAPTER 2

THE ROLE OF COMPLEXED-IRON AND ORGANOSULFUR 

FUNCTIONAL GROUPS IN HUMIC SUBSTANCES AS THE NONQUINONE 

REDOX SITES.

ABSTRACT

Redox sites with nonquinone (NQ) structure were previously identified with other 

electron transfer centers in humic substances. Electron carrying capacity (ECC) of the 

NQ redox group ranges between 25-262 µmoleequivalent/g- sample, which is 

approximately 21%-56% of total ECC of the samples. The instability of some NQ sites 

was observed with soil humic acid and Suwanee river fulvic when they were repeatedly 

subjected to hydrogenolysis during redox cycling experiments.  Since the incidence was 

observed only with these two samples, it suggests that the NQ sites may include at least 

two redox functional groups: one that is stable and one that is susceptible to 

hydrogenolysis. Two candidates for the NQ sites, complexed iron and sulfur functional 

groups, were examined for their role in electron transport processes. The removal of iron 

by Chelex-100 resin, which lowers iron content in Aldrich humic acid (AHA) from 129.7 

to 2.6 µmol/g-sample did not significantly change the ECC of the sample suggesting that 

iron is not acting as the NQ site in AHA. The X-ray photoelectron spectroscopic analysis 

(XPS) of reduced and reoxidized humic substance samples revealed that sulfur functional 

groups are among the NQ sites that take part in the redox process of humic substances. 
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The estimated contribution of sulfur redox species to the ECC of the NQ sites is in the 

range of 18%-120%. One of the sulfur redox site, FeS, has never been previously 

identified. It was postulated that the complexed-FeS sites only formed in the reduced 

humic substance samples, via the complexation between the iron (II) and polysulfides 

functional groups. However, it was also found that some of the FeS sites might also 

artificially form during the catalytic reduction. 

INTRODUCTION

It was demonstrated in Chapter 1 that at least two groups of redox sites can 

support electron transfer functions for humic substances.  These two redox groups were 

categorized according their resistance to hydrogenolysis, which occurred during the 

catalytic reduction pH 6.5 using Pd/Al2O3 as catalyst. One of the two groups consisted of 

redox sites that were resistant to the catalytic hydrogenolysis. The other group included 

quinone sites that were susceptible to this degradation process. The resistant redox sites, 

classified as nonquinone group (NQ), were responsible for 21%-56% of the electron 

carrying capacity (ECC) of humic substance samples. The identities of these NQ sites 

could not be determined by the developed technique described in Chapter 1.  

Since the NQ redox sites contribute to a significant portion of the ECC, it is 

important to identify these redox centers. Complexed-iron and organic sulfur are the most 

likely possibilities for the NQ redox sites. Both of them are well-known electron 

mediators. Complexed-iron compounds, such as iron porphyrin, have been shown to 

enhance the reduction rate of nitroaromatic contaminants in aqueous H2S by the same 
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magnitude as quinones such as juglone and lawsone (1). Organosulfur such as thiol is a 

well-known redox center embedded in many proteins and enzymes (2). 

Most humic substances contain a certain amount of iron (Table 2.1). Iron, like 

other metal ions, forms complexes mainly with phenolic or carboxylic functional groups 

in humic substances (4, 5). Few studies (6, 7) have mentioned complexed-iron as 

potential redox sites in humic substances. A recent study (8) showed that microorganisms 

could reduce complexed-iron (III) in humic substances to iron (II). However, after the 

addition of an electron mediator, the reduced iron (II) sites failed to transfer electrons to 

the acceptor (judging by the fact that no iron (III) formed after the addition of the 

mediator). Due to this finding, the redox function ability of complexed-iron in humic 

substances remains arguable.  

Similar to complexed-iron, organosulfur is also found in humic substances with 

oxidation states ranging from -II to +VI, in the form of sulfides, thiols, disulfides, 

sulfoxides, thiophene, sulfones, sulfonates and sulfate (9-12). The amounts of sulfur 

species in reduced states (sulfides, thiols, disulfides, thiophenes) varies from 10%-50% of 

the total sulfur content, depending on the source of the humic substances (11, 12). In 

contrast to iron, the redox activity of reduced sulfur functional groups, thiols and 

disulfides, in humic substances has already been elucidated. A recent X-ray absorption 

near-edge structure (XANES) technique study showed that the oxidation of thiols to 

disulfides in humic substance samples contributed to 6%-100% of the reduction of 

chromium (VI), depending on the ratio of thiol to chromium (VI) and the types of humic 

substances used (13). Based on these findings, the primary objective of this study is to 
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TABLE 2.1 Elemental Data and Electron Carrying Capacity of Aldrich Humic Acid (AHA), Peat Humic Acid (PHA), Peat 
Fulvic Acid (PFA), Elliot Soil Humic Acid (SHA), and Suwanee River Fulvic Acid (SRFA). 

a data from Aldrich
b data from International Humic Substances Society (IHSS)
c data from ref 49
d data from Chapter 1

Sample Sulfur content 
% (wt/wt)

Iron content
% (wt/wt)

Fe/S mole
ratio

Electron Carrying Capacity 
(µmolquivalents/g-sample)

NQ sitesd Sufur redox sites

AHA 0.95a 0.772c 0.465 132 78
PHA 0.71b 0.052c 0.042 174 73
PFA 0.73 b 0.433c 0.340 103 124
SHA 0.44 b 0.046c 0.059 262 117
SRFA 0.44 b 0.003c 0.003 25 5
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evaluate the likelihood of complexed-iron and organosulfur functional groups in humic 

substances acting as the NQ redox sites.

MATERIALS AND METHODS

Samples

Four humic substance samples were purchased from the International Humic 

Substance Society (IHSS). These samples included Suwanee river fulvic acid (SRFA), 

Elliot soil humic acid (SHA), peat humic acid (PHA) and fulvic acid (PFA). One sample, 

Aldrich humic acid (AHA), was purchased from Aldrich.  

Iron Removal Process

A glass column containing fresh, clean Chelex-100 resin (styrene divinylbenzene 

copolymer, Bio-Rad) at a ratio of 5 g of resin per 100 ml of sample was prepared for the 

iron removal process.  The resin was rinsed three times with deionized water. AHA 

sample (the only sample tested because of its the highest iron content) was dissolved in 

Nanopure water and the pH was adjusted to 5 with 0.1 M HCl.  This solution was slowly 

run through the column at the rate of 0.5 ml/min. The effluent was collected and rerun 

through a new column set up as described above. The final effluent was dialyzed 

(cellulose acetate membrane, MWCO 100, Spectrum; Spectra/Por) and freeze dried. The 

amount of iron in AHA before and after the treatment was measured by flame atomic 
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absorption spectrophotometry operated on the air-acetylene mode (SpectroAA-30: 

Varian). A series of iron (II) standard solutions (Fisher) was used to construct a 

calibration curve. Triplicates of both the sample and the standard solutions were 

measured and calculated for iron concentrations.

Redox Cycling Experiment

This test was carried out using the same procedure previously described in 

Chapter 1 (Materials and methods, Redox Cycling Experiment, Procedure section) 

X-ray Photoelectron Spectroscopic (XPS) Analysis

Figure 2.1 illustrated the sample preparation process for the XPS analysis.

Samples were mounted on a sample holder by pressing them against adhesive graphite 

tape inside the anaerobic chamber before being transferred to the XPS vacuum chamber. 

Spectra were obtained with a Physical Electronics PHI 5800 X-ray photoelectron 

spectrometer operating under a vacuum of 2x10-9 Torr. Samples were irradiated with 

Aluminum Kα X-rays (1486.6 eV) of 350 W and analyzed at an electron take-off angle of 

45o measured with respect to the surface plane. Survey and detailed scans were collected 

using a 800-µm spot size and 23 eV pass energy. The binding energies were corrected by 

reference to the aliphatic adventitious hydrocarbon C 1s peak at 284.8 eV. The areas 

under the unsmoothed sulfur S 2p peaks were measured using Shirley background 
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Compare S-XPS spectra

FIGURE 2.1. Experiment layout for XPS analysis of sulfur redox sites
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subtraction algorithm (14). Spectra that are shown have been smoothed by Gaussian-

Lorentzian peak shape. Each XPS spectrum represents the average of three scans.

RESULTS AND DISCUSSION

Characteristics of Nonquinone Redox Sites

During the pH 6.5-Pd/Al2O3 catalytic reduction, the hydrogenolysis of quinone 

moieties occurred. This event disrupted C-O bonds in reduced quinones, which 

terminated their electron mediating ability. The disruption was noticeably fast. Quinone 

moieties in eight quinone compounds were removed promptly in the first redox cycle. 

Although the function of the nonquinone (NQ) redox sites was considered uninterrupted 

by the hydrogenolytic cleavage, there was evidence that this degradation process might 

also affect some of the NQ sites’ performance. As shown in Figure 2.2, the ECC of both 

SHA and SRFA, unlike other samples, gradually declined with each test cycle. This 

evidence implies that some NQ redox sites in SHA and SRFA stopped functioning when 

they were repeatedly subjected to hydrogenolysis. The swift removal of quinone moieties 

reported in Chapter 1 disagreed that the unstable NQ sites were not quinone moieties.  

However, in order to be certain, ubiquinone (Coenzyme Q10) was catalytically reduced 

by Pd/Al2O3 catalyst. This quinone compound was selected because it has a bulky 

substituent adjacent to its quinone moieties (Figure 2.3 b). Steric effects from small 

substituents, such as OH and CH3 functional groups, have been shown to prevent the 

hydrogenolysis of adjacent quinone moieties of lawsone and plumbagin during the pH8-

Pd catalytic reduction (Chapter 1). Results from the ubiquinone test were shown in Figure 
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2.3 a. As illustrated in this figure, the quinone moieties’ signal at 290 nm in the UV-Vis 

spectrum of ubiquinone disappeared after the Pd/Al2O3 catalytic reduction. Thus, it was 

confirmed that steric effects has no effect on hydrogenolysis of quinone moieties in the 

Pd/Al2O3 catalytic system. It should be noted that the catalytic reduction of ubiquinone 

was carried out in hexane and without adjusting pH because of its low water solubility. 

However, these reaction conditions should not promote the hydrogenolysis of 

ubiquinone. In catalytic reactions, solvents affect the surface reactions by regulating the 

rate of a compound’s sorption on the catalyst’s surface (54). In the case of hexane (which 

is not a H+ donor or acceptor), this nonpolar solvent would slow the ubiquinone’s 

(hydrophobic compound) sorption to the surface of Pd/Al2O3, because, due to the acid 

sites of Al2O3, the surface of catalyst is considered more polar than hexane. Due to this 

argument, it is unlikely that hexane will cause an additive effect to the hydrogenolysis of 

ubiquinone. Therefore, the observed result with ubiquinone should also occur with 

aqueous solutions of humic substances. 

It was hypothesized that the change in humic substance structure during catalytic 

reduction could lead to the observed decline in the ECC of SHA and SRFA. Besides 

quinone moieties, alterations during the catalytic reduction might occur with the other 

parts of the humic substance samples. If so, this change might appear gradually and 

slowly affect some of the NQ redox sites of SHA and SRFA. Since none of the humic 

substance samples other than SHA and SRFA showed any significant changes of ECC 

over the five redox cycles, the NQ sites in these samples were considered more stable 

than those of SHA and SRFA.  Thus, according to this hypothesis, NQ redox sites may 
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FIGURE 2. 3  a) UV-Vis Spectra and b) chemical structure of coenzyme Q10 in hexane before and after 
the ph 6.5-Pd/Al2O3 reduction. Arrow indicates the signal from quinone moieties.
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include at least two redox functional groups: one that is stable and one that is susceptible 

to hydrogenolysis. 

Role of Complexed-Iron

Humic substance samples contain a certain amount of iron (Table 2.1). The redox 

ability of iron sites in humic substances was tested by comparing the ECC of Aldrich 

humic acid (AHA) before and after complexed-iron was removed by Chelex-100. AHA 

was selected because it has the highest iron content among humic substance samples used 

in this study. Also, this sample was used in previous studies to evaluate the iron redox 

sites in humic substances (6, 8). Iron content in AHA before and after the Chelex-100 

treatment was significantly different, 129.7 and 2.6 µmol/g-sample, respectively.

However, as shown in Figure 2.4, the ECC values of the treated and untreated AHA were 

almost the same in all five redox cycles. If complexed-iron was among the NQ redox 

sites, the approximate loss of the ECC after the iron was removed, would be 127 

µequivalents/g-sample. If this occurred there would be a dramatic decrease in the ECC of 

the treated AHA in Figure 2.4. Since no drastic decrease occurred, these results suggest 

that complexed-iron in AHA is not acting as the NQ redox sites.  

A previous study showed that humic-bound iron can be reduced by 

microorganisms (8), so it should be reduced by the Pd/Al2O3 catalyst as well. Therefore, 

the question is: what prevents the reduced complex-iron (II) from transferring electrons to 

an acceptor? Redox chemistry of the complexed-iron in humic substances is not well 

understood, but there has been evidence that forming complexes with humic substances 
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FIGURE 2.4 Electron carrying capacity of Aldrich humic acid  before and after the iron removal treatment 
by Chelex-100.
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causes a certain change in the redox property of iron. During the construction of a 

microelectrode, it was observed that the oxidation potential of ferrocene deceased from 

380 mV to 300 mV after it formed a complex with soil humic acid (16). Based on this 

observation, humic-bound iron should be easily oxidized. However, in humic substances, 

iron as well as other metal ions, forms complexes mainly with phenolic or carboxylic 

functional groups (4, 5). These binding sites might influence the oxidation of complexed-

iron (II).  Natural iron chelators such as citrinin [(3R-tran)-4,6-dihydro-8-hydroxy-3,4,5-

trimethyl-1,6-oxo-3H-2-benzopyran-7-carboxylic acid)],  a carboxylic complexing agent 

produced by Penicillium and Aspergillus spp., have been shown to prevent the oxidation 

of iron (II) to iron (III) by a strong oxidizing agent, such as  H2O2  (17). Besides citrinin, 

several iron chelators such as salicylic acid (18) and flavonoids (19) are also antioxidants 

that inhibit the oxidation of iron (II) in iron (II)/ascorbate-induced lipid peroxidation. 

Most of the iron (II) chelators that are also antioxidants are phenolic compounds with 

carboxylic groups ortho to phenolic functional groups (17). It is possible that, if iron 

binds to humic substances via sites with similar structures, the same effect might occur 

with the reoxidation of complexed-iron (II). 

Role of Sulfur

Similar to iron, humic substance samples contain a certain amount of sulfur 

(Table 2.1). Sulfur in natural organic matter, such as humic substances, is primarily 

derived from the reaction between dissolved sulfides and sedimentary organic matter (20, 

21). The XPS used in this experiment has been employed extensively to study sulfur in 
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coal (22), iron sulfide metals such as pyrite (23, 24), polymer (25), and natural organic 

matter (20, 21).  XPS differentiates sulfur species by detecting the binding energy of 

electrons in a sulfur atom. This binding energy varies with the oxidation state of sulfur. 

Five humic substance samples, SRFA, SHA, PFA PHA, AHA, were reduced by 

Pd/Al2O3 at pH 6.5 and analyzed by XPS before and after they were reoxidized by iron 

(III) (Figure 2.1). The XPS spectra of the reduced and iron-oxidized SRFA samples are 

shown in Figure 2.5. The assignment of peaks in the XPS spectra sulfur is summarized in 

Table 2.2. These assignments were based on published binding energies reported for 

sulfur functional groups in minerals, soils, polymers, and coals (26-37).    Glutathione, a 

thiol compound, was used as a standard to calibrate the positions of the peaks in the XPS 

spectra (Figure 2.6). Peak areas and the relative distribution of sulfur functional groups 

were summarized for each sample in Table 2.3.  As shown in this table, sulfur in all 

samples (except SHA) was primarily in the oxidized form (oxidation state > 0). This 

fraction increased after iron (III) was added to the sample solutions, which indicates that 

a certain part of the reduced sulfur species (oxidation state < +I) had been oxidized.

Among the assignments in Table 2.2, it is unlikely that the peak at 162.9 eV is 

pyrite (FeS2).  This assumption is based on a report that the formation of FeS2  at pH 5.5-

8.0 and 25 °C is slow and takes place over a period of days (38). Since the sample 

solutions (pH 6.5, room temperature) were immediately freeze dried after the reduction 

and the addition of iron (III), there was insufficient time for the formation of FeS2. Thus, 

either polysulfides and /or thiosulfate were providing that signal. A previous XANES 

study has shown that polysulfides are present in humic substances (28).  
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FIGURE 2.5  S (2p) XPS Spectra of reduced and oxidized Suwanee River fulvic acid (SRFA)
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TABLE 2.2 Assignments for Sulfur Functional Groups, Structure of Representative Compounds, 
Oxidation State, and Binding Energy of Each Peak in XPS Spectra.
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TABLE 2.3.  Relative Distribution of Sulfur Species in Reduced and Fe(III)-Oxidized Aldrich Humic Acid (AHA), Peat Humic Acid 
(PHA), Peat Fulvic Acid (PFA), Eliot Soil Humic Acid (SHA), and Suwanee  River Fulvic Acid (SRFA).

AHA PHA PFA SHA SRFA

Sample reduced oxidized reduced oxidized reduced oxidized reduced oxidized reduced oxidized
peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

peak 
area %

FeS 14 5 28 4 0 0.45 2 0.45 40 8 10 2 89 32 26 8 8 3 19 7

polysulfides 0 0 53 8 16 6 27 6 25 5 14 3 37 13 11 3 33 11 16 6

thiol 36 13 53 8 39 15 49 11 33 7 31 7 27 10 28 9 38 13 17 7

disulfides 32 12 55 9 27 10 51 11 58 12 54 11 18 6 49 15 23 8 12 5

thiophene 41 15 61 9 34 13 72 16 56 12 55 12 12 4 49 15 21 7 30 12

sulfoxide 35 13 93 14 56 21 42 9 52 11 58 12 15 5 51 16 22 8 38 15

sulfone 35 13 92 14 25 10 47 11 90 19 114 24 8 3 36 11 58 20 49 19

sulfonate 51 18 105 16 36 14 103 23 76 16 73 16 39 14 39 12 43 15 47 19

sulfate 34 12 107 17 29 11 52 12 50 10 61 13 32 12 32 10 46 16 26 10

total 278 100 647 100 262 100 445 100 480 100 470 100 277 100 321 100 292 100 254 100
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The most interesting sulfur functional group is FeS. In previous XANES studies 

of PFA, PHA, SHA and SRFA (11, 12), no FeS peak was detected. XANES is more 

sensitive to the bonding environment than XPS. It can detect changes in electron 

distribution resulting from covalent bonding by measuring edge absorbance energies 

(12). Therefore, XANES should have been able to detect FeS if it was present. However, 

samples examined by XANES were not in the reduced state, so it was postulated that the 

FeS sites were developed only when the samples were in a reduced state. When the 

complexed-iron in the samples was reduced to iron (II), some of the complexed-iron 

might have formed complexes with polysulfides functional groups. A previous XANES 

study has shown that polysulfides are present in humic substances (39).  

In the case of AHA, in which FeS formed despite the lack of polysulfides (no 

162.9-eV signal), FeS might be catalytically generated from the reaction between 

complexed-iron (II) and thiols. This is based on a report that a Pd catalyst has been used 

to prepare FeS cluster for the biosynthesis of a FeS protein (40).  In the preparation, 

ferrous acetate and L-cysteine were used as sources of iron and sulfur, respectively. The 

FeS cluster formation took place in an anaerobic chamber (95%:5%: N2:H2: room 

temperature) in 60 min. after adding Pd catalyst (40). Since each humic substance sample 

was reduced by the same method, it should be noted that the catalytic formation of FeS 

might be possible in other samples as well. 

The appearance of the 162.9-eV signal after adding iron (III) to the reduced AHA 

solution might be due to the formation of both thiosulfate and polysulfides. In the 

thiosulfate case, it has been demonstrated that during the reduction of chromium (IV), 

FeS was oxidized to S0, sulfite, thiosulfate and sulfate (41). Thiosulfate has two sulfur 
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atoms which have different oxidation states. The oxidation state of the inner sulfur (the 

one connected to three oxygen atoms) is +VI, the same as sulfonate. The outer sulfur 

atom (the terminal atom) has an oxidation state of -I, the same as polysufides (42). The 

formation of polysulfides might relate to the decrease in 165-eV signal. This signal was 

assigned to thiophenic sulfur and S0. Since it has been reported that thiophenic sulfur is 

not readily oxidized (27), the decrease in 165-eV signal should be due to S0 depletion. 

Complexation between iron (III) and N-alkylimidazoles has been shown to promote the 

reactions between the complexed-iron and S0, which give N-alkylimidazoles-iron-

polysulfide compounds as products (43-45). It is hypothesized that some of the iron 

binding sites in the humic substances might offer similar reactions. However, since yields 

of the products have been reported to be dependent on the S0 concentration (43), the 

formation of polysulfides via the reactions might be limited by the original amount of S0

in the samples. Besides AHA, none of the humic substance samples showed an increase 

in the 162.9-eV signal (Table 2.3). According to their lower sulfur content (Table 2.1), 

the initial amount of S0 of SRFA, SHA, PHA and PFA might be smaller than that of 

AHA. Therefore, the polysulfides formation should be minimal in these samples. 

The increase in FeS content in PHA and SRFA after adding iron (III) (Table 2.3) 

was hypothesized as a consequence of complexed-iron (II) shortage. Compared to other 

samples, the iron to sulfur ratios of PHA and SRFA are significantly lower (Table 2.1). 

After the addition of iron (III), some of the iron would be reduced by other nonquinone 

redox functional groups and then served as a supplementary source of iron (II) in the FeS 

formation in these two samples. In the PHA sample, other significant changes in sulfur 

composition after the oxidation include the drastic decrease in sulfoxide species (166.5 
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eV). The oxidation of sulfoxide to sulfone (167.1 eV) has been reported with H2O2 using 

iron (II)-EDTA (46) or iron porphyrin (47) as a catalyst. However, H2O2 was not used in 

this study and the corresponding increase of sulfone was not observed. At this point, the 

cause of this change is unknown. 

In order to calculate the ECC of the sulfur redox sites, there are two points that 

were taken into consideration. First, changes in the distribution of many sulfur species 

after the oxidation by iron (III) indicate that the oxidation of sulfur species involves a 

complex reaction mechanism and occurs in a multiple-step process. This is due to various 

oxidation states of sulfur. Second, XPS is a surface survey technique (sensitive to a depth 

of approximately 5-50 °A (49)). Peak areas reported in Table 2.3 represented the 

distribution of sulfur functional groups only in the top 50 °A of the sample surface. Thus, 

before estimating the total ECC of sulfur redox sites for the whole sample, the 

assumption that the distribution of sulfur functional groups is the same at every point, 

both on the surface and deep inside the sample, has been made. Based on this assumption, 

the ECC calculation was done in four steps: first, determining changes in the relative 

distribution of each sulfur species after the iron (III) oxidation (change in % peak area in 

Table 2.3); second, estimating the corresponding change for the whole sample by 

multiplying  each value from step one with % sulfur content and then expressing the 

result in terms of moles of sulfur; third, calculating the corresponding number of charges 

by multiplying results from step 2 with the oxidation state; fourth, combining results from 

all sulfur function groups and using the number of charge loss as the ECC of the sample.  

An example for the calculation of the FeS sites of  AHA was as follows: i) the difference 

in % peak area of reduced and oxidized AHA is 5-4 = 1; ii) the corresponding change in  
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FeS content (in the whole sample)  = ((1/100)x %S) / MW of S = ((1/100) x (0.97/ 100)) / 

32.06  = 2 x10-6  mol S; iii) the corresponding number of charge = 2 x10-6  x -2  = - 4 x10-6  

moles of charge; iv) repeat step 1-3 with other functional groups and then combine 

results. The final value is the ECC attributed to all sulfur functional groups of AHA. The 

calculated results of all samples are present in Table 2.1. 

As illustrated in Figure 2.7, the calculated ECC of sulfur sites represented 18%-

120% of the values attributed to NQ redox sites. The number is highest in the PFA 

sample and lowest in the SRFA sample. However, it must be recognized that these 

estimates could only represent the upper boundary for the approximation, because some 

of the FeS sites might be artifacts from the catalytic reduction. The estimation without 

taking the FeS into consideration provided the estimated total ECC in the range of 20%-

90% of the NQ sites’ ECC (Figure 2.7). These numbers remain substantial to the total 

ECC of all NQ sites. Therefore, the XPS results demonstrate that the sulfur redox 

functional groups are the significant parts of the NQ sites.

One issue that needed to be addressed was whether the formation of FeS was the 

reason that iron (II) was unable to transfer electrons to an acceptor. In the AHA case, 

approximately 5% of the sulfur in the top 50 °A of the reduced AHA surface was found 

as FeS (Table 2.3). Based on the above the assumption and calculation procedure, this 

would equal to 2.1 µmol-sulfur/g-sample. Thus, for the FeS formation, 2.1 µmol-iron/g-

sample would be required. Since the total amount of iron in AHA is 129.7 µmol/g-

sample, only 1.6% of iron is needed for the FeS formation. Therefore, the FeS formation 

is certainly not the cause preventing electron transfer of complexed iron (II).
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FIGURE 2.7   Comparison between electron carrying capacity of sulfur redox sites and the nonquinone (NQ) 
redox sites. Suwanee river fulvic acid (SRFA), Elliot soil humic acid (SHA), peat humic acid (PHA) and fulvic 
acid (PFA), Aldrich humic acid (AHA).
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CHAPTER 3

ORGANIC CARBON IN DEGRADED MUNICIPAL SOLID WASTE FROM A 

LANDFILL: COMPOSITION, SOURCES AND INTERACTIONS WITH 

HYDROPHOBIC COMPOUNDS

ABSTRACT

The overall nature of organic carbon (OC) composition of degraded municipal 

solid waste (MSW) is relatively unknown due to limited information regarding the 

decomposition of MSW noncellulosic constituents. A unique highly aliphatic property of 

dissolved organic carbon in leachate produced from MSW in landfills suggests that OC 

of MSW itself should be different from soils and other materials. Since OC in MSW is 

gradually transformed during decomposition, it is expected that several properties 

including sorption capacity of MSW would be changed over time. The insight into these 

issues has been limited due to lack of understanding on the OC property of MSW in 

landfills. To study the OC of refuse in landfills, MSW was excavated from a 16-23 yrs 

old dumping area in the Norman Landfill at 12-16 ft, 20-24 ft, and 32-26 ft below the 

surface. Fourteen samples representing the two smallest fractions (80-200 mesh and >200 

mesh) of the MSW insoluble component were characterized for OC composition by 

cross-polarization, magic-angle spinning 13C nuclear magnetic resonance (CP-MAS 13C 

NMR) spectroscopy, tetramethylammonium hydroxide (TMAH) thermochemolysis gas 

chromatography/mass spectrometry (GC/MS), pyrolysis GC/MS and organic solvent 
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extraction.  From 13C NMR spectra, over 75% of OC in MSW samples is attributed to 

cellulose, aliphatic and aromatic carbons. Relative degradation indices, O-alkyl/alkyl 

(OA/A) and cellulose/lignin (C/L) ratios, revealed that although all samples were in the 

landfill for almost the same period, those from the 12-16 ft depth were the least degraded. 

Between the two selected fractions, the larger one (80-200 mesh) was usually less 

degraded than its smaller counterpart. A decrease in cellulose content with corresponding 

increases in aliphatic and aromatic carbons were consistently found in MSW samples 

with lower OA/A ratio. Due to signals of cellulose in 13C NMR spectra, both amorphous 

and crystalline cellulose in these samples were substantially degraded. TMAH 

thermochemolysis, pyrolysis GC/MS and organic solvent extraction revealed that 

aliphatic carbon was mainly derived from lipids, alkanes, and resin acids. The origins of 

these constituents include plant biomass and hazardous compounds with a minimal input 

from bacteria. Aromatic carbon primarily originates from lignin but additional input from 

PAHs was also found in some samples. Comparison of TMAH yields of pyrene between 

samples at each depth showed a higher amount of sorbed pyrene in the sample with a 

lower OA/A ratio. An irreversible sorption of PAHs was found in the most degraded 

sample. These results suggested that both sorption affinity and sorption mechanism for 

hydrophobic contaminants of degraded MSW samples might have been modified during 

the decomposition in the landfill. 

INTRODUCTION

Decomposition of municipal solid waste (MSW) in landfills involves numerous 
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chemical and biological processes. Most of the current understanding on this issue is 

focused on the cellulosic component of MSW because it is a potential source of leachate 

and methane gas, which are the two primary concerns in MSW landfill operation (1, 2). 

Relative to cellulose, an insight into the compositional changes of other MSW 

components during long term degradation in landfill is rather limited. Since MSW is 

well-known for its extraordinary degree of heterogeneity, this shortcoming leaves the 

overall nature of degraded MSW poorly understood. 

Hazardous waste can be found in many old landfills, either from illegal dumping 

or the disposing of household hazardous materials. Sorption of the contaminants to MSW 

is among key processes that limit transport and bioavailability of hazardous compounds 

in landfills (3). As in other environments, OC of MSW plays a key role in the sorption 

process. During long term decomposition in landfills, not only the amount of MSW is 

decreased, but compositional change has also occurred because of the varying 

degradability of its components. Inevitably, the compositional transformation would have 

a direct effect on sorption capacity of refuse. A recent study showed that the affinity of 

toluene and o-xylene for plastics, paper products and rabbit food were increased after the 

samples had been degraded in a methanogenic landfill reactor (3). Newsprint samples 

degraded in a laboratory and in a landfill also showed a higher toluene sorption capacity 

than fresh newsprint. The Koc value of the most degraded newsprint sample was almost 5 

times higher than that of the fresh one (4). It was explained that the decrease in polarity of 

newsprint samples due to the decomposition of cellulose and the simultaneous increase in 

hydrophobicity due to the accumulation of refractory components, mostly lignin, and 

resin acids, enhanced the samples’ sorption capacity. Results from these early works 
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might not be suitable to apply directly to the situation in landfills. Samples in those 

studies represent only certain elements of MSW. Thus, they do not depict an overall 

picture for degraded MSW. In addition, the environment in landfills is far more complex 

than the conditions set up in the laboratory.

Previous studies involving the characterization of landfill leachate reported that 

the decomposition of MSW produced leachate in which the hydrophobic component 

primarily consisted of aliphatic constituents (5, 6).  This piece of information suggests the 

possibility that the degraded MSW, which is the source of the leachate, might also have a 

distinctive OC characteristic.  In this study we examined the two smallest particle size 

samples selected from seven sets of the insoluble component of 16-20 yrs old MSW 

excavated from the Norman landfill. The principal objectives of the study were; i) to 

characterize OC structure of degraded MSW samples as a function of landfill depth and 

size of the samples, ii) to identify sources of OC in the MSW samples, and iii) to examine 

the possible correlation between the MSW samples’ affinity for hydrophobic 

contaminants and the extent of the samples’ degradation.  Based on the chemical 

characteristic of DOC in leachate, the hypothesis of this research is that the preferential 

decomposition of cellulosic materials in MSW results in an increasing influence of 

hydrophobic components primarily aliphatic carbon compounds.

MATERIALS AND METHODS

Sampling Site
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MSW samples in the study were excavated from the Norman Landfill. This 

landfill has been the research site for the U.S. Geological Survey since 1995. The landfill 

accepted waste from the City of Norman during 1922-1985. The sampling region located 

at the cell where waste was deposited from 1970-1985. In this area, waste was placed 2 ft 

above groundwater level and covered daily with sand. After the landfill was closed in 

1985, compacted clay was used as a final cap and vegetation was subsequently 

introduced (7). The sampling cell covers an area of 204,600 ft2 and rises almost 40 ft 

above land surface. Neither liners nor a leachate collection system was installed in the 

area. Currently, leachate has reached groundwater and the leachate plume extends at least 

225 m from the edge of the landfill. Solid waste in the landfill was predominantly 

residential and commercial solid waste but there were reports of suspected hazardous 

waste disposal (7). Annual precipitation at the site is approximately 860 mm (8). 

Biochemical and geochemical study conducted at this sampling site reported that 

methanogenic condition is still prevalent in the landfill (9).

Sampling Method and Sample Preparation

Geoprobe direct push machine equipped with macro-core piston rod sampler 

(geoprobesystem) was used to retrieve three MSW core samples (1, 2, 3) at every four 

ft interval from the top through the base of the landfill. Each core sample was within 50 ft 

of the others. Three sections of each core, 12-16 ft, 20-24 ft, and 32-36 ft from the top of 

the landfill, were selected for analysis (referred as top (T), middle (M) and bottom (B) 

sections, respectively) Only the top section was available for the third core sample, 
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because the excavation was stopped at approximately 20 ft when the Geoprobe machine 

hit a hard object and could not go deeper. To avoid interferences from a final cover 

material and to ensure the anaerobic environment of MSW samples, the 0-12-ft section 

was not selected for the study. The soluble component in each selected core sections was 

removed by mixing samples with Nanopure water (1:10 v/v) and agitating for 24 hours at 

room temperature. After centrifuging (4000 rpm) for 30 min, the supernatant was 

decanted and the extraction was repeated.  Insoluble component (referred as MSW) was 

freeze dried and separated according to particle size using 20, 40, 80, and 200 mesh 

sieves. The two smallest sizes were selected for further analysis. One was the fraction 

retaining on a 200-mesh sieve (labeled as 200). The other was the residue passing a 200-

mesh sieve (labeled as R). These two fractions made up more than 50% of total refuse 

dry weight. Their appearance was not different from soils and their parent materials could 

no longer be recognized. All of these selected samples were treated with 10% 

hydrofluoric acid twice to remove clay mineral and paramagnetic ions following the 

protocol described by Schmidt et al. (10). After the treatment, all samples were analyzed 

by CP-MAS 13C NMR, TMAH-thermochemolysis and pyrolysis GC/MS. Four samples 

were subsequently selected for solvent extraction. Each sample was labeled by number of 

core (1, 2, 3), location (T, M, B) and particle size (200, R).

Total Organic Carbon (TOC)

TOC of freeze dried MSW samples was measured by the platinum combustion 

catalytic oxidation method using a Shimadzu TOC 5050 Total Organic Carbon Analyzer 
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equipped with a solid sample module SSM-5000A and Non-Dispersive Infrared (NDIR) 

detector. TOC was calculated by subtracting an inorganic carbon (IC) content from a total 

carbon (TC) content (i.e., TOC = TC-IC). TC of the pre-weight MSW sample was

measured by the catalytically aided combustion oxidation at 900°C. In the IC 

measurement, the pre-weight MSW sample was acidified with 0.2 M phosphoric acid and 

combusted at 250°C.  The measuring range for TC is 0.1-30 mg carbon; IC is 0.1-20 mg 

carbon. Glucose and sodium carbonate (Sigma) were used to construct standard curves 

for the TC and IC, respectively.

CP-MAS 13C Nuclear Magnetic Resonance Analysis

CP-MAS 13C NMR spectra of all selected MSW samples were obtained using 

Chemegnetics CMX-II solid-state NMR spectrometer operating at 75.694 MHz and using 

a chemagnetics 5 mm double resonance magic-angle spinning probe. A quasi-adiabatic 

sequence (11) using two-pulse phase modulation (TPPM) decoupling (12) at 75 kHz was 

employed. The 13C CP contact pulse of 1 ms length was divided into 11 steps of equal 

length with ascending radio frequency field strength, while the 1H contact pulse had 

constant radio frequency field strength. The sample spinning frequency was 6.0 kHz, 

maintained to within a range of ± 5Hz or less with a chemagnetics speed controller.

Spectra were obtained from 12,910-56,700 scans. 

TMAH Thermochemolysis



81

An accurate amount of 3-10 mg of MSW sample was placed in a thick-walled 10 

mL ampoule with 200 µL of tetramethylammonium hydroxide (TMAH) (25% TMAH in 

methanol) (Aldrich). After methanol was evaporated under vacuum, the ampoule was 

subsequently flame-sealed.  The sample was baked at 250 ºC for 30 min. After cooling in 

the freezer, the ampoule was opened and was thoroughly washed twice with CH2Cl2. This 

solution was dried under N2 and then reconstituted in 100 µL of CH2Cl2 containing 40 ng 

of n-eicosane/µL. Methylation products were analyzed using a Hewlett Packard 6980 gas 

chromatograph interfaced with a HP 5973N mass selective detector. An MDN-5S 

(Sigma-Aldrich) fused silica capillary column (30 m x 0.25 mm i.d. x 0.25 µm film 

thickness) was used for the separation. The GC oven was temperature-programmed from 

60 to 150 °C at a rate of 15 °C/min and then from 150 to 240 °C at 4 °C/min., after that 

the temperature was held constant for 10 min. The injector and interface were kept at 250 

and 280°C, respectively. Peaks were identified by comparing with the Wiley/NBS 

library.

Organic Solvent Extraction

Four MSW samples (1TR, 1MR, 1B200, 2TR) were extracted by adding 15 mL of 

DCM/MeOH (2:1v/v) and the extraction was performed following the procedure 

described by Guntries et al. (13).  Briefly, the mixture was sonicated for 3 hrs and 

allowed to sit for 24 hrs prior to decanting the solvent supernatant. This procedure was 

repeated twice and the extracts were combined together. Two mL of the extract was 

added into a 10 mL glass ampoule and solvents were dried under vacuum.  A 200 µL of 
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tetramethylammonium hydroxide (TMAH) (25% TMAH in methanol) (Aldrich) was 

added to initiate the methylation. Then the same procedure as previously described in the 

TMAH-thermochemolysis section was applied for the TMAH-thermochemolysis 

analysis, with the use of naphthalene (50 ng/µL (Aldrich)) instead of n-eicosane as an 

internal standard.

Pyrolysis GC/MS 

Freeze-dried MSW samples were analyzed by pyrolysis-GC-MS using a double-

shot pyrolyzer PY-2020iD (Frontier Lab), and a Shimadzu gas chromatograph/mass 

spectrometer GCMS QP 5000 fitted with the GCMS solution 2.2 data system. 

Approximately 0.5 mg of MSW sample was placed in a platinum sample cup and 

dropped by a double shot sampler into the pyrolysis chamber which was subsequently 

heated at 5 °C/ms to 610 °C and held for 10 s. Volatiles were swept into a 30-m fused 

silica capillary column coated with chemically bound XTI-5 (0.25 mm i.d., a film 

thickness 0.25 µm) (VWR, Bridgeport, NJ).The GC oven was programmed from an 

initial temperature of 40 to 280 °C at a heating rate of 8 °C/min and held at 280 °C for 30 

min

RESULTS AND DISCUSSION 

Residential Time of MSW Samples in The landfill
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Residential time of MSW samples in the landfill were estimated according to 

three evidence: first, the 1978 aerial photograph of the sampling site showing the empty 

dumping area at the time (7); second two pieces of newspaper published in 1983 found in 

the middle layer (20-24 ft) of core 2; and third, the closure of the landfill in 1985 and the 

sample excavation in 2001. These time intervals put the residential period in the range of 

16-23 yrs for MSW in the bottom section (32-36 ft) and 16-18 yrs for those in both 

middle and top (12-16 ft) sections.

Organic Carbon Composition of MSW Samples

OC content of the two smallest fractions (80-200 mesh (200) and > 200 mesh (R)) 

of these MSW was around 1-6 % (wt) (Table 3.1), the same range reported for soils and 

sediment samples (10, 13-16). However, OC in MSW samples exhibited a distinctive 

fingerprint. As shown in Figure 3.1 (peak assignments are given in Table 3.2), 13C NMR 

spectra of MSW samples shows a strikingly sharp and well-resolved signal in the 

carbohydrate region (60-110 ppm), which is atypical for soil (10, 14-16) or sediment 

samples (13). On the other hand, this characteristic of MSW samples is similar to the OC 

profile in 13C NMR spectra of degraded MSW composts (17, 18). Besides carbohydrates, 

other primary components of MSW samples include aliphatic and aromatic carbons. The 

relative distributions of these three major components totally make up 75-80% of OC 

content in each MSW sample (Table 3.1). Less than 25 % of OC is comprised of 

phenolic, carboxyl and carbonyl carbons (Table 3.1) .The distribution of each principal 

OC shows no preference along the depth profile, but there is a consistent change at all 
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TABLE 3.1 Relative Distribution of Organic Carbon in MSW Samples Based on 13C-NMR Integration Results and Relative 
Decomposition Indices. T: Top Section (12-16 ft); M: Middle Section (20-24 ft); B: Bottom Section (32-36 ft); R: Particle Size > 
200 mesh; 200: Particle Size 80-200 mesh.

 a before hydrofluoric treatments.  b O-alkyl/alkyl ratio. The region for the O-alkyl is 50-110 ppm. cCellulose/lignin ratio equals to 
anomeric/methoxy. d Guaiacyl acid/aldehyde ratio equals to the ratio of 3,4-dimethoxybenzoic acid methyl ester and 3,4-
dimethoxybenzaldehyde. e Syringyl acid/aldehyde ratio equals to the ratio of 3,4,5-trimethoxybenzoic acid methyl ester and 3,4,5-
dimethoxybenzaldehyde.

Organic carbon functional 
groups

Core 1 Core 2 Core 3

TR MR BR T200 M200 B200 TR MR BR T200 M200 B200 TR T200
organic carbona (%) 3.6 5.4 2.2 1.2 3.0 0.9 4.7 1.6 1.6 2.4 0.6 1.0 4.3 2.4
alkyl (0-50 ppm) (%) 33.8 25.8 34.9 14.7 32.7 21.9 30.6 35.7 32.3 27.7 34.0 31.5 32.3 27.0

methoxy (50-60 ppm) (%) 6.7 6.8 8.7 6.9 6.6 9.7 7.3 8.4 6.7 6.8 8.0 6.6 7.1 6.3
cellulose alcohol (60-100 ppm) 17.9 21.0 22.0 32.1 18.9 34.6 30.6 23.6 21.3 34.5 27.0 24.4 30.3 33.7

      anomeric  (100-110 ppm) (%) 3.2 3.4 4.6 5.5 3.5 6.8 6.1 4.5 3.6 7.4 5.0 4.4 5.9 6.7
aromatic (110-145 ppm) (%) 23.4 28.7 16.5 27.9 25.0 14.1 12.2 13.7 21.0 11.7 13.0 19.9 12.2 12.8
phenolic (145-165 ppm)(%) 9.0 9.6 7.8 9.6 8.2 8.8 7.3 7.2 9.2 6.8 7.0 8.5 6.7 7.4

carboxylic (165-185 ppm)(%) 5.9 4.8 5.5 3.4 5.1 4.0 5.8 6.9 5.5 5.1 6.0 4.6 5.5 6.1

OA/Ab 0.8 1.2 1.0 2.8 0.9 2.3 1.4 1.0 1.0 1.8 1.2 1.1 1.3 1.7

C/Lc 0.5 0.5 0.5 0.8 0.5 0.7 1.1 0.6 0.6 0.8 0.5 0.6 0.8 1.1
G:AD/ALd 1.1 1.3 1.3 1.1 0.6 1.5 1.1 1.2 0.8 1.6 1.3 1.1 0.7 2.0
S:AD/ALe 1.8 1.1 1.8 1.3 1.8 1.7 0.6 1.8 1.0 6.4 2.4 1.2 6.2 10.3

TMAH yield of lignin (mg/g OC) 0.19 0.24 0.24 0.17 0.12 0.19 0.40 0.30 0.27 0.22 0.28 0.16 0.29 0.07
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200 150 100 50 0 200 150 100 50 0

FIGURE 3.1 CP-MAS 13C NMR spectra of MSW samples: R, 200 refer to particle size (>200
and 80-200 mesh); T, M, B refer to sampling depths (top (12-16 ft), middle (20-24 ft),
bottom (32-36 ft); 1, 2, 3 refer to number of core samples.
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TABLE 3.2 Tentative Chemical Shift Assignments for 13C NMR Spectra of 
Municipal Solid Waste (ref. 4,17,59)

Chemical shift (ppm) Assignments

15 methyl carbons in terminal position 
22 branched-methyl carbons in isopropyl groups 
25 methylene carbons in cyclic structures
29 straight-chains polymethylene
32 C1 in isoprenoid chains, C3 in n-alkyl and ω3 in 

acyl chains
38 methylene (trans) 
48  quaternary C
56 methoxy C and C in amino acids
62 C6 cellulose in an amorphous  region
64 C6 cellulose in a crystalline region

72-74 C2, C3 and C5 cellulose and hemicellulose
82 C4 cellulose in an amorphous  region
89 C4 cellulose in a crystalline region

100-110 C1 cellulose (anomeric carbon)
110-145 aromatic C
145-165 phenolic C
165-185 carboxylic C



87

depths between two different particle size samples selected from the same location. 

Aliphatic carbonis relatively abundant in the small particle size sample (R) while 

carbohydrate is concentrated in the larger fraction (200).

Extents of the Degradation

In order to estimate the extent of refuse decomposition, the ratio of carbohydrate 

to aliphatic carbons (OA/A) was calculated from the corresponding carbon distributions 

in 13C NMR spectra. The OA/A ratio has been previously used to monitor the progress of 

NMR spectra. The OA/A ratio has been previously used to monitor the progress of MSW 

composting process (19) and measured the extent of refuse degradation in a simulated 

landfill (3). The lower the ratio, the greater extent of the decomposition. Except for 

1T200 and 1B200, the OA/A ratios of MSW samples (Table 3.1) are all below ratios 

reported for fresh MSW (1.8-2.8) and fall in the range calculated for MSW composts that 

were processed up to 55 weeks with an alternated windrow system (0.7-1.8) (18, 19). Due 

to these numbers, most samples represent parts of refuse that were substantially degraded 

in the landfill. In order to supplement this data, cellulose/lignin (L/C) ratios were also 

approximated using the ratio of anomeric carbon of cellulose (105 ppm) to methoxy 

carbons of lignin (56 ppm) (interference from amino acids’ signal which also resonates at 

50-60 ppm (17, 20) was estimated to be minimal due to the scarcity of pyrolysis products, 

such as pyridine, pyrrole and indole that link to proteins (21, 22)). Results based on C/L 

ratio are in a good agreement with the conclusions from OA/A ratios. The C/L ratio of 

MSW samples ranged between 0.48-1.09 (Table 3.1). Values between 3 and 4 have been 
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reported for fresh MSW and lower numbers have been calculated for decomposed MSW 

(1, 2, 23).

When comparing the decomposition indices as a function of particle size, the 

ratios indicated that all small samples (R), except 1MR, were degraded more than their 

larger counterparts (200) (Figure 3.2). When the comparison was done as a function of 

depth, the results suggested that samples from the top section (except 1TR) were the least 

degraded. Due to the estimated residential period, these top-section samples are less than 

2 yrs younger than those in the middle section. The results also revealed that samples 

from middle and bottom layers were broken down to a similar extent (Figure 3.3). The 

better preservation stage of top-section samples, such as 1T200, 2T200, and 3T200, could 

be visualized in the 72-74-ppm region of MSW 13C NMR spectra.  This peak, which 

represents signals from C2, C3 and C5 of the cellulose and hemicellulose in these 

samples, appears with a sharp and noticeable doublet that vanishes in more degraded 

samples (see the comparison between 1T200 (least degraded) and 1TR (most degraded) 

in Figure 3.4). The doublet pattern was previously observed in fresh MSW composts and 

a fresh newsprint sample but disappeared after the intensified decomposition of the 

samples (4, 17). Change in the doublet pattern has been mentioned as indicative of 

structural modification of hemicelluloses (24). The remnant of this feature in 1T200, 

2T200, and 3T200, therefore, depicts a better preserved stage of hemicellulose in these 

less degraded samples. Meanwhile, evidence for the advanced breakdown stage of 

samples from the middle and bottom sections could also be observed. In the middle and 

bottom-section samples, signals from cellulose C6, both in crystalline and amorphous 

regions are not as prominent in relation to their neighboring methoxy carbon as in 1T200, 
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FIGURE 3.2  Comparison between relative degradation indices (OA/A, O-akyl/alkyl 
ratio; C/L ratio, cellulose/lignin ratio) of different particle sizes samples (R, >200 
mesh;  200, 80-200 mesh).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1T 1M 1B 2T 2M 2B 2T

O
A

/A
 r

at
io

R 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1T 1M 1B 2T 2M 2B 2T

C
/L

 r
at

io

R 200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1T 1M 1B 2T 2M 2B 2T

O
A

/A
 r

at
io

R 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1T 1M 1B 2T 2M 2B 2T

C
/L

 r
at

io

R 200

0.0

FIGURE 3.2  Comparison between relative degradation indices (OA/A, O-akyl/alkyl 
ratio; C/L ratio, cellulose/lignin ratio) of different particle sizes samples (R, >200 
mesh;  200, 80-200 mesh).

3T

3T



90

O
-a

lk
yl

/a
lk

yl
 r

at
io

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30 35

depth (feet)

C
/L

 r
at

io

0.00

1T200

2T200

1TR 2MR

2M200

1BR

1B200

2B200

3T200
2TR
3TR 1MR

1M200 2BR

3T200
2T200

3TR
2TR

1T200

1TR
1MR

1M200
2MR

2M200

1B200

2BR
1BR

2B200

FIGURE 3.3  Comparison between relative degradation indices (OA/A, O-akyl/alkyl 
ratio; C/L ratio, cellulose/lignin ratio) of samples from different depths.

O
-a

lk
yl

/a
lk

yl
 r

at
io

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30 35

depth (feet)

C
/L

 r
at

io

0.00

1T200

2T200

1TR 2MR

2M200

1BR

1B200

2B200

3T200
2TR
3TR 1MR

1M200 2BR

3T200
2T200

3TR
2TR

1T200

1TR
1MR

1M200
2MR

2M200

1B200

2BR
1BR

2B200

O
-a

lk
yl

/a
lk

yl
 r

at
io

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30 35

depth (feet)

C
/L

 r
at

io

0.00

1T200

2T200

1TR 2MR

2M200

1BR

1B200

2B200

3T200
2TR
3TR 1MR

1M200 2BR

3T200
2T200

3TR
2TR

1T200

1TR
1MR

1M200
2MR

2M200

1B200

2BR
1BR

2B200

FIGURE 3.3  Comparison between relative degradation indices (OA/A, O-akyl/alkyl 
ratio; C/L ratio, cellulose/lignin ratio) of samples from different depths.



91

200 150 100 50 0

200 150 100 50 0

62 ppm: amorphous C6

56 ppm

105 ppm

72-74 ppm

72-74 ppm

ppm

ppm

56 ppm
amorphous C4: 82 ppm

crystalline C4: 89 ppm
crystalline C6: 64 ppm

FIGURE 3.4 Comparison  between  13C signals of cellulose in samples 
1TR and 1T200.

1T200

1TR



92

2T200 and 3T200. This accounts for the significant disintegration of cellulose in both 

forms. A similar situation is also observed with signals from cellulose C4.

Sources of Organic Carbon

Cellulose

One possible source of cellulose in MSW samples could be fibrous materials 

which are similar in appearance to plant fibers. Under microscopic examination using 

Scanning Electron Microscope (SEM), a number of these materials (Figure 3.5a) was 

found in each sample. From the SEM micrograph of the fiber in sample 2T200 (Figure 

3.5b) a rough surface bearing an amorphous structure (25) is clearly visible. A close up of 

the fiber in more degraded samples such as 2B200 (Figure 3.5c) shows the wavy surface

structure similar to that of low-crystalline cellulose (26). These features are consistent 

with cellulose as interpreted from 13C signals

Natural wood fibers contain both cellulose and lignin. Lignin occurs as a 

protective layer which is known to significantly delay the degradation of cellulose in an 

anaerobic environment such as landfills.  Detailed lignin analysis using TMAH-

thermochemolysis showed that most lignin-derived products were common among MSW 

samples (Figure 3.6 and Table 3.3). Ratios of acid-substituted lignin monomers to 

aldehyde-substituted lignin monomers (AD/AL) for both guaiacyl and syringyl units in 

most MSW samples are in the same range as the numbers reported for fresh woods (0.5-1 
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a

b

c

FIGURE 3.5 SEM micrographs of a) 2TR, b) 2T200, c) 2B200, d) wood 
fiber after MnO2 oxidation showing an amorphous surface (ref.25), and e) 
surface of a low crystalline cellulose sample (ref.26)

e

d
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FIGURE 3.6 TIC of TMAH thermochemolysis products of MSW samples. Peak labels  
are identified in Table 3.
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FIGURE 3.6 (Continued)
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TABLE 3.3 Organic Compounds in the MSW samples as Identified by TMAH Thermochemolysis, Solvent extractions, and                              
Pyrolysis GC/MS

benzene, 4-ethenyl-1,2-, dimethoxy- L1 tetrahydropimaric acid T9
2-propenoic acid, 3-phenyl- L2 dihydroisodextropimaric acid, methyl ester T10
benzoic acid, 4-hydroxy-3-methoxy- L3 dihydrosandaracopimaric acid T11
benzaldehyde, 3,4-dimethoxy- L4 isopimaric acid, methyl ester T12
benzene, 1,2-dimethoxy-4-(1-propenyl)- L5 13β-ethyl-13-methyl-podocarpan-15-oic acid, methyl ester T13
ethanone, 1-(3,4-dimethoxyphenyl)- L6 13α-ethyl-13-methyl-podocarp-7-en-15-oic acid, methyl ester T14

benzoic acid, 3,4-dimethoxy-,methyl ester L7 dehydroabietic acid T15
benzaldehyde, 3,4,5-trimethoxy- L8 1-phenanthrenecarboxylic acid, 1,2,3,4,4a,6,7,8,10,10a- T16
benzenepropanoic acid, 3,4-dimethoxy- L9    dodecahydro-1,4a-dimethyl-7-(1-methylethyl)-, methyl ester
2-propenoic acid , 3-(4-hydroxy-3-methoxyphenyl)-, methyl ester L10 abietic acid, methyl ester T17
benzene, 1,2,3-trimethoxy-5-(2-propenyl)- L11 14-isopropyl-13-methoxy-podocarpa-8,11,13-trien-3-one T18
benzene, 1,2,4-trimethoxy-5-1-propenyl-(E ) L12 7-oxodehydroabietic acid, methyl ester T19
benzene, 1,2,4-trimethoxy-5-1-propenyl-(Z ) L13 (±)-O-methylpisiferic acid T20
2-propenoic acid, 3-(4-methylphenyl)-, methyl ester L14
benzoic acid, 3,4,5-trimethoxy, methyl ester L15 decanoic acid, methyl ester O1
Benzenepropanoic acid, 3,4-dimethoxy-methyl ester L16 dodecanoic acid, methyl ester O2
2-propenoic acid, 3-(3,4-dimethoxyphenyl)-, methyl ester L17 tridecanoic acid, 12-methyl, methyl ester O3

tetradecanoic acid, methyl ester O4
methyl δ8-isopimarate T1 tetradecanoic acid, 9-methyl, methyl ester O5
9-phenanthrenecarboxylic acid, 1,2,3,4,4a,9,10,10a-octahydro- T2 dodecanoic acid, 12-hydroxy, methyl ester O6
   6-methoxy-1,1,4a-trimethyl-7-(1-ethylethyl)- pentadecanoic acid, methyl ester O7
retene T3 pentadecanoic acid,14-methyl, methyl ester O8
methyl dihydro-δ8-isopimarate T4 hexadecanoic acid, methyl ester O9
14-isopropyl-13-methoxy-podocarpa-8,11,13-triene T5 hexadecanoic acid, 14-methyl, methyl ester O10
pimaric acid T6 heptadecanoic acid, methyl ester O11
dihydroisopimaric acid T7 hexadecanoic-3,7,11,15-tetramethyl, methyl ester O12
sandaracopimaric acid T8 octadecanoic acid, methyl ester O13

Compounds derived from lignin structuresa

Fatty acid: Monocarboxylic acidsb

Resin acidsb

Resin acidsb
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TABLE 3.3 (Continued)

dodecanoic acid, methyl ester O2 9-hexadecenoic acid, methyl ester E1
tridecanoic acid, 12-methyl, methyl ester O3 9-octadecenoic acid, methyl ester E2
tetradecanoic acid, methyl ester O4 9,12-Octadecadienoic acid E3

tetradecanoic acid, 9-methyl, methyl ester O5
dodecanoic acid, 12-hydroxy, methyl ester O6 acenaphthylene P1
pentadecanoic acid, methyl ester O7 fluorene P2
pentadecanoic acid,14-methyl, methyl ester O8 dimethylthiophene P3
hexadecanoic acid, methyl ester O9 phenanthrene P4
hexadecanoic acid, 14-methyl, methyl ester O10 anthracene P5
heptadecanoic acid, methyl ester O11 9H-carbazole P6
hexadecanoic-3,7,11,15-tetramethyl, methyl ester O12 biphenylene P7
octadecanoic acid, methyl ester O13 1-methylanthracene P8
hexadecanoic acid, 16-hydroxy, methyl ester 2-phenylnaphthalene P9
eicosanoic acid, methyl ester O14 fluoranthene P10
docosanoic acid, methyl ester O15 pyrene P11
tricosanoic acid, methyl ester O16 benzo[b]naphtho[2,3-d]furan P12
tetracosanoic acid, methyl ester O17 benzo[b]naphtho[2,3-d]furan P12

 2-methylphenanthrene P13
hexanedioic acid, dimethyl ester D1 3,4,5,6-tetramethylphenanthrene P14
octanedioic acid , dimethyl ester D2 1-methylpyrene P15
nonanedioic acid, dimethyl ester D3 benzo[c]phenanthrene P16
decanedioic acid , dimethyl ester D4 benz[a]anthracene P17
hexadecanedioic acid, dimethyl ester D5 triphenylene P18
tetradecanedioic acid, dimethyl ester D6 1-methylchrysene P19
octadecanedioic acid, dimethyl ester D7 indeno[1,2,3-cd]pyrene P20
eicosanedioic acid, dimethyl ester D8 benzo[k]fluoranthene P21
docosanedioic acid, dimethyl ester D9 benz[e]acephenanthrylene P22

Fatty acid: Monocarboxylic acidsb

Fatty acids: Dicarboxylic acidsb

Unsaturated fatty acids b

PAHs and heterocyclic PAHsbc
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TABLE 3.3 (Continued)

 2-methylphenanthrene P13 1-heptadecene and heptadecane C17
3,4,5,6-tetramethylphenanthrene P14 1-octadecene  and octadecane C18
1-methylpyrene P15 1-nonadecene and nonadecane C19
benzo[c]phenanthrene P16 1-eicosene and eicosane C20
benz[a]anthracene P17 heneicosane C21
triphenylene P18 docosane C22
1-methylchrysene P19 tricosane C23
indeno[1,2,3-cd]pyrene P20 tetracosane C24
benzo[k]fluoranthene P21 pentacosane C25
benz[e]acephenanthrylene P22 hexacosane C26
benzo[e]pyrene P23 heptacosane C27
benz(a)pyrene P24 octacosane C28
perylene P25 nonacosane C29
benzo[b]triphenylene P26 triacontane C30
benzo[ghi]perylene P27 hentriacontane C31

Other compoundsabc

1-decene and decane C10 4-ethynyl-1,2-dimethoxybenzene U1
1-undecene and undecane C11 dimethyl phthalate U2
1-dodecene and dodecane C12 phytol U3
1-tridecene and tridecane C13 2-ethenyl-1,3,4,5-tetramethoxybenzene U4
1-tetradeceneand tetradecane C14
1-pentadecene and pentadecane C15
1-hexadecene and hexadecane C16

a  indentified by TMAH thermchemolysis; b  identified by solvent extractions; c  identified by pyrolysis GC/MS

Alkenes and alkanesc

PAHs and heterocyclic PAHsbc Alkenes and alkanesc
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for both soft and hard woods (27)), indicating a minimal change of lignin over 16-23 yrs 

in the landfill. 

Aromatic Carbon

Based on 13C NMR analysis, the intensity of aromatic carbon varies significantly 

among MSW samples. The signal from aromatic carbon is particularly high in samples 

1TR, 1T200, 1MR, 1M200, 2BR, and 2B200. Previous studies showed that lignin is the 

primary source of aromatic carbon in MSW composts (17) and newsprint samples (4). 

However, it is unlikely that all aromatic carbon in samples 1TR, 1T200, 1MR, 1M200, 

2BR, and 2B200 were entirely originated from lignin. This is because, compared to other 

samples, the intensity of signals from phenolic and methoxy carbons, which are also 

major components of lignin, did not increase. The other possible source of aromatic 

carbon is polystyrene. This plastic also provides aromatic carbon signal in 13C NMR 

spectra of shredded MSW composts (17). Polystyrene also produces other signals plastic 

also provides aromatic carbon signal in 13C NMR spectra of shredded MSW composts 

(17). Polystyrene also produces other signals including a moderately intense one at 43 

ppm (17). This signal was not observed in 13C spectra of MSW samples which have high 

aromatic carbon content (Figure 3.1). Thus, the intense aromatic signal was not generated 

by polystyrene. 

As further revealed by the organic solvent extraction procedure, some samples 

with high aromatic carbon content such as 1TR and 1MR contained a large number of 

multiple-rings PAHs, mostly with molecular weight 202 amu or higher. In comparison, 
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samples with a less intense aromatic peak such as 1B200 and 2TR showed fewer numbers 

and minor amounts of these contaminants (Figure 3.7) A lower scale PAHs 

contamination was also confirmed in other samples (except 1T200 and 1M200). 

Subsequent 13C NMR analysis of 1TR and 1MR after being extracted by organic solvents 

showed that the intensity of the aromatic signal was lowered by approximately 40% after 

the extraction process (Figure 3.8); TMAH-thermochemolysis and pyrolysis GC/MS of 

samples after the extraction showed mostly lignin-related products). 

The distribution of high molecular weight PAHs with a small amount of alkyl 

PAHs is consistent with a pyrogenic source (22, 28, 29). Fluoranthrene/(fluoranthrene 

plus pyrene) (Fl/202) ratio  (5.8 and 5.9 for 1TR and 1MR, respectively) and the 

indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene )(IP/276) ratio 

(0.58 and  0.62, respectively) greater than 0.5 indicates a major input from wood or coal 

combustion (28). The identification of N-heterocyclic aromatic hydrocarbons (azaarenes) 

and other hetero-PAHs, such as dibenzothiophene and benzo[b]naphtho[2,3-d]thiophene, 

in the water soluble fraction and an atomic sulfur during pyrolysis GC/MS analysis 

subsequently suggests coal combustion as the possible primary source of PAHs in MSW 

samples (30). 

Aliphatic Carbon

The aliphatic component of MSW samples identified by TMAH 

thermochemolysis, pyrolysis GC/MS and solvent extractions includes long-chain fatty 

acids, n-alkanes and resin acids. The presence of these compounds in MSW samples is 



101

FIGURE 3.7 TIC of solvent extracts of MSW samples. Peak lables are identified in 
Table 3.3.
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FIGURE 3.8  13C NMR of MSW samples before and after solvent extraction.
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consistent with the assignments of 13C signals in an alkyl region in Table 3.2 (Figure 3.9) 

Fatty acids in MSW samples are present in both mono and diacid forms (identified by 

TMAH-thermochemolysis and solvent extraction techniques as fatty acid methyl esters 

(FAME)). The distribution of FAME ranges between C10-C24 with maxima at C16 and 

C18, and with the predominance of even-numbered FAME. Straight chain fatty acids 

with chain lengths less than 20 carbons are common in plants and animal lipids and 

bacteria, whereas monocarboxylic acids with longer chain are typically limited to plant 

waxes (31-33). The influence from microbial input is ruled out in this case since 

multimethyl-branched fatty acids with methyl groups on even carbon atoms, typical 

markers for bacterial fatty acids, are not detected. Although some monomethyl-branched 

fatty acids (methyltetradecanoate, 9-methyl (O4), hexadecanoic acid, 14-methyl (O10): 

Figure 3.7) might indicate bacteria contribution (33, 34), these are minor constituents in 

the MSW samples. These branched fatty acids could originate from plant residues in the 

landfill. Hexadecanoic acid, 14-methyl (O10: Figure 3.7) for example, has been found in 

seed oil of species Pinaceae (35).  The only multimethyl-branched fatty acid found in 

MSW samples is hexadecanoic acid, 3,7,11,15-tetramethyl (O12: Figure 3.7 ). This   

phytanic acid is one of biotransformation products of phytol, the ester-linked side-chain 

of chlorophyll-a (36).  Phytol (U3) itself was also identified in the solvent extract of 1TR. 

Fatty acids with long carbon skeleton (C14-C22) in refuse have been reported to 

originate from lipids of higher plant biomass deposited in landfills (37).  Plant waxes, 

cutin and suberin, are two plant lipids often regarded as the major contributors. However, 

only evidence of suberin was found in MSW samples. One C16-ω-hydroxy acid (O14) 

and two dicarboxylic acids (O17 and O18: Figure 3.7) identified in 1B200 and 2TR are 
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FIGURE 3.9  13C NMR signals in the alkyl region of sample 1TR.
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plausible links to suberin. Dihydroxy C16 and C18 FAME, two key components of cutin 

(38, 39), were not identified.

The distribution pattern of n-alkane in Figure 3.10 indicates an input from 

multiple sources. Although there is evidence of suberin, the distribution of alkanes 

without the odd-carbon predominance indicates additional sources other than plant 

biomass. Plant lipids contain odd-carbon alkanes from n-C23 to n-C33, with a maximum 

at n-C27 or n-C29 (28, 40). As revealed in the pyrograms of samples 1B200, 1BR, and 

2TR in Figure 3.10, n-alkanes appeared in a sequence up to C31 without an odd-even 

carbon preference. In addition, a series of n-alkenes/n-alkanes up to C20 dominated the 

first half of the pyrograms. This distribution pattern was common to all MSW samples. 

The absence of pristine and phytane as well as a hump indicating an unresolved complex 

mixture (UCM) of primarily short chain length hydrocarbons and isoprenoids in the 

pyrograms, indicates that n-alkenes/n-alkane are not a contamination from crude oil (29). 

Small amounts of alkyl PAHs found in MSW samples also rule out sources such as 

gasoline or diesel fuel (22, 28). With coal combustion being the potential source of 

PAHs, it is possible that alkenes and significant fraction of alkanes may also originate 

from this source. Elevated amount of C29 alkane in 1B200 and 2TR is the reminder of

the influence from plant alkanes. Other samples with a high OA/A ratio (all samples from 

the top section (except 1TR)) also showed this noticeable C29 alkane.

Resin acids, another component of aliphatic carbon in MSW samples were 

identified in every MSW sample, but their high concentrations were found mainly in the 

top section of core 2 and 3 (Figure 3.6). As many as 15 species of resin acid were 

extracted from sample 2TR (Figure 3.7), one of five samples abundant in these
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terpenoids. Some of these resin acids (T15, T17) have been found in the leachate plume 

several ft down gradient from the landfill (5, 6). A few studies reported the contamination 

of resin acids in MSW landfills (41-43), but none of them mentioned origins of these 

acids.  Resin acids are aerobically degradable, but they are very persistent in anaerobic 

environment, primarily because they are highly toxic to anaerobic bacteria, especially to 

methanogens (44, 45). 

Resin acids in MSW samples were not released directly from coniferous woods in 

the landfill. First supporting evidence comes from the relative 13C distribution of 

methoxy carbon. Comparing to sample 1B200, four other samples with high 

concentration of resin acids (2TR, 2T200, 3TR, 3T200) are less abundant in this 

characteristic carbon of lignin, but they are loaded with more resin acids.  Second, 

levopimaric acid, one of primary resin acid species in pines (46), was absent in all 

samples. Third, other terpenoids such as feruginol or suriol, also common in coniferous 

wood, were not detected. These two species should not be easily degraded in the landfill 

since they are so persistent that geologists have used them as makers for fossil conifers 

(47). Resin acids have been used in several manufacturing processes including resins, 

adhesive, printing ink, but their major use has been an internal sizing agent in paper 

manufacturing (46). However, paper wastes in the landfill are unlikely sources of resin 

acids in MSW samples. Nineteen resin acids were identified in MSW samples (Figure 

3.7), whereas only nine species were found in newsprints samples collected from the 

same locations (4), and only six of them were repeatedly found in MSW samples.

Two of resin acids in MSW samples (T3, T9) were anaerobic microbial alteration 

products (48). However, retene (T3) can be produced during the combustion of pine 
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woods (49) and coal (50) as well. The most likely source of resin acids in the Norman 

landfill was tall oil pitch. Tall oil pitch is a nonvolatile part of tall oil separated in crude 

tall oil fractionation processes. It is highly variable in composition with contains nearly 

50% resin acids, almost equal amounts of esters (mainly oleic and linoleic acids), and 

unsaponifiable neutral compounds such as stigmastan-3-ol and stigmast-5-en-3-ol (51). 

Both oleic acid (E12), and stigmast-5-en-3-ol were among compounds identified in the 

organic solvent extract and in the pyrogram of sample 2TR, one of samples with high 

amounts of resin acids. Tall oil pitch has been used as a bonding agent or a plasticizer in 

asphalt industry (46). From 1970 to its closure in 1985, the Norman landfill was operated 

by a local asphalt company. Disposal of any materials contacted with tall oil pitch could 

lead to the contamination of resin acids in MSW samples. 

Changes in OC Pattern during MSW Decomposition 

The consistent pattern of OC in 14 MSW samples from three different depths and 

locations in the landfill indicates that cellulose, aliphatic and aromatic carbons are the top 

three most abundant OC in degraded MSW samples. The third species, aromatic carbon, 

generally originate from lignin, but its abundance is subjected to high variability due to 

contamination by hydrophobic compounds, such as PAHs.  The distributions of these 

primary OC are a function of the size of the samples rather than depth at which MSW 

was buried. In most cases, a MSW sample with a small particle size was more degraded 

than its larger counterpart. It contains a smaller amount of cellulose with a greater extent 

of aliphatic and aromatic carbons. Based on this finding, the cellulosic component of 



109

MSW will be depleted upon degradation, whereas the relative amount of aliphatic carbon 

will become enriched.  Therefore, unless it was contaminated with compounds like 

PAHs, degraded MSW samples should become increasingly hydrophobic because of the 

growing influence of their aliphatic component. Similar change was observed with the 

newsprints’ degradation, but the source of the hydrophobicity of the degraded newsprints 

primarily came from aromatic carbon of lignin (4). The manner to which OC is shifted 

during the course of degradation is consistent with the property of dissolved organic 

carbon (DOC) in leachate. Previous studies at this landfill showed that DOC in leachate 

contaminated groundwater collected from monitoring wells around the landfill, contained 

a significant amount of aliphatic carbon components (5, 6). Thus, as aliphatic carbon 

continues to be a dominant OC of degraded MSW, it is conceivable that DOC in leachate 

may become increasingly aliphatic.

Factors Affecting the Decomposition of MSW samples

Difference in the extent of degradation among MSW samples, which had been left 

in the landfill for the same period clearly demonstrates that time is not the crucial 

parameter for refuse degradation. There are other factors more important. In the case of 

samples from the top section, it is hypothesized that the variation in refuse’s moisture 

content could be one of those factors that make these samples less degraded than samples 

in two lower parts. Due to high ground water level which varies seasonally from land 

surface to about 4 m. below ground level (7), and the lack of a liner system within the 

landfill, groundwater could reach refuse in the lower part of the dumping area. As a 



110

result, the refuse’s moisture content could increase. Moisture content is one of key 

parameters controlling the degradation of MSW (52-54). Thus, with higher moisture 

content, refuse in the lower section of the landfill might be degraded faster than those in 

the upper part. 

It was also noticed that most samples from the top section (except 1TR) contain a 

high amount of resin acids (Figure 3.11). Resin acids are toxic to anaerobic bacteria, 

particularly methanogen (44, 45), which is still predominant in the landfill (9). Due to 

this adverse impact of resin acids, it is plausible that the accumulation of resin acids, 

mainly in the top section samples, could be the other factor impeding the decomposition 

of these MSW. Substances toxic to bacteria can enter landfills in many ways and are not 

limited to hazardous waste. Disinfection and antibiotic products are prime examples. At 

least 20 of 76 organic compounds identified in leachate contaminated groundwater 

collected at the Norman landfill were antibiotics (55). 

The Affinity for Hydrophobic Compounds

There are some indications that the shift in type of primary OC had changed the 

affinity for hydrophobic compound of MSW samples. The decrease in sorbent polarity 

due to decomposition of cellulose and simultaneous increase in hydrophobicity due to the 

increasing influence of aliphatic carbon might be the reason. First evidence is the 

subsiding influence of plant alkanes in samples from middle and bottom sections. C29 

alkane, a biomarker of plant alkanes (Figure 3.12), is noticeable only in samples from top 

section (the least degraded samples, except 1TR). In samples with low OA/A ratios (from 
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middle and bottom sections), the buildup of alkanes from contamination overwhelmed 

the signal of C29 plant alkane.  The second indication is observed within a pair of 

samples of different particle sizes. Elevated OC-normalized-TMAH yield of pyrene is 

evident in a sample with a lower OA/A ratio (Figure 3.12). High concentration of pyrene 

in 1T, 1M and 2B couples suggests that they might have been present with initial 

deposits.  Therefore, the observed result could reflect the accumulation of pyrene which 

is recalcitrant to microbial degradation.  In the case of other samples, however, the 

contamination might occur later and the difference in pyrene concentration could be due 

to the variation in sorption affinity of MSW samples. Although MSW samples were not 

tested for their actual sorption capacity, the coherent change between OA/A ratios and the 

amounts of sorbed pyrene in all pairs of samples suggests that the affinity for 

hydrophobic compounds of MSW samples might increase with the degree of sample 

decomposition. 

The increase in the aliphatic component upon decomposition might not only 

modify the sorption affinity of MSW samples but also could affect the sorption 

mechanism. Some of the natural organic matter enriched with aliphatic functional groups 

exhibit an irreversible sorption with hydrophobic compounds such as PAHS (56-58). 

Based on the TMAH thermochemolysis of sample 1TR before and after solvent 

extraction, nearly 10 % of the original amount of phenanthrene, fluoranthene and pyrene 

(in the range of 1,389-1,499 µg/g-sample) was not extractable. Sequestration of PAHs in 

this sample could occur via noncovalent binding. This mechanism has occurred in 

microbial-active sediment incubated with pyrene for only 60 days (13). Due to much 

longer residential time of MSW in the landfill (16-23 yrs), it is possible that this process 
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could occur with MSW samples. It is interesting that evidence for non extractable PAHs 

was not observed with 1MR, which contains higher amount of PAHs (2,131-2,328 µg/g-

sample). The major difference between 1TR and 1MR is their extent of degradation.

Among MSW samples, sample 1TR was the most degraded sample and contained the 

highest aliphatic carbon component (Table 3.1). The possibility of irreversible sorption of 

hydrophobic compound to degraded MSW will have a significant implication to the 

remediation of contaminated landfills. When occurs, it would lower biodegradability of 

pollutants and make them more difficult to be removed by physical or chemical 

remediation methods.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The ultimate goal of this study was to determine and characterize redox functional 

groups that could be responsible for the reversible electron mediating capacity of humic 

substances. A novel analytical technique based on palladium and H2 catalytic system was 

developed to determine the types of the actual redox functional groups of several humic 

materials. Other analytical techniques, such as X-ray photoelectron spectroscopy 

analysis, solid state 13C NMR, were also employed to clarify details concerning some 

redox functional groups and to verify the formation of redox sites in some humic 

substance samples.  From the results observed during these studies, several conclusions 

can be made:

1. Electron mediating capacity varies among humic substances, ranging from 0-

538 µequivalents/g-sample for the humic substances examined.

2. Redox sites of humic substances  are less  likely  associated with aliphatic

carbon functional groups because samples such as landfill leachate humic 

substances, which are highly aliphatic, lack  redox sites.

3.  For humic substances that are electron mediators, their redox sites can be 

divided into two groups: i) quinone redox sites and ii) redox functional groups 

with nonquinone structures.
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4. There are at least two forms of quinone redox sites.  One is quinone moieties 

with an electron withdrawing substituent. The other includes quinone moieties 

without any substituent and/or quinone moieties with an adjacent electron 

donating functional group. Quinone moieties in the first group are more 

prevalent in humic substances which contain high carboxylic carbon content.

5. For humic substances that are electron mediators, sulfur functional groups are 

important nonquinone redox sites, contributing from 18%-120% of the NQ 

redox sites’ ECC and 4%-62% of the total ECC of the humic substances 

determined.

6. Because OC in MSW will become enriched with aliphatic carbon components 

as refuse degradation processes continue in landfills, dissolved organic carbon 

of leachate, which is one of refuse degradation products, would most likely 

remain highly aliphatic. Therefore, humic substances, which represent 

approximately 50-60 % of the dissolved organic carbon (ref.5, Chapter 3), 

would also continue to be highly aliphatic. Under this circumstance, there is 

unlikely possibility that redox functional groups of landfill leachate humic 

substances will be enriched in the future.

RECOMMENDATIONS

Several promising results have been found during this study. However, like any 

new findings, additional research is necessary to sharpen the insights into redox 
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functional groups of humic substances and to account for some data limitations. 

Recommendations for future studies are presented as follows: 

1. Evaluation of the accessibility of each redox functional groups to various 

types of bacteria. The comparison between data from microbial reduction and 

from catalytic reduction methods in Chapter 1 suggests that each group of 

bacteria might be able to transfer electrons through different   redox sites of 

humic substances. Geobacter metallireducens, for instance, probably uses 

quinone sites rather than sulfur redox functional groups during electron 

transfer processes. 

2.  Reexamination of the actual contribution of sulfur redox functional group. As 

described in Chapter 3, some of the FeS sites are artifacts generated by the 

catalytic reaction between thiol and complexed-iron. A new approach that 

would be an excellent substitute for the catalytic reduction is to use anaerobic 

microbes to reduce humic substances. This approach not only eliminates 

artificial FeS sites, but also verifies the formation of this sulfur functional 

group in an anaerobic condition. Also, in order to verify the formation of FeS 

sites, iron XPS analysis would be a suitable supplementary technique to 

further confirm the presence of these redox sites in reduced humic substance 

samples. Furthermore, to accurately determine the contribution of sulfur redox 

sites, a new electron acceptor is required. The use of iron (III) as an electron 

accepter complicated the estimation of electron carrying capacity, particularly 

of the FeS sites.
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3. There is an interesting issue regarding the formation of redox sites. It has been 

known that redox functional groups such as quinone sites are formed via 

oxidative transformation of phenol moieties (ref. 21, Chapter 3).  The facts 

that landfill leachate humic substances are formed under a highly reducing 

environment and turn out to be short of redox sites rather imply that some of 

redox functional groups of humic substances might be developed in an aerobic 

environment. Comparison of the redox property of leachate humic substances 

produced during aerobic and anaerobic degradation of MSW might shed a 

light on this issue. 

4. Finally, since redox sites with a nonquinone structure are more resistant to 

hydrogenolysis than quinone moieties, these redox sites might be able to 

function in more varied environments than do the quinone redox centers. For 

example, in a remediation process using zero valent iron, one of three 

reductive transformation pathways of pollutants included catalyzed 

hydrogenolysis by the H2 that is formed by the reduction of H2O during 

anaerobic corrosion of the iron (ref. 36, Chapter 1). In such condition, if 

humic substances are involved, quinone redox sites would be disabling. Only 

nonquinone sites supposedly remain operable. This issue is interesting 

because it suggested that the electron carrying capacity of the same humic 

substance might vary from one environmental condition to another.  


