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1. INTRODUCTION: THE MENDERES MASSIF IN PERSPECTIVE 
  
           1.1 Introduction to the Menderes Massif  
 
 The Aegean extended region (Figure 1.1) experienced a series of continental 

collisions from Late Cretaceous to Eocene, which led to the formation of the Izmir-

Ankara Neo-Tethyan suture zone (e.g., Şengör and Yılmaz, 1981; Stampfli, 2000). The 

collision zone may have extended southwestward, possibly close to the present position 

of the Hellenic arc (e.g., Doglioni et al. 1999). Post-collisional extension in the region, 

although controversial in its timing and nature, caused the exhumation of several Alpine 

metamorphic belts, termed the Menderes, Crete, Rhodop and Kazdag Massifs (Figure 

1.1). The largest of these, the Menderes Massif, accommodated a significant amount of 

extension, covering an area of >40,000 km2 between the Izmir-Ankara Neo-Tethyan 

suture in the north and the Lycian Nappes to the south. The mechanisms that create and 

facilitate large-scale extension of the Earth’s crust are not well-understood, thus the 

Menderes Massif is a key locale for studying the processes involved. 

 The Massif is considered as a metamorphic core complex, which forms during 

continental extension when deformation in the upper crust is localized by detachment 

faults (e.g., Dewey, 1988; Gessner et al. 2001). Metamorphic core complexes were first 

described in the Basin and Range province of the North American Cordillera (Coney, 

1980). The presence of metamorphic core complexes in the Aegean region was first 

proposed by Lister et al. (1984) based on their work in the Cycladic massif in the Aegean 

Sea (Işık et al. 2003) (Figure 1.1).  
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Figure 1.1 Generalized tectonic map of Western Turkey and Aegean Sea showing major 
structural elements. Abbreviations: BMG=Buyuk Menderes Graben, AG = Alaşehir 
Graben, IAS= Izmir-Ankara Suture zone, NAFZ=North-Anatolian Fault Zone, IPS= 
Intrapontid Suture Zone, HA=Hellenic Arc 

 

Although the metamorphic core complex origin of the Menderes Massif has been 

generally accepted (e.g., Hetzel et al. 1995a, b; Lips et al. 2001; Gessner et al. 2001; Işık 

et al. 2003), the timing and mechanism of post-collisional extension that created the 

Menderes Massif are controversial (e.g., Seyitoglu and Scott 1996b; Yılmaz et al. 2000; 

Bozkurt and Oberhaensli, 2001; Bozkurt, 2003; Işık et al. 2003). Mineral grains in rocks 

from the Menderes Massif record multiple events, including a Pan-African (Cambro-

Ordovician) (Satır and Friedrichsen, 1986; Hetzel and Reischmann, 1996; Hetzel et al. 

1998; Loos and Reischmann, 1999; Candan et al. 2001; Gessner et al. 2004) to early/late-

Cenozoic history (Eocene-Oligocene; Satır and Friedrichsen, 1986; Hetzel and 

Reischmann, 1996; Bozkurt and Satır, 2000; Lips et al. 2001). Extensional exhumation 
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began sometime in the mid- to late Cenozoic (Oligocene-Miocene; Seyitoglu et al. 1992; 

Jolivet et al. 1994; Hetzel et al. 1995a,b; Seyitoglu and Scott, 1996a; Gessner et al. 2001a; 

Lips et al. 2001). 

To decipher the peak metamorphic conditions recorded by rocks in the Menderes 

Massif, many researchers have carried out thermobarometric studies (e.g., central 

Menderes Massif: Akkök, 1983; Ashworth and Evirgen, 1985; Oberhaensli et al. 1997; 

Bozkurt and Oberhaensli, 2001a; Okay, 2001; Candan et al. 2001; Ring et al. 2001; 

southern Menderes Massif: Ashworth and Evirgen, 1985; Bozkurt and Park, 1994; 

Bozkurt, 1996; Oberhaensli, 2001; Whitney and Bozkurt, 2002; Rimmele et al. 2003; 

northern Menderes Massif, Okay and Satir, 2000).  

 To ascertain the pressure-temperature (P-T) conditions experienced by rocks in 

the central Menderes Massif metamorphic core complex and identify if Menderes Massif 

garnets record a polymetamorphic history, the Oklahoma State University (OSU) JEOL 

733 Electron Microprobe was used to X-ray element map and identify garnet zoning 

types. The Electron Microprobe was also used for mineral identification, describing and 

classifying rocks. The machine’s spatial resolution makes it a powerful tool for studying 

zoned minerals. Garnet [(Fe,Mg,Mn,Ca)Si3O8] has the capability to record the P-T 

evolution of a sample by variations in Fe, Mg, Mn and Ca (e.g., Spear, 1993; Kohn and 

Spear, 2000). These zoned crystals record the chemical reaction history of the Menderes 

Massif and provide evidence for how the range evolved and was created.   

 1.2 Broader Scale Models for the Evolution of the Menderes Massif 
 
 Three major models have been proposed to explain the cause of the extreme 

extension in the Aegean Region: 
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(1) Lateral Extrusion/Tectonic Escape: In this model, the Anatolian plate moves towards 

the Aegean along the North and East Anatolian Faults in response to the collision of 

Arabia and Eurasia (Figure 1.1) (e.g., Dewey and Şengör, 1979; Şengör and Yılmaz, 

1981; Şengör et al. 1985; Çemen et al. 1999; Yılmaz et al. 2000; Bozkurt, 2001);  

(2) Back-Arc Spreading: In this model, the migration of the Hellenic Arc trench system 

(Figure 1.1) to the south-southwest gave rise to an extensional regime in the back-arc 

Aegean region (e.g., Le Pichon and Angelier, 1979; 1981; Meulenkamp et al. 1988; 

Buick, 1991; Okay and Satir, 2000);  

(3) Orogenic collapse: In this model, thickened and elevated continental crust due to 

Alpine orogeny extensionally collapses and thins (e.g., Berkhemer, 1977; Jolivet et al., 

1994; Dewey, 1988; Seyitoglu and Scott, 1992; Seyitoglu and Scott, 1996b; Bozkurt, 

2001). 

 Timing the initiation of extension in the region can identify which of these models 

apply to the creation of the Menderes Massif.  In this thesis, minerals suitable for future 

geochronology (e.g., monazite and zircon) were identified in several Menderes Massif 

rocks. However, the main focus of this thesis is obtaining peak P-T conditions and garnet 

zoning maps from rocks in the central Menderes Massif.  These results were then used to 

elucidate the tectonic nature and evolution the range. 

            1.3 Methods of Analyses and Brief Summary of the Results 
 
 During the summer of 2003, samples were collected from the central Menderes 

Massif.  The rocks were identified using a handlens and detailed petrographic analyses 

were made to identify which had suitable mineral assemblage for thermobarometric 

calculations.  
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 Using the OSU Electron Microprobe, three major zoning types are identified in 

Menderes Massif garnets: retrograde zoning (compositions affected by diffusion), 

prograde zoning (preserves compositions during growth), and polymetamorphic zoning 

(compositional changes during multiple stages of garnet growth). Garnet-based P-T 

conditions are frequently used to evaluate and develop models for the tectonic evolution 

of the Menderes Massif. If the garnets are detrital, polymetamorphic, or developed during 

a previous metamorphic event, using their compositions in combination with matrix 

minerals generates misleading conditions and erroneously constrained tectonic models.  

The P-T conditions generated from Menderes Massif rocks in this thesis are consistent 

with their mineral assemblages, and are high-P (ranging from 8 to 12 kbar) and moderate-

T (~500ºC-750ºC). 

 1.4 Organization of the Thesis  

 This thesis is organized into five chapters. Chapter 2 describes the previous 

geochronologic and thermobarometric studies done in the Menderes Massif.  Chapter 3 

outlines and justifies the research question in this thesis. The major models for the 

evolution of the Menderes Massif are reviewed in detail.  Chapter 4 describes the 

methodology used to obtain thermobarometric data from rocks collected from 

metamorphic units that are associated with the detachment. Chapter 5 shows and 

describes the thermobarometric data and X-ray element maps obtained from rocks 

collected along the three transects.  
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2. GEOLOGIC BACKGROUND: EMPHASIS ON PREVIOUS WORK 
  
 2.1. Rocks and Structures Associated with the central Menderes Massif  

 The Menderes Massif is divided into northern (Gördes), central and southern 

(Çine) submassifs based on the presence of E-W trending grabens, northern Alaşehir 

(Gediz) and southern Bűyűk Menderes (Figure 2.1) (see Bozkurt et al. 2001). These 

grabens separate the central Menderes metamorphic core complex from the adjacent 

Gördes Massif to the north and the Çine Massif to the south (Figure 2.1). 

Rocks of the Menderes Massif are classified by lithology and metamorphic 

history (e.g., Şengör et al. 1984; Gessner et al. 2001). In one interpretation, the lowest 

unit is a high-grade Cambro-Ordovician gneissic series termed the “Core Series” and the 

overlying Paleozoic schist and Mesozoic-Cenozoic marble are considered “Cover Series” 

(e.g., Dűrr, 1975; Şengör and Yılmaz, 1981; Şengör et al. 1984; Satır and Friedrichsen, 

1986; Dora et al. 1995; Loos and Reischmann, 1999). The Core Series consists of granitic 

augen gneisses, paragneisses, schists, and minor migmatites. The oldest clearly 

documented geological event in the Core Series is the intrusion of large volumes of 

granites at ~550 Ma in the southern and central Menderes massif (Reischmann et al. 1991; 

Loos and Reischmann, 1995; Hetzel and Reischmann, 1996). These intrusions are 

presumably related to a Pan-African orogeny and most of them were subsequently 

transformed to augen gneisses (Şengör et al. 1984; Dora et al. 1995).  
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Figure 2.1 General map of the Menderes Massif [after Hetzel et al. (1995a)] 

 

 The presence of a metaconglomerate in the Cover series in the southern Menderes 

Massif that contains pebbles presumably derived from the Core Series suggests that the 

Paleozoic/Mesozoic Cover Series has been deposited unconformably on the Core Series 
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(Dora et al. 1995).  The lower part of the Cover Series consists of low- to medium-grade 

schists, phyllites, and quartzites, whereas the upper part is dominated by marbles (Dűrr, 

1975). The Core and the lower part of the Cover Series are thought to have both 

experienced two phases of deformation and metamorphism in the Triassic and Alpine. 

The Triassic episode reached greenschist facies metamorphic conditions in the eastern 

part of the central submassif (Derbent area; Akkök, 1983). This phase was followed by 

the intrusion of the post-tectonic Late Triassic Dede Dagi granite (Dora et al. 1995). The 

Alpine phase affected the entire Menderes massif and reached upper greenschist to upper 

amphibolite facies conditions (Akkök, 1983; Ashworth and Evirgen, 1984).  

In a series of papers, the traditional Core/Cover interpretation has been disputed 

(e.g., Ring et al. 1999; Gessner et al. 2001; Işık and Tekeli, 2001).  For example, Figure 

2.2 shows a cross section through the Menderes Massif after Gessner et al. (2001). The 

Bayindir and Bozdag nappes are metapelitic assemblages with amphibolite and marble 

lenses. Overlying the Bayindir and Bozdag nappes is a Proterozoic-Cambrian basement 

called the Çine nappe and an upper metasedimentary succession of intercalated marble 

and calcschist termed the Selimiye nappe. The Bayindir nappe may have experienced 

only one major Alpine tectonometamorphic event, whereas the overlying Bozdag, Çine 

and Selimiye nappes record both pre-Alpine and Alpine events (Ring et al. 1999). 

 The central Menderes metamorphic core complex is bounded by two detachments: 

the north-dipping (10-20°N) Kuzey detachment (e.g., Hetzel et al. 1995a;b) and the 

south-dipping (5-15°S) Guney detachment (e.g., Emre and Sözbilir, 1997) (Figures 2.2). 

These structures cut upper levels of the nappe pile for a distance of 80 km and sole into 

the Alaşehir (Gediz) and Bűyűk Menderes Grabens, respectively (Figure 2.2). Gessner et 
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al. (2001) and Hetzel et al. (1995b) report the presence of an overall dome-shaped 

foliation pattern and north-northeast trending stretching lineation. They indicate that the 

asymmetry of shear bands and quartz c-axis fabrics on either side of the structural dome 

record a top to the north-northeast shear sense along the Kuzey detachment and a top to 

the south and southwest shear sense along the Guney detachment surface. The presence 

of these two opposite-dipping detachments led to the development of a bivergent-rolling 

hinge model for the evolution of the central Menderes metamorphic core complex 

(Gessner et al. 2001).  
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Figure 2.2 (Upper) Geologic map and (lower) cross-section through the Menderes Massif 
after Gessner et al. (2001).  
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 2.2 Previous Work  

 2.2.1 Geochronology 

 Attempts to obtain the metamorphic history of the region include U-Pb and 

207Pb/206Pb single zircon isotope dilution, Th-Pb monazite, K-Ar and 40Ar/39Ar biotite, 

muscovite, and amphibole Rb-Sr whole rock and mica and apatite and zircon fission track 

geochronology.  Results from these studies (Tables 2.1-2.3) show rocks of the Menderes 

Massif experienced a prolonged and complicated tectonic history. 

 

Table 2.1 Ages of rocks from the northern Menderes Massif 
 
Lithology, locality Age (Ma) Method Reference 
Metagranites and 
orthogneisses; 
Entire Anatolide belt 

2555-1740 207Pb/206Pb Single 
zircon evaporation 

Reischmann et al. 1991 

Granodiorite whole 
rock 

471±9 Rb/Sr Satır and Freidrichsen, 1986 

Granite gneiss 288±5,229±5 Rb/Sr Satır and Freidrichsen, 1986 
Egrigoz granitoid; 
Northern MM  

23-20  40Ar/39Ar biotite 
isochron age 

Reischmann et al. 1991; Işık et 
al. 2004 

Acid Volcanic domes 18.4±0.8 to 
16.3±0.5 

K-Ar biotite isochron 
age 

Seyitoglu et al. 1992 

Tourmaline 
leucogranite dykes 

24.2±0.8 to 
21.1±1.1 

K-Ar muscovite 
isochron age 

Seyitoglu et al. 1992 

 
Table 2.2 Ages of rocks from the central Menderes Massif 
 
Lithology, locality Age (Ma) Method Reference 
Birgi metagranite 551±1.4 U-Pb zircon dating Hetzel et al. 1998 
Granites; Bozdag 
nappe 

~240-250 207Pb/206Pb Single 
zircon evaporation 

Koralay et al. 1998 

Salihli granodiorite 19.5±1.4 40Ar/39Ar 
Amphibole 
isochron age 

Hetzel et al. 1995a  

Alaşehir graben 
sediments 

19-20 to 14-
15  

Sporomorph  Seyitoglu and Scott, 1996a 

Turgutlu and Salihli 
granodiorites 

13.1±0.2 to 
12.2±0.4 

40Ar/39Ar Biotite 
isochron age 

Hetzel et al. 1995a 

Kuzey detachment; 7±1  40Ar/39Ar 
Muscovite isochron 
age 

Lips et al. 2001 

Kuzey detachment; 4.5±1.0 Th-Pb monazite  Catlos et al. 2002 
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Table 2.3 Ages of rocks from the southern Menderes Massif 
 
Lithology, locality Age (Ma) Method Reference 
Metagranites and 
orthogneisses;  

659±7;  
563±3 – 
521±8  

207Pb/206Pb Single 
zircon evaporation, 
U-Pb dating 

Loos and Reischmann, 1999 

Metagranite in 
Selimiye shear zone 

546.2±1.2 207Pb/206Pb Single 
zircon evaporation 

Hetzel and Reischmann, 1996 

Granite gneiss 502±10 Rb/Sr  Satır and Freidrichsen, 1986 
Granite gneiss 61±1 Rb/Sr Satır and Freidrichsen, 1986 
Granite gneiss 48±1 Rb/Sr Satır and Freidrichsen, 1986 
Augen gneiss, schist 43-37  40Ar/39Ar Muscovite 

isochron age 
Hetzel and Reischmann, 1996 

Orthogneiss, Guney 
detachment 

36±2  40Ar/39Ar Muscovite 
isochron age 

Lips et al. 2001 

 

Timing slip along the north-dipping Kuzey detachment and south dipping Guney 

detachment has implications for understanding the exhumation history of the central 

Menderes Metamorphic Core Complex (e.g., Lips et al. 2001). Hetzel et al. (1995a,b) 

proposed that extension initiated along a detachment surface in early Miocene (19.5±1.4 

Ma), based on the 40Ar/39Ar amphibole age from a syn-extensional (?) granodiorite that 

intruded prior to brittle deformation along the detachment surface. However, the argon 

age spectrum and correlation diagram of the Kuzey detachment amphibole shows that the 

sample is affected by excess argon (Figure 2.3). Hetzel et al. (1995a) note that the 

amphibole concentrate from the granodiorite shows “a complex release spectrum without 

a plateau age” and a higher than atmospheric 40Ar/36Ar ratio of 370.3±6.1, indicating the 

presence of excess argon. Despite this recognition, the isochron age is frequently cited as 

a reliable constraint for early Miocene extension (e.g., Hetzel et al. 1995a; Seyitoglu and 

Scott, 1996; Gessner et al. 2001; Lips et al. 2001).  
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Figure 2.3 Results of step-heated amphibole argon age spectra and correlation diagram 
after Hetzel et al. (1995a). Note that the correlation isochron for this sample intersects 
40Ar/36Ar values at a non-atmospheric value. Black steps (left figure) correlate to black 
circles (right figure), and were used to calculate the isochron age of 19.5±1.4 Ma. 
 

The extensional origin of the granodiorite is also controversial (Yılmaz et al. 

2000). The granodiorite may be related to crustal thickening during the formation of the 

Izmir-Ankara suture zone. The interpretation precludes an Early Miocene initiation age of 

extension in western Turkey. 

 Lips et al. (2001) recognized the benefits of in situ geochronology in the region, 

the attempted to step-heat handpicked grains of syn-kinematic muscovite collected from 

the Bűyűk Menderes graben and Kuzey Detachment. Their laser probe step-heating 

experiments resulted in large analytical errors attributed to the analysis of small samples, 

therefore low argon retentivities (Figure 2.4).  
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Figure 2.4 Results of 40Ar/39Ar laser-probe experiments of two muscovite samples from 
the Buyuk Menderes (upper) and two muscovite samples from the Kuzey Detachment 
(lower) after Lips et al. (2001). Note the large uncertainties. 

 

 Lips et al. (2001) discarded the step-heating results in Figure 2.4 and reported 

single fusion muscovite ages of 36±2 Ma from the Bűyűk Menderes graben and 7±1 Ma 

from the Kuzey detachment. The Oligocene muscovite age was attributed to 

recrystallization of the deformational fabric, which was accompanied or followed by 

extensional ductile faulting along the southern margin of the Menderes Massif, whereas 

the Late Miocene age was attributed to the last stage of activity along the Kuzey 

detachment or to continuous movement along the low-angle fault zone (Catlos and 

Çemen, 2004). 

 Catlos and Çemen (2004) report Th-Pb ages of monazite inclusions in garnet and 

in the rock matrix from a sample on the Kuzey detachment surface (Figure 2.5). The 

garnet contains an Ordovician monazite inclusion and younger monazites in the matrix. 

This matrix monazite is only found in reaction with allanite. The association of monazite 

with allanite is interpreted as a decompression feature because the 4.5±1.0 Ma monazite 
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grain is younger than any speculated compressional event and the age is within 1σ of the 

apatite fission track result of 3.7±0.6 Ma from a rock collected along the same 

detachment (Gessner et al. 2001).  

 

Figure 2.5 Backscattered electron images of a central Menderes metamorphic core 
complex sample with Th-Pb monazite ages indicated (1σ) (see Harrison et al. 2002; 
Catlos and Çemen, 2004). Other minerals present in the rock are labeled. Scale bars are 
indicated in each image. 
 
 The textures and ages in Figure 2.4 are important because they indicate early Pan-

African metamorphism that was overprinted in the Miocene and Pliocene. Clearly, the 

chemistry of the garnet and its inclusions would not yield P-T conditions relevant to 

Cenozoic peak metamorphic conditions or extension. This is an important factor in 
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petrologically interpreting these rocks as many reported P-T conditions may not be 

relevant to Cenozoic metamorphism and tectonics.  

 2.2.2 Thermobarometery 

 Previous attempts at obtaining the peak P-T conditions from rocks of the 

Menderes Massif include garnet-biotite and garnet-clinopyroxene thermometry, garnet-

bioite-plagioclase-clinopyroxene-quartz, garnet-biotite-muscovite-biotite, and garnet-

sillimanite-plagioclase barometry. Table 2.4 shows the previous thermobarometric 

calculations from different regions in the Menderes Massif.  Note that most of these 

studies focus on rocks of the southern and central Menderes Massif. 

Table 2.4 P-T data from rocks of the Menderes Massif. 
Lithology, locality T (°C) P (kbar) Reference 

northern Menderes Massif 
sillimanite-gneisses 640±50 5±1 Okay and Satır, 2000 

central Menderes Massif 
eclogites 580 – 660  ~15 Candan et al. 2001 
retrograded eclogites ~650 ~13 Oberhaensli et al. 1997 
Metapelitic rocks 480 – 660 6.1 – 10.8  Ring et al. 2001 
garnet-bearing rocks 530±40 8±2 Okay, 2001 
garnet-bearing rocks 450-660 5 - 8 Akkök, 1983;  
pelite 450 – 600  4 - 7 Ashworth and Evirgen, 1985 

southern Menderes Massif 
Eclogitic gabbro 510 – 690  10 – 12  Candan et al. 2001 
magnesiocarpholite, 
chloritoid, chlorite and 
sudolite 

~440 10 – 12 Rimmele et al. 2003 

Metasedimentary rocks 525 – 650  7 – 11   Regnier et al. 2003 
garnet-bearing schist ~430 – ~550 ~ 8 Whitney and Bozkurt, 2002 
Metapelitic rocks 550 – 730 6.2 – 6.5  Ring et al. 2001 
garnet-bearing rocks 530±50 5.5 – 6.1 Ashworth and Evirgen, 1984 

 

Figure 2.6 shows the previous work done in the Menderes Massif on a P (depth) –

T plane. These conditions overlie the greenschist, epidote-amphibolite, amphibolite, and 

eclogite facies.  Northern Menderes Massif shows the lowest pressure conditions (~5 
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kbar, ~ 15 km), whereas the central Menders Massif exposes eclogites, which lie at the 

highest pressures (~15 kbar, ~55 km). 

 

Figure 2.6 Plot of P (depth) – T plane showing distribution of metamorphic facies (after 
Blatt and Tracy, 1996). Data shown is from Ashworth and Evirgen, (1984), (1985); 
Oberhaensli, (1997); Okay and Satır, (2000); Candan (2001); Okay (2001); Ring et al. 
(2001); Whitney and Bozkurt (2002); Regnier et al. (2003); Rimmele et al. (2003). 
Abbreviations: A, Amphibolite; B, Blueschist; E, Eclogite; E-A, Eclogite-Amphibolite; G, 
Greenschist; GR, Granulite, H, Hornfels; P-P, Prehnite-Pumpellyite, Z: Zeolite.  
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3. DETAILED DESCRIPTION OF THE RESEARCH QUESTION 

 

            3.1 Introduction 

Previous strategies approached the problem of the origin of extension in the 

Menderes Massif by geochronology (e.g., Satır and Freidrichsen, 1986; Seyitoglu et al. 

1992; Hetzel et al. 1995a; Hetzel and Reischmann, 1996; Loos and Reischmann, 1999; 

Lips et al. 2001), field mapping (e.g., Sözbilir, 2001; Işık et al. 2003) and garnet-based 

thermobarometry (e.g., Ashworth and Evirgen, 1984, 1985; Oberhaensli et al. 2001; 

Whitney and Bozkurt, 2002; Regnier et al. 2003; Rimmele et al. 2003). This thesis 

addresses the third approach. Garnets in the Menderes Massif are assumed to form during 

a single time (e.g., Bozkurt, 1996; Whitney and Bozkurt, 2002), however, the data in this 

thesis suggest that some Menderes Massif garnets can form during the Cambro-

Ordovician (Figure 2.5). 

The purpose of the thesis is to establish the P-T histories of rocks collected near 

the Kuzey detachment of the central Menderes Massif as a means to identify if garnets 

record a polymetamorphic history. Justification for this approach is presented in section 

3.2 

            3.2 Justification of the Research Question  

This study tests the hypothesis that polymetamorphic garnets exist along the 

Kuzey detachment in the central Menderes Massif in western Turkey.  The following list 
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is an attempt to outline the significance of understanding the P-T conditions experienced 

by rocks in the Menderes Massif. 

 
 

1. Thermobarometry of rocks in the Menderes Massif can be used to evaluate the 

feasibility of models that seek to explain large-scale extension. 

The timing and cause of extension in the Menderes Massif is still in debate. Three 

end-member models have been proposed to describe the formation of the area including 

lateral extrusion/tectonic escape, back arc spreading, and orogenic collapse (e.g., 

Seyitoglu and Scott, 1996). 

In the lateral extrusion/tectonic escape model, the Anatolian plate moves towards 

the Aegean along the North and East Anatolian Faults in response to the collision of 

Arabia and Eurasia (Figure 3.1) (e.g., Dewey and Şengör, 1979; Şengör and Yılmaz, 

1981; Şengör et al. 1985; Çemen et al. 1999; Yılmaz et al. 2000; Bozkurt, 2001).  

          

Figure 3.1 General area map of Turkey showing the lateral escape. The arrow on western 
Turkey indicates the location of the Menderes Massif and also the direction of the 
movement of Anatolian plate along North and East Anatolian Faults. 
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 Tapponnier et al. (1982) used plane indentation experiments on confined blocks 

of plasticine to understand the intracontinental deformation and the evolution of strike-

slip faulting in eastern Asia. In this experiment, a “rigid” block indents a “plastic” body. 

The rigid block represents India, whereas the plastic body represents Asia. The indenter 

is 5 cm wide and hits the plasticine at a constant rate of 2.5 cm/h. This number was 

chosen due to simple geometric and kinematic comparisons with the collision between 

India and Asia (~5 cm/yr of convergence along a collision front of ~ 2000 km; see Figure 

3.2). The asymmetry of collisional deformations in Asia suggests that continental 

lithosphere in western Eurasia offers more resistance comparing to the east. The first goal 

of this experiment was to test this hypothesis in the situation of a free lateral boundary 

(Figure 3.2).   

 

Figure 3.2 Comparing the experimental model of extrusion of blocks to eastern Asia 
(Tapponnier et al. 1982). In the left figure the rigid block has advanced 6.3 cm into 
plasticine. 
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 The Tapponnier et al. (1982) experiment shows that one large left lateral fault 

forms and guides the extrusion. Increasing penetration of the indenter causes a second 

extrusion phase along a second major fault, which allows large displacement to the right. 

Numerous gaps similar to pull-apart basins along strike-slip faults open along the left 

lateral faults to the right. 

 As collision of India and Eurasia was earlier (~70 Ma; e.g., Yin and Harrison, 

2000) than the formation of Bitlis Suture Zone (~11 Ma; e.g., Şengör and Yılmaz, 1981) 

we suggest that Turkey shows the early steps of this experiment (Figure 3.2). If we 

compare an earlier step of the Tapponnier et al. (1982) model to Turkey, many 

extensional features are missing. Although the model describes the development of the 

East and North Anatolian Fault systems, it fails to describe large-scale extension in 

western Turkey.  

 
Figure 3.3 Comparing the Tapponnier et al. (1982) experimental model of extrusion of 
blocks to Turkey. In the left figure, a rigid block has advanced 3.5 cm into plasticine. 
Arrows show the location of the Menderes Massif in western Turkey and the direction of 
the movement of Anatolian plate. 
 

 In the back-arc spreading model, the migration of the Hellenic Arc trench system 

(Figure 3.4) to the south-southwest creates an extensional regime in the back-arc Aegean 

region (e.g., Le Pichon and Angelier, 1979; 1981; Meulenkamp et al. 1988; Buick, 1991; 
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Okay and Satır, 2000).  Schellart et al. (2002) used an analogue model to explain 

asymmetric back-arc extension. The model consists of three layers confined in a 60 by 40 

cm box. The top brittle layer is made of fine-grained glass microspheres, the high 

viscosity middle layer is made of silicone putty, simulating the viscous lower lithosphere 

in the nature. The lowermost viscous layer is made of glucose syrup. A rotational 

sidewall is used to simulate a subducting plate. Most of the deformation in the 

experiment is accommodated by normal faults, which show E-W trending extension 

(Figure 3.4).  

 

Figure 3.4 Comparing the Schellart et al. (2002) experimental model of back-arc 
spreading in block to Turkey. Abbreviations: CRM, Crete Massif, CYM, Cycladic Massif; 
MM, Menderes Massif; RM, Rhodop Massif. 
 

 The strike-slip fault between the Hellenic Arc and the Cyprus arc can be 

compared to the rotational sidewall in the Schellart et al. (2002) model, and the graben 

system can be used to describe the metamorphic core complexes seen in the Aegean 
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Region (Figure 3.4). However, the model predicts that a left-lateral strike-slip fault forms 

in western Turkey that is not observed.  

 In the orogenic collapse model, thickened and elevated continental crust due to 

Alpine orogeny extensionally collapses and thins (e.g., Berkhemer, 1977; Dewey, 1988; 

Seyitoglu and Scott, 1992; Jolivet et al. 1994; Seyitoglu and Scott, 1996; Bozkurt, 2001; 

Vanderhaeghe and Teyssier, 2001) (Figure 3.5).  Metamorphic core complexes form in 

the hinterland of the collapsed orogenic belt.  Note that in the cross-section of collapsed 

orogen, sedimentary basins and structures that were active while the middle crust of this 

orogen was partially molten and eventually exhumed. 

           
Figure 3.5 Orogenic collapse model (Vanderhaeghe and Teyssier, 2001) 
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Crustal thickening, suggested by the metamorphic record of the Aegean Sea rocks 

and in the continental part of the Hellenides, implies that collision and plate convergence 

played a key role during the evolution of Hellenides (Vanderhaeghe and Teyssier, 2001). 

The westward extrusion of Anatolian block contributed to the activation of large strike-

slip faults in the north Aegean region. The observation of crustal thinning cannot be 

explained by compressive tectonic forces, gravity is required as an additional driving 

force. Most models of gravitational collapse of the Aegean crust invoke the role of slab 

roll-back and the creation of a free boundary along the Hellenic trench. It is difficult to 

demonstrate by geological means whether rollback is a cause or related to gravitational 

collapse. Vanderhaeghe and Teyssier (2001) have proposed that trigger for gravitational 

collapse of the Aegean crust is provided by weakening of the deep level of the orogenic 

crust related to partial melting which caused mechanical decoupling between the 

thickened crust and the subduction zone.  

The thickness of the lithospheric mantle underneath the Aegean Sea is not well 

constrained by geophysical data. However, active magmatic arc, with active volcanism at 

the island of Santorini suggests the presence of a partially molten mantle source at depth 

between the Cyclades and Crete (Vanderhaeghe and Teyssier, 2001). Nevertheless, 

atmospheric upwelling at the scale of the Aegean Sea is unlikely. The continental crust 

flooring the Aegean Sea is 25-30 km thick and is essentially at sea level. Under these 

conditions, an increased mantle heat cannot explain high-temperature metamorphism and 

partial melting of the middle crust at the scale of the Aegean (Vanderhaeghe and Teyssier, 

2001).  
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2. The possibility of polymetamorphic garnet growth in the central Menderes Massif 

has implications on previous results produced by garnet-based thermobarometric 

methods. 

P-T conditions are used to evaluate models of the evolution of the Menderes 

Massif (Ashworth and Evirgen, 1984, 1985; Oberhaensli et al. 1997; Whitney and Dilek, 

1997; Okay, 2001; Ring et al. 2001; Whitney and Bozkurt, 2002; Regnier et al. 2003; 

Rimmele et al. 2003).  Microtectonic studies are useful for identifying pre-, inter-, syn-, 

and post-metamorphic garnet growth (e.g., Bozkurt, 1996; Passchier and Turow, 1996), 

and element mapping using electron microprobe provides conclusive evidence on the 

episodes of deformation that may have affected the central Menderes Massif. 

 Early studies in Menderes Massif have shown that there are relict eclogite- and 

blueschist-facies assemblages (Oberhaensli et al. 1997; Candan et al. 2001). High-

pressure assemblages have been described in the central Menderes Massif (Candan et al. 

1997; Oberhaensli et al. 1998; Okay, 2001), in the Lycian nappes (Oberhaensli et al. 2001) 

and in southern Menderes Massif (Dora et al. 2001; Whitney and Bozkurt, 2002). 

 Whitney and Bozkurt (2002) proposed that by using thermobarometric 

calculations from metasedimentary rocks they assess whether the metamorphic minerals 

contain evidence from more than one metamorphic event, as the rocks record at least two 

kinematically distinct episodes of deformation. Whitney and Bozkurt (2002) also used the 

results to evaluate tectonic models proposed for this region and suggest that, based on the 

petrographic or compositional characteristics of the minerals (e.g., garnet zoning), there 

is no evidence for more than one regional metamorphic event.  
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3. P-T constraints and garnet X-ray element maps can be used to understand the 

role of the Massif in broader-scale reconstructions of the Tethyan suture. 

The mountain belts of Turkey are the result of repeated continental collisions that 

eventually welded together the two mega-continents Laurasia and Gondwana-Land (e.g., 

Şengör and Yılmaz, 1981). Since its formation, the internal geometry of the Tethyan 

domain has been characterized by complex plate boundary systems, which are composed 

of ridges, transforms, and subduction zones (Figure 3.6). Their record of activity is found 

in various states of preservation, mainly along the sutures of the Alpides, which are the 

sites of former Tethyan oceans (Şengör and Yılmaz, 1981).   

 

Figure 3.6 Tectonic setting of Turkey within the larger framework of the eastern 
Mediterranean Alpides (modified after Şengör and Yılmaz, 1981). Abbreviations, ACB, 
Adana-Cilicia Basin; EAAC, Eastern Anatolian Accretionary Complex, K, Khoura 
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depression; R, Riou depression; SC, Sakarya Continent. The square indicates the location 
of the Menderes Massif.  
 

The Menderes Massif is a fundamental component of the Turkish orogen. The 

mountain ranges of Turkey are part of the eastern segment of the Mediterranean Alpides, 

where Tethyan deformation has been superimposed on rocks affected during the Pan 

African orogeny (e.g., Şengör and Yılmaz, 1981). The massif has a complex internal 

structure recording a multiphase deformation history and repeated metamorphism since 

the late Proterozoic (e.g., Dűrr, 1975; Şengör and Yılmaz, 1981). Numerous researchers 

have explored differences in the nature, style, and formation of the Menderes Massif (e.g., 

Dűrr, 1975; Le Pichon and Angelier, 1979; Şengör and Yılmaz, 1981; Ashworth and 

Evirgen, 1984, 1985; Seyitoglu and Scott, 1996b; Sözbilir and Emre, T., 1996; Ring et al. 

1999, Gessner et al. 2001, Rimmele et al. 2003, Regnier et al. 2003). The first step in 

reconstructing the past configurations of continents and oceans is to identify the sutures 

with the help of P-T constraints and garnet X-ray element maps. This work will has 

implications for Aegean tectonics and the transition from compression to extension in 

orogens overall. 

 3.3 Discussion 
 

The three fundamental models proposed for the development of the Menderes 

Massif indicate that the region is a key area for understanding the processes that control 

extension in the lithosphere. The goal of this thesis is to explore if the garnet-bearing 

rocks can be used constrain the P-T history of the range and further elucidate the 

mechanisms of extension in the range. 
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4. METHODS OF ANALYSIS 
 
 4.1. Introduction 
  
 Garnet is used as a chemical tape recorder in which the evolution of a sample is 

recorded by variations in Fe, Mg, Mn, Ca and Y (Pyle and Spear, 1999; Kohn and Spear, 

2000). These zoned minerals hold a key to understanding the chemical reaction history of 

the Menderes Massif and its pressure – temperature (P-T) history. To obtain the P-T 

history, an electron microprobe is used. ConocoPhilips donated the Oklahoma State 

University JEOL733 electron microprobe to the university in 2002. 

 Electron microprobe analysis is a technique used to image and chemically analyze 

small selected areas of solid samples (see Reed, 1993, 1996; Klein, 2002 for reviews). In 

this method, X-rays and electrons are excited by a focused electron beam (e.g., Reed, 

1996). The X-ray spectrum contains lines that are characteristic of the elements present in 

a mineral and qualitative analysis is possible by identifying the lines and their 

wavelengths, whereas the electrons are used to image the sample (e.g., Reed, 1996). The 

OSU electron microprobe uses EVEX software for qualitative analyses, imaging, and X-

ray element mapping, and SAMX software for standardizing and obtaining compositions 

of minerals important for thermobarometry.  
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 4.2. Sample Preparation 
 
 Garnet-bearing schists and gneisses were collected from three transects across the 

central Menderes Massif during the summer of 2003 (Figure 1.1; Table 4.1). Mineral 

assemblages were first identified and characterized in hand sample. Uncovered thin 

sections were made from all rocks collected by Vancouver Petrographics. A polarized 

optical microscope (Olympus BX51) was then used to identify minerals that could not be 

seen with a handlens and to identify rocks that had mineral assemblages ideally suited for 

thermobarometric calculations.  

The ideal mineral assemblage for the thermobarometric part of this thesis is garnet 

+ biotite + muscovite + plagioclase. Garnets chosen for thermobarometric analysis were 

euhedral to subhedral and not found in contact with minerals characteristic of significant 

retrogression (e.g., chlorite). Other minerals found in the rocks collected include: 

tourmaline, apatite, rutile, monazite, ilmenite, hematite and staurolite. Staurolite was only 

found in the units mapped as Precambrian by Konak (2002). 

The selected thin sections were then cleaned in distilled water with high-purity 

ultrasonic cleanser (Buehler Ultramet 2 Sonic Cleaning Solution) and carbon coated 

using an EFFA MkII Carbon Coater.  
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Table 4.1 Mineral assemblages and locations of the rocks analyzed.a 
 
Sampleb Northing Easting Assemblage c 
MM03   Upper Paleozoic Unit c 
   grt bt ms plg qtz mz rt il ap hm st tr 

33 586666  4237133             
36 609173 4245427             
38 609480 4245905             
39 609490 4246007             
40 609863 4246174             
41 609868 4246181             
45 593931 4255450             
48 591002 4239955             

   Paleozoic Units 
22 616900  4244965             
23 616890  4244972             
32 616928 4245256             

   Precambrian Units 
26 616403  4245187             
27 616405  4245186             
28 616408  4245182             

 
 
a. See Figure 1.1 for sample locations. Major minerals were identified in hand sample 
 and using a petrographic microscope and an electron microprobe.  
 
b. Sample names are referred to as MM03-# in the text. 
 
c. Filled areas indicate the mineral is found in the sample. Abbreviations: grt = garnet, 
 bt = biotite, ms = muscovite, plg = plagioclase, qtz = quartz, mz = monazite, rt = 
 rutile, il = ilmenite, ap = apatite, hm = hematite, st = staurolite and tr = tourmaline. 
 
d. Age of units provided by Konak (2002).  
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 4.3. Electron Microprobe Analytical Methods 
 
 4.3.1. Imaging 
 
 Two major types of images are produced by the electron microprobe: secondary 

electron images (SEI) and backscattered electron images (BSE). SEI images are 

generated when the electron beam excites electrons from the outermost shell of an atom, 

and are typically used to show topography (e.g., Reed, 1996). These types of images were 

not used in this study. 

In BSE images, contrast depends on the variation in the number of electrons 

emitted from the point of impact of the beam on the surface of the specimen (e.g., Reed, 

1996). The fraction of incident electrons that backscattered depends on atomic number. A 

detector sensitive to backscattered electrons produces images showing differences in 

average atomic number. Minerals that contain elements of different atomic numbers show 

different brightness in the grayscale BSE image (Figure 4.1 and 4.2). This brightness 

difference is key for helping to identify what minerals are present. For example in Figure 

4.1, ilmenite (FeTiO3, highest atomic number = 81) are brighter compared to garnet 

(Fe3Al2(SiO4)3 , highest atomic number = 26 ) (Figure 4.1), whereas quartz (SiO2, highest 

atomic number = 14) are the darkest grains in the images. 

 The imaging capability is one of the most useful aspects of the electron 

microprobe. Rock thin sections can be scanned to find suitable minerals for chemical 

analyses and to photograph minerals and inclusions that are too small to be seen with a 

regular petrographic microscope. For example, in Figure 4.1 monazite inclusions are ~20 

µm. These minerals appear as bright inclusions in the garnet but are impossible to see 

with a petrographic microscope. 
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BSE images of rocks can also be used to evaluate the history of the sample. For 

example, in Figure 4.1, the garnet is subhderal and contains scattered inclusions that are 

generally similar in size. In Figure 4.2, the garnet is also subhedral, but the inclusions are 

located within specific domains (rim and mid-rim area). These observations suggest that 

these garnets formed in different environments. 

BSE images are also useful for qualitatively identifying suitable minerals for 

chemical analysis and thermobarometry. The phyllosilicates, such as biotite, muscovite, 

and chlorite typically appear as elongated sheets, whereas the framework silicates, like 

quartz and feldspar are generally seen as anhedral grains. Quartz and felsdspar are 

difficult to distinguish due to their similarity in contrast in BSE images and chemical 

analyses were required to identify them. However, the orthosilicates, like garnet and 

staurolite, typically appear as large porphyoblasts and are easily seen (Figure 4.1 and.2). 

Note that for imaging in this thesis, the electron microprobe operated using an 

accelerating voltage of 15 kV and a beam current of 15-20 nA.   
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Figure 4.1 BSE image of sample MM03-33. The big grain in the center is garnet (Grt). It 
is surrounded by quartz (Qtz), plagioclase (Plg), muscovite (Ms) and biotite (Bt). Garnet 
contains monazite (Mz) and ilmenite (Il) inclusions.  
 
 

                               
 
Figure 4.2 BSE image of the sample MM03-23. Garnet (Grt) is surrounded by quartz 
(Qtz), plagioclase feldspar (Plg), muscovite (Ms) and biotite (Bt). This sample contains 
rutile (Rt) in the matrix.   
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 4.3.2. X-Ray Element Mapping 
 
 Garnet has a chemical formula of A3B2(SiO4)3 where the A-sites contain Mg, Fe, 

Mn or Ca and the B-sites contain Al, Fe, or Cr.  The most abundant garnets are pyrope 

[Mg3Al2(SiO4)3], almandine [Fe3Al2(SiO4)3], spessartine [Mn3Al2(SiO4)3] and grossular 

[Ca3Al2(SiO4)3] (Johnsen, 2002). An important step prior to acquiring quantitative data 

for thermobarometry is identifying how elements within the garnet are distributed. This 

process is done by X-ray element mapping 

 To obtain the X-ray element map, an Energy Dispersive Spectrometer (EDS) 

collects an X-ray spectrum and energy bands containing the peaks of elements of interest 

are defined (e.g., Reed, 1996). For example, Figures 4.3 and 4.4 show EDS spectra of 

garnets that differ in composition. Each peak in the spectra corresponds to a specific X-

ray emitted from an element in the garnets. Peak heights in EDS spectra indicate the 

relative concentrations of the elements.  Figure 4.3 was collected from an almandine 

garnet (18.09% Fe, 6.45% Mg), whereas Figure 4.4 was obtained from a pyrope garnet 

(8.67% Fe, 11.66% Mg).  Note that the Mg peak is higher in the pyrope garnet, the Fe 

peak is higher in the almandine garnet.  

In this thesis, garnets and the surrounding areas were X-ray element mapped in Fe, 

Mg, Mn, Ca, Al, K, Na and Si for compositional traverses and compositional analyses.  

These maps were then converted in colors using EVEX software.  Note that the 

conditions for X-ray element mapping are an accelerating voltage of 20 kV, a beam 

current of 15 nA and a run time of approximately 12 hours. 
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Figure 4.3 EDS spectrum of almandine garnet (SPI Mineral Standard Block #02753-AB). 

 

Figure 4.4 EDS spectrum of pyrope garnet (SPI Mineral Standard Block #02753-AB). 
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 Slow diffusion of major elements (Mn, Ca, Fe, and Mg) in garnet results in 

compositional zonations, which can be used to unravel metamorphic events (Spear, 1993). 

Prograde garnets that grow during an increase in temperature can show characteristic 

“bell-shaped” growth zoning profiles, with concentrations of Mn and Fe/(Fe+Mg) that are 

high in the core and decreasing toward the rim (Figure 4.5A) (e.g., Spear, 1993). 

However, an increase in Fe/(Fe+Mg) content at a garnet rim indicates a retrograde ion 

exchange of Fe-Mg with minerals adjacent to the garnet (e.g., biotite or chlorite), 

enriching these nearby minerals in Mg (Kohn and Spear, 2000). Garnets that have 

experienced retrograde dissolution can be identified by sharp increases in Mn and 

Fe/(Fe+Mg) concentrations at their rims (Figure 4.5B). 

Polymetamorphic garnets can be identified by Mn concentrations and Fe/(Fe+Mg) 

that deviate from these two characteristic zoning profiles.  For example, Figure 4.5C 

shows a polymetamorphic profile in which the Mn concentration and Fe/(Fe+Mg) are 

high in the core and decreasing toward the rim and increasing again in the rim and stays 

constant.  

 The P-T results in this study were estimated using the lowest Mn and Fe/(Fe+Mg) 

values from the garnet rims (e.g., Spear and Peacock, 1989). Choice of this composition 

is key for obtaining realistic conditions experienced by the rock. Arrows in Figure 4.5 

show the locations of these compositions along schematic garnet traverses. For prograde 

garnets, the composition at the very edge of a garnet rim is used for P-T calculations. For 

retrograde garnets, this position is located within the garnet rim. 

 However, in polymetamorphic garnets, the lowest Mn and Fe/(Fe+Mg) values 

may not be a useful composition to obtain realistic P-T conditions. Polymetamorphic 
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garnets may show variations in Mn and Fe/(Fe+Mg) values throughout the grain, thus the 

location of the composition for P-T calculations may not be readily identifiable.  In 

Figure 4.5C, the composition at the very edge of the garnet is chosen because this may be 

the closest to equilibrium with matrix minerals.  

 

 

 
Figure 4.5 Schematic compositional traverses across a garnet from rim to rim, showing 
(A) prograde zoning, (B) retrograde zoning and (C) polymetamorphic zoning. Arrows 
show the places where the compositions for peak P-T conditions are obtained. 
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 4.3.3. Chemical Analyses 
 

To obtain chemical analyses, the intensities of the relevant X-ray lines generated 

in the specimen and in suitable standards are measured. The relationship between the 

intensity of an X-ray line and concentration of the element concerned depends on the 

composition of the sample (see Figures 4.3 and 4.4). Element concentrations are 

calculated from the ratios of specimen and standard intensities and the known 

concentrations in the standards (e.g., Reed, 1996).  

An accelerating voltage of 15 kV and a beam current of 15 nA were used for both 

standardizing and analyzing. Wavelength Dispersive Spectrometers (WDS) are used for 

chemical analyses. WDS crystals (LIF, PET, and TAP) were chosen for suitable elements 

(Table 4.2). Matrix corrections are used to convert specimen to standard intensity ratios 

into concentrations (e.g., Reed, 1993). All raw data is reduced using the PAP matrix 

correction, which corrects for absorption, fluorescence, backscattering which could affect 

the compositional results (e.g., Reed, 1993). 

Table 4.2 shows the standards used for the quantitative electron microprobe 

analysis. Oxygen was not measured and was calculated by stoichiometry (e.g., Deer et al. 

1992). Multiple analyses were sometimes performed on single spots to check for 

consistent results. The results were then used in thermobarometric calculations to obtain 

P-T conditions.  
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Table 4.2 Standards for quantitative electron microprobe analysis.a 

 
Mineral Name Mineral Formula Element Crystal used Crystal position 
Chromium Oxide Cr2O3 (Synthetic) Cr LIF 159.175 
Diopside MgCaSi2O6 Si TAP 77.385 
Diopside MgCaSi2O6 Ca PET 107.600 
Magnetite Fe3O4 Fe LIF 134.515 
Jadeite NaAlSi2O6 Na TAP 129.280 
Pyrope Garnet Mg3Al2Si3O12 Mg TAP 107.320 
Rhodonite MnSiO3 Mn LIF 146.075 
Rutile TiO2 Ti PET 88.090 
Sanidine KAlSi3O8 K PET 119.865 
Spodumene LiAlSi2O6 Al TAP 90.520 
 

a. Standards are from SPI supplies #02753-AB 

 

 4.4. Thermobarometric methods 

 Thermobarometry is based on well-known properties of equilibrium exchange of 

cations between garnet and matrix minerals under varying P-T conditions (e.g., Spear, 

1993, Gilley 2001). In each sample, garnet porphyroblasts were analyzed along rim-core-

rim and rim-core traverses at 20 µm intervals to obtain quantitative chemical zoning 

profiles (Spear and Peacock, 1989). The compositions of biotite, muscovite, and 

plagioclase were also measured for thermobarometry. As explained before, the P-T 

conditions were estimated from the garnet rim (lowest Mn and Fe/(Fe+Mg) values) and 

matrix minerals adjacent to the garnet. Peak T estimates were obtained using the garnet-

biotite thermometer (Ferry and Spear, 1978; Berman, 1990) and peak P were estimated 

using the garnet-muscovite-biotite-plagioclase barometer (Hoisch, 1990).  

 Many geothermometers are based on cation exchange reactions, typically between 

Fe and Mg. These include garnet-biotite, garnet-cordierite, garnet-hornblende, garnet-

chlorite, garnet-orthopyroxene, garnet-clinopyroxene, garnet-olivine, garnet-phengite, 
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garnet-ilmenite, and biotite-tourmaline (Spear and Peacock, 1989). In this study the rock 

assemblages are more suitable for the garnet-biotite thermometer.  

   The garnet-biotite thermometer is based on the exchange between Fe and Mg 

between the coexisting silicates as seen in the following reaction (Ferry and Spear, 1978): 

Fe-rich garnet + Mg-rich biotite           →      Mg-rich garnet + Fe-rich biotite 

Almandine    +   Phlogopite                →             Pyrope      +   Annite 

Fe3Al2Si3O12  + KMg3AlSi3O10(OH)2  →      Mg3Al2Si3O12  +  KFe3AlSi3O10(OH)2 

 The equilibrium constant (Keq) for exchange reactions can be simplified as a ratio 

of the exchanging cations in one phase divided by the same ratio in the second phase. 

This formulation is defined as the distribution coefficient (KD = {Fe/Mg}A / {Fe/Mg}B). 

Keq can be regressed as a function of the temperature and pressure of the equilibration, 

from which values of standard state enthalpy (∆H) and entropy of reaction (∆S) and in 

some cases the volume of the reaction (∆V) of reaction are derived (Spear and Peacock, 

1989; Spear, 1993).  Exchange reactions generally have a small ∆V with moderate ∆S 

and ∆H so that the Keq isopleth has a relatively shallower slope (Figure 4.6).  

 Many net transfer equilibria make excellent geobarometers because they have 

reasonably large volume changes. One way to balance the transfer of Ca from grossular 

to anorthite is with muscovite and biotite.  The garnet-plagioclase-muscovite-biotite 

barometer is based on this reaction (Hoisch, 1990): 

Fe-rich garnet + Ca-rich garnet + muscovite ↔ Ca-rich plagioclase + Fe-rich biotite 

Almandine +    Grossular    +  Muscovite           ↔     Anorthite    +     Annite 

Fe3Al2Si3O12 + Ca3Al2Si3O12 + KAl3Si3O10(OH)2 ↔ 3 CaAl2Si2O8 +  KFe3AlSi3O10(OH)2 
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In contrast to the exchange reactions, net exchange reactions have larger ∆V values, 

which results in steeper slopes of Keq in P-T space (e.g., Spear and Peacock, 1989; Spear, 

1993).  This geobarometer was chosen due to the mineral assemblage of the rocks that are 

studied. 

In this study, Keq lines were calculated using the software Thermobarometry v 2.1 

(Spear and Kohn, 1999), and the equilibrium determined for each sample was plotted 

together in P-T space (see Figures in Chapter 5 for P-T plots).    

      

Figure 4.6 An example of P-T lines calculated from thermobarometric expressions using 
compositional data. The shallower line represents the equilibrium constant (Keq) for the 
garnet-biotite exchange reaction (Ferry and Spear, 1978) and the steeper line represents 
the equilibrium constant (Keq) for geobarometric expressions (Hoisch, 1990). The point at 
which these two lines intersect is the peak P-T condition experienced by the rock. 
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5. RESULTS AND CONCLUSIONS 
  
            5.1 Introduction 
  
 This chapter presents new thermobarometric data from the rocks collected from 

rocks adjacent to Kuzey detachment in central Menderes Massif (Figure 1.2). This area 

was the site of earlier studies of garnet-based thermobarometry (e.g., Ashworth and 

Evirgen, 1984, 1985; Oberhaensli et al. 2001; Whitney and Bozkurt, 2002; Regnier et al. 

2003; Rimmele et al. 2003). The goal of this study is to establish the P-T histories of the 

central Menderes Massif as a means to identify if garnets record a polymetamorphic 

history. 

 Garnet-bearing assemblages were sampled adjacent to Kuzey detachment in 

Alasehir Graben (Figure 5.1). See Figure 2.1 for an overview of the regional geology of 

the Menderes Massif. Samples were collected from the hanging wall schist and gneiss 

units, whereas sediments make up the footwall rocks of the Kuzey detachment (Seyitoglu 

et al. 2002; Konak, 2002). Garnets from the three transect (Figure 5.1) differ in 

compositional zoning of Mn, Ca, Mg, and Fe.  X-ray element maps collected from the 

samples using an electron microprobe show that the Menderes Massif is comprised of 

prograde and retrograde garnets. P-T data show that the rocks experienced high-grade 

metamorphic conditions, from 505±55°C to 715±55°C, and 8.9±2.3 kbar to 11.4±1.6 

kbar.  Results from adjacent samples are sometimes inconsistent, indicating that garnets 

may have grown in response to different events, thus recording a polymetamorphic 

history. 
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Figure 5.1 Sample location map (modified after Konak, 2002; Seyitoglu et al. 2002; Işık 
et al. 2003). Abbreviations: KD, Kuzey Detachment. 
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5.2 Thermobarometric results 

 X-ray element maps of Menderes Massif garnets show differences in zoning of 

Mn, Ca, Fe and Mg.  A summary of the compositional zoning character of the garnets is 

indicated in Table 5.1. To evaluate these differences in zoning and P-T conditions 

experienced by the rocks, the samples are divided according to transects they were 

collected from. 

Table 5.1 Summary of the zoning characteristics of the Menderes Massif samples. 
Sample 
(MM03-#) Mn Ca Mg Fe zoning type 

Transect A-A’ 
 Ca Ra C R C R C R  
22b highc  lowc high low flatc high  low prograde 
23b high  low high  low low  high low  high prograde 
26b flat flat low high flat retrograde 
27b flat flat low high flat retrograde 
28b flat flat flat flat retrograde 
32b flat flat high low high low retrograde 
32b flat flat flat flat   

Transect B-B’ 
33b low high flat flat low high retrograde 
36 flat flat high low flat retrograde 
37 low high high low low high low High retrograde 
38b flat flat flat flat retrograde 
40 flat low high flat flat retrograde 
41 flat high low flat flat retrograde 

Transect C-C’ 
45 high low flat flat flat prograde 
48b high low high low low high low  high prograde 
a. Abbreviations “C”, Core, “R”, Rim, Note that more than one garnet was mapped in 
sample MM03-32. 
b. Indicates a compositional traverse was made across this garnet. 
c. “High”, “low”, and “flat” are qualitative interpretations based only on observations of 
the X-ray element maps. 
 

5.2.1 Transect A-A’ 

 Samples MM03-22 through MM03-32 were collected along transect A-A’ (Figure 

5.2). Only samples MM03-22, MM03-23, MM03-26, MM03-27, MM03-28, and MM03-
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32 contain garnet (Table 4.1) and are identified on the cross section.  Field photos show 

the outcrops where those samples were collected (Figure 5.3).  

 Along transect A-A’, garnets in samples MM03-22 and MM03-23 are interpreted 

to have prograde zoning (Table 5.1).  X-ray element maps of MM03-22 and MM03-23 

garnets have high Mn cores and lower Mn concentrations towards the rim, consistent 

with compositional preservation and prograde garnet growth (Figure 5.4 and 5.5). 

Garnets from both samples show similar Ca zoning with higher Ca cores and lower Ca 

rims. However, Fe and Mg zoning in these samples differ significantly. The MM03-22 

garnet has a high Fe core and flat Mg zoning, whereas the MM03-23 garnet has a low Fe 

core and Mg increases towards the rim. Overall, these qualitative observations suggest 

that these samples grew under similar baric conditions, but different thermal conditions. 

Garnets in samples MM03-26, MM03-27, MM03-28, and MM03-32 appear 

retrograde. X-ray element maps of garnets from these samples (Figures 5.6-5.9) show flat 

zoning in Mn and Ca, consistent with diffusional homogenization. Two garnets were 

element mapped from sample MM03-32, which was collected from the Paleozoic schist 

unit; one garnet has a higher Mg and Fe core and lower concentrations in the rim, 

whereas another garnet shows flat zoning in these elements (Table 5.1; Figure 5.9). 

Samples MM03-26, MM03-27, and MM03-28 were collected within 50m of each 

other. All garnets from these samples show flat Fe zoning, but different Mg zoning.  

Garnets from MM03-26 and MM03-27 have low Mg cores and high Mg rims, whereas 

MM03-28 has flat Mg zoning. Again, qualitative observations of the X-ray element maps 

suggest these rocks experienced different metamorphic histories.  
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Figure 5.2 Transect A-A’ showing the locations of the samples and P-T data. See Figures 
5.4 to 5.8 for garnet X-ray element maps and Figures 5.10, 5.12, and 5.14 for garnet 
traverses. Abbreviations: (p) prograde zoning, (r) retrograde zoning.  
 

       
                
 
                
Figure 5.3 Sample location photos. (A) 
Location of MM03-22 and MM03-23. (B) 
Location of MM03-26, MM03-27 and 
MM03-28. (C) Location of MM03-32. 
 
 
 
 
 

 
 

A B

C
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Figure 5.4 X-ray 
element maps of Mn, 
Ca, Fe, and Mg of 
garnet from MM03-22. 
See Figure 5.11 for a 
BSE image of this 
sample and Figure 5.10 
for a compositional 
traverse across this 
garnet.  
 
      

 

 

 

 

   

 
Figure 5.5 X-ray 
element maps of Mn, 
Ca, Fe, and Mg of 
garnets from MM03-
23. Lower map 
collected by Dr. M. 
Kohn, University of 
South Carolina. See 
Figure 5.11 for a BSE 
image of this sample 
and Figure 5.10 for a 

compositional 
traverse across this 
garnet. 
 

 

 

 

 

      

                    

A 

B 



 48 

 
Figure 5.6 X-
ray element 
maps of Mn, Ca, 
Fe, and Mg of a 
garnet from 
MM03-26. See 
Figure 5.13 for a 
BSE image of 
this sample and 
Figure 5.12 for a 

compositional 
traverse across 
this garnet. 
 
 
 
 
 
 
 
                 

    
 
 

 
Figure 5.7 X-
ray element 
maps of Mn, 
Ca, Fe, and 
Mg of a garnet 
from MM03-
27. See Figure 
5.13 for a BSE 
image of this 
sample and 
Figure 5.12 
for a 
compositional 

traverse across 
this garnet. 
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Figure 5.8 X-
ray element 
maps of Mn, Ca, 
Fe, and Mg of 
garnet from 
MM03-28. See 
Figure 5.13 for a 
BSE image of 
this sample and 
Figure 5.12 for a 

compositional 
traverse across 
this garnet. 
 
 
 
 

 
   

 

 

 
 
Figure 5.9 X-
ray element 
maps of Mn, Ca, 
Fe, and Mg of 
garnets from 
MM03-32. See 
Figure 5.15 for a 
BSE image of 
this sample and 
Figure 5.14 for a 

compositional 
traverse across 
this garnet. 
  

 

 

 



 50 

 Although the X-ray element maps are useful for deciphering the qualitative 

zoning characteristics over a region within a garnet, compositional traverses show the 

chemical zoning in more detail. In Figures 5.10-5.15, compositional traverses and BSE 

images of Menderes Massif garnets from transect A-A’ are presented. 

 Samples MM03-22 and MM03-23 were collected from the same outcrop.  To 

compare their zoning characteristics, traverses were made from mid-rim to rim across a 

garnet in MM03-22 and from rim to core to rim in sample MM03-23 (Figures 5.10 and 

5.11).   The traverse across a garnet in sample MM03-22 in mole fraction spessartine 

from mid-rim to rim show a decrease in abundance towards the rim of the crystal from 

0.074 to 0.041 with a sharp increase at the rim to 0.053.  Fe/(Fe+Mg) broadly decreases 

from 0.859 to 0.823 with a slight increase at the rim to 0.833. These observations are 

consistent with prograde growth, with minor diffusive retrogression at the edge of the 

garnet. Grossular is flat at 0.138±0.033 mole fraction across the whole garnet, suggestive 

of a path of constant pressure.  

 The traverse across the garnet in sample MM03-23 shows a “bell-shape” profile 

from core, typical of a prograde growth.  The spessartine content is high in the core 

(0.089) and decreases towards the rim (0.006) with a slight increase at the very edge of 

the crystal (to 0.010). Unlike MM03-22, the grossular content of this garnet is high in the 

core (0.291) and low in rim (0.007). Fe/(Fe+Mg) decreases from core to rim (from 0.952 

to 0.860), consistent with growth under increasing T. These differences in the zoning 

profiles from garnets collected from the same outcrop suggest that the rocks experienced 

different metamorphic histories. 
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Although samples MM03-26, MM03-27, and MM03-28 were collected from the 

same outcrop, their compositional zoning characteristics are different. MM03-26 and 

MM03-28 shows prograde zoning whereas MM03-27 shows retrograde zoning. The 

spessartine content in MM03-26 is high in the core (0.021) and decreases towards the rim 

(0.005) with a slight increase at the very edge of the crystal (to 0.008). MM03-28 shows 

similar characteristics with MM03-26. In this sample, spessartine content is high in the 

core (0.025) of the garnet and decreases towards the rim (0.006).  Unlike MM03-26 and 

MM03-28, the garnet in sample MM03-27 shows flat zoning in spessartine (0.010±0.001).  

The garnets in samples MM03-26 and MM03-28 have significantly less grossular content 

(0.051±0.010, 0.034±0.005) compared to the garnet in sample MM03-27 (0.148±0.011).   

 The compositional traverse across a garnet in MM03-32 (Figure 5.14) shows flat 

zoning in spessartine (0.023±0.004) with a slight increase at the very edge of the crystal 

(to 0.032). Fe/(Fe+Mg) content shows flat zoning (0.842±0.005). This behavior suggests 

that its composition homogenized via diffusion at high temperature and experienced 

retrograde garnet resorption during cooling (e.g., Florence and Spear, 1991).   
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Figure 5.10 Compositional traverses in (A) Spessartine, (B) Grossular, (C) Pyrope, (D) 
Almandine and Fe/(Fe+Mg) across garnets in samples MM03-22 (black) and MM03-23 
(red). Abbreviation: Qtz, Quartz inclusion. The vertical lines show the locations of 
compositions used for estimating the P-T conditions. Tick marks in (D) are plotted on the 
almandine traverses; the each tick corresponds to the location of an analysis. The length 
of the tick has no statistical significance.  
 

            

Figure 5.11 BSE images of sample MM03-22 (A) and MM03-23 (B). Arrows indicate 
the path of the compositional traverse plotted in Figure 5.10. The arrowheads indicate the 
end point. 



 53 

 

Figure 5.12 Compositional traverses in (A) Spessartine, (B) Grossular, (C) Pyrope, (D) 
Almandine and Fe/(Fe+Mg) across garnets in samples MM03-26 (black) and MM03-27 
(red), and MM03-28 (blue). Abbreviation: Qtz, Quartz inclusion. Tick marks in (D) are 
plotted on the almandine traverses; the each tick corresponds to the location of an 
analysis. The length of the tick has no statistical significance. 
 

 
 
Figure 5.13 BSE images of sample MM03-26 (A) and MM03-27 (B) and MM03-28 (C). 
Arrows indicate the path of the compositional traverse plotted in Figure 5.12. The 
arrowheads indicate the end point.  
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Figure 5.14 Compositional traverses in (A) Spessartine, (B) Grossular, (C) Pyrope, (D) 
Almandine and Fe/(Fe+Mg) across a garnet in sample MM03-32. Abbreviation: Qtz, 
Quartz inclusion. Tick marks in (D) are plotted on the almandine traverses; the each tick 
corresponds to the location of an analysis. The length of the tick has no statistical 
significance. 

                                     

Figure 5.15 BSE image of sample MM03-32. Arrow indicates where the traverse 
obtained (Figure 5.14). Arrows indicate the path of the compositional traverse plotted in 
Figure 5.14. The arrowheads indicate the end point. 
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 Tables 5.2, 5.3 and 5.4 show mineral compositions that were used for 

thermobarometric calculations plotted in Figure 5.16. As indicated in Chapter 4, the 

garnet compositions were obtained from the lowest Mn and lowest Fe/(Fe+Mg) values, 

and Figures 5.10 and 5.14 shows where these locations are along the garnet traverses.  

The garnet-biotite thermometer (Ferry and Spear, 1978; Berman, 1990) and garnet-

biotite-muscovite-plagioclase barometer (Hoisch, 1990) were used (see Chapter 4).  

 

Figure 5.16 P-T diagram of transect A-A’ samples MM03-22, MM03-23, and MM03-32. 
Also shown is the stability field of the aluminosilicate polymorphs and muscovite 
dehydration melting curve (Chatterjee and Johannes, 1974). Abbreviations: Ms, 
muscovite; Qtz, quartz; As; Aluminosilicate; Kfs; K-Feldspar.  
 

The mineral assemblages of these samples (Table 4.1) are consistent with the P-T 

conditions, as all appear within the muscovite stability field. Sample MM03-22 records 

650±40°C and 11.4±1.6 kbar; sample MM03-23 records 505±55°C and 9.0±2.4 kbar; and 

sample MM03-32 records 715±55°C and 11.2±2.2 kbar.  Samples MM03-22 and MM03-

23 were collected from the same outcrop, and experienced P conditions within 



 56 

uncertainty. However, they appear to have experienced T conditions that differ by as 

much as 240°C, including uncertainty. Sample MM03-32 was collected furthest from the 

Kuzey detachment, but records P-T conditions within uncertainty of sample MM03-22 

but just barely with respect to temperature. 

Table 5.2 Mineral composition of MM03-22 used in thermobarometric calculations.   
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 37.42 36.46 36.32 35.23 61.65 62.76 45.39 47.58 
Al2O3 20.62 20.11 18.95 19.16 23.00 23.26 36.79 34.01 
MnO 1.94 1.94 0.01 0.05     - 0.02     -     - 
MgO 3.59 3.58 11.67 11.30 0.01     - 0.79 1.50 
CaO 4.75 4.98 0.02 0.07 4.67 4.59 0.03 0.01 
Na2O -a 0.01 0.14 0.10 8.21 7.05 0.71 0.81 
FeO 30.12 29.71 15.39 17.38 0.03 0.06 1.05 1.23 
TiO2 0.05 0.07 1.99 1.86 0.01 0.00 0.36 0.36 
Cr2O3 0.01     -     - 0.08 0.10 0.05 0.21 0.00 
K2O     -     - 8.55 8.77 0.07 0.06 7.85 9.38 
Total     98.5      96.9 93.03 94.00 97.74 97.85 93.17 94.87 
Si 3.02 3.00 5.51 5.37 2.78 2.81 6.07 6.31 
Al 1.96 1.95 3.39 3.44 1.22 1.23 5.80 5.32 
Mn 0.13 0.14     - 0.01     -     -     -     - 
Mg 0.43 0.44 2.64 2.57     -     - 0.16 0.30 
Ca 0.41 0.44     - 0.01 0.23 0.22     -     - 
Na     -     - 0.04 0.03 0.72 0.61 0.18 0.21 
Fe 2.03 2.05 1.95 2.21     -     - 0.12 0.14 
Ti     -      - 0.23 0.21     -     - 0.04 0.04 
Cr     -     -     - 0.01     -     - 0.02     - 
K     -     - 1.65 1.71     -     - 1.34 1.59 
Total a        8.0       8.0 15.42 15.56 4.96 4.88 13.74 13.89 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
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Table 5.3 Mineral composition of MM03-23 used in thermobarometric calculations.a   
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 36.64 38.39 37.92 36.33 64.79 63.73 48.63 48.80 
Al2O3 21.11 19.97 16.94 17.96 22.58 23.00 36.86 35.71 
MnO 0.25 0.53     -     - 0.01 0.07     - 0.04 
MgO 2.16 2.96 12.84 12.41 0.01 0.01 0.71 0.73 
CaO 6.36 5.68     -     - 3.36 4.24 0.02 0.02 
Na2O     - 0.27 0.35 0.30 8.79 8.38 0.83 1.55 
FeO 33.28 32.42 16.04 17.32 0.14 0.01 1.07 0.93 
TiO2 0.11 0.06 1.62 1.63 0.02 0.02 0.42 0.50 
Cr2O3 0.03     - 0.04      - 0.11 0.08     - 0.08 
K2O     -     - 8.37 8.80 0.06 0.09 5.05 7.71 
Total       99.9    100.3     94.1     94.8      99.9     99.6      93.6     96.1 
Si 2.95 3.06 5.69 5.48 2.85 2.82 6.33 6.32 
Al 2.01 1.88 3.00 3.19 1.17 1.20 5.65 5.45 
Mn 0.02 0.04     -     -     -     -     -     - 
Mg 0.26 0.35 2.87 2.79     -     - 0.14 0.14 
Ca 0.55 0.49     -      - 0.16 0.20     -      - 
Na - 0.04 0.10 0.09 0.75 0.72 0.21 0.39 
Fe 2.24 2.16 2.01 2.19 0.01     - 0.12 0.10 
Ti 0.01      - 0.18 0.19     -     - 0.04 0.05 
Cr     -     -     -     -     -     -     - 0.01 
K     -     - 1.60 1.69     -     - 0.84 1.27 
Total a        8.0       8.0 15.47 15.62 4.94 4.94 13.33 13.74 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
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Table 5.4 Mineral composition of MM03-32 used in thermobarometric calculations.  
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 36.67 35.92 36.12 34.36 67.63 64.79 45.45 49.04 
Al2O3 20.77 20.61 18.84 18.68 21.81 22.14 36.21 35.22 
MnO 0.69 0.87 0.11 0.09 0.01 0.08     -     - 
MgO 3.69 3.83 10.01 9.77 0.01     - 0.90 1.07 
CaO 2.36 2.06     -     - 2.73 3.30 0.02 0.02 
Na2O 0.00 0.02 0.13 0.07 9.67 8.90 0.92 1.57 
FeO 35.18 36.03 19.39 19.92 0.52 0.40 1.28 1.02 
TiO2 0.03     - 1.57 1.67     -     - 0.57 0.64 
Cr2O3     -     - 0.05     - 0.11 0.07 0.03 0.09 
K2O     -     - 9.41 9.29 0.06 0.02 5.61 8.68 
Total      99.4      99.3     95.6      93.9    102.6      99.7      91.0      97.3 
Si 2.97 2.93 5.47 5.34 2.90 2.86 6.15 6.31 
Al 1.98 1.98 3.36 3.42 1.10 1.15 5.77 5.34 
Mn 0.05 0.06 0.01 0.01     -     -     -     - 
Mg 0.45 0.47 2.26 2.26     -     - 0.18 0.21 
Ca 0.20 0.18     -     - 0.13 0.16     -     - 
Na     -     - 0.04 0.02 0.80 0.76 0.24 0.39 
Fe 2.38 2.46 2.45 2.59 0.02 0.01 0.14 0.11 
Ti     -     - 0.18 0.20     -     - 0.06 0.06 
Cr     -     - 0.01     -     -     -     - 0.01 
K     -     - 1.82 1.84     -     - 0.97 1.43 
Total a     8.0       8.1      15.60      15.69       4.95        4.95      13.51      13.86 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
 
 
5.2.2 Transect B-B’ 

 Samples MM03-33 through MM03-41 were collected along transect B-B’ (Figure 

5.17). Only samples MM03-33, MM03-36, MM03-37, MM03-38, MM03-40, and 

MM03-41 contain garnet and are plotted on the cross section. Field photos of MM03-33, 

MM03-36, and MM03-37 (Figure 5.18), MM03-38, MM03-40 and MM03-41 (Figure 

5.19) show the outcrops where those samples were collected.  

 All garnets collected along transect B-B’ are interpreted to have retrograde zoning 

(Table 5.1). X-ray element maps of a garnet from sample MM03-38 shows no zoning 
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characteristics, indicating its composition homogenized via diffusion at high temperature. 

All samples from this transect have flat Mn and Fe zoning, except samples MM03-33 and 

MM03-37 (Figure 5.20 and 5.22) which have low Mn cores and high Mn rims and low Fe 

cores and high Fe rims. Samples MM03-33 and MM03-36 have flat Ca zoning (Figure 

5.20 and 5.21); samples MM03-37 and MM03-41 have high Ca cores and low Ca rims; 

and sample MM03-40 has a low Ca core and high Ca rim (Figure 5.24).  All samples 

have flat Mg zoning, except samples MM03-36 and MM03-37, which show opposite Mg 

zoning maps.  A garnet from sample MM03-36 has a high Mg core and low Mg rim 

(Figure 5.21), whereas a garnet from sample MM03-37 has a low Mg core and high Mg 

rim (Figure 5.22). These observations, from rocks collected within 2 km from the same 

Paleozoic schist unit suggest the possibility that the rocks experienced different 

metamorphic histories. 

 

 

Figure 5.17 Transect B-B’ showing the location of the samples and P-T data. See Figures 
5.20 to 5.25 for garnet X-ray element maps and Figures 5.26 for garnet traverses. 
Abbreviations: (p) prograde zoning, (r) retrograde zoning. 
 

 

 



 60 

 

 

 

 

 

 

           
 

Figure 5.18 Sample location photos. (A) 
Location of MM03-33. (B) Location of 
MM03-36. (C) Location of MM03-37. 
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Figure 5.19 Sample location photos. (A) 
Location of MM03-38. (B) Location of 
MM03-40. (C) Location of MM03-41. 
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Figure 5.20 X-ray 
element maps of Mn, Ca, 
Fe, and Mg of a garnet 
from MM03-33. See 
Figure 5.27 for a BSE 
image of this sample and 
Figure 5.26 for a 
compositional traverse 
across this garnet. 
 
 
 
 
 
 
 
 
 
 

 
 
 
________________________________________________________________________ 
 
 

 
Figure 5.21 X-ray 
element maps of Mn, Ca, 
Fe, and Mg of a garnet 
from MM03-36.  
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Figure 5.22 X-ray 
element maps of Mn, 
Ca, Fe, and Mg of a 
garnet from MM03-37. 
 
. 
 
 
 
 
 
 
 
 
 
 

 
 
________________________________________________________________________ 
 

 
 
Figure 5.23 X-ray 
element maps of Mn, 
Ca, Fe, and Mg of a 
garnet from MM03-38. 
See Figure 5.27 for a 
BSE image of this 
sample and Figure 5.26 
for a compositional 
traverse across this 
garnet. 
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Figure 5.24 X-ray 
element maps of a 
Mn, Ca, Fe, and 
Mg of garnet from 
MM03-40. 
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Figure 5.25 X-ray 
element maps of 
Mn, Ca, Fe, and 
Mg of a garnet 
from MM03-41.  
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 Along transect B-B’, compositional traverses were made across garnets from 

samples MM03-33 and MM03-38 (Figure 5.26). These traverses show that both samples 

have garnets that are similar in chemical content and zoning.  For example, the garnet in 

sample MM03-33 increases from 0.020 in the core to 0.031 at the rim, whereas MM03-

38 increases from 0.020 to 0.050 at the rim. The pyrope content of the garnet in MM03-

33 is high in the core (0.170) and decreases towards the rim (0.134), and the pyrope 

content of the garnet in MM03-38 is high in the core (0.161) and low in the rim (0.115). 

The Fe/(Fe+Mg) content of both MM03-33 and MM03-38 increases towards the rim. 

MM03-33 has a Fe/(Fe+Mg) value of 0.825±0.008 for the core, which increases to 0.847 

at the rim, whereas MM03-38 has a Fe/(Fe+Mg) value of 0.834±0.011, which increases 

to 0.869 at the rim. 

 
Figure 5.26 Compositional traverses in (A) Spessartine, (B) Grossular, (C) Pyrope, (D) 
Almandine and Fe/(Fe+Mg) across garnets in samples MM03-33 and MM03-38. 
Abbreviation: Qtz, Quartz inclusion. Tick marks in (D) are plotted on the almandine 
traverses; the each tick corresponds to the location of an analysis. The length of the tick 
has no statistical significance. 
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Figure 5.27 (a) BSE image of sample MM03-33. (b) BSE image of sample MM03-38. 
Arrows indicate where the traverses obtained. Arrow heads indicate the end points.  
 
 
 The mineral compositions from sample MM03-33 (Table 5.5) and MM03-38 

(Table 5.6) were used for thermobarometric calculations. Figure 5.28 shows the P-T 

conditions of the samples MM03-33 (680±45°C and 10.3 ± 3.1 kbar) and MM03-38 

(640±40°C and 8.9 ± 2.3 kbar). These conditions are consistent with their mineral 

assemblages and X-ray element maps that show the samples experienced retrograde 

diffusion. 
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Table 5.5 Mineral composition of MM03-33 used in thermobarometric calculations. 
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 36.79 38.46 35.96 37.28 63.21 65.24 45.65 46.68 
Al2O3 21.34 20.93 18.64 19.82 23.80 23.63 37.03 34.44 
MnO 0.99 0.90 0.08 0.06 0.05 0.01 0.00 0.00 
MgO 4.22 4.26 10.27 11.27 0.01 0.00 0.48 0.94 
CaO 3.26 2.62 0.03 0.03 4.45 3.68 0.00 0.00 
Na2O 0.00 0.00 0.05 0.18 6.21 8.86 0.93 0.93 
FeO 32.20 32.82 17.35 16.48 0.00 0.01 0.81 1.10 
TiO2 0.21 0.04 1.56 1.72 0.02 0.00 0.46 0.73 
Cr2O3 0.06 0.02 0.01 0.04 0.00 0.05 0.02 0.00 
K2O     -     - 8.52 8.18 0.13 0.02 7.67 8.21 
Total   99.1    100.0      92.5      95.1    97.9   101.5      93.1      93.0 
Si 2.96 3.05 5.55 5.53 2.82 2.82 6.10 6.27 
Al 2.02 1.96 3.39 3.47 1.25 1.21 5.83 5.45 
Mn 0.07 0.06 0.01 0.01     -     -     -     - 
Mg 0.51 0.50 2.36 2.49     -     - 0.10 0.19 
Ca 0.28 0.22     - 0.01 0.21 0.17     -     - 
Na     -     - 0.02 0.05 0.54 0.74 0.24 0.24 
Fe 2.17 2.18 2.24 2.04     -     - 0.09 0.12 
Ti 0.01     - 0.18 0.19     -     - 0.05 0.07 
Cr     - 0.01     - 0.01     -     -     -     - 
K     -     - 1.68 1.55     -     - 1.31 1.41 
Total a        8.0       8.0 15.42 15.34 4.83 4.95 13.71 13.76 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
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Table 5.6 Mineral composition of MM03-38 used in thermobarometric calculations. 
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 37.16 37.14 35.93 35.43 67.63 64.79 45.48 47.36 
Al2O3 21.81 21.18 20.26 19.07 21.81 22.14 37.50 35.10 
MnO 0.90 1.11 0.05 0.10 0.01 0.08 0.00 0.00 
MgO 3.70 4.13 11.32 11.10 0.01     - 0.85 0.95 
CaO 3.40 2.62 0.02 0.02 2.73 3.30 0.01 0.01 
Na2O 0.01 0.01 0.21 0.15 9.67 8.90 0.70 0.63 
FeO 33.24 33.87 16.53 18.67 0.52 0.40 1.21 1.04 
TiO2 0.01 0.03 1.67 1.57     -     - 0.62 0.76 
Cr2O3 0.05 0.08 0.07 0.00 0.11 0.07 0.05 0.00 
K2O     -     - 7.76 8.11 0.06 0.02 5.58 6.47 
Total   100.3    100.2      93.82      94.22    102.55      99.70      91.99      92.33 
Si 2.96 2.97 5.41 5.39 2.90 2.86 6.07 6.32 
Al 2.05 2.00 3.59 3.42 1.10 1.15 5.90 5.52 
Mn 0.06 0.08 0.01 0.01     -     - 0.00 0.00 
Mg 0.44 0.49 2.54 2.52     -     - 0.17 0.19 
Ca 0.29 0.22 0.00 0.00 0.13 0.16 0.00 0.00 
Na     -     - 0.06 0.04 0.80 0.76 0.18 0.16 
Fe 2.21 2.26 2.08 2.38 0.02 0.01 0.14 0.12 
Ti     -     - 0.19 0.18     -     - 0.06 0.08 
Cr     - 0.01 0.01 0.00     -     - 0.00 0.00 
K     -     - 1.49 1.57     -     - 0.95 1.10 
Total a        8.0       8.0 15.38 15.53 4.95 4.95 13.48 13.48 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
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Figure 5.28 P-T diagram of transect B-B’ samples MM03-33 and MM03-38. Also shown 
is the stability field of the aluminosilicate polymorphs and muscovite dehydration 
melting curve (Chatterjee and Johannes, 1974). Abbreviations: Ms, muscovite; Qtz, 
quartz; As; Aluminosilicate; Kfs; K-Feldspar. 
 
5.2.3 Transect C-C’ 

 Samples MM03-45 through MM03-48 were collected along transect C-C’ (Figure 

5.33). Only samples MM03-45 and MM03-48 contained garnet and are plotted on the 

cross section. Field photos of MM03-45 and MM03-48 (Figure 5.30) show the outcrops 

where those samples were collected.  

 X-ray element maps of garnets in samples MM03-45 and MM03-48 show 

prograde zoning, with high Mn cores and low Mn rims. However, these garnets differ in 

Ca, Mg, and Fe zoning.  The garnet in sample MM03-45 has flat zoning in Ca, Mg, and 

Fe. However, the garnet in sample MM03-48 has a high Fe and high Ca core and low Fe 

and low Ca in the rim, but a low Mg core and a high Mg rim.  
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Figure 5.29 Transect C-C’ showing the location of the samples and P-T data. See Figures 
5.31 to 5.32 for garnet X-ray element maps and Figures 5.33 for garnet traverse. 
Abbreviations: (p) prograde zoning, (r) retrograde zoning. 
 

 

Figure 5.30 Sample location photos. 

(A) Location of MM03-45 B) Location 

of MM03-48  
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Figure 5.31 X-
ray element 
maps of Mn, Ca, 
Fe, and Mg of a 
garnet from 
MM03-45.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

________________________________________________________________________ 
 

 
 
 
Figure 5.32 X-
ray element 
maps of Mn, Ca, 
Fe, and Mg of a 
garnet from 
MM03-48. See 
Figure 5.34 for a 
BSE image of 
this sample and 
Figure 5.33 for a 

compositional 
traverse across 
this garnet. 
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 A compositional traverse was only made across the garnet in sample MM03-48. 

The traverse reveals a sharp increase in spessartine content from 0.008 in the core to 

0.022 at the rim. This was not immediately evident from the X-ray element map. The 

grossular and pyrope content steadily decrease from core to rim, from 0.121 mole 

fraction grossular in the core to 0.091 at the rim and 0.154 mole fraction pyrope in the 

core to 0.149 at the rim. The Fe/(Fe+Mg) content of this garnet show flat zoning 

(0.147±0.006). 

 
 
Figure 5.33 Compositional traverses in (A) Spessartine, (B) Grossular, (C) Pyrope, (D) 
Almandine and Fe/(Fe+Mg) across a garnet in sample MM03-48. Abbreviation: Qtz, 
Quartz inclusion. The vertical lines show the locations of compositions used for 
estimating the P-T conditions. Tick marks in (D) are plotted on the almandine traverses; 
the each tick corresponds to the location of an analysis. The length of the tick has no 
statistical significance.     
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Figure 5.34 BSE image of sample MM03-48. Arrow indicates where the traverse 
obtained. Arrow head indicates the end point. 
 
 
 Only the mineral compositions from sample MM03-48 (Table 5.7) were used for 

thermobarometric calculations. Figure 5.35 shows the P-T conditions of this sample 

(640±50°C and 12.2±2.6 kbar). This condition is consistent with the mineral assemblage 

(Table 4.1) and the baric condition is the highest estimated for samples in this study.  The 

thermal condition is consistent with the compositional traverses (Figure 5.33) that show 

the sample preserves its prograde zoning with minor retrograde diffusion at the rim. 
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Table 5.7 Mineral composition of MM03-48 used in thermobarometric calculations. 
 Garnetb Garnet Biotiteb Biotite Plagb Plag Musb Mus 
SiO2 38.46 38.03 39.89 36.57 64.31 65.82 46.89 45.74 
Al2O3 22.09 21.79 21.33 19.95 24.05 23.10 37.31 35.77 
MnO 0.34 0.38 0.06 0.07     - 0.07     - 0.01 
MgO 3.54 3.52 10.76 10.55 0.01     - 0.74 0.90 
CaO 3.75 3.14 0.20 0.11 3.18 2.92 0.02     - 
Na2O 0.03     - 0.19 0.17 9.54 6.77 1.04 1.47 
FeO 30.74 30.63 14.38 16.73 0.06 0.12 0.80 0.89 
TiO2 0.06 1.91 1.39 1.43     -     - 0.35 0.54 
Cr2O3 0.08 0.03 0.01     -     -     - 0.09 0.07 
K2O     -     - 6.79 7.39 0.09 0.07 6.58 8.79 
Total      99.1      99.4       95.0      93.0   101.2      98.9      93.8     94.2 
Si 2.96 2.97 5.76 5.54 2.80 2.89 6.16 6.11 
Al 2.05 2.00 3.63 3.56 1.23 1.19 5.78 5.63 
Mn 0.06 0.08 0.01 0.01     -     -     -     - 
Mg 0.44 0.49 2.31 2.38     -     - 0.14 0.18 
Ca 0.29 0.22 0.03 0.02 0.15 0.14     -     - 
Na     -     - 0.05 0.05 0.80 0.58 0.26 0.38 
Fe 2.21 2.26 1.74 2.12     -     - 0.09 0.10 
Ti     -     - 0.15 0.16     -     - 0.03 0.05 
Cr     - 0.01     -     -     -     - 0.01 0.01 
K     -     - 1.25 1.43     -     - 1.10 1.50 
Total a        8.0       8.0 14.93 15.26 4.99 4.81 13.59 13.96 

a. “-” indicates measured but not detected. 
b. Formula of garnet is calculated on the basis of 12 oxygens, biotite and muscovite are 
calculated on the basis of 24 oxygens, and plagioclase is calculated on the basis of 8 
oxygens. 
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Figure 5.35 P-T diagram of transect C-C’ sample MM03-48. Also shown is the stability 
field of the aluminosilicate polymorphs and muscovite dehydration melting curve 
(Chatterjee and Johannes, 1974). Abbreviations: Ms, muscovite; Qtz, quartz; As; 
Aluminosilicate; Kfs; K-Feldspar. 
 
5.3 Discussion and Conclusions 
 
 This thesis presents 60 new X-ray element garnet maps and 6 new P-T conditions 

from garnet-bearing assemblages from the Menderes Massif.  Thermobarometric results 

are often used to develop models for the evolution of the Menderes Massif. However, the 

results presented in this thesis show that rocks from this area have a potential to have 

experienced different metamorphic events, thus recording a polymetamorphic history. 

Several themes emerge from the data reported in this thesis. 

1. X-ray element garnets maps and transects across garnets from samples collected 

from the same unit, even the same outcrop, in the central Menderes Massif show very 

different zoning profiles. For example, garnets from samples MM03-22 and MM03-23 

from the same outcrop along transect A-A’ (Figure 5.2) have similar Mn and Ca zoning, 

but very different Fe and Mg zoning (Figures 5.4 and 5.5), suggesting the rocks 
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experienced similar baric conditions, but different thermal conditions. Samples MM03-26, 

MM03-27, and MM03-28 were collected in close proximity (Figure 5.2), but garnets in 

these rocks show very different Mg zoning, indicating that these rocks may have 

experienced different metamorphic histories.  

2. P-T conditions estimated for garnet-bearing assemblages collected from the same 

unit, even the same outcrop, in the central Menderes Massif show yield very different 

thermal conditions. Table 5.8 and Figure 5.36 summarize the P-T conditions estimated 

for samples in this study.  The calculations indicate that the region experienced high-

grade metamorphism, and the mineral assemblages of these samples are consistent with 

the P-T conditions (see Table 4.1). However, the P-T conditions of two rocks collected 

from the same outcrop (MM03-22 and MM03-23) yield different temperature results, 

irresolvable within uncertainty. This observation indicates that garnets from the 

Menderes Massif have experienced and recorded different metamorphic events. 

Table 5.8 Summary of the P-T results of the samples. 
Sample (MM) T (°C) P (kbar) 

22 650 ± 40 11.4 ± 1.6 
23 505 ± 55   9.0 ± 2.4 
32 715 ± 55 11.2 ± 2.2 
33 680 ± 45 10.3 ± 3.1 
38 640 ± 40   8.9 ± 2.3 
48 640 ± 50 12.2 ± 2.6 

 



 77 

 
 
Figure 5.36 P-T diagram of all samples analyzed in this study. Also shown is the stability 
field of the aluminosilicate polymorphs and muscovite dehydration melting curve 
(Chatterjee and Johannes, 1974). Abbreviations: Ms, muscovite; Qtz, quartz; As; 
Aluminosilicate; Kfs; K-Feldspar. 
 
3. P-T conditions reported here for Menderes Massif garnet-bearing assemblages 

are consistent with those estimated by previous researchers. The results obtained from 

the garnet-bearing assemblages in this thesis are plotted in Figure 5.37 to show their 

relationship to the results obtained by previous researchers. Overall, the data appear 

consistent, but some of the garnets we analyzed may not have grown in equilibrium with 

their matrix minerals.  Thus, the possibility of polymetamorphic garnet growth in the 

central Menderes Massif has implications on previous results produced by garnet-based 

thermobarometric methods. We suggest for future work that multiple samples from the 

same outcrop be analyzed for consistency of the P-T results. For example, we have 

confidence in the P-T conditions of samples MM03-33 and MM03-38, as they were 

collected in close proximity of each other and yield similar peak conditions and garnet 
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zoning (Figure 5.26; Table 5.8). However, samples MM03-22 and MM03-23 were 

collected adjacent to each other, but yield very different peak conditions and garnet 

zoning (Figure 5.10; Table 5.8). 

 

Figure 5.37 Plot of P (depth) – T plane showing distribution of metamorphic facies and 
P-T results from Menderes Massif samples (after Blatt and Tracy, 1996). See Figure 2.6 
for references of previous work.  

 

The same processes that govern garnet growth in other areas are the same as those 

that operate in the Menderes Massif; however this area has experienced a complicated 

multi-phase metamorphic history. In this case, some of the garnets grew in different rocks 

at different times, perhaps during the Pan African and during Eocene-Oligocene 

compression (Figure 2.5). Instead of having a single outcrop undergoing 

polymetamorphism, rocks of different histories and compositions were juxtaposed 

together at different times. The major conclusion from the observation that two garnets of 
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very different P-T conditions and compositions are present in the same outcrop suggests 

that assuming a simple metamorphic history and trying to get P-T conditions using 

garnets in the Menderes Massif should be done only by understanding how and when 

exactly the mineral appeared in these rocks. 

To broaden our perspective, further geochronologic work using other 

thermobarometric indicators could help to improve the interpretation of the metamorphic 

history of the Menderes Massif. In situ ion microprobe dating of monazite (e.g., Catlos 

and Çemen, 2004) would be useful, particularly of garnet-bearing samples from the same 

outcrop. Then, the thermobarometric conditions of the high-grade metamorphic rocks in 

the region can be used to evaluate and develop models that explain large-scale extension.   
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Locations of the Menderes Massif rocks for future study 
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Mineral assemblages and locations of the rocks for future studies.a 
 
Samplea Northing Easting 

1 597398 4202109 
2 597345 4202116 
3 597207 4203118 
4 597119 4202146 
5 597124 4203153 
6 592358 4199553 
7 597492 4201887 
8 597442 4201986 
9 596722 4200986 

10 596723 4200985 
11 596263 4200426 
12 594733 4194067 
13 595529 4202648 
14 594585 4202428 
15 594586 4202430 
16 594624 4202540 
17 564623 4202538 
18 595244 4203477 
19 596206 4202213 
20 596207 4202214 
21 594560 4201910 

 
 
a. Sample names are referred to as MM03-#. 
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