STRUCTURAL GEOMETRY OF THE LATE
 PALEOZOIC THRUSTING IN THE HARTSHORNE, HIGGINS, ADAMSON AND GOWEN QUADRANGLES, SOUTHEASTERN OKLAHOMA

By
ABDULWAHAB MOHAMMED SADEQI
Bachelor of Arts in Geology
University of Colorado
Boulder, Colorado

2003

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE
May, 2007

STRUCTURAL GEOMETRY OF THE LATE
 PALEOZOIC THRUSTING IN THE HARTSHORNE, HIGGINS, ADAMSON AND GOWEN QUADRANGLES, SOUTHEASTERN OKLAHOMA

Thesis Approved:

Dr. Ibrahim Cemen
Thesis Advisor
Dr. Surinder Sahai

Dr. Jim Puckette
Dr. A. Gordon Emslie
Dean of the Graduate College

ACKNOWLEDGEMENTS

I would like to thank my adviser Dr. Ibrahim Cemen for allowing me to work under his guidance in an effort to acquire my M.S. degree. Without his patients, wisdom and his brutal honesty I would have never been able to learn the skills and understand the techniques needed to become a M.S. holder. To my remaining committee members, Dr. Surinder Sahai and Dr. Jim Puckette, I would like to thank you for being my beacon of light during the dark days of uncertainty. I would like to show my appreciation to Devon Energy Corporation (Rod Gertson, Walter Lamle, Pam Peters, and David Deering) for their endless donations and assistantship to allow the progress of this study to move forward.

To my friends here in Oklahoma, Colorado and Kuwait, I would like to thank you for all the help you provided to me during my stay in Stillwater. With your support I was able to finish my time in Oklahoma feeling as part of a family away from my family.

I would like to thank my family for their mental, physical and economical support that they provided. You were able to see something within me that I never realized and at times of doubt you reminded me who I am and what I am made of and for that I can not thank you enough.

Finally I would like to thank someone very special to me, my fiancé and personal motivational speaker. Without your help, patience, understanding, and positive nature this dream of mine could have never come true.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Statement of Purpose 3
Methods of Investigation 5
Boaks Minimum Curvature Method 8
Construction of the Cross section 9
Phase I: The Preliminary construction of the structural map and cross sections 9
Phase II: Using the 3D Seismic to find the approximate location of each thrustsheet, backthrust and hidden Spiro units10
Tectonics of the Ouachita Orogeny 10
II. STRATIGRAPHY OF THE ARKOMA BASIN 16
Pre-Pennsylvanian Units 16
Pennsylvanian Units 18
III. SEDIMENTOLOGY OF THE ATOKA FORMATION 20
Sedimentology of the Spiro Sandstone 20
Sequence Stratigraphy of the Spiro Sandstone 22
IV. GENERAL GEOMETRY OF THRUST SYSTEMS 27
Imbricate Fans 27
Backthrusts 28
Duplex Structures 32
Triangle Zones 33
Lateral Ramps 34
V. STRUCTURAL GEOLOGY OF THE FRONTAL OUACHITA-ARKOMA BASIN TRANSITION ZONE 36
VI. STRUCTURAL GEOLOGY OF THE STUDY AREA 42
Zone 1 45
Zone 2 45
Zone 3 46
Zone 4 48
Cross section Restoration and calculation of shortening 49
VII. CONCLUSION 60
REFERENCES 62
APPENDIX 69

LIST OF TABLES

Table
Page

1. Excel spread sheet indicating the shortening calculations done on three areas within the study area... 52

LIST OF FIGURES

Figure
Page

1. Geologic provinces in parts of Oklahoma and Arkansas with the general location of thesis area2
2. Geological provinces in the Ouachita Mountains and the Arkoma Basin 3
3. Simplified Geological Map of the Study area with the cross section lines and 3D coverage area illustrated on it 6
4. Boak's Minimum Curvature method 9
5. Illustration of the paleogeography of Oklahoma during A) Cambrian (510 mya). B) Mississippian (345 mya). C) Pennsylvanian (315 mya). D) Pennsylvanian (300mya) 12
6. Tectonic evolution of the Ouachita Mountains and the Arkoma Basin. A: riftingstage. B: Passive Margin. C: Start of the contraction and crustal loading. D:Normal Faulting. E: Final stages of thrusting13
7. Pie chart explaining the depositional history and the coinciding Stratigraphic frame work of the Arkoma Basin in southeastern Oklahoma 15
8. Stratigraphy of the Arkoma Basin 17
9. Gamma Ray profiles of the Spiro Sandstone from the Wilburton Gas Field showing upwards fining 23
10. Isopach map of the Spiro Sandstone in the study area 24
11. Sequence stratigraphic model of the Spiro Sandstone deposition 26
12. Possible thrust Geometries that might be present in a thrust system 28
13. A 3D representation of the relationship between forethrusts and backthrusts. B) A plan view of the relationship between forethrusts and backthrusts 29
14. A) Illustration of the Type I Backthrusts associated with Tepee structures andTriangle Zones. B) Illustration of Type II backthrusts. C) Illustration of a Type IIIBackthrust showing a gravity induced slide resulting from a basement archincreasing the steepness of the ramp angle31
15. Terminology associated with Duplex's 32
16. Triangle zone geometry 34
17. Illustration of surface geological map and two cross sections. A-A' is showing theduplex structure and direction of thrusting. B-B' is showing two lateral ramps35
18. 3D view of the formation of Lateral ramps, A) Showing the fault dying out to theflanks of thrusting. B) The lateral progression from one fault to another via alateral ramp36
19. Lateral ramp geometries. Arrows show direction of movement. A) Parallel sideramps connected to a horizontal decollement. B) Parallel sided ramps to a dippingdecollement. C) Converging lateral ramps on a horizontal decollement. D)Convergent sided lateral ramps on dipping decollement36
20. A) Illustration of the subsurface as presented by Hardie (1988), B) Illustration of the subsurface as presented by Milliken (1988), Camp \& Ratcliff (1989) 38
21. A) Illustration of the subsurface as presented by Reeves and others (1990), B) Illustration of the subsurface as presented by Perry and Suneson (1990) 39
22. Illustration of the subsurface as presented by Wilkerson and Wellman (1993)a
\qquad
23. Illustration of the subsurface and the amount of shortening as done by Cemen et al., 2001 ... 41
24. Simplified Look at Cross section A-A` illustrating the various zones within the Cross section .. 43
25. Simplified view of Cross section W3-W3` illustrating the various Zones within a cross section oriented roughly East-West44
26. Cross section A-A 53
27. Cross section B-B` 54
28. Cross section C-C` 55
29. Cross section D-D` 56
30. Cross section W1-W1` 57
31. Cross section W2-W2 58
32. Cross section W3-W3` 59

LIST OF PLATES

Plate Page

1. Simplified Geological Map of the Study area with the cross section lines and 3Dcoverage area illustrated on it .. 6
2. Cross section A-A` 53
3. Cross section B-B` 54
4. Cross section C-C` 55
5. Cross section D-D` 56
6. Cross section W1-W1` 57
7. Cross section W2-W2` 58
8. Cross section W3-W3` 59

CHAPTER I

INTRODUCTION

Located in the southeastern corner of Oklahoma and western Arkansas is one of the best developed foreland basins. The Arkoma Basin was formed during the Pennsylvanian Ouachita Orogeny. The basin developed as a result of the collision between the Llanoria plate and the southern edge of the North American plate. The Arkoma Basin is bounded by the Ozark uplift to the north and the Ouachita Mountains to the south (Fig. 1).

The Ouachita Mountains are divided into three sections. These sections are the anticline and syncline dominated Central Belt, the Broken Bow Uplift and the fold and thrust dominated region known as the Frontal Belt (Fig. 2). The Frontal Belt is bordered by the Winding Stair thrust fault to the south and the Choctaw thrust fault to the north. The Choctaw Fault is the leading edge thrust to a system of imbricate thrust faults within the Frontal Belt and it acts as one of the limbs to a well developed triangle zone within the Arkoma Basin. The north dipping Carbon backthrust acts as the other limb of the triangle zone (Cemen et al., 2001).

The study area is located between the Arkoma Basin and the Ouachita Mountains and includes parts of Townships 4 and 5 North and Ranges 16 to 18 East and lies within the Adamson, Gowen, Hartshorne and Higgins quadrangles. Previous studies applied in
the vicinity of the study area concentrated on evaluation and understanding the structural features located in the subsurface (Akhtar 2005, Sagnak 1996, Kaldirim 2004, Hadaway 2004, and Collins 2006).

Fig. 1: Geologic provinces in parts of Oklahoma and Arkansas with the general location of thesis area. (Johnson, 1988, Modified from Cemen, 2003 and Collins, 2006)

Fig. 2: Geological provinces in the Ouachita Mountains and the Arkoma Basin. (Cemen et al., 2001).

Statement of Purpose

Since the mid-1990's many previous M.S. thesis projects examined the subsurface structural geology of an area that extended from Wister Lake to the Hartshorne Gas Field (Akthar 1995, Sagnak 1996, Ronck 1996, Evans 1997, Mehdi 1998, McPhail 2001, Kaldirim 2004, Hadaway 2004, Collins 2006). These projects relied on the use of well \log data, scout cards completion information and 2-D seismic lines. As a result, cross sections were constructed to describe the structural geometry of the subsurface. These cross sections proposed that the triangle zone consisted of the southward dipping

Choctaw fault that acted as the southern limb of the triangle zone and the northward dipping Carbon backthrust being the northern limb, with the Lower Atokan Detachment (L.A.D.) being the triangle zones base. Bellow the L.A.D. was a duplex system that thrusted the Spiro Sandstone into stacked thrust sheets. This duplex system had varying numbers of sharply dipping horses with no deformation within them. Above the L.A.D. was an area of little deformation where the middle Atokan units are relatively undisturbed.

The main purpose of this thesis is to provide a better understanding of the subsurface structural geometry of the Wilburton Gas Field area using well log data and 3D seismic data provided by Devon Energy Corporation. This study also addressed the sequence stratigraphy of the Lower Atokan Spiro reservoir in the area using wireline logs of the wells drilled for gas production.

Methods of Investigation

To define the subsurface structural geometries seven cross sections were constructed. In addition, structural contour maps of the Spiro thrust sheets and isopach maps of each of the thrust sheets were constructed using the Geoplus Petra Software. Restoration of the cross sections and shortening calculations were done using the key bed method. The Spiro Sandstone was chosen as the key bed because of its sheet like depositional pattern and its wide distribution across the area.

Depositional and sequence stratigraphic modeling for this study was primarily based upon three datasets that include: 1) an extensive collection of wireline well $\operatorname{logs} 2$) isopach maps 3) published studies on the Spiro and other Atokan units.

The primary curves from well logs used in the interpretations were gamma ray curve because of their high resolution and sensitivity to intercalated sandstone and shale units. Log motifs of specific intervals were compared with published studies on the geological interpretation of well logs (Rider, 1986). Gamma ray motifs were analyzed for upward coarsening or fining patterns, serration, blocky versus curvy character and API values.

Isopach maps published in Gross et al., (1995) were used to identify thickness patterns of sedimentary packages. These maps were compared with published studies of barrier islands, such as Rampino and Sanders (1981) and Galloway and Hobday (1996). Published studies on the Spiro Sandstone (Hess, 1995; Lumsden et al., 1971) were used to test the interpretations made from the aforementioned datasets.

To develop the cross sections and the maps needed for this study, the following tools and methods were used:

1) Topographic maps of the Adamson, Gowen, Hartshorne and Higgins quadrangles obtained from the United States Geological Survey (Suneson and Hemish, 1989).
2) Geologic maps of the Adamson, Gowen, Hartshorne and Higgins quadrangles were obtained from the Oklahoma Geological Survey. These maps were used to describe the surface geology of the area and help develop a simplified surface geologic map using the Canvas drafting software (Fig. 3) (Plate 1).
3) 3D seismic lines were provided by Devon Energy Corporation. These seismic lines were used to describe the subsurface structure of the study area in more detail.
4) 3D seismic was used to provide a detailed account of the thrust sheet geometry and exact location. This was possible by matching the well location and depth with the 3D seismic image that was provided by Devon Energy Corporation.
5) Raster images of well logs and well data donated by Devon Energy Corporation. These raster images and well data were downloaded into the Geoplus Petra software and used to establish the location of each well, the type of well (gas, oil, water), the total depth of each well, deviation data and top of the Spiro sandstone.
6) Paper copies of certain wells were obtained from the Oklahoma City Geological Society Log Library. These were used to identify certain stratigraphic units.
7) "Scout tickets" were obtained from the Oklahoma City Geological Society log library to assist in the location of the positions of the Spiro, Brazil and Red Oak sandstones.
8) To establish the location of certain deviated wells on the cross sections, Boak's Method of minimum curvature was used (Boak's, 1992).
9) The Spiro sandstone isopach map and Spiro thrust sheet maps were created with the Geoplus Petra software program.

Boak's Minimum Curvature Method

During the construction of cross sections wells were encountered that are deviated. To accommodate for the deviation, the Boak's method was used (Fig. 4). The Boaks Method states that the deviated portion of the well is assumed to be a single arc. To determine the vertical depth from the measured depth for the arc (Φ) the following variables are needed (Boak, 1992). (1) The inclination angle in degrees from vertical (α), (2) compass bearing in degrees from north (β) and (3) the survey point number (i) knowing that the Survey point number at the surface is equal to 0 (Hadaway, 2004).

When these variables have been obtained we can calculate Φ by applying the following equation

$$
\Phi=\cos ^{-1}\left[\left(\cos \alpha_{\mathrm{i}-1}\right)\left(\cos \alpha_{\mathrm{i}}\right)+\left(\sin \alpha_{\mathrm{i}}\right)\left(\sin \alpha_{\mathrm{i}-1}\right)\left(\cos \left(\beta_{\mathrm{i}}-\left(\beta_{\mathrm{i}-1}\right)\right)\right]\right.
$$

The assumed kickoff angle in our study was 20°, while the angle when approaching the end of the well was closer to 40°. When these angles are obtained we can find Φ by using the equation $S=r \Phi$ were the length of the arc is (S) and the radius is (r). The radius (r) is found using the scale of our well and our 20° and 40° angles along our circular arc.

Fig. 4: Boak's Minimum Curvature method (Boak, 1992)

Construction of the Cross section:

In order to develop the seven cross sections and the maps required for this study, a systematic, stepwise approach was used. This approach is separated into two phases.

Phase 1: The preliminary construction of the structural map and cross sections

Tops of the Spiro Sandstone in the footwall of the Choctaw fault were picked from paper copies and raster images of wireline logs were provided by Devon Energy Corporation. This information was inputted into the Geoplus Petra software along with
well locations, the township and ranges, section numbers and the outline of the area of 3D seismic that was donated by Devon Energy Corporation. Petra was used to grid the picked Spiro sandstone tops and constructed a simple structural contour map of the footwall of Choctaw Fault. When the map is closely examined, the areas affected by faulting are detailed by locating the areas where structural contours density increase. This information allowed us to choose the appropriate locations for the construction of the seven cross sections. Information regarding the wells, well depths and the Spiro tops were all transferred onto hand drafted cross sections. The vertical scale that was chosen allowed a $2: 1$ vertical exaggeration to better illustrate the features of the subsurface.

Phase 2: Using the 3D Seismic to find the approximate location of each thrust sheet, backthrust and hidden Spiro units

3D Seismic data provided by Devon Energy Corporation was used to locate individual thrust sheets and the associated Spiro sandstone units located in the footwall of the Choctaw fault zone. 3D seismic was not used to describe the features located in the hanging wall of the Choctaw fault because the Choctaw fault and all faults on its hanging wall generated excessive noise that affected the quality of the seismic data. Most structural features located in the hanging wall of Choctaw were interpreted using well log data, scout cards and surface structural data provided from Devon Energy, Oklahoma City Log Library and surface geology maps. The final stage of the cross section construction involved using the 3D seismic as a tool to approximate the location of all thrusts, backthrusts and hidden Spiro units that were not recognized using well logs.

Tectonics of the Ouachita Orogeny

Branan (1968) is the first recognized publication to use the name Arkoma Basin for the basinal rocks in southeastern Oklahoma and Arkansas. Although there are several models explaining the tectonics of the Arkoma Basin (Roeder 1973, Keller \& Cebull 1973, Buchannan \& Johnson 1986), Housknecht and Kecena (1983) is usually recognized as the model that explains most of the observed features. The following is a brief summary of the tectonics of the Ouachita Orogeny based on Housknecht and Kecena (1983).

During the rifting stage (Fig. 5-A) (Fig. 6-A), the southern edge of the North American plate became dominated by passive margin sedimentation. This type of sedimentation would continue until the late Devonian. At that time, the southern part of the North American craton developed a classic shelf-slope-rise geometry, this would continue until the early to middle Paleozoic (Houseknecht \& Kacena, 1983). Sediments deposited on the shelf itself consisted of carbonates with little amounts of mud and sand indicative of a shallow marine environment known as the Arbuckle facies. Darker shales with less sandstones and carbonates are located farther south, away from the shelf. These are indicative of a deep marine environment known as the Ouachita facies (Fig. 7-B) (Houseknecht \& Kacena, 1983).

Fig. 5: Illustration of the paleogeography of Oklahoma during A) Cambrian (510 mya).
B) Mississippian (345 mya). C) Pennsylvanian (315 mya). D) Pennsylvanian (300mya) (Blakey, 2005).

Fig. 6: Tectonic evolution of the Ouachita Mountains and the Arkoma Basin. A: rifting stage. B: Passive Margin. C: Start of the contraction and crustal loading. D: Normal Faulting. E: Final stages of thrusting. (Houseknecht \& Kacena, 1983).

By the middle Devonian to early Mississippian time, the southern edge of the North American oceanic plate started to subduct under the Llanoria plate to the south. It is unknown exactly when the subduction occurred, but there is evidence of wide spread metamorphism during the Devonian that could be attributed to the subduction. In addition there is volcanic debris and volcaniclastic sandstones in the Stanley formation that would support the subduction model (Fig. 5-B)(Fig. 6-C) (Houseknecht \& Kacena, 1983).

In the late Mississippian to early Atokan (Fig. 5-C), the subduction of the oceanic plate continued, but the shelf units that were deposited before were undisturbed except for some detrital material that was being added from the north. During this period deposition of limestones, sandstones and shale continued in a shallow marine to non marine environment. This is indicative of the Atokan facies that includes the Spiro sandstone unit. With increased vertical load and flexural bending being applied due to the northward subduction, the result was an array of normal faults just south of the North American Plate (Houseknecht \& Kacena, 1983). The subsidence caused by the normal faulting as well as the simultaneous deposition of sediments resulted in the abrupt increase in sediment thickness during the early to middle Atokan (Fig. 7) (Houseknecht \& Kacena, 1983).

By the late Atokan most of the major structural deformation had stopped. Thin skinned thrust developed as the subduction complex continued to collide with the North American plate. As a result of the collision the Ouachita Mountains were uplifted. Deposition during this time consisted of shallow marine, fluvial and deltaic sediments. Tectonic activity was relatively little sine the Desmoinesian except for some minor thrust faulting and folding (Fig. 6-E) (Houseknecht \& Kacena, 1983).

Fig. 7: Pie chart explaining the depositional history and the coinciding Stratigraphic frame work of the Arkoma Basin in southeastern Oklahoma (Houseknecht \& McGilvery, 1990)

CHAPTER II

STRATIGRAPHY OF THE ARKOMA BASIN

Pre Pennsylvanian Rock Units

The Arkoma Basin contains strata ranging from the Cambrian to the Pennsylvanian (Fig. 8). These deposits form a nonconformity with the underlying crystalline Proterozoic basement. The oldest sedimentary unit in the basin is the Upper Cambrian Timbered Hills Group. This group includes the Reagan Sandstone and the Honey Creek Limestone. These grade into the Cambrian-Lower Ordovician Arbuckle Group which includes the Fort Sill Limestone, the Royer Dolomite, and the Signal Mountain Limestone. These are overlain conformably by the upper Ordovician rock units of the Arbuckle Group. These include the Butterfly Dolomite, the McKenzie Hill Formation, the Cool Creek Formation, the Kindblade Formation, and the West Spring Creek Formation. These formations represent a shallow marine deposition, and contain shallow marine faunal assemblages that include trilobites, brachiopods, mollusks, and sponges.

The Middle and Late Ordovician strata consists of the Simpson Group, Viola

Fig. 8: Stratigraphy of the Arkoma Basin (reproduced from Cemen et al., (2001).

Group, and the Sylvan Shale. The Simpson Group illustrates a change in the depositional environment. This group contains skeletal calcarenites, skeletal carbonates, mudstones, sandstones, and shales. The overlying Viola Group contains limestones and nodular chert-rich mudstones. There is a facies change from Viola Group into the Sylvan Shale which contains graptolites and chitinozoans and indicates deeper water conditions.

The Silurian and early Devonian Periods contain the Hunton Group. The Hunton Group contains carbonates composed of skeletal mudstones and skeletal calcarenites. A regional unconformity separates the Hunton carbonates from the overlying upper Devonian Woodford Shale. The Woodford is an organic fissile shale with beds of vitreous and siliceous chert (Ham, 1978). This unconformity is interpreted as a sequence
boundary and suggests a relative-drop in sea-level in the Arkoma Basin.
The Mississippian is represented by the Caney Shale, which is a dark organic shale that contains phosphate nodules. The Springer Shale is an informal unit equivalent to the Caney Shale of the upper Mississippi/lower Pennsylvanian. The Springer differs from the Caney by the appearance of siderite or clay-ironstone beds (Ham, 1978). A more detailed interpretation of the Pre-Pennsylvanian rocks is available by Johnson (1988), Ham (1978).

Pennsylvanian Rock Units

The Pennsylvanian rock units (Fig. 8) are significant to this study because they are penetrated by wells that are used to construct the cross sections. The Pennsylvanian is represented by the Morrowan, Atokan, and Desmoinesian series.

The Morrowan rocks of the Arkoma Basin are the Cromwell Sandstone, the Union Valley Limestone, and the Wapanucka Limestone. They are approximately 300 feet thick in the north and 1000 feet thick in the south of the basin (Johnson, 1988). The Wapanucka Formation of the upper Morrowan series consists of various shoal limestones, spiculites, shales and sandstones (Grayson, Jr., 1979). Overlying the Wapanucka Formation is the sub-Spiro shale. Wapanucka Limestone is exposed on the southern side of the Choctaw Fault. This can be seen at Limestone ridge (Sutherland, 1988) and the study area.

Atokan strata lie conformably on top of Morrowan strata and are were divided into three units (Lower, Middle and Upper Atokan). This division was based on
depositional histoy of the basin in response to structural events of that period (Sutherland, 1988). The Atokan strata can range in thickness from hundreds of feet in the northern part of the Arkoma Basin to 10,000ft (Sutherland, 1988).

The Spiro Formation is considered the base of the Early Atokan within the Arkoma Basin. The Spiro crops out to the south of the Choctaw Fault within the study area. Further description of the Spiro will be provided in Chapter III.

After the deposition of the lower Atokan units, the Arkoma Basin transitioned from a stable shelf to a tectonic foredeep (Houseknecht and McGilvery, 1990). The Middle Atokan is composed of the Shay, Cecil, Brazil, Panola, Red Oak and Fanshawe sandstones that formed the from sediment deposited within thick units of shale (Fig. 8) (Cemen et al., 2001). The units are fine grained, lithic to sublithic arenites, which accumulated most of their detritus material from the eastern portion of the Ouachita Oroginic belt (Houseknecht and McGilvery, 1990).

The Krebs group of the lower Desmoinesian is composed of the Hartshorne Sandstone, McAlester Formation, Savanna Sandstone and Boggy Formation. In the study area, the Krebs group crops out in the northern part of the basin.

CHAPTER III

SEDIMENTOLOGY OF THE ATOKAN FORMATION

The Atokan Formation is composed mostly of deep marine shale deposits. It contains several sands. The Spiro sandstone is the lowermost sand unit of the Atoka Formation. Mahaffie (1994) defined sheet sands as most closely "resembling fan lobe deposits and are characterized in outcrop by their laterally-continuous, tabular external geometries". The Atoka Formation contains the Spiro sandstone unit. This unit has been interpreted as a sheet sand (Lumsden et al., 1971). The Spiro is an important reservoir sand unit. It is used in structural reconstructions because of its well recognized e-log and seismic signature. The Spiro is also the most productive gas reservoir in the Atokan Basin.

Sedimentology of the Spiro Sandstone

The Spiro Sandstone is a very fine-medium grained arenite (Lumsden et al., 1971) (Hess \& Cleaves, 1995). It is moderately to well-sorted and is primarily composed of quartz clasts (>95\%) (Houseknecht and McGilvery, 1990). It is also a sheet sand and is laterally extensive, making it a useful marker bed for structural reconstruction. The thickness of the Spiro Sandstone ranges between 100 feet in the deeper parts of the basin
in the south to zero where it pinches out in the north. Although no detailed biostratigraphic analysis of the Spiro microfauna has been done, based on underlying shales the unit is dated as Morrowan in age (Mc Caleb, 1963). Fossils within the Spiro include crinoids, bryozoans, brachiopods and other shelf fauna (Lumsden et al., 1971).

Lumsden et al (1971) divided the Spiro into eight lithofacies based on data from cores, drill cuttings, and outcrop. His lithofacies scheme is described below;

1. Shale Facies

"The shale facies has silt stringers and was distant from sources of sediment supply, it was deposited in offshore parts of the shelf" (Lumsden et al., 1971).

2. Poteau Facies

"These are very fine grained and tightly cemented sands. Indications of shallow water deposition include bioturbation and interbedded sandstones and muds characteristic of lagoonal deposition" (Lumsden et al., 1971).

3. South Red Oak Facies

"Sandstones in this facies are similar in grain size to the Poteau Facies but differ in porosity, lighter color, thickness, and presence of cross bedding" (Lumsden et al., 1971).

4. Kinta Facies

"This facies was formed by the reworking of the Foster Sands by a transgression. It consists of a light-gray, uniformly thick, even-bedded sand" (Lumsden et al., 1971).

5. North Red Oak Facies

"This facies is a southern extension of the Kinta Facies and also has characteristics of the South Red Oak and Wilburton Facies. Fossil fragments are abundant, and this is
interpreted as a complex of beach, bar, tidal flat, tidal channel, and lagoonal environments" (Lumsden et al., 1971).

6. West Kinta Facies

"This is a thin interval showing a decrease in grain size and an increase in calcite cement" (Lumsden et al., 1971).

7. Wilburton Facies

"Sand in this Wilburton Facies is light colored, fine grained and very fossiliferous" (Lumsden et al., 1971).
8. Limestone Facies
"Clastic quartz decreases and calcareous grains increase as the Spiro forms a gradational contact with the underlying Wapanucka Limestone" (Lumsden et al., 1971).

Sequence Stratigraphy of the Spiro Sandstone

Two sequence stratigraphic models were studied to understand the depositional history of the Spiro Sandstone. According to Lumsden et al (1971) the Spiro was deposited during a transgression, Hess (1995) agrees with this interpretation and further describes the depositional history of the Spiro Sandstone as part of the reworking of the older Foster sands that had been either deposited directly over the Sub-Spiro shale, or it was deposited over the Wapanucka limestone as part of the filling of the incised valleys created during the Low Stand and subsequent shelf exposure.

The model proposed here is based upon 1) Well log signatures 2) Fossil fauna and 3) Architecture of the Spiro Sandstone. 164 well logs (See Appendix A for Well names
and locations) were examined for log motifs that would best characterize the Spiro Sandstone. The typical Gamma Ray motif (Fig. 9) is slightly serrated, blocky, with a sharp base and upward fining profile. The serration is interpreted as clay rich horizons within the sandstone, the blocky profile is characteristic of high net:gross sheet sands, the sharp base suggests an erosional contact with the underlying strata, and the upward fining suggests retrogradation. These characteristics (fining upwards of a shallow-marine sand) suggest a transgression where parasequences would be back-stepping (Van Wagoner et al, 1990). The sharp erosional base is interpreted as a flooding surface.

Fig. 9: Gamma Ray profiles of the Spiro Sandstone from the Wilburton Gas Field showing upwards fining.

Fig. 10: Isopach map of the Spiro Sandstone in the study area (Reproduced from Gross et al., 1995).

The Spiro is exceptionally fossiliferous and contains a shelf assemblage that includes crinoids, bryozoans, and brachiopods. Transgressive systems tracts are known for their faunal abundance. Lowstand deposition is centered in the deeper parts of the basin, and the shelf is exposed. Due to these conditions shelf faunas are rare and impoverished, producing a scanty fossil record. These observations also support the deposition of the Spiro Sandstone during a transgression.

The strongest evidence for the Spiro Sandstone being part of a Transgressive Systems Tract comes from the architecture of the Spiro Deposits. Isopach maps of the Spiro Sandstone by Gross et al. (1995) shows a trend of barrier islands (Fig. 10). The laterally extensive sheet like geometry of the Spiro Sandstone is attributed to the reworking of older Foster Sands during a transgression. The Spiro Sandstone incises the
older Sub-Spiro Shale and the Wapanucka Limestone. This erosional contact is interpreted as a ravinement surface created during a transgression. The proposed Transgressive system tract model (Fig. 11) is similar to the model by Hess (1995).

Basinward \qquad
\qquad

1) Wapanucka Limestone
2) Shoreface Foster Sands
3) Deltaic Foster Sands
4) Sub-Spiro Shale
5) Barrier Island Foster Sands

Regression

Wapanucka Limestone
2) Shoreface Foster Sands
3) Deltaic Foster Sands
4) Sub-Spiro Shale
5) Barrier Island Foster Sands

1) Wapanucka Limestone
2) Shoreface Foster Sands
3) Deltaic Foster Sands
4) Sub-Spiro Shale
5) Barrier Island Foster Sands
6) Fluvial Channels Exposing the underlying Wapanucka Limestone

$\stackrel{\text { Transgression }}{ }$
7) Wapanucka Limestone
8) Minor Spiro Sandstone thickening caused by the reworking of an ancient delta
9) Minor Spiro Sandstone thickening caused by the reworking of an ancient barrier island
10) Thickening caused by the filling of fluvial channels during the transgression
11) Sub-Spiro Shale

Fig. 11: Sequence stratigraphic model of the Spiro Sandstone deposition

CHAPTER IV

GENERAL GEOMETRY OF THRUST SYSTEMS

The study area is intensely deformed by several large thrusts. Before these thrusts are discussed in detail, this section introduces the reader to some important components of thrust systems. A thrust system contains many thrust faults closely spaced from each other and are connected at depth to a common detachment surface (Boyer and Elliot, 1982) (Marshak and Woodward, 1986). As a result of the increasing stresses being applied in a fold and thrust belt, the subsurface will most commonly develop imbricate fans, backthrusts, duplex structures, triangle zones and lateral ramps (Boyer and Elliot, 1982). The following is a short description of these features.

Imbricate Fans

When increasing stress affects a certain area, the resulting stresses allow for faults to be created. These imbricate thrust faults are created deep within the basin at a common detachment surface and move upsection to shallower depths (Fig. 12). There are two types of imbricate fan thrust faults. 1) Leading Imbricate Fault System: The first type of thrust faults have most of the displacement in the leading thrust which would leave the footwall with the most displacement (Fig. 12-A); and 2) Trailing Imbricate Fans of thrust faults have most displacement at the trailing thrust, leaving the bulk of the displacement in the hanging wall of the leading edge thrust fault (Fig. 12-B).

Backthrusts

Backthrusting is a phenomenon where a fault forms in a direction that opposes the regional movement of the major thrusts (Butler, 1987). These structural features can develop at the leading-edge of the thrust sheet when a barrier becomes an obstacle for the thrust sheet to move forward and therefore creating a release for the extra energy in the form of a backthrust (Butler, 1987). Backthrusts are a major factor in the creation of
triangle zones in many thrust belts around the world (Fig. 13) (Butler, 1987). Backthrusts may also be created if the propagation rate exceeds the displacement rate (Bulter, 1987).

Fig. 13: A) A 3D representation of the relationship between forethrusts and backthrusts. B) A plan view of the relationship between forethrusts and backthrusts (Butler, 1987)

Webel (1987) proposed three types of backthrusting in the Rocky Mountain foldthrust belt. Type I of these backthrusts can be seen in all tepee structures and triangle zones. These are low angle thrusts faults that are located ahead of the leading thrust fault and dipping in the opposite angle (Fig. 14-A)(Webel, 1987).

Type II backthrusts are relatively high angle thrusts and are created behind the trace of the major thrust faults (Fig. 14-B). They illustrate pop up structures that are created when a snakehead fold passes over a subsurface ramp. Type III backthrusts are strongly associated with basement arches, angle of ramping and listric normal faulting (Webel, 1987). Backthrusts of this nature are low angled gravity induced backthrusts that are activated when a listric normal fault is created. The normal fault was induced because of the high angle ramp that was created as a result of a basement arch. The resulting high angle ramp allowed for an incipient backthrust to glide down the ramp to create a shallow backthrust (Fig. 14-C).

Fig. 14: A) Illustration of the Type I Backthrusts associated with Tepee structures and Triangle Zones. B) Illustration of Type II backthrusts. C) Illustration of a Type III Backthrust showing a gravity induced slide resulting from a basement arch increasing the steepness of the ramp angle. (Webel, 1987)

Duplex Structures

Duplex structures are imbricate fans that are created from a common basal detachment and cut up section to meet at a higher detachment. The bottom basal detachment in a duplex structure is called a floor thrust while the upper basal detachment is labeled the roof thrust. As the imbricate fans cut up section from the floor thrust to the roof thrust a feature with thrusts bounding it from all direction will develop. This structure is called a horse. Duplexes are a combination of horses that have formed due to the compression or thrusting in an area (McClay, 1992)(Fig. 15).

Fig. 15: Terminology associated with Duplex's (McClay, 1992)

Figure 12 shows three different duplex structures of Boyer and Elliot (1982);

1) Hinterland Dipping Duplex (Fig. 12-C): The fault slip is less than the deformed fault length (McClay, 1992). The horses in the duplex dip in the direction of the hinterland.
2) Foreland Dipping Duplex (Fig. 12-E): The fault slip is larger than the deformed fault length (McClay, 1992). The horses dip towards the foreland rather than the hinterland.
3) Antiformal Stack: The fault slip is equal to that of the deformed fault length (McClay, 1992). Each horse is thrusted up onto the other giving way to stacked formation (Fig. 12-D).

Triangle Zones

The term Triangle zones was first used by Peter Gordy in an internal report to describe the structural characteristics of the eastern margin of the Canadian Cardillera (Jones, 1996). They are usually the result of two opposite dipping thrust faults, associated with a basal detachments surface thus creating a triangle shape. The geometry of the triangle zone can be attributed to the continuation of the fold and thrust belt convergence and deformation. Butler (1987) stated that when convergence gets close to the foreland then deformation in the direction of the stress starts to decrease but the stresses continue to build. This built up stress then gives way to inherent thrusts and backthrusts (Butler, 1987).

Couzens and Wiltschko (1994) classified triangle zones into three types (Fig. 16):

1. Type I: The triangle zone is characterized by two opposite dipping thrusts that are symmetrical to each other and are floored by a single detachment surface.
2. Type II: The triangle zone is characterized by two opposing thrust systems that are asymmetrical to each other and are floored by a single detachment surface.
3. Type III: The triangle zone is characterized by two opposing thrust systems that are asymmetrical to each other and are floored by two detachment surfaces.

Fig. 16: Triangle zone geometry (Couzens and Wiltschko, 1998)

Lateral Ramps

Lateral ramps were first introduced to describe a tectonic ramp that is parallel to the direction of thrusting (Boyer and Elliot, 1982) (Fig. 17). But lateral ramps have been observed to disrupt stratigraphic levels along strike and decollment changes (Pohn, 2000).

Fig. 17: Illustration of surface geological map and two cross sections. A-A' is showing the duplex structure and direction of thrusting. B-B' is showing two lateral ramps (Boyer \& Elliott, 1982).

The association of lateral ramps with thrust faulting is accomplished due to the fact that thrust faults can either die out to the flanks of the thrusting (Fig. 18-A), or the thrust sheet can distribute the stress from one fault to another via a lateral ramp (Fig. 18B) (Pohn, 2000). Four types of lateral ramps are proposed by Pohn (2000). The geometry of the first lateral ramp can be considered the simplest. This is where parallel sided ramps are connected to a horizontal decollement (Fig. 19-A), the second being parallel sided ramps connected to a dipping decollement surface (Fig. 19-B), the third is a horizontal decollement surface with converging ramps (Fig. 19-C), finally the convergent sided ramps with the dipping decollement surface (Fig. 19-D) (Pohn, 2000).

Lateral ramps are features that do not often outcrop to the surface but they can be observed using seismic reflection. These seismic reflection lines can illustrate that cross strike faults in the subsurface can form the foundations or deflecting buttress of lateral ramps (Pohn, 2000). Surface expressions of certain geological features can supply clues as to the location of lateral ramping in the area. These surface features are:

1. The distinct change in folds magnitude or the sudden termination of a fold (Pohn, 2000).
2. A sudden change in the magnitude of a fault (Pohn, 2000).
3. Basin interruption due to cross strike border faults (Pohn, 2000).

Fig. 18: 3D view of the formation of Lateral ramps, A) Showing the fault dying out to the flanks of thrusting. B) The lateral progression from one fault to another via a lateral ramp (Pohn, 2000).

Fig. 19: Lateral ramp geometries. Arrows show direction of movement. A) Parallel side ramps connected to a horizontal decollement. B) Parallel sided ramps to a dipping decollement. C) Converging lateral ramps on a horizontal decollement. D) Convergent sided lateral ramps on dipping decollement (Pohn, 2000).

CHAPTER V

STRUCTURAL GEOLOGY OF THE FRONTAL OUACHITAS-ARKOMA BASIN TRANZITION ZONE

Although many workers studied the geology of the Ouachita Mountains and the Arkoma Basin, first subsurface structural interpretations of the transition zone were only published in the 80 's. Arbenz (1984) proposed the presence of a decollement deep below the surface. He mapped a south-dipping imbricate fault system that was accompanied by a backthrust that established a triangle zone (Fig. 20).

Fig. 20: Illistration of the subsurface in the transition zone. (Arbenz, 1984)(Arbenz, 1989)

Many controversial interpretation of the transition zone were proposed in the late 1980's and early 1990's. Hardie (1988) was the first to describe the geometrical relationship between the Blanco thrust fault to the north and the Choctaw thrust fault to the south in the vicinity of Hartshorne, Oklahoma (Fig. 21-A).

Milliken (1988) suggested the presence of a "bi-vergent" imbricate thrust system that was floored by a detachment surface at depth (Fig. 21-B). The presence of this deep detachment surface was agreed upon by Camp and Ratcliff (1989), they also identified the presence of a thick triangle zone with a deep detachment.

Fig. 21: A) Illustration of the subsurface as presented by Hardie (1988), B) Illustration of the subsurface as presented by Milliken (1988), Camp \& Ratcliff (1989).

Reeves and others (1990) interpreted a thin triangle zone floored by two northdirected duplex structures (Sunneson, 1995). He suggested that there was a decollement surface that separated the duplex structures and that the deep decollement is in Lower Atokan Strata (Fig. 22-A).

Perry and Suneson (1990) interpreted a seismic section that showed not one but two triangle zones. One of these triangle zones was located above the shallow detachment surface. The other triangle zone was located between the shallow detachment surface and the deep detachment surface was accompanied by imbricate thrusts (Fig. 22 B).

Fig. 22: A) Illustration of the subsurface as presented by Reeves and others (1990), B) Illustration of the subsurface as presented by Perry and Suneson (1990)

Wilkerson and Wellman (1993) proposed the presence of a thin triangle zone in the Hartshorne area. The floor of the triangle zone is the roof thrust of the duplex structure that they named the Gale Buckeye thrust system (Fig. 23). They also discovered tear faulting and a series of blind imbricate thrusts located near the base of the duplex structure.

Fig. 23: Illustration of the subsurface as presented by Wilkerson and Wellman (1993)

In the early 1990's, gas exploration in the western part of the Arkoma Basin became very important. The Wilburton Gas Field was the center of the exploration activity. With a grant from the Oklahoma Center for Advancement in Science and

Technology (OCAST), Dr. Ibrahim Cemen of Oklahoma State University, School of Geology and his student started a subsurface structural study of the Wilburton Gas Field and surrounding areas. The purpose of this study was to examine the structural geometry of the transition zone between the frontal Ouachitas and the Arkoma Basin.

Cemen, Sagnak and Akthar (2001) summarized the structural geology work in the Wilburton Gas Field and proposed a well developed triangle zone in the Wilburton Gas Field area. This triangle zone has the Choctaw Fault as its southern flank, while the backthrust fault known as the Carbon fault is the northern flank of the triangle zone. A detachment surface called the Lower Atokan Detachment (L.A.D.) is the base of the triangle Zone. The LAD is the roof thrust for a deeper duplex structure and the Springer detachment is the floor thrust. This duplex structure has a number of hinterland dipping horses (Fig. 24).

CHAPTER VI

STRUCTURAL GEOLOGY OF THE STUDY AREA

The study area is dominated by structural features that are consistent with the contraction that the Transition zone experienced during the Pennsylvanian. To understand the structural geology of the study area, seven cross sections were constructed (Fig. 3). Four of these cross sections are oriented parallel to the tectonics transport direction. These four cross sections were constructed to illustrate the position of the triangle zone and duplex structure within the study area. Within the triangle zone, the Carbon Fault is the northern most backthrust. This backthrust is only present on cross sections A-A' (Fig. 27), B-B' (Fig. 28) and C-C' (Fig. 29). Cross section W2-W2’ (Fig. 32) does not extend far enough north to cross it. The major structural feature in the area is the Choctaw Fault. This fault separates the highly deformed, tightly folded and faulted Frontal Ouachitas from the mildly deformed, broadly folded Arkoma Basin. The three remaining cross sections were constructed perpendicular to the tectonic transport direction. This was directed at detecting the amount of lateral movement that may have been present in the footwall of the Choctaw Fault.

The four NW-SE cross sections that were oriented perpendicular to the strike of Choctaw are divided into four zones (Fig. 25). These zones are chosen based on the structural features that are present. They are also transferred to the three NE-SW cross sections that are oriented roughly parallel to the Choctaw fault. The NE-SW cross sections could display zones 2 and 3 while zone 4 only appears on the southern most cross section W3-W3' (Fig. 26).

Zone 1:

This area encompasses the Carbon Fault and all features that lie north of it. As previously mentioned Zone 1 is only displayed in cross sections A-A’ (Fig. 27), B-B` (Fig. 28) and C-C' (Fig. 29), since the remaining cross sections did not extend far enough to the north. The 3D seismic does not extend far enough to the north to display the Carbon fault as well. All information obtained for this area is from previous studies and surface structural geology maps (Suneson et al., 1996).

The Carbon fault dips at about 50° at the surface. The angle decreases at depth and the fault becomes almost horizontal at around -1700 ft. The Pennsylvanian McAlester, Atoka and Hartshorne are exposed at the surface of the hanging wall of the Carbon Fault (Fig. 3).

Zone 2:

This zone is located south of the Carbon fault which is interpreted as a backthrust (Cemen et al., 2001). Geological maps by Suneson et al., (1996) contain small strike-slip faults to the south of the surface trace of the Carbon fault. These types of structures do not seem to have any affect on Zone 3 that lies deeper within the footwall of Choctaw.

The surface formations that are located in this area are mostly Pennsylvanian McAlester, Hartshorne, Atoka and Savannah, with a layer of Quaternary covering them in certain areas (Fig. 3).

Within the footwall of Choctaw at around - 4000ft we come across the Red Oak Formation and the Brazil Formation at a depth of -5000ft. Abnormal fractures within these formations were critical in the discovery of a feature that can be described as a shallow thrust. This shallow thrust was not present in former cross sections that were studied (Hadaway, 2005) (Collins, 2006) and it was not seen on the well log data. This shallow thrust-That was named the Middle Atokan Thrust (M.A.T.) - was only visible through the use of 3D seismic where the thrust seem to be originating as a splay from the Choctaw fault and is present at -9500 ft . The M.A.T. increases in dip angle as it cuts up section into shallower depths. The M.A.T. appears to be younger in age in comparison to the Choctaw Fault, as there is no visible Spiro unit within the thrust wedge between the Choctaw Fault and the M.A.T. This shallow thrust is well observed in cross sections W2W2' (Fig. 32) but it becomes less apparent in the eastern most cross section C-C` (Fig. 29). Various numbers of out of sequence thrusts splay from the M.A.T. and displace the Brazil and Red Oak layers. These backthrusts dip in the foreland direction at angle of about 65°.

Zone 3:
The footwall of the Choctaw fault contains a well developed duplex structure. The roof thrust of the duplex structure is the Lower Atokan Detachment (L.A.D.). The L.A.D. serves as the base of the triangle zone that is located in the transition zone (Cemen et al.,
2001). The floor thrust of the duplex structure is known as the Springer detachment (Cemen et al., 2001). The Springer detachment drops in elevation the further south you move and becomes the Woodford detachment (Cemen et al., 2001). The cause for the rise and fall of the detachment surfaces is the normal faulting in the pre- Pennsylvanian units.

The Springer detachment rises from a depth of about -13000 ft and continues to rise to about -9000 ft in the northern part of the study area. At the northern end of the duplex, the Springer detachment rises and gently folds the Spiro units. The duplex structure contains five to seven horses. The 3D seismic data indicates that the thrust faults in the duplex structure had a decreased angle of dip when compared to the cross sections constructed by Mehdi (1998), Hadaway (2005) and Collins (2006).

The duplexes contained many small backthrusts within the horses themselves. At first, it was thought that these backthrusts were actually tear faults or even a major flower structure that had developed from deep within the pre-Pennsylvanian layers and extended to affect the Red Oak and Brazil formations. But these findings could not be confirmed when combined with the 3D seismic data.

The backthrusts appear to be younger than the south dipping thrusts that developed the horses. The north dipping backthrusts were causes minor displacements when compared to the displacement of the actual horses. These backthrusts might have caused the Spiro sandstone unit to increase in thickness. This increase in thickness can be seen in cross sections W1-W1' (Fig. 31), where the Spiro thickness in this unit is at 561 ft when compared to the average amounts of Spiro thickness of about $250 \mathrm{ft}-300 \mathrm{ft}$.

The lateral ramps that are present are more likely caused by the movement of the thrust sheet atop of each other and the shifting from one thrust sheet to another similar to
the geometry proposed by Boyer and Elliot (1982) (Fig. 25). This can be seen on cross sections D-D' (Fig. 30), W1-W1' (Fig. 31) and Cross section W3-W3' (Fig. 33)

At the northern end of the duplex is a horst structure that drops the level of the Spiro unit below $-10,500 \mathrm{ft}$. This system of normal faults is located relatively north of the study area, outside the range of the 3D seismic data. A combination of cross sections developed prior to this study (Collins, 2006) (Hadaway, 2005), and well \log data, assisted in the location of these normal faults.

The overall trend of the duplex is consistent with the findings of Collins (2006) where the Spiro formation and the duplexes are at shallower depths to the east of the study area while the farther west the duplex structure becomes deeper.

Zone 4:
The northern edge of this zone is also the northern border that separates the Frontal Belt of the Ouachita Mountains from the Arkoma Basin. This border is known as the hinterland dipping Choctaw thrust fault. The Choctaw fault cuts through the study area and trends west-southwest to east-northeast. It is the leading edge thrust in a break forward style imbricate thrust system that encompasses many faults on its hanging wall (Cemen et al., 2001). At the surface, the Choctaw fault has a relatively high dip angle of about 70° and as the fault moves deeper within the basin the dip angle becomes shallower. The dip angle is almost horizontal at depths of about -8500 ft where the Choctaw fault acts as a detachment surface to a system of imbricate faults that include the Pine Mountain Fault, Ti Valley Fault (Cemen et al., 2001).

The surface geology south of the Choctaw fault shows many assemblages of thrust faults, anticline and syncline pairs and some strike slip faults. The strike slip faults seem to not be deep enough to affect zone 3 and the duplex structure. Surface geological maps (Fig. 3) indicate that the Pennsylvanian Atoka formation, Johns Valley, Springer and Spiro/Wapanucka package crop out at the south of the trace of the Choctaw Fault.

Although all the cross sections running roughly east-west did not penetrate Zone 4, cross section W3-W3' (Fig. 33) did intersect the Choctaw Fault. Because of the acute angle of intersection, the Choctaw fault and Spiro units within the hanging wall of Choctaw had a large surface expression. This relative increase was adjusted for in the subsurface.

Unfortunately because of the number of thrusts located within the hanging wall of Choctaw and the close proximity of these faults to each other, the ability to use the 3D seismic was lost as the Choctaw fault created too much of a noise factor to be able to make an accurate seismic interpretation. Therefore, all data gathered on the hanging wall of the cross sections was created using well log information and scout cards.

Cross sections restoration and calculation of shortening

To calculate the amount of shortening that had been experienced in the study area, three factors needed to be determined. The First Factor was the method of calculation. Because of the concentric nature of the folds due to the amount of incompetent shale units within the basin (Cemen et al., 2001), the method of restoration that was used is the key bed method. The formation that was chosen as the key bed for the calculations was
the Spiro sandstone unit because it is a sheet like sandstone that extends well within the basin.

The Second Factor to finding the amount of shortening is the sections being calculated. Three areas were chosen to calculate the amount of shortening, they are:

1) The overall duplex structure
2) The minor backthrusts that are located within the duplex structure to calculate the impact these backthrusts had on the overall compression within the duplex.
3) The overall study area that encompasses the duplex structure and the Choctaw imbricate fault structure.

The Third Factor to calculating the shortening was the positioning of the pin line and loose lines. The pin line for was placed north of the duplex structure to symbolize the end of the deformation. To calculate the shortening applied to the overall duplex structure, the loose line was placed further south just beyond the start of the first duplex. This was similarly the case for the calculations for the minor backthrusts within the duplex structure. To calculate the overall shortening, the loose line was placed at the southern edge of the hanging wall where there is no piercing point for the Spiro Sandstone units.

The Fourth Factor is the calculation of shortening. To complete the calculation of shortening applied in an area two variables are needed. 1) Is the final length of the Spiro unit after the deformation had occurred $\left(\mathrm{L}_{\mathrm{f}}\right)$. 2) The original length of Spiro sandstone unit before deformation $\left(\mathrm{L}_{\mathrm{o}}\right)$. This can be achieved by measuring the Spiro units individually. By subtracting the final length of the deformed Spiro $\left(\mathrm{L}_{\mathrm{f}}\right)$ from the original
length of the Spiro before deformation $\left(\mathrm{L}_{\mathrm{o}}\right)$ the result will be the shortening distance. The percent of shortening was calculated using the following equation

$$
\frac{L f-L o}{L o} \times 100 \text { (Table 1). }
$$

Shortening applied to the overall duplex structure					
	$\mathrm{L}_{\mathrm{f}}(\mathrm{ft})$	$\mathrm{L}_{0}(\mathrm{ft})$	$\mathrm{L}_{\mathrm{f}}(\mathrm{ft})-\mathrm{L}_{0}(\mathrm{ft})$	$\mathrm{L}_{\mathrm{f}}(\mathrm{ft})-\mathrm{L}_{0}(\mathrm{ft}) / \mathrm{L}_{0}(\mathrm{ft})$	Percentage
Cross section A-A'	45921.6	55843.1	-9921.5	-0.178	17.77
Cross section B-B'	45372.5	55764.7	-10392.2	-0.186	18.64
Cross section C-C'	39764.7	50745.1	-10980.4	-0.216	21.64
Cross section W2-W2'	39137.3	46352.9	-7215.6	-0.156	15.57

Shortening applied due to the backthrusts within the duplex structure

Cross section A-A'	45921.6	50588.2	-4666.63	-0.092	9.22
Cross section B-B'	45372.6	47764.7	-2392.16	-0.050	5.01
Cross section C-C'	39764.7	41803.9	-2039.21	-0.049	4.88
Cross section W2-W2'	39137.3	41803.9	-2666.67	-0.064	6.38

Shortening applied to the overall structure within the study area

Cross section A-A'	45921.6	97411.8	-51490.19	-0.529	52.86
Cross section B-B'	45372.6	107215.7	-61843.15	-0.577	57.68
Cross section C-C'	39764.7	87843.1	-48078.43	-0.547	54.73
Cross section W2-W2'	39137.3	90039.2	-50901.97	-0.565	56.53

Table 1: Excel spread sheet indicating the shortening calculations done on three areas within the study area.

$$
\begin{array}{|l|}
\hline \text { Fig. } 30 \text { (Plate 5): Cross section D-D` } \\
\hline
\end{array}
$$

Fig. 33 (Plate 8): Cross section W3-W3'

CHAPTER VII

CONCLUSIONS

South of the Carbon fault is the footwall of the Choctaw fault. The shallow part of the footwall is dominated by the Brazil and Red Oak layers. These layers were essential in locating a shallow splay from the Choctaw fault. This shallow splay was named the Middle Atokan Thrust (M.A.T.) and appeared to have various numbers of out of sequence thrusts. Due to the lack of the Spiro sandstone units within the M.A.T. the thrust was deemed younger in age. This shallow thrust system was well observed on the western 3D seismic lines while it seemed to lose strength on the eastern side of the survey.

Deeper in the footwall of Choctaw, is Zone 3 and the location of a well developed duplex thrust system. These duplexes are hinterland dipping with a dip angle of $\approx 20^{\circ}$ 25°. The roof thrust of the duplex system is the Lower Atokan Detachment (L.A.D.) and the sole thrust is the Springer Detachment. The duplex system becomes shallower as to the north and exhibits some indications of backthrusting within the duplex itself.

Shortening calculations were examined for three specific areas in the study area. The shortening calculation found for the backthrusts that were located within the duplex structure varied from 4% to 10%. The shortening calculation for the duplex structure was
found to be between 15% and 21%. The overall shortening that was calculated for the study area was between 52% and 58%.

REFERENCES

Akthar, Saleem, 1995, The Geometry of Thrust Systems in the Wilburton Gas Field and Surrounding, Latimer County, Oklahoma, M.S. thesis, Oklahoma State University, Stillwater, Ok, p.1-97.

Arbentz, J.K., 1989, Ouachita Thrust Belt and Arkoma Basin: in Hatcher, R.D., Jr., Thomas, W.A., and Viele, G.W., eds., The Geology of North America, vol. F-2, The Appalachian-Ouachita Orogeny in the United States, Geological Society of America, Boulder, Colorado, p. 621-634.

Blakey, R.C., 2005, Paleogeography and Geologic Evolution of North America, http://www4.nau.edu/geology/.

Boak, J., 1992, Conversion of Well Log Data to Subsurface Stratigraphic and Structural Information: Part 6, Geological Methods in Me 10: Development Geology Reference Manual, AAPG Special Publications, p. 289-293.

Boyer, S.E. and Elliot, D., 1982, Thrust Systems, American Association of Petroleum Geologists Bulletin, v 66, p. 1196-1230.

Branan, C.B. Jr., 1968, Natural Gas in Arkoma Basin of Oklahoma and Arkansas, Consulting Geologist, Oklahoma City, Oklahoma, Reprinted and Edited from AAPG Memoir 9, v 2, pp 1616-1635, Petroleum Geology of the Mid-continent Tulsa Geological Society, Special Publication 3.

Butler, R.W.H, 1987, Thrust Sequences, Journal of the Geological Society of London, v 144, 1987, p. 619-634.

Buchanan and Johnson, 1986, Bonanza Gas Field-A Model for Arkoma Basin Growth Faulting, in Cline, S.M., ed., Geology of the Western Arkoma Basin and Ouachita Mountains, Oklahoma City Geological Society Guidebook, p. 75-85.

Camp, W.K. and Ratliff, R.A., 1989, Balanced Cross-Section Through Wilburton Gas Field, Latimer County, Oklahoma: Implications for Ouachita Deformation and Arbuckle Exploration in Arkoma Basin (Abstract): AAPG Bull, v.73, p. 1044.

Cemen, I., Al Shaieb, Z., Hess, F., Akthar, S., and Feller, R., 1995, Geometry and Thrusting in Wilburton Gas Field and Surrounding Areas, Arkoma Basin, Oklahoma, Implications for Gas Exploration in the Spiro Sandstone Reservoir; Abstract, AAPG Bull. v 79, no. 9, p. 1401.

Cemen, I., Al Shaieb, Z., Sagnak, A., Feller, R., and Akthar, S., 1997, Triangle Zone Geometry of the Frontal Ouachita in the Wilburton Area, Arkoma Basin, Oklahoma: Implications for Fault Sealing in the Wilburton Gas Field (Abstract) AAPG Annual Convention Program with Abstracts, p. A-19.

Cemen, I., Evans, J., and Sagnak, A., 2001, Eastern Continuation of the Wilburton Triangle Zone in the Red Oak Gas-Field Area, Frontal Ouachitas-Arkoma Basin Transition Zone, Southeastern Oklahoma, Oklahoma Geological Survey, Circular 106, p. 81-94.

Cemen, I., Sagnak, A. and Akthar, S., 2001, Geometry of the Triangle Zone and Duplex Structure in the Wilburton Gas Field Area of the Arkoma Basin, Southeastern Oklahoma, Oklahoma Geological Survey, Circular 104, p. 87-98.

Collins, M., 2006, Geometry of Late Paleozoic Thrusting, Wilburton and Damon Quadrangles, Arkoma Basin, Southeastern Oklahoma, M.S. thesis, Oklahoma State University, Stillwater, Ok, p. 1-103.

Couzens, B.A. and Wiltschko, D. V., 1994, Some Constraints for Mechanical Models of Triangle Zones, Abstract, Western Canadian and International Expertise, Exploration Update, A Joint Convention of CSEG and CSPG, Calgary, Alberta, 1994, p. 370-371.

Dahlstrom, C.D.A., 1970, Structural Geology in the Eastern Margin of the Canadian Rocky Mountains, Bulletin of Canadian Petroleum Geology, 18, p. 332-406..

Evans, J., 1997, Structural Geometry of Thrust Faulting in the Baker Mountain and Panola Quadrangles, Southeastern Oklahoma, M.S. Thesis, Oklahoma State University, Stillwater, Ok, p. 1-103.

Feller, R., 1995, Characteristics of Abnormally-Pressurized Gas Compartments and Potential Sealing Mechanisms in the Spiro Sandstone, Arkoma Basin, Oklahoma, Abstract, Geological Society of American, v 27, Issue 3, p. 49

Grayson, R.C. Jr., 1979, Stop Descriptions, $5^{\text {th }}$ day, Oklahoma Geological Survey Guidebook 19, Ozark and Ouachita Shelf to Basin Transition, OklahomaArkansas, p. 67-75.

Gross, J.S., Thompson, S.A., Claxton, B.L., and Carr, M.B., 1995, Reservoir Distribution and Exploration potential of the Spiro Sandstone in the Choctaw Trend, Arkoma Basin, Oklahoma and Arkansas, AAPG Bulletin, v. 79, issue 2, p. 159-185.

Hadaway, S., 2004, Structural Geometry of Thrust Faulting in the Hartshorne Southwest Quadrangle, Arkoma Basin, southeast Oklahoma, M.S. Thesis, Oklahoma State University, Stillwater, Ok, p. 1-68.

Hadaway, S., and Cemen, I., 2005, Tear Faulting and Compartments for Gas Production in southwest Hartshorne Gas Field, Arkoma Basin, Southeast Oklahoma, Shale Shaker, Oklahoma City Geological Society, January-February, 2005, p. 101-111.

Ham, W.E ., 1978, Regional Geology of Arbuckle Mountains, Oklahoma, Oklahoma Geological Survey, Special Publication 73-3. p. 61.

Hardie, W, 1988, Structural Styles of the Frontal Thrust Belt of the Ouachita Mountains, Southern Pittsburg County, Oklahoma: Oklahoma Geology Notes, v 48, no.6, p. 232-246.

Hess, F.B., 1995, Sedimentology and depositional environment of the Lower Atokan Spiro Sandstone in the Wilburton, Red Oak, and Kinta Fields, Arkoma Basin, Oklahoma, M.S. Thesis, Oklahoma State University, p. 159.

Houseknecht, D.W. and Kacena, 1983, Tectonic - Sedimentary Evolution of the Arkoma Basin and Guidebook to Deltaic Facies, Hartshorne Sandstone, Houseknecht, and others, SEPM Mid-Continent section, v. 1, October 1983- Tectonic and Sedimentary Evolution of the Arkoma Foreland Basin.

Jones, P. B., 1996, Triangle Zone Geometry, Terminology and Kinematics, Bulletin of Canadian Petroleum Geology, V. 44, N. 2, p. 139-152.

Johnson, K.S., 1988, General Geologic Framework of the Field-Trip Area, in Johnson, K.S. ed., Shelf to Basin Geology and Resources of Pennsylvanian Strata in the Arkoma Basin and Frontal Ouachita Mountain, p. 1-5.

Lumsden, D.N., Pittman, E.D. and Buchanan, R.S., 1971, Sedimentation and Petrology of Spiro and Foster Sands (Pennsylvanian), McAlester Basin, Oklahoma; AAPG Bulletin 55, p. 254-266.

Mahaffie, M.J., 1994, Reservoir classification for turbidite intervals at the Mars discovery, Mississippi Canyon 807, Gulf of Mexico, in P. Weimer, A.H Bouma, and B.F. Perkins eds., Submarine fans and turbidite systems: GCS-SEPM Foundation $15^{\text {th }}$ Annual Research Conference, p. 233-244.

Marshak S., and Mitra, G., 1998, Basic Methods of Structural Geology. Prentice Hall, Englewood Cliffs, NJ, p. 303-332.

McCaleb, J. A. 1963, The goniatite fauna from the Pennsylvanian Winslow Formation of northwest Arkansas, Journal of Paleontology, v. 37, p. 867-888.

McClay, K.R., ed , 1992, Glossary of Thrust Tectonic Terms, Thrust Tectonics, Chapman Hall, p. 447.

McPhail, 2001, Geometry and Structural evolution of the Thrust Faults in the Summerfield and LeFlore Southeast Quadrangles, Southeastern Oklahoma, M.S. Thesis, Oklahoma State University, Stillwater, Ok.

Mehdi, S., 1998, Structural Geometry of Thrust System in the Red Oak and Talihina Quadrangles, Latimer and Leflore Counties, Arkoma Basin Southeastern Oklahoma, M.S. Thesis. Oklahoma State University, Stillwater, Ok, p. 1-107. Milliken, J.V., 1988, Late Paleozoic and Early Mesozoic Geologic Evolution of the Arklatex Area: Rice University, Houston, M.S. thesis.

Perry, W.J, Suneson, N.H, 1990, Preliminary Interpretation of a Seismic Profile Across the Ouachita Frontal Zone Near Hartshorne, Oklahoma, Geology and Resources
of the Frontal Belt of the Western Ouachita mountains, Oklahoma, Oklahoma Geological Survey, Special Publication 90-1, p. 145-148.

Pohn, H. A., 2000, Lateral Ramps in the Folded Appalachians and in Overthrust Belts Worldwide- A fundamental Element of Thrust-Belt Architecture, U.S. Geological Survey Bulletin 2163, August 10, p. 1-63.

Reeves and others, 1990, Reeves, D.L., Schriener, W.P. and Sheffield, T.M., New State Mountain, Geology and Resources of the Frontal Belt of the Western Ouachita Mountains, Oklahoma,, Oklahoma Geological Survey, Special Publication 90-1, p. 37-40.

Rider, M.H. 1996. Geological Interpretation of Well-Logs. Halsted Press. p. 1-288.
Ronck, J., 1997, Structural geology of thrust faulting in the Wister Lake Area of the frontal Ouachita Mountains, Arkoma Basin, Southeastern Oklahoma, M.S. Thesis, Oklahoma State University, Stillwater, Ok, p. 1-111.

Sagnak, Ata, 1996, Geometry of Late Paleozoic Thrusting between WilburtonHartshorne Area, Arkoma Basin, southeast Oklahoma, M.S. Thesis, Oklahoma State University, Stillwater, Ok, p. 1-131.

Suneson, N.H. ,1992 and 1995, Structural Interpretations of the Arkoma Basin Ouachita Mountains Transition Zone, Southeastern Oklahoma; A Review; in Johnson, K.S. ed., Structural Styles in the southern Mid-continent, 1992 Symposium; Oklahoma Geological Survey, Circular 97, p. 259-263.

Suppe, J., 1983, Geometry and Kinematics of Fault Bend Folding, American Journal of Science, v 283, p. 684-721.

Sutherland, P.K. ,1979 and 1988, Late Mississippian and Pennsylvanian Depositional History in the Arkoma Basin area, Oklahoma and Arkansas; GSA Bulletin, v. 100 no. 11, p. 1787-1802.

Van Wagoner, J.C., Mitchum, R.M., Campion.K.M., and Rahmanian, V.D., 1990, Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops. AAPG Methods in Exploration Series, No.7, p. 1-60.

Webel, S., 1987, Significance of Backthrusting in the Rocky Mountain Thrust Belt, The Thrust Belt Revisited; $38^{\text {th }}$ Annual Field Conference Guidebook, Wyoming Geological Association, p 37-53.

Wilkerson, M.S., and Wellman, P.C., 1993, Three Dimensional Geometry and Kinematics of the Gayle-Buckeye Thrust System, Ouachita Fold and Thrust Belt, Latimer and Pittsburg Counties, Oklahoma, AAPG Bulletin, V 77, no. 6, June 1993, p. 1082-1100.

APPENDIX

UFF（ 4 FFRMus）	Well ${ }^{\text {dumue }}$	TOTHMS安	Range	Section	Namaly Fmisu SxioTqu何	Namaly Funlidy SpiroBat列
3507720572000	ELUEMOUNTAN	4 N	17 E	22		
3507720090000	WALLLACE	4 N	17E	15		
3507720322000	W PLERBLANCE	51	17E	36		
35072038000	JESSIE BENHETTT	$\underline{1}$	18E	50		
35077204690000	HJINTER TUCKER	9	18E	31		
35077205450000	DETIA HOLT	3	17E	35		
35077205430000	STATE	$\underline{1}$	18E	28		
3507720.510000	DOBBS STATEUNIT MA	$\underline{1}$	18E	2		
3507721463000	MABRY 12	4 N	17E	12		
3507721447000	SPARIS	$4 N$	17E	1		
3507720580001	STATE C URIT	9	18E	28		
35077212870000	MCCASLIN	4 N	17E	2		
35077212760000	MCCASLIN	4 N	17E	2		
3507721280000	SMLTH	\＄1	18E	20		
35072128000	LATDEN	$4{ }^{4}$	17 E	3		
35077212160000	PARKERALFORD	31	17E	27		
3507721000000	HENKLET	$\$$	17E	25		
3507720996000	KITCHELL	4 N	17E	14		
35077209930000	SIVIL	$\$$	17E	22		
35077209800000	DAREY	3	17E	23		
350770949000	STATEC	31	18E	28		
35077209350000	WHITFEY	$\$$	17 E	34		
35077209210000	BENHETT STATE	$\$$	18E	19		
35077208700000	JESSEE BENHETT	$\$$	18E	30		
3507720850000	AFDREXKKURIKKO	51	17E	35		
35072089000	HEFTLET	$\underline{1}$	17 E	25		
35077208070000	CALIDRON	$\underline{1}$	17E	26		
3507720800000	CALDRRON	3	17E	26		
3507720786000	FABER0	$\$$	17E	24		
35077207810000	SMLTH	31	18E	20		
35072002000	LEELCLICE	$\underline{1}$	17E	36		
35072055000	CAJDRON	31	17E	36		
3507720565000	DAREY	3	17E	23		
3507720588000	FABER0	81	17E	24		
35077205270000	MABRY	4N	18E	7		
3507720525000	BENKETT	31	18E	30		
35072050000	SMLTH	31	18E	20		
35077205040000	BENHETT STATE	31	18E	19		
35077201050000	KENREDY	$\$$	18E	32		
35077204810000	BEFHETT STATE	$\$$	18E	19		
35077209540000	DOBES STATE	51	18E	29		
35077200000	MCCLSLIF	$4{ }^{4}$	17 E	2		
35072105000	SIVIL	3	17E	22		
35077210060000	BEFHETT STATE	\＄	18E	19		
3507720300000	WHHTHEY	5	17E	34		
35077204510000	MABRY TRLET	4 N	17E	12		
3507720079000	PATITS ON	4 N	17E	1		
350721070000	CAIDRON	9	17E	3		
3507760000000	M C WATTS	\＄	18E	33		
35077301470000	MABRY	4 N	18E	9		
3507730011000	J L HENLEY	\＄	17E	25		

U/WT (AFFRMm)	Well 10 me	TOWHasit	Range	Section	Namaly Fmisd SxioTaps列	7vamally Fmisid Spiro Bat严
3507730004000	MOSE C WATTS	¢	18E	3		
3507730000000	DARBYSUBDIWISION	$\underline{1}$	17E	23		
35077210410000	DAREY	9	17E	2		
35072105000	CALDREN	$\underline{1}$	17 E	35		
3507721010000	PAFKER ALFFED	5	17E	27		
3507720418000	ALFEED PARKER	3	17E	27		
35077204130000	DAREYSUBDIVI	$\underline{1}$	17E	23		
3507720402000	FABER0	5	17 E	24		
3507720401000	MCCASLIN	4 N	17E	2		
350720420000	HUATER TUCKER	31	18E	31		
3507720300000	SPARFS	4 N	17E	3		
35077203520000	SAMS	\$1	17 E	22		
3507720341000	CALIDRON	5	17E	25		
3507720366000	SMLTH	$\underline{1}$	18E	20		
350720313000	AFDRENKUELKO	31	17E	35		
3507720293000	MABREY TRLET	4 N	18E	5		
3507720240000	KENHEDY	\$1	18E	32		
3507720281000	WHITHEY	5	17E	34		
3507720219000	PS 0	4 N	17E	10		
3507720254000	KENT HEIRS	\$1	17E	14		
350720246000	SILVERBULIET	$4{ }^{4}$	17 E	11		
35077201750000	RASPOTKIK	$\underline{1}$	17 E	10	12174	
3507720174000	VAJTGTN	9	17E	12	12349	12497
3507720189000	KEFNT	$\underline{1}$	17E	15		
35077201410000	HUITER TUCKER	\$1	18E	31		
350720060000	AFDRENKUELKO	3	17E	35		
3507720071000	WHITHEY	5	17E	34		
3507720544000	MABRY 90015 T -P	4 N	18E	11		
3507720.990000	WORKMMANJ VP-9001	4 N	18E	22		
3507721430000	MABRY RANCH	4 N	18E	10		
350720574000	FEWEIL	$4{ }^{4}$	18E	2		
350770576000	SPEAFS	$4{ }^{4}$	18E	21		
35077204870000	SHARP	3	17E	2	11511	11736
3512121656000	WALLACE	4 N	17E	21		
3512120820000	MOSS	5	16 E	13		
3512121400000	LSA	31	17E	28		
351212140000	CHARLES CASTEML	$\underline{1}$	17 E	32		
3512121415000	PDBOMMM	3	17E	29		
35121214440000	WAYFE WALLACE	4 N	17 E	21		
3512121614000	BOWMMAN	3	17E	21		
3512121673000	HARE	9	17 E	33		
3512121602000	PATHELE BOWMAN	I	17 E	20		
3512121457000	BELISKO	$4{ }^{4}$	17E	6		
35121214870000	BOWMM	F	17 E	20		
35121216570000	PD B OXIMAN	3	17E	29		
3512121208000	WRICTI	4 N	17 E	18		
3512121278000	EITHRICHARLS	5	17E	30		
351212108000	POIICHVY	$\$$	17 E	3		
3512121323000	HARTSHORNE	4 N	17 E	6		
3512121807000	USA	9	17 E	28		
3512121350000	ALEXAFDER	4 N	17E	9		

	Well 7 dume	TOWHS等	Ringe	Section	NVAWBy Fmisid SxivoTqus伤	NOMaNy Funisd SpiroBat解
3512121344000	ROCKISLAKD IMPROTVE	4 N	17E	8		
3512121330000	PEITIT	\＄1	17E	31		
3512121331000	WEBEER	5	17 E	18		
3512121521000	KOCK ELLAFD	4	17E	5		
3512121310000	POTICH2EY	9	17E	33		
3512121312000	WOODS PROSPECT	81	10 E	36		
3512120111000	POTICHNY	\＄	1／E	33		
3512120133000	STINE	4 N	17E	4		
3512121887001	CASTEEL CHARLES＇A	\＄1	17E	32		
3512121851000	PDEOWMKN	3	17E	2		
3512121850000	USA	S	1／E	28		
35121218420000	BOWMMAN	\＄1	17E	21		
3512121835000	EDITHRICHARDS	5	17E	30		
3512121900000	AFDEFSONK	F1	17E	19		
351212057000	SWNEET	$4 N$	17E	9		
3512120310000	BOWMMAN	\＄1	17E	17	1230	12549
3512120.950000	DURAN	\＄1	1／E	18	11000	
3512120600000	BERHLARDI JOLES	\＄1	16 E	10	11100	
3512120800000	COOK	9	10E	14	11759	11957
3512121334000	LEWIS	4 N	16E	12		
3512121349000	FEFPDHMM	$4 N$	10 E	11		
3512120730000	SMEALLWOOD	4 N	16E	3		
35121204950000	MCEEE	\＄1	10E	23		
35121217650000	PEDEN	\＄1	10E	24		
3512121482000	AIMERIT0	9	10 E	34		
3512121207000	SKMSLCNOOD	$4 \pm$	10 E	10		
3512121192000	CEORCE PEDEN	9	10E	24		
3512121208000	HAILEYVILIE TOWHSITE	\＄1	16E	35		
3512121200000	TEX	4 N	10 E	14		
3512121300000	MIILER	5	16 E	26		
3512120157000	WOOLS PROSPECT	$\$$	10 E	36		
351212009000	CDORKE PDDEN	3	10 E	24		
3512121844000	MLSSS URIT	\＄1	10 E	25		
3512122811000	SIRMALS LOE	4 N	16E	12		
3512120206000	MARCANCWII	\＄	16E	34		
3512120158000	USA	F1	16 E	27		
3512120168000	W WALLICE	$4 N$	17E	17		
3512120625000	US GOVERHMMENT	5	16E	27		
3512120177000	USA	\＄1	16E	35		
3512120198000	FEVDHAM	4 N	10 E	11		
3512120257000	MADDEN	4 N	16 E	2		
351212020000	FRAHIZ HEFDHPM	$4 N$	16 E	14		
3512120200000	LEWNS	$4 N$	10 E	12		
3512120219000	SLAJTGHIER	4 N	16 E	1		
3512120145000	R EKTiNG	\＄	16 E	26		
35121201550000	HARTSHORNE	4 N	17E	6		
3512120031000	PALILINE B OMMMAN	\＄1	1／E	20		
3512122106000	KINJ	\＄	10 E	25		
3512122123000	MCEEE	\＄1	16E	23		
3512121339000	ANDERSON	9	17E	19		
3512121423000	WC CAMP	4	10 E	4		

UWT（AFFM，w）	Well ${ }^{\text {anme }}$		Runge	Section	Nanday Foula SyioTap侕	NOWNAK FM！品d Spiv Bat 何
3512121012000	MASS	IT	10 E	25		
3512123160000	KEFWDEICK	4 N	16 E	13		
3512123230000	FIINK	3	16 E	36		
351212054000	AIMERITO	I	16 E	27		
351212092000	LENS TAMES	4 N	16 E	12		
35121208510000	CAMP	\＄1	16 E	34		
35121230870000	K173	\＄1	16 E	25		
351212000000	WOODS	\＄	16 E	36		
3512121788000	ANDESSON	\＄1	17E	19		
3512121980000	USA	3	16 E	35		
3512121982000	FEWDHAM	$4{ }_{\text {¢ }}$	16 E	11		

	Fell ${ }_{\text {chate }}$		Range	Section	Spyo Thruy SheetA Tors	SpW Thruy SheetA Bot 信
3507720572000	BLTEMOURTARN	4 N	17E	22		
3507720600000	WALLACE	4 N	17 E	15		
3507720320000	W PLERBLALSCE	51	17 E	36		
350772038000	JESSIEBENLETIT	31	18E	30		
3507720469000	HURTER TUCKER	31	18E	31		
3507720545000	DETLAHOLT	5	17 E	35		
3507720543000	STATE	5	18E	28		
3507720510000	DOBBS STATEURIT MA	31	18E	29		
3507721460000	MABRY 12	4 N	17 E	12		
3507721447000	SPARES	$4{ }^{4}$	17 E	1		
35077205080001	STATE C URIT	51	18E	28		
3507721287000	MCCASLIN	4 N	17 E	2		
35077212760000	MCCASLIN	4 N	17 E	2		
3507721280000	SMLTH	51	18E	20		
350772128000	LATDEN	4 N	17 E	3		
3507721216000	PARKERALFORD	51	17 E	27		
3507721000000	HEFHLET	$\$$	17 E	25		
3507720996000	KITCHELL	4 N	17E	14		
3507720993000	SIVIL	31	17 E	22	9266	9547
3507720980000	DARBY	51	17 E	23		
350770949000	STATEC	\pm	18E	2		
3507720935000	WHHTHEY	51	17 E	34		
3507720921000	BENHETT STATE	5	18E	19		
3507720870000	JESSIE BENLETT	5	18E	30		
3507720858000	AFDREXKURIIKO	51	17 E	35		
350772000000	HEFWET	3	17E	25		
3507720807000	CATIDRON	5	17 E	25		
3507720800000	CATIDRON	5	17 E	25		
3507720786000	FABER0	51	17E	24		
3507720781000	SMLTH	31	18E	20		
350772065000	LEALLSNCE	5	17E	3		
35077205 80000	CALDRRON	31	17E	35		
3507720565000	DARBY	5	17E	23		
3507720580000	FABERO	51	17E	24		
3507720527000	MABRY	4 N	18E	7		
3507720525000	BENFIETT	51	18E	30		
35077205000	SMLIH	5	18E	21		
3507720504000	BENEETT STATE	5	18E	19		
3507720105000	KENFIEDY	51	18E	32		
3507720481000	BEFHETT STATE	5 N	18E	19		
3507720954000	DOBES STATE	51	18E	29		
3507720000000	MCCASLIN	$4 N$	17 E	2		
3507721055000	SIVIL	F1	17 E	22		
3507721006000	BENHETT STATE	5	18E	19		
3507720300000	WHITHEY	51	17 E	34		
35077204510000	MABRY TRLET	4 N	17 E	12		
3507720079000	PATITSOH	4 N	17E	1		
3507721070000	CALDRON	51	17 E	2		
3507760000000	M C WATTS	9	18E	33		
3507730147000	MABRT	4 N	18E	9		
3507730011000	JL HENLET	31	17 E	25		

UWT (AFFIM ${ }^{\text {m }}$)	Wellinue		Ringe	Sectian	Spro Thnus SheetA Tox	SheetA Bot 供
3507730040000	MOSE C WATTS	\&	18 E	3		
350773000000	DARBYSUBDIVISION	\$	17E	23		
35077210410000	DAEBY	\%	17E	23		
350772105000	CALDPRON	9	17E	26		
35077210100000	PARKER ALFED	$\stackrel{1}{1}$	17 E	27		
35077204180000	ALFRED PARKER	S	17E	27		
3507720413000	DAEBYSUBDIVI	\$	17E	23		
35077204020000	FABERO	$\stackrel{1}{1}$	17 E	24		
3507720401000	MCCASLIN	8 N	17E	2		
3507720436000	HUNTIER TUCKER	$\$$	18E	31		
3507720300000	SPARKS	4 N	17E	3		
3507720352000	SAMS	\$	17E	22		
35077203410000	CALDRRON	$\stackrel{1}{1}$	17 E	25		
3507720336000	SMITH	\%	18E	20		
350770315000	ARLREN KURLIKO	$\$$	17E	35		
3507720293000	Maskry TRLET	4 N	18E	5		
3507720244000	KRNHEDY	\$	18E	32		
35077202310000	WHITFEY	$\stackrel{1}{1}$	17 E	34		
3507720219000	PS 0	4 N	17 E	10		
35077202540000	KENT HEIRS	\$1	17E	14	900	
3507720240000	SILVERBULIET	4	17E	11		
3507720175000	RJSPOTNIK	\$	17E	10		
35077201740000	VAJJCTIN	$\underline{1}$	17E	12		
3507720189000	KENNT	S	17E	15	821	
35077201410000	HINTTER TUCKRR	\$	18E	31		
350772006000	ARDRENKURLIKO	$\$$	17 E	35		
35077200710000	WHIITET	\$	17E	34		
3507720544000	MABRY 9001 TV-P	4 N	18E	11		
3507720.590000	WORKMMANTVP-9001	4 N	18E	22		
3507721450000	MAERYRANCH	\&	18E	10		
350770574000	HENEIL	4 N	18E	2		
3507730576000	SFEAS	4	18E	21		
35077204870000	SHARP	\$	17 E	2		
35121216560000	WALLACE	4 N	17E	21		
3512120820000	MOSS	\$	16 E	13	830	9186
35121214020000	LEA	$\stackrel{1}{1}$	17 E	28		
3512121406000	CHAELES CASTEAL	9	17E	32		
3512121415000	PDBOXMM	\$	17 E	2		
3512121444000	WAYFE WALLACE	4 N	17E	21		
3512121614000	BOXMMAN	\%	17E	21		
35121216730000	HARE	9	17 E	33		
3512121602000	PAJUNE BOTMKAN	$\$$	17E	30	983	1006
3512121457000	BELLESO	4	17E	6		
35121214870000	BOXMMAN	\$1	17E	20	9490	978
35121216570000	PDEOXMM	$\stackrel{1}{1}$	17E	29		
3512121208000	WRICTIT	4 N	17 E	18		
3512121278000	FDITHRICH4EDS	91	17E	30	9931	10149
351212105000	POIICHy	9	17E	3		
3512121523000	HARTSHOERE	4 N	17E	6		
35121218070000	USA	\$	17E	28		
3512121352000	ALEXAKDER	4 N	17E	9		

UW7 (AFFR M M	Wellicume	Townsix	Range	Section		spro Thnut MeetA Bot
3512121344000	ROCKISLAND IMPROVE	4 N	17 E	8		
3512121338000	PETTIT	\%	17E	31		
3512121331000	WEPBEER	S	17E	18	9469	
351212131000	ROCK LSLAND	8 N	17E	5		
3512121319000	POTICHEET	S	17E	3		
3512121312000	WOODS PROSPECT	S	10 E	36		
3512120111000	POTICHNY	S	17E	33		
3512120133000	STINE	4 N	17 E	4		
35121218870001	CASTEFI CHARLES 'A'	9 N	17 E	32		
3512121851000	PDEOXMM	3	17 E	2		
3512121850000	USA	3	17E	28		
3512121842000	BOXMMAN	\%	17E	21		
35121218350000	EDITHRICHAEDS	S	17E	30		
3512121909000	ANDEFSONK	\%	17E	19	9140	
351212557000	SWWET	4	17 E	9		
3512120319000	BOXMMAN	S	17E	17		
3512120.950000	DIRAN	\%	17E	18		
3512120600000	BERKAAEDI TONES	\%	16 E	10		
3512120800000	COOK	S	10 E	14		
3512121334000	LEWIS	4 N	10E	12		
3512121349000	FEFPDHM	$4{ }^{4}$	10 E	11		
3512120700000	SMALLXNOOD	4 N	10E	3		
3512120495000	MCEEE	\$	10E	2	899	
3512121788000	PEDEN	S	16 E	24	899	9183
3512121482000	AIMMERTTO	3	16 E	34		
351212127000	SMEALLNOOD	$4{ }^{4}$	10 E	10		
3512121192000	CPORCE PEDEN	S	16E	24	9082	9294
3512121280000	HäleYvILIE TOWRSITE	3	10 E	35		
3512121200000	TEX	4 N	10 E	14		
3512121380000	MIILIER	S	16E	26	9507	
351212167000	WOOLS PROSPECT	9	16 E	3		
351212002000	CPDETEPEDEN	F	10E	24	9240	
3512121844000	MLSS TinlT	\$	16E	25	10464	10656
3512128811000	SRMMALS LOS	4 N	10 E	12		
3512120206000	MARCANGELI	S	16 E	34		
3512120180000	USA	9	16 E	27	9612	
351212106000	W WMLLACE	4	17E	17		
35121206250000	US GOVERMMMENT	S	16 E	27	9410	9615
3512120177000	USA	S	10 E	35		
3512120198000	HEPDHAM	8 N	16E	11		
3512120270000	MadDen	4 N	16E	2		
351212022000	FRANIZ FEPDHAM	4	16E	14		
351212020000	LEVNIS	4	10E	12		
3512120219000	SLAJTGHTER	4 N	16 E	1		
3512120145000	R EKITNG	S	16E	26	9330	
3512120155000	HARTSHOENE	4 N	17E	6		
35121200310000		31	17 E	20	9264	
3512122106000	Kilva	3	10 E	3	9278	
351212213000	MCEEE	3	10 E	2	9568	979
3512121330000	ANDESSON	\%	17 E	19	9550	
3512121423000	WC CAMP	4 N	16 E			

UFT (AFFRM ${ }^{\text {a }}$)	Wellinawe	Townsix	Range	Section	SheetA Toxs	spur Thnus SheetA Bot 伿
3512121012000	MLSS	3	16 E	25	9734	
351212316000	KEFWDFICK	4 N	10E	13		
3512123230000	FIINK	\$	16E	36		
3512123054000	AIMERTITO	$\$$	16 E	27		
3512122922000	LEMIS TAMES	\&	16E	12		
3512122851000	CAMP	\$	16E	34		
3512123087000	K17\%	9	16 E	26	9966	10197
3512122003000	WOODS	$\stackrel{1}{1}$	16E	36		
35121217880000	ANDERSON	\$	17 E	19		
3512121980000	USA	3	10 E	35		
3512121982000	NEFDHAM	$4{ }^{\text {N }}$	16 E	11		

UWT (AFFT,	Wellinme	T재쎠T	Range	Section	spro Thnut SheetB Tops	spaw SheetS $B o t$
3507720572000	ELUEMOUNTA ${ }^{\text {a }}$	8 N	17E	22		
3507720009000	WALLACE	4 N	17E	15		
3507720322000	WPLERELAKNCE	\%	17E	36		
350770388000	JESSIE BENINETT	9	18E	5		
35077204690000	HINTTER TUCKER	$\stackrel{1}{1}$	18 E	31		
35077205450000	DEILA HOLT	9	17E	35		
35077205430000	STATE	\%	1SE	28		
3507720.510000	DOBBS STATETINIT MA	9	1SE	2		
35077214030000	MABRY 12	4 N	17 E	12		
3507721447000	SPARIS	4 N	17E	1		
3507720.5080001	STATE C UNIT	9	18E	28		
35077212870000	MCCASLIN	4 N	17E	2		
35077212760000	MCCASLIN	4 N	17 E	2		
35077212580000	SMITH	S	18E	20		
350772128000	LSMDEN	4 N	17E	3		
35077212160000	PARKERALLFORD	9	17E	27		
3507721000000	HENLEY	\$	17E	25		
3507720996000	KITCFELL	4 N	17E	14		
3507720993000	SIVIL	9	17E	22		
35077209800000	DAEBY	9	17E	23		
350773949000	STATEC	9	18E	2		
35077209350000	WHIITEY	\%	17E	34		
35077209210000	EEFNETT STATE	\%	18 E	19		
3507720870000	JESSE BENNETT	3	18E	30		
35077208580000	AFDREN KURLIKO	9	17E	35		
350770809000	HEFLLEY	9	17E	25		
35077208070000	CALDRRON	\$	17E	25		
35077208000000	CALDRRON	$\stackrel{1}{1}$	17 E	26		
35077207860000	FABERO	9	17E	24		
35077207810000	SMITH	S	18E	20		
350770032000	LEELLSNCE	3	17E	3		
350770585000	CATDRON	3	17 E	26		
35077205650000	DAREY	\%	17 E	23	9478	9766
3507720588000	FABERO	3	17E	24	11568	11812
35077205270000	MABEY	$4{ }^{\text {N }}$	1SE	7		
35077205250000	EEFHETT	S	18 E	30		
3507700505000	SMLTH	3	ISE	20		
3507720.5040000	EERNETT STATE	\%	18E	19	1182	11515
35077201050000	KFH2EDY	3	18E	32		
35077204810000	EEFNETT STATE	S	18E	19	10727	1090
35077209540000	DOBES STATE	9	18 E	29		
350773000000	MCCASLIN	8	17 E	2		
3507721050000	SIVIL	9	17E	22		
35077210060000	EERFETT STATE	3	18E	19		
3507720300000	WHHTWEY	S	17E	34		
35077204510000	MABEV TRLET	8 N	17E	12		
3507720079000	PATTTSON	4 N	17E	1		
35072100000	CALDRON	3	17E	2	9751	9885
35077600000000	M C WATTS	3	18E	3		
35077301470000	MABEY	8 N	18E	9		
35077300110000	TL HENLEY	3 N	17E	25		

UWT (AFFThum)	Wellinue	T재쎠T	Range	Section	spro Thnut SheetB Tops	spaw SheetS $B o t$
350773004000	MOSE C WATTS	8 N	18E	3		
3507730000000	DAREYYSUBDIVISION	\$	17E	23	9950	
35077210410000	DAEEY	\%	17E	23	9782	1008
350772105000	CAIDREON	9	17E	26		
35077210100000	PAFKER ALFED	\$	17E	27		
35077204180000	ALFRED PARKER	9	17E	27	10216	10442
35077204130000	DAEBYSUBDIVI	\%	17E	23	9047	9301
35077204020000	FABERO	$\stackrel{1}{1}$	17 E	24	9399	
35077204010000	MCCASLIN	4 N	17 E	2		
3507720485000	HINATER TUCKER	9	ISE	31		
3507720300000	SPARKS	4 N	17E	3		
35077203520000	SAMS	S	17E	22		
35077203410000	CAJDRON	$\stackrel{1}{1}$	17 E	25		
35077203360000	SMITH	S	18E	20		
350770315000	ARLRENKUELIKO	9	17E	35		
3507720233000	Maskry TRLET	4 N	18E	5		
35077202340000	KRNAEDY	\$	1SE	32		
35077202810000	WHITFEY	$\stackrel{1}{1}$	17 E	34		
3507720219000	PS 0	4 N	17E	10		
35077202540000	KENT HEIRS	9 N	17E	14		
3507720246000	SILVERBULLET	4 N	17E	11		
35077201750000	RASPOTNIK	\%	17E	10		
35077201740000	VAJJTHN	\%	17 E	12		
3507720129000	KEFNT	3	17E	15		
35077201410000	HINTTER TUCKER	3 N	18E	31		
350772006000	ARLDRENKUEILKO	3	17E	35		
35077200710000	WHITHEY	S	17E	34		
3507720544000	MABRY 9001 TV -P	4N	1SE	11		
3507720.890000	WORKMM ${ }^{\text {a }}$ NTVP-9001	4 N	18E	22		
35077214500000	MAERYRANCH	4 N	18E	10		
3507705974000	FENELI	$4{ }^{4}$	ISE	$\underline{3}$		
350772576000	SPEASS	4	18E	21		
35077204870000	SHARP	9	17 E	2		
35121216560000	WALLACE	4 N	17E	21		
3512120820000	M0ss	S	16 E	13		
35121214020000	LSA	\%	17 E	28		
3512121406000	CHAELES CASTERL	3	17E	32		
3512121415000	PDBOXMM	S	17E	2	10723	11003
3512121444000	WAYFE WALLACE	4 N	17E	21		
35121216140000	BOXMMAN	S	17E	21	9409	9661
3512121673000	HARE	\%	17 E	33		
3512121602000	PRJHEE BOWMKN	3	17E	20		
3512121457000	EELLESK	4	17E	6	12127	
35121214870000	BOXMM ${ }^{\text {a }}$	9	17E	20	9069	9282
35121216570000	PD BOXMM	S	17E	2	9004	
3512121208000	WRICTIT	8 N	17 E	18		
3512121278000	FDITHRICH4EDS	9 N	17E	30	9564	9777
351212105000	POTICHy	3	17E	3		
3512121322000	HARTSHOERE	4 N	17 E	6		
35121218070000	USA	S	17E	28	10001	10442
3512121352000	ALEXARDER	8 N	17E	9		

	Well 7 保me	Townsim	Range	Section	Spro Thruy Sheet B Tors 伆	S2W Thum Sheet B Bat 嗄
3512121344000	ROCKISLAKD IMIPROVE	4 N	1／E	8		
3512121388000	PEITIT	5 N	17E	31	11702	11921
3512121331000	WEBEER	51	17E	18		
3512121321000	ROCK ISLARD	$4{ }^{4}$	17E	5		
3512121319000	POTICHNEY	31	17E	33		
3512121312000	WOODS PROSPECT	5	16 E	36		
3512120111000	POTICHNY	5 N	17E	33		
3512120183000	STIFE	4 N	17 E	4		
35121218870001	CASTEEL CHARLES＇A＇	$\$ 1$	17E	32		
3512121851000	PDBOWIMAN	31	17 E	$\boldsymbol{\sim}$	10143	10401
3512121850000	USA	31	17 E	28	10077	10008
3512121842000	BOWMMAN	5	17E	21	10882	11118
3512121835000	EDITHRICHARDS	81	17E	30	9779	10021
3512121900000	ARDEFSONK	31	17E	19		
351212057000	SWVEET	$4 N$	17 E	9		
3512120319000	BOWMMAN	51	17E	17		
3512120.950000	DURAN	5	17E	18		
3512120600000	BERKARLI JONES	31	16 E	10		
3512120800000	COOK	31	10E	14		
3512121334000	LEWIS	4 N	16 E	12		
3512121349000	FEWDHM	$4{ }^{4}$	16E	11		
3512120700000	SMEALLWOOD	4 N	16 E	3		
35121204950000	MCEEE	51	10E	23		
3512121763000	PEDEN	$\$ 1$	10 E	24		
3512121482000	AIMERIT0	51	16 E	34	10399	
3512121207000	SKSILDNOUD	$4{ }^{4}$	16E	10		
3512121192000	CWORCE PEDEN	5	16 E	24		
3512121288000	HALIETVILIE TOWHSITE	51	16 E	35	11040	
3512121200000	TEX	4 N	10 E	14		
3512121380000	MIILIER	5	16 E	26		
3512120157000	WOUDS PROSPECT	IT	16 E	36	1240	
3512120092000	CDORTE PDEA	3	16 E	24		
3512121844000	MLSSS URIT	31	16 E	25	10166	10350
3512122811000	SIRMARS LOE	4 N	16 E	12		
3512120206000	MARCANCWII	31	16 E	34	10664	
3512120188000	US A	51	16 E	27		
3512120108000	W WALLMCE	$4{ }^{4}$	17 E	17		
3512120625000	US GOWERKIMENT	51	16 E	27		
3512120177000	USA	$\$ 1$	16 E	35	10332	10088
3512120198000	FEWDHAM	4 N	16 E	11		
35121202670000	MCADDEN	4 N	16 E	2		
351212020000	FRAKIZ FEWDHAM	$4 N$	10 E	14		
3512120200000	LEWIS	$4 N$	16 E	12		
3512120219000	SLALJGHIER	4 N	16 E	1		
3512120145000	R EKTING	31	16 E	26		
3512120155000	HARTSHORNE	4 N	17E	6		
3512120031000	PALILTE B OMNMAK	51	17E	20		
3512122106000	KINE	31	16 E	25		
3512122123000	MCBEE	$\$ 1$	16 E	23		
351212133000	AFDESSON	$\$$	17E	19		
3512121423000	WC CAMP	4 N	10 E	4		

UW7 (AFFMhum)	Well ${ }_{\text {Nome }}$	Townsix	Range	Section	SheetS Tox	$\stackrel{\text { Spw }}{\text { Thnu }}$ Sheet B Bot 伿
3512121012000	MASS	\%	16E	25		
3512123216000	KEFIDEICK	\&	16E	13		
351212323000	FINK	\%	10 E	36	10307	10800
3512123054000	SIMMERITO	3	16 E	27	10445	10000
3512122922000	LEMIS TAMES	8 N	16 E	12		
3512122851000	CAMP	\%	16 E	34	1053	10754
3512120070000	K1H5	\%	16 E	26		
3512122003000	WOODS	\%	16 E	36	11007	11830
3512121780000	ANDESSON	\%	17 E	19	980	
3512121950000	USA	3	IGE	35	10939	11149
3512121982000	NEWDHAM	8 N	16 E	11		

U/FT (4 FFSM	Well 7 号we	TOFHM\%	Range	Section	Sxivo Thruy SheetC TOR 例	Spiro Thru포 Sheerc $B C \pi$
3507720572000	BLUEMOUNTARN	4 N	17E	22		
3507720600000	WALLACE	4 N	17E	15		
3507720320000	W PLERBLAKNCE	9	17E	36		
3507203 8000	TESSIEBENIET'T	3	18E	30		
3507720469000	HINTER TUCKER	9	18E	31		
3507720545000	DETIA HOLT	5	17E	35		
3507720543000	STATE	9	18 E	28		
3507720.51000	DOBBS STATEURIT MA	9	18E	29		
3507721463000	MABRY 12	4 N	17E	12		
3507721447000	SPARFS	4 N	17 E	1		
35077205080001	STATE C URIT	$\$$	18E	28		
35077212870000	MCCASLIN	4 N	17E	2		
3507721276000	MCCASLIN	4 N	17E	2		
3507721288000	SMLTH	\$1	18E	20		
350772128000	LATDEN	4	17 E	3		
35077212160000	PARKERALFORD	9	17E	27		
3507721000000	HENHLEY	\$1	17E	25		
3507720996000	KITCHELL	4 N	17E	14		
3507720993000	SIVIL	9	17E	22		
3507720980000	DAREY	\$1	17E	23		
350772949000	STATEC	$\$$	18E	28		
35077209350000	WHITFEY	5	17E	34		
3507720921000	BEFRETET STATE	5	18E	19		
3507720870000	JESSIE BENNETT	9	18E	30		
3507720858000	AKDREXKURIKKO	\$1	17E	35		
35077280000	HEFNLET	$\underline{1}$	17 E	25		
3507720807000	CALIDRON	5	17E	25		
3507720800000	CALIDRON	9	17E	26		
3507720786000	FABERO	9	17E	24		
3507720781000	SMLTH	F1	18E	20		
35077008000	LFELLAFCE	91	17 E	36		
350772055000	CAJDREN	$\underline{1}$	17E	25		
3507720565000	DARBY	\$1	17E	23		
3507720588000	FABER0	\$1	17E	24		
35077205270000	MABRT	4 N	18E	7		
3507720525000	BEFINETT	9	18E	30		
350770505000	SMITH	9	18E	31		
3507720504000	BERFETTT STATE	\$1	18E	19		
35077201050000	KENHEDY	9	18E	32		
35077204810000	BERFLETT STATE	\$1	18E	19		
35077209540000	DOBES STATE	\$1	18E	20		
350772000000	MCCHSLIV	$4{ }^{4}$	17 E	2		
3507721050000	SIVIL	I	17E	22		
3507721006000	EERFLETT STATE	9	18E	19		
3507720300000	WHITHEY	9	17 E	34		
3507720451000	MABRY TRLET	4 N	17E	12		
3507720079000	PATITS ON	4 N	17E	1		
3507721050000	CALIDRON	\$1	17 E	23		
3507700000000	MC WATTS	9	18E	33		
35077301470000	MABRY	4 N	18E	9		
3507730011000	JL HENLET	9	17E	25		

	Well ${ }_{\text {dimwe }}$	TOTHS安	Ronge	Section	SFPO TRhy SheezC TO石潮	sparo Thrug Sheet C $B O \pi$
3507730004000	MOSE C WATTS	4 N	18E	3		
3507730000000	DARBYSUBDIVISION	$\$ 1$	17E	23		
3507721041000	DAREY	5	17E	23		
3507721050000	CAJDRON	31	17E	25		
3507721010000	PARKER ALFEED	31	17E	27		
3507720418000	ALFRED PARKER	$\$ 1$	17E	27		
3507720413000	DARBYSUBDIVI	3 N	17E	23		
3507720402000	FABER0	9	17E	24		
3507720401000	MCCASLIN	4 N	17E	2		
3507720425000	HJINTER TUCKER	\＄1	18E	31		
3507720300000	SPARES	4 N	17E	3		
3507720352000	SAMS	\＄	17E	22		
3507720341000	CALIDRON	5	17E	26		
3507720366000	SMLTH	31	18E	20		
350720313000	AFDRENKURIKKO	31	17E	35		
3507720293000	MABRY TRLET	4 N	18E	5		
3507720244000	KENHEDY	5	18E	32		
35077202810000	WHITHEY	31	17E	34		
3507720219000	PS 0	4 N	17E	10		
3507720254000	KENT HEIRS	5	17E	14		
3507720246000	SLTVERBULIET	4	17E	11		
35077201750000	RASPOTVIK	$\$$	17E	10		
3507720174000	VAJTCHN	5	17E	12		
3507720189000	KEFNT	9	17E	15		
35077201410000	HJITER TUCKER	\＄1	18E	31		
3507720060000	AHDRENKURHKO	IN	17E	35		
3507720071000	WHITHEY	9	17E	34		
3507720544000	MABRY 90015\％－P	4 N	18E	11		
3507720，99000	WORKMMASTVP－901	4 N	18E	22		
3507721430000	MABRYRANCH	4 N	18E	10		
3507720574000	FEWEIL	4	18E	2		
350772056000	SPEAFS	4 N	18E	21		
3507720487000	SHARP	5	17E	2		
3512121656000	WALLACE	4 N	17E	21		
3512120820000	MOSS	\＄1	16 E	13		
3512121402000	LSA	\＄1	17E	28		
3512121406000	CHARLES CASTERL	3	17E	32	1095	
3512121415000	PD BOWM	9	17E	2		
3512121444000	WA YFE WALLACE	4 N	17E	21		
3512121614000	BOWMMAN	\＄1	17E	21		
3512121673000	HARE	\＄1	17 E	33		
3512121602000	PAJLIFEBOWMM	IN	17E	20		
3512121457000	BELTEKO	4	17E	6	10717	10952
35121214870000	BOWMMAN	$\$$	17E	20		
3512121657000	PD B OXMMAN	5	17E	29		
3512121208000	WRIGTT	4 N	17E	18	12569	
3512121278000	EDITHRICHARDS	$\$$	17E	30		
3512121053000	POICHVY	$\underline{1}$	17E	3	1080	1088
3512121523000	HARTSHORLE	4 N	17E	6	10542	10782
3512121807000	USA	\＄1	17E	28		
3512121352000	ALEXAHDER	4 N	17E	9		

UWT (AFPR M m	Wellihme	Townstip	Ratge	Sectias	spro Thrúㅗ SheetC Tops	Sparo Thnu포 SheetC Bot 供
3512121344000	ROCKISLAKD IMPROWE	4 N	17E	8		
3512121338000	PEITIT	\%	17E	31	10309	10006
3512121331000	WIPBEER	\%	17 E	18		
351212131000	KOCK ESLEN	4 N	17E	5	1183	
3512121319000	POTICHNEY	\%	17E	33	11610	11002
3512121312000	WOODS PROSPECT	\%	16 E	36	10474	1099
3512120111000	POTICHNY	\%	17 E	33		
3512120133000	STINE	4 N	17E	4		
35121218870001	CASTEEL CHARLES 'A ${ }^{\text {a }}$	\%	17E	32		
3512121851000	PDEOWMM	9	17E	2		
3512121850000	USA	9	17E	28		
3512121942000	BOXMMAN	\%	17E	21		
3512121835000	EDITHRICHAEDS	\%	17E	30		
3512121909000	ANDERSONK	\%	17E	19		
35121257000	SWMET	$4{ }^{4}$	17 E	9		
3512120319000	BOXMMAN	\%	17 E	17		
3512120.95000	DURAN	\%	17E	18		
3512120060000	BERKAAFDI TONES	3	16 E	10		
351212080000	COOK	\%	10 E	14		
3512121334000	LEVXIS	4 N	16 E	12	11188	159
3512121349000	NEFDHMM	4 N	10 E	11	10640	1088
3512120700000	SMMLLDKOOD	4 N	16 E	3	11451	
35121204950000	MCEEE	\%	10 E	23		
3512121768000	PFDEN	3	16 E	24		
3512121482000	AMMERTTO	\%	$16 E$	34		
351212127000	SMMSLINOTD	4 N	10 E	10	1077	1102
3512121192000	CPORCE PEDEN	S	16 E	24		
3512121280000	HALIEYYILIE TOXNSITE	\%	16 E	35		
3512121200000	TEX	4 N	10 E	14	11888	12121
3512121308000	MILIER	\%	16 E	26		
351212157000	WOOLS PROSPECT	\$	16 E	36		
351212002000	CPDETEPEDEN	9	10 E	24		
3512121844000	MLSS URIT	\$	10 E	25		
3512122811000	STRMLARS LOS	4 N	16 E	12	1169	11888
3512120206000	MARCANGELI	\$	16 E	34		
3512120180000	USA	S	10 E	27		
3512120180000	W WALLACE	4 N	17E	17		
3512120625000	US GOWERKMMENT	S	16 E	27		
3512120177000	USA	S	10 E	35		
3512120188000	NEFDHAM	4 N	16 E	11	11109	
351212027000	MadDen	4 N	$16 E$	2	10440	
35121202000	FRAFIZ NEWDHBM	4 N	10 E	14	1106	
351212020000	LEVNIS	4 N	$16 E$	12	1573	
3512120219000	SLAJTGHIER	4 N	16 E	1	10641	
3512120145000	R EKINTG	9	10 E	26		
3512120155000	HARTSHOENE	4 N	17E	6	10\$80	
3512120031000	PAJLINE BOMMM	\%	17E	20		
3512122106000	KIINJ	9	16 E	26		
3512122130000	MCEEE	\%	16 E	23		
3512121390000	ANDESSON	\%	17E	19		
3512121423000	WC CAMP	4 N	16 E	4	11092	11001

UW7 (AFPR ${ }^{\text {a m }}$)	Welliswe	Townsty	Runge	Section		
3512121012000	MASS	\%	10 E	25		
3512123216000	KEFIDEICK	4 N	16E	13	1198	
351212323000	FITEK	\%	10E	36		
3512120054000	ALMERITO	3	16 E	27		
3512122922000	LEMIS TAMES	4 N	16 E	12	11341	11896
3512122851000	CAMP	\%	16 E	34		
3512128070000	K17\%	9	16 E	26		
351212203000	WOODS	3	16 E	36		
3512121788000	ANDESSON	\%	17E	19		
3512121950000	USA	3	16 E	35		
3512121982000	NEFDHAMM	8 N	16 E	11	10774	11035

UFF（ 4 FFRMus）	Well ${ }_{\text {atwe }}$	TOHMS㐫	Range	Section	Sxizo Thny SheetD Tors 陱	Spiro Thn포 SheetD Bot 侮
3507720572000	ELUEMOUNTAEN	4 N	17E	22		
3507720609000	WALLACE	4 N	17E	15		
3507720320000	W P LERELLANCE	$\$$	17E	36	11054	1120
35072038000	JESSIE BENLETT	31	18E	30	9779	1003
3507720469000	HINHTER TUCKER	51	18E	31	10007	
35077205450000	DEITAHOLT	31	17E	35	10752	11021
35077205430000	STATE	51	18E	28		
350772051000	DOBBS STATEUNIT MA	$\$ 1$	18E	2	9770	10000
3507721460000	MABRY 12	4 N	17E	12		
350721447000	SPARFS	$4 N$	17 E	1		
35077205080001	STATE C URIT	51	18E	28		
3507721287000	MCCASLIN	4 N	17E	2		
3507721276000	MCCASLIN	4 N	1／E	2		
3507721258000	SMLTH	\＄1	18E	20	9141	936
35072128000	LSMDEN	$4 N$	17E	3	12057	
3507721216000	PARKERALFORD	$\underline{\$ 1}$	17E	27	10270	
3507721000000	HEFLIEY	31	17E	25	1024	10555
3507720996000	KITCHELL	4 N	17E	14		
3507720993000	SIVIL	$\$ 1$	17E	22		
3507720900000	DAREY	5	1／E	23	9278	
350730949000	STATEC	$\$ 1$	18E	28		
35077209350000	WHITHEY	31	17E	34	11101	11372
3507720921000	BERFLETT STATE	31	18E	19	8727	9175
3507720870000	JESSIE BENLETT	51	18E	30	9996	10095
35077208580000	AFDREXKURIIKO	31	17E	35	10494	10762
350720809000	HENTET	$\$$	17 E	25	10004	
3507720807000	CALIDRON	$\$ 1$	17E	25	8988	9202
3507720800000	CALIDRON	5	1／E	25	10035	
35077207860000	FABERO	51	17 E	24	8988	
35077207810000	SMLTH	31	18E	20	10471	10658
350720092000	LFELLENCE	31	17E	36		
35072055000	CAIDREN	5	17E	36	950	9541
35077205650000	DAREY	31	17 E	23	9066	9390
3507720528000	FABER0	31	17E	24	9714	9952
3507720527000	MABRT	4 N	18E	7		
3507720.5250000	BENHETT	51	18E	30	1188	11651
350720505000	SMLIH	5	18E	20	10579	1077
3507720504000	BEFRIETT STATE	31	18E	19	9260	9551
35077201050000	KENHEDY	31	18E	32		
35077204810000	BEFRNETT STATE	5 N	18E	19	8481	8734
3507720954000	DOBES STATE	9	18E	2		
35072000000	MCCHSLIN	$4 N$	17E	2		
35072105s000	SIVIL	± 1	17E	22	9887	10102
3507721096000	BEFRNETT STATE	5 N	18E	19	9441	9674
3507720309000	WHITHEY	31	17 E	34	10700	10060
3507720451000	MABRY TRLET	4 N	17E	12		
3507720079000	PATITS ${ }^{\text {d }}$	4 N	17E	1		
350721070000	CALDREN	31	17 E	3	908	9245
35077600000000	M C WATTS	51	18E	3		
3507730147000	MABRT	4 N	18E	9		
3507730011000	JL HENLET	51	17E	25	10011	

UW7 (AFFRM ${ }^{\text {a }}$)	Wellinwe	TOWHMS	Range	Section	Sxivo Thum主 SheetD Tops	Syivo Thy SRy SheetD Bot 例
3507730040000	MOSE C WATTS	4 N	18E	3		
3507730000000	DAREYYSUBDIVISION	S	17E	23		
35077210410000	DAEBY	\$	17E	23	9131	9460
350772108000	CALDREON	9	17E	26	1025	10341
35077210100000	PAFKER ALFRED	9	17E	27	897	
35077204180000	ALFRED PARKER	\$	17E	27	9202	9442
3507720418000	DAFBYSUBDIVI	$\stackrel{1}{1}$	17 E	23		
3507720402000	FABER0	9	17E	24		
35077204010000	MCCASLIN	4 N	17 E	2	11287	
350773480000	HINTIER TUCKER	F	18E	31		
3507720300000	SPARES	4 N	17 E	3	11616	
3507720352000	SAMS	9	17E	22	9520	9744
35077203410000	CAJDR ON	9	17E	26	9189	9443
35077203360000	SMITH	S	18E	20		
350770312000	ARDRENKURILKO	9	17E	35	1098	11202
3507720235000	MABREY TRLET	4 N	18E	5		
35077202340000	KRNTEDY	S	18E	32		
3507720231000	WHITNEY	\%	17E	34	1145	1106
3507720219000	PS 0	4 N	17E	10		
35077202540000	KPNT HEIRS	\$	17 E	14		
3507720246000	SILVERBULIET	4 N	17E	11		
35077201750000	RUSPOTNIK	S	17E	10		
3507720174000	VAJJCFIN	\%	17E	12		
3507720129000	KENT	9	17E	15		
3507720141000	HINTER TUCKER	\$	18E	31		
350773006000	ARDRENKURILKO	9	17E	35	11052	
3507720071000	WHHTHEY	9	17E	34	11157	
3507720544000	MLBRY 9001 TV - P	4 N	18E	11		
3507720.99000	WORKMM ${ }^{\text {a }}$ NJVP-901	$4{ }_{\text {N }}$	18E	22		
35077214500000	MAEERYRANCH	4 N	18E	10		
3507730574000	Fendeil	4 N	ISE	$\underline{3}$		
350770576000	SPEAES	$4{ }^{4}$	18E	21		
35077204670000	SHARP	9	17E	2		
3512121656000	WALLACE	4 N	17E	21		
3512120820000	M0SS	9	16 E	13		
3512121402000	LSA	9	17E	28	10961	11219
3512121406000	CHEELES CASTEAL	9	17E	32		
3512121415000	PDBOXMM	9	17E	2		
3512121444000	WA FNE WALLACE	4 N	17E	21		
3512121614000	BOXMMAN	\%	17E	21		
3512121673000	HAEE	$\stackrel{1}{1}$	17 E	33	10997	11055
351212160000	PRJUITE EOWMKAN	9	17E	21		
3512121457000	EELTESO	4 N	17E	6		
3512121487000	BOXMM ${ }^{\text {a }}$ N	\$	17E	20		
3512121657000	PD BOXMMAN	9	17E	2		
3512121288000	WRICTIT	4 N	17E	18		
3512121278000	EDITHRICHAEDS	9	17E	30		
351212105000	POITCHIY	3	17E	3		
3512121523000	HARTSHORNE	4 N	17E	6		
3512121807000	USA	3	17E	28	9790	10105
3512121352000	ALEXAKDER	4 N	17E	9		

UF/ (AFETM思)	Fell 7 dume	TOWHS	Rrage	Sectian	Sxivo Thpur SheetD Tox 你	Syivo Thum SheetD $B a \pi$
3512121344000	ROCKISLAKD IMPROVE	4 N	17 E	8		
3512121380000	PEITIT	31	17 E	31		
3512121331000	WEBEER	5 N	17E	18		
3512121521000	ROCK ELEAND	$4{ }^{4}$	17 E	5		
3512121310000	POTTCHET	5	17E	33	10603	10920
3512121312000	WOODS PROSPECT	31	16 E	36		
3512120111000	POTICHNY	51	17 E	3	11045	
3512120133000	STINE	4 N	17E	4	10992	
35121218870001	CASTEEL CHARLES 'A	51	17E	32	11000	
3512121851000	PDEOWM	IN	17 E	2		
3512121850000	USA	5	17E	28		
3512121842000	BOWMMAN	51	17E	21		
3512121835000	EDITHRICHARDS	$\$ 1$	17 E	30		
3512121900000	AFDEFSONK	5	17E	19		
351212057000	SWNET	4	17 E	9		
3512120310000	BOWMMN	\$1	17E	17		
3512120.950000	DURAN	$\$ 1$	17 E	18		
3512120690000	BERKLARDI JOFES	31	16 E	10		
3512120800000	COOK	51	16 E	14		
3512121334000	LEWIS	4 N	16 E	12		
3512121390000	FEWDHMM	$4{ }^{4}$	16E	11		
3512120700000	SMCALLWOOD	4 N	16 E	3		
35121204950000	MCEEE	$\$$	16 E	23		
3512121763000	PEDEN	9	16 E	24		
3512121482000	AIMERIT0	51	16 E	34		
3512121207000	SKMLIMNOD	$4{ }^{1}$	10 E	10		
3512121192000	CWORCE PDDEN	\$1	16 E	24		
351212128000	HAILEYYILIE TOWNEITE	\$1	16 E	35		
3512121200000	TEX	4 N	16 E	14		
3512121380000	MUILER	51	16 E	26		
3512120157000	WOUDS PROSPECT	I	16 E	56		
3512120052000	CoDRTE PDDEN	$\$$	10 E	24		
3512121844000	MLASS URIT	31	16 E	25		
3512120811000	SIRMARS LOE	4 N	16 E	12		
3512120206000	MARCANCEDI	9	16 E	34		
3512120188000	USA	5	16 E	27		
3512120168000	W WALLMCE	$4 N$	17 E	17		
3512120625000	US GOVERHIMENT	5	16 E	27		
35121201770000	USA	\$1	16 E	35		
3512120198000	FEVCDHAM	4 N	16 E	11		
3512120257000	MCADDEN	4 N	16 E	2		
351212020000	FRAFIZ HEWDHAM	4	10 E	14		
3512120200000	LENVIS	$4{ }^{4}$	10 E	12		
3512120219000	SLAJTGHIER	4 N	16 E	1		
3512120145000	R EKINT	5	16 E	25		
3512120155000	HARTSHORFE	4 N	17E	6		
35121200310000	PALILTEE B OWMMAN	51	17E	20		
3512122106000	Kille ${ }^{\text {d }}$	9	16 E	35		
3512122123000	MCEEE	9	16 E	23		
3512121330000	ANDESSON	5	17E	19		
3512121423000	WC CAMP	4 N	16 E	4		

	Wellinme	Townsix	Range	Sectia	Sẏ̇o Thnuㅁ SheetD Tops	Spiro Thnu포 SheetD Bot 伤
3512121012000	MASS	\%	16 E	25		
35121232160000	KEFDEICK	4 N	16E	13		
3512123230000	FINK	\%	16 E	36		
3512123054000	ALMERITO	3	16 E	27		
3512122922000	LEMIS TAMES	4 N	16 E	12		
3512122851000	CAMP	\%	16 E	34		
3512123070000	K17NF	\%	16 E	26		
3512122003000	WOODS	\%	16 E	36		
3512121780000	ANDEASON	\%	17E	19		
3512121980000	USA	3	16 E	35		
3512121982000	NEFDHAM	4 N	16 E	11		

UW7 (AFFThum)	Wellinume	Townsix	Rnuge	Sectias	Sheet E TOXS	$\stackrel{\text { Spw }}{\text { Thnu }}$ Sheet E Bot
3507720572000	ELTEMOUNT A AN	4 N	17E	22		
3507720600000	WALLACE	4 N	17E	15		
350772032000	W PLERELLANCE	\%	17 E	36	10276	10567
35077038000	JESSE BEMNETT	3	18E	51		
3507720469000	HINTER TUCKER	\%	18E	31	9812	10000
3507720545000	DEILA.HOLT	\%	17E	35		
3507720543000	STATE	\%	18E	28	10357	10616
350772051000	DOBES STATETINTTMA	\%	18E	2	8774	9067
3507721463000	MABRY 12	8 N	17E	12		
3507721447000	SPARES	4	17E	1		
35077205080001	STATE C UnIT	\%	18E	28	9794	10074
350721270000	MCCASLIN	8 N	17E	2		
35077212760000	MCCASLIN	4 N	17 E	2		
3507221280000	SMITH	3	18E	20	808	8317
$3507 / 2128000$	LSTDEN	4 N	17E	3		
35077212160000	PARKERALFORD	3	17E	27		
3507221000000	HENTLET	3	17 E	25		
3507720996000	KITCHELL	8 N	17E	14		
3507720993000	SIVIL	\%	17E	22		
35077209800000	DAREY	\%	17 E	23		
350772949000	STATEC	3	ISE	28	988	9342
35077209350000	WHITNET	\%	17E	34		
3507720921000	EENHETT STATE	\$	18E	19		
3507720870000	JESSEP BENNETT	$\underline{1}$	18E	30	9139	9392
3507720880000	AFDREXKUELIKO	\%	17 E	35		
350773809000	HeNTLET	$\stackrel{1}{1}$	17E	25	996	10075
3507720007000	CALDDRON	S	17 E	26		
3507720800000	CALIDRON	3	17 E	26		
3507720786000	FABERO	S	17E	24		
35077207810000	SMITH	3	18E	20	8794	9044
35077002000	LEELLSNCE	31	17 E	3	11201	1149
35077085000	CAJDRON	3	17E	3		
3507720565000	DAEBY	\%	17 E	23		
3507720580000	FABERO	3	17E	24		
3507720527000	Masky	8 N	18E	7		
3507720525000	EERNETTT	S	18E	30	9898	1015
350770505000	SMITH	3	18E	21	9101	9343
3507720.040000	EENHETT STATE	\%	18E	19		
35077201050000	KPNREDY	S	18E	32		
35077204810000	EENHETT STATE	S	18E	19		
3507720954000	DOBES STATE	\%	18E	2	9925	9159
35077205000	MCCASLIT	4 N	17E	2		
350772105800	SIVIL	3	IJE	2		
35077210060000	EENHETT STATE	\%	18E	19		
3507720300000	WHITNEY	\%	17 E	34		
35077204510000	Maskr TRLET	4 N	17E	12		
3507720079000	PATTIS ON	$4{ }^{\text {N }}$	17E	1		
350721000000	CAJDERON	3	17E	2		
3507760030000	M C WATTS	3	18E	3		
3507730147000	Masky	8 N	18E	9		
3507730011000	JL HENLEY	S	17 E	25		

UFT (AFFThum)	Well ${ }_{\text {dume }}$	TOTM	Runge	Sectica	Spzo Thny Sheete Tors	Sp\% Thpy Sheet E Bot 信
350773004000	MCSE C WATTS	$4{ }^{4}$	18E	3		
3507730000000	DARBYSUBDIVISION	5	17E	23		
35077210410000	DARBY	9	17E	23		
350772105000	CALDREN	3	17E	35		
35077210100000	PARKER ALFFRD	9	17E	27		
3507720418000	ALFRED PARKER	9	17E	27		
3507720413000	DARBYSUBDIVI	5	17E	23		
35077204020000	FABERO	9	17E	24		
35077204010000	MCCASLIN	4 N	17E	2		
350720420000	HIMTER TUCKER	\$	18E	31	10191	10440
3507720300000	SPARKS	4 N	17E	3		
3507720352000	SAMS	F1	17 E	22		
3507720341000	CAJIDRON	5	17 E	25		
3507720366000	SMLTH	9	18E	20	9076	9318
350720315000	AFDRENKURHKO	$\$$	17E	35		
3507720293000	MABRFY TRLET	4 N	18E	5		
3507720284000	KENLEDY	5	18E	32		
35077202810000	WHITHEY	\$1	17E	34		
3507720219000	PS 0	4 N	17E	10		
3507720254000	KENT HEIRS	9	17E	14		
3507720246000	SILVERBUILET	$4{ }^{4}$	17E	11		
3507720175000	RASPOTHIK	9	17E	10		
3507720174000	VAJTCHN	5	17E	12		
3507720159000	KERTT	5	17E	15		
35077201410000	HITHTER TUCKER	5	18E	31	10085	
350720006000	AFDREXKURHKO	$\$$	17 E	35		
3507720071000	WHITHEY	$\$$	17 E	34		
3507720544000	MABRF 9001 JV-P	4 N	18E	11		
3507720.99000	WOREIMCANJ WP-9001	4 N	18E	22		
3507721430000	MAERYRANCH	4 N	18E	10		
350772574000	FEXVIL	$4{ }^{4}$	18E	2		
350720576000	SPEAES	$4{ }^{4}$	18E	21		
3507720487000	SHARP	\$1	17E	2		
3512121656000	WALLACE	4 N	17 E	21		
3512120820000	MOOS	$\$$	16 E	13		
3512121402000	LEA	5	17E	28		
3512121406000	CHARLES CASTERL	$\$$	17 E	31		
35121214150000	PDBOWMMAN	5	17E	29		
35121214440000	WAYHE WALLACE	4 N	17E	21		
35121216140000	BOWMMAN	9	17E	21		
3512121673000	HARE	9	17E	33		
3512121602000	PATIEIE BOWMAN	31	17E	20		
3512121457000	BELTESO	$4{ }^{4}$	17E	6		
3512121487000	BOWMM	\$1	17E	20		
3512121657000	PD B OXMMAN	5	17 E	29		
3512121208000	WRICTI	4 N	17E	18		
35121212780000	EDITHRICHARDS	5	17E	30		
3512121053000	POICHVY	$\$$	17 E	3		
3512121530000	HARTSHORFE	4 N	17E	6		
3512121807000	USA	\$1	17E	28		
3512121352000	ALEXANDER	4 N	17 E	9		

U/WT (AFFRMM)	Well ${ }^{\text {anume }}$	TOWHE安	Range	Section	Sxivo Thnus SheetE Tops	Spiro Thruy Shetez $B o \pi$ 伿
3512121344000	ROCKISLAND IMPROVE	4 N	17E	8		
3512121383000	PEITIT	5	17E	31		
3512121331000	WEBEER	ST	17E	18		
3512121321000	ROCK ISLARED	4	17E	5		
3512121310000	POTICHFEY	\$1	17E	3		
3512121312000	WOODS PROSPECT	5	16 E	36		
3512120111000	POTICHNY	9	17E	3		
3512120183000	STINE	4 N	17E	4		
3512121887001	CASTEEL CHARLES 'A'	5	17 E	32		
3512121851000	PDEOWMKA	3	17 E	2		
3512121850000	USA	9	17E	28		
3512121842000	BOWMMAN	FI	17E	21		
3512121835000	EITTHRICHARDS	9	17E	30		
3512121900000	ARDEFSONK	S	17E	19		
351212057000	SWVET	$4{ }^{4}$	17E	9		
3512120319000	BOWMMN	\$1	17E	17		
3512120.950000	DURAK	F	17E	18		
3512120600000	BERKARDI JOFES	9	16 E	10		
3512120900000	COOK	5	16 E	14		
3512121334000	LEWIS	4 N	16 E	12		
3512121349000	FEWDHMM	$4{ }^{4}$	16 E	11		
3512120700000	SMASLLNOOD	4 N	16 E	3		
35121204950000	MCBEE	\$1	16 E	23		
3512121763000	PEDEN	\$1	16 E	24		
3512121482000	AIMERITO	\$1	10 E	34		
3512121207000	SKALIMOOD	4	16 E	10		
3512121192000	GEORCE PEDEN	5	16 E	24		
3512121280000	HALIEYYILIE TOWRSITE	\$1	16 E	35		
3512121200000	TEX	4N	16 E	14		
3512121380000	MIIL.LER	\$1	16 E	26		
3512120157000	WOUDS PROSPECT	\$	16 E	5		
3512120092000	GODRLE PDDEN	9	16 E	24		
3512121844000	MMSS URIT	S	16 E	25		
3512122811000	SIRMARS LOS	4 N	16 E	12		
3512120206000	MARCANCWDII	F	16 E	34		
3512120158000	USA	S	16 E	27		
3512120168000	W WALLMCE	$4 N$	17E	17		
3512120625000	US GOVERHMMENT	5	16 E	27		
3512120177000	USA	\$1	16 E	35		
3512120188000	HEFDHAM	4 N	16 E	11		
3512120267000	MADDEN	4 N	16 E	2		
351212020000	FRAEI' HEPD HPM	$4 N$	16 E	14		
3512120200000	LEWIS	4	16 E	12		
3512120219000	SLAJTGHIER	4 N	16 E	1		
3512120145000	R EKTNT	F	16 E	25		
3512120155000	HARTSHORNE	4 N	17E	6		
3512120031000	PALILINE B OMMMAN	5	17E	20		
3512122106000	KIIFJ	3	16 E	25		
3512120123000	MCEEE	5	16 E	23		
3512121330000	ANDESSON	\$1	17E	19		
3512121423000	WC CAMP	4 N	10 E	4		

U／FT（AFFRMM）	Well 7 ume	TOTHMS年	Range	Section	Sxivo Thruy SheetE Tors 伤	Skivo Thruy Shete E $B 0 \pi$ 侕
3512121012000	MASS	ST	16 E	25		
3512123216000	KEFWDRICK	4 N	16 E	13		
3512123230000	FIIEK	\＄1	16 E	36		
351212054000	SIMERITO	I	10E	27		
3512122922000	LENXS TAMES	4 N	16 E	12		
3512120851000	CAMP	5	16 E	34		
3512123087000	KTrNE	9	16 E	25		
351212000000	WOODS	5	16 E	36		
3512121788000	ANDESSON	9	17E	19		
3512121900000	USA	$\$$	10 E	35		
3512121982000	HEFDHAM	4 N	16 E	11		

	Well 7 品we	TOFMS	Range	Section	Syivo Thruㅍ Sheet F Tors	$\begin{gathered} \text { Spin } \\ \text { Thrug } \\ \text { Shet F } \\ \text { Bot 偷 } \end{gathered}$
3507720572000	ELUEMOUNTAIN	4 N	17 E	22	13640	1390
3507720609000	WALLACE	4 N	17E	15	1399	14387
3507720322000	W P LERELAKNC	5	17E	36		
35072038000	JESSIE BENENET'T	31	18E	30		
3507720469000	HJITER TUCKER	$\$ 1$	18E	31		
3507720545000	DETIA HOLT	5	17E	35		
3507720543000	STATE	9	18E	28	12569	12790
3507720.510000	DOBBS STATEUNIT MA	$\$ 1$	18E	2	11430	11000
3507721463000	MABRY 12	4 N	17E	12	12055	12300
350721447000	SPARIS	$4 N$	17E	1	11000	
35077205080001	STATE C UNIT	5	18E	28		
3507721287000	MCCASLIN	4 N	17E	2	1185	12160
3507721276000	MCCASLIN	4N	17E	2	11575	
3507721288000	SMLTH	5	18E	20		
35072128000	LStDEN	$4 N$	17E	3	11812	1285
350721216000	PARKERALFORD	5	17E	27		
3507721000000	HENTLET	$\$ 1$	17E	25		
3507720996000	KITCHELL	4 N	17E	14	13210	
3507720993000	SIVIL	$\$$	17 E	22		
3507720900000	DAEBY	\$1	17E	23		
350720949000	STATEC	3	18E	28	11547	11761
3507720935000	WHITHEY	\$1	17 E	34		
3507720921000	BENHETT STATE	5	18E	19		
3507720870000	JESSEE BENEETT	\$1	18E	30		
35077208580000	AFDREXKURILKO	51	17 E	35		
350720809000	HEFHLET	3	17 E	25		
3507720807000	CALIDRON	5	17E	25		
3507720800000	CALIDRON	$\$ 1$	17E	25		
3507720766000	FABER0	$\$ 1$	17E	24		
35077207810000	SMLTH	9	18E	20		
350720092000	LFELLENCE	31	17 E	36		
35072055000	CAIDREN	31	17E	36		
3507720565000	DAREY	9	17E	23		
3507720528000	FABER0	9	17E	24		
3507720527000	MABRY	4 N	18E	7		
3507720525000	BENFETTT	\$1	18E	30		
350772505000	SMIIH	I	18E	20		
3507720504000	BEFHETT STATE	F1	18E	19		
35077201050000	KENHEDY	\$1	18E	32	10892	
35077204810000	BENHETT STATE	\$1	18E	19		
3507720954000	DOBES STATE	5	18E	29	1158	11749
350720000000	MCCHSLIN	4 N	17 E	2	1150	
350721055000	SIVIL	\$1	17 E	22		
3507721096000	BEFINETT STATE	5	18E	19		
3507720309000	WHITHEY	\$1	17E	34		
35077204510000	MABRF TRLET	4N	17E	12		
3507720079000	PATISON	4 N	17 E	1	11572	
35072100000	CAIDRON	\$	17 E	2		
3507760000000	M C WATTS	9	18E	3		
3507730147000	MABRY	4 N	18E	9		
3507730011000	JL HENLEY	\$1	17 E	25		

UW7 (AFFIM ${ }^{\text {a }}$)	Wellicure		Range	Section	spro Thma Mat Sheet F TOFS	spavo Sheet F Bot
3507730040000	MCSE C WATTS	4 N	18E	3		
3507730000000	DAREYSUEDIVISION	\%	17E	2		
35077210410000	DAEBY	\%	17E	23		
350721085000	CALDDRON	3	17E	26		
3507721010000	PAFKER ALFRED	3	17E	27		
35077204180000	ALFRED PARKER	\%	17E	27		
3507720413000	DAFBYSUBDIM	\%	17E	23		
3507720402000	FABER0	9	17E	24		
35077204010000	MCCASLIN	4 N	17 E	2		
3507731430000	HDINTER TUCKER	3	18E	31		
3507720300000	SPARES	4 N	17E	3		
3507720352000	SAMS	s	17E	22		
35077203410000	CALDDRON	N	17 E	26		
3507720360000	SMITH	3	18E	20		
350770315000	AFLREN KUELKO	3	17E	35		
3507720233000	Maskry TRLET	4 N	18E	5		
3507720240000	K-NTEDY	\%	18E	32	10917	
3507720281000	WHHTHEY	3	17E	34		
35077202190000	PS 0	8 N	17E	10	12140	
3507720254000	KENT HEIRS	\%	17E	14		
350772046000	SILVERBUILET	4 N	17E	11	125	12610
35077201750000	RASPOTHIK	s	17E	10		
3507720174000	VAJJCTIN	\%	17E	12		
3507720190000	KERNT	S	17E	15		
3507720141000	HINTER TUCKER	\%	18E	31		
350772006000	AFDREN KUELIKO	3	17E	35		
35077200710000	WHIITEY	\%	17E	34		
3507720544000	MABRY 9001 CV - P	4 N	18E	11		
3507720590000	WORKMMANJTP-9001	4 N	18E	22		
3507721430000	MAERYRANCH	8 N	18E	10		
350772094000	FDNEIL	4 N	18E	$\underline{2}$		
350770576000	SFEASS	$4{ }^{4}$	18E	21		
35077204870000	SHARP	9	17E	2		
3512121656000	WALLACE	4 N	17E	21	1339	15722
3512120820000	MOSS	3	16 E	13		
3512121402000	LEA	S	17E	28		
3512121406000	CHARLES CASTEEL	3	17E	32		
3512121415000	PDBOXMMAN	3	17E	2		
3512121444000	WAYFE WALLACE	4 N	17E	21	13248	13578
3512121614000	BOXMM ${ }^{\text {a }}$ N	S	17E	21		
3512121673000	HAEE	3	17E	33		
3512121602000	PATHINE BOTMKM	9	17 E	21		
3512121457000	BELLESO	4 N	17E	6		
3512121487000	BOXMM ${ }^{\text {a }}$ N	\$	17E	20		
3512121657000	PD BOXMM ${ }^{\text {a }}$	S	17E	2		
3512121280000	WRICFIT	4 N	17 E	18		
3512121278000	EDITHRICH4EDS	9	17E	30		
3512121035000	POITCHIY	3	17 E	3		
3512121323000	HARTSHOENE	8 N	17E	6		
3512121807000	USA	9	17E	28		
3512121352000	ALEXANDER	8 N	17E	9	12006	

UFT (AFFRMM)	Well ${ }_{\text {ckwe }}$	Tornasit	Ronge	Section	Sxivo Thrut Sheet F Tors 做	Spivo Thy포 Sheet F Bot 觔
3512121344000	ROCKISLAKD IMPROVEE	4 N	17E	8	12025	
3512121388000	PEITIT	5	17E	31		
3512121331000	WEBEER	5	17E	18		
3512121321000	ROCK ISLAED	$4 N$	17E	5		
3512121310000	POTICHEEY	9	17E	3		
3512121312000	WOODS PROSPECT	5	16 E	36		
3512120111000	POTTCHVY	9	17E	33		
3512120133000	STIFE	4 N	17E	4		
35121218670001	CASTEEL CHARLES 'A'	5	17E	32		
3512121851000	PDEOWMAN	$\$$	17 E	2		
3512121850000	USA	5	17E	28		
3512121842000	BOWMMAN	9	17E	21		
3512121835000	EDITHRICHARDS	$\$ 1$	17E	30		
3512121909000	ALDEFSONK	9	17E	19		
351212057000	SWVET	$4{ }^{4}$	17E	9	12495	
3512120310000	BOWMMAN	\$	17E	17		
3512120.950000	DURAN	9	17E	18		
3512120680000	BERKAREDI JOKES	9	16 E	10		
3512120900000	COOK	5	16 E	14		
3512121334000	LEWS	4 N	16 E	12		
3512121349000	FEFDHMM	$4{ }^{4}$	10 E	11		
3512120730000	SMEALLWOOD	4 N	16 E	3		
3512120495000	MCBEE	\$1	16E	23		
3512121760000	PEDEN	9	16 E	24		
3512121482000	AIMERITO	9	16 E	34		
3512121207000	SKMALINOOD	$4{ }^{4}$	10 E	10		
3512121192000	CWDRCE PEDEN	9	16 E	24		
3512121280000	HAILEYVILIE TOWFSITE	$\$$	16 E	35		
3512121200000	TEX	4 N	16 E	14		
3512121380000	MIILER	9	16 E	26		
3512120157000	WOOLS PROSPECT	± 1	16 E	56		
3512120092000	EDORTEPDDEN	$\underline{1}$	16 E	24		
3512121844000	MLSSS URIT	$\$$	16 E	25		
3512122811000	SIRMAAS LOE	4 N	16 E	12		
3512120206000	MARCANCEDI	$\$ 1$	16 E	34		
3512120180000	USA	91	16 E	27		
3512120168000	W WALLACE	$4 N$	17 E	17	12750	13042
3512120625000	US COUERKIMENT	$\$$	16 E	27		
3512120177000	USA	5	16 E	35		
3512120198000	FEWDHAM	4 N	16 E	11		
3512120257000	MLADDEN	4 N	10 E	2		
351212020000	FRAKIZ FEFCDHAM	$4 N$	16 E	14		
351212020000	LEWIS	4	16E	12		
3512120219000	SLAJTGHIER	4 N	16 E	1		
3512120145000	R EKTING	$\$ 1$	16 E	26		
3512120155000	HARTSHORFE	4 N	17E	6		
3512120031000	PALILINE BOWMMAN	F1	17E	20		
3512122106000	Killes	$\$$	10 E	25		
3512122123000	MCEEE	9	16 E	23		
3512121339000	ANDEFSON	91	17E	19		
3512121423000	WC CAMP	4 N	16 E	4		

UW7 (AFFTM ${ }^{\text {m }}$)	Well Mrwe	Towncix	Runge	Section		Spiro Thur Shect F Bot 侯
3512121012000	MASS	\%	16 E	25		
3512123216000	KEFMDEICK	¢ ${ }_{\text {N }}$	16 E	13		
3512123230000	FITK	$\stackrel{1}{1}$	16 E	36		
3512123054000	AIMERETTO	\$	16 E	27		
3512122920000	LEMIS TMMES	8 N	16 E	12		
3512122851000	CAMP	\$	16 E	34		
3512123077000	K17F	\%	16 E	26		
3512122003000	WOODS	\%	16 E	36		
3512121788000	ANDEASON	\$	17E	19		
3512121930000	USA	9	10 E	35		
3512121982000	FEFDHAM	4	16 E	11		

	Fell ${ }_{\text {chwe }}$	TOHMS安	Runge	Section	Sxivo Thpur SheetG TOR 例	Syivo Thru포 SheetG $B a x$
3507720572000	BLTEMOUNTARN	4 N	17 E	22		
3507720009000	WALLACE	4 N	17 E	15		
3507720322000	W PLERBLAKNCE	31	17 E	36		
$350720 \leq 8000$	JESSEEEENET'T	F	18E	30		
3507720469000	HJFTER TUCKER	F	18E	31		
3507720545000	DETIA HOLT	F	17 E	35		
3507720543000	STATE	9	18E	28		
3507720.510000	DOBBS STATEURIT MA	F	18E	29		
3507721465000	MABRY 12	4 N	17E	12		
3507721477000	SPARES	4	17E	1		
35077205080001	STATE C URIT	\$	18E	28		
3507721267000	MCCASLIN	4 N	17 E	2		
35077212760000	MCCASLIN	4	17 E	2		
3507721258000	SMLTH	5	18E	20		
35072128000	LAMDEN	$4{ }^{4}$	17E	3		
3507721216000	PARKERALFORD	\$	17 E	27		
3507721000000	HEFLET	9	17E	25		
3507720996000	KITCHELL	4 N	17 E	14		
3507720993000	SIVIL	\$1	17 E	22		
3507720900000	DAREY	\$1	17 E	23		
350772949000	STATEC	31	18E	28		
3507720935000	WHHITEY	S	17E	34		
3507720921000	BERHETT STATE	9	18E	19		
3507720870000	JESSIE BENLETT	9	18E	30		
3507720858000	ARDREXKURIKKO	F1	17 E	35		
350720800000	HENTET	31	17E	25		
35077208070000	CATIDRON	\$1	17 E	26		
3507720800000	CALIDRON	\$1	17E	26		
3507720786000	FABER0	$\underline{\$ 1}$	17E	24		
35077207810000	SMLTH	9	18E	20		
35072009000	LFELSLNCE	91	17E	36		
350720565000	CATIDRON	31	17E	25		
35077205650000	DARBY	\$1	17E	23		
3507720.58000	FABER0	5	17 E	24		
3507720.527000	MABRY	4 N	18E	7	13490	13755
3507720.5250000	BENHETT	5	18E	30		
350720505000	SMLTH	31	18E	20		
3507720504000	BEFRIETT STATE	9	18E	19		
35077201050000	KENHEDY	\$1	18E	32		
3507720481000	BERFETTT STATE	\$1	18E	19		
3507720954000	DOBES STATE	5	18E	20		
350770000000	MCCHSLIN	$4{ }^{4}$	17E	2		
35072105s000	SIVIL	31	17E	22		
3507721006000	BEFRIETT STATE	F	18E	19		
3507720300000	WHHITEY	9	17 E	34		
3507720451000	MABRY TRLST	4 N	17 E	12	12405	12775
3507720079000	PATITS ON	4 N	17E	1		
350721070000	CALDREN	9	17E	2		
3507760000000	MC WATTS	5	18E	33	11363	
35077301470000	MABRY	4 N	18E	9	13100	
3507730011000	IL HENLEX	5	17 E	25		

UW7 (AFFRM ${ }^{\text {m }}$)	Wellicme	Townssiy	Range	Sectiat	$\begin{gathered} \text { Spivo } \\ \text { Thury } \\ \text { SheetG } \\ \text { Tops in } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Syivo } \\ \text { Thus } \\ \text { SheetG } \\ \text { Bat } \\ \hline \end{array}$
3507730040000	MCSE C WATTS	8 N	18 E	3	1152	11482
3507730000000	DAREYSUBDINSION	8	17 E	23		
3507721041000	DAEBY	8	17 E	23		
350772108000	CAJDEON	9	17E	26		
35077210100000	PAFKKRR ALFRED	\%	17E	27		
3507720418000	ALFRED PARKER	3	17 E	27		
3507720413000	DAFEYSUBDIVI	8	17 E	23		
3507720402000	FABERO	8	17 E	24		
3507720401000	MCCASLIN	8 N	17 E	2		
3507730480000	HINTER TUCKR	9	18E	31		
3507720300000	SPARKS	4 N	17 E	3		
3507720352000	SAMS	S	17 E	22		
35077203410000	CAJDRON	\%	17 E	26		
3507720336000	SMLTH	9	18E	20		
350770312000		9	17E	35		
3507720233000	MABREY TRLET	4 N	18E	5	1285	
3507720234000	KBNREDY	9	18E	32		
35077202310000	WHHITNEY	9	17 E	34		
3507720219000	PS 0	4 N	17E	10		
35077202540000	KPNT HEIRS	9	17E	14		
3507720246000	SLIVERBUILET	4 N	17E	11		
3507720175000	RUSPOTHIK	3	17 E	10		
3507720174000	VAJTCFIN	3	17 E	12		
3507720129000	KENNT	N	17 E	15		
35077201410000	HINTER TUCKRR	N	18E	31		
350773006000	AFLDREN KURILKO	3	17 E	35		
35077200710000	WHITFEY	9	17E	34		
3507720544000	MaskY 9001 TV-P	4 N	18E	11	13120	13341
3507720s90000	WORKMMSNTVP-9001	4 N	18E	22	14200	14616
3507721450000	MAERTVRANCH	4 N	18E	10	15200	
3507720574000	FEDNELI	4 N	ISE	$\underline{3}$	1483	
350770576000	SHEAS	4 N	ISE	21	13713	1406
35077204870000	SHARP	9	17 E	2		
3512121656000	WALLACE	4 N	17 E	21		
3512120820000	M0S	3	16 E	13		
3512121402000	LSA	3	17 E	28		
3512121406000	CHMELES CASTEBL	3	17E	3		
3512121415000	PDEOMMM	S	17 E	2		
3512121444000	WA YME WALLACE	8 N	17 E	21		
3512121614000	BOXMMAN	\%	17E	21		
3512121673000	HARE	\%	17E	33		
3512121602000	PAJIIIEE BOWIMAN	9	17E	20		
3512121457000	BELISKO	4 N	17E	6		
3512121487000	BOXMMAN	3	17 E	20		
3512121657000	PD BOXMM ${ }^{\text {a }}$	\%	17 E	2		
3512121208000	WRICTIT	4 N	17E	18		
3512121278000	EITHRICHAEDS	\%	17 E	30		
3512121055000	POIICHy	9	17E	3		
3512121532000	HARTSHORNE	4 N	17 E	6		
3512121807000	USA	S	17 E	28		
3512121352000	ALEXARDER	4 N	17 E	9		

	Well ${ }^{\text {anume }}$	TOWHS产	Rrage	Section	Sxivo Thnu SkeetG Tors	Syivo Thruy SheerG $B a x$
3512121344000	ROCKISLAKD IMPROVE	¢ ${ }_{\text {N }}$	17E	8		
3512121380000	PEITIT	5	17E	31		
3512121331000	WEBEER	9	17 E	18		
3512121321000	ROCK ELEAKD	$4{ }^{4}$	17E	5		
3512121310000	POTICHETEY	3	17 E	33		
3512121312000	WOODS PROSPECT	3	16 E	36		
3512120111000	POTICHNY	5	17 E	33		
3512120153000	STINE	4 N	17 E	4		
35121218870001	CASTEEL CHARLES 'A'	\$1	17 E	32		
3512121851000	PDEOWMKA	$\$$	17E	2		
3512121850000	USA	9	17 E	28		
3512121842000	BOWMMA	5	17 E	21		
35121218350000	EITHRICHARLS	9	17 E	30		
3512121909000	ANDEFSONK	5	17E	19		
351212057000	SWVET	$4{ }^{4}$	17E	9		
3512120310000	BOWMM	\$1	17E	17		
3512120.950000	DURAK	5	17E	18		
3512120600000	BERHLARDI JOFES	9	16 E	10		
3512120800000	COOK	5	16 E	14		
35121213340000	LEWIS	4 N	16 E	12		
3512121349000	FEFPDHM	4	16 E	11		
3512120700000	SMEALLWNOOD	4 N	16E	3		
35121204950000	MCEEE	5	16 E	23		
3512121763000	PEDEN	3	16 E	24		
3512121482000	AIMERITO	$\underline{\$ 1}$	16 E	34		
3512121207000	SKLILINOOD	4	10 E	10		
3512121192000	CODRCE PEDEN	9	16 E	24		
351212128000	HAILETVILIE TOWHSITE	$\underline{\$ 1}$	16 E	35		
3512121200000	TEX	4 N	16 E	14		
351212138000	MIIL.LER	31	16 E	26		
3512120157000	WOODS PROSPECT	I	16 E	56		
3512120092000	GEDRKEPEDEN	3	16E	24		
3512121844000	MMSS URIT	5	16 E	25		
3512122811000	SIRMARS LOE	4 N	16 E	12		
3512120206000	MARCANCWDII	\$1	16 E	34		
3512120158000	USA	9	16 E	27		
3512120168000	W WALLMCE	$4{ }^{4}$	17E	17		
3512120025000	US GOVERHMMENT	5	16 E	27		
35121201770000	USA	$\underline{1}$	16 E	35		
3512120198000	FEWDHAM	4 N	16 E	11		
3512120257000	MADDEN	4 N	16 E	2		
351212020000	FRAEIZ FEFD HAM	$4 N$	16 E	14		
3512120200000	LEWIS	$4{ }^{4}$	10 E	12		
3512120219000	SLAJTGHIER	4 N	16 E	1		
3512120145000	R EKTNG	5	16 E	26		
3512120155000	H4RTSHORFLE	4	17E	6		
3512120031000	PALILINE B OXMMAN	5	17E	20		
3512122106000	KIITS	3	16 E	25		
3512122123000	MCEEE	\$1	16 E	23		
3512121330000	ANDESSON	S	17E	19		
3512121423000	WC CAMP	4N	16 E	4		

UWF (AFFRMm)	Well ${ }_{\text {drame }}$	TOHASM	Range	Section	Sxizo Thnuㅁ SheetG Tops 例	Sẏ̇o Thn포 SheetG Bat 例
3512121012000	MASS	\$1	16 E	25		
3512123216000	KEFWDRICK	4 N	16 E	13		
351212323000	FINK	5	16 E	36		
3512123054000	AIMERITO	3	16E	27		
3512122920000	LENXS TAMES	4 N	16 E	12		
35121208510000	CAMP	$\$$	16 E	34		
3512123087000	Kint	\$1	16 E	26		
3512122003000	WOODS	\%	16 E	36		
3512121788000	ANDESSON	S	17E	19		
3512121920000	USA	3	16 E	35		
3512121982000	FEWDHAM	4 N	16 E	11		

VITA

AbdulWahab Mohammed Sadeqi
Candidate for the Degree of
Master of Science

Thesis: STRUCTURAL GEOMETRY OF THE LATE PALEOZOIC THRUSTING IN THE HARTSHORNE, HIGGINS, ADAMSON AND GOWEN QUADRANGLES, SOUTHEASTERN OKLAHOMA

Major Field: Geology
Biographical:
Personal Data: Born in Royal Oak, Michigan on June $18^{\text {th }} 1979$, the son of Dr. Mohammed I. Sadeqi and Dr. Salwa H. Darwish

Education: Received a Bachelor of Arts in Geology from the University of Colorado at Boulder in December of 2003. Completed the requirements for a Masters of Science degree in Geology from Oklahoma State University at Stillwater in May of 2007.

Experience:

- Teaching Assistant: Boone Pickens School of Geology, Oklahoma State University.
- Geotechnician: Encana Oil Company, Denver, Colorado.
- Student Services Contract: United State Geological Survey, Boulder Colorado.
- Physical Science Technician: United State Geological Survey, Boulder Colorado.

Professional Memberships: American Association for Petroleum Geologist

Scope and Method of Study:
The purpose of this thesis is to delineate the subsurface structural geometry of the Wilburton Gas Field area, using well log data and 3D seismic data.
7 cross sections were constructed in the study area. Raster images of well logs were imported into PETRA software to assist in the mapping process.

Findings and Conclusions:
The presence of the Wilburton triangle zone is confirmed. The duplex structure in the footwall of Choctaw contains hinterland dipping break-forward thrusts which form horses in the duplex. These thrusts dip $\sim 25^{\circ}$ southward. The horses are apparently cut by foreland dipping backthrusts. Shortening calculation for the backthrusts within the duplex is $\sim 10 \%$. It is $\sim 21 \%$ for the duplex structure and $\sim 58 \%$ for the study area. Middle Atokan units were displaced by a splay from the Choctaw fault named the Middle Atokan Thrust (M.A.T.).

