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Abstract

Polymer electrolytes are ion conducting solids with possible applications to recharge-

able batteries. Despite great interest much remains unknown about the conductivity

of polymer electrolytes. A number of topics concerned with polymer electrolyte con-

ductivity are discussed in this work.

The frequency-dependent conductivity of an amorphous polymer electrolyte is

examined. It is shown that the frequency-dependent conductivity of polymer elec-

trolytes exhibit many of the same properties as ion conducting glasses. This suggests

similarities in the mechanism of ion conduction between polymer electrolytes and

ionic glasses.

The conductivity of semi-crystalline polymer electrolyte systems are also inves-

tigated. This work demonstrates that at least two seperate ion conduction mecha-

nisms are occuring in semi-crystalline polymer electrolytes. A proposal is made for

understanding the discontinuities seen in the conductivity of semi-crystalline polymer

electrolytes.

An examination of conductivity prefactors revels the possible presence of the com-

pensation effect. While great care must be taken before reporting a compensation

effect, this work and the work of other researchers suggests that there is relation be-

tween the conductivity prefactors and the activation energy. Various theories of the

compensation effect are discussed, and consistent with Linert’s theory a connection

is made between the compensation effect and the vibrational spectra of the polymer.

The free volume theory of the Vogel equation is discussed. Some of the weaknesses

ix



of this theory as applied to polymer electrolytes are pointed out. A theory of the

Vogel equation in terms of hopping models is presented. This theory is consistent

with the results of the frequency-dependent conductivity and semi-crystalline polymer

electrolytes.
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Chapter 1

Introduction to Polymer Electrolytes

This thesis is concerned with the conductivity of polymer electrolytes. A polymer

is a large molecule made by stringing together smaller molecules. Some examples

of polymers of interest for polymer electrolytes are shown in table 1.1. The poly-

mers shown in table 1.1 include polyethylene oxide(PEO), polypropylene oxide(PPO),

and polyethylene imine(PEI). The large molecules that make up the polymer mean

that polymer electrolytes have physical properties that differ greatly from liquid elec-

trolytes. A polymer electrolyte is formed by dissolving a salt into the polymer. Not

all polymers are capable of dissolving salts. Those shown in table 1.1 are capable

of dissolving salts. The salt starts to dissolve when one or more of the atoms that

make up the polymer interact with the salt. This interaction may cause the salt to

seperate into positively charged cations and negatively charged anions. Examples of

salts that have been used in polymer electrolytes are lithium bromide(LiBr), lithium

trifluoromethanesulfonate(also called lithium triflate)(LiCF3SO3), and lithium per-

chlorate(LiClO4). While lithium is the most interesting cation for applications, other
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Table 1.1: Some common polymers used for polymer electrolytes

cations such a sodium and magnesium can also be used.

The conductivity of polymer electrolytes was first investigated by P. V. Wright

and co-workers in 1973[1]. Widespread interest in polymer electrolytes began in 1979

when Armand and co-workers[2] pointed out the potential application of polymer

electrolytes in solid state batteries. Since then a wide variety of techniques includ-

ing NMR[3], EXAFS[4], vibrational spectroscopy[5], DSC[6], X-ray[7], and neutron

scattering[8] in addition to conductivity measurements have been performed to better

understand polymer electroltyes. Some of the fundamental questions these studies try

to address are: (1) what are the salt polymer interactions?, (2) what are the ion-ion

interactions?, (3) what phases appear in polymer electrolytes?, and (4) what is the

ion transport mechanism? The knowledge needed to answer the last question depends

heavily on the knowledge needed to answer the other questions.

As mentioned above, polymer electrolytes have different phyiscal properties than

liquid electrolytes. It is these different physical properties that fuel technological in-

terest in polymer electrolytes. This technological interest stems mainly from the po-

tential applications of polymer electrolytes in rechargeable solid state batteries[9, 10].
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A solid state plastic seperator would solve many problems associated with battery

construction. In batteries using a liquid electrolyte, elaborate precautions are nec-

essary in order to ensure that there is no leakage of the electrolyte. The containers

necessary to ensure that there are no leaks decrease the energy density(energy/weight)

of the battery. A solid state battery would largely eliminate this problem. On the

otherhand, solid state seperators such as ionically conducting crystals introduce dif-

ferent problems. When a battery is charged or discharged, the anode and cathode

change volume as ions enter or leave. A plastic solid seperator would be able to

accommodate these volume changes better than a crystalline seperator. A further

advantage of an polymer electrolyte would be the ability to process the polymer in

wide variety of shapes allowing many different battery configurations.

There are however many obstacles that must be overcome before polymer elec-

trolytes see widespread use. The most serious obstacle is the conductivity of polymer

electrolytes. For widespread applications, a conductivity greater than 10−3S/cm at

room temperature is desired. This is about two orders of magnitude greater than

what is achieved with the better polymer electrolytes. Another problem with poly-

mer electrolytes is that both the cations and anions conduct. For battery applications

it is desireable that only the cations conduct since only the electrodes are reactive

with the cations. Anion conduction can lead to polarization effects in the battery

which reduce battery performance. These severe challenges must be overcome before

polymer electrolyte batteries see wide spread use.

The main part of this chapter briefly reviews aspects of polymer electrolytes rele-
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vant to the main body of the this thesis. Reviews going into more depth or covering

different aspects of polymer electrolytes can be found in references [11, 12, 9, 13, 14,

15, 16, 17, 18, 10, 19, 20, 7].

1.1 Thermodynamics of Dissolution

In order for a polymer to dissolve a salt, the free energy change going from undissolved

to dissolved must to negative. Thermodynamics says that the change in free energy

is given by

∆G = ∆H − T∆S (1.1)

where ∆G is the change in free energy, ∆H is the change in enthalpy, and ∆S is

the change in entropy. The change in enthalpy will depend on such factors as the

lattice energy of the salt and the bonds formed between the polymer and the ions[9].

For example, polyethylene is very poor at dissolving salts. The reason is that the

carbons along the backbone do not interact with the ions. There is therefore no way

to overcome the lattice energy of the salt. Polyethylene oxide on the other hand

dissolves certain salts quite well. This is because the ether oxygens along the PEO

backbone coordinate with the cations of the salt. The coordination of the cations to

the polymer allows the salt to be dissolved.

Since ∆G ∝ T∆S, the change in free energy will depend increasingly on the

change in entropy as the temperature is increased. As the salt is dissolved, the ions

are seperated from each other. This leads to a increase in entropy. However, as the
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polymer coordinates to the cations, the polymer segments around the cations become

more ordered. This ordering restricts the conformations of the polymer, and the

entropy decreases. In PPO, it is seen that at high temperatures the salt precipitates

out of the polymer[21]. This suggests that ∆S is negative for polymer electrolytes,

and that at high temperatures the decrease in enthalpy on dissolution is outweighed

by the increase in entropy that results when the salt precipitates. It will be seen

later that the entropy changes due to cation-polymer coordination will effect the

conductivity.

1.2 Ionic species in polymer electrolytes

Even though the salts are dissolved by the polymer, this does not mean that cations

and anions are well seperated from each other. There is ample evidence that the ions

interact with each other. These interactions lead to the formation of ion pairs and

ion aggregates.

The most direct evidence for ion-ion interactions is probably from vibrational

spectroscopy. To use vibrational spectroscopy it is necessary to use an anion that

has a set of vibrational modes. These vibrational modes will be sensitive to the

association of the anion with the cation. A vibrational peak associated with the free

anion will be in a slightly different location than a peak associated with an anion that

is paired with a cation. The reason the peaks shift is that the electron distribution

around the anion is perturbed when the cation is paired with the anion. Figure 1.1
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illustrates these statements with the triflate anion. The peaks in the figure relates

to a vibration of the CF3 group on the triflate anion. While the peak resolution in

figure 1.1 is not ideal, it is sufficient to reveal the prescence of at least three peaks.

Through a combination of experiment and calculations the three peaks in the figure

have been assigned[22]. The lowest wavenumber peak around 752 cm−1 has been

assigned to the free anion. The peak around 758 cm−1 has been assigned a cation-

anion pair. The peak around 763 cm−1 has been assigned to a salt aggregate. The

term aggregate will be used to refer to any salt structure involving three or more ions.

The aggregate illustrated in the figure is a minimum aggregate structure that gives

a peak around 763 cm−1. A more complex aggregate structure involving multiple

cations and anions will also give a peak around 763 cm−1. A proposed aggregate

structure will be mentioned below.

In speaking of ionic species it would be a mistake to think of the species as static

entities. The vibrational spectrum of the anion is a time average spectrum over

a relatively long period. During that time the ionic species are not static but are

changing from free to pair, pair to free, aggregate to pair, etc.

The simultaneous presence of free ions, pairs, and aggregates has important con-

sequences for polymer electrolyte conductivity. Since pairs are charge neutral, an

applied electric field will not cause translational motion of a pair. While an aggre-

gate can have a charge associated with it, a large aggregate structure such as the

one shown in figure 1.4 is unlikely to contribute to charge transport. Instead what is

likely necessary for charge transport is the dissociation of pairs into free ions or for a
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Figure 1.1: Ion association peaks seen in Raman spectra(δs(CF3) vibrational mode of the triflate

anion). Figure courtesy of Chris Rhodes.

ion to dissociate from a aggregate structure.

1.3 Structure and Morphology of polymer electro-

lytes

PPO is a amorphous polymer because of the bulky CH3 side group which prevents

the polymer from crystallizing. PEO has an identical backbone structure as PPO.

PEO, however, lacks the CH3 side group and is able to crystallize. When salts

are dissolved in a polymer, small locally ordered structures can be identified in the

polymer electrolyte.
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1.3.1 Semicrystalline Polymer Morphology

Because polymers are long linear molecules, polymers such as PEO are not able to

crystallize completely. Instead, polymers crystallize in layers[23]. A schematic picture

of this situation is shown in figure 1.2. Regions of amorphous polymer lie between

the crystalline layers. It has been shown that ion conduction takes place primarily

in these amorphous regions[24]. The ion transport in the crystalline regions is neg-

ligible. Ideally these crystalline layers would not be present since they restrict the

number of pathways an ion can travel. Amorphous and semi-crystalline polymers

can be distinguished by their macroscopic properties. Amorphous polymers are usu-

ally clear and flexible whereas semi-crystalline polymers are usually more rigid and

opaque. Also the DSC of semi-crystalline polymers shows peaks corresponding to

melting transitions whereas no peaks are seen in amorphous polymers. PEO melts

around 60◦C[24], and as will be seen later melting leads to a dramatic change in the

conductivity.

For later reference, the crystalline structure of PEO is shown in figure 1.3 [25]. The

helix shown in figure 1.3 is a 72 helix(7 monomer units in 2 revolutions of the helix).

The CCOC dihedral angles are trans and the OCCO dihedral angles are gauche.

1.3.2 Salt-polymer structures in PEO LiCF3SO3

By studying the spectra of crystalline model compounds and comparing these to

the spectra of polymer electrolytes, Rhodes and Frech have proposed a number of

salt-polymer structures for the PEO LiCF3SO3 system[5]. The structure proposed
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Figure 1.2: Polymers usually crystallize as spherulites. The spherulites are made up of alternating

layers of crystalline and amorphous regions

Figure 1.3: Structure of crystalline PEO [25]
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Figure 1.4: Proposed aggregate structure in PEO LiCF3SO3 [5]

for the aggregate is shown in figure 1.4. The structure shown in figure 1.4 will give

two different peaks in the vibrational spectra. Anions that are in the middle of the

aggregate structure will give peaks around 762 cm−1. Anions at the ends of the

aggregate structure will show spectral signatures characteristic of ion pairs. Note

that in this proposed aggregate structure that the cations are coordinated to both

the anions and the ether oxygens along the PEO backbone. The cations cause the

PEO backbone to adopt a crystal like helical configuration. The aggregate structure is

located in the amorphous regions of the PEO, so the salt causes the PEO to assume

locally ordered structures even in the amorphous region. The aggregate structure

shown in figure 1.4 makes it very unlikely that the aggregate itself can be a charge

carrier. Instead free cations and anions must dissociate from the aggregate structure

in order for there to be charge transport.
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As the salt concentration is increased, the aggregate structure becomes larger

and larger. Eventually crystalline domains will forms. The salt-polymer crystalline

domains are distinguishable from the pure PEO crystalline domains by DSC and x-

ray. These salt-polymer crystalline domains are undesireable since the salt in trapped

in the domain and cannot contribute to the conductivity.

While the structure discussed here has been for PEO LiCF3SO3, it likely that

other salt-polymer systems will have their own locally ordered structures embedded

in the amorphous phase.

1.4 Polymer motion and conductivity

One of the unique features of solid polymer electrolytes is the close relation between

structural relaxations in the polymer and the ion conductivity. In other solid ionic

conductors such as ionic glasses, conductivity and structural relaxations are not as

closely coupled.

One way of demonstrating the relation between structural relaxations and ion

conductivity is through Angell’s decoupling index[26, 27, 28]. Angell’s decoupling

index is defined as

Rτ =
τs

τσ

(1.2)

where τs is a characteristic structural relaxation time and τσ is a characteristic time

associated with the conductivity. One possibility for τσ is

τσ =
ε0ε∞
σdc

(1.3)
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where ε0 is the permittivity of free space, ε∞ is the infinite frequency dielectric con-

stant, and σdc is the DC conductivity. A value for τs can be obtained from ultrasonic

measurement, Brillioun scattering, or the microscopic viscosity. The decoupling in-

dex has been measured for some polymer electrolyte systems. The measurements

give Rτ ∼ 10−2 at low values of salt concentration[26]. This says that structural

relaxations are a bit quicker than the time scale associated with conductivity. The

decoupling index, however, increases as salt concentration increases[28]. Rτ is not

unity as would be expected for perfect coupling between conductivity and structural

relaxations. The influence of ion-ion interactions has been discussed as a reason for

Rτ being less than one[27].

Another demonstration of the connection between conductivity and structural

relaxations is the comparison of the α-relaxation and the conductivity. The α-

relaxation is a term for a prominent peak seen in plots of the imaginary part of the

frequency-dependent dielectric constant. Higher frequency peaks have been termed

β-relaxations and γ-relaxations. These peaks involve the rotation of dipoles in the

polymer. The α-relaxation probably involves dipoles along the polymer backbone,

so the presence of the α-relaxation entails some movement of the polymer backbone.

The temperature dependence of the α-relaxation compares well with the temperature

dependence of polymer electrolyte conductivity at low salt concentrations[29] which

suggests the importance of polymer segmental motion to conductivity. This compar-

ison is shown in figure 1.5. Higher salt concentrations do not scale as well as the

concentration seen in the figure.
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Figure 1.5: Comparison of the α relaxation and conductivity[29]. The x-axis has been shifted by

the glass transition temperature.

The above experiments emphasize the importance of polymer motion to conduc-

tivity. Unfortunately, the experiments use PPO rather than PEO. PEO is a better

solvent than PPO and yields higher conductivities. However, the semicrystalline na-

ture of PEO makes it much harder to perform the experiments performed above.

Some of the results might be different for PEO than for PPO.

1.5 Thesis Outline

This thesis is concerned primarily with polymer electrolyte conductivity. The primary

equation used to model polymer electrolyte conductivity is the Vogel equation. The

Vogel equation is often associated with the concept of free volume, so free volume

13



is proposed as a basis for understanding ion transport in polymer electrolytes. This

study argues that polymer electrolyte conductivity and the Vogel equation should be

understood in terms of hopping models. The thesis is divided as follows.

Chapter 2: Experimental discusses the materials, techniques and equipment used

in this study. Since this study deals with polymer electrolyte conductivity and

impedance spectroscopy is the main tool used to measure polymer electrolyte con-

ductivity, a fairly lengthy review is given on impedance spectroscopy.

Chapter 3 discusses the frequency-dependent conductivity of polymer electrolytes.

It is shown that polymer electrolytes exhibit frequency-dependent properties similar

to other disordered solid ionic conductors such as ionic glasses. The models that

have been proposed to understand the frequency-dependent properties of disordered

solid ionic conductors are discussed. These models are based on hopping models

and involve a distribution of hopping barriers. Since polymer electrolytes show the

same frequency-dependent properties as ionically conducting glasses and ionically con-

ducting glasses are modelled with hopping models, the chapter argues that polymer

electrolyte conductivity should also be understood in terms of hopping models.

Chapter 4 discusses the Vogel equation. Since the Vogel equation is the primary

empirical equation used to model conductivity in amorphous polymer electrolytes, the

chapter presents the two main arguements used to justify the Vogel equation. These

two models are known as the free volume model and the configurational entropy

model. Neither of these models are hopping models, and it would be difficult to

present any discussion of the frequency-dependent conductivity in terms of them.
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While the Vogel equation is widely used to fit polymer electrolyte DC conductivity,

there are instances where the Vogel equation fails to model the observed behavior.

These failures occur in semi-crystalline polymer electrolytes and in certain amorphous

polymer electrolytes that show Arrhenius behavior at low temperatures. The next

chapter proposes an equation that can deal with semi-crystalline polymer electrolytes

and the low temperature Arrhenius behavior.

In Chapter 5: Semi-Crystalline Polymer Electrolytes, an equation based on fitting

the frequency-dependent impedance of semi-crystalline polymer electrolytes is sug-

gested. This equation is based on the recognition that there are at least two mech-

anisms operating in semi-crystalline polymer electrolytes. The equation is tested on

the PEO LiTFSI polymer salt system. While this equation was suggested by semi-

crystalline polymer electrolytes, it can also fit amorphous polymer electrolytes over

a limited temperature range. An examination of the conductivity prefactors suggests

the compensation effect.

Chapter 6: The Compensation Effect discusses the compensation effect and re-

views a number of theories that have been put forth to understand it.

Chapter 7: Microsopic Interpretation discusses a possible physical basis for the

equation proposed in chapter 5. The proposed microscopic picture is highly specula-

tive, but it points out that ion-ion and ion-polymer interactions could be the source

of the hopping barriers. Also, a correlation is made between the compensation effect

parameter and vibrational peaks seen in the far IR spectra of the polymer electrolytes.

In Chapter 8: Generalization, a hopping model approach to the Vogel equation

15



is discussed. The reasoning for discussing the Vogel equation in terms of a hop-

ping model is: (1) In chapter 3 it was shown that hopping models can be used to

understand the frequency-dependent conductivity of polymer electrolytes. The DC

conductivity should also be understood in terms of a hopping model. (2) In chapter 5

it was argued that the DC conductivity of semi-crystalline polymer electrolytes can be

understood with a equation involving two Arrhenius factors. This equation can also

be used for amorphous polymer electrolytes over a limited temperature range. The

obvious generalization of the two Arrhenius equation is to a distibution of activation

energies. The generalization is shown to be equivalent to the Vogel equation(but with

a different physical interpretation). Some theories of viscosity in supercooled liquids

which involve hopping are briefly discussed.

Finally, a summary is given.

16



Bibliography

[1] D. E. Fenton, J. M. Parker, and P. V. Wright. Polymer, 14:589, 1973.

[2] M. B. Armand, J. M. Chabagno, and M. J. Duclot. Fast Ion Transport in Solids,

pages 131–136. Elsevier, 1989.

[3] K. Hayamizu, Y. Aihara, and W. S. Price. J. Chem. Phys., 113:4785, 2000.

[4] R. G. Linford. Chem. Soc. Rev., page 267, 1995.

[5] C. P. Rhodes and R. Frech. Macromolecules, 34:2660, 2001.

[6] C. Vachon, C. Labreche, A. Vallee, S. Besner, M. Dumont, and J. Prud’homme.

Macromolecules, 28:5585, 1995.

[7] Y. G. Andreev and P. G. Bruce. J. Phys.:Condens. Matter, 13:8245, 2001.

[8] P. Carlsson. J. Chem. Phys., 114:9645, 2001.

[9] F. M Gray. Solid Polymer Electrolyte: Fundamentals and Technological Applica-

tions. VCH Publishers, New York, 1991.

[10] W. H. Meyer. Advanced Materials, 10:439, 1998.

17



[11] J. R. MacCallum and C. A. Vincent, editors. Polymer Electrolyte Reviews, vol-

ume 1. Elsevier, New York, 1987.

[12] J. R. MacCallum and C. A. Vincent, editors. Polymer Electrolyte Reviews, vol-

ume 2. Elsevier, New York, 1989.

[13] M. B. Armand. Ann. Rev. Mater. Sci., 16:245, 1986.

[14] C. A. Vincent. Chemistry in Britain, April:391, 1989.

[15] M. A. Ratner and A. Nitzan. Faraday Discuss. Chem. Soc., 88:19, 1989.

[16] P. G. Bruce. Synthetic Metals, 45:267, 1991.

[17] L. M. Torell, P. Jacobsson, and G. Petersen. Polymer for Advanced Technologies,

4:152, 1993.

[18] P. G. Bruce and C. A. Vincent. J. Chem. Soc. Faraday Trans., 89:3187, 1993.

[19] A. Ferry. Recent Res. Devel. Macromol. Res., 4:79, 1999.

[20] M. A. Ratner, P. Johansson, and D. F. Shriver. MRS Bulletin, March:31, 2000.

[21] G. G. Cameron and M. D. Ingram. Polymer Electrolyte Reviews, volume 2,

chapter 5. Elsevier, 1989.

[22] W. Huang, R. Frech, and R. A. Wheeler. J. Phys. Chem., 98:100, 1994.

[23] P. C. Painter and M. M. Coleman. Fundamentals of Polymer Science: An In-

troductory Text. Technomic, Lancaster, PA, 1997.

18



[24] M. Minier, C. Berthier, and W. Gorecki. J. Physique, 45:739, 1984.

[25] T. Yoshihara, H. Tadokoro, and S. Murahashi. J. Chem. Phys., 41:2902, 1964.

[26] L. M. Torell and C. A. Angell. Br. Polym. J., 20:173, 1988.

[27] M. G. McLin and C. A. Angell. J. Phys. Chem., 95:9464, 1991.

[28] M. G. McLin and C. A. Angell. Solid State Ionics, 53-56:1027, 1992.

[29] A. L. Tipton, M. C. Lonergan, M. A. Ratner, D. F. Shriver, T. T. Y. Wong, and

K. Han. J. Phys. Chem., 98:4148, 1994.

19



Chapter 2

Experimental

2.1 Sample Preparation

The polymers used in this study are polyethylene oxide(PEO) and a epichlorohydrin

elastomer. PEO (Mw = 105) was acquired from Aldritch. As purchased, PEO is a

white powder. Prior to use, the PEO was heated to 50◦C for 24 to 48 hrs. in a vacuum

oven. Following the vacuum oven, the PEO was placed in a nitrogen glovebox. The

chemical struture of PEO is CH3O-(CH2CH2O)n-CH3. The epichlorohydrin elastomer

was a gift from Zeon chemicals. The tradename for the epichlorohydrin elastomer is

C2000. C2000 will be used to designate the elastomer in the rest of this study. The

chemical struture of C2000 is (CH2CHCH2ClOCH2CH2O)n. C2000 resembles a co-

polymer of PEO and polypropylene oxide (PPO), but the CH3 group of the PPO has

been replaced by CH2Cl. The reason that C2000 is used instead of PPO is that PPO

is only easily available in low molecular weights. At these low molecular weights,

PPO is a viscous liquid instead of a solid. C2000 on the otherhand is a solid with a
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Mooney viscosity between 90 and 102. As received, C2000 comes as a solid somewhat

flexible block. Small pieces were cut from the block and placed in a vacuum oven at

120◦C for 48 hours. Following the vacuum oven, the C2000 was placed in a nitrogen

glovebox.

The salts used in this study include lithium trifluoromethanesulfonate (LiTF),

lithium-(bis)trifluoromethanesulfonate imide (LiTFSI), and lithium bromide (LiBr).

The chemical formula of LiTF, also called lithium triflate, is LiCF3SO3. The chemical

formula of LiTFSI is Li(N(SO2CF3)2). The salts were dried in a vacuum oven at

120◦C for 48 hours. After drying, the salts were placed in a nitrogen glovebox.

The polymer electrolyte were prepared by mixing appropriate amounts of salt

and polymer. Acetonitrile was used to dissolve the salt and polymer mixture, and

the subsequent solution was allowed to stir for a least 24 hours. The concentration of

salt in the polymer is usually expressed in terms of the ether oxygen to metal cation

ratio(O:M). Ether oxygens are the oxygens on the polymer and so do not include

oxygens on the anion. The desired O:M ratio is converted to a weight ratio so that

the appropriate amounts of salt and polymer can be mixed. A polymer electrolyte

made of PEO and LiTF with ether oxygen to metal cation ratio of 10 to 1 will be

designated as PEO LiTF 10-1.

In preparing polymer electrolytes for impedance spectroscopy, the polymer-salt-

acetonitrile solution was poured into a teflon cup inside the nitrogen glovebox. The

acetonitrile was allowed to evaporate over a period to two to three days. The resulting

polymer electrolyte films were usually between 250 and 500 microns. The polymer
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electrolyte films were then cut to size and placed inside a impedance cell inside the

glovebox.

2.2 Infrared Spectroscopy

Far infrared spectra were collected on a Bruker IFS66V FT-IR. A mylar beam splitter

was used in the far IR region. The resolution was set to 1 cm−1. Spectra were collected

by casting films on polyethylene windows.

2.3 Impedance Spectroscopy

This section explores the basics of impedance spectroscopy. Since impedance spec-

troscopy is the primary experimental technique used in this thesis, a review of the

technique is given below.

2.3.1 Introduction

The primary use of impedance spectroscopy is to find the conductivity of samples such

as polymer electrolyte films. In order to find the conductivity of a sample, typically

the resistance is first found using Ohm’s law:

R =
V

I
(2.1)
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where V is the applied(measured) voltage and I is the measured(applied) current.

The conductivity can then be found with

R =
l

σA
(2.2)

where σ is the sample conductivity, l is the sample length, and A is the sample area.

In principle all that is required is to apply a DC voltage and measure the sub-

sequent DC current. This procedure will not lead to the desired sample resistance.

Consider the situation where a sample, such as a polymer electrolyte film, is placed

between two stainless steel electrodes. On applying a voltage, the ions in the polymer

electrolyte will move, and a current will be measured. Once the ions reach the steel

electrodes, they can not move further, and ions will accumulate at the electrodes.

The sample becomes polarized, and an internal electric field builds up to oppose the

applied electric field. Assuming that electron conduction in the polymer electrolyte

is insignificant and ion transfer to the stainless steel electrodes is insignificant, the

measured current will approach zero.

This situation can be improved somewhat by using electrodes made from the same

metal as the metal cations in the polymer electrolytes. If, for example, the polymer

electrolyte uses a lithium based salt, then lithium metal foil can be used as the

electrodes. In this case ions can transfer from the polymer electrolyte to the lithium

metal electrodes or vice versa. There will be a non-zero current that can be measured.

However, along with the sample resistance there will also be a resistance associated

with the tranfer of ions between the lithium metal and the polymer electrolyte. This

charge transfer resistance can be substantial and is impossible to separate from the
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sample resistance using DC methods.

While DC measurements can not distinguish between the bulk resistance and in-

terface effects, AC measurements allow such discrimination. Impedance spectroscopy

involves the use of AC measurements to find the frequency-dependent impedance of

a sample and test fixture. From these AC measurements the resistance of a sample

can be found.

If an AC current of the form I = I0cos(ωt) is applied, the resulting voltage will

be

V = Z ′(ω)I0cos(ωt)− Z ′′(ω)I0sin(ωt). (2.3)

A part of the voltage will be in phase with the applied current, and a part of the

voltage will be out of phase with the applied current. Z ′(ω) and Z ′′(ω) are the in

phase and out of phase impedances. Impedance spectroscopy is used to measure

Z ′(ω) and Z ′′(ω).

Instead of refering to the in phase and out of phase impedances, it is helpful to

consider Z ′(ω) and Z ′′(ω) as the real and imaginary part of a complex number.

Z(ω) = Z ′(ω) + iZ ′′(ω) (2.4)

The currents and voltages are also considered as complex quantities, I = I0e
iωt and

V = V0e
iωt. The complex form of Ohm’s law can then be written as V = ZI.

Considering the impedance as a complex quantity greatly simplifies the mathematics

associated with calculating impedances.

The complex formulation of voltages, currents, and impedances is easily demon-
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strated to be equivalent to equation 2.3. Physical measurements obviously entail

measuring the real parts of complex quantities. The real part of the applied current

is Re(I) = I0cos(ωt). The real part of the voltage, V, is

Re(V) = Re(ZI)

= Re((Z ′ + iZ ′′)I0e
iωt)

= Re((Z ′ + iZ ′′)(I0cos(ωt) + iI0sin(ωt)))

= Re(Z ′I0cos(ωt)− Z ′′I0sin(ωt) + iZ ′′I0cos(ωt) + iZ ′I0sin(ωt))

= Z ′I0cos(ωt)− Z ′′I0sin(ωt). (2.5)

The complex formulation is equivalent to the in phase/out of phase formulation.

While the complex formulation is helpful, it is the in phase and out of phase

components that are actually measured. The impedance of a ideal resistor in complex

notation is Z = R. The impedance of a ideal capacitor in complex notation is

Z = −i/ωC where C is the capacitance. The impedance of an ideal inductor is

Z = iωL where L in the inductance. The ideal resistor only has a real component.

The ideal capacitor and inductor only have a imaginary component. An impedance

that has a real component results in a input signal and a output signal with the same

phase. An impedance that has a imaginary component results in a input signal and a

output signal with a ±π/2 phase difference. An impedance with real and imaginary

components results in phases differences between 0 and ±π/2.

Though Z ′(ω) and Z ′′(ω) might appear independent of each other, they are actu-
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ally connected. The connection is given by the Kramers-Kronig relations[1]:

Z ′(ω)− Z ′(∞) =
2

π

∫ ∞

0

xZ ′′(x)− ωZ ′′(ω)

x2 − ω2
dx

Z ′′(ω) = −2ω

π

∫ ∞

0

Z ′(x)− Z ′(ω)

x2 − ω2
dx. (2.6)

The Kramers-Kronig relations result from the requirement that input and output sig-

nals be related by causality. In principle, Z ′(ω) could be measured by itself, and Z ′′(ω)

could be calculated with Kramers-Kronig relations. Because of practical difficulties

such as finite fequency ranges and errors in measured data, it is always preferable to

measure both Z ′(ω) and Z ′′(ω).

Before discussing a modern technique of measuring frequency-dependent impe-

dance, a more traditional technique using a Wheatstone bridge is presented. The

Wheatstone bridge is usually studied in introductory physics classes where it is learned

that a Wheatstone bridge can be used to find unknown resistances. Figure 2.1 illus-

trates a Wheatstone bridge with complex impedances instead of real impedances. Zs1

and Zs2 are two standard impedances whose impedance is known with high precision.

Zvar is a variable impedance whose real and imaginary values can be changed. For

example, Zvar might be made up of a variable resistor and a variable capacitor in

series. Zunk is the unknown impedance to be found. In order to find the unknown

impedance, a sinusoidal voltage is applied to the circuit. The variable impedance is

then adjusted until there is a null voltage reading on the volt meter. The condition

of a null voltage reading between the two nodes of the circuit leads to the following
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Figure 2.1: Basic layout of Wheatstone bridge

relation among the impedances:

Zunk =
Zs2

Zs1

Zvar. (2.7)

Since the other impedances are known, the unknown impedance can be found.

One shortcoming of the Wheatstone bridge and related bridge techniques is that

the useable frequency is usually limited to tens of kilohertz. Another problem is

that each frequency requires that the variable impedance be readjusted. This is a

slow process making the collection of data a very tedious process. A modern tech-

nique discussed later greatly extends the frequency range and automatically finds the

impedance without having to manually readjust a variable impedance.
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2.3.2 Equipment Setup

The block diagram shown in figure 2.2 illustrates the various components used in

taking impedance measurements. The core compenent is the HP 4192 LF impedance

analyzer. The impedance analyzer applies the frequency-dependent voltages and mea-

sures the frequency-dependent current from which it finds the frequency-dependent

impedance. Coaxial lines lead from the impedance analyzer to the impedance cell test

fixture. The test fixture consists of stainless steel electrodes one-half inch in diameter

in an enclosed casing. The test fixture also includes a micrometer to measure the film

thickness. The HP 4192 LF impedance analyzer is controlled by a computer through

a GPIB port. An Isotemp 1013 P refrigerated circulator is used for variable tem-

perature measurements. The Isotemp 1013 P is controlled by the computer through

a RS 232 port. The bath fluid used is a mixture of ethylene glycol and water. A

thermcouple, attached to the impedance cell and close to the sample, is connected to

a digital multimeter. The digital multimeter is connected to the computer through a

GPIB port.

The computer controls the impedance analyzer, temperature bath, and digital

multimeter. The software to do this was written in the Labview programming enviro-

ment(a product of National Instruments). One programs allows a single temperature

frequency sweep. The program allows the user to specify the frequency range, the

AC voltage, and the DC bias. The frequency range of the HP 4192 is 5 Hz to 13

MHz. The applied AC voltage can be from 5 mV to 1.1 V. The DC bias can range

from -35 V to 35 V. The frequency sweep is a logarithmic sweep. Upon completion
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Figure 2.2: Block diagram for experimental setup

of the frequency sweep, the impedance is displayed as -Im Z vs. Re Z. A seperate

program performs the temperature variable measurements. The temperature range

of the refrigerated circulator is from -30◦C to 200◦C. However, due to the ethylene

glycol/water bath fluid, a temperature range of 0◦C to 90◦ is about the maximum

that can be used. A third program provides a user friendly graphical interface to the

LEVM non-linear curve fitting program discussed in a later section.

A typical data run would include the following. The temperature range would be

set from 0◦C to 90◦C, and the temperature step size would be 10◦C. The frequency

range would be from 5 Hz to 10 MHz, and the DC bias would be set to zero. The

AC voltage was set to 50 mV. It is actually desireable to set the AC voltage as low

a possible in order to reduce non-linear effects that might be introduced. Due to

the operation of the HP 4192, setting the AC voltage much below 50 mV results in
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Figure 2.3: Figure illustrating basic operating principles of HP 4192 impedance analyzer. Figure

taken from reference [1]

significant reduction in the precision of the measured data. A full temperature run

from 0◦C to 90◦C would typically take between 9 to 10 hours.

2.3.3 Operation of HP 4192 LF

The Wheatstone bridge method of finding an unknown impedance was discussed

above. In this study, the HP 4192 LF was used to measure impedance. The HP 4192

LF uses a auto-balance bridge method[1][2] shown schematically in figure 2.3.

A sinusoidal voltage, ei, is applied to one end of the unknown impedance. A

different sinusoidal voltage, er, having the same frequency as ei is applied to the

right of the reference resistor, Rr. At a certain value of er, the node labelled Low

will be zero. The current, id, will also be zero so that the current in the unknown
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impedance will be the same as the current in Rr:

ir =
ei

Zunknown

=
er

Rr

. (2.8)

With this condition the unknown impedance is given by

Zunknown = Rr
ei

er

(2.9)

The voltages ei and er are fed into phase sensitive detectors that determine in-

phase and out of phase components from which the real and imaginary parts of

the impedance can be found.

The above result depends on the Low node being zero. If this not the case, the

null detector uses the phase and amplitude information contained in id to alter er

so that the Low node will be zero. This feedback process ensures that the bridge is

auto-balanced.

2.3.4 Circuit Modelling and Data Presentation

The HP 4192 LF is used to collect the real and the imaginary part of the impedance

versus frequency. Once the data is collected it must be interpreted. For proper

interpretation, a model is required. Models are usually specified by specifying a

mathematical equation. The mathematical equation should then be able to reproduce

the qualitative and quantitative features of the experimental data. In impedance

analysis instead of directly specifying a mathematical equation, a circuit model is

specified. This is of course equivalent to specifying a mathematical equation, but the
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Figure 2.4: Circuit model of polymer electrolyte between electrodes

model is more easily visualized and understood in terms of circuit components rather

than a mathematical equation.

Consider the following experimental situation. A polymer electrolyte film is placed

between two stainless steel electrodes. This situation is illustrated in figure 2.4. The

polymer electrolyte film between the stainless steel electrodes can be modeled by

a capacitor and resistor in parallel. The capacitor represents the capacitance of

the parallel stainless steel electrodes with the polymer as a dielectric. The polymer

electrolyte film is represented by a resistor. As illustrated in figure 2.4, the polymer

electrolyte resistor is in parallel with the electrode capacitor.

The impedance of a resistor is Z = R. The impedance of a capacitor is Z =

1/iωC. The total impedance of two impedances in parallel is found analogously to

two resistors in parallel:

1

Ztot

=
1

R
+

1

1/iωC
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Ztot =
R

1 + iωRC
. (2.10)

A standard method of presenting impedance data is to graph -Im Z vs. Re Z. From

equation 2.10, Re Z and -Im Z for the parallel resistor and capacitor are

ReZ =
R

1 + (ωRC)2

−ImZ =
ωR2C

1 + (ωRC)2
. (2.11)

For real ω, both Re Z and -Im Z are non-negative. It is easy to show that the following

relation holds for the real and imaginary parts of the impedance as given in equation

2.11.

(ReZ−R/2)2 + (−ImZ)2 = (R/2)2 (2.12)

Equation 2.12 is just the equation for a circle centered on the real axis at R/2 with a

radius of R/2. This is illustrated in figure 2.5. Assuming a parallel resistor/capacitor

captures the important features of the physical problem, the resistance of a sample

can be found by plotting -Im Z vs. Re Z and finding the point where the semicircle

approaches the non-zero real axis.

The parallel resistor and capacitor fails to model the fact that the stainless steel

electrodes are largely blocking to the ionic currents in the sample. How would this

blocking effect be modeled? When an excess of, say, positive charge accumulates in

the sample next to the electrodes, a excess of negative charge will accumulate on the

electrode. This situation can be modelled approximately with a capacitor. Figure

2.6 shows two circuits that can model the blocking effect of the electrodes. The two

circuits are mathematically equivalent though the capacitor values will be somewhat
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Figure 2.5: -Im Z versus Re Z for parallel resistor and capacitor

different for the two circuits. With the two capacitors, there can be no DC current

through the circuit which is expected for blocking electrodes. The relative values

of the capacitor will determine the shape of the -Im Z vs. Re Z plot. Physically,

however, one expects the blocking capacitor to be much larger than the capacitance

associated with the two electrodes seperated by the sample. This is because capaci-

tance goes like C ∼ 1/length. The distance between the two electrodes is much larger

than the distance between the accumulated charge in the sample and the electrode.

The capacitance of the blocking capacitor is therefore larger than the capacitance

associated with the two electrodes. The -Im Z vs. Re Z for this situation is shown in

figure 2.7. Figure 2.7 resembles figure 2.5 except now there is a low frequency vectical

spike. The vertical spike is due to the blocking capacitor, and it ensures that at zero

frequency the magnitude of the impedance will be infinite.
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Figure 2.6: Two model circuit to account for blocking electrodes

Figure 2.7: -Im Z versus Re Z for circuit models shown in figure 2.6
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An ideal capacitor and resistor in parallel give a perfect half circle with radius

R/2 when plotted as -Im Z vs. Re Z. However, a perfect semicircle is rarely seen

experimentally. What is often seen experimentally is flattened and/or skewed semicir-

cles. As the name suggests, flattened semicircles appear to have beem compressed so

that the vertical height of the semicircle is less than R/2. Skewed semicircles appear

asymmetric in a -Im Z vs. Re Z plot. It has been found empirically that flattened

semicircles can be accounted for by replacing the ideal resistor by what is called a

Cole-Cole element[3]. The impedance of the Cole-Cole element is given by

ZCC =
R

1 + (iτCCω)α
(2.13)

where τCC is a characteristic time and α is related to the flatness of the semicircle.

A skewed semicircle can be accounted for empirically with a Cole-Davidson element.

The impedance of the Cole-Davidson element[4] is given by

ZCD =
R

(1 + iτCDω)β
(2.14)

where τCD is a characteristic time and β is related the asymmetry of the semicircle.

The Cole-Cole and Cole-Davidson elements can be combined to form the Havriliak-

Negami element[5]. The impedance of the Havriliak-Negami element is given by

ZHN =
R

(1 + (iτHNω)α)β
(2.15)

where τHN is a characteristic time and α and β are related to flatness and skewness

respectively. While the Cole-Cole, Cole-Davidson, and Havriliak-Negami elements

have been succesful in fitting experimental data, a full theoretical justification for
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these equations is not available. One possible interpretation of these fitting elements is

that they represent a distribution of relaxation times[6, 7]. A single parallel RC circuit

has a single relaxation time. A distribution of relaxation times could therefore be

represented by a distribution of parallel RC circuits. Depending on the distribution,

this approach would give similar impedances as the Cole-Cole, Davidson-Cole, or

Havriliak-Negami elements. Whatever the theoretical justification of these equations

might be(distribution of relaxation times or not), they can be used to model the

experimentally data. The DC resisitance is the quantity to be extracted from the

experimental data, and this is given by the R parameter in equations 2.13,2.14,2.15.

Impedance data has been presented as -Im Z vs. Re Z. There are other methods

of presenting experimental data. The choice of data presentation depends on what

information is to be extracted and to a lesser extent personal taste. Along with

the impedance formalism data can be presented in the conductivity, dielectric, and

modulus formalisms.

The conductivity can be calculated from the impedance with σ(ω) = 1/Z(ω).

(Technically the inverse of the impedance is the admittance. The conductivity is then

calculated from the admittance and the length/area ratio. The term conductivity will

be used instead of admittance with the understanding that factors of length/area need

to be taken into account.) The conductivity is simply the inverse of the impedance.

Bauerle [8] has plotted experimental data as -Im σ vs. Re σ, but this method of data

presentation is rarely used. What is more commonly done is to plot σ′(ω) = Reσ(ω)

vs. log frequency. Consider again the resistor and capacitor in parallel. The complex
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conductivity of this circuit is

σ =
1

R
+ iωC. (2.16)

If σ′ is plotted versus log frequency, the plot will be a horizontal line with a y-axis

value of 1/R. A parallel resistor and capacitor is usually too simple to model a wide

range of experimental data. As will be seen in a later chapter, real experimental data

will exhibit dispersion at higher frequencies.

The dielectric formalism can be related to the conductivity formalism by σ(ω) =

iωε(ω). Naturally enough, the dielectric formalism is used for dielectric materials.

Pure dielectric materials do not exhibit a DC conductivity. If a material does exhibit

DC conducitivity, the DC conductivity can be substracted from σ(ω) before calcu-

lating ε(ω) in order to get the dielectric response. A resistor and capacitor in series

gives the classic Debye dielectric response and results in a perfect semicircle when

-Im ε is plotted versus Re ε.

The modulus formalism is related to the dielectric formalism by ε(ω) = 1/M(ω)

where M(ω) is the modulus function. Experimental data is usually presented in the

Modulus formalism as M ′′(ω) = ImM(ω) versus log frequency. One reason for the

popularity of the modulus formalism is that the modulus function can be related

to a function φ(t)[9] which describes the decay of the electric field when a constant

displacement field is applied:

M(ω) = M ′(∞)

[
1 +

∫ ∞

0

dφ(t)

dt
e−iωtdt

]
. (2.17)

A function that is often used for φ(t) is the stretched exponential, φ(t) = e−(t/τ)n
0 <
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n ≤ 1.

In this study data will presented as -Im Z vs. Re Z and as Re σ(ω) versus the

logarithm of frequency.

2.3.5 Non-linear Curve Fitting

Once a circuit model is chosen, it is necessary to fit this model to the experimental

data. Non-linear curve fitting must be used to fit the complicated circuit models to the

data. The non-linear curve fitting package used in this study is the LEVM program

written by J. Ross MacDonald and co-workers[1]. The LEVM was written specifically

for fitting circuit models to impedance data. The LEVM program supports a wide

range of circuit elements such as resistors, capacitors, inductors, Cole-Cole elements,

Cole-Davidson elements, Havriliak-Negami elements, and many others. These diverse

elements can be organized into many different configurations.

Let y(ω,P) represent the mathematical equation associated with the circuit model.

The vector P represents the free parameters in the equation. The experimental data

is represented by yi(ωi). Fitting programs usually search for the set of parameters,

P, that minimize the following sum.

χ2 =
∑

i

wi[yi(ωi)− y(ωi,P)]2 (2.18)

A weight factor, wi, can be included in the sum if a standard deviation is associated

with each data point. This ensures that points with a large standard deviation are

weighed less than points with a small standard deviation. If a standard deviation is
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not associated with each data point, unity weighting in which wi = 1 can be used.

For complex impedance data, there are two sets of data: the real impedance

and the imaginary impedance. While these two sets can be fit independently, it is

preferably to fit them together. The sum of squares to be minimized then is

χ2 =
∑

i

w′
i[Z

′
i − Z ′(ωi,P)]2 + w′′

i [Z
′′
i − Z ′′(ωi,P)]2. (2.19)

Even though it is known that the sum of squares is to be minimized, it is a far

from simple task to determine just how to do this. The reason for this difficulty is

that the space represented by the free parameters, P, will have many local minimum.

A program such as LEVM that searches the parameter space might find a local

minimum instead of the desired global minimum. It is therefore important to have

good initial guesses for the free parameters. The algorithm that the LEVM program

uses to search the parameter space is based on the Levenberg-Marquardt algorithm

hence the name LEVM.
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Chapter 3

Frequency-Dependent Conductivity of Polymer Electrolytes

3.1 Introduction

The purpose of this chapter is to investigate the frequency-dependent conductivity

of polymer electrolytes. It will be seen that the frequency-dependent properties of

polymer electrolytes are similar to those of other disordered solids such as ion con-

ducting glasses. Some of the models that have been used to understand the frequency-

dependent conductivity of disordered solids are discussed. These models usually in-

volve some distribution of hopping barriers/activation energies which suggests that

polymer electrolytes might also involve a distribution of activation energies.

In the last chapter various methods of presenting data measured by an impedance

analyser were discussed. This chapter presents data in terms of σ(ω). In particular,

the real part of σ(ω) as function of frequency is used.

Consider the simple parallel resistor/capacitor discussed in the previous chapter.

The impedance of that circuit was Z(ω) = R/(1+ iωRC). The conductivity(ignoring
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Figure 3.1: Frequency-dependent conductivity curve illustrating general behavior. At low fre-

quencies electrode blocking effects cause a decrease in conductivity. At high frequencies, frequency

dispersion occurs. The flat region gives the DC conductivity.

factors of area/length) is therefore σ(ω) = 1/Z(ω) = 1/R+ iωC. The real part of the

conductivity is just Re(σ(ω)) = 1/R. For the simple parallel resistor/capacitor circuit,

if the real part of the conductivity is plotted versus frequency the plot will just be a

flat horizontal line whose value is 1/R. For polymer electrolytes and other disordered

systems the frequency plots can be a bit more complicated. Figure 3.1 shows a typical

plot of which more examples will be seen later. The plot can be divided up into

three regions. At low frequencies, the real part of the conductivity decreases as the

frequency decreases. At high frequencies, the real part of the conductivity increases

as the frequency increases. In between the high and low frequecies the conductivity is

fairly flat. This flat frequency independent part is reminiscent of the simple parallel
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resistor/capacitor which also gives a flat real part of the conductivity. In fact the

value of the conductivity along this flat part is the DC conductivity. The downward

curve of the conductivity at low frequecy is not inherent to the sample itself but to

the blocking electrodes. At low frequecies, the sample can become polarized due to

a build up of charge at the electrodes. The polarization reduces the current, and

therefore the conductivity is reduced. This polarization effect will not be of further

interest in this work.

The high frequency conductivity dispersion is of further interest. While some

work has been done investigating this region for polymer electrolytes[1, 2, 3], this

high freqeuncy dispersion has been extensively studied for ionic conductors such as

glass electrolytes, electron conductors such as amorphous semiconductors, and other

disordered solids. This chapter will compare the results of these systems with polymer

electrolytes. It will be shown that there are striking similarities which suggest that

there are similarities in the ionic transport mechanism also.

3.2 Conductivity properties of disordered solids

The real part of the conductivity versus frequency for disordered solids such as ionic

glasses and amorphous semiconductors exhibit many similarities. Dyre and Schroder

[4, 5] listed a number of properties that are often seen in these systems. One of these

properties is that at high frequencies the real part of the conductivity goes like a power

law in frequency i.e. σ′(ω) = Re(σ(ω)) ∝ ωn. This behavior is similar to that pointed
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out by Jonscher [6] for dielectric systems. The n in ωn is ususally between .6 and 1. As

discussed in the previous section, another characteristic property is that the frequency

dispersion ceases and becomes frequency independent as frequency decreases. Also,

the property known as the Barton-Nakajima-Namikawa(BNN) relation[4] is found to

hold. The BNN relation states that σdc = p∆εε0ωm where ωm is the frequency at which

the frequency dispersion begins, p is of the order unity, and ∆εε0 is the dielectric loss.

Probably the most remarkable property, however, is that the conductivity curves can

often be scaled onto a master curve. This demonstrates that disordered solids exhibit

a degree of universality.

To perform this scaling the y-axis is scaled by the DC conductivity so that the

y-axis becomes log(σ/σDC). The conductivity curves must also be shifted along the

frequency axis. A number of recent papers have discussed how to perform this fre-

quency shift. Ghosh and Sural [7] looked at the scaling behavior of flouride glasses.

The frequency was scaled by the peak frequency of M ′′(ω) versus ω. Recall that

M∗ = 1/ε∗ = M ′ + iM ′′. Using this peak frequency Ghosh and Sural were able

to scale flouride glasses both at different temperatures and different concentrations.

The peak frequency in the M ′′ is usually where the frequency dispersion begins in

the σ′(ω) spectrum. The peak frequency is then basically equivalent to the ωn of

the BNN relation. Roling et al. [8] investigated the scaling behavior of the glass

xNa2O · (1− x)B2O3. They found that for a given concentration x the temperature

dependent conductivity curves could be scaled onto a master curve by using the scal-

ing ω/σDCT where T is the temperature. The σDCT scaling has been found to work
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on many systems. However, for different concentrations x, the σDCT scaling failed.

The scaling behavior for concentration was regained by using ωx/σDCT . Sidebottom

[9, 10, 11] showed that the scaling ωx/σDCT failed for the (Na2O)x(GeO2)1−x system.

Sidebottom then argued for a frequency scaling of the form ωε0∆ε/σDC and with this

was able to scale the (Na2O)x(GeO2)1−x system. Schroder and Dyre [12] soon after-

ward argued that if scaling is at all possible the scaled frequency should be given by

ωε0∆ε/σDC . The scaling ωx/σDCT and ωε0∆ε/σDC are equivalent if ∆ε ∝ x/T . This

will be seen not to be the case for polymer electrolytes.

When conductivity curves scale, a master equation of the form

σ(ω)

σDC

= F
(

ω

ωs

)
(3.1)

where ωs is the scaling frequency, applies. The existence of a master curve indicates

that the system obeys the time-temperature superposition principle. If the master

curve is known, the individual conductivity curves can be characterized by two pa-

rameters: σDC and ωs. As will be seen below, the study of these two parameters and

how they are related yields valuable information.

3.3 Scaling properties of polymer electrolytes

In the previous section the characteristic features of conductivity in disordered ma-

terials were discussed. Emphasis, however, was placed on the scaling behavior of the

conductivity. It was seen that by scaling the y-axis by the DC conductivity and the

x-axis by a characteristic frequency, the conductivity spectrum of ionic glasses and
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Figure 3.2: High frequency behavior of polymer electrolyte conductivity. Some of the curves have

been vertically displaced for clarity.

amorphous semiconductors can often be made to collapse onto a single master curve.

In this section, it is demonstrated that similar behavior is seen in polymer electrolyte

conductivity.

The polymer salt conductivity data that will be presented is for C2000-LiTFSI.

C2000, ([CH2CH2OCH2CHCClH2O]n), is a amorphous elastomeric polymer. Li-

TFSI (LiN(SO2CF3)2) is a common salt used in polymer electrolytes. Conductivity

data were collected for polymer oxygen to lithium ratios of 80:1, 60:1, 40:1, 30:1, 20:1,

and 10:1. The temperature range used is 0◦C to 90◦C in 10◦ steps.

In the previous section, it was mentioned that an often observed result of con-

ductivity in disordered materials at high frequencies is σ′(ω) ∝ ωn where n is usually

between .6 and 1. Figure 3.2 shows log σ(f) versus log f in the frequency range from 1
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Figure 3.3: Real part of conductivity versus frequency for C2000-LiTFSI 10:1. The bottom curve

is at a temperature of 0◦C. The temperature interval between curves is 10 degrees.

MHz to 10 MHz. The different lines correspond to different concentrations but at the

same temperature of 0◦C. The lines appear linear with n values between about .6 and

.8. Dyre [13], however, cautions about the pure power law form since an exponent

such as n = 1 − 2/ln(ωτ), where τ is some microscopic time, can be used to fit the

data, and this form for n can be derived theoretically from a barrier hopping picture.

It will now be seen whether polymer electrolytes can be scaled to a master curve.

To this end the conductivity spectrum of the 10:1 concentration is first examined.

Figure 3.3 shows conductivity spectrum of C2000-LiTFSI 10:1 in the temperature

range of 0◦C to 70◦C. The 80 and 90◦C curves are not shown since they show very

little frequency dispersion at the higher frequencies. It is seen that the lower the

temperature the lower the frequency at which the dispersion region begins. As the
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Figure 3.4: Frequency spectrum curve of fig. 3.3 scaled by DC conductivity

temperature increases the start of the dispersion region shifts to higher frequencies.

Correspondingly the frequency dispersion becomes less pronounced at higher temper-

atures. As a first test of scaling, log(σ/σDC) is plotted versus unscaled frequency in

figure 3.4. It appears that the frequency dispersion regions do resemble each other and

that curves will collapse onto a single curve with the proper shift along the frequency

axis.

What is the proper shift along the frequency axis? The previous section men-

tioned two possibilities for the scaled frequency: f/σDCT and f∆εε0/σDC . The first

possibility is just the second with ∆ε ∝ 1/T . To aid in the determination of the

proper frequency shift factor, the start of the frequency dispersion region was arbi-

trarily chosen to be the frequency at which each of the curve in figure 3.4 reached the

y-axis value of 0.1. These frequencies plotted versus the DC conductivity are shown
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Figure 3.5: DC conductivity plotted versus the frequency at which dispersion begins. The polymer

electrolyte is C2000-LiTFSI 10:1.

in figure 3.5 where a linear relation is seen. This suggest that the x-axis scaling should

be given by f/σDC .

The curves from figure 3.4 can now be collapsed onto a master curve. Figure 3.6

shows the master curve attained from figure 3.4 by using the scaled frequency f/σDC .

It is seen that there is a good collapse onto a single curve. Though not of primary

interest, the electrode blocking effects at low frequency even collapse somewhat.

As a further example of polymer electrolyte scaling behavior, the C2000-LiTFSI

80:1 is also shown to scale. Figure 3.7 shows the real part of the conductivity ver-

sus frequency for various temperatures. The 80:1 displays some somewhat unusual

behavior. The 80:1 conductivity curves start flat and curves upwards qualitatively

similar to the 10:1. However, as the frequency increases a bend appears in the con-
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Figure 3.6: Master curve for C2000-LiTFSI 10:1.

Figure 3.7: Real part of conductivity versus frequency for C2000-LiTFSI 80:1. The bottom curve

is at a temperature of 0◦C. The temperature interval between curves is 10 degrees
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Figure 3.8: Master curve for C2000-LiTFSI 80:1.

ductivity. Below the bend the the curve appears not to have yet reached a constant

slope. Above the bend, the slope appears constant but smaller than the curve below

the bend would suggest. While noteworthy this bend does not appear to effect the

scaling properties. Figure 3.8 shows the master curve of C2000-LiTFSI 80:1. The

same frequency scaling that was used for the 10:1 has been used for the 80:1. Again

the collapse onto a single curve is quite good.

It has been shown that the temperature dependent curves for both the 10:1 and the

80:1 C2000-LiTFSI concentrations collapse onto a master curve. The next question

becomes: will curves of different concentrations also collapse onto a single master

curve? Figure 3.9 shows scaled conductivity versus unscaled frequency. Each curve

was taken at 0◦C. While the frequency has not been scaled, it is obvious from the

figure that no frequency shift will scale the curves onto a single master curve. This
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Figure 3.9: Scaled conductivity versus unscaled frequency for various concentrations.

contrasts to glass ionic conductors where a master curve for both concentration and

temperature is often found to exist.

The BNN relation will now be investigated as this will provide further insight into

polymer electrolyte conductivity. The BNN relation says that σDC = p∆εε0ωm(we

will assume p = 1) where ∆ε is the dielectric loss strength(εs − ε∞) and ωm is the

frequency at which frequency disperions begins. To test this relation it is necessary

to have the dielectric loss strength. There can be a number of contributions to the

dielectric loss strength. Because there are dipoles along the polymer backbone, there

is a dielectric loss due to the polymer. This loss is usually rather weak(εpolymer < 10)

and occurs at frequencies greater than the frequency range of this study. There is

also a dielectric loss due to the motion of the ions. Considering ion motion only, the
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frequency-dependent conductivity can be written as

σ(ω) = σ(0) + iω(ε(ω)− ε∞)ε0. (3.2)

The dielectric loss can be found with

∆εε0 = lim
ω→0

Im
σ(ω)− σ(0)

ω
. (3.3)

It can be difficult to apply equation 3.3. The reason is that at low frequencies there

is a large dielectric effect due to electrode polarization. This effect is so large that it

obscures the smaller relaxation due to ion motion. To extract a reliable estimate for

the dielectric loss due to ion motion, circuit modelling was performed. The circuit

model used is shown in figure 3.10. Also shown in the figure is an example of the

impedance data that was fitted with the circuit model. The circuit model consists of

capacitor in parallel with a Havriliak-Negami impedance(see Experimental section).

These two elements are then in series with a constant-phase element(CPE). The CPE

represents the electrode polarization effects.

The circuit model in the figure 3.10 gives good fits to the experimental data.

Strictly speaking, a dielectric loss strength does not exist for the Havriliak-Negami

impedance since if σHN(ω) = 1/ZHN(ω) is inserted into equation 3.3 the resulting

expression diverges for α, β < 1. If α, β = 1 then the dielectric loss strength is given

by

∆εε0 =
τHN l

RA
(3.4)

where l and A are the length and area of the sample. Even though the fits yield α

and β values that are less than one, equation 3.4 will still be used as a estimate for
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Figure 3.10: Circuit model used to fit impedance data and impedance data for C2000 LiTFSI 10:1

at 20◦C.

the dielectric loss strength.

Figure 3.11 shows the dielectric loss strength as a function of temperature. The

dieletric loss strength was found using the curve fitting discussed above. Three con-

centrations are shown. The 80:1 and 40:1 concentrations are largely independent of

temperature. The 10:1 shows a distinct temperature dependence. The 10:1, however,

is problematic at high temperatures. The reason for this is that at high tempera-

tures the 10:1 shows an incomplete semicircle in the imaginary impedance versus real

impedance plots. Since the semicircles are less complete than at the lower tempera-

tures the fits are less reliable. The value of the capacitor in figure 3.10 for the 10:1

is fairly constant in the 0◦C to 40◦C range but starts increasing at 50◦C. If this

capacitor is fixed to its value in the 0◦C to 40◦C range then the dielectric loss is

given by the triangles in figure 3.11. This suggests the dielectric loss might also be

approximately constant for the 10:1.
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Figure 3.11: Dielectric loss as a function of temperature. The concentrations 10:1, 40:1, and 80:1

are shown.

In figure 3.5 it was seen that the DC conductivity versus the frequency at which

dispersion starts is linear. According to the BNN relation the slope of DC conduc-

tivity versus the frequency at which dispersion begins should be ∆εε0. If the BNN

relation applies to polymer electrolytes this gives a second method to find the di-

electric loss due to ion motion. In figure 3.12, the dieletric loss found by scaling the

conductivity(i.e. the BNN relation) is compared to the dielectric loss found by curve

fitting. The curve fitting values of ∆ε were taken from fits to the impedance at 20◦C.

The BNN values of ∆ε were taken from the slopes of plots similar to figure 3.5 but for

different concentrations. There is a systematic difference between the two methods

for finding ∆ε. This systematic difference could be due to an additional dielectric

process included in the curve fitting method. It could be due to the use of equation

3.3 even though α, β 6= 1, or it could be due to the assumption that p = 1. The

two methods do, however, show the same general behavior as concentration is varied.
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Figure 3.12: Comparison of dielectric derived from curve fitting and dielectric loss from BNN

relation.

Since ∆ε is due to ion motion, it might be expected that ∆ε ∝ concentraion. How-

ever, figure 3.12 shows that this is not the case. Figure 3.12 shows a more complex

dependence on concentration than a simple linear relation. This complex relation

is not unexpected due to the ion pairing and aggregation seen spectroscopically in

polymer electrolytes(see Introduction).

3.4 Theoretical treatments of conductivity scaling

and frequency dispersion

A variety of different approaches have been used to understand the remarkable con-

ductivity scaling properties of disordered solids. The approaches discussed below

include the macroscopic model, the symmetric hopping model, and monte carlo sim-

ulations of a lattice with site disorder in which the ions are interacting.
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3.4.1 The macroscopic model

The macroscopic model posits a macroscopic conductivity J = g(r) E = -g(r) ∇φ.

Inserting this into the equation for charge conservation, dρ
dt

= ∇ · J, gives dρ
dt

=

∇· (−g(r)∇φ). The fields and free charge density are considered periodic in t so that

ρ(r, t) = ρ(r)eiωt and dρ
dt

= iωρ. Inserting this result into the Maxwell equation,

∇ ·D = ρ, (3.5)

gives with D = ε∞ε0E

∇ · ([iωε∞ε0 + g(r)]∇φ) = 0 (3.6)

Consider now a two dimensional discretetization of the equation 3.6. Between

the lattice points (j,k) and (j,k+1) would be an admittance iωε∞ε0 + gj,k+1/2 where

gj,k+1/2 corresponds to the conductivity between the points (j,k) and (j,k+1). The

admittance iωε∞ε0 +gj,k+1/2 corresponds to the impedance of a capacitor and resistor

in parallel with the resistance given by 1/gj,k+1/2 and the capacitance by 1/iωε∞ε0. A

two dimensional discretization would therefore correspond to the circuit model shown

in figure 3.13. Though not obvious from the circuit model, equation 3.6 takes into

account the interactions of the free ions. This comes about from the use of equation

3.5, i.e. Gauss’s law, in deriving equation 3.6. In using ε∞ for the dielectric behavior

of the bound charge instead of a frequency-dependent dielectric, ε(ω), it is assumed

that the bound charge reacts nearly instantaneously compared to the frequencies ω of

interest. The values of the conductivity g used between two lattice points are given

by some distribution f(g), and the different g’s are assumed to be uncorrelated.
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Figure 3.13: Circuit representing macroscopic model

The frequency dispersion properties of the macroscopic model come from changes

with frequency of the voltages at the nodes. At zero frequency, the capacitors can

be ignored and the resistors give rise to different voltages at the nodes. As the

frequency increases, the capacitors allow the current to bypass the larger resistors.

This will change the distribution of voltages at the nodes. Since the larger resistors

are bypassed, the smaller resistors are now what limit the flow of current. The

conductivity increases as the larger resistors are bypassed and smaller resistors become

the limiting factor. This trend continues as more and more resistors are bypassed with

increasing frequency.

The solution to equation 3.6 would entail the following. A voltage is applied

between opposite sides of the circuit model to supply part of the boundary conditions.

Periodic boundary condition can be applied to the other sides of the circuit. Using
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equation 3.6, the voltage can be found at each point of the lattice. Since the voltage

is known at each point in the lattice and the admittance is known between all lattice

points, the total current moving through the circuit can be found. From the applied

voltage and the total current, the total conductivity can be found as a function of

frequency.

Instead of solving eqaution 3.6 as discussed above, one could try to find an analytic

expression for the total impedance represented by the circuit model in figure 3.13.

In general, however, the total impedance represented by figure 3.13 is an intractable

problem. What can be done instead is to apply an approximating procedure to

find the total impedance. The approximating procedure used is called the effective

medium approximation.

In the effective medium approximation [14, 15, 16] all of the different admittances

between two lattice points are replaced by an effective admittance. Consider a col-

umn of lattice points or nodes from figure 3.13 (the voltage source is attached to the

boundaries parallel to the column considered). Each of these nodes will have a dif-

ferent voltage due the different admittances. Now consider the average of the voltage

nodes, Vm, along the column. In a circuit where all of the admittances are replaced

by an effective admittance, the same average voltage will appear along the column of

nodes. If one of the effective admittances perpendicular to the column is replaced by

an admittance from the distribution f(g), a new voltage, Vm + Vx, will appear at the

node where the admittance is connected. The requirement that Vx disappear when
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averaged over the distribution f(g) leads to the condition

∫ ∞

0
f(g)

g − σeff

g + (d− 1)σeff + diωε∞ε
dg = 0. (3.7)

In equation 3.7, d is the dimension, f(g) is the distribution for the conductance, and

σeff is the effective conductance. As a example of the use of equation 3.7, take

the conductances to be thermally activated, g(E) = g0e
E/kT , and consider a uniform

distribution of activation energies with a maximum energy Emax. The result is[15, 16].

σeff (ω) =
σeff (ω) + [(d− 1)σeff (ω) + diωε0ε∞]

Emax/kT
×

ln

(
(d− 1)σeff (ω) + diωε∞ε0 + g0

(d− 1)σeff (ω) + diωε∞ε0 + g0e−Emax/kT

)
(3.8)

With certain assumptions concerning the frequencies and Emax, equation 3.8 can be

written in the form

σeff (ω)

σeff (0)
ln

(
σeff (ω)

σeff (0)

)
= i

ω

ωc

(3.9)

where the DC conductivity is σeff (0) = g0

d−1
e−Emax/kT and ωc =

dkTσeff (0)

ε∞ε0Emax
.

Assuming that effective medium approximation is valid, equation 3.9 tells us that a

random distribution of conductivities chosen from a uniform distribution of activation

energies can be scaled onto the same master curve. Not only can conductivity curves

at different temperatures be scaled, but conductivity curves with different Emax can

be scaled also. Dyre [16] has shown that equation 3.9 is more general than the

derivation from a uniform distribution of activation energies would suggest. In the

limit, T → 0, equation 3.9 should apply to any distribution. Dyre checked this

result by solving equation 3.6 numerical for a two dimensional lattice, and found
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good agreement between the numerical solutions and effective medium theory at low

temperatures.

There are difficulties, however, in applying equation 3.9 to polymer electrolytes.

One difficulty is in the frequency shift factor. The frequency shift factor for equation

3.9 is ωc =
dkTσeff (0)

ε∞ε0Emax
. For the C2000-LiTFSI polymer electrolyte, it was seen that

the frequency shift factor did not depend on temperature but depended only on

the DC conductivity. Another problem with polymer electrolytes unaccounted for by

equation 3.9 was the lack of scaling with concentration. The conductivity spectrum of

the different concentrations had slightly different shapes(see fig. 3.9). These different

shapes prevent the concentrations from scaling onto a master curve which would

have been independent of concentration and temperature. While equation 3.9 does

demonstrate different scaling for different temperatures and different Emax, it can not

be used to understand all aspects of polymer electrolyte scaling.

3.4.2 The symmetric hopping model

In the macroscopic model, macroscopic regions of a disordered solid are replaced by

effective resistors which represents the conductivity of that region. The effects of

any bound charge are taken into account by a capacitor in parallel with the resistor.

Intuitively, however, one expects for a material such as an ionic glass that the disorder

should be represented on the microscopic level. A model that represents disordered

ionic conduction on the microscopic level is therefore desired. Hopping models are

commonly used in models of conduction. A simple example of a hopping model is the
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symmetric hopping model.

Consider a lattice of sites with a single particle in the lattice. Hopping models are

often expressed in terms of a master equation for this lattice:

dP (i, t)

dt
= ΣkΓ(i, k)P (k, t)− Γ(k, i)P (i, t). (3.10)

P(i,t) is the probability that a particle is at site i at time t. The hopping rate from a

site i to a site k is given by Γ(i, k). The first term on the right hand side of equation

3.10 gives the probability flow into a site i while the second term gives the probability

flow out of the site i. In general, Γ(i, k) is not equal to Γ(k, i). In the symmetric

hopping model, however, Γ(i, k) is taken to be equal to Γ(k, i). Equation 3.10 the

simplifies to

dP (i, t)

dt
= ΣkΓ(i, k)(P (k, t)− P (i, t)). (3.11)

The hopping rates Γ(i, k) can be considered as due to energy barriers between

sites. The sites are situated at the same minimum energy while a distribution of

energy barriers seperate the sites. This situation is illustrated schematically in figure

3.14. The same minimum energy is a result of the symmetric requirement on Γ(i, k).

If the sites were at different energies, Γ(i, k) = Γ(k, i) would not hold. The hopping

rates are taken to be thermally activated, i.e. Γ(i, k) ∝ eEij/kT where Eij is the energy

barrier between sites i and j.

Equations 3.10 and 3.11 give the probability of occupation of a site as a function

of time. However what is measured experimentally is the conductivity as a function
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Figure 3.14: Schematic of symmetric barrier hopping

of frequency. A relation between the master equation approach and the frequency-

dependent conductivity is required. This relation is supplied by linear response theory

[17]. According to linear response theory, the frequency-dependent diffusion constant

is given by

D(ω) =
∫ ∞

0
eiωt < v(0)v(t) > dt. (3.12)

The term 〈v(0)v(t)〉, in the linear response result, is the velocity autocorrelation

function. It comes from considering an ensemble of systems each of which obey the

same master equation. Velocities in a hopping model are not always clear since the

hop itself is nearly instantaneous compared to the residence time at a site. The

difficulty can be assuaged by formulating equation 3.12 in terms of the mean-squared

displacement 〈r2(t)〉. The conductivity is given by the frequency-dependent Nernst-
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Einstein relation

σ(ω) =
Nq2D(ω)

kT
(3.13)

where N is the free charge concentration and q is the charge of the charge carriers.

As an simple example of the use of equation 3.12, consider the non-disordered

situation where only nearest neighbor rates are non-zero and all barrier heights are

equal. At any site a particle has an equal chance of hopping in any of the allowed

directions. Once a particle hops in some direction to a new site, it immediately

becomes decorrelated since at the new site there is again an equal chance of hopping

in any of the allowed directions. The velocity autocorrelation function, < v(0)v(t) >,

is then, approximately, a delta fuction, δ(t). Inserting a delta function into 3.12

gives D(ω) = const. Equation 3.13 them implies that conductivity is a constant

independent of frequency. This constrast with the disordered solids discussed in

this chapter where the conductivity is frequency independent at low frequencies but

increases with frequency at higher frequencies.

In disordered solids the energy barriers will not all be the same, and this will

lead to frequency dispersion seen at higher frequencies. To see how this comes about

consider a particle sitting in its potential well. There are a number of different

directions the particle can hop, but the highest probability hopping direction will

be the one with the lowest energy barrier. Say the particle hops in the direction of

the lowest energy barrier and arrives at a new site. What will be the particle’s next

hop? At the new sight the most probable hop will again be in the direction of the

lowest energy barrier. Since the particle just hopped over a low energy barrier, it is
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possible that barrier just crossed is the lowest barrier at the new site as well. If this

is the case, the particle will most likely hop back to the site from which it originated.

This phenomenon it referred to as “bounce back”. The qualitative behavior of the

autocorrelation function in which “bounce back” occurs is as follows. At very short

times, before the second hop of the particle, the autocorrelation function is positive

and close to its maximum. When the bounce back effect starts, the autocorrelation

function decays rapidly and becomes negative(corresponding to v(0) and v(t) being

in opposite directions). From the negative value the autocorrelation function will

decay to zero as the particles become decorrelated from their initial hop. Since

the autocorrelation function decays to zero at long times, the conductivity will be

frequency independent at small frequencies. At short times there is a change from

positive to negative values of the autocorrelation function. This short time behavior

will be reflected in the high frequency behavior of the conductivity.

A more intuitive way to think about frequency dispersion in hopping models is in

terms of which barriers can be crossed at a given frequency. Roughly speaking, at a

given fixed frequency the barriers that can be crossed are those for which the hopping

rate over the barrier is greater than the frequency. As the frequency is decreased

larger and larger barriers will be encountered, and these larger barriers lead to a

decrease in the conductivity. As the frequency is increased, the particle can only

hop over smaller barriers. The particles are confined to hop in regions with small

barriers that are surrounded by larger barriers. Since large barriers can be crossed

at low frequencies and only small barriers can be crossed at high frequencies, the
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conductivity will increase with increasing frequency.

As to the scaling properties of the symmetric hopping model, an analytic treat-

ment of the symmetric hopping is even more unwieldy than the macroscopic model.

However, Dyre [18] has done a approximate analytic calculation in the T → 0 limit.

The result turns out to be the same as equation 3.9. Numerical simulations were also

performed for various distributions of barriers heights and compared with 3.9. Scaling

was demonstrated for varous distributions of barriers and different temperatures in

the symmetric hopping model.

3.4.3 Site energy disorder and Coulomb interactions

While the symmetric hopping model does capture a number of features of frequency

dispersion and conductivity scaling, a more realistic model would include site energy

disorder and Coulombic interactions. If site energy disorder is applied, the particles

are no longer trapped at the same potential depth. This excludes the symmetry,

Γ(i, j) = Γ(j, i), associated with the symmetric hopping model. Another, perhaps

unrealistic, aspect of hopping models is that the charge carriers do not interact or

that the interaction is dealt with effectively in the distribution of barriers. An explicit

treatment of the interaction of the charge carriers along with the site energy disorder

would be a more realistic model of disordered solids. An analytic treatment of this

model is impossible. The main tool, therefore, used to investigate this model is Monte

Carlo simulations. The hopping model with coulomb interactions will be discussed

again in a later chapter but some work related to scaling in presented below.
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Porto et al. [19] performed monte carlo simulations on systems with site energy

disorder. The site energy were chosen from a Gaussian distribution. While site

exclusion was taken into account, Coulomb interactions were not included. Frequency

dispersion with approximate power law behavior at high frequencies was seen in the

simulations. However, scaling was somewhat poor at higher simulation temperatures.

The scaling properties did improve at the lower temperatures.

Roling [20] performed monte carlo simulations on a symmetric hopping model

with coulomb interactions. The scaled frequency used to investigate scaling prop-

erties was the experimentally verified, f/σdcT . For the symmetric hopping model

without coulomb interactions, the scaled frequency f/σdcT failed to scale different

temperatures onto a master curve. Scaling could be regained, however, if the scaled

frequency f/σdcT
1.3 was used. If Coulomb interactions are included, the temperature

dependent conductivity were scaled by f/σdcT . Since f/σdcT has been used experi-

mentally, this suggests that Coulomb interactions might be important to the observed

scaling behavior.

3.5 Summary

Transport in disordered solids have many striking similarities. These similarities in-

clude a power law behavior at high frequencies, the BNN relation, and scaling. These

properties have been found to hold in a wide variety of materials such as amrphous

semiconductors and ionic glasses. It is therefore surprising that very little work
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has been in examining the frequency-dependent conductivity properties of polymer

electrolytes. In polymer electrolytes, ionic transport certainly takes place in the dis-

ordered amorphous regions of the polymer. In some sense then it is not surprising

that polymer electrolytes display some of same universal behavior as other disordered

conductors. The reason that the parallels between polymer electrolytes and other

disordered solids have not been drawn before is probably due to the perceived dif-

ferences in the transport mechanism in materials such as ionic glasses/amorphous

semiconductors and polymer electrolytes. In ionic glasses, the disorder inherent in

the molten state of the glass is frozen in when the glass is made by quenching from

the molten state. The available sites for ions are in fixed random positions in the

glass. A distribution of barriers therefore seems a natural model for ionic transport

in glasses. In amorphous semiconductors, the disorder comes from a distribution of

tunneling rates between localized states in the semiconductor [21]. The situation is

different in polymer electrolytes. In polymer electrolytes the polymeric environment

of the ions is changing in time so that there is no fixed distribution of sites and ion

movement is correlated with the polymer. Another difference between ionic glasses

and polymer electrolytes is that in ionic glasses the temperature dependence of the

DC conductivity usually follows the Arrhenius equation while the DC conductivity

of polymer electrolytes is usually non-Arrhenian and follows a Vogel type equation.

The perceived differences between polymer electrolytes and other disordered solids

seem to have prevented the search for similarities. This chapter has showed that the

similarities do exist which suggests that differeneces between transport in polymer
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electrolytes and other disordered solids might not be as clear cut as first thought.
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Chapter 4

The Vogel Equation and Polymer Electrolytes

The last chapter pointed out a number of similarities between the frequency-depen-

dent conductivity of polymer electrolytes and other disordered solids such as ionic

glasses. These similarites are surprising since the ionic transport mechanism in poly-

mer electrolytes is thought to be quite different than that in glasses. One reason

the two mechanisms are thought to be so different is that in polymer electrolytes the

temperature dependent DC conductivity usually follows the Vogel equation whereas

in glasses the DC conductivity is usually described by the Arrhenius equation.

This chapter reviews the two standard arguements that lead to the Vogel equa-

tion. The first approach is the free volume arguements as presented by Cohen and

Turnbull[1]. The free volume arguements are especially attractive because of their

intuitive appeal. The second approach is the configurational entropy arguement of

Adam and Gibbs[2]. While both these approaches lead to the Vogel equation, they

are quite different in terms of a microscopic picture.

After the review of the Vogel equation, the application of the Vogel equation
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to polymer electrolytes is discussed. In particular, it is shown that under certain

circumstances the Vogel equation fails to provide an adequate description of polymer

electrolyte conductivity.

Finally, conductivity of ionic glasses and ionic crystals are shown that exhibit Vogel

like behavior. This again demonstrates that ionic conduction in polymer electrolytes

might not be so different from other ion conductors.

4.1 Approaches to the Vogel equation

4.1.1 Free volume theories

The free volume approaches are attractive because of the their intuitive plausibility.

For a particle to move from one point to another, there must be some unoccupied

volume large enough to accommodate the particle in the direction of particle move-

ment. This unoccupied volume is part of the free volume of a system of particles.

Divide the total volume of a system of particles into two parts. One part is the vol-

ume occupied by the particles themselves. If, for example, the system of particles is a

system of hard spheres the volume occupied by the particles is Vparticles = Nv0 where

N is the number of particles and v0 is the volume of one of the hard spheres. The free

volume is the total volume minus the volume of the particles, Vfree = Vtotal−Vparticles.

Dividing by the total number of particles, N, gives vf = vt − v0 where vf is the free

volume per particle and vt is the total volume per particle. The free volume per

particle, vf , is the average free volume per particle. The free volume associated with
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an individual particle differs from particle to particle. In order for a particle to make

a permanent displacement, there must be enough free volume associated with the

particle for it to both move to a new location and for a different particle to move

into its previous location. For this event to occur there must be some minimum, v∗,

free volume associated with the particle. The free volume associated with a particle

is not considered as a static property. The free volume associated with a particle is

considered to be constantly redistributing. If at one point in time a particle does not

have enough associated free volume for movement to occur, the particle might have

enough associated free volume at a later point in time. This redistribution of free

volume is thought to be unactivated or of having an activation energy much less than

kT.

Using standard techniques from statistical mechanics, Cohen and Turnbull[1] de-

rived the following equation for the distribution of free volume per particle.

p(v) =
γ

vf

e−γv/vf (4.1)

The parameter γ is related to the overlap of free volume and is of the order unity,

and again vf is the average free volume per particle. The probability that the free

volume associated with a particle is larger than v∗ is

Prob[v > v∗] =
∫ ∞

v∗
p(v)dv = e−γv∗/vf . (4.2)

A property of the system of particles such as the diffusion constant which depends

on the movement of the particles can then be written as

D = Ae−γv∗/vf (4.3)
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where A is a proportionality constant.

Equation 4.3 gives the diffusion constant in terms of the average free volume per

particle, vf . What is desired, however, is a equation in terms of temperature. Since

knowledge of the exact temperature dependent behavior of vf is lacking, the ansatz,

vf = kα(T − T0), is made. The parameter, k, is a proportionality constant, α is the

coefficient of thermal expansion, and T0 is a temperature greater than zero at which

the free volume disappears. Incorporating k, α, γ, and v∗ into a new parameter, B,

leads to the Vogel equation:

D = Ae
−B

T−T0 . (4.4)

A free volume mechanism is probably the dominant picture of transport among

polymer electrolyte researchers. In the free volume picture, the ions in the polymer

electrolyte need a certain amount of free volume in order to move. The constant

redistribution of the free volume is due to the movement of the polymer. As the

polymer structure evolves in time, ions are able to diffuse through the polymer.

4.1.2 The configuration entropy approach

A very different approach to the Vogel equation developed by Adams and Gibbs is

through the use of configurational entropy[2]. The entropy of a system is related to

the number of degrees of freedom of the system. Consider first a crystal. In a crystal

the degrees of freedom are mainly vibrational degrees of freedom. These vibrational

degrees of freedom occur on a very small time scale and involve only short range

motion of the particles. Consider now a viscous liquid close to the glass transition.

76



There will be a vibrational contribution to the entropy. However the heat capac-

ity in the viscous liquid will be greater than the heat capacity of the corresponding

crystal(assuming a crystal can be formed from the liquid). This additional heat ca-

pacity is largely due to the fact that in viscous liquids large scale structural changes

can(slowly) occur. The different structural arrangements are different configurations,

so the additional entropy in a viscous liquid is called configurational entropy. As the

temperature drops the number of accessible configuration decreases so the configura-

tion entropy also decreases. The slowness of the structural rearrangements and the

decrease of configurational entropy are accounted for with the idea of cooperatively

rearranging regions(CRRs). Unlike in a liquid or gas where individual particles are

considered to be able to move largely independently of one another, in a cooperatively

rearranging region a particle cannot move unless all particles in the region move nearly

simultaneously. All of the particles must cooperate in the movement. As a simplifying

assumption the different CRRs are considered to be independent so that rearrange-

ment in one CRR does not depend on another CRR. As the temperature drops the

CRR grows. As the CRRs gets larger, the time between cooperative rearrangement

gets longer and structural arrangements slow down. Eventually a temperature, T2, is

reached where the configurational entropy is considered to be zero.

Instead of original Adam and Gibbs derivation, which is a bit opaque, a simpler

derivation given in [3] is used. Divide a system of N particles into CRRs in which

only two states are possible. Denote the number of such regions by Nc. The number

of particles per region is then n = N/Nc. The total configurational entropy is Nckln2
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since there are Nc regions each of which just has two states. The configurational

entropy is also calculated by

Sconfig(T ) =
∫ T

T2

∆Cp(T )

T
dT (4.5)

Equation 4.5 is the standard thermodynamic equation for entropy with ∆Cp being

the heat capacity of the viscous liquids minus the heat capacity of the crystal(the

vibrational heat capacity). Experimentally it is found that ∆Cp is fairly constant

at temperatures greater than the glass transition. With the experimental behavior

of ∆Cp, for temperatures close to the glass transition, the configurational entropy is

approximately given by

Sconfig(T ) =
∆Cp(Tg)

Tg

(T − T2). (4.6)

Setting the above equation equal to Nckln2 gives n, the number of particles in a CRR,

as function of temperature:

n(T ) =
NTgkln2

∆Cp(Tg)(T − T2)
. (4.7)

It is now argued that the time it takes for rearrangements in a CRR depends on the

volume of phase space that must be explored until an outlet to the new rearrangement

can be found. This leads to

τ ∝ eαn(T ) (4.8)

where α is a new parameter. Finally comparing equations 4.7 and 4.8 leads, with the

parameters of equations 4.7 and 4.8 incorporated into the Vogel parameter B, to the

Vogel equation.
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A configurational entropy approach to ionic transport in polymer electrolytes is

less intuitive than the free volume mechanism, so it is far less used than the free

volume mechanism in discussing ionic transport in polymer electrolytes.

4.2 Polymer Electrolytes and the Vogel equation

The two standard arguements leading to the Vogel equation have been presented in

the previous section. As mentioned in the introduction, the Vogel equation has been

successfully applied to a wide range of temperature dependent polymer electrolyte

DC conductivity data. In this section some difficulties in applying the Vogel equation

and the free volume interpretation of the Vogel equation are presented.

4.2.1 Partially crystalline polymer electrolytes

The first and most well known failure of the Vogel equation is to polymer electrolytes

in which the polymer is partially crystalline. This situation is illustrated in figure

4.1. Figure 4.1 shows the PEO-LiTF system at a concentration of 10-1. The figure

shows what appears to be two regions which are seperated at the temperature at

which PEO melts(∼ 60◦). Below the melting temperature of PEO, the conductivity

appears to display Arrhenius behavior with a high activation energy. Above the

melting temperature of PEO, the conductivity again appears to be Arrhenius like

but with an activation energy less than the activation energy of the low temperature

region. Obviously the Vogel equation with constant parameters A, B, and T0 can not
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Figure 4.1: DC conductivity of PEO LiTF 10-1. The discontinuity in the conductivity occurs

around the melting point of PEO.

be used to the fit the data.

One proposal for understanding the break in semi-crystalline polymer electrolytes

was made by Lee and Crist[4]. They started by writing the mobility of an ion as

µ ∝ exp

(
2.3

17.4(T − Tg)

51.6 + (T − Tg)

)
(4.9)

where µ is the mobility of an ion and Tg is the glass transition temperature. The

expression on the right hand side is the WLF equation which is similar to the Vogel

equation. The numerical values in equation 4.9 have been found to work in a large

number of polymer systems. According to Lee and Crist the break in the conductivity

occurs because the glass transition temperature changes at the melting point. Below

the melting point the concentration of salt in the amorphous regions is effectively

greater because the salt is excluded from the polymer crystalline regions. When
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the crystalline regions melt, the salt concentration effectively decreases. Since it is

usually found the Tg depends on salt concentration[4], a change in the effective salt

concentration will change Tg. With this theory Lee and Crist were able to reproduce

the break in conductivity seen experimentally. In this theory the mechanism of ion

transport is the same above and below the melting point. A change occurs because

of an increase in polymer mobility due to a decrease in Tg. While this theory does

reproduce the break, it does not quite reproduce the Arrhenius behavior seen in figure

4.1.

Instead of a single ion transport mechanism, consider the possibility that there

are at least two mechanisms involved in ion transport. It is possible, for example,

that in amorphous polymer electrolytes that a free volume/Vogel mechanism applies

whereas in partially crystalline systems the Vogel mechanism along with an additional

mechanism applies. The Vogel mechanism would be the dominant one at tempera-

tures greater than the melting temperature. The unknown second mechanism would

dominate at temperatures below the melting temperature. However, before speculat-

ing further, evidence that there are at least two mechanisms in partially crystalline

polymer electrolytes is first presented.

How would two transport mechanisms be seen experimentally?. Consider again

the resistor and capacitor in parallel. The imaginary part of the impedance of this

resistor and capacitor circuit is

−ImZ(ω) =
ωR2C

1 + (ωRC)2
. (4.10)

If -Im Z(ω) versus log ω is plotted, the resulting graph would show a symmetric peak
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centered at ω0 = 1/RC with a maximum of R/2. If instead of a parallel RC circuit

a Cole-Cole circuit element(see Experimental chapter) is considered, the peak would

be symmetric but the maximum would be less then R/2. The Cole-Cole peak can

be considered to be due to overlapping RC peaks. The RC peaks are not resolved so

that the total peak is broader and flatter than the single RC peak. This is similar

to a heterogeneously broadened peak in vibrational spectroscopy. Just because a

broadened and flattened peak can be thought to be made up of overlapping peaks

does not make it so. It would be desireable to have sufficient seperation of the

overlapping peaks so that an asymmetry or shoulder could be seen in the peak.

Figure 4.2 shows the negative of the imaginary part of the impedance of PEO LiTF

10-1 plotted versus the logarithm of the frequency for four different temperatures.

The imaginary part of the impedance has been scaled by the DC resistance so that

the curves at different temperatures can be easily compared. At 30◦C, the peak is

obviously asymmetric with a slight hint of a shoulder at higher frequencies. At 40◦C,

the asymmetry can be seen to be due to a second peak located at higher frequencies.

At 50◦C(close to the melting point of PEO), the higher frequency peak is comparable

in height to the lower frequency peak. Finally at 60◦C by which point the crystalline

PEO regions have melted, only a single peak, which is consistent with the frequency

trend of the higher frequency peak, can be seen. The lower frequency peak appears to

have disappeared or to have become insignificant compared to the higher frequency

peak.

As a further example of this two peak behavior figure 4.3 shows the same plot as
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Figure 4.2: Imaginary part of the impedance of PEO LiTF 10-1 versus frequency. The impedance

has been scaled by the DC resistance.

4.2 but with PEO LiBr 10-1 instead of PEO LiTF 10-1. Though the seperation of the

peaks is not as clear as in figure 4.2, the same general behavior is evident. Increasing

from 40◦ to 50◦C, a high frequency shoulder becomes more prominent. The 60◦C

curve nicely illustrates the remarks made earlier about overlapping peaks. In the

60◦C curve no asymmetries or shoulders are evident. It would therefore be difficult

to say whether the 60◦C curve was made up of overlapping peaks or not. The 50◦C

and 70◦C curves on either side of the 60◦C peak strongly suggest that the 60◦C peak

is made up of at least two other peaks. By 70◦C the high frequency peak is clearly

larger and more important than the low frequency peak.

The thermal history of the sample has a large impact on whether or not two peaks

can be seen in the semicrystalline PEO LiTF and LiBr systems. The films as cast from
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Figure 4.3: Imaginary part of the impedance of PEO LiBr 10-1 versus frequency. The impedance

has been scaled by the DC resistance.

solution and prior to any heating are highly crystalline. At room temperature, the

resistance is high and only one peak can be seen in the impedance. After heating the

sample above the melting point of PEO and allowing the sample to cool back to room

temperature, the resistance drops 1 to 2 orders of magnitude, and the two peaks can

be seen in the impedance. The probable reason for the large drop in the resistance is

that the polymer does not fully recrystallize to the extent it did before it was melted.

Since the sample is not as crystalline the resistance is less. The reason that two peaks

are not seen before melting is that the high frequency peak is overwhelmed by the

low frequency peak. The high frequency peak can only be seen when the resistance of

the low frequency peak drops and does not completely overwhelm the high frequency

peak.
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4.2.2 Amorphous polymer electrolytes

Figures 4.2 and 4.3 clearly demonstrate that two peaks can be seen in the impedance

spectra of certain polymer electrolytes. These two peaks correspond to two contri-

butions to the DC resistance. It is also evident from figures 4.2 and 4.3 that the

temperature dependent behavior of these two peaks is quite different. These two

peaks with different temperature dependent behavior can be ascribed to two different

ionic transport mechanisms. Both of these mechanism are necessary to understand

the DC resistance and therefore the DC conductivity.

The DC conductivity of both PEO LiTF 10-1 and PEO LiBr 10-1 behave like

the conductivity data of figure 4.1. Both PEO LiTF 10-1 and PEO LiBr 10-1 have

partially crystalline regions. The question now becomes can two peaks be seen in

amorphous polymer electrolytes that show Vogel like behavior? In the case of the

C2000-LiTFSI system the answer is no. In general for amorphous polymer electrolytes

the answer is probably no. However, similar to the PEO LiBr 10-1 at 60◦C, just

because overlapping peaks cannot be resolved does not mean that they are not there.

In the case of figures 4.2 and 4.3, it was seen that there was a low frequency and

a high frequency peak. The low frequency peak is dominant at lower temperatures

whereas the high frequency peak becomes dominant at higher temperatures. This

suggests that if a constant large frequency is examined that this large frequency will

behave similarly to the high frequency peak.

Figure 4.4 shows the temperature dependent conductivity of C2000 LiTFSI 10-1

at a constant frequency of 1MHz. The DC conductivity is also shown for comparison.
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Figure 4.4: DC and 1Mhz conductivity of C2000 LiTFSI 10-1.

Figure 4.5 shows the temperature dependent conductivity of C2000 LiTFSI 80-1 at a

constant frequency of 1MHz. The DC conductivity is also included. The DC conduc-

tivity of both samples display Vogel like behavior. However, the 1MHz conductivity

does not display Vogel like behavior. The 1MHz conductivity is more Arrhenius like

than Vogel like. There is however some upturn in the 1MHz conductivity at the lower

temperatures, so the 1 MHz conductivity is not quite a straight line. This upturn

is more pronounced in the lower concentration 80-1 sample. What is especially im-

portant is that the 1MHz conductivity is nearly identical to the DC conductivity at

high temperatures. This is what is expected if a high frequency peak is determining

the 1MHz high frequency behavior, and a unresolved low frequency peak becomes

insignificant at high temperatures compared to the high frequency peak.

Though certainly not as clear as in the partially crystalline polymer electrolytes
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Figure 4.5: DC and 1Mhz conductivity of C2000 LiTFSI 80-1.

shown in figures 4.2 and 4.3, there is evidence that at least two peaks, i.e. two

transport mechanisms, are operating in amorphous polymer electrolytes. This con-

clusion would be very difficult to understand in terms of a free volume mechanism. In

fact a free volume mechanism fails to provide much of any insight into the frequency-

dependent conductivity properties of amorphous polymer electrolytes discussed in the

previous chapter. Why, for example, should a free volume mechanism of ionic trans-

port have similar frequency-dependent properties as ionic transport in ionic glasses?

Hopping models of transport would supply some insight into the experimental results

shown in figures 4.2, 4.3, 4.4, 4.5. For example the peaks shown in figure 4.2 could

correspond to two different kinds of hop the particle has to make. By examining

the isochronal conductivity at 1MHz as in figures 4.4 and 4.5, only one kind of hop

is probed. The second kind of hop occurs on a time scale well outside of the time
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scale probed by the constant frequency. Since only one kind of hop is probed, the 1

MHz conductivity does not follow the DC conductivity at lower temperatures. While

hopping models would provide insight into the experimental results, there are dif-

ficulties toward their adoption. The main difficulty is that structural relaxation of

the polymer and ionic transport occur on similar timescales. This is expected in a

free volume mechanism, but it is harder to justify in terms of hopping models. This

question will be returned to later.

4.2.3 Low temperature behavior of polymer electrolytes

The previous sections pointed out some of the difficulties if not outright failures in

applying the Vogel equation to polymer electrolyte conductivity. While the failure

of the Vogel equation for partially crystalline polymer electrolytes is well known, in-

stances of the failure of the Vogel equation applied to amorphous polymer electrolytes

are less well known. Chung et al.[5] have pointed out a failure at low temperatures.

Figure 4.6 shows DC conductivity data for PPO 4000-LiTF at various concen-

trations. The temperature range used is much larger than is typical for polymer

electrolyte conductivity studies. Typically polymer electrolyte researchers content

themselves with conductivity from room temperature to above. The reason for this

is that this temperature range is the one important for applications. There are also

a number of challenges associated with measuring the small conductivities at low

temperatures. One of these challenges is that at small conductivities an incomplete

arc is obtained in the plots of -Im Z vs. Re Z. This makes extraction of a reliable
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Figure 4.6: Wide temperature range plots of PPO LiTF system for various concentrations. Figure

taken from ref. [5].

resistance from the plot difficult. Chung et al. measured conductivity down to tem-

peratures below −20◦C. They were able to fit the high temperature data to the Vogel

equation(actually the VFT equation). As seen in figure 4.6, however, the Vogel fits

failed at the lower temperatures. The low temperature conductivity was claimed to

be Arrhenius like.

Chung et al.’s interpretation of this data is that at high temperatures the ions

are coupled to polymer motion so that a free volume/Vogel description is appropri-
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ate. At lower temperatures, the ions become decoupled from polymer motion, and a

thermally activated mechanism results. According to the authors this change in mech-

anism occurs at a temperature TC which is the critical temperature in mode-coupling

theories.

An alternative interpretation consistent with two mechanisms of ion transport will

be discussed in a later chapter.

It should be pointed out that the low temperature Arrhenius behavior is not seen

in all polymer electrolytes. Other investigators [6, 7] reported non-Arrhenius behavior

in amorphous samples at very low temperatures.

4.3 The Vogel equation and non-polymer electro-

lyte ionic conductors

One reason, that the ion transport mechanism in ionic glasses and polymer electrolytes

is perceived to be different, is that in ionic glasses the conductivity is usually Arrhenius

like whereas in polymer electrolytes the conductivity is usually Vogel-like. The Vogel-

like behavior is considered to be due to the complex structural relaxations occuring in

the polymer. In glasses the structure only under goes short range vibrational motion,

and the Arrhenius-like conductivity is thought to be related to large energy barriers

that impede ion hopping.

Now consider the crystalline and glass fast ion conductors shown in figures 4.7 and

4.8. The conductivity is clearly non-Arrhenius, and is well fit by the Vogel equation.

90



Figure 4.7: Conductivity of glass conductor, 0.5Ag2S 0.5GeS2, displaying Vogel like behavior.

Figure taken from ref. [8].

Figure 4.8: Conductivity of a crystal conductor displaying Vogel like behavior. Figure taken from

ref. [8].
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The figures are taken from a paper by Ribes and co-workers[8] in which they argued

for applicability of the Vogel equation based on configurational entropy. Whatever

the physical basis for the non-Arrhenius behavior might be, the fact that Vogel like

behavior is seen in crystals and glasses does raise some important questions in regards

to polymer electrolytes. Is it possible, for example, that the source of the Vogel-like

behavior in crystals and glasses be similar to the source of Vogel-like behavior in

polymer electrolytes? This is an important question and should not prejudiced by

ideas of free volume. Note also that, since some glasses show Vogel-like behavior

and since frequency-dependent conductivity of polymer electrolytes show glass like

properties, it might be very difficult on qualitative grounds to distinguish between

the conductivity of glasses and polymer electrolytes.

4.4 Summary

The two standard arguements, free volume and configurational entropy, leading to

the Vogel equation were discussed. These arguments are not based on any fundamen-

tal theory, so their purpose is not to prove but to merely make the Vogel equation

plausible. The Vogel equation must still be considered a empirical relation. A funda-

mental assumption of the free volume arguements is that there exists a temperature,

T0, at which free volume disappears. The free volume than evolves with temperature

as vf ∝ T − T0. The configurational entropy approach uses the idea of cooperatively

rearranging regions(CRRs). The CRRs grow as the temperature decreases. At some
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temperature, T0, the configurational entropy goes to zero because the CRR consists

of the entire sample. The configurational entropy approach also leads to a equation

of the Vogel form. In terms of understanding polymer electrolyte conductivity, the

free volume interpretation of the Vogel equation is commonly used.

A variety of experimental results involving the conductivity of polymer electrolytes

were presented. The purpose of these results was to illustrate certain difficulties

that the Vogel equation and its free volume interpretation encounter when applied to

polymer electrolytes. It was seen that partially crystalline polymer electrolytes exhibit

Arrhenius like behavior with different activation energies above and below the melting

point of the polymer. It was also argued that in these partially crystalline polymer

electrolytes that the transport mechanism can be divided into at least two different

processes. These two processes were shown by plotting the imaginary part of the

impedance versus frequency. Though similar plots of amorphous polymer electrolytes

do not obviously display two processes, it was argued that this was due to overlapping

peaks. Using the data of Chung et al. [5], it was seen that the Vogel equation fails to

fit the DC conductivity of some amorphous polymer electrolytes at low temperatures.

Instead of continuously curving over, a straight line Arrhenius like region is seen at

low temperatures.

Finally, conductivity data for some ionic glasses show Vogel-like behavior. The

question was asked whether the source of Vogel-like behavior in glasses could be sim-

ilar to the source of Vogel-like behavior in polymer electrolytes. A common source

would go a long was to explaining the similar frequency-dependent conductivity be-
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havior seen in glasses and polymer electrolytes.
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Chapter 5

Semi-Crystalline Polymer Electrolytes

The previous chapter pointed out a number of features of polymer electrolyte con-

ductivity which the Vogel equation and its free volume interpretation failed to model.

These features include: the two Arrhenius curves of partially crystalline polymer

electrolytes, the two mechanisms seen in partially crystalline polymer electrolytes,

the frequency-dependent properties of amorphous polymer electrolytes, and the low

temperature conductivity of some amorphous polymer electrolytes.

A few schemes have been proposed to redress certain of the inadequacies of the

Vogel equation. Fontanella and co-workers[1, 2, 3, 4] proposed the following Vogel-

like equation as an alternative to the Vogel equation for fitting polymer electrolyte

conductivity.

Ae
−B

(T−T0)ν (5.1)

The motivation for this equation comes from considering a defect diffusion model in

which the defects interact and coalesce at T0. For the case ν = 3/2, equation 5.1

is called the Bendler-Shlesinger equation[4]. A ν > 1 means that there will be less
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curvature as the temperature drops as compared to the Vogel equation. Equation 5.1

can therefore fit the low temperature conductivity of amorphous polymer electrolytes

better than the Vogel equation. The cost of this better fit is an additional parameter.

While equation 5.1 does account for the low temperature behavior of amorphous

polymer electrolytes, it is of no obvious help in modelling partially crystalline polymer

electrolytes.

As a preview of chapter 8 and to give the results of this chapter some plausi-

ble context, a hopping approach to viscous properties is briefly discussed. Various

authors have discussed viscous properties in terms of hopping models(see chapter 8

for references). These models consider a quasi-particle hopping in a rough energy

landscape. A property such as the viscosity would be determined by the distribution

of barriers or traps seen by the quasi-particle and the hopping rate over the barrier

or out of the traps. Simple versions of these models give

1∫∞
0 eE/kT g(E)dE

(5.2)

for the mean hopping rate. The distibution of barriers or traps is given by g(E) and

the hopping rate is assumed to be thermally activated. It will be shown in chapter

8 how the Vogel equation can be understood within this hopping theory. In regards

to the results of this chapter note that the simplest non-trivial distribution would

involve two barriers.
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5.1 Examination of the two mechanisms seen in

partially crystalline polymer electrolytes

The use of the Vogel equation for polymer electrolyte conductivity resulted from

the examination of the conductivity in amorphous polymer electrolytes. Instead of

amorphous polymer electrolytes, the purpose of this section is a thorough examination

of partially crystalline polymer electrolyte conductivity. As will be seen this leads to

an equation other than the Vogel equation.

The previous chapter argued that there were at least two mechanisms operat-

ing in partially crystalline polymer electrolytes. These two mechanisms will now be

investigated with non-linear curve fitting(see Experimental chapter). In performing

non-linear curve fitting the first and most important step is to choose a equation to

fit the experimental data. In impedance data, the equation is usually represented by

a circuit model. The fit gives the parameters of the circuit model. Since no funda-

mental theory exists for polymer electrolytes, just which circuit model should be used

in far from obvious.

An example of the data to be fit is shown as -Im Z vs. Re Z in figure 5.1. It is

data for PEO LiTF 10-1 at 20◦C. It is the same sample as the data shown in figure

4.2 but in a different representation and at a lower temperature. The curve in figure

5.1 is an asymmetric flattened semicircle. The experimental chapter discussed a num-

ber of possible fitting circuits. These included a resistor, a Cole-Cole element, and a

Havriliak-Negami element each of which is in parallel with a capacitor. The resistor
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Figure 5.1: -Im Z vs. Re Z for PEO LiTF 10:1 at 20◦C

does not give a flattened semicircle. The Cole-Cole element gives a flattened symmet-

ric semicircle. The Havriliak-Negami element gives a flattened semicircle with some

asymmetry. While the Havriliak-Negami element gives asymmetry, the Havriliak-

Negami element by itself gives a poor fit at higher frequencies to the data represented

by figure 5.1.

From figure 4.2 there is good reason to believe that this asymmetric flattened

semicircle is due to at least two transport mechanisms. There is therefore reason to

include two circuit elements in series. One circuit element represents the low frequency

mechanism. The other circuit element represents the high frequency element. The

two circuit elements are only necessary because there is decent resolution of the peaks

seen in figure 4.2. If there was not sufficient resolution of the peaks a single Cole-Cole

or Havriliak-Negami would probably be adequate for fitting.
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The two circuit elements in series were chosen to be a Havriliak-Negami element

and a resistor. The Havriliak-Negami element represents the low frequency peak, and

the resistor represents the high frequency peak. The Havriliak-Negami element was

chosen to see if the asymmetry could be accounted for solely by the Havriliak-Negami

element. If the asymmetry could not be accounted for by the Havriliak-Negami

element than the resistor would be non-zero. A resistor was chosen, instead of a

Cole-Cole or a second Havriliak-Negami, simply to reduce the number of parameters

the non-linear fitting program must use.

The circuit used in fitting the data represented by figure 5.1 is shown in figure 5.2.

The circuit is composed of a resistor in series with a Havriliak-Negami element which

are in turn in parallel with a capacitor. The capacitor represents the capacitance of

the blocking electrodes with a polymer electrolyte as a dielectric. The circuit symbol

marked CPE is a constant phase element. The CPE gives the slanted straight line

seen in figure 5.1 and models the blocking effects of the electrodes. The slanted line

corresponds to the low frequency conductivity dispersion seen in figure 3.1.

An example of the fits is shown in figure 5.3. Figure 5.3 shows the data in figure

5.1(with some data points removed for clarity) along with the fit. As can be seen

from the figure, the fit is rather good with the high frequency region being adequately

modelled. The fitting was done for PEO LiTF 10-1 in the temperature range from

0◦C to 40◦C. At 50◦C, the two mechanisms have about equal resistance, and the fits

to the circuit model were poor. The 50◦C resistors were therefore estimated from the

-Im Z vs. Re Z plot. It was seen in figure 4.2 that the low frequency peak\resistance
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Figure 5.2: Circuit model used for fitting PEO LiTF impedance data

became insignificant compared to the high frequency peak\resistance. Since there

is only one significant mechanism operating above about 60◦C, the resistance was

simply read off the -Im Z vs. Re Z plot without fitting.

The primary interest in fitting the circuit to the experimental data is extract-

ing the value of the resistor and the resistance associated with the Havriliak-Negami

element(see Experimental section). In this way the value of the two resistors as a

function of temperature can be had. The value of the two resistors as a function of

temperature is shown in figure 5.4. The plot is in Arrhenius form with log ρ(=R A/l)

on the y-axis and 1/T on the x-axis. The total resistance is also plotted. At low tem-

peratures the total resistance is due almost completely to the low frequency resistance.

However, the high frequency resistance can still be extracted at low temperatures.

It is seen that this low temperature high frequency resistance is consistent with the

total resistance above 60◦C. In fact the high frequency resistance is approximately

linear over the entire temperature range. The high frequency resistance is Arrhenius
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Figure 5.3: -Im Z vs. Re Z for PEO LiTF 10:1 at 20◦C. The curve is the fit to the circuit model.

like. The low frequency resistance is also Arrhenius-like over its temperature range.

There are two resistors in series. Both of which appear Arrhenius like over some

temperature range. This suggest the following equation for the total resistance.

Rtotal = Rβe
Eβ
kT + Rαe

Eα
kT (5.3)

The total conductivity is the inverse of equation 5.3.

σtotal =
1

e
Eβ
kT

σβ
+ e

Eα
kT

σα

(5.4)

Equation 5.4 resulted from a careful investigation of partially crystalline polymer

electrolytes. Most significantly equation 5.4 implies that the two Arrhenius regions

seen above and below the melting point of the polymer are not due to a radical

change in a single mechanism but are due to one of two mechanism dominating the

total resistance. One mechanism dominates below the melting point of the polymer.

A different mechanism dominates above the melting point.
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Figure 5.4: Results of circuit fit to PEO LiTF 10-1

5.2 Application of the two Arrhenius equation to

the PEO LiTFSI system

In this section equation 5.4 is applied to the DC conductivity of the PEO LiTFSI

system. The PEO LiTFSI system behaves very differently than the PEO LiTF system

as the salt concentration is increased. The reason for this is that the large TFSI anion

acts like a plasticizer. Plasticizers are added to crystalline polymers to make them

softer and more flexible. They do this by preventing the polymer from crystallizing.

Adding enough plasticizer will prevent any crystallization of the polymer. At low

concentrations of LiTFSI, PEO is still largely crystalline. At high concentrations of

LiTFSI(around 10-1), PEO(MW = 105) is no longer crystalline but is a very viscous

liquid. PEO LiTFSI 10-1 is, therefore, an amorphous polymer electrolyte. Differential
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Table 5.1: Parameters from fit of PEO LiTFSI 10-1 to equation 5.4 and to Vogel equation

Eβ (K) σβ (S/cm) Eα (K) σα (S/cm)

4248 267 12803 2.14E14

A (S/cm) B (K) T0 (K)

.554 827 211

scanning calorimetry(DSC) also confirms that PEO LiTFSI 10-1 is amorphous [5].

The PEO LiTF system does not have an completely amorphous phase. This is because

as the salt concentration is increased the polymer and salt form a crystalline complex.

The existence of a partially crystalline and completely amorphous phase in the same

polymer salt system is ideal for testing equation 5.4.

Figure 5.5 shows the DC conductivity for PEO LiTFSI for the concentrations 30-

1, 20-1, and 10-1. The 30-1 and 20-1 concentrations are partially crystalline, so there

is a discontinuous break in the conductivity around 60◦C. The 10-1 concentration is

amorphous, and there is no break in the conductivity. The 10-1 concentration exhibits

non-Arrhenius behavior characteristic of amorphous polymer electrolytes. This non-

Arrhenius behavior would traditionally be fit with the Vogel equation. As a test of

equation 5.4, it is used to fit the 10-1 concentration. The result of the fit is shown in

figure 5.6. The parameters extracted from the fit are shown in table 5.1. It can be

seen that equation 5.4 can be used to fit conductivity data that would traditionally

be fit with the Vogel equation.

Included in figure 5.6 are linear fits to the high temperature points and the low

temperature points. These lines correspond approximately to the two different con-
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Figure 5.5: Arrhenius plots of the conductivity of PEO LiTFSI for the concentrations 30-1, 20-1,

and 10-1.

Figure 5.6: Fit of equation 5.4 to PEO LiTFSI 10-1
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ductivities. Two resistors in series corresponds to two conductivities in parallel. When

two conductivities are in parallel, the total conductivity is always smaller than the

individual conductances. The bended region seen in figure 5.6 then corresponds to the

region where the two conductivities are approximately equal. Note also that the low

temperature behavior appears to be more Arrhenius-like than Vogel-like, consistent

with the data in figure 4.6.

Equation 5.4 has been applied to the amorphous PEO LiTFSI 10-1 system. Equa-

tion 5.4 was suggested based on analyzing partially crystalline polymer electrolytes

like PEO LiTFSI 20-1 and 30-1. How is equation 5.4 applied to the 20-1 and 30-1

concentrations seen in figure 5.5?

Consider again the simple model of a partially crystalline polymer electrolyte. The

partially crystalline polymer electrolyte is made up of crystalline regions where no

ion conduction takes place and amorphous regions where ion conduction occurs. The

melting of the crystalline regions can have a number of possible effects on the polymer

electrolyte. The simplest and probably most significant effect is that the melting of

the polymer electrolyte results in a large increase in the number of possible conduction

pathways through the polymer electrolyte. How would this increase in conduction

pathways be expressed in terms of equations 5.3 and 5.4? A increase in the number of

pathways could change the prefactors Rβ and Rα. From figure 5.4 it is seen that the

prefactor Rβ(the high frequency resistance prefactor) does not change upon melting

of the polymer. In figure 5.4, the low frequency resistance(labelled by subscript α in

equation 5.3) becomes insignificant. This behavior can be accounted for by a large
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decrease in Rα. It is therefore reasonable that a change in Rα be used to model the

melting of the polymer.

The melting of the polymer results in a decrease in the parameter Rα. A decrease

in the parameter Rα means an increase in the parameter σα in equation 5.4. The

parameter σα would have two values corresponding to the regions above and below

the melting temperature of the polymer. Below the melting point σα would have the

value σT<60◦
α . Above the melting point σα would be σT>60◦

α . These ideas are now

used to simulate the data in figure 5.5. In figure 5.7, the top curve uses equation

5.4 and the parameters from table 5.1 to model PEO TFSI 10-1. For the lower two

curves, σT>60◦
α is set equal to σα from table 5.1. The parameter, σT<60◦

α , is set equal

to σT>60◦
α /5 and σT>60◦

α /10 for the middle curve and lower curve respectively. By

changing σα, it is seen that the two Arrhenius region behavior of partially crystalline

polymer electrolytes is reproduced. Figure 5.7 reproduces the qualitative features of

the experimental data in figure 5.5. A even closer correspondance to figure 5.5 could

be obtained by tweaking the values of σβ.

When there are no crystalline polymer regions, equation 5.4 can reproduce the

Vogel-like behavior seen in PEO LiTFSI 10-1. When there are crystalline regions,

by changing σα the two Arrhenius regions seen in partially crystalline polymer elec-

trolytes can also be reproduced. It is physically plausible that σα changes since on

melting more conduction pathways are available in the polymer electrolyte. The abil-

ity of equation 5.4 to model the behavior of both amorphous polymer electrolytes and

partially crystalline polymer electrolytes must be considered an advantage of equation
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Figure 5.7: Conductivity data simulated using equation 5.4

5.4 over the Vogel equation.

5.3 New parameters for the two Arrhenius equa-

tion

Equation 5.4 has the advantage that it can reproduce both amorphous and partially

crystalline polymer electrolyte behavior. However, in performing the fits as repre-

sented by the parameters in table 5.1, it is noticed that there are some peculiar

numbers. Specifically, the σα value is around 1014Scm−1. This is a rather large value.

It is not surprising that some other mechanism acts as a choke to prevent the conduc-

tivity from approaching 1014Scm−1 as the temperature increases. Perhaps, however,

the parameterization in equation 5.4 is not the most relevant physically. A different
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Table 5.2: Parameters from fit of equation 5.4 to C2000 LiTFSI

C2000 LiTFSI Eβ (K) lnσβ (S/cm) Eα (K) lnσα (S/cm)

10-1 9065 17.3 18765 50.6

20-1 7456 12.3 14434 35.7

40-1 6304 8.23 12605 29.1

60-1 5946 7.41 13242 31.5

80-1 6180 7.95 14197 35.0

parameterization could yield more physically relevant and reasonable parameters.

In order to justify a new parameterization, experimental evidence is needed. Fig-

ure 5.8 shows the DC conductivity for C2000 LiTFSI at various concentrations. The

concentrations shown in the plot are for 10-1, 20-1, and 80-1. Data was also taken for

the 40-1 and 60-1 concentrations but is not shown in order to reduce the clutter of the

plot. C2000 is a amorphous polymer so the conductivity behavior is Vogel-like. As

was shown in the previous section, equation 5.4 can be used to fit polymer electrolyte

conductivity data that displays Vogel-like behavior. This was done, and the results

are shown in table 5.2. It is again seen that the σα parameters are rather large.

Notice in table 5.2 that σα\σβ seems in increase with increasing Eα\Eβ. In order

to explore this correlation further, ln σα\σβ is plotted versus the energies Eα\Eβ in

figure 5.9. Also included in the plot are error bars for the parameters. Remarkably

the plot is linear. Even more remarkable, the plot is linear over about 15 orders

of magnitude of σα\σβ. One should be concerned with the large error bars for the

points between about 12000 K and 15000 K. Since the error bars overlap for those
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Figure 5.8: Conductivity for C2000 LiTFSI

four points, the data value for those four points is probably no greater than a single

point. Even so there are data points above and below those four points that lend

confidence to the linear fit between ln σα\σβ and Eα\Eβ.

What figure 5.9 reveals is that there is a linear relation between the log of the

prefactor and the activation energy, i.e. ln σ ∝ E. This is known as the compensation

effect. The compensation effect has been observed in a wide variety of experiments(see

next chapter for references). It will be discussed in some detail in the next chapter.

For now the experimentally observed relation, ln σ ∝ E, is used to rewrite the

parameters of equation 5.4.

From figure 5.9 it is seen that ln σα versus Eα and ln σβ versus Eβ lie on the same

line. This can be expressed mathematically as

lnσα = aEα + b
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Figure 5.9: Plot of data points from table 5.2

lnσβ = aEβ + b. (5.5)

Solving for a, the slope, and b, the intercept, gives

a =
ln(σβ/σα)

Eβ − Eα

b =
−Eαlnσβ + Eβlnσα

Eβ − Eα

. (5.6)

The slope, a, has units of inverse energy. Define a new parameter, Te, as kTe = 1/a.

Similarly the intercept, b, is written in terms of a new parameter σ0 as 2σ0 = eb.

The new parameters, Te and σ0, take the place of the old parameters, σα and σβ.

Write the slope, a, and the intercept, b, in terms of Te and σ0. Inserting this result

into equation 5.5 and then inserting equation 5.5 into equation 5.4 gives the new

parameterization of equation 5.4:

σ(T ) =
2σ0

eEβ( 1
kT

− 1
kTe

) + eEα( 1
kT

− 1
kTe

)
. (5.7)
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Using the data from tables 5.1 and 5.2, the parameters, σ0 and Te, can be cal-

culated for PEO LiTFSI 10-1 and C2000 LiTFSI. Using equations 5.6 and table 5.1,

Te for PEO LiTFSI 10-1 is found to be approximately 312 K, and σ0 is found to be

1.64E-4 (S/cm). By finding the slope and intercept in figure 5.9, one finds Te = 297K

and σ0 = 1.19E-6 (S/cm) for C2000 LiTFSI.

Some insight into the parameters, Te and σ0, can be had by examining figure

5.6. The two dotted lines in figure 5.6 represent the conductivities σαe−Eα/kT and

σβe−Eβ/kT . The two dotted lines cross at some temperature Tequal. Setting the con-

ductivities equal to one another and solving for Tequal gives Tequal = Te. The new

parameter, Te, is the temperature at which the two conductivites are equal. If the

temperature in equation 5.7 is set equal to Te, the conductivity, σ(Te), is equal to

the new paramter, σ0. The new parameter, σ0, is the value of the conductivity at the

temperature, Te. In figure 5.8, the temperature, Te, is the point in the figure were

all three curves(actually five curves since two are not shown) meet, approximately,

at a point. The conductivity at that point is σ0. The above interpretation of Te is

basically a graphical interpretation. Possible physical interpretations of Te will be

discussed in the chapter on the compensation effect.

The new parameterization solves the problem of the large σα values seen in tables

5.1 and 5.2. The large values are seen to be due to an exponential dependence on the

activation energy, σα = σ0e
Eα/kTe .

While the change from the parameterization, {σα, σβ, Eα, Eβ}, to the parameter-

ization, {σ0, Te, Eα, Eβ}, can be made, it is necessary to ask if it is relevant to do so.
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The parameters, σ0 and Te, were used above for the PEO LiTFSI 10-1 amorphous

polymer electrolyte. The PEO LiTFSI 10-1 is a single curve, and it would be hard jus-

tify the use of {σ0, Te} over {σα, σβ} if only that single curve were available. However

for the C2000 LiTFSI system, five curves, depending on concentration are available.

If the {σα, σβ, Eα, Eβ} parameterization is used, a total of 20 parameters would be

need to described the five curves( 4(parameters/curve) * 5(curves) = 20). If the Vogel

equation were used to described the family of curves a total of 15(3 * 5) parameters

would be needed. If the {σ0, Te, Eα, Eβ} parameters are used, only 12 parameters

are need since σ0 and Te apply to each of the five curves. The parameterization,

{σ0, Te, Eα, Eβ}, is certainly warranted for C2000 LiTFSI.

Further evidence of the compensation effect is desireable so that greater confidence

can be had in applying equation 5.7 to wider range of polymer electrolyte systems.

For this purpose the work of Quartarone et al.[6] is discussed. Quartarone et al.

investigated the conductivity of PEO mixed with the filler lithium triborate (Li2O •

3B2O3). The system does not involve a salt, but there is lithium conduction due to

lithiums supplied by the filler. The PEO is still partially crystalline, so two Arrhenius

regions are expected in the conductivity. Figure 5.10 shows indeed that two Arrhenius

regions are seen in the conductivity. The different conductivity curves seen in figure

5.10 depend on the weight percent of the filler used. As shown in figure 5.10 straight

line fits were used to extract a prefactor and activation energy for the two regions

and for the different concentrations.

The results of the fitting are shown in figure 5.11. It is again seen that there is a
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Figure 5.10: Conductivity of PEO with lithium triborate filler. Figure taken from reference [6].

linear relationship between the natural logarithm of the prefactors and the activation

energies. Quartarone et al. argued that since there exists a linear slope in figure 5.11

that the transport mechanism above and below the melting point of the polymer was

the same. This chapter has shown, however, that this is not necessarily the case. The

inverse of the slope gives a value of 445 K for Te. This is much larger than the result,

Te = 312K, arrived at for the amorphous PEO LiTFSI 10-1 system. This large value

of Te is(in the author’s view) due to a failure to take into account the melting of the

crystalline polymer. From equation 5.6, Te can be found with

kTe =
Eα − Eβ

ln(σα/σβ)
. (5.8)

As discussed before because of the crystallinity of the PEO, σα will be smaller than it

would be if the polymer were amorphous. This smaller value of σα will yield a larger

value of Te when placed in equation 5.8. The value, Te = 312K, is probably more
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Figure 5.11: Plot ln prefactors vs. activation energies for data from figure 5.8. Figure taken from

reference [6].

physically relevent than the value, Te = 445K. Even though a compensation-like

effect is seen in figure 5.11, caution should be exercised especially when dealing with

the discontinuous conductivity data of figure 5.10.

An additional example of the compensation effect in polymer electrolytes is the

work of Wieczorek et al.[7]. This work is an extension of the work of Chung et al.[8]

discussed in the previous chapter. The polymer electrolyte system investigated was

OMPEO LiClO4 with various fillers. Wieczorek et al. fitted the low temperature

Arrhenius region seen by Chung et al.. They too saw a linear relation between the

logarithm of the prefactors and the activation energy. The values measured for Te were

between 260 K and 310 K. This range agrees with 312 K measured for PEO LiTFSI

10-1 and the 297 K measured for C2000 LiTFSI. Since Wieczorek et al. believed that
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the high temperature region followed the Vogel equation, they did not check to see if

the high temperature region also followed the compensation effect.

5.4 Summary

The previous chapter discussed a number of problems in the application of the Vogel

equation to polymer electrolyte conductivity. Do equations 5.4 and 5.7 improve the

situation? One problem with the Vogel equation was that it cannot be used to un-

derstand the two Arrhenius regions seen in partially crystalline polymer electrolytes.

In partially crystalline polymer electrolytes, there is a activated region below the

melting point of the polymer with a large activation energy. Above the melting point

of the polymer, there is an activated region with a smaller activation energy. With

equation 5.4, these two regions are interpretated as being due to two different acti-

vated processes that are always operating in the polymer electrolyte. Both of these

processes are modelled by the Arrhenius equation. The discontinuity seen in partially

crystalline conductivity is modelled by an abrupt change in the parameter σα when

the crystalline regions melt.

Besides offering insight into partially crystalline polymer electrolytes, equation 5.4

was also able to fit amorphous polymer electrolyte conductivity. Amorphous PEO

LiTFSI 10-1 was successfully fitted with equation 5.4. Figure 5.7 demostrates how

equation 5.4 can reproduce amorphous and partially crystalline polymer electrolyte

conductivity.
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Chung et al.[8] pointed out that at low temperatures some amorphous polymer

electrolytes exhibit Arrhenius-like conductivity. This is what would be predicted

based on equation 5.4. Chung et al. also proposed a change in mechanism from a Vogel

mechanism at high temperature to a Arrhenius mechanism at low temperatures. With

equation 5.4 no change in mechanism occurs. Instead there are two series mechanisms

occuring in the polymer electrolyte. One mechanism dominates at high temperature,

and the second mechanism dominates at low temperatures. The temperature range,

where the two mechanisms are about equal in importance, gives the curved behavior

characteristic of amorphous polymer electrolytes.

Equations 5.4 and 5.7 supply insight into semi-crystalline polymer electrolytes

and polymer electrolytes that exhibit Arrhenius behavior at low temperatures. How-

ever, as was mentioned some polymer electrolyte show non-Arrhenius behavior at

low temperatures. In chapter 8, a generalization of equations 5.4 and 5.7 to handle

non-Arrhenius behavior at low temperatures will be presented. This generalization

will be consistent with a hopping picture of ion transport. The next chapter discusses

the compensation effect. This will supply some ideas as to the possible meaning of

Te. The chapter after that discusses possible physical sources for the barriers Eβ and

Eα.
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Chapter 6

The Compensation Effect

In the previous chapter, equation 5.4 was proposed as a possible alternative to the

Vogel equation for fitting polymer electrolyte conductivity. Applying equation 5.4 to

the C2000 LiTFSI system, it was seen that there was a relation between the prefactors

of equation 5.4 and the activation energies. This relation is called the compensation

effect. The compensation effect leads to equation 5.7 and to the new parameters Te

and σ0. The purpose of this chapter is to review the compensation effect and to gain

insight into the physical meaning of Te.

6.1 Introduction to the compensation effect

The Arrhenius equation is written as

rate = Ae−E/kT . (6.1)

Experimentally it is often found that

lnA ∝ E. (6.2)
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This means that the prefactor, A, can be written as A = x0e
E/kTe(writing the propor-

tionality constant between ln A and E as 1/kTe is for later convenience). The inverse

of Te is the proportionality factor between the logarithm of the prefactor and the

activation energy. This relation between the logarithm of the prefactor and the acti-

vation energy is known as the compensation effect. In the context of charge hopping

it is also known as the the Meyer-Neldel rule.

A slightly different way to express the compensation effect is to write the Arrhenius

equation in terms of the Gibbs free energies:

rate = x0e
−∆G/kT . (6.3)

Thermodynamics says that Gibbs free energies can be written as ∆G = ∆H − T∆S,

where ∆H is the enthalpy and ∆S is the entropy. Inserting this expression into the

above equation gives

rate = x0e
∆S/ke−∆H/kT . (6.4)

The effective prefactor of equation 6.4 is x0e
∆S/k. The compensation effect will hold

if the entropy is proportional to the enthalpy, i.e. ∆S = ∆H/Te + const.. When

expressed in terms of entropy and enthalpy the compensation effect is sometimes

called enthalpy-entropy compensation.

The compensation effect has been seen in a diverse number of fields including

chemical reactions, ionic conductors, physical aging in polymers, and biological death

rates(see Introduction sections of Yelon et al.[1] and Peacock-Lopez and Suhl[2] for

references). A number of theories have been proposed to account for the compensation
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effect. Some of the theories are now reviewed.

6.2 Heat bath excitations and the compensation

effect

6.2.1 The theory of Peacock-Lopez and Suhl

A very general approach to the compensation effect has been made by Peacock-Lopez

and Suhl[2]. In this approach an energy barrier much larger than kT is considered. In

order to surmount this barrier a large number of excitations from the heat bath must

be assembled and absorbed. The number of ways these excitations can be assembled

leads to the compensation effect.

The transition rate for a process from an initial state, i, to a final state, f, can be

written as

2π

h̄

∑
f,i

|〈f |T |i〉|2 e−βEi

Z
δ(Ef − Ei). (6.5)

The initial state relates to a particle trapped in a well, and the final state relates to

a particle that has escaped from the well. Z is the partition function of the system

when the particle is in the well. The partition function also includes the thermal

excitations of the system. The matrix element for the transition from the initial state

to the final state is given by 〈f |T |i〉.

The total energy of the initial state is given by Ei. This total energy includes the

energy of the particle in the well, E0
i , and the energy of the excitations. Likewise
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the total energy of the final state is given by Ef . It too includes the energy of the

particle out of the well along with the energy of the excitations. The total energies

are written as

Ei = E0
i +

∑
k

(mk + nk)εk

Ef = E0
f +

∑
k

mkεk. (6.6)

The set {mk} gives the number of excitations in a state labelled by k. Likewise, εk

gives the energy of an excitation labelled by k. The kets, |i〉 and |f〉, can also be

written in terms of the particle energies and excitation occupation numbers.

|i〉 = |E0
i , {nk + mk}〉

|f〉 = |E0
f , {mk}〉 (6.7)

In the initial state, there are additional excitations, {nk}, present. These excita-

tions are absorbed to produce the final state. The difference between the total final

energy, Ef , and the total initial energy, Ei is

Ef − Ei = E0
f − E0

i −
∑
k

nkεk. (6.8)

According to equation 6.5, the total energy difference must be zero; therfore, ε ≡

E0
f − E0

i =
∑

k nkεk.

With certain assumptions[2], equation 6.5 becomes

2π

h̄

∑
i

∫ εc

εb−E0
i

dε e−βεRf (E
0
i + ε)

∑
{nk}

|T (E0
i , n, ε)|2 e−βE0

i

Zr

δ(ε−
∑
k

nkεk) (6.9)

where εb is the barrier height, n =
∑

k nk, and εc is an upper energy cutoff. Rf (E) is

the density of states at the final state. The sum over the occupation number, {nk},
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can be broken up as

∑
{nk}

=
∑
n

∑∑
k

nk=n

. (6.10)

Inserting the above form of the summation into equation 6.9, the following term is

encountered:

∑∑
k

nk=n

δ(ε−
∑
k

εknk) = ρn(ε). (6.11)

Equation 6.11 is the density of states for n excitations having a total energy of ε.

With the identification of ρn(ε) in equation 6.9, it is seen that if there are a large

number of ways that n excitations can be assembled to give ε > εb, i.e. if ρn(ε) is

large, there will be a enhancement of the transition rate.

The Laplace transform of ρn(ε) is [ρ̃(p)]n where ρ̃(p) is the Laplace transform of

the single particle density of states, ρ(ε).

ρ̃(p) =
∫ ∞

0
e−pερ(ε)dε (6.12)

Considering only a single level, E0
i , instead of a distribution of levels and choosing

the energy scale by setting E0
i = 0, the transition rate equation simplifies to

1

ih̄

∫ εc

εb

dε e−βεRf (ε)
∫ c+i∞

c−i∞
dp epε

∞∑
n=1

|T (n, ε)|2[ρ̃(p)]n (6.13)

The real number, c, is chosen to be to the right of the singularities of the integrand.

After arriving at equation 6.13, Peakcock-Lopez and Suhl then considered the

term
∑∞

n=1 |T (n, ε)|2[ρ̃(p)]n. Specifically, what are the poles corresponding to this

term? Peakcock-Lopez and Suhl argue that when performing the contour integral

the poles of the term
∑∞

n=1 |T (n, ε)|2[ρ̃(p)]n will be dominated by the right most pole
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which lies on the radius of convergence of the sum. This pole lies on the real axis and

is located at p = βe. Assuming that the pole is a simple pole and that the density

of states, Rf (ε), is fairly constant, the transition rate equation 6.13 is for β > βe

approximately

R ∼ e(βe−β)εb . (6.14)

The compensation effect is evident in equation 6.14. Equation 6.14 applies for

β > βe. It was seen in the previous chapter that the compensation effect can also

apply for β < βe. In considering β < βe, Peacock-Lopez and Suhl also derived a rate

equation resembling equation 6.14 but with εb replaced by the cutoff energy εc. This

change in the activation energy for β < βe resembles the case for polymer electrolytes

where there was also a change in the activation energy for β < βe(see equation 5.7).

The above derivation of the compensation effect started by considering a general

equation for the transition from one state to another. These two states could corre-

spond to a particle in a well and a particle outside a well. In order to conserve energy,

a number of excitations were absorbed so that the particle could escape the well. In-

tuitively, the more ways there are to assemble the excitations from the bath the faster

the transition can take place. By taking this assembling of excitations into account,

one is lead to an approximate analytic result that resembles the compensation effect.

6.2.2 The theory of Yelon and co-workers

The above argument due to Peacock-Lopez and Suhl is quite general but also quite

mathematical. A simpler arguement in the same spirit as the above arguement has
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been given by Yelon et al.[1].

Consider a number of excitations of energy Ee in the vicinity of a particle in a

deep well. Denote the number of nearby excitations by N and with equation 6.4 the

well depth is given by ∆H. The number of excitations needed for the particle to

escape the well is n = ∆H/Ee. The entropy change associated with leaving the well

is related to the number of pathways the particle can take to escape the well. The

number of pathways is related to the number of ways n excitations can be assembled

from the total available excitations, N. The entropy change is therefore given by

∆S/k = ln
N !

n!(N − n)!
(6.15)

Using Stirling’s formula and assuming n << N , the above equation simplifies to

∆S/k ≈ nln
N

n
≈ ∆H

Ee

lnN. (6.16)

From equation 6.4, the compensation effect can be established if the entropy is shown

to be proportional to the enthalpy. This is just what equation 6.16 does.

Part of the goal of this chapter is to gain insight into the physical meaning of the

parameter Te from equation 5.7. From the Peacock-Lopez and Suhl arguements, the

meaning of βe = 1/kTe is somewhat elusive. Based on the Peacock-Lopez and Suhl

arguements one might guess that βe is related to some average excitation energy, but

this guess would be based more on intuition than on the mathematical development.

Equation 6.16 makes the connection between Te and the energy of excitation more

explicit. From equation 6.16, kTe is equal to Ee/lnN . This relation is not very useful

since N, the number of excitations near the escaping particle, is unknown. While the
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Yelon et al. arguement is more easily understood and intuitive, the Peacock-Lopez

and Suhl arguement is more rigorous and therefore a more satisfying explaination of

the compensation effect.

It is often noticed that systems with high activation energies often show the com-

pensation effect. However, systems with low activation energies do not show the

compensation effect. The picture of assembling excitation makes clear why this could

be the case. With high energy barriers many excitations must be assembled and

absorbed to overcome the barrier. The many ways in which these excitations can be

assembled leads to the compensation affect. With low energy barriers where only one

or a few excitations are necessary, there is little enhancement to the prefactor from as-

sembling the excitations. Since there is little effect on the prefactor the compensation

effect is not evident for low energy barriers.

6.2.3 The theory of Linert

In a series of related chemical reactions, it is often seen that the rate constants of

the different reactions cross at a single point when plotted as ln k vs. 1/kT. The

temperature of this point has been termed the isokinetic temperature, Tiso. For the

purposes of this study Tiso is the same as Te. Linert[3, 4, 5] has given the following

equation as a condition for the isokinetic temperature.

∂lnk(η)

∂η

∣∣∣∣
1/kBTiso

= 0 (6.17)
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In equation 6.17, η is a parameter that indexes the members of the related chemical

reaction series, and k is the reaction rate.

Linert’s treatment of the isokinetic temperature relies on theoretical treatments

used in the study of unimolecular reactions. The work of McCoy and Carbonell[6, 7]

on unimolecular reactions is presented. Following that Linert’s arguments leading to

the compensation effect are discussed.

Consider a potential energy well. This potential energy well has a large number

of energy levels. The potential energy well is coupled to a heat bath, so the diagonal

density matrix elements, σn, can change with time. The time dependence of the

diagonal density matrix elements can be written in terms of a master equation.

dσn

dt
= Rn,n−1σn −Rn−1,nσn −Rn+1,nσn + Rn,n+1σn+1 (6.18)

Rn,m is the transition probability from level m to level n. Equation 6.18 assumes that

only nearest neighbor transition probabilities are non-zero.

The energy level spacing is written as ωnm = (εn − εm)/h̄. By assuming that

the energy level spacing is much smaller than kT, McCoy and Carbonell[7] rewrote

equation 6.18 in terms of a partial differential equation.

∂σ

∂t
=

∂

∂s

(
R(s)

∂σ

∂s

)
+

1

kT
h̄

∂

∂s
(R(s)ω(s)σ) (6.19)

The energy levels are now indexed by the continuous variable s, and the energy

associated with the level s can be found with

ε(s) = h̄
∫ s

0
ω(s′)ds′. (6.20)
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The steady state solution(∂σ/∂t = 0) of equation 6.19 is the Boltzmann distribu-

tion. In order to discuss reaction rates, however, it is necessary to introduce some

additional complications to equation 6.19. The potential energy well is considered to

have some maximum level, sN . If during the random walk the system reaches the

level sN , the system escapes the potential energy well and the reaction takes place.

The boundary condition for this situation is σ(sN) = 0. Another complication is the

addition of a source term, g(s), to equation 6.19. Since the boundary condition allows

for the reactants to leave the system, there must be flux of reactants into the well

to ensure steady state conditions. The reaction rate is given by the flux of reactants

leaving the system divided by the number of reactants in the system. Under steady

state conditions, the flux into the system must be equal to the flux out of the system.

The forward reaction rate can therefore be written as

kf =
j(sN)

xR

(6.21)

where flux into the system is

j(sN) =
∫ sN

0
g(s)ds (6.22)

and the number of reactants in the well is

xR =
∫ sN

0
σ(s)ds. (6.23)

Equation 6.19(with the source term included) can be solved under steady state

conditions. Inserting the resulting expression for σ(s) into equation 6.21 gives

kf = j(sN)
{ ∫ sN

0
dsexp

(
− 1

kT
h̄
∫ s

0
ω(s′)ds′

)
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×
∫ sN

s

ds′

R(s′)
exp

(
1

kT
h̄
∫ s′

0
ω(s′′)ds′′

)
j(s′)

}−1

. (6.24)

If it is assumed that the barrier energy is much greater than the thermal energy, i.e.

h̄ωsN/kT >> 1, then the reaction rate simplifies dramatically to

kf ≈ R(sN)

(
h̄ω

kT

)2

e−
sNh̄ω

kT (6.25)

where it is assumed that ω(s) = ω.

Starting from equation 6.25, Linert considered the appropriate form for R(sN)

when the system couples to the heat bath. It is expected that the energy levels in the

heat bath are much more closely spaced than in the reactant well. Denote the energy

level spacing in the heat bath by ν. If energy is transferred resonantly from the heat

bath to the reactant well, then one has the condition

mν = lω (6.26)

where m and l denote levels is the heat bath and reactant well respectively. Linert

argues that the transition probability for the energy transfer from the heat bath to

reactant well is[3]

lelω/ν . (6.27)

The transition probabilities in the reactant well should depend on the energy tranfer

from the heat bath. This implies that R(sN) ∝ lexp(sNω/ν). Inserting this R(sN)

into equation 6.25 yields

kf = A0sN

(
h̄ω

kT

)2

esN (ω
ν
− h̄ω

kT
) (6.28)

129



where A0 is a proportionality constant.

Linert then uses equation 6.17 with sN as index parameter to derive the result

1

kTiso

=
1

sN h̄ω
+

1

hν
. (6.29)

Since sN h̄ω >> h̄ν, kTiso(Te) is approximately equal to hν.

Linert has interpreted ν as some characteristic vibration of the medium in which

the reaction takes place. A correlation between medium vibrations and experimen-

tally measured values of Tiso is shown in figure 6.1. The x-axis corresponds to vibra-

tional peaks seen in the IR spectra of the solvents listed in the figure. The y-axis

corresponds to Tiso values measured for a related series of reactions in a particular

solvent. The figure shows that there is a strong correlation between IR peaks and Tiso

as suggested by Linert’s theory. Examples of far IR spectra for polymer electrolytes

will be presented in the next chapter.

6.2.4 The compensation effect and the melting temperature

An example of the compensation effect having to do with the diffusion of metals is

now discussed. The temperature dependence of diffusion in metals is found to be of

the Arrhenius form

D = D0e
−E/kT . (6.30)

In his study of the prefactor D0, G.J. Dienes listed a number of different equations that

had been proposed for D0[8]. However, on examining the prefactors and activation

energies of a number of different metals, Dienes proposed the following relation for
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Figure 6.1: Plot of Tiso versus IR peaks seen in solvent. Figure taken from reference [4]

the prefactor.

D0 ∝ eE/kTm (6.31)

This says that diffusion of metals obey the compensation effect. Interestingly, the

compensation effect temperature, Tm, is the melting temperature of the metal.

Dienes explained the presence of Tm in the compensation effect as follows[8]. Nor-

mally a metal atom can not diffuse because it is trapped by its neighbors. Therefore

instead of considering just the diffusing atom, consider a region containing the diffus-

ing atom and its neighbors. This is similar to the cooperatively rearranging region

idea used when discussing configuration entropy. For the diffusing metal atom to move

the neighboring metal atoms must move also. Before the metal atoms move they will

probably have some crystal-like order. As the metal atoms move simultaneously this

crystal like structure will be destroyed. Therefore this cooperative rearrangement of
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the metal atoms can be thought of as localized melting of the region. This localized

melting allows the diffusing atom to move. Consider the thermodynamics of melting.

This is done be considering the free energy.

∆G = ∆H − T∆S (6.32)

At the melting temperature, ∆G equals zero. Therefore at the melting point ∆S =

∆H/Tm. If the thermodynamics of melting of the sample is similar to the thermody-

namics of melting of a localized region, the presence of Tm in the compensation effect

can be understood.

Similar conclusions to the above have been made by Khait et al.[9]. They con-

sidered diffusion in silicon and germanium. It was seen that there is a linear relation

between the logarithm of the diffusion prefactor and the activation energy. Using

Khait’s theory of short-lived large energy fluctuations(SLEFs), the proportionality

constant between the logarithm of the diffusion prefactor and the activation energy

was predicted to be the inverse of the melting temperature. This prediction agreed

with experiment. The SLEFs provide large thermal energies to overcome barriers but

are short lived, 10−13 − 10−12s.

Dienes’s result has also been discussed by Almond and West in regards to solid

ionic conductors[10].

This discussion of localized melting is, perhaps, not so different from the discussion

of excitations. The cause of localized melting at a temperature below the melting

point is due to thermal flucuations in the system. These thermal flucuations are due

to the distribution of excitations in the system. If there are a large enough number of
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excitations in a localized region, localized melting can occur. In discussing excitations

and the compensation effect, a single particle in a well picture was used. Perhaps this

is a overly restrictive picture. A picture in which the particle in the well actually

represents a localized region might be more useful. In this picture the particle in

the well might represent a region where there is crystal like order and no long range

movement. The particle out of the well would then represent a region in a disordered

liquid like state. Long range movement can occur in the liquid like state.

The compensation temperature, Te, was found in the last chapter for PEO LiTFSI

10-1 and C2000 LiTFSI. For C2000 LiTFSI, Te was found to be about 296 K. For

PEO LiTFSI 10-1, Te was found to be about 312 K. Similar to PPO, C2000 does not

crystallize, so Te = 296 K can not be compared to the melting temperature. PEO

does crystallize. The melting point of PEO is usually between 50-60◦C. Polymers

usually have a wide temperature range over which they melt, so it can be difficult to

pinpoint a melting temperature. Even so, the 50-60◦C temperature range is higher

than the Te = 312 K found for PEO LiTFSI 10-1. This does not necessarily mean

that Te is unrelated to melting of the polymer. As stated before, transport occurs

in the amorphous regions of the polymer electrolyte. Any ordered crystalline like

regions in the amorphous region will be small and surrounded by disordered regions.

In a material such as a metal or semiconductor, the local regions are surrounded

by other crystalline regions. In a metal or semiconductor, the thermal fluctuations

necessary to melt the localized region will probably be characterized by the melting

temperature. The fluctuations/excitations necessary to melt the small crystalline like
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regions surrounded by the disordered regions in the amorphous polymer phase will

likely be characterized by a temperature different than the melting temperature. A

Te less than the melting temperature for a polymer is therefore not unreasonable.

Since Te does not match the melting temperature the term disordering or fluidizing

will be used rather than melting. It is also reasonable that the Te for PEO LiTFSI

10-1 is larger than the Te for C2000 LiTFSI. Most likely if C2000 did crystallize, its

melting temperature would be less than the melting temperature of PEO. It would

therefore be expected that Te for C2000 would be less than the Te for PEO.

6.3 The compensation effect and polymers

The compensation effect has been seen in a number of mechanical and dielectric

experiments on polymers[11]. For example, Lawson[12] found that the change in

enthalpy divided by the change in entropy was fairly constant for the diffusion of

various gases in polymers. The compensation effect is also often observed in thermally

stimulated depolarization current(TSDC) experiments performed on polymers[13, 14,

15]. A TSDC experiment is similar to a dielectric experiment and therefore involves

microscopic motion of the polymer. High frequency mechanical measurements on

polymers have also indicated a constant ratio between enthalpy and entropy[16]. Crine

[17] has reviewed one theoretical approach(discussed below) that has been used to

understand the compensation effect in polymers and has suggested an equation for

Te in terms of the mechanical properties of the polymer.
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Using simple thermodynamics, Lawson[18] argued that the activation entropy

could be related to an activation volume approximately as follows.

∆S = ∆V
α

β
(6.33)

In equation 6.33, α is the coefficient of thermal expansion and β is the isothermal

compressibility.

β =
1

V

(
∂V

∂P

)
T

(6.34)

It was later argued by Keyes[19] that there exists a relation between the activation

enthalpy and the activation volume. This relation is

∆H = ∆V/Kβ (6.35)

where K is a constant. Combining equations 6.33 and 6.35 gives

∆S = Kα∆H. (6.36)

Equation 6.36 expresses a linear relation between ∆H and ∆S as required by the

compensation effect. From equation 6.36, Te would be given by 1/Kα.

As a check of equation 6.33 for polymer electrolytes, it is necessary to perform

pressure dependent measurements on the conductivity. With pressure dependent

conductivity data, the activation volume can be found with

(
∂lnσ

∂P

)
T

= −∆V

RT
. (6.37)

Because of the experimental difficulties involved, pressure dependent measurements

on polymer electrolytes are rarely done. When pressure dependent measurements
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are done, they are usually done with amorphous polymers such as PPO. Stoeva et

al.[20] have performed pressure dependent measurements on partially crystalline PEO

LiClO4 20-1. For the activation energy of the partially crystalline region, Stoeva

et al. found ∆H ≈ 141kJ/mol. For the activation volume, they found ∆V ≈

36cm3/mol. Inserting ∆H and ∆V into equation 6.33 and using K = 2.2(see below),

β is calculated to be 1.16E-10 m2/N which is the correct order of magnitude for the

isothermal compressibility of a polymer.

Originally the parameter K had to be determined experimentally. Crine[17], how-

ever, proposed that K is given approximately by the Rao acoustical parameter, nR.

Crine checked this relation for a variety of polymers and found some agreement.

The Rao acoustical parameter is given by

nR =

(
∂lnu

∂lnρ

)
P

(6.38)

where u is the speed of sound and ρ is the density. Using the relation u = (Bs/ρ)1/2,

Warfield and Hartmann[21] derived the following alternate expression for nR.

nR =
1

2

[(
1

αBs

∂Bs

∂T

)
P

− 1

]
(6.39)

In the above, Bs is the bulk modulus of the sample. This result is interesting because,

in the same paper in which Warfield and Hartmann found equation 6.39, Warfield

and Hartmann measured the bulk modulus of PEO above and below its melting

point. This allowed them to calculate the Rao acoustical parameter for PEO above

and below its melting point. Below the melting temperature of PEO, the value for

the Rao acoustical parameter was found to be nR(solid) = 23. Above the melting
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temperature of PEO, the value of the Rao acoustical parameter was found to be

nR(melt) = 2.2.

With the above values of the Rao acoustical parameter and the relation Te =

1/αnR, Te can be calculated for PEO. The thermal expansion coefficients for PEO

are α(solid) = 3.3E-4/K and α(melt) = 14E-4/K. Inserting the values for α and nR

into 1/αnR, one finds Te(solid) = 132 K and Te(melt) = 324 K.

Recall now how ions are transported in PEO. Ion transport does not occur in the

crystalline/solid regions of PEO. Ion transport occurs in the amorphous regions of

PEO. This amorphous region should have properties similar to the melt. Therefore,

Te(melt) = 324 K might have some relevance to ion transport. Equation 5.7 includes

a parameter Te(cond) relevant to conductivity. Eqaution 5.7 was used to fit the amor-

phous polymer electrolyte PEO LiTFSI 10-1. This fitting gave the result Te(cond) =

312 K. It is seen that Te(cond) = 312 K, which comes from impedance measurements,

compares well with Te(melt) = 324 K, which comes from mechanical measurements.

It is remarkable that an electrical measurement should compare well with a me-

chanical measurement. Why should this be so? The mechanically measured Te is

based on the measurement of the Rao acoustical parameter. The Rao acoustical pa-

rameters in turn depends on the speed of sound in the sample. The speed of sound

in turn depends on the characteristic vibrations of the sample. If these characteristic

vibrations served as the source of the excitations discussed in the previous section,

then a connection is made between Te(cond) and Te(melt). If Te(cond) and Te(melt)

do arise from the same source then a similar value would not be unexpected. The fact
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that polymer electrolytes have similar times scales for conductivity and mechanical

relaxation is also more readily understood if there is a similar set of excitations.

6.4 Summary

A number of theoretical treatments of the compensation effect were presented. Many

of these treatments relied on the idea of absorbing energy from the heat bath. The

compensation parameter Te can then be related to some characteristic excitation of

the heat bath. Other treatments related Te to a melting or disordering temperature.

A localized disordering would allow a trapped particle to move in a liquid like environ-

ment. It was argued that the localized disordering picture might not be inconsistent

with the excitation picture if the excitations are the cause of the melting.

The compensation effect has also been seen in experiments on polymers. One

theoretical interpretation of these experiments relates the activation enthalpy and

the activation entropy through an activation volume. The proportionality factor

between the activation enthalpy and activation entropy is Te = 1/nRα were nR is

the Rao acoustical constant and α is the thermal expansion coefficient. Mechanical

measurements on melted PEO give Te = 324K. Interestingly this value compares

well with the compensation temperature measured by conductivity.

Even though there are theoretical arguements to support it, the compensation

effect is still a controversial topic. For example, it is difficult to measure ∆H and

∆S independently. If ∆H and ∆S are not measured independently a false statistical
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correlation can result[22]. Sauer has argued against the physcial significance of the

compensation effect seen in TSDC experiments[23], and Widenhorn et al.[24] have

argued that the compensation effect seen CCD currents is due to an improper analysis.

While these cautions must be kept in mind, thorough statistical analysis indicates that

in many cases the compensation effect is probably real and physically significant[4, 22].
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Chapter 7

A microscopic picture of polymer electrolyte conductivity

Chapters 4 and 5 argued that the Vogel equation was unable to satisfactory cap-

ture certain empirical aspects of polymer electrolyte conductivity. Equation 7.1 was

proposed as an alternative to the Vogel equation.

σ(T ) =
1

σβe
Eβ
kT + σαe

Eα
kT

(7.1)

Equation 7.1 is able to reproduce a wider range of polymer electrolyte conductivity

phenomenology such as paritally crystalline polymer electrolytes as well as amorphous

polymer electrolytes. The compensation effect was seen in applying equation 7.1 to

a family of amorphous polymer electrolytes. Incorporating the compensation effect

into equation 7.1 yields

σ(T ) =
2σ0

eEβ( 1
kT

− 1
kTe

) + eEα( 1
kT

− 1
kTe

)
. (7.2)

The compensation effect was discussed in chapter 6, and different theories for the

physical meaning of Te were presented. While theories of the compensation effect are

diverse, there are certain common threads. Many of the theories relate Te to a heat
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bath excitations or a local disordering/fluidizing.

In this chapter a microscopic interpretation of equation 7.2 is discussed. Micro-

scopic pictures must be proposed cautiously. For example, in the early days of polymer

electrolyte research, conductivity was thought to occur in the crystalline regions. The

cations were thought to travel through the center of the polymer crystal helixes. This

seems to be a reasonable idea when one notices that the crystalline polymer PEO has

a greater conductivity than the amorphous polymer PPO. It was later shown that the

conductivity takes place primarily in the amorphous regions. It is necessary, however,

to give equation 7.2 some plausible physical basis. Therefore, a microscopic picture is

proposed but should be considered tentative. While some comment is made in regard

to the C2000 based systems, the microscopic picture presented in this chapter applies

mainly to PEO based systems.

7.1 Microscopic pictures of ion transport

The introductory chapter on polymer electrolytes emphasized the importance of ion-

ion interactions and ion-polymer interactions. Ion-polymer interactions are necessary

to dissolve the salt in the first place, and ion-ion interactions are clearly seen in

vibrational spectra and in the dependence of conductivity on concentration. It would

seem reasonable then that ion-polymer and ion-ion interactions should play a role in

the conductivity. Before discussing a model consistent with equation 7.1, a simple

hydrodynamic model commonly used to discuss ion transport in liquid electrolytes
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and dynamic bond percolation, which is often used as a model of polymer electrolyte

ion transport, are briefly presented.

7.1.1 hydrodynamic model

A simple model which is often used to discuss conductivity in liquid electrolytes

assumes that the ion can be treated as a macroscopic object in a continuum medium

so that Stokes law can be applied. The inadequencies of this model were presented

long ago[1], but it remains popular because of its simplicity and because it seems to

account adequately for steady state behavior.

The forces on the ion are the electric field and a dissipative force due to the

viscosity of the medium. The equation of motion is

m
dv

dt
= qE − 6πrsηv (7.3)

where m is the ion mass, q is the ion charge, rs is the ion radius, and η is the viscosity

of the medium. In a constant electric field at steady state(dv/dt = 0), the mobility

of the ion is

µ =
v

qE
=

1

6πrsη
. (7.4)

The conductivity is then simply σ = qnµ where n is the ion density. Equation 7.4

says that the conductivity is inversely proportional to the viscosity of the medium.

This result is known as Walden’s law and is found to hold to some extent in polymer

electrolytes.

Equations 7.3 and 7.4 can account reasonably well for the DC conductivity but
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fails to account for the AC conductivity. By inserting E = E0e
iωt and v = veiωt into

equation 7.3, the complex velocity, v, is found to be

v =
qE0

6πrsη + imω
. (7.5)

The real part of the conductivity is

σ = qnRe(µ) =
qn

6πrsη

1

1 +
(

mω
6πrsη

)2 . (7.6)

Equation 7.6 predicts that the conductivity is roughly constant up to a frequency

of approximately ω ∼ 6πrsη
m

after which the conductivity decreases rapidly. This

prediction contrasts dramatically to the experimental data shown in chapter 3 in

which the conductivity increases with increasing frequency.

7.1.2 Dynamic Bond Percolation

Druger et al.[2, 3, 4, 5] have given a microscopic model based on dynamically renewing

environments. Dynamically renewing environments are akin to free volume ideas,

but the Druger et al. picture is a much more detailed microscopic picture than free

volume. The first model of a dynamically renewing environment was a percolation

model in which the bonds between sites were randomly redistributed after a renewal

time τren. This model was called the dynamic bond percolation(DBP) model. In

standard percolation theory, a grid of sites is specified, and a fraction of the bonds

between nearest neighbor sites are available for conduction. One of the major goals

of standard percolation theory is to determine the minimum fraction of sites that

must be available for conduction from one side of the grid to another. This minimum
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fraction is called the percolation threshold. In DBP, the fraction of available bonds

is well below the percolation threshold. A particle that is moving from site to site

will be trapped in a small cluster of sites. However, after a time τren the bonds will

redistribute and the travelling particle might be able to move to a new cluster of sites.

With DBP a particle can diffuse from one side of the grid to another even though

the fraction of bonds is below the percolation threshold. There are two characteristic

times in dynamic bond percolation. One is the previously mention renewal time τren,

and the other is the hopping time, τhop, from site to site along a available bond. If

τhop << τren, the diffusion of the particle will be limited by the renewal time. If

the renewal time follows the Vogel equation as a function of temperature, then the

diffusion of the particle will follow the Vogel equation. The dynamic bond percolation

model has been generalized[4], and many important mathematical results have been

derived. However, similar to the free volume theories, the dynamic bond percolation

theory and its generalizations do not shed light on the role of ion-ion and ion-polymer

interactions in conductivity or do so only indirectly[6].

7.1.3 Requirements of a microscopic interpretation based on

partially cystalline polymer electrolytes

The reasoning that lead to equation 7.1 is reviewed for possible physical insight.

Partially crystalline polymer electrolytes were instrumental to equation 7.1. It was

noticed that in partially crystalline PEO LiTF 10-1 there are two peaks in the -Im Z

vs. log f plots. These two peaks correspond to two resistors in series. The fact that
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the two resistors are in series is significant. It was also argued that at the melting

point of the polymer the regions that were formerly crystalline are now available for

conduction. In figure 5.4, it is seen that while one of the resistors changes dramatically

when the polymer melts the other resistor does not change when the polymer melts.

It was argued that the change in the resistor can be accounted for by a change in the

prefactor of the resistor. Denote the resistor that changes on melting as the α-resistor

or α-process, and denote the resistor that does not change on melting as the β-resistor

or β-process. It is obvious the the β-process cannot be a free volume/Vogel-like

process. The conductivity associated with a free volume type process would change

when the polymer melted. The β-process does not change. The fact that the β-process

does not change when the polymer melts suggests that it is localized and associated

with short range movement. The α-process changes upon melting so it is possible

that it could be related to free volume. The α-process, however, appears Arrhenius

like over the temperature range of this study. To summarize, some requirements for a

microscopic interpretation of equations 7.1 and 7.2 are that there be two processes in

series and that one process should not depend heavily on the number of conduction

pathways while the other process should depend on the number of pathways. Neither

of the two processes appear to be a free volume/Vogel-like processes.
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7.1.4 Models of transport in non-polymer electrolyte ionic

conductors

There is a distinct lack of microscopic models dealing with polymer electrolyte con-

ductivity. There are a number of models available dealing with ionic conductors such

as ionic conducting glasses and ionic conducting crystals. Connections between these

models and polymer electrolytes have not been drawn. This is because ionic conduc-

tion in glasses/crystals is thought to be completely different from and unrelated to

ionic conduction in polymer electrolytes. In the chapter on frequency-dependent con-

ductivity, it was demonstrated that the frequency-dependent conductivity of polymer

electrolytes show remarkable similarities to the frequency-dependent conductivity of

ionic glasses. The frequency-dependent conductivity contains far more information

on the microscopic mechanism of ionic conduction than the DC conductivity. It might

therefore be worthwhile to investigate models of ionic transport in glasses and crystals

for insights into ionic transport in polymer electrolytes.

A coulomb lattice gas with site energy disorder is a model of a disordered con-

ductor that has been developed by P. Maass, A. Bunde, M. Meyer, W. Dieterich

and co-workers[7, 8, 9, 10, 11]. This theory was mentioned briefly when the scaling

properties of ionic conductors were discussed. The theory is based mainly on monte

carlo computer simulations[12].

Start with a grid of points such as a three dimensional square lattice. Each point

of the square lattice is assigned a site energy, εl, taken from some distribution f(ε).
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A natural choice for the distribution f(ε) is a Gaussian distribution with variance

σ2
ε and average zero. Charged particles are placed on some fraction of the sites. A

site, l, can be occupied(nl = 1) or unoccupied(nl = 0). The interactions between

the charged particles are taken to be coulombic in nature. The energy for a given

configuration of charges,{nl}, is

E =
1

2

∑
l 6=l′

e2

|rl − rl′|
nlnl′ +

∑
l

εlnl (7.7)

where rl is the position of site l. While calculating the energy of a given configuration

using equation 7.7 is straightforward in principle, in practice equation 7.7 is too ineffi-

cient for numerical calculations. In performing numerical calculations on a computer,

periodic boundary conditions are usually used. The use of periodic boundary condi-

tions simplifies the necessary programming and effectively makes the lattice infinite

in size. The problem that arises is that the sum over the inverse distance in equation

7.7 converges too slowly. The solution is to use the Ewald summation technique[12]

to calculate the coulombic energy contribution.

In order for the coulomb lattice gas with site disorder to model a disordered ionic

conductor, there must be some way for the ions to move. Ion movement is accom-

plished through a Monte Carlo simulation. An ion is chosen at random from the

lattice. One of the nearest neighbor sites is chosen around the ion. If the nearest

neighbor site is already occupied the hop attempt fails. If the nearest neighbor site is

not occupied the hop attempt may succeed or may fail. The criteria for the success or

failure of a hop to an empty nearest neighbor position is determined by the Metropolis

algorithm. In the Metropolis algorithm, the energy of a configuration is calculated.
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An ion is then moved to a nearest neighbor position, and the energy of this new

configuration is calculated. If the energy of the new configuration is less than the en-

ergy of the old configuration the move is accepted. If the new configuration is higher

in energy than the old configuration, the move is accepted with probability e−∆E/kT

where ∆E is the energy difference between the new and old configurations. The prob-

ability for a move to be accepted given that the nearest neighbor site is unoccupied

is min[1, e−∆E/kT ]. Using the Metropolis algorithm ensures that the configurations

that are accepted correspond to equilibrium configurations.

Following a period of equilibriation, a starting equilibrium configuration is chosen.

This starting configuration provides the initial positions of the ions. The system is

then evolved using the Metropolis algorithm. As the system evolves from the start-

ing configuration the mean squared distance can be calculated. The mean squared

distance is given by

< r2(t) >=
1

N

N∑
i

|ri(t)− ri(0)|2 (7.8)

where N is the number of ions, ri(0) is the starting positions of the ions, and ri(t) is

the positions of the ions after time t. Time in a monte carlo simulation corresponds

roughly to the number of monte carlo steps, i.e. jump attempts. Once the mean

squared distance is found the long time diffusion constant can be found with

D = lim
t→∞

< r2(t) >

6t
. (7.9)

Finally with the diffusion constant the DC conductivity can be calculated with the
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Nernst-Einstein equation:

σDC =
Nq2D

kT
. (7.10)

The above simulation procedure has been applied to ionic glasses and ionic crys-

tals in order to understand the non-Arrhenius behavior occasionally seen in those

systems. For example, Kincs and Martin[13] have shown that the conductivity, of

the fast ion conductor zAgI +(1− z)[0.525Ag2S +0.475(B2S3 : SiS2)], demonstrates

non-Arrhenius behavior at temperatures close to but below the glass transition tem-

perature. Maass et al.[10] used monte carlo simulations to study the non-Arrhenius

behavior. The results are shown in figure 7.1. Figure 7.1(a) shows the simulation

results. The different lines in figure 7.1(a) correspond to different values of σε. The

standard deviation, σε, can be thought of as the amount of disorder in the system.

A large σε corresponds to a large amount of disorder, and a small σε corresponds to

a small amount of disorder. The open diamonds in figure 7.1(a) corresponds to the

largest value of σε; the open triangles correspond to the next largest and so on. The

filled squares corresponds to σε = 0. For σε = 0 all site energies εl are zero since

the average of Gaussian distribution is set to zero. The dotted line that fits the filled

squares corresponds to a temperature dependent diffusion constant in which only ion-

ion interactions are operating. For σε 6= 0, the conductivity is less than the σε = 0

case. This is because the introduction of disorder introduces an activation energy

higher than the activation energy associated with the ion-ion interactions. There are

therefore two activation energies. A low temperature activation energy is associated

with disorder, and a high temperature activation energy is associated with ion-ion
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Figure 7.1: (a) Monte Carlo simulation of system with site disorder and ion-ion interactions. (b)

Experimental data on ionic glass conductors showin non-Arrhenius conductivity. Figure taken from

reference [10]

interactions. As can be seen in figure 7.1(a) the higher the disorder the larger the low

temperature activation energy. As the temperature becomes higher and higher in the

disordered systems, the conductivity bends over and appears to reach a saturation

limit given by the ion-ion interactions. The ion-ion interactions set a upper bound for

the conductivity. Figure 7.1(b) shows the experimental data of Kincs and Martin. It

is seen that at the higher temperatures the conductivites do appear to bend over as

they near the dotted line. The dotted line is the estimated upper bound due to ion-ion

interactions. To summarize, site disorder can lead to a high activation energy, but as

the temperature increases ion-ion interactions can limit the conductivity resulting in

non-Arrhenius behavior.
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The Coulomb gas model was also used to understand the frequency-dependent

dispersion properties of the conductivity and diffusion constant. It was shown that

both Coulomb interactions without disorder in the site energies and site energy dis-

order without Coulomb interactions can produce mild dispersion in the conductivity.

However, the prescence of both site disorder and Coulomb interactions are necessary

to produce the strong dispersion seen experimentally[7].

Another model that takes into account ion-ion interactions is the Jump Relaxation

Model due to K. Funke[14]. This model is briefly described. Consider an ion along

with its neighboring ions. This ion is at a potential minimum with respect to its

neighboring ions. Along with being in a potential minimum with respect to the other

ions, the ion is also in a potential minimum of the lattice. When the ion hops to a new

potential of the lattice, the ion is no longer in a potential minimum with respect to the

neighboring ions. This situation can be resolved in one of two ways: (1) the ions can

hop back to its previous position or (2) the neighboring ions can move to accomodate

the new position of the ion. The first case is more likely but is undesirable since if

all ions hopped back to their old location after making a hop to a new location there

could be no long range ion movement, i.e. no DC conductivity. The second case is

less likely but allows for DC conductivity. The Jump Relaxation Model introduces a

function g(t) to describe the ionic environment around the hopping ion. If g(t) decays

significantly before the ion hops back to its previous location, the new location is

now the new potential minimum with respect to the neighboring ions, and the hop

is considered successful. Another function, W(t), related to g(t) is introduced to
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described the decay of the velocity autocorrelation function. The Jump Relaxation

Model has been used successfully to model the frequency-dependent conductivity

properties of ionic glasses and crystals[14]. These frequency-dependent properties are

also seen in polymer electrolytes.

The two models discussed above both emphasize the importance of ion-ion inter-

actions in ionic glasses and crystals. This suggests that ion-ion interactions might

also be important in ionically conducting polymer electrolytes.

7.1.5 Polymer electrolytes

A microscopic interpretation of equation 7.2 is now offered. This entails a physical

mechanism that would lead to two resistors in series. The prescence of the compen-

sation effect in equation 7.2 is also elucidated.

The β and α resistors

The requirements for the β-resistor and the α-resistor were previously laid out. One

requirement was that the α-resistor and the β-resistor be in series. The previous

section discussed the importance of site energies and ion-ion interactions. Consider

an ion that is hopping in the presence of ion-ion interactions only. This situation can

be modeled by a resistor with a Arrhenius temperature dependence. Consider now

an ion that is hopping in the presence of site energies only. Again this situation can

be modeled with a resistor with a Arrhenius temperature dependence. How would an

ion hopping in the presence of both site energies and ion-ion interactions be modeled?
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Long range movement of the ion would entail overcoming the resistance of both the

ion-ion interactions and the site energy. Since both resistances must be overcome,

this would seem to entail two resistors in series as the appropriate model. Ion-ion

interactions and site energy might provide a physcial basis for the two resistors in

series.

Another requirement besides that the resistors be in series is that the α-resistor

changes as the polymer crystalline regions melt and more pathways become available.

The β-resistor does not change as the polymer melts. Consider an ion hopping among

the different sites and imagine what would happen if a large fraction of those sites

were removed. The prefactor for the resistor modelling this situation depends on

the number of nearest neighbor sites around the ion. If a large fraction of sites

are removed the resistance will increase. If the removed sites suddenly reappear,

the resistance will decrease because there are now more nearest neighbor sites. This

decrease in resistance as the sites reappear is similar to the change in the α-resistor as

the polymer melts. The situation in regards to the ion-ion interactions is a bit more

complicated. It might be imagined that as the polymer melts that ions rearrange

themselves so that there is a large change in the β-resistor. On the other hand if

the ion-ion effects are mainly due to local interactions of the ions, the melting of the

polymer might not have a large effect on the β-resistor.

Site energy and ion-ion interactions appear to satisfy the two criteria mentioned

above for the physical processes associated with the β and α resistors.
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What is a “site”?

The use of the term site energy with regard to polymer electrolytes might be a little

deceptive. When using the word “site”, a lattice of fixed sites might be mentally

pictured. This would be mistake for polymer electrolytes. The polymer is not fixed

but is undergoing various complicated motions. As the polymer moves, the “sites”

disappear, reform, or otherwise change. The sites are not fixed. A slightly more

general notion of site energy must be used for discussing polymer electrolytes.

Figure 7.2 shows a cartoon of a polymer electrolyte. The beads making up the

polymer are not necessarily atoms but could represent monomeric units. The cartoon

shows three beads coordinated to a lithium cation. The way to think of the site energy

is not just the energy well due to the cation coordination to the polymer but instead

consider the energy associated with the structure in the dotted box. This structure

includes the lithium and the polymer localized around the lithium. The site energy

depends on these local structures(LS) present in the polymer electrolyte. Different

LS will have different energies. In order for cation transport to take place this LS

must be disordered or fluidized. This involves disordering the polymer backbone

around the cation and breaking one or more coordinative bonds. The language,

disordering and fluidizing, is used in analogy with the language used in the chapter

on the compensation effect. Figure 7.3 shows a LS in a energy well and a transition

state at the top of the well that features a disordered polymer backbone and fewer

coordinative bonds. The transition state shown in figure 7.3 shows one coordinate

bond. The figure is of course a cartoon and does not reflect the actual number of
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Figure 7.2: Cartoon showing a local structure present in a polymer electrolyte

coordinative bonds associated with a transition state.

From table 5.1 the activation energy for the PEO LiTFSI 10-1 α-resistor was 12803

K or 1.1 eV. This suggests that the energy difference between the LS and the transition

state is around 1.1 eV. The energy difference between a LS and a transition state can

be estimated with ab initio calculations. These calculations have been performed by

Johansson [15]. Johansson calculated the energy difference between a state where

a lithium ion was coordinated to three ether oxygens and a state where one of the

dihedral angles was rotated so that the lithium was coordinated to two ether oxygens.

The energy difference was found to be 1 eV. While the calculations agree well with

PEO LiTFSI 10-1, from table 5.2 the C2000 LiTFSI 10-1 α-resistor activation energy

is 18756 K or 1.62 eV. This perhaps indicates a more complicated LS and a more

complicated transition state than the PEO LiTFSI 10-1.

In polymer electrolytes a site is not a fixed position where the cation can hop into

or out of. Instead a small region surrounding the cation must be considered. The
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Figure 7.3: Cartoon showing a local structure in a well and a disordered structure that has escaped

from the well.

energy of this local structure gives the site energy. The transition state of this site is

a disordering or fluidizing of this local structure.

Ion-ion interactions

In going from the local structure to the disordered transition state one or more coor-

dinative bonds are broken. This results in a change in enthalpy(∆H). Also in going

from the local structure to the disordered/fluidized transition state there is change

in entropy(∆S). It seems intuitively plausible that large ∆H’s would lead to large

∆S’s and small ∆H’s would lead to small ∆S’s. Theories leading to a linear relation

between ∆H and ∆S were discussed in the previous chapter on the compensation ef-

fect. As the temperature is increased, the entropy penalty for forming a LS increases.

This means that as the temperature is increased the time it takes for a local region
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to fluidize decreases. Since local regions are fluidizing rapidly, it seem plausible that

the disordering step will no longer be the limiting factor of the conductivity. It is

proposed that the limiting factor at high temperatures is the ion-ion interactions.

The importance of ion-ion interactions can not be doubted. As discussed in the

introduction, pairs and larger aggregates are seen the vibrational spectra of polymer

electrolytes. Even when free ions are seen, local charge neutrality requires the opposite

ion to be nearby. Ratner and Nitzan have emphasized the importance of ion-ion

interactions in polymer electrolytes and have refered to polymer electrolytes at high

salt concentrations as “Coulomb fluids”[16]. Molecular dynamics and monte carlo

simluations have also demonstrated the significance of ion-ion interactions[17, 18].

It is difficult to estimate the magnitude of the ion-ion interaction effects, so it is

hard to say what a reasonable value for activation energy due to ion-ion interaction

might be. If the β-resistor is indeed related to ion-ion interactions, from table 5.1 the

barriers due to ion-ion interactions in PEO LiTFSI 10-1 are around .36 eV.

Ion-ion interactions are proposed as the physical basis of the β-resistors for three

reasons: (1) ion-ion interactions provide a mechanism in which the β-resistor would

not necessarily change dramatically on melting of the polymer, (2) computer sim-

ulations incorporating ion-ion interactions show conductivity plots similar to those

expected from equation 7.1, and (3) experiments have demonstrated the importance

of ion-ion interactions in polymers electrolytes. While it would be desireable to have

estimates for the dissociation of pairs into free ion and the dissociation of aggregates

into smaller pieces, it would be surprising if these processes did not have significant
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impact on the conductivity.

C2000 based polymer electrolytes

So far it has been implied that the ion-ion interaction contribution to the total resis-

tance and the ion-polymer contribution to the total resistance can be cleanly seper-

ated into the β-resistor and the α-resistor. This may be the case for PEO based

systems, but the C2000/PPO based systems might be more complicated. For exam-

ple, one of the reasons for assigning the β-resistor to ion-ion interactions is that the

β-resistor is continuous when semi-crystalline PEO melts. Since C2000/PPO based

systems are amorphous, it is not known whether the β-resistor would be continuous

or discontinuous.

In the C2000 LiTFSI 10-1 Eβ is around .78 eV. From table 5.2, the Eβ’s at all

concentrations are larger in C2000 LiTFSI than in PEO LiTFSI 10-1. This can be

understood to some extent by the fact that C2000/PPO is a poorer solvent than

PEO. Since C2000 is a poorer solvent higher salt aggregation is expected, and higher

salt aggregation would lead to greater ion-ion interactions and therefore larger values

of Eβ. Another possibility is that ion-ion interactions and ion-polymer interactions

both contribute to the β-resistor and the α-resistor. There also might be a more

complicated distribution of local structures and transition states which would cause

more complicated behavior. The effect of a broad distribution of local structures will

be considered in the next chapter.
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7.1.6 The microscopic basis of the compensation effect

Theories on the compensation effect were discussed in the previous chapter. Many

of the theories made use of the idea of collecting excitations from the heat bath in

order to overcome large energy barriers. In particular Linert correlated experimen-

tally measured values of Tiso(Te) with peaks seen in the IR spectra of the systems

investigated(see figure 6.1). In this section the far IR spectra of polymer electrolytes

are investigated to see if vibrational peaks in the far IR can be correlated with the

values of Te found from fitting the conductivity.

The values of Te have been reported in units of Kelvin. Vibrational spectra

are usually expressed in inverse centimeters. The conversion between Kelvin and

wavenumbers is

wavenumber(cm−1) =
kBTe

100hc
(7.11)

where kB is Boltzmann’s constant, h is Planck’s constant, and c is the speed of light.

The value of Te found for PEO LiTFSI 10-1 is 312 K which gives a wavenumber

value of about 217 cm−1. The of Te found for C2000 LiTFSI is 296 K which gives a

wavenumber value of about 206 cm−1.

Figure 7.4 shows the far IR spectra of PEO at room temperature. As shown in

the figure there is a peak in the far IR spectra of PEO that agrees well with the

Te found for PEO LiTFSI 10-1. Recall that PEO is largely crystalline below its

melting temperature. The structure of crystalline PEO is known(see figure 1.3) so

it is therefore possible to calculate the normal vibrations of crystalline PEO. These

161



Figure 7.4: Far IR of semicrystalline PEO

calculations were performed by Yoshihara et al.[19]. The vibrational peak at 217 cm−1

has been assigned by Yoshihara et al. to a doubly degenerate E1 mode. The mode

is made up a complex mixture of polymer backbone bending vibrations and torsions.

This vibration can be imagined as opening the polymer helix which is encircling the

cation. This opening of the helix would provide the disordering necessary to allow

the cation to move.

Whereas PEO is largely crsytalline at room temperature, PEO LiTFSI 10-1 and

C2000 LiTFSI are amorphous. Being amorphous, there are now a large range of

conformations possible along the polymer backbone. This leads to much broader

peaks. Figure 7.5 shows PEO LiTFSI 10-1, C2000 LiTFSI 10-1, and C2000 LiTF

10-1. The C2000 LiTFSI 10-1 and the PEO LiTFSI 10-1 are almost identical in the

region shown. There are two prominent peaks seen in the C2000 LiTFSI 10-1 and
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PEO LiTFSI 10-1 at 224 cm−1, and 206 cm−1. The two peaks are sitting on a broad

distribution of polymer backbone modes. This causes the two peaks to be on the slope

seen in the C2000 LiTFSI 10-1 and the PEO LiTFSI 10-1. In pure C2000(not shown)

only the broad distribution of conformation is present and only the slope without the

two peaks at 224 cm−1 and 206 cm−1 is evident. On addition of the LiTFSI, the

lithium cations locally order the polymer backbone which leads to the prescence of

the two peaks on top of the broad distribution. In crystalline PEO there is a doubly

degenerate peak at 217 cm−1. If the crystalline structure of PEO is perturbed, this

doubly degenerate peak will split into two peaks. One of the peaks will be at a higher

frequency than the 217 cm−1 peak and the other peak will be a lower frequency than

the 217 cm−1 peak. This seems to fit what is seen in figure 7.5. The cations will locally

order the polymer backbone, but the locally ordered conformations are not exactly

the same as in crystalline PEO. This therefore leads to the two peaks. The values

of Te found from the fits to the conductivity are also shown in figure 7.5. In PEO

LiTFSI 10-1, the value of Te is 217 cm−1. As seen in figure 7.4, this is the location

of the unsplit crystalline PEO peak. For C2000 LiTFSI 10-1, Te is 206 cm−1. This is

the location of low frequency split peak. Also shown in figure 7.5 is C2000 LiTF 10-1.

The splitting in C2000 LiTF 10-1 is not as great as with LiTFSI. Unlike in C2000

LiTFSI, the value of Te(221 cm−1) for C2000 LiTF 10-1 appears to correspond to the

high frequency peak rather than the low frequency peak.

As to why the different values of Te correlate to different peaks and not the same

peak is not known. What is significant, however, is, that the peaks the Te’s do
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Figure 7.5: Far IR of polymer electrolytes showing correlation with the values of Te obtained from

curve fitting.

correlate with, correspond to vibrations that disorder the polymer backbone. These

results correspond nicely with the theories of the compensation effect which ascribe

Te to some excitation of the system.

7.2 Summary

This chapter proposes a possible microscopic interpretation for the α and β resistors.

Models of solid ionic conductors, in which site energies and ion-ion interactions play a

role, were discussed. Site energies and ion-ion interactions would be modeled by two

resistors in series and so provide a possible physical basis for the α and β resistors.

For PEO systems, the β resistor was assigned to ion-ion interactions, and the α

resistor was assigned to site energies for reasons discussed in the chapter. It was
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argued that a “site” in polymer electrolytes was not the position of the lithium cation.

Instead a “site” includes not only the lithium cation but the lithium cation and

the surrounding polymer that is coordinating the cation. To hop out of the “site”

entails both breaking coordinative bonds and disordering the polymer bacbone. As

the temperature is increased, any locally ordered site is quickly disordered due to

entropy. The site energies no longer limit the conductivity. Ion-ion interactions

become the limiting factor for conductivity. The situation for PPO/C2000 systems

might be more complicated so that a clean seperation into ion-ion interactions and

ion-polymer interactions might not apply. Finally, peaks are seen in far IR spectra

that do correlate with values of Te found from the conductivity.
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Chapter 8

Generalization and glass phenomenology

One of the main results of the study of glass forming substances is that the Vogel

equation is often found to apply over some temperature range. Previous chapters ar-

gued that for polymer electrolytes the two Arrhenius equation provides better insight

into the ionic transport mechanism. Can the two Arrhenius equation be applied to

other systems showing Vogel-like behavior? In general the answer is no. The Vogel

equation continually curves as the temperature is lowered on an Arrhenius plot. The

two Arrhenius equation will eventually become linear on an Arrhenius plot as the tem-

perature is lowered. The two Arrhenius equation might show curving behavior over

3-4 orders of magnitude whereas experimental data for the viscosity of glass forming

substances might show curving behavior over 10-12 orders of magnitude. The two

Arrhenius equation can not fit data that curves over 10-12 orders of magnitude, so

the Vogel equation does a much better job of fitting such data.

In this chapter it will be shown that the Vogel equation can be understood within

a distribution of activation energies picture. The reasons for doing so are as fol-

168



lows: It was seen that a distribution of hopping barriers can be used to understand

the frequency-dependent conductivity of polymer electrolytes. If the hopping mod-

els reflect the actual physics of the frequency-dependent conductivity then the non-

Arrhenius DC conductivity should also be understood in terms of a distribution of

hopping barriers. Also, a distribution of hopping barriers is the logical extension to

the two Arrhenius equation. If the two Arrhenius equation accurately represents the

physics over a limited temperature range, then a distribution of barriers might reflect

the physics over a larger temperature range.

8.1 Generalization to a Distribution of Activation

Energies

The two Arrhenius equation with the compensation effect is repeated below:

x(T ) =
2x0

eEβ( 1
kT

− 1
kTe

) + eEα( 1
kT

− 1
kTe

)
. (8.1)

The form of equation 8.1 suggests the following generalization:

x(T ) =
x0∫∞

0 eE( 1
T
− 1

Te
)g(E)dE

. (8.2)

Equation 8.2 has written equation 8.1 in terms of an arbitrary distribution of activa-

tion energies(DAE)(from now on Boltzmann’s constant will be incorporated into E

so that energies will be in Kelvin). The distribution of activation energies is given by

g(E). The distribution g(E) is taken to be normalized. In order to recover equation
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8.1 from equation 8.2, the distribution would obviously be

g(E) =
1

2
δ(E − Eα) +

1

2
δ(E − Eβ). (8.3)

As a further simple example, consider a unifrom distribution.

g(E) =
{

1/(E1 − E2) E1 ≤ E ≤ E2

0 otherwise

Inserting the unifrom distribution into equation 8.2 gives

x(T ) = x0(E2 − E1)
1
T
− 1

Te

eE2( 1
T
− 1

Te
) − eE1( 1

T
− 1

Te
)
. (8.4)

Equations similar to equation 8.2 have been used to understand the conductivity of

glass ionic conductors [1, 2] and the phenomenological properties of glass-forming

substances(see below).

The question now becomes what is the relation between a DAE and the Vogel

equation. In particular, is there a g(E) that gives the Vogel equation, i.e. does the

following equation hold?

1

x0

∫ ∞

0
eE(β−βe)g(E)dE =

1

A
e

B
T−T0 (8.5)

Before giving a definite yes or no answer to the above equation, assuming g(E) does

exist, relations can be established between the parameters of the Vogel equation

and g(E). The distribution that gives the Vogel equation will be denoted by gV (E).

Requiring that gV (E) be normalized and setting β(= 1/T ) = βe(= 1/Te) gives x0/A =

e−B/Te−T0 . Equation 8.5 becomes

∫ ∞

0
eE(β−βe)gV (E)dE = e

B
T−T0

− B
Te−T0 . (8.6)
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The moments of the distribution gV (E) can be calculated with

〈En〉 =
∫ ∞

0
EngV (E)dE =

dn

dβn

∫ ∞

0
eE(β−βe)gV (E)dE

∣∣∣∣
β=βe

=
dn

dβn
e

B
T−T0

− B
Te−T0

∣∣∣∣
β=βe

.

(8.7)

All the moments of the distribution can be found in this way. The requirement that

〈En〉 ≥ 0 means that all derivatives of the Vogel equation must be non-negative. This

is indeed the case for T > T0(βT0 < 1) as can be seen by writing the exponent of the

Vogel equation as

B

T − T0

=
βB

1− βT0

= Bβ(1 + βT0 + (βT0)
2 + · · ·). (8.8)

The first and second moments of the distribution gV (E) are

〈E〉 = B
(

Te

Te − T0

)2

(8.9)

〈E2〉 =
B2 + 2BT0(1− T0/Te)

(1− T0/Te)4
. (8.10)

Solving for B from equation 8.9 and inserting it into equation 8.10, the following

equation for T0 can be derived:

1

T0

=
2〈E〉
σ2

E

+
1

Te

(8.11)

where σ2
E = 〈E2〉 − 〈E〉2. All three parameters of the Vogel equation, A, B, and T0,

have been related to x0, Te, and the statistical properties of the distribution gV (E).

While having the relations between the parameters is nice, the most direct way of

proving gV (E) exists is to actually find it.

Equation 8.6 resembles a Laplace transform. In fact, gV (E) can be found by a

inverse Laplace transform of Vogel equation. The details of this procedure are given
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in a mathematical appendix at the end of the chapter. Performing the inverse Laplace

transform gives

gV (E) = e−B/(Te−T0)
∞∑

n=0

1

n!

(−B

T0

)n

eE(1/Te−1/T0)
n∑

k=0

(
n

k

)
1

(k − 1)!
Ek−1

(−1

T0

)k

.

(8.12)

where (
n

k

)
=

n!

k!(n− k)!
. (8.13)

The above equation gives gV (E) in terms of the Vogel parameters B and T0. Using

equations 8.9 and 8.11 to write gV (E) in terms of 〈E〉 and σ2
E gives

gV (E) = e

−〈E〉
Te

(
2〈E〉
σ2

E

)(
2〈E〉
σ2

E

+ 1
Te

)−1

∞∑
n=0

1

n!

−〈E〉(2〈E〉
σ2

E

)2 (
2〈E〉
σ2

E

+
1

Te

)−1
n

×e
−E

(
2〈E〉
σ2

E

)
n∑

k=0

(
n

k

)
1

(k − 1)!
Ek−1

(
−2〈E〉

σ2
E

− 1

Te

)k

. (8.14)

The compensation temperature Te appears in equation 8.14. It would be hard

to justify physically the prescence of Te in the distribution of activation energies.

Fortunately, the prescence of Te is just an artifact of the method of derivation of

gV (E). The distribution gV (E) is independent of Te. This can be shown by calculating

the characteristic function of gV (E).

The characteristic function of some distribution g(E) is defined as

φ(p) =
∫

eipEg(E)dE. (8.15)

For gV (E), φV (p) is(see end of chapter appendix)

φV (p) = exp

〈E〉 ip

1− σ2
E

2〈E〉ip

 (8.16)
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which is indeed independent of Te.

Comparing the L.H.S. of equation 8.6 and the R.H.S. of equation 8.15, the two

equations are equivalent if the identification ip ⇔ 1/T − 1/Te is made. The L.H.S.

of equation 8.6 with gV (E) is by construction equivalent to the Vogel equation. Re-

placing ip in equation 8.16 by 1/T − 1/Te gives

x(T )

x0

= exp

 〈E〉
(

1
T
− 1

Te

)
1− σ2

E

2〈E〉

(
1
T
− 1

Te

)
 . (8.17)

Equation 8.17 is an alternate parameterization of the Vogel equation. The new pa-

rameterization reflects the fact that the Vogel equation can be arrived at from a

distribution of activation energies.

One of the characteristic features of the Vogel equation is the paramter T0. When

T = T0 the Vogel equation blows up. If on the other hand T0 → 0, the Vogel equation

becomes equivalent to the Arrhenius equation. How can this behavior be understood

in terms of a distribution of activation energies?

How is the singular behavior reflected in the distribution of activation energies?

Equation 8.14 is of the form

gV (E) = e
−E

(
2〈E〉
σ2

E

)
f(E) (8.18)

where f(E) is a non-normalizable function. If the temperature is such that in equation

8.2 eE(1/T−1/Te) cancels e−E(2〈E〉/σ2
E), then one is left with the integral from zero to

infinity of a non-normalizable function. Therefore the resulting expression diverges

like the Vogel equation at T = T0. The temperature at which the DAE diverges is

given by equation 8.11. The singular behavior of the Vogel equation can be reproduced
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by a DAE with a distribution function consisting of a decaying exponential times a

non-normalizeable function. The singularity due to a exponential decay of activation

energies has been emphasized by Monthus and Bouchaud [3].

As T0 → 0, the Vogel equation becomes equivalent to the Arrhenius equation.

How does the DAE approach interpret this behavior? From equation 8.11 as T0 → 0,

2〈E〉/σ2
E goes to infinity. Since the ratio of the mean to the variance is increasing,

the distribution becomes narrower and more strongly peaked. The effect of increasing

2〈E〉/σ2
E on the distribution gV (E) can best seen with the characteristic function.

Equation 8.19 shows a sequence of approximations for the characteristic function of

gV (E) valid as 2〈E〉/σ2
E becomes larger and larger.

exp

〈E〉 ip

1− σ2
E

2〈E〉ip

→ exp

(
ip〈E〉 − p2σ2

E

2

)
→ eip〈E〉 (8.19)

The right-most equation is the characteristic function for a delta function and applies

for T0 = 0. A delta function in equation 8.2 just yields the Arrhenius equation as

expected. The middle equation is more interesting; it is the characteristic function

for the Gaussian distribution. Note that the approximation that leads to the charac-

teristic function of the Gaussian is
σ2

E

2〈E〉ip � 1 which is true if 2〈E〉/σ2
E → ∞. It is

also true if ip � 2〈E〉/σ2
E. Previously the identification ip ⇔ 1/T − 1/Te was made.

The Gaussian is a valid approximation to gV (E) if

1

T
− 1

Te

� 2〈E〉
σ2

E

⇒ T � T0 (8.20)

where equation 8.11 has been used. This says that unless one has data near T0 it

would be difficult to distinguish between the Vogel equation and a Guassian DAE.
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Figure 8.1 shows gV (E) for σ2
E = 8.64E6 and for various values of 〈E〉. The

largest 〈E〉/σ2
E ratio is for 〈E〉 = 12200 K. According to the discussion of preceeding

paragraphs a large 〈E〉/σ2
E ratio should lead to a distribution that approximates the

Gaussian distribution. Indeed the plot for 〈E〉 = 12200 K does resemble a Gaussian

distribution. The curve for 〈E〉 = 12200 K shows some asymmetric non-Gaussian

behavior at large values of E. This is expected. In order for there to be singular be-

havior at T0 6= 0, the distribution must eventually decay as a exponential. A Gaussian

decays much faster than an exponential, so there must be non-Gaussain behavior at

high energies. This non-Gaussian behavior at high energies is more evident in the

〈E〉 = 7200 K plot. While the 〈E〉 = 7200 K plot still in some ways resembles a

Gaussian, the exponential-like decay leads to a strong asymmetry in the distribution.

As 〈E〉 continues to decrease the distribution ceases to resemble a Gaussian in any

way. In fact, the curve for 〈E〉 = 2200 K resembles a decaying exponential.

It is remarkable that gV (E) displays both decaying exponential behavior or Gaus-

sian behavior depending on the mean and variance of the distribution. The fact that

the decaying exponentials and Gaussians are physically plausible distributions gives

support to the contention that the Vogel equation is related to a distribution of ac-

tivation energies. It would be desireable, however, to have a microscopic model that

lead to gV (E) instead of deducing gV (E) from the empirical Vogel equation. This,

unfortunately, must be left as future work.

Various gV (E) plots were shown in figure 8.1. As formulated in this chapter,

gV (E) does not depend on temperature. The temperature dependence of x(T) in
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Figure 8.1: Plot of gV (E) for σ2
E = 8.64E6 and different values of 〈E〉.

equation 8.2 comes about from the term eE(1/T−1/Te) in the integral. How exactly

eE(1/T−1/Te) causes the temperature dependence of x(T) is illustrated in figure 8.2.

Figure 8.2 shows eE(1/T−1/Te) for three different values of T. Also shown in the figure

is the 〈E〉 = 7200 K distribution from figure 8.1(the distribution has been scaled so

that it can be seen on the same plot as the exponentials). For T < Te, eE(1/T−1/Te)

increases exponentially with E. For T > Te, eE(1/T−1/Te) decreases exponentially with

increasing E. For T = Te, eE(1/T−1/Te) is equal to one. For T < Te, eE(1/T−1/Te) is

increasing exponentially, and large values of the activation energy will be empha-

sized. As T continues to decrease larger and larger values of the activation energy

will be emphasized. x(T) will curve as the temperature is lowered since large values

of the activation energy contribute more. For T = Te, all values of the distribution

contribute equally to x(T). For T > Te, eE(1/T−1/Te) is decreasing exponentially, and
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Figure 8.2: eE(1/T−1/Te) plotted for different values of T. Also shown is a gV (E) from figure 8.1.

smaller values from the distribution of activation energies will be emphasized. Dif-

ferent temperatures emphasize different parts of the distribution. Low temperatures

emphasize high activation energies, and high temperatures emphasize low activation

energies. This results in non-Arrhenius behavior observed in plots of log x(T) vs.

1/T.

8.2 Some theories of glass phenomenology

The chief experimental results involving glasses are (1) the dramatic non-Arrhenius

increases in viscosity as the the glass transition temperature is approached and (2) the

non-exponential decay of relaxation processes above but close to the glass transition

temperature. An example of an experiment in which a relaxation process in observed

might involve a rapid drop in temperature of say 1 K and then subsequently observing
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the volume at constant pressure. The non-Arrhenius increases in viscosity are often

fit using the Vogel equation. The non-exponential decay of a relaxation process is

often fit by the stretched exponential shown below.

e−(t/τ)φ

(8.21)

Theories about glasses should be able to account for these phenomenological aspects.

Some review papers on glass phenomenology are references [4, 5, 6, 7, 8].

Previously the theory of free volume was presented in relation to the Vogel equa-

tion. Free volume theory does not explicitly involve activated processes. In free

volume theories flow or molecular movement depends largely on density. At higher

densities there is less free volume available for movement so flow should be reduced.

At lower densities more volume is avaiable for movement so flow should be enhanced.

Under free volume theories density should be the determining factor for molecular

movement. Temperature should play a lesser role in movement. On the other hand if

activated processes are responsible for molecular movement then temperature should

be the dominant factor and density should have a lesser role. Ferrer et al.[9, 10]

investigated the density dependent viscosity and temperature dependent viscosity for

various glass-forming liquids. The data presented by them showed a strong depen-

dence on temperature and a weak dependence on density. Ferrer et al. concluded that

“it is the temperature and not the density that is the dominant control variable”[9]

for their data. Similar statements about the relative importance of density and tem-

perature to the conductivity of polymer electrolytes have also been made[11].

Goldstein [12] also objected to the free volume picture and proposed a picture
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of molecular flow based on potential energy barriers. In a potential energy picture,

the potential energy landscape is considered. The potential energy landscape can

be thought of a 3N+1 dimensional plot of the potential energy U(r1, r2, · · · , rN). A

schematic diagram of the potential energy landscape in one dimension is given in figure

8.3. The potential energy landscape is made up basins of various depths. Some of the

basins correspond to amorphous structures whereas some of the basins correspond to

crystal structures. The structures corresponding to an amorphous state have been

termed inherent structures[13, 8]. One can also speak of local inherent structures to

denote the inherent structures of small regions. A supercooled liquid is explained as

a system which has not been able to find the basin corresponding to the crystalline

structure. A supercooled liquid only explores basins corresponding to amorphous

structures. At the glass transition, the system is stuck in basically one basin on the

observational timescale; it is therefore a solid.

Equation 8.2 is closer in spirit to the potential energy landscape picture than

the Vogel equation with the parameters A, B, T0. Various authors[14, 3, 15] have

used equations similar to equation 8.2 to understand glass properties in terms of a

distribution of energy barriers. The following picture of g(E) is typically used[16, 15].

The distribution g(E) is related to the various local inherent structures that can form.

The different local structures have different energy depths. In order to change from

one local inherent structure to another local inherent structure, the local inherent

structure “hops” to a fluidized state. In this fluidized state the atoms or molecules

that make up the localized region rearrange and randomly form a new local inherent
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Figure 8.3: Schematic picture of an potential energy landscape. Figure taken from ref. [13]

structure. The probability, that a new local inherent structure with a energy E

forms, is given by g(E). The picture therefore is of a small locally ordered region

“hopping” to a disordered state and then “falling” back to a different ordered state.

This picture is not unlike that used in the previous chapter to describe polymer

electrolyte conductivity.

Equation 8.2 assumes that the Arrhenius equation is the proper expression for

the transition rate over a energy barrier. If the temperature is low and the barriers

are high, the Arrhenius equation is probably appropriate. If on the other hand the

temperature is high and the barriers are low, the Arrhenius equation might not be

appropriate. The many particle system is represented as a point on the surface of

the potential energy landscape. At low temperatures the point can be thought of as

oscillating in some potential minimum basin. These oscillations around the minimum
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of the basin correspond to the vibrations of the solid. The particle spends most of

its time in the minimum of the basin. Ocassionally, the point escapes the minimum

of the basin, quickly traverses a saddle point, and ends up in a new potential energy

basin. This is the situation where equation 8.2 might hold. At high temperatures, the

point of the surface may not spend much time oscillating at the bottom of a potential

basin. The point will simply pass through the basin over a saddle point and through

another basin. The point is moving continuously over the potential energy surface

instead of pausing for long periods of time in a potential basin. In this situation, a

diffusive description might be more appropriate. Goldstein has given some criteria

for the change from a barrier picture to a diffusive picture[12].

The other canonical feature of the glass phenomenology is the stretched expo-

nential seen is relaxations. Formally, the stretched exponential can be written as a

distribution of relaxation times[17, 18]:

∫ ∞

0
h(τ)e−t/τdτ = e(t/τβ)φ

. (8.22)

Assuming relaxation times are activated, i.e. τ = τ0e
E/T , the distribution of relax-

ation times can be rewritten in terms of a distribution of activation energies. Monthus

and Bouchaud [3] and Svare et al.[19] have considered the relaxation function resulting

from a distribution of activation energies. Using a Gaussian distribution of activa-

tion energies, relaxation functions were produced that resemble stretched exponential

relaxation functions.

A distribution of activation energies seem to capture many of the phenomenologi-

cal aspects of the glass-forming materials. Though equation 8.2(without the compen-
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sation temperature) has been considered by previous researchers, to the best of the

author’s knowledge no one previously has investigated the distribution that yields the

Vogel equation.

8.3 Some comments on polymer electrolytes

In light of the discussion of this chapter, some statements can be made that would

lead to a slight modification of equation 8.1. Equation 8.1 was proposed for polymer

electrolyte conductivity, specifically PEO based polymer electrolytes. Equation 8.1 is

equivalent to equation 8.2 with a two delta function distribution. The delta functions

are not, of course, physically realistic. The delta functions should be considered as a

approximation for the actual physical distribution for polymer electrolytes. The actu-

ally physical distribution of polymer electrolytes would lead to an equation different

than equation 8.1. A more complex distribution is probably warranted especially for

C2000/PPO based systems.

In chapter 1 the close relation between polymer motion and conductivity was

mentioned. This relation was presented by discussing the decoupling index and the

α-relaxation. A possible reason for the similarity between microscopic structural

relaxations/α-relaxation and the conductivity is suggested.

The decoupling index is the ratio of a microscopic structural relaxation time and a

characteristic time associated with the conductivity. The decoupling index indicates

that there is a close relation between the microscopic structural relaxation time and
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the conductivity. The microscopic structural relaxation time came from measuring

the viscosity and then scaling the measured viscosity by the chain length. In the

potential energy barrier picture presented in the previous section, a flow event entails

the fluidizing of a locally ordered region. The rate of these flow events determines the

viscosity. The conductivity is determined by the fluidizing of a locally ordered region

which contains an ion. This fluidizing of locally ordered regions allows the ion to move,

thus determining the conductivity, and allows segments of the polymer to move, thus

allowing the microscopic structural relaxation. It is therefore not unexpected that

the timescales associated with structural relaxations and the conductivity be similar.

The α-relaxation involves the relaxation of dipoles along the polymer backbone. In

order for these dipoles to relax, a locally ordered region must fluidize. In the fluidized

environment the dipoles can relax in response to the applied field. Again, in order

for an ion to engage in long range motion the locally ordered region containing the

ion must fluidize. Now it is expected that regions in which the cation are coordinated

to the polymer would be in deeper wells than regions not coordinating a cation.

This would lead to different timescales for the conductivity and the α-relaxation.

Shifting the temperature by a characterisitic temperature like the glass transition

temperature would partially compensate for the shift to a deeper energy well caused by

the prescence of the cation. The similarity between the α-relaxation and conductivity

can be understood by the necessity of disordering local regions, and the subsequent

movement that can occur in a disordered region before a new locally ordered region

is established.
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8.4 Summary

In this chapter the empirical equation 8.1 has been generalized. It was shown that

with the proper choice of g(E) equation 8.2 is equivalent to the Vogel equation. The

distribution gV (E) that yields the Vogel equation has many interesting properties.

Depending on the mean and variance, gV (E) can display either Gaussian-like behavior

or decaying exponential like behavior.

A possible microscopic picture that can be descibed by equation 8.2 is as follows.

A small local region of a system is considered. This small region contains a number

of atoms and molecules. The local region has a number of energy states depending

on the arrangement of the constituent particles. The individual particles can not

move or have very limited movement. In order for long range movement to occur

the particles must move cooperatively. This cooperative movement can be pictured

as a hop from a ordered state to a disordered/fluidized state. In this fluidized state

the individual particles can move. After some particle rearrangement in the fluidized

state, the particles “fall” into a random low energy state. The probability for being

in a state with energy E is given by g(E).
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8.5 Mathematical Appendix

8.5.1 Derivation of gV (E)

Problem Statement

The main body of this chapter discussed how equation (8.5) resulted from a gen-

eralization of the two Arrhenius equation. The goal in this section is to derive the

distribution function gV (E) given equation (8.5).

∫ ∞

0
eE( 1

T
− 1

Te
)gV (E)dE = e

− B
Te−T0 e

B
T−T0 (8.23)

Notice first of all that the L.H.S. of equation(8.23) resembles a Laplace transform.

This connection can be made obvious by rewriting the temperature in terms of a new

variable s.

−s =
1

T
− 1

Te

⇒ T =
1

−s + 1
Te

(8.24)

Equation (8.23) therefore becomes

∫ ∞

0
e−EsgV (E)dE = e

B
Te−T0 e

B(−s+ 1
Te

)

1+sT0−
T0
Te (8.25)

Now that the relation between equation (8.23) and a Laplace transform has been

made, the inverse Laplace transform can be used to find gV (E). The function gV (E)

given in terms of a inverse Laplace transform is given in equation (8.26).

gV (E) =
1

2πi

∫ c+i∞

c−i∞

e
− B

Te−T0 e

B(−s+ 1
Te

)

1+sT0−
T0
Te

 eEsds (8.26)

In order to simplify the expression the following definitions are made.

φ =
1

Te

− 1

T0

, σ =
−B

T0

, γ =
1

Te

(8.27)
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Equation equation(8.26) therefore becomes

gV (E) =
1

2πi

∫ c+i∞

c−i∞

{
e
− B

Te−T0 e
σ(s−γ)

s−φ

}
eEsds (8.28)

Equation (8.28) will be used to find gV (E).

The inverse Laplace Transform

The inverse Laplace transform involves an integral along the line from c-i∞ to c+i∞.

The real number c is chosen so that the singularities of the integrand are to the left

of it. The integrand in equation (8.28) is e
σ(s−γ)

s−φ . There is a singularity at s = φ.

This singularity is to the left of the imaginary axis as long as Te > T0. Assuming

this is the case, the real number c is set equal to zero. The integral therefore is along

the imaginary axis. What is desired, of course, is a closed contour integral so that

the theorems of contour integration from complex variable theory can be applied.

An infinite circular arc starting at i∞ and ending at −i∞ and oriented to the left

of the imaginary axis(in order to enclose the singularity) is appended to the original

contour from −i∞ to i∞. Integration is now along a closed contour. However before

the relevant theorems of contour integration can be applied, it must be shown that

the integral is zero along the circular half arc.

In order to show that the integral along the circular arc is zero, the variable

of integration s is written as s = Reiθ where the radius R → ∞. There are two

exponentials in equation (8.28) which involve s. These exponentials must be examined

individually as R →∞ .

e
σ

(Reiθ−γ)

(Reiθ−φ) → eσ Reiθ

Reiθ → eσ (8.29)
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eEReiθ → eER(cos θ+i sin θ) → 0 (cos θ < 0) (8.30)

The integrand along the infinite circular half arc is therefore a constant times zero.

The integral along the infinite circular half arc is therefore zero as desired. The

complex variable thereoms relevant to close contour integrals in the complex plane

can therefore be applied.

The relevant complex variable theroem is, of course, that a closed contour integral

is equal to the sum of the residues.

∫
C

f(z)dz = 2πi
∑

a−1 (8.31)

However there is an additional complication associated with the integrand in equation

(8.28). The complication involves the expression e
σ(s−γ)

s−φ . The singularity at s = φ is

an essential singularity as opposed to a pole of nth order. The usual expression for

the residue a−1,

a−1 =
1

(n− 1)!


(

d

dz

)n−1

[(z − z0)
nf(z)]


z=z0

, (8.32)

can not be used. What can be done instead is to expand the integrand in a Laurent

series. A Laurent series is an expression for a function f about a singularity z0 .

f(z) =
∞∑

j=−∞
aj(z − z0)

j (8.33)

where

aj =
1

2πi

∮
C

f(p)

(p− z0)j+1
dp (8.34)

The residue a−1 can therefore be found by expanding the integrand in a Laurent series

and reading off the coefficient to the (z − z0)
−1 or in our case (s− φ)−1 term.
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The first step is to expand the first exponential in the integrand in a Taylor series.

e
σ(s−γ)

s−φ =
∞∑

m=0

1

m!

[
σ(s− γ)

s− φ

]m

(8.35)

Inserting the Taylor series in equation (8.28) gives

gV (E) =
1

2πi

∞∑
m=0

1

m!

∫
C

[
σ(s− γ)

s− φ

]m

eEsds. (8.36)

The integrand of equation (8.36) is what will be expanded into a Laurent series. The

expansion is

[
σ(s− γ)

s− φ

]m

eEs = σm

[
(s− φ) + (φ− γ)

s− φ

]m

eE(s−φ+φ)

= σmeEφ
m∑

k=0

(
m

k

)
(s− φ)m−k(φ− γ)k(s− φ)−m

∞∑
l=0

1

l!
El(s− φ)l

= σmeEφ
∞∑
l=0

m∑
k=0

(
m

k

)
1

l!
El(φ− γ)k(s− φ)l−k (8.37)

In the above expansion the binomial expansion has been used.

(a + b)n =
∞∑

k=0

(
n

k

)
an−kbk (8.38)

The coefficient of (s− φ)−1 is required.

l − k = −1 ⇒ l = k − 1 (8.39)

The a−1 coefficient for Laurent series of the integrand of equation (8.36) is therefore

a−1 = σmeEφ
m∑

k=0

(
m

k

)
1

(k − 1)!
Ek−1(φ− γ)k. (8.40)

The result from the Laurent expansion

∫
C

[
σ(s− γ)

s− φ

]m

eEsds = 2πiσmeEφ
m∑

k=0

(
m

k

)
1

(k − 1)!
Ek−1(φ− γ)k (8.41)

188



can be inserted into equation (8.36) to give the expression for gV (E).

gV (E) = e
− B

Te−T0

∞∑
m=0

1

m!
σmeEφ

m∑
l=0

(
m

k

)
1

(k − 1)!
Ek−1(φ− γ)k (8.42)

Normalization

Equation (8.23) required that gV (E) be normalized. Here is shown that g(E) from

equation (8.42) is indeed normalized, i.e.

∫ ∞

0
gV (E)dE = 1. (8.43)

In equation (8.42) the terms involving the variable of integration E are of the form

Ek−1eEφ. Integration of these terms gives

∫ ∞

0
Ek−1eEφdE =

(
d

dφ

)k−1 ∫ ∞

0
eEφdE =

(
d

dφ

)k−1 (−1

φ

)

=
(−1)k(k − 1)!

φk
. (8.44)

The integral of gV (E) is therefore

∫ ∞

0
gV (E)dE = e

−B
Te−T0

∞∑
m=0

1

m!
σm

m∑
k=0

(
m

k

)
1

(k − 1)!
(φ− γ)k (−1)k(k − 1)!

φk

= e
−B

Te−T0

∞∑
m=0

1

m!
σm

m∑
k=0

(
m

k

)
(γ/φ− 1)k(1)m−k

= e
−B

Te−T0 e
σγ
φ

= e
−B

Te−T0 e
−B

T0Te

(
1

Te
− 1

T0

)−1

= e
−B

Te−T0 e
−B

T0Te

TeT0
T0−Te
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= e
−B

Te−T0 e
B

Te−T0

= 1 (8.45)

where the binomial expansion(equation (8.38)) has been used in reverse.

8.5.2 Characteristic Function

The characteristic function was used in section 8.1 to show that gV (E) was indepen-

dent of the characteristic energy Te. The characteristic function of gV (E) has a closed

form which is preferably to the infinite series form of gV (E) itself. In this section the

details of the calculation of the characteristic function of gV (E) are given.

The definition of a characteristic function for some distribution g(E) is

φ(p) =
∫

eipEg(E)dE. (8.46)

For gV (E), this involves integration of terms of the form Ek−1eE(φ+ip). Similar to

equation (8.44), integration of these terms gives

∫
Ek−1eE(φ+ip)dE = (−1)k (k − 1)!

(φ + ip)k
. (8.47)

Using this result gives for φV (p)

φV (p) = e
−B

Te−T0

∞∑
m=0

1

m!
σm

m∑
k=0

(
m

k

)
(−1)k

(
φ− γ

φ + ip

)k

= e
−B

Te−T0

∞∑
m=0

1

m!
σm

(
γ − φ

φ + ip
+ 1

)m

= e
−B

Te−T0

∞∑
m=0

1

m!
σm

(
γ + ip

φ + pi

)m

= e
−B

Te−T0 eσ γ+ip
φ+pi . (8.48)
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Rewriting the terms appearing in the exponent of the exponential as

γ + ip

φ + ip
=

γ

φ
+

ip(φ− γ)

φ(φ + ip)
(8.49)

and using the definition of φ, γ, and σ given in (8.27) gives after some algebraic

rearrangment

φV (p) = exp

 〈E〉ip
1− σ2

E

2〈E〉ip

 . (8.50)

A part of the value of characteristic functions is that they are moment generating

functions of distributions. To see this start with the definition of the characteristic

function (8.46) and expand the exponential in a Taylor series.

φV (p) =
∫

gV (E)
(
1 + ipE − 1

2!
p2E2 − i

3!
p3E3 + . . .

)
dE

= 1 + ip〈E〉 − p2

2!
〈E2〉+ . . . +

(ip)n

n!
〈En〉+ . . . (8.51)

It is seen that all moments of a distribution g(E) can be found from the formula

〈En〉 =
1

in

(
d

dp

)n

φ(p)
∣∣∣
p=0

(8.52)

As a consistency check, 〈E〉 will be computed using the above formula.

〈E〉 =
1

i

d

dp
exp

 〈E〉ip
1− σ2

E

2〈E〉ip

 ∣∣∣∣∣
p=0

=
1

i
exp

 〈E〉ip
1− σ2

E

2〈E〉ip

 d

dp

 〈E〉ip
1− σ2

E

2〈E〉ip

 ∣∣∣∣∣
p=0

=
1

i
exp

 〈E〉ip
1− σ2

E

2〈E〉ip


 〈E〉i

1− σ2
E

2〈E〉ip
+
〈E〉ip (

σ2
E

2〈E〉i)

(1− σ2
E

2〈E〉ip)2

 ∣∣∣∣∣
p=0

=
1

i
〈E〉i

= 〈E〉 (8.53)

191



Bibliography

[1] K. H. Kim, D. R. Torgeson, F. Borsa, J. Cho, S. W. Martin, and I. Svare. Solid

State Ionics, 91:7, 1996.

[2] O. Bohnke, J. Emery, A. Veron, J. L. Fourquet, J. Y. Buzare, P. Florian, and

D. Massiot. Solid State Ionics, 109:25, 1998.

[3] C. Monthus and J. P. Bouchaud. J. Phys. A: Math. Gen., 29:3847, 1996.

[4] W. Kauzmann. Chem. Rev., 43:219, 1948.

[5] J. Jackle. Rep. Prog. Phys., 49:171, 1986.

[6] M. D. Ediger, C. A. Angell, and S. R. Nagel. J. Phys. Chem., 100:13200, 1996.

[7] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin.

J. Appl. Phys., 88:3113, 2000.

[8] P. G. Debenedetti and F. H. Stillinger. Nature, 410:259, 2001.

[9] M. L. Ferrer, C. Lawrence, B. G. Demirjian, and D. Kivelson. J. Chem. Phys.,

109:8010, 1998.

192



[10] M. L. Ferrer and D. Kivelson. J. Chem. Phys., 110:10963, 1999.

[11] J. T. Bendler, J. J. Fontanella adn M. F. Shlesinger, and M. C. Wintersgill.

Electrochim. Acta, 48:2267, 2003.

[12] M. Goldstein. J. Chem. Phys., 51:3728, 1969.

[13] F. H. Stillinger. Science, 267:1935, 1995.

[14] V. I. Arkhipov and H. Bassler. J. Phys. Chem., 98:662, 1994.

[15] J. C. Dyre. Phys. Rev. B, 51:12276, 1995.

[16] S. A. Brawer. J. Chem. Phys., 81:954, 1984.

[17] M. D. Ediger. Annu. Rev. Phys. Chem., 51:99, 2000.

[18] R. Richert. J. Phys.: Condens. Matter, 14:R703, 2002.

[19] I. Svare, S. W. Martin, and F. Borsa. Phys. Rev. B, 61:228, 2000.

193



Chapter 9

Summary and Future Work

9.1 Summary

This investigation into polymer electrolyte conductivity began with an examination of

the frequency-dependent properties of the real part of the conductivity. There it was

seen that the frequency-dependent conductivity of polymer electrolytes resembles the

frequency-dependent properties of other disordered solid ionic conductors such as ionic

glasses. These similarities include: (1) a power law dependence of the conductivity at

high frequencies(see figure 3.2), (2) the BNN relation is found to hold(see figure 3.5),

and (3) for a given salt concentration the temperature dependent conductivity can be

scaled onto a master curve(see figure 3.6). Models that have been used to understand

these frequency-dependent conductivity properties include: (A) a macroscopic model

that considers a network of resistors each of which is in parallel with a capacitor, (B)

a barrier hopping model with a distribution of barrier heights, and (C) Monte Carlo

simulations that include a distribution of site energies and coulomb interactions. The
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fact that similar frequency-dependent properties are seen in polymer electrolytes and

other disordered ionic conductors suggest that a similar ionic transport mechanism

might be operating.

A close examination of the frequency-dependent impedance of semicrystalline

PEO LiTF 10-1 provided some interesting clues to the conductivity. What was seen

in PEO LiTF 10-1 was two temperature dependent components that made up the DC

conductivity. These components were seen as temperature dependent peaks in the

plots of the imaginary part of the impedance versus the logarithm of frequency(see

figure 4.2). Since the two peaks were fairly well resolved in frequency, non-linear

curve fitting was used to deconvolve the two components. Non-linear curve fitting

revealed that the high frequency component was consistent with the high temperature

DC conductivity. The prescence of the low frequency component was not detected

at high temperatures. The results of the curve fitting suggested that there are two

resistors in series and that each of the resistors have a Arrhenius like temperature

dependence. This leads to the following equation for the conductivity:

σ =
1

e
Eβ/kT

σβ
+ eEα/kT

σα

. (9.1)

It should be emphasized that figure 4.2 only reveals the presence of at least two

components. Most likely there is a distribution of components, but these other com-

ponents are not resolved. Since equation 9.1 only considers two components from a

likely distribution of components, it can only be considered approximate.

Equation 9.1 was applied to the C2000 LiTFSI family of polymer electrolytes. The

fits to the C2000 LiTFSI were satisfactory, but resulted in some physically unreason-
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able values of σα. A plot of the logarithms of the prefactors versus the activation

energies showed a straight line(see figure 5.9). A linear relationship between the log-

arithm of the prefactors and activation energy is known as the compensation effect.

Incorporating the compensation effect, equation 9.1 becomes

σ =
2σ0

eEβ( 1
kT

− 1
kTe

) + eEα( 1
kT

− 1
kTe

)
. (9.2)

There are a number of theories that lead to the compensation effect. A common

thread to many of these theories is that excitations are taken from the heat bath and

used to overcome the barriers that limit the process.

A tentative microscopic picture was proposed for equation 9.2. This picture in-

volves ion-ion interactions and ion-polymer interactions. For PEO-based systems it

was suggested that Eα is due to ion-polymer interactions. However, it is necessary

to consider a small region surrounding the ion, and the energy necessary to disorder

this region. The region “hops” from a locally ordered configuration to a fluidized

state. It was also suggested that Eβ was due to ion-ion interactions. For C2000/PPO

based systems a approximate seperation of Eα and Eβ into ion-polymer interactions

and ion-ion interactions might not apply. In this case complicated structures involv-

ing ion aggregation and ion-polymer interactions and the energy necessary to fluidize

these structures must be considered. The compensation effect temperature, Te, was

linked to peaks seen in the far IR spectra(see figures 7.4 and 7.5). These peaks are

especially interesting since they involve torsions and bending vibrations of fairly long

segments of the polymer backbone. These vibrations would seem an ideal source for

the excitations that fluidize the regions surrounding the cation.
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Two traditional arguements that lead to the Vogel equation were presented. These

arguements are based on the ideas of free volume and configurational entropy. A third

approach to understanding the Vogel equation was also presented. The approach

considers the Vogel equation to be due to a distribution of activation energies. This

approach was suggested because it is consistent with a hopping model approach to

the frequency-dependent conductivity and becuase it is an obvious generalization of

equation 9.2. While all three arguements lead to the Vogel equation, the physical

interpretation of the different approaches is different. The free volume arguements is

the easiest to understand. It assumes that vf ∝ T−T0 where vf is the free volume and

T0 is the temperature at which the free volume vanishes. The configuration entropy

arguement uses the idea of cooperatively rearranging regions(CRRs). These CRRs

can be in one of two states. The dramatic increases in some characteristic time of

the system is associated with the growth of the CRRs. As the CRRs grow the time

it takes to hop between the two states increases. In the approach presented in this

thesis instead of two states a small region can be in one of a distribution of energy

states. In order for the small region to adopt a new state it must “hop” from its

current configuration to a more fluid like state. In this fluid-like state the constituent

particles can rearrange. The fluid like state then falls into a lower energy state given

by the distribution of energy states. The dramatic slowing down of the system as

the temperature decreases is because the regions become trapped in deep well states.

The distribution leading to the Vogel equation was found in this study, and some of

its interesting properties were discussed.
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9.2 Future Work

In order to further support the picture described in this work a number of projects

can be undertaken.

First, a wider range of experimental data needs to be taken. Preferably the poly-

mers would be amorphous and have a large molecular weight. Unfortunately the

number of polymers that fit this description and are easily available are limited. Also

a larger temperature range with low temperatures around -30◦C is desireable. Again

this is not easily done since the large resistances encountered at low temperatures

are not easily measured. Recall that one low temperature study showed Arrhenius

behavior at low temperatures(see figure 4.6). Once the amorphous conductivity data

is obtained, fits to equation 9.2 can extract the value of Te(if low temperature Arrhe-

nius behavior is observed). For a given polymer salt system at low to medium salt

concentrations the values of Te should be similar. The far IR of the system should

also be examined to see if Te correlates with any vibrational peaks.

Second, it was suggested that Eα and Eβ were related to ion-polymer and ion-ion

interactions, respectively. This hypothesis can be tested by using different cations

and anions. Specifically ions with higher valancies should give values for Eβ and Eα

quite different than the single valence lithium ion.

Third, related to the above experiment, the values of Eα and Eβ can be compared

to computer calculations. This would require knowledge of the local structures formed

in the polymer electrolyte and of the transition state. Such local structures can be
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guessed at from studies of small molecules that locally resemble the polymer. As for

Eβ, it was suggested that in PEO-“based system Eβ might be primarily determined by

ion-ion interactions. If this is so than molecular dyanamic or Monte Carlo simulations

of positive and negative ions might provide reasonable estimates of Eβ.

Fourth, since the hopping model approach to the Vogel equation was suggested

based on the frequency-dependent conductivity, it would be desireable to connect the

frequency dispersion to the non-Arrhenius DC conductivity. If, for example, a system

shows non-Arrhenius behavior over a large temperature range, the Vogel equation

rather than the two Arrhenius equation must be used for fitting. This fitting will

then give values for 〈E〉 and σE. Once gV (E) is known, it should be possible to

calculate the frequency-dependent conductivity σ(ω)(within some approximation).

This calculated σ(ω) can then be compared to the measured frequency-dependent

conductivity. This procedure is complicated by the possible presence of Te and by

the possible presence of percolation effects.

Fifth, a theory of the prefactor σ0(or x0 in the generalized expression) is needed.

The nature of the prefactor in conductivity and other rate process is a longstanding

problem which will not be solved here. However, it is natural to suppose that the pref-

actor would depend on the concentration of free ions. An intriguing clue is provided

by the BNN relation. The BNN relation states that σDC ' ∆εε0ωm. The dielectric

loss strength is probably related to the movement and aggregation of ions and would

seem to have some relation to the number of effective free ions. The characteristic

frequency ωm marks the start of frequency dispersion. It is therefore the smallest
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time associated with normal diffusion, i.e. long range ion movement. More work on

the nature of ∆ε should prove worthwhile.
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