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CHAPTER |

INTRODUCTION AND LITRETURE REVEIW

INTRODUCTION

Cyclotrimerization of nitriles and cyanamides yields a varietyutsistituted S-triazine
derivatives. In 1954, the first s-triazine was structurally determinedtdiie applications of s-
triazine in different fields, numerous researches have been conduéisd ather derivative of
triazine. Several researchers have investigated the S-trazieeisiircthe search of potential
therapeutic agents to treat diseases due to bacteria, can¢emangind malariaFor example
as shown in figure 1.1, hexamethylmelamitheahd 2-amino-4-morpholino-s-trazing @re used
clinically to treat lung, breast, and ovarian cancer, respecfitééxamethylmelamine, is also
known as altretamine. It consists of a symmetric six-memlazeine ring with three attached
dimethylamine group 1 and has the chemical name 2, 4, 6-tris (dimethyle®riria¥ene.
Recently, other related amine-substituted triazines, such as compaufRaGre 1.1 have shown

antitumor activity in human cancer and murine leukemia cell fines.
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R= Dimethylamine, 2,6-dimethyl-morpholine

Figure 1.1: Example of Biologically Active Compound Containing 1,3,5-Trazine
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Substituted s-triazine derivatives can be synthesized by seliféeadnt routes. The most
common methods are cycloaddition reactions to form the triazine ringréi@), nucleophilic
aromatic substitution of cyanuric chloride (Figure 1.3), and cycletization of organic
cyanamides and nitriles. Notably ,the direct trimerization ohagades and nitriles is both easy

and effective and can yield the desired compounds in a single-step réaction.

Cycloaddition Reaction

Cycloaddition reactions are the most frequently used methods for the odiaings.
Cycloadditions can be carried out using heat, light or with a variety aistt. However, these
reactions usually require high temperature and the presence of potarfahgroups in the
substrates. For example, treating a nitrile with a nitrile-suitstitguanidine derivative in the

presence of a base, typically sodium or potassium hydroxide, provides disywilte to trazine

derivatives®
R R /N NH,
HN NH
\ / 2
I . T
N N
- g
7z
N NH,

Figure 1.2 Cycloaddition Reactions to Form Trazine Derivatives



Transition metal catalysis plays an increasingly important role ioyttleaddition
reactions. Such reactions have established their usefulness in ta&doraf complex
molecules and rings. Recent reports in transition metal catalifzet] cycloadditions of bis-
dienes, [4+2] cycloadditions of diene-ynes (and allenes), [5+2] cyclomddof
vinylcyclopropanes (VCPs) and [6+2] cycloadditions of vinylcyclobutas@yeloaddition

reactions” ° have provided efficient methods for the construction of 5 to 8-membeggs ri

Nucleophilic Aromatic Substitution of Cyanuric Chloride

Nucleophilic aromatic substitution of cyanuric chloride in a chemosetefetshion can
be used to produce substituted s-trazine products with high chemical cayn(tegurel.3).

However, these substitution reactions require long reaction times arrdlyeaehieve low yield.

R1 - R2
Cl \@
PN i A
N Ny
)\\ Vs fost /H\ )\
N Cl Cl N Cl

Cl

R ~F RL R
R2 ﬂ R2 ﬂ

R1\’L/H )\ R1\N/H )\
Y

“Slow )\ )\"\ Very Slow R1\()N\\N )\,D B

| |
R R2 R!

Figure 1.3: Classic Pathway to Substituted Trazine[6]



One of the earliest examples of the use of nucleophilic aromatic atibatib triazine
groups was reported in 1996 and described the prepation from cyanuric cbhjonidatment
with ammonia, primary or secondary amifidsis already well known that the accumulation of
electron donating amine substituents gradually decreases the teadtikie triazine ring.
Therefore, each substitution proceeds steadily but less readily thare¢bdgone (Figurel.4).
Thus, the exhaustive substitution usually proceeds under harsh reactidionomtie
substitution of chlorine can be controlled by temperature to run in aiseepwanner. An
empirical rule, based upon observation, is that mono-substitution of chlodnesdoelow or at 0

°C, di-substitution at room temperature and tri-substitution abo%€60

cl NU1
)\ )\
) e T
-HCI
)\ 7 Cl

Cl Cl N

Cl N
NU1 NU1
)\ )\
N\ Sy +HNu, N N
—ma |
)\ )\
NU2 N Cl NU2 N NU3

Figure 1.4: Nucleophilic Substitution of Cyanuric Chloride [8]

Kolerski and Kaminsk also demonstrated that each sequential disptaag#roblorines

on cyanuric chloride becomes slower and more difficult to perforior example when
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displacement of chlorines by MeOH was performed, the first chlorine dautlisplaced at 0 °C;

the second one was substituted at room temperature, while the third onedd§ai °C.

Cyclotrimerization Reaction

There have been several investigations into the trimerizatiotrigsiiand
cyanamide¥. The first cyclotrimerization reaction introduced by Berthelot in61i8 cyclization
of acetylene to benzene. High temperatures were needed to performdinsréia 1948, Reppe
discovered the first transition metal-catalyzed version of daistion in which nickel was used,
leading to the formation of substituted benzeHeSince then, several strong reagents have been
found to catalyze the trimerization of alkynes, alkenes, aldehydes améetaines,
isocyanates, isothiocyanates, dimethylcyanamide and nitriles witibleadegrees of success.
For example, a variety of Brgnsted and Lewis acids and mixtures of thenbé&av employed to
promote cyclotrimerization of nitriles and cyanamidésUnder both acid and base conditions
high pressure and temperature are required for this reaction. Ledss auch as LaSCRand
SnC}, are commonly used as catalysts for the cyclotrimerization ofesiffiand neutral
aluminum complexes are also used as Lewis acid catalysts in orgathiesig-* Aluminum
amides are potential bifunctional catalysts, possessing a Lewis AtidLl) center and an
activated nucleophilic amido group. Dornan and co-worker found that
tris(dimethylamido)aluminum readily catalyzed the cyclotrinaran of dimethylcyanamide at
room temperatur®. The addition of 4-5 mol% tris(dimethylamido)aluminium to a solution of
dimethylcyanamide in hexane led to the product hexamethylmelamine in good yield.
Computational studies using the Density Functional Theory revdaadechanistic details of

the transformation.
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Hexane \T \N T -

dimethylcyanamide hexamethylmelamine

Figure 1.5 Cyclotrimerization of Dimethylcyanamide with Tris(dimetimyide)aluminium[15]

Based on the result, the proposed mechanism for the interaction diryettayiuide with

tris(dimethylamide)aluminium is shown in Figure 1.6:

"a."..a-"
3,“‘ T/.;‘,.H [M(NMe) ], cat . ,,Lh..ﬂ
M.T.-J!xﬂf;-"-l‘. rﬂ‘

L

T *  ng
- closure |,,,
TS

Figure 1.6: Propose Mechanism for Cyclotrimeriation of Dimethylcyanamide wi

Tris(dimethylamide)aluminium[15]



Experimental support for this step of mechanism is provided througtotbkisinetric
reaction of the [AI(NMg);], pre-catalyst and dimethylcyanamide. The cyclotrimerizatiorated
by insertions of dimethylcyanamide into the aluminum amide bond. Two subsatgestion of
dimethylcyanamide, followed by nucleophilic ring closure and an aromatizing eltiams
provide the product. From this reaction, the dimerization product wasaat

characterize.

Antonio and coworkers also develop an effective method, for the cyclotzatieri of
cyanamides and nitril&sthat utilized triflic anhydride in dichloromethane at room temperature

The results of their investigation are printed in table 1 .1.



Tablel.1

Cyclotrimerization of Dialkylcyanamides

N)\N
(HZC»'R\T /KN /lkT _(CHR

(CHy)4 -R (CH2)4 R

Entry R, R Conditions | Produc3 Yield (%)
1 CH; r.t./ 12h N 67
N )\|N
H3C\N)\N)\N/CH3
b by
2 -(CH)s-R r.t./12h NS 81
N )\|N
R-(H:C)s \N)\N)\N/(CHQS'R
((|JH2)5-R ((|3H2)5'R
3 _(C |_|2)2_O(CH2)2 I"[/12h (Hzc)zo'(Hzc)z\N/(CHZ)TO(CHZ)Z 89
A
(Hzc)zO-(Hzc)z\N )\N J\N _~(CHrO(CHz),
((l:Hz)TO(CHz)z (LHz)z'O(CHz)z
4 -(CH)4 -R r.t/12h R T 73




The reaction is believed to involve the formation of a bistrithyliea intermediate,

which reacts quickly with two molecules of cyanamide to produce thiaéraroduct Figure 1.7:

. OTf
R
R, G Tho S
\N/ —_— / \\
Rz NTf
R,

R1\N/R2

N /kr
R, N R,
\T \ T/
R, R,

Figure 1.7: Cyclotrimerization of Dialkylcyanamides

The authors extended their work by using other classes of nitriles suadetmitrile,
benzonitrile, and methylthiocyanate with triflic anhydride in dichlortbraee at the same

condition and found s-trazine product in excellent yield.
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Tablel. 2

Cyclotrimerization of Nitrile

Entry R Conditions Product 5 Yield (%)

1 ChHs r.t./ 12h CHs 89

2 CeHs r.t. /12h CeHs 91

3 CHs-S r.t./ 12h P 88

S N S
b
R /N R
N
| U:l . T \|N(
| CH,Cl, Y
R

Figure 1.8: Cyclotrimerization of Nitrile
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Numerous syntheses of trisubstituted -1,3,5-triazine derivatives@weed in the literature

using several transition metals as catalysts, including both daustton metals, such as Ti, Mo,

Cr, Fe, Zr, Nb and Ta. In this investigation, the cyclotrimerization okglialanamides was
catalyzed by tungsten and molybdenum hydrogen bronzes. These hydrogen bronze ase produc
obtained from hydrogen insertion into tungsten and molybdenum trioxides. Thet longes

oxide bronzes are those of tungsten but in the past few years molybdematium, niobium,
tantalum and titanium bronze have prepared and have shown similar propéeiesst of the
chapter will focus on the chemical transformation by using tungsten antidealym hydrogen

bronze.

Introduction to Tungsten and Molybdenum Bronze

Most early transition metals have their greatest stability in tigielst oxidation states.
This stability has made molybdenum and tungsten two of the most widely usésiaseta
metathesis catalysts or catalyst precursors. These metalsaks the ability to form bonds with
carbon, nitrogen and oxygeri. Oxide bronzes are a group of well-defined, non-stoichiometric,
insertion compounds having the general formulll O, where M is a transition metal, A is"H
alkali metal, alkaline earth metal, and lanthanide, or other sndthé hydrogen insertion
compounds of Mo@and WQ have been studied previou$hyit is well established that tungsten
trioxide interacts at an ambient temperature with atomic hydrogen gesherdhe gas phase, in
the aqueous phase, or by “Hydrogen spillover form hydrogen tungsten bronze. Hydrogen
tungsten bronzes are non-stoichiometric materials with the chefiminalla HWO; The
hydrogen content can vary from 0.1-8@he yellow to blue color change associated with the

12



formation of the hydrogen tungsten bronze has long been used as a test fesehegof atomic
hydrogen. Tungsten trioxide has a monoclinically distorted;R4&ke structure which is formed

by corner shared Wictahedra®

Unit cell contents:
Wot: 8x(1/8) =1
0% 12x(1/4)=3

Figure 1.9: Crystal Structure of W@nd AWO; [4]

These materials adopt several crystallographic chemistrig:agiorthorhombic bronzes
with x = 0.1, tetragonal bronzes with x = 0.23 and 0.33, hexagonal bronzes with x = 0.24 and
cubic bronzes with x = 0.53. All of these phases are strongly colored andanéted first
method used to synthesize hydrogen bronzes was the reaction of tungstead@/yith nascent
hydrogen and produced by a reaction of zinc with hydrochlorié%acid

Zn/HCl

3 WO3 E— HW309 (Eq. 1.1)

The structure of the hydrogen tungsten bronze obtained by this synthesis patteiragonal.
Later, hexagonal hydrogen tungsten bronze was prepared by a reactidnith@uonoclinic
WO; to form CuwQ, This was then reduced under a hydrogen flow to form¥é®4'Cu,

followed by elimination of copper by washing with concentrated nitric &cid.
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Recently, a mechanochemical synthesis route has been successfdlfpr bronze
formation, by milling WQ with liquid hydrocarbons (e.g. xylene) under air. In this case, the

hydrocarbons are the source of hydrogen, and the tetragonal structure is obtained.

In contrast, Mo@has an unusual layer structure in which infinite chains of vertex
sharing MoQ octahedra are fused together by edge sharing to form corrugated ldngelaydrs

are stacked parallel to one another and are separated by a van der Waialg gdap’o

Figure 1.10: Hydrogen Molybdenum Bronze Phases are formed by the Intercalation of Atomi
Hydrogen (i.e. K+ €) into the Layered Structure of Mg

Molybdenum trioxide is capable of incorporating hydrogen, thus forming four pbases
bronze HMoO;, in the range 0 < x 2. Each Mo@octahedron has one singly, two doubly and
three triply coordinated oxygen atoms. The hydrogen bronze phade®kivere first
investigated byslemser and co-worker. The four distinct phases in the range 0<<X are blue
orthorhombic, 0.23 <x < 0.4, blue monoclinic, 0.85 <x < 1.04; and red monoclinic, 1.55 <X <
1.72. The fourth phase of highest hydrogen content is the green monogliihm®4.° In the
case of the orthorhombic phase, hydrogen atoms are attached aou@kltorthe doubly
bridging oxygen atoms in the intralayer sites.

14



Interlayer sites

Figurel.11: Hydrogen Intercalation Sites in Mg

These bronzes are usually prepared from single crystals or from powttewssorface area at
room temperature by using atomic hydrogen which can be generated in diffaysnteaction

of HCI on Zn, cathodic reduction, hydrogen plasma, mercury photosensitization, andhtiissoc
chemisorption on an appropriate metal supported ondM&ta higher temperature, the action of
gaseous methanol on MgOf a high surface area, also results in the formation of molybdenum

hydrogen bronze.
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CHAPTER Il

PREPARATION OF ALTRETAMINE BY TRIMERIZATION OF DIMETHYLCYANAMIDE
USING A METAL BRONZE AS THE CATALYST

INTRODUCTION

The cyclotrimerization of nitriles is a useful method for thestrmiction of three new
bonds in a one-step process. Nitriles, such as dimethylcyanamide, mayirogelne in the
presence of various catalysts to produced altretamine (hexameltuylme). The latter
compound is a synthetic antitumor agent primarily used in treating advarargghasancer. It
was originally developed by the National Cancer Institute and has been usetieatinent of
ovarian cancer for over 30 years. Ovarian cancer is the fifth mosbh@ormancer among women,
and it causes more deaths than any other type of cancer. Less than one-thinduoicanaers
are detected before they have spread outside of the ovaries. The dskdlmping ovarian
cancer appears to be affected by several factors. Certain gene (BRCA1 and BRCA2) are
one of the causes of ovarian cancer and a personal history of breast catucex tamdily history
of breast or ovarian cancer are other cause of ovarian ¢afdere are four stages of ovarian
cancer. Each stage identifies the size and location of the tumor. StagWth limited to the
ovaries, stage 2 involves pelvic extension, stage 3 may involve pelitmpéants outside the
pelvis and stage 4 involves distant metastases. In the early stagdiseiase is often
asymptomatic although symptoms of nausea, dyspepsia, and vague lower abdsconaodi
may be present. Abdominal pain, distension, or vaginal bleeding usually indidatesed

diseasé’® The more advanced the ovarian cancer, the more difficult it is to treat.
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Stage IA Ovarian Cancer Stage IB Ovarian Cancer Stage IC Ovarian Cancer

Cancer inside
both ovaries

Cancer inside Fallopian

one ovary tube

Uterus—
Cervix
|
VaginaJ |

Figure 2.1: Ovarian Cancer Stage lIA, 1IB, and %[

One of the most commonly used treatment methods for ovarian cancer is chiepyothe
Chemotherapy consists of antineoplastic drugs that target cancerrzktiause their destruction.
Altretamine is one of the chemotherapy drugs classified as antaigydaent. Alkylating agents
are used to treat various forms of cancer and are so named becaugeabilityeio add alkyl
groups to many electronegative groups under conditions present in th&@elistop tumor
growth by cross-linking guanine bases in DNA double-helix strands, thudydatatking DNA.
This makes the strands unable to uncoil and separate. As this is neoeBgdAyreplication, the
cells can no longer divide. In addition, these drugs add methyl or other alkyl groups onto
molecules where they do not belong, which in turn inhibit their correct titlizhy base pairing
and cause a miscoding of DNA. Alkylating agents are cell cycle-nonspandiwork by three
different mechanisms all of which achieve the same end result - disrgbtiDNA function and
cell death® Altretamine is activated through metabolic oxidation to intermediatayiol
derivatives and formaldehyde (Figure 2.2). Metabolism of altretamanesiguirement of

cytotoxicity. It is unclear which metabolite is the major speciggaesible for cytotoxicity or the

17



primary mechanism of cytotoxicity.

~
A
N)\N/
| |

CHs CH,OH

N< o, T . _N/\ . co

CHs CHs CHs

\

N
N

N

Figure 2.2: Altretamine Activated Through Metabolic Oxidation to Intermedvaénylol
Derivatives and Formaldehyde

The anticancer agent altretamine has the formgild;£Ng and a chemical name of 2, 4,
6-tri (dimethylamine)-S-triazine along with a relative molecutass of about 210.3.
Furthermore altretamine is a white crystalline powder that melig23+ 1°C. Altretamine can be
synthesized by reacting dimethylamine and sodium hydroxide aqueous soluttongamuric
acid in acetone .This synthesis was first reported by KAI&ER *'One of the limitations of this
method is due to the high reactivity of cyanuric chloride, causing it to eepartially or
completely hydrolyzed in water, leading to several potential by-product®thatiuring its
synthesis. Therefore, the altretamine product can be contaminated withtareeimpurities

showed in Figure (2.3)
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Figure 2.3: Chemical Pathway for Formation of Altretamine Byprodué}s |

The manufacturing process for altretamine since 1969 involves the reduction of
hexamethylolmelamine-hexamethyl ether in the presence of methanol, at 903-itOthe
presence of Raney nickel as the catalyFhe reaction produced a better yield than the

previously reported method.
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MeO OMe

Meo\/j\l\lyN\(Nr\/OMe - | . | ~
g T T
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N e
() AN
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Figure 2.4: Reduction of Hexamethylolmelamine Hexamethyl etfr |

Although altretamine can be synthesized by the nucleophilic aromatidstidstof
cyanuric chlorideand reduction of Hexamethylolmelamine-hexamethyl ether, a simpler and
atom-economical synthesis can be envisaged through the cyclotrinoeriagti
dimethylcyanamide. Several reagents has been found to catalyze titerogeization of
dimethylcyanamide with variable degrees of success, includgidimethylamide)aluminium

Pand triflic anhydride!®

In the course of these investigations, it was found that tungsten and molyblolemze

readily catalyzed the cyclotrimerization of dimethylcyanamideddyce altretamine.
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Experimental

All reagents were commercial products, ACS Grade or better and sestemithout further

purification.

Preparation of Tungsten Bronze

Tungsten bronze was prepared by using the dissolving metal reduction techitgju80 g of
tungsten trioxide were placed in a 250 ml three-neck flask containing 56.80ulpgrainc metal
and a large magnetic stirbar . Water is added to form slurry. thtgrthe first neck of the flask
plugged by using a glass stopper. In the second neck, a dropping funnel containing 200 ml of
concentrated hydrochloric acid was fitted, and on the third neck, a paraffirebulalsl attached.

Then, the flask was placed in a water bath.

The hydrochloric acid was added dropwise at a rate of one drop per seconch&gtietically-
stirred reaction mixture. The reaction immediately turned from yelbowue. The acid must be
added to the reaction very slowly since it evolves hydrogen gas, whichosiegpAfter the
addition of hydrochloric acid, the reaction mixture was filtered througylan membrane filter,
and the solid was washed three times with 300 ml of water, and then driecciuanaven. The

yield of the dark blue hydrogen tungsten bronze was 29.01 g (96.70%).

Preparation of Molybdenum Bronze

The same procedure used in preparing tungsten hydrogen bronze was enaployed t
synthesize molybdenum hydrogen bronze. Exactly 30 grams of molybdenum trioxedplaesd
in a 250 ml three-neck flask containing 56.80 g of granular zinc metal and a matjnbac. #\
certain amount_] 5 ml of water was added to form slurry. A funnel, which contains 200 ml of

hydrochloric acid, was connected to the center neck of the flask thatagad p a water bath at
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room temperature. One of the other necks was plugged with a glass stagh@a the third neck
a paraffin bubbler was attached. Then, HCI was added drop-wise produciggeticelly-stirred
reaction mixture. The reaction immediately turned from yellow color tpl@@and the hydrogen
gas is removed through the bubbler. The acid must be added to the reaction Vgryistmnit
evolves hydrogen gas, which is explosive. The initial color of the produajreesish-gold that
slowly turned to a red violet color and finally to a dark blue color. deiofor the reaction to be
complete, it was allowed to react for overnight. Once the blue colored pwasiobtained, it
was washed with water (3 times in 300 ml) and then dries it in a vacuum dneyield of the

hydrogen molybdenum bronze was 28.77g, (95.58%).

Reaction of Dimethycyanamide with Hydr ogen Bonzes

The reaction between the hydrogen bronze (0.5 g) and dimethylcyanamide (1g) were
carried out in a sealed culture tubes at 150. The sealed glass tubesrvplaced in heat block
at 150 [ C for 7 days. The amount of reactant and products in the reaction mixtuess we
determined by cooling the glass tube to room temperature and then, theokitlifgroduct was
extract with methylene chloride .This extracted sample analyzed By&Compounds were
identified by comparison of their mass spectra to the NIST database tNéheaction
temperature increased to 2Z0(Table 2.4). This reaction was performed in Teflon-lined,
stainless steel bombs, and the sealed reactors were placed ircdigfitalled oven at 170 C

and the products were characterized by using GC-MS, NMR and Infrared Spectroscopi
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Gas chromatogram/ mass spectroscopic analyses: were performed ott Plagkard G1800A
equipped with a 30m x 0.25 mmHP5 column. The temperature program used was initialshold of

min at 76C, a ramp of &/min to 176C. The helium flow rate was 1 ml/min.

Infrared Spectroscopic Data: was obtained via infrared specteaivtiich was obtained using

KBr pellets recorded on a Jasco-RA spectrophotometer.

NMR Spectra: were recorded using a UNITNOVA 400 NB NMR

Results and Discussion

In these investigations, the molybdenum hydrogen bronze and tungsten hydrogen brolyze readi
catalyzed the cyclotrimerization reaction of dimethylcyanamide atldéions of 5 mol%

tungsten hydrogen bronze to a solution of dimethylcyanamide in hexane or toluenthked
formation of altretamine. Molybdenum hydrogen bronze reacted similarly buiqadd
pentamethyl-1, 3, 5-triazine-2, 4, 6-triamine as the major product. This predutted from
cyclotrimerization of dimethylcyanamide followed by dealkylation. Laisa CH-group from
altretamine was also observed during mass spectral analysis. LosssdE5r(@n/z) is a

predominant process and results in the spectrums base peak. The gecteyalata
dimethylcyanamide and the hydrogen bronze are shows in Figure (2.5), and Figureegut$. R

obtains from the various reaction condition are laid out in Table 2.1, 2.2, 2.3.
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Figure 2.5: Reaction of Dimethylcyanamide with Tungsten Hydrogen Bronze
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Figure 2.6: Reaction of Dimethylcyanamide with Molybdenum Bronze

Table 2.1 shows the results of reactions between dimethylcyanamddsoth hydrogen
bronzes. After six days reaction with molybdenum bronze tetramethylguanidineompleted.
Under the same reaction conditions tungsten hydrogen bronze only producadaleets a

minor product and yield pentamethyl-1, 3, 5-triazine-2, 4, 6-triamine as a major fproduc
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Table2.1

Reaction of Dimetylcyanamide with Tungsten and Molybdenum Bronzein Toluene

at 150°C
Entry | Substrate Catalyst | Solvent Condition Major product Minor product
1
N~
N/\N )\
N—C=N B Toluene | 150°C,7 )|\ /k Xy
V= days )\
\N N/ N/ AN )|\N/ v
| [ |
84% 8%
2
— N/\N NH
N—C=N| v Toluene | 150°C, 6 )|\ )\ C”)
days = NN _—
IR
‘ 41.8%
58.2%
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Table2.2

Reaction of Dimetylcyanamide with Hydrogen Bronzesin toluene/ Hexane at 150C

Entry | Substrate Catalyst | Solvent Condition Major product Minor product
1
N
N—C=N B Toluene | 150°C, 30 N|)\N 0
= days A
T |
17.90%
2
\NH
N—C=N| vs Toluene | 150 °C, 30 NH\N 0
as |
N, Z T/
50.84%
3 B N
Hexane 150°C, 7 )\
days MY
o= S
N\, Z T/
36%

Tungsten hydrogen bronze reacted with dimethylcyanamide in toluene to produced

altretamine in a good yield. This was a pure product, and no side produetshserved. As the

results (Table 2.2) show, the reaction between dimethylcyanamide and molydatemze in

toluene gave pentamethyl-1, 3, 5-triazine-2, 4, 6-triamine as the maghrgb(Entry 2).

pentamethyl-1, 3, 5-triazine-2, 4, 6-triamine(Pentamethylmelaminieg is t

monodemethylated correspondent of hexamethylmelamine and also has also antitumour

activity®*. Pentamethylmelamine is chosen on the basis of its greater chemtidiétlyst
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furthermore 23 times more soluble than altretamine and has equivaleity &t number of

experimental tumour test systeths

The reaction time improved by replacing toluene with hexane and the peegreld
also improved by increasing the mole percentage of the catalyst fééntol20 % ( Table 2.3).
However, a different decomposition product was produced when the reaotjmerature

increased to 170C (Table 2.4). This product was a singly deaminated version of aiftreta
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Table2.3

Reaction of Dimethylcyanamide with Excess Tungsten and Molybdenum Bronze

Entry | Substrate Catalyst | Solvent Condition Major product Minor product
1 N
N)\N
| TB Toluene | 150°C,7 | 0
N—C=N days AN )\N)\N/
| |
82%
2
N
N—C=N| s Hexane | 150°C,7 N)\N 0
days
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Table2.4

Reaction of Dimethylcyanamide with Hydrogen bronzes at Higher Temperature

Entry | Substrate Catalyst | Solvent Condition Major product Minor product
1 )e T
)\ NS
N
| TB Toluene | 170°C, )N|\ )\ N )|\ )\ -
N—C=N 48 hr \N W T N T
| | 74.5%
22.3% N
|
N\, )\N)\T/
|
33 %
2
N AN
NH
N—C=N|rp Toluene | 170°C, N/kN )\
72 hr | )\ N| N
T N T \N S
57.3% 42.6%
3 N
N
“N—c=n A Nl)\N
—C= o} N Xy
TB Toluene 1700C, )|\ N )\N)\N/
96hr \, e T |
| |
10.8 9
89.2 % %
4 N
P
|
N—C=N| yp Toluene 170°C \N > \N)kN/kN/
48hr | | | |
87.2% 12.8%
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Based on the results obtained, the proposed mechanism for the interactioathf/idiyanamide

with molybdenum and tungsten hydrogen bronzes is shown in Figure 2.7:

o |
Nucleophilic ring J\\ N
closure M\N Ho e,

)|\ Insertion
N NMe, M N
| : I C
Insertion /
Me,N N MeN | /N\
J\ N ; Me,;N~ “OH
Me,N ‘(‘-E
|
~ N\

Figure 2.7: Propose Mechanism for Cyclotrimerization of Dimethylcyasida by Metal Bronzes
(M=W or MO).

The cyclotrimerzation was first initiated by insertion of dimethghamide into the M-
OH bond of the catalyst. Two subsequent insertions of cyanamide, followed bypphitt ring

closure and an aromatizing de-insertion provided the altretamine product.

The GC-MS chromatogram of the methylene chloride extract of the prsitioned a
single peak having mass 210 m/z Figure 2.. This extract was eapardat the residue was
dissolved in GDg and the carbonC) and the proton'i) nuclear magnetic resonance spectra

(NMR) were recorded in tolueng-drhe proton spectrum (solvenil@z) showed a singlet
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resonance with a chemical shift of 2.99 ppm. This is to be expected for aroidgtiegedups.
The™*C spectrum (solvent/Dg) exhibited resonances with 35.7 ppm, as expected fgNCH
groups and 166 ppm belonging to the ring carbon atoms. The infrared spectrum of a KBr-pell
containing product, recorded on a Jasco-RA spectrophotometer, is shown @mZigurThe
absorptions at 2926, 807 and 2869"@me due the (CBLN-groups, while the peaks at 1541,

1388 and 1301cHare characteristic for ring substituted s-triazines.

Abundance TIC: TAl7A.D
2500000
2000000
44,48
1500000 |
1000000
500000

(g o [, SE Y, . S —_—
Time--> 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00.. .

Figure 2.8: GC-MS Chromatogram of Tetramethylguanidine at 6.73 Retention Time

31



Abundance TIC: TA48.D
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Figure 2.9: GC-MS chromatogram of Altretamine
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Figure 2.10: GC-MS Spectra of Altretamine

32



y M .

r~f[ ¢+ r¢rr ¢+ rrre | rer e v ¢ r ¢4 ¢4+ T

[} L} T L 3 q 3 4 1 0 pem

Figure 2.11'H-NMR Spectra of the Product from the Cyclotrimeri@atof Dimethylcyanamid
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Figure2.13: The infrared spectrum of Altretamine

Conclusion

A simple and one-pot synthetic procedure has been developed for thejpoepair
altretamine under a mild reaction conditions. The synthesis of altretdnas been performed by
cyclotrimerization of dimethylcyanamide using tungsten and molybdenum hydrogee bsonz
catalysts in hexane. Tungsten hydrogen bronze was seen to be more daléntiyoduction of
altretamine since no side product was observed. Pure altretamine wsgathestized by using
molybdenum hydrogen bronze. Therefore, tungsten hydrogen bronze is a better reagent for

cyclotrimerization of dimethylcyanamide.
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CHAPTER Il

REACTION OF METHYLTHIOCYANATE WITH METAL BRONZE

Triazines derivatives are interesting compounds with biologicalypitant properties.
They have found widespread applications in the pharmaceutical, plasticjges, dyes, and
textile industries. The chemistry of this group of compounds has been staidiesiwely and has

been the subject of many reviélvs

All of the s-triazine derivatives that have wilpractical applications are mono, di- or
tri-substituted, symmetrical and nonsymmetrical compounds bearing difserestituents. One
of the common methods led to s-triazines is cyclotrimerization aesitThe possibility of
substituting the nitriles in this reaction by other cyano compounds, sucheascarganates,

thiocyanates and substituted cyanamides, has been considered.

In the previous chapter cyclotrimerization of dimethylcyanamide was pextbtonsynthesize
altretamine using tungsten and molybdenum hydrogen bronzes as catalystst to extiend this
synthetic procedure to other classes of nitriles, the reaction of ith@hbyanate with tungsten

and molybdenum hydrogen bronze was investigated.
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Experimental

Tungsten and molybdenum hydrogen bronzes were prepared by the procedure reported in
Chapter 2. The reaction between the methylthiocyanate (1.00g) and the nretal (0:60 Q)
were carried out in sealed culture tubes aPC5@ toluene. The sealed glass tubes were placed in
a heat block for 15 days. The amount of reactant and products in the reactioesnerte
determined by cooling the glass tube to room temperature then, the mixéueel finrough 45
pm nylon membrane filter, the yellow solid product extract with mettg/chloride and this
extract sample analyzed by GC/MS. Compounds were identified by comparisom ofdbsi

spectra to the NIST database .

Results and Discussion

As previously reported, the preparation of the altretamine wasdamteconveniently by heating
a mixture of dimethylcyanamide and hydrogen bronze in a glass tube at 150 °C. aphes,c
methylthiocyanate was reacted with tungsten and molybdenum bronzes in tilas6€
.Methylthiocyanate did not produce the trimerization product of methyithiate, 2,4,6-
tris(methylthio)-1,3,5-triazine but instead it gave 2,4-bis(methgjithi3,5-triazine. This product
resulted from the loss of the dimethylamine group because of the lowtgtabli 4, 6-tris
(methylthio)-1, 3, 5-triazine, which decomposes with the formation of 2, 4rathylthio)-1, 3,
5-triazine. The general reaction of methylthiocyanate and the hydrogen rshosvn in

(Figure 3.1)
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Tungsten /Molybdenum |
Hydrogen Bonze 4
> -

Toluene

HsC—S—C=N
Methylthiocyanate 2,4-bis(methylthio)-1,3,5-triazine

Figure: 3.1. Reaction of Methylthiocyanate with Tungsten and Molybdenum Bonzes
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GC-MS analysis of the compound revealed the molecular mass of 173 g/mol, &ihdRhe

spectra showed two signals for symmetrical structure.

LIFHIT

r}

rl

] 1 T 4 = | L] a 3 1

Figure: 3.2'"H-NMR Spectra of the Product from the Cyclotrimerization of Dimetfafamide
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Figure 3.4 : GC-MS Spectra of 2, 4-Bis (methylthio)-1, 3, 5-Triazine
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Figure 3.5:infrared spectrum of 2, 4-Bis (methylthio)-1, 3, 5-Triazine

Conclusion

Molybdenum and tungsten hydrogen bronzes were effective catalysts foesgraf s-trazine
products from methylthiocyanate. A practical synthesis of substitutéazsyas from readily
available starting materials has been discovered under radtiae conditions. In light of its
simplicity and efficiency, this reliable method is expected to haveadhutility due to the scope

of applications of the s-triazines.
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Findings and Conclusions:

Altretamine (hexamethylmelamine) is a chemotherapeutic agent ugedtto t
advanced ovarian cancer. A simple one-pot synthesis procedure has been
developed for the synthesis of altretamine under mild reaction condition. The
preparation of atretamine has been performed by cyclotrimerization of
dimethylcyanamide using tungsten and molybdenum hydrogen bronze as catalyst.
These hydrogen bronzes are simply products obtained from hydrogen insertion
into tungsten and molybdenum trioxides. The reaction was carried out in sealed
culture tube at 15@ and the products were characterized by using nuclear
magnetic resonance (NMR), gas chromatography/mass spetrtcoamalysis
(GC-MS) and, infrared spectroscopy (IR). The same reaction can be applied t
methylthiocyanate
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