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CHAPTER I 
 
 

INTRODUCTION 

 

The Okavango Rift Zone (ORZ) has been suggested to be a zone of incipient 

continental rifting found at the terminal end of the Southwestern branch of the East 

African Rift System (EARS), therefore providing a unique opportunity to investigate 

fault characteristics related to early rifting processes.  As such, the ORZ has been the 

focus of several shallow subsurface geologic (e.g., Modisi, 2000) and geophysical 

investigations (Modisi et al., 2000; Kinabo et al., 2007; Laletsang et al., 2007; Kinabo et 

al., 2008; Shemang and Molwalefhe, 2009).  More recent studies have focused on 

understanding the interplay between neotectonics and surficial processes (e.g., Gamrod, 

2009; Teeter, 2009) during the beginning stages of continental rifting to determine how 

environmental changes relate to climate and tectonics recorded in lake sediments 

associated with the rift. 

Previous geoelectrical studies (e.g., Laletsang et al., 2007 and Shemang and 

Molwalefhe, 2009) have shown that some of the fault zones that comprise the ORZ 

consist of a number of synthetic and antithetic faults; however, penetration depths only 

reached between 80 m and 100 m below the surface.  Hence information on the structure 

of the basin and subsurface character of the faults characterizing the rift is limited. 

More recently, investigations by Kinabo et al. (2007;2008) have provided some



 2

important insights into the growth and propagation of faults during the initial stage of rift 

formation.  Using Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM–

DEM) and aeromagnetic data, Kinabo et al. (2008) compared the throw on individual 

faults as measured by the height of the fault scarps on the DEM images and the difference 

in depth to the tops of magnetic sources (basement) on the aeromagnetic maps and 

classified the faults in the ORZ into (a) old and active faults, (b) young and active faults, 

(c) faults with no recent activity, and (d) faults with waning activity.  In particular, some 

faults showed considerable fault throws but lacked topographic scarps.  Kinabo et al. 

(2008) suggested that the lack of surface expression for these basement faults may 

suggest the following: 1) lack of recent activity along these faults, 2) that these basement 

faults were reactivated, but are now concealed by rapid sedimentation associated with 

Okavango alluvial fan deposits, and 3) they were reactivated but lacked sufficient energy 

to rupture the surface (i.e., blind normal faults).  The authors suggested that further 

geophysical studies were required in order to confirm the lack of activity along these 

faults.  The study by Kinabo et al. (2008) also indicated that under lapping to overlapping 

segments observed on the surface along some faults may be connected twists in the 

basement.  Hence, more work is required to provide data that can bridge the gap between 

the surface expression of these faults and their basement expression (i.e., how these faults 

link at depth). 

These previous investigations provide important information on how faults grow and 

propagate through accommodating strain by linkage between individual fault segments in 

the basement and at the surface; however, some unanswered questions remain including: 

1) as strain is transferred from older, less active faults in the interior of the rift to 
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younger, more active faults on the exterior of the rift (e.g., Kinabo et al., 2008) which 

faults are still actively participating in lengthening and widening of the rift, 2.) what is 

the reason for the differences in magnetic character of the faults in the basement (i.e., 

some of the faults within the ORZ are depicted as magnetic highs on aeromagnetic maps 

while others are depicted as magnetic lows), and 3.) is there a relationship between fluid 

flow from the Okavango Delta and fault development within the ORZ? 

In this study, we extend the work of Kinabo et al. (2008) by examining the 

geophysical characteristics of the faults associated with the ORZ.  Our specific objectives 

included: 1.) determining the subsurface fault geometry, 2.) depth extent of the faults, and 

3.) elucidate the tectonic activity of the faults and the behavior the faults within the 

basement.  By understanding these properties, possible implications on how fluid flow 

may influence the magnetic properties of the faults and if fluid flow is directly related to 

seismic activity from rift development can be derived.  We investigated these properties 

using electrical resistivity tomography (ERT), magnetotellurics (MT), total field 

magnetic, and gravity surveys along selected faults characterizing the rift.  Our results 

suggest that despite partial burial of some of the faults, majority of the faults associated 

with the ORZ have propagated through the sedimentary cover and are interpreted to be 

conducting fluids which suggests recent tectonic activity.  Faults that are not conducting 

fluids may be experiencing cementation from past fluid flow and closure due to 

inactivity.  These results suggest that the fault zones are acting as both conduits and 

barriers to fluid flow from the Okavango Delta.  The differences in the magnetic 

character of the faults may be directly related to the occurrence of geochemical redox 

reactions between fluids being conducted along the faults and basement rocks.  A second 
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cause may be that the faults juxtapose rocks of varying magnetic susceptibilities.  

Seismicity within the ORZ may be influenced by fluid flow within the fault zones.  The 

ORZ lacks strong earthquakes.  The lack of violent earthquakes may be due to fluid-filled 

pore space within the fault zones which increases pore pressure thus reducing the shear 

stress required for rupture, possibly allowing the rift to lengthen and widen more rapidly 

over time. 

The findings of this study will add to the importance of understanding the interplay 

between fluid migration along fault planes and its influence on fault movement, magnetic 

characterization, and seismic activity. 
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CHAPTER II 
 
 

GEOLOGIC SETTING 

 

2.1 The East African Rift System 

The East African Rift System (EARS) is an example of a classic continental rift 

zone.  The rift system is traditionally divided into two branches, the older more evolved 

(>15 Ma) Eastern branch and the younger less evolved (<15 Ma) Western branch (Figure 

1A).  The Eastern rift extends from the Afar depression in Ethiopia in the north through 

the Kenya (Gregory) and Turkana rifts in Kenya to central Tanzania in the south 

(Chorowicz, 2005) where the rift terminates in a diffuse zone of extension within the 

Tanzanian craton.  The Western rift extends from Lake Alberta in Uganda through 

western Tanzania where it forms basins including Lake Tanganyika, Lake Rukwa, and 

Lake Nyanza (Malawi) and continues towards the south of Dombe in Mozambique 

(Kampunzu et al., 1998). 

The EARS occurs along a divergent plate boundary between the Nubian plate and 

the Somalian plate.  Recent present day kinematic studies of the EARS (e.g., Stamps et 

al., 2008) suggest three subplates (Victoria, Rovuma, and Lwandle) and possibly a fourth 

plate (Transgariep) between the Nubian and Somalian plates (Figure 1C).  Through the 

use of GPS solutions, the study concluded that plate angular velocities range from 1 to 6 

mm/yr across the Western and Eastern rifts.  Plate velocities increase from north to south
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along the Western branch and from south to north for the Eastern branch.  According to 

Stamps et al. (2008), the southward decrease of the extension rate along the Eastern 

branch is consistent with progressive disappearance of prominent active faults, as the 

Eastern branch propagates into cold cratonic domain. 

The rift traverses two areas of continental uplift, the Ethiopian and Kenya domes, 

separated by the low-lying Turkana depression in northern Kenya.  Throughout Ethiopia, 

the Eastern branch of the rift defines a single zone of extension and volcanic activity.  

The Western branch is separated into two branches that encircle the mechanically robust 

Tanzania craton (Furman, 2007).  The earliest recorded volcanic activity in the EARS 

took place ~40 – 45 Ma in the northern Turkana depression (e.g., southernmost Ethiopia; 

Ochieng, 1988; Ebinger et al., 1993; George et al., 1998; Knight et al., 2003).  However, 

the modern EARS magmatic province is generally described with respect to the onset of 

flood basalt activity in modern Ethiopia, Eritrea, and Yemen that occurred in the late 

Oligocene and is attributed to impact of a mantle plume head at the base of the 

lithosphere (Chorowicz, 2005; Furman, 2007).  In both the Eastern and Western 

branches, volcanic provinces are older in the north than the south, with volcanic activity 

within the Eastern branch preceding those within the Western branch by ~11 Ma 

(Ebinger, 1989; Kampunzu et al., 1998).  The mafic lavas erupted along the EARS 

display a wide range of geochemical and isotopic compositions that reflect heterogeneity 

in both source and process.  The types of volcanism range from silica-undersaturated 

mafic lavas in the Western branch, where crustal extension is low, to transitional-

tholeiitic basalts in the Eastern branch, where prolonged and intermediate degrees of 

extension are taking place (Furman, 2007).  In contrast to the widespread volcanism  
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Figure 1. Maps displaying the location of the study area.  A.) Shuttle Radar Tomography Mission, 
Digital Elevation Model (SRTM – DEM) of the East African Rift System (EARS).  B.) SRTM-DEM 
map of the Southwestern Branch of the EARS.  The black box shows the location of our study area. 
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Figure 1 (cont). C.) Model showing the relative motion along plate or block boundaries within 
the EARS (courtesy of Dr. E. Calais, 2009). 
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observed in the Eastern rifts, the Western rifts are considered dry, as volcanic centers are 

aerially and volumetrically smaller (Ebinger, 2005). 

The earliest extension documented in the EARS occurred in the Turkana area ~25 

Ma (Morley et al., 1992; Hendrie et al., 1994).  Volcanism and faulting propagated from 

this region to both the north and south, forming the familiar structures and rift basins of 

the modern rift branches (Furman, 2007).  Structurally, the rifts are segmented along their 

lengths into a series of asymmetric half-grabens bounded by en-echelon curvilinear 

border faults.  The individual rift basins (50 – 100 km long and 40 – 100 km wide) are 

linked by transfer faults/accommodation zones (Rosendahl, 1987; Ebinger, 1989; 

Chorowicz, 2005) and filled with fluvio-deltaic and lacustrine sediments and/or volcanics 

and volcaniclastics.  The succession of graben basins are generally bordered on the two 

sides by high relief (100s of meters), comprising of almost continuous parallel mountain 

lines and plateaus, and sometimes volcanic massifs.  Sediment fill and volcanic layers in 

the grabens range from < 1200 m to up to > 3 km (Chorowicz, 2005). 

A third Southwestern branch (Figure 1B) (e.g., Fairhead and Girdler, 1969; 

Reeves, 1972; Girdler, 1975; Chapman and Pollack, 1977; Ballard et al., 1987; Sebaganzi 

et al., 1993; Modisi et al., 2000; Sebagenzi and Kaputo, 2002) consists of a network of 

separate Quaternary rift basins 100 km long and  40 – 80 km wide (Modisi et al., 2000) 

distributed along an approximately 250 km wide corridor extending for about 1700 km 

west of Lake Tanganyika and Lake Malawi with the Okavango Rift Zone (ORZ) at its 

southern-most extent in northwest Botswana (Kinabo et al., 2007).  Very little is known 

about the structural and tectonic development of the Southwestern branch of the EARS.  
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The rate of extension is not known and the lack of surface magmatism prevents insights 

into possible lithospheric/asthenospheric processes occurring below the rift. 

 

2.2. The Okavango Rift Zone  

The Okavango Rift Zone (ORZ) (e.g., Kinabo et al., 2007; 2008) occurs in an 

intercratonic zone between the Congo craton to the northwest and the Zimbabwe and 

Kaapvaal cratons to the east-southeast.  The rift is superimposed on the Ghanzi-Chobe 

belt, a Proterozoic orogenic province.  Development of the ORZ is taking place within a 

large structural depression known as the Makgadikgadi-Okavango-Zambezi basin (MOZ) 

and is characterized by northeasterly trending folds and faults of the Ghanzi-Chobe belt 

(Cooke, 1984).  A west-northwest trending dike swarm (the 179 Ma Karoo dike swarm) 

is superimposed on the faults of the Ghanzi-Chobe belt and is cut by younger normal 

faults associated with current rifting processes (Modisi et al., 2000).  The ORZ consists 

of three grabens, paleo-Lake Ngami in the southwest and Mababe and Linyanti-Chobe in 

the northeast (Figure 2A).  In the Lake Ngami graben, the northeast trending Tsau and 

Kunyere faults bound the graben to the northwest and southeast respectively.  The 

Mababe basin is bounded by the Mababe Fault to the east while the Linyanti-Chobe 

graben is bounded by the Chobe Fault in the east and possibly an extension of the 

Gumare Fault in the west.  The dips of the Gumare, Tsau, and Lecha faults are towards 

the southeast while the Kunyere, Thamalakane, Mababe, and Chobe faults are northwest 

dipping faults (Modisi et al., 2000; Kinabo et al., 2007).  Sediment fill for both the Ngami 

and Mababe depressions may reach as deep as 700 m (Kinabo et al., 2007).  Compared to 

the well developed grabens of the Eastern and Western branches of the EARS with fault 
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Figure 2. Maps of the Okavango Rift Zone (ORZ).  A.) SRTM-DEM map of the ORZ.  Dashed lines indicate the 
location of the faults.  Triangles represent the location of towns and villages.  White boxes delineate our study 
areas.  The Tsau Fault (T.F.) and the Lecha Fault (L.F.) are not visible on the surface.  Their locations were 
determined by magnetic data.  B.) Terrain map of the ORZ showing the extent of the Okavango Delta.  G.F. = 
Gumare Fault, Ly.F. = Linyanti Fault, C.F. = Chobe Fault, M.F. = Mababe Fault, T.F. = Tsau Fault, L.F. = Lecha 
Fault, K.F. = Kunyere Fault, Th.F. = Thamalakane Fault, and P.F. = Phuti Fault. 
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scarps reaching 100s of meters, fault scarp heights in the ORZ range from 6 m along 

Lake Ngami to 12 – 18 m in Mababe.  Farther north, scarp heights increase to as much as 

44 m in Linyanti-Chobe (Kinabo et al., 2008). 

The strike of the main bounding rift-related faults is 030 – 050o in the north and 

060 – 070o in the south (Kinabo et al., 2007;2008).  The orientation of the faults on the 

surface is influenced by pre-existing faults and folds of the basement rocks (Modisi et al., 

2000; Kinabo et al., 2007;2008).  Fault growth and propagation is through strain 

accommodation from older, less active faults in the interior of the rift to younger, more 

active faults on the exterior of the rift and by hard-linkage (hooking, fused segments) and 

soft-linkage (under lapping to overlapping) of individual faults to establish a master 

border fault (Kinabo et al., 2008).  As a result, strain accommodation along the major rift-

related northeasterly-trending faults has caused subsidiary north-northwest-south-

southeast trending faults and fractures to form.  The spatial distribution of the main 

bounding rift-related faults and the subsidiary faults and fractures suggest a right-lateral 

strike-slip component in addition to the predominant dip-slip component associated with 

rift formation.  The different sets of movement along the faults and fractures 

accommodate the regional east-west extension of the EARS (Modisi et al., 2000; Kinabo 

et al., 2008). 

The ORZ hosts the largest inland alluvial fan on Earth, the Okavango Delta 

(Figure 2B), supporting the largest (~18,000 km2) wetland in southern Africa (McCarthy 

et al., 1991; McCarthy and Ellery, 1995).  The Okavango Delta currently represents the 

terminal depository for the Okavango River system which drains from central Angola.  

The Okavango River degenerates into a series of anastomosing channels on the fan 
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surface which are bordered by extensive permanent fresh water swamps (6,000 km2) in 

the proximal reaches of the fan (McCarthy et al., 1991).  Seasonal flooding inundates a 

further 6,000 to 12,000 km2 in the distal reaches (McCarthy and Ellery, 1995).  The 

Okavango River transports sediments to the fan and the annual inflow of sediments 

amount to approximately 570,000 tons per annum (McCarthy and Ellery, 1998; 

McCarthy et al., 2002).  Some 65% of the sediment consists of dissolved chemical matter 

and 35% is clastic, mainly bedload sands.  To the sediment inflow is added another 

250,000 tons of aerosols that are annually deposited over the delta (Garstang et al., 1998). 

Evapotranspiration from the swamps exceeds precipitation by a factor of three 

and ~96% of the annual discharge is lost to the atmosphere (Dincer et al., 1981).  

Whereas the climate in the headwater region is subtropical and humid with annual 

precipitation of up to 1300 mm, it is semi-arid in Botswana with precipitation amounting 

to only 450 mm/year in the delta (Milzow et al., 2009).  These conditions cause several of 

the small islands within the permanent swamps of the delta to accumulate sodium 

carbonate salts (trona) along the margins of the islands.  The process responsible for the 

enrichment of dissolved solids (e.g. McCarthy et al., 1991) is evapotranspiration.  

Transpiration by trees and evaporation from salt pans on the islands cause drawdown of 

the water table.  Swamp water (fresh water) enters the groundwater regime and flows 

toward the central depression becoming progressively enriched in solutes (i.e., calcite and 

SiO2) owing to the selective removal of water to transpiring vegetation.  Evaporation 

from the capillary zone in the area around the pans causes trona precipitation at the 

surface.  Groundwater enters the pans by seepage, where strong evaporative 
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concentrations occur, producing dense brines which may percolate into the subsurface, 

displacing less-saline groundwater (McCarthy et al., 1991). 

Continual movement and differential tilting along the faults in the lower 

Okavango Delta has caused changes in drainage pattern sedimentation within the distal 

regions of the delta.  According to Campbell et al. (2006), the waxing and waning of the 

river systems has resulted in the inter-fingering of clay-rich sands and silts with fine-to-

medium grained sand units.  Near the distal ends of the delta, the mix of fluvial and 

deltaic Kalahari sediments has resulted in stacked freshwater aquifers in lensoid fine-to-

medium grained sand units separated by clay-rich sands and silts above a brackish to 

saline “basement” aquifer.  The transition zone from fresh to brackish and saline 

groundwater is generally of limited thickness, occurring over an interval of 2 m to 

(exceptionally) 10 m.  An exception would be the Thamalakane aquifer located in 

between the Kunyere Fault and the Thamalakane Fault near the town of Maun.  This 

freshwater aquifer is over ~15 km long and up to 2 km wide with a maximum thickness 

of ~80 m (Campbell et al., 2006). 

 

2.2.1 Okavango Basin Evolution 

Modie (2000) summarizes the basin evolution of Ghanzi-Chobe Belt.  The 

Kgwebe Formation represents the earliest stage of basin development which has been 

dated 1106 +/- 2 Ma in age (Mesoproterozoic).  The Kgwebe Formation formed from a 

collision-related extensional collapse associated with collision along the Namaqua-Natal 

Belt (Kampunzu et al, 1998).  The Namaqua-Natal Belt extends from the west coast of 

South Africa eastward into Namibia.  The extensional tectonics led to intracontinental 
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rifting and subsequent bimodal volcanism, depositing the metavolcanic rocks that 

compose the Kgwebe Formation.  Sedimentation within the intercratonic rift was also 

occurring during this time, forming the overlying Neoproterozic Ghanzi Group sequence.  

The medisedimentary Ghanzi Group displays steep northeast trending foliation and 

shallow plunging fold axes (Schwartz and Akanyang, 1994; Akanyang, 1997) resulting 

from tectonic deformation during the Pan African Damaran Orogeny approximately 650 

Ma ago.  The Paleozoic to mid-Mesozoic Karoo Supergroup unconformably overlies the 

basement rocks.  Jurassic post-Karoo basalts cover large areas of the bedrock.  The 178 – 

181 Ma (Jurassic) post-Karoo dolerite dike swarm formed a 110 km-wide and ~2000 km-

long west-northwest-east-southeast trending swarm.  It is believed that the dikes were 

emplaced in a pre-existing zone of weakness in the basement either by mantle processes 

or stress-release between adjacent rigid plates (Modisi, 2000; Aubourg et al., 2008).  

Cenozoic deposits consisting of fluviatile fine sand and clay of the Okavango alluvial fan 

(Thomas and Shaw, 1991) cover the entire area of the ORZ.  Aeolian Kalahari beds that 

have been reworked by fluvial processes in the Okavango alluvial fan cover the 

surrounding areas (Modisi, 2000). 

Initiation of current rifting processes in the ORZ are unknown; however, 

paleoenvironmental reconstruction from sediments collected in Lake Ngami suggests that 

feeder rivers promoted extensive flow beyond the Thamalakane and Kunyere faults circa 

and beyond 120 Ka into the Makgadikgadi pans.  Between 120 Ka and ~ 40 Ka, 

neotectonic activity resulted in uplift along the Zimbabwe-Kalahari axis and 

displacement along the northeast-southwest trending faults resulting in the impoundment 

of the proto-Okavango, Kwando, and the upper Zambezi rivers and the development of 
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the proto-Makgadikgadi, Ngami, and Mababe sub-basins (Cooke 1984; Thomas and 

Shaw, 1991; Moore and Larkin, 2001; Ringrose et al., 2005) suggesting that rifting may 

have been initiated about 40 Ka. 

 Recent paleoenvironmental studies performed by Gamrod (2009) from the 

Mababe depression suggest that neotectonic activity may have been initiated between 

~40 Ka and 27 Ka.  Dates obtained from sediments sampled from the Mababe depression 

show a change in the sediment and hydrologic regime of the depression during this time.  

The change in the sedimentation record is attributed to possible movement along the 

Linyanti Fault.  Prior to tectonic activity, the entire discharge of the Kwando River likely 

flowed into the Mababe depression via the Savuti channel and the Tsatsara gap (Grove, 

1969; Shaw1985).  Uplift along the Linyanti Fault diverted flow of the Kwando River to 

the Zambezi River and away from the Mababe depression.  Rifting processes also 

resulted in the impoundment of the Okavango River and initiation of the formation and 

development of the delta to its current form. 
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CHAPTER III 
 
 

METHODOLOGY 

 

3.1 Electrical Resistivity Tomography (ERT) 

Electrical resistivity tomography (ERT) measures the potential difference at 

points on the Earth’s surface produced by direct or low frequency alternating current flow 

injected into the ground.  The resulting measured voltage is used to calculate the ground’s 

resistance to current flow.  Resistivity (or its reciprocal, conductivity) is dependent upon 

porosity, fluid saturation, and ions in solution within the pore spaces of a medium (e.g., 

Jones, 1992).  An increase in these factors allows for greater electrical current flow 

through a medium (i.e., the medium is “conductive”).  A decrease in these factors causes 

the medium to be resistant to current flow (i.e., the medium is “resistive”).  Normal faults 

are usually observed on ERT profiles as sharp lateral resistivity contrasts (e.g., Suzuki et 

al., 2000; Caputo et al., 2003; Diaferia et al., 2006) caused by the juxtaposition of 

different sediment layers and/or by different hydrological conditions on either side of the 

fault. 

We acquired four profiles using AGI’s SuperSting R8 Resistivity/IP System 

across several of the faults bounding the southern grabens of the ORZ.  Profile 1 (Figure 

3A) traversed the southwestern boundary of Lake Ngami and was ~ 9 km long.  We used 

a dipole-dipole array with 56 electrodes and 10-m spacing between each electrode along 
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each spread.  Each spread was 550 m in length with overlap of spreads occurring every 

half spread (275 m).  Profiles 2 and 3 were both 80 km and 90 km north of Lake Ngami 

respectively (Figure 3C).  Both profiles were ~2.0 km long and were acquired using the 

same dipole-dipole array with 42 electrodes and 10-m spacing for each spread.  The 

spreads were 410 m in length with spread overlaps every half spread (205 m).  Profile 4 

(Figure 3D) spanned a length of almost 10 km across the Mababe depression.  A dipole-

dipole array was used with 72 electrodes and 10-m spacing between each electrode per 

spread.  The 710-m spreads overlapped every half spread (355 m). 

The measured apparent resistivity values were inverted to obtain a model of true 

subsurface resistivity using AGI’s EarthImager 2D software.  Our criteria for inversion 

included robust inversion and an L2- Norm method available in this program.  An RMS 

error of <10% was our goal.  Each inverted section produced from EarthImager was 

imported into Geosoft’s Oasis Montaj software to create resistivity images for each of the 

profiles. 

 

3.2. Magnetotelluric (MT) Method 

Active structures in the Earth’s crust are often conduits for fluids (Park and 

Wernicke, 2003).  One of the most sensitive indicators of these fluids is electrical 

conductivity.  The magnetotelluric method simultaneously measures the magnitude of the 

Earth’s natural horizontal electric and magnetic field components over a wide range of 

frequencies which are then converted and used to compute the resistivity of a material.  

The electromagnetic energy comes from natural transient sources such as solar wind-

induced flow of charged particles in the ionosphere and distance thunderstorm activity.   
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Figure 3. Vertical derivative aeromagnetic anomaly maps.  A.) Electrical Resistivity Tomography (ERT) 
station locations for Profile 1 (white line).  B.) Magnetotelluric (MT) and magnetic station locations for 
Profile 1.  G.F. = Gumare Fault, T.F. = Tsau Fault, L.F. = Lecha Fault, K.F. = Kunyere Fault. 
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Figure 3 (cont). Vertical derivative aeromagnetic anomaly maps.  C.) ERT, MT, and magnetic station 
locations for Profile 2 and Profile 3.  D.) ERT, MT, and magnetic station locations for Profile 4.  K.F. = 
Kunyere Fault, Th.F. = Thamalakane Fault, and M.F. = Mababe Fault. 
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As the electromagnetic fields come in contact with the Earth’s surface, part of the energy 

is refracted into the ground and induces time-varying telluric currents (natural alternating 

electric fields that flow within the earth).  When these currents come in contact with a 

conductive material, the currents generate a secondary field measured by the MT system.  

The electromagnetic energy source for our surveys came from distant thunderstorms.  

Since fluid transport within rocks opens pores and cracks which in turn increases the 

mobility of solutes such as salts, calcite, or quartz within the pores (Ritter et al., 2005), 

the MT method can detect vertical conductive zones which are characteristic of active 

faults.  Faults are often less resistive than their host rocks because of increased porosity, 

fluid flow, and/or the presence of alteration material within the fault zone (Tournerie and 

Chouteau, 2001).  Certain types of mineralization, such as graphite precipitation, can lead 

to conductive old and inactive faults; however, active tectonic activity is generally 

required to maintain the interconnectivity of the pore space in the rock (Park and 

Wernicke, 2003). 

Four MT profiles were acquired across the faults bounding the ORZ.  Profile 1 

(Figure 3B) extended 140 km across the southern part of the rift while Profile 2 and 

Profile 3 (Figure 3C) near Maun were 15 and 22 km long respectively.  Profile 4 (Figure 

3D) extended across the Mababe depression for ~9.2 km.  We used Geometric’s 

Stratagem EH4 instrumentation which consisted of metal stakes (electrodes) and 

induction magnetic coils to measure the magnitude of the Earth’s horizontal electric and 

magnetic field components respectively.  Measurements were collected within three 

frequency ranges: 10 – 1000 Hz, 500 Hz – 3 KHz, and 750 Hz – 9.6 KHz.  The first two 

frequency ranges were natural while the third frequency range was measured by injecting 
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current into the ground via a transmitter.  Our dipole length was 50 m.  Station spacing 

ranged from 50 m to 5 km, depending on the proximity of a fault (i.e., stations were 

closely spaced when crossing a fault). 

The data was processed using GEOSYSTEM’s WinGLink program.  Methods 

similar to Tournerie and Chouteau (2002), Park and Wernicke (2003), and Whaler and 

Houtot (2006) were utilized for the processing of our data.  Whaler and Houtot (2006) 

suggest that subsurface structures only emerge when the electromagnetic field 

components are measured in, or rotated into, coordinates defined by the strike direction 

and perpendicular to it.  This dilemma occurs because currents parallel to structure only 

induce magnetic fields perpendicular to it (transverse electric “TE” mode)  and currents 

perpendicular to strike only induce parallel magnetic fields (transverse magnetic “TM” 

mode).  Thus, the diagonal elements of the impedance tensor vanish.  To ensure that their 

structures were imaged correctly, Whaler and Houtot (2006) determined the best 2D 

approximation of a 3D structure by rotating the impedance tensor such that its diagonal 

elements were a minimum, on a site-by-site and period-by-period basis.  Tournerie and 

Chouteau (2002) and Park and Wernicke (2003) performed similar steps by first 

identifying regional geoelectrical strike and then rotating impedance tensors and 

magnetic transfer functions to regional strike.  Prior to inversion, the electromagnetic 

field components for each station were rotated parallel to regional strike.  For our data, 

we used 060o for Profiles 1, 2, and 3.  Profile 4 sounding curves were rotated to 040o.  TE 

and TM can be set for either the north-south direction (xy) or the east-west direction (yx).  

For our data, the WinGLink program set TE equal to xy and TM equal to yx based off the 

data we collected. 
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1.) TE Impedance Tenor: � � �
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Where ρ is resistivity, f is frequency, Ex and Ey are the horizontal components of  

the electric field, and Hx and Hy are the horizontal components of the magnetic  

field. 

For each inversion, the smoothed apparent resistivity curves were used.  Both TE 

and TM impedance modes were utilized for the inversion process and depths were 

constrained based on the maximum penetration depths for each station within a profile.  

Error floors ranging from 20% to 30% were used during the inversion process in order to 

lower the root-mean-square (RMS) error and to reduce the influence of data values with 

unrealistically low error estimates (Park and Wernicke, 2003).  We chose an RMS error 

of 3% for our best fitting 2D models.  We kept the color scheme for the resistivity values 

of our models “low” in order to separate the conductivity of the faults from the extremely 

conductive environment of the grabens.  Due to poor data quality, MT Profiles 3 and 4 

will not be presented. 

 

3.3. Total Field Magnetic Surveys 

Both ground and aeromagnetic surveys were used for our study.  For our ground 

surveys (Figure 3B – 3D), we used GEM System’s proton precession magnetometer.  

Over 150 km of ground magnetic data were acquired for Profile 1 using 100-m spacing 

between each station.  Data was collected for Profiles 2 and 3 every 100 m and 250 m 

respectively.  Profile 2 ranged over 18 km in length and Profile 3 extended over 20 km in 
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length.  The displacement along Profile 2 on Figure 3C is due to a change in location 

during our acquisition process.  Profile 4 over the Mababe depression was ~20 km long 

and stations were spaced every 10 m.  Closer spacing was implemented when crossing a 

fault. 

The aeromagnetic data used in this study, also used by Kinabo et al. (2007; 2008), 

was acquired in 1996 and has been provided by the Geological Survey of Botswana.  The 

flight elevation for the aeromagnetic data was 80 m along north-south lines with spacing 

of 250 m.  The tie lines were east-west and spaced 1.25 km apart.  The international 

geomagnetic reference field was removed and the data were gridded in Geosoft’s Oasis 

Montaj program with a grid cell size of 62.5 m.  Derivative filters were applied to the 

residual total field magnetic data in order to highlight the main structural features of the 

area which include faults, dikes, and folds. 

2D magnetic models were created from our ground surveys using NGA’s GM-

SYS modeling software.  Total magnetic field, inclination, and declination parameters 

were input into the software in order to correctly model the data over the ORZ.  The 

basement cut by current faulting is interpreted to be the metavolcanic rocks of the 

Kgewbe Formation and the metasediments of the Ghanzi Group.  Therefore, we used 

susceptibility values ranging from 4.3x10-5 to 2.0x10-4 SI to represent the basalts, 

metavolcanics, and metasediments that compose the basement material.   

 

3.4. Gravity 

Two gravity profiles were used for our study (Figure 4).  The data for Profile 

1(Figure 4A) was provided to us by the Geological Survey of Botswana.  The profile  
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Figure 4. Vertical derivative gravity anomaly maps displaying station locations for A.) Profile 1 
through the Lake Ngami graben and B.) Profile 4 through the Mababe depression.  Dashed lines 
delineate the location of the faults in relation to the grabens.  Triangles represent the locations of 
towns and villages. 
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spanned over 120 km in length along a stretch of highway between the village of 

Bothatogo and the town of Gumare.  A reading was taken every ~200 m.  The second  

profile was Profile 4 (Figure 4B) which was acquired in the Mababe depression using a 

Scintrex CG-5 autograv gravity meter.  Readings were collected every 100 m.  For the 

Mababe profile, relative elevation was determined using a total station tied to the 

elevation of the absolute gravity station at the Maun airport.  Tidal, free air, and Bouguer 

corrections were applied to the data set using 2.67 g/cm3 reduction density. 

The gravity data presented in Figure 4 was acquired in 1999 on a 7.5 km grid with 

an acquisition accuracy of 0.2 mGal.  The data was made available for our study by the 

Geological Survey of Botswana.  Tidal, free air and Bouguer corrections were applied to 

the data and the data was gridded with a grid cell size of 1.84 km using Geosoft’s Oasis 

Montaj program. 

2D gravity models were constructed using NGA’s GM-SYS modeling software to 

determine the subsurface structure of the basins and sediment thickness.  The main  

parameters used for the models were sediment density and the density associated with 

basement rocks.  Depths obtained from Euler deconvolution solutions (Thompson, 1982) 

and results from Kinabo et al. (2007;2008) were used as estimates for sediment fill.  

Density values were obtained from Telford et al. (1990) based on the lithologies of the 

rocks and sediments that compose the rift. 
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CHAPTER IV 
 
 

RESULTS 

 

4.1. Electrical Resistivity 

For Profile 1 (Figure 5A), we displayed only the first 4200 m.  The final 5000 m 

was acquired over the graben and showed minimal changes in the geoelectric sections.  

Profile 1 across the Kunyere Fault near Lake Ngami suggests a depth of penetration of 

~100 m.  Higher resistivity values characterize the SE section of the profile over the 

basement.  Three geoelectric units are observed: a top unit occurs at a depth of 10 to 20 m 

and consists of resistivity values ranging from 660 – 1300 Ohm.m.  This resistive layer 

extends for ~1500 m along the profile from Bothatogo Village before transitioning into 

less resistive material within the graben, which is predominantly composed of low 

resistivity values ranging from 0.9 – 30 Ohm.m.  The upper resistive layer is underlain by 

a second layer of less resistive material ranging from 40 – 300 Ohm.m.  A third more 

resistive geoelectric unit near the bottom of the profile has values ranging from ~400 – 

5000+ Ohm.m.  According to the location of Profile 1 on the regional aeromagnetic map 

of the area, the Kunyere Fault near Lake Ngami is located between 2550 and 3100 m 

(arrows) on the profile.  Note that the area containing the fault shows a laterally 

discontinuous geoelectric unit of resistive rock juxtaposed against conductive sediments
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delineated by sharp boundaries and is located after the exposed fault scarp. 

 Profile 2, located 80 km northeast of Lake Ngami, is composed of two geoelectric 

units: a thin resistive top layer similar to Profile 1 ranging from 300 – 5000+ Ohm.m 

underlain by a second less resistive layer 0.9 – 200 Ohm.m (Figure 5B).  The resistive 

layer continues for ~1200 m to the northwest before disappearing and then reappearing 

for ~200 m near the beginning of the profile.  The second less resistive layer is fairly 

consistent except for an area between 1000 and 1400 m which exhibits discontinuity 

where resistive material is inter-mixed with conductive sediments.  The Thamalakane 

Fault is located approximately 1300 m from the southeast. 

The presence of a resistive layer capping the surface of the profile is less apparent 

on Profile 3 (Figure 5C), which is located 10 km northeast of Profile 2.  However, the 

resistive top layer can be seen for the last 200 m near the end of the profile which 

displays an area of sharp resistivity contrasts.  The Kunyere Fault near Maun is located 

within the discontinuous zone (approximately 2500 m from the west).  The remainder of 

the profile is predominantly a mixture of conductive and resistive (0.9 – 700 Ohm.m) 

material before reaching the graben, which is composed of conductive sediments ranging 

from 0.9 – 80 Ohm.m. 

Profile 4 in the Mababe depression (Figure 5D) parallels Profile 3 by displaying a 

similar two-layered geoelectric model: the first layer being the characteristic thin resistive 

zone near the surface ranging from ~20 – 80 Ohm.m and the second layer at depth 

consisting of less resistive sediments measuring 0.2 – 10 Ohm.m.  The thin resistive top 

layer is most apparent in the southeast near the end of the profile and is especially 

resistive between 7000 and 8200 m.  This thin resistive zone exists throughout the entire  
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Figure 5. 2D resistivity sections for A.) Profile 1 across the Kunyere Fault and B.) Profile 2 across 
the Thamalakane Fault.  Arrows indicate fault locations.  See Figure 3 for profile locations on the 
vertical derivative aeromagnetic anomaly map. 



 30

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (cont). 2D resistivity section for C.) Profile 3 across the Kunyere Fault.  Arrow indicates 
fault location.  See Figure 3 for profile location on the vertical derivative aeromagnetic anomaly 
map. 
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Figure 5 (cont). 2D resistivity sections for D) Profile 4 across the Mababe Fault.  Arrow indicates 
fault location.  See Figure 3 for profile location on the vertical derivative aeromagnetic anomaly 
map. 
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profile, even though the resistivity of the layer decreases in the graben which contains 

sediments ranging from 0.2 – 50 Ohm.m.  The location of the profile on regional 

aeromagnetic maps places the Mababe Fault between 6800 and 7200 m. 

 

4.2 MT 

Our MT results are presented as 2D inverted cross-sections.  Their accompanying 

mesh inversions are located in the Appendix.  Penetration depths for Profile 1 (Figure 6 

A3) reached as deep as 1700 m below the surface along the footwall of the Kunyere 

Fault; however, only the top 400 m are shown for our complete 2D MT inversion model 

due to the highly conductive environment and lack of penetration within the graben.  The 

model displays three distinct vertical areas of high conductivity ranging from 6 – 12 

Ohm.m (from northwest to southeast) below stations 59 – 63, 49 – 48, and 37 – 31.  

According to the location of the profile on the regional aeromagnetic map, stations 49 – 

48 cross the Tsau Fault and stations 37 – 35 cross the Lecha Fault.  The cause of the third 

conductive zone (stations 059 – 063) is unknown.  However, a ternary map of the area 

near the conductive anomaly (Figure 9G) shows a structure within the basement that may 

be responsible for the low resistivity values associated with this zone.  Along the profile, 

the three conductive zones are separated by sediments of higher resistivity.  The highest 

values are located near the town of Gumare at the beginning of the profile and at the end 

of the profile near Bothatogo Village within the basement rocks. 

In order to further investigate the detailed structure of the Tsau and Lecha faults 

within the subsurface, a second inversion near the faults was performed for Profile 1 

(Figure 6B).  It is apparent from the inversion that the Lecha Fault has a broader area of  
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Figure 6. Gravity profile (A1), magnetic profile (A2), and the MT inverted cross-section model (A3) for 
Profile1.  Fault locations are indicated by arrows on the gravity and magnetic profile.  See Figure 3 for 
profile locations on the vertical derivative aeromagnetic anomaly map and Figure 4 for profile locations on 
the vertical derivative gravity anomaly map. 
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Figure 6 (cont). Figure 6B and 6C are enlarged areas of the Profile 1 MT model to further investigate the 
conductive behavior of the Tsau, Lecha (6B), and Kunyere (6C) faults.  See Figure 3 for profile location 
on the vertical derivative aeromagnetic anomaly map. 
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Figure 7. Magnetic profile (A) and the MT inverted cross-section model (B) for Profile 2 across the 
Thamalakane Fault.  The location of the Thamalakane Fault is delineated by a red rectangle on the 
magnetic data.  See Figure 3 for profile location on the vertical derivative aeromagnetic anomaly map. 
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conductivity than the Tsau Fault.  Note the second area of high conductivity southeast of 

the Lecha Fault beneath stations 33 – 31 ranging from 7 – 12 Ohm.m.  The Tsau Fault 

appears to have a narrow area of conductivity expressed by anomalies ranging from 6 – 9 

Ohm.m on the mesh model (Appendix A2) northwest and southeast of the fault.  

According to the cross-section (Figure 6B), the anomalies near the Lecha Fault reach a 

depth of ~150 m below the surface while the Tsau Fault anomalies reach a much 

shallower depth of ~50 m below the surface. 

To investigate the character and geometry of the Kunyere Fault near Lake Ngami, 

we present a third inversion of Profile 1 (Figure 6C).  Regional aeromagnetic maps place 

the Kunyere Fault between stations 20 – 17.  The model displays an area of resistive 

material from Bothatogo Village to station 22.  Note how the resistive anomaly continues 

well beyond the fault scarp (footwall) and into the graben.  Also, notice how the Kunyere 

Fault is not delineated by a vertical conductive feature.  Instead, there is a very sharp 

boundary between the resistive material associated with the footwall and the conductive 

sediments within the graben. 

For Profile 2 (Figure 7B), the deepest depth of penetration reached close to 700 m 

below the surface; however, we displayed only the top 400 m.  The 2D MT mesh 

inversion model (Appendix A4) and cross section both show one well-defined area of 

high conductivity (6 – 9 Ohm.m) below stations 76 – 73 that reaches a depth of ~250 – 

300 m below the surface.  The location of the profile on the regional aeromagnetic map 

near Maun suggests that the Thamalakane Fault is crossed between these stations. 

 

4.3 Total Field Magnetic Surveys 
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Along Profile 1 (Figure 6 A2), the Tsau and Lecha faults are depicted as large 

magnetic “spikes” within the data set.  According to the location of Profile 1 on regional 

aeromagnetic maps of the area, the profile intersects the Tsau and Lecha faults between  

113 and 114 km respectively.  The Tsau and Lecha magnetic spikes occur in the same 

locality as the conductive anomalies representing these faults on MT Profile 1.  The very 

large spike between 55 – 57 km is an unknown anomaly; however, the large spike is 

located within the same vicinity as the anomalous zone of low conductivity on MT 

Profile 1 (stations 59 – 63). 

The same characteristic spike associated with the Tsau and Lecha faults within 

our area of interest can also be seen on Profile 2 (Figure 7A).  The Thamalakane Fault 

(delineated by the red rectangle) is located at the end of the profile between 18 – 19 km 

according to the placement of the profile on the regional aeromagnetic map of the area.  

The location of both the magnetic and MT profiles on the regional aeromagnetic map 

place the Thamalakane Fault within the same locality. 

The location of the Kunyere Fault near Maun for Profile 3 (Figure 8A) is not 

exact.  Latitude and longitude coordinates were not collected for this profile; however, 

MT stations containing latitude and longitude coordinates were collected in this area.  

Both ground magnetic and MT acquisition profiles were approximately collected over the 

same area.  The possible fault location is based on the location of the MT stations and 

vertical derivative regional aeromagnetic maps of our area of interest.  The magnetic 

spike signature is not as apparent for the Kunyere Fault as seen by the Tsau, Lecha, and 

Thamalakane faults; however, a magnetic high is visible before transitioning into a 

magnetic low, which is characteristic of the Tsau, Lecha, and Thamalakane faults. 
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Figure 8. Gravity and magnetic profiles.  A.) Profile 3 magnetic data across the Kunyere Fault.  
B.) Profile 4 gravity data across the Mababe depression.  C.) Profile 4 magnetic data across the 
Mababe Fault.  See Figure 3 for profile locations on the vertical derivative aeromagnetic anomaly 
map and Figure 4 for profile locations on the vertical derivative gravity anomaly map. 
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The Mababe fault along Profile 4 (Figure 8C) is represented as a very strong 

magnetic spike reading 30800 nT.  Unlike the other faults within our area of interest, the 

Mababe fault is depicted as a positive anomaly where as the Tsau, Lecha, Thamalakane, 

and Kunyere faults are all characterized by negative anomalies. 

 

 4.4 Gravity  

Two distinct lows are present on Profile 1, the first is located between 20 and 40 

km and the second between 80 and 100 km (Figure 6 A1).  Both lows can be easily seen 

on the vertical derivative gravity map as depressions (Figure 4A).  The lows both have a 

gravity reading of ~ -127 mGals.  Profile 4 (Figure 8B) depicts an 18 km-wide low that is 

also very distinct on the vertical derivative gravity map (Figure 4B). 
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CHAPTER V 
 
 

DISCUSSION 

 

Previous research conducted by Kinabo et al. (2007; 2008) has provided some 

understanding about specific characteristics associated with the five faults of interest 

within our investigation.  Through our continued research over these faults, we aim to 

grasp a better understanding of their tectonic activity, fault zone architecture, magnetic 

characteristics, and the implication of these findings as they relate to fluid flow along the 

faults. 

Several studies have used electrical geophysical techniques, in particular MT, to 

characterize the activity of faults.  For example, in MT studies across several fault zones, 

Ritter et al (2005) were able to document that the conductivity structure of active faults 

were distinctly different from inactive faults.  Active fault zones were characterized by a 

distinct fault zone conductor (FZC), while inactive zones tend to lack a FZC.  For 

example, in the central segment of the San Andreas Fault, a zone of high conductivity 

extending to a depth of several kilometers and attributed to fluids within a highly 

fractured damage zone is associated with the seismogenic zone (creeping segments), 

whereas locked segments (e.g., the Carrizo segment) lacked the strong conducive 

signature (Mackie et al., 1997; Unsworth et al., 1997; Unsworth et al., 1999; Unsworth et 

al., 2000; Bedrosian et al., 2004; Unsworth and Bedrosian, 2004; Ritter et al., 2005).  
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These studies suggest the important role of fluids in fault activity and earthquake 

generation.  The results of our study suggest that the major faults display different 

conductivity structures which we infer may be related to the activity of the faults. 

 

 5.1 Fault Activity 

  5.1.1. Tsau Fault and Lecha Fault 

The Tsau and Lecha faults are well expressed on the aeromagnetic maps within 

the basement (Figure 3B) however; unlike the other faults of the ORZ (i.e. – Kunyere, 

Thamalakane and Mababe) which have well defined topographic scarps, these faults lack 

any surface expression leading to the suggestion that they are 1.) inactive, 2.) concealed 

by rapid sedimentation associated with Okavango alluvial fan deposits (i.e., 

sedimentation rates are higher than vertical movement of the faults), or 3.) they were 

reactivated but lack sufficient energy to rupture the surface (i.e., blind normal faults).  

The MT Profile 1 (Figure 6B) shows conductive anomalies that coincide with the surface 

location of the Tsau and Lecha faults.  We interpret this fault zone conductivity anomaly 

to be related to the presence of fluids.  Because of the high conductivity associated with 

the sediments within the graben, the MT profiles did not image the basement, hence the 

results only show conductive anomalies located within the sedimentary cover.  We infer 

from this observation that both the Tsau and Lecha faults have propagated into the 

shallow sediments, at least to a depth of 30 m, suggesting continued activity of the faults. 

The conductive anomalies surrounding the faults on Figure 6B may suggest 

multiple faulting or splays from the Tsau and Lecha faults, which is consistent with 

Kinabo et al. (2008) explanation of fault-plane propagation.  As the leading edge of the 
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main propagating fault plane approaches the hard-rock sediment interface, strain resulting 

from extensional processes is accommodated, causing the fault plane to splay into 

different fault segments which rupture at the surface.  These splays are depicted on the 

MT models as separate zones of conductivity near the location of the faults. 

 

  5.1.2 Kunyere Fault 

In contrast to the Tsau and Lecha faults, the Kunyere Fault near Lake Ngami on 

MT Profile 1 lacks the FZC signature characteristic of active faults (Figure 6C).  This 

observation is consistent with Kinabo et al. (2008) who suggest that tectonic activity is 

waning along the southwestern segment of the Kunyere Fault as strain is being 

transferred to the younger more active Thamalakane Fault in the northeast.  The Kunyere 

Fault’s inactivity is also apparent on ERT Profile 1 (Figure 5A).  Note how the resistive 

top layer covers the fault, suggesting that the fault has not been active in recent times. 

It was suggested by Kinabo et al. (2008) that some fault scarps are experiencing 

retreat as a result of erosion during the hiatus between episodes of faulting.  In Lake 

Ngami, there was a single outcrop of fault breccia 2 km west of the Kunyere Fault scarp 

within the lake.  The fault breccia is located near station 22 on MT Profile 1 (Figure 6C).  

Note how the resistive rocks extend well beyond the fault scarp and end near the breccia 

site.  If the breccia site represents the original location of the Kunyere Fault, then it is 

apparent that erosion has caused the scarp to retreat which is a clear sign of tectonic 

inactivity.  Also, note how the resistive anomaly near the breccia site on MT Profile 1 

(Figure 6C) is not apparent on ERT Profile 1 (Figure 5A).  The ERT profile depicts the 

area around the breccia site as conductive.  We attribute the discrepancy between the two 
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data sets to differences in depth of penetration.  MT data does not show the top 10 – 30 m 

of the subsurface; therefore, the penetration depths for MT data are deeper than ERT 

data.  This suggests that the resistive breccia site cannot be seen in the graben on the ERT 

section because it is masked by the very conductive lake sediments that compose the top 

30 m (e.g., Laletsang et al., 2008) of Lake Ngami.  However, the MT profile is able to 

image the breccia site within the graben because the penetration depths is greater. 

 

5.1.3 Thamalakane Fault 

The MT Profile 2 model (Figure 7B) depicts the Thamalakane Fault as a broad 

conductive anomaly near the end of the profile with multiple vertical conductive zones 

throughout the remainder of the profile.  Again, we interpret the conductive anomalies 

associated with the Thamalakane Fault as resulting from the presence of fluids which 

further suggests tectonic activity.  Note how the calcretes on ERT Profile 2 are not 

covering the fault (Figure 5B).  This observation is further confirmation that the 

Thamalakane Fault remains active. 

 The multiple areas of conductivity near the Thamalakane Fault arise from the 

fault being segmented along strike.  Aeromagnetic maps (Figure 3C) as well as our 

ground survey (Figure 7A) clearly show that the fault contains multiple segments within 

the basement.  Kinabo et al. (2008) describes the Thamalakane Fault as over lapping right 

stepping en-echelon fault segments that are visible on the surface as well.  These 

segments are attributed to the characteristic fault-plane propagation associated with the 

other faults within the ORZ. 
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 5.1.4 Mababe Fault 

Careful observation of the Mababe graben on the DEM map (Figure 2A) shows 

two scarps associated with the Mababe depression that are about 7 km apart.  A question 

concerning the inner most scarp is whether or not the scarp is a hydrographic/erosional 

scarp related to the shorelines of paleo-lake Mababe or if the inner scarp is geologically 

controlled.  ERT Profile 4 (Figure 3D) and ground magnetic data (Figure 8C) suggest that 

the scarp is tectonically controlled.  On ERT Profile 4, note how the Mababe Fault does 

not have substantial calcretes covering the fault which suggests active tectonic activity.  

A ~12 m drop in surface elevation and a >200 nT magnetic anomaly associated with this 

feature is further indication that the inner scarp is controlled by tectonics. 

 

5.2 Source of Conductivity 

The ERT and MT profiles for our study were acquired within the distal end of the 

Okavango Delta near the southern extent of the rift zone.  Both the ERT and the MT 

results depict the ORZ subsurface within the grabens as a very conductive environment.  

The tectonically active faults associated with the ORZ show a characteristic FZC 

signature characteristic of active fault segments (e.g., SAF).  The location of the faults 

based on the aeromagnetic maps with respect to the location of the delta (Figure 2) shows 

that the faults link up and extend into the delta, suggesting that a probable source for the 

highly conductive nature of the faults may be attributed to surface water and groundwater 

from the delta being channeled by the faults.  Campbell et al. (2006) noted that fresh 

water within the Okavango Delta has a value of 9 – 30 Ohm.m while brackish water 

ranges from 3 – 8 Ohm.m and saline fluids are < 3 Ohm.m.  MT Profile 2 (Figure 7B) 
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depicts the Thamalakane Fault near Maun as a large conductive anomaly with a 

resistivity value of < 5 Ohm.m, suggesting that this fault zone is channeling brackish to 

saline water directly from the Thamalakane River.  Near Maun, tributaries from the 

Okavango Delta truncate against the Thamalakane Fault, causing the Thamalakane River 

to flow along the fault zone.  Although we do not have MT data for the Kunyere Fault 

near Maun, several of the rivers extending from the delta also truncate against the fault.  

Similar to the Thamalakane Fault, this would allow water from the rivers to be channeled 

by the Kunyere Fault zone.  We are also uncertain about whether or not the Mababe Fault 

is channeling fluids since we lack quality MT data for this area of the rift.  Similar to 

Lake Ngami, the Mababe depression is a paleo-lake.  Water was formerly supplied to the 

lake by the Kwando River prior to the river being diverted by uplift along the Linyanti 

Fault.  Our ERT profile for the Mababe depression (Figure 5D) shows that the graben 

hosts very conductive sediments reaching resistivities as low as < 1 Ohm.m.  The high 

conductivity values may be attributed to a thin film of saline fluid from 

evapotranspiration processes (e.g., McCarthy et al., 1991) coating the surface of the 

mineral grains.  Milzow et al. (2009) explain that surface calcretes and silcretes, also 

known as duricrusts, form due to cementation of sand by silica and carbonate rich pore 

waters.  Subsurface duricrusts form in the vadose zone close to the water table.  Water 

table fluctuations lead to alternating saturated and unsaturated conditions which 

ultimately lead to duricrust precipitation.  Calcretes form during saturated conditions 

while silcretes form during unsaturated conditions (Shaw and Nash, 1998).  During the 

evapotranspiration process, transpiration by trees and evaporation processes cause the 

water table to fluctuate which enriches the subsurface with silica and carbonate salt 
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deposition.  Within the Mababe depression, the source of the high conductivity may be 

due to sand grains that contain dissolved solutes (saline fluids) within the pore spaces of 

the sediments. 

According to MT Profile 1 (Figure 6B), both the Tsau Fault and the Lecha Fault 

near Lake Ngami have conductive anomalies ranging from 5 - 10 Ohm.m that have 

propagated into the sedimentary cover.  Our MT profile crosses the southwestern 

segments of the Tsau and Lecha faults which are located within the drier regions outside 

of the delta; however, note that both the Tsau and the Lecha Fault extend into the delta 

along strike in the northeast (Figure 2).  This suggests that the conductivity for these 

faults is sourced from water being channeled by the faults in the northeast or by 

groundwater flow toward the dry regions outside the permanent and seasonal delta near 

Lake Ngami. 

The lack of tectonic activity along the Kunyere Fault near Lake Ngami may 

suggest that the fault has been sealed by calcite/silica cement in this area, similar to the 

Sand Hill Fault in the Albuquerque basin, New Mexico.  A study of the elongate patterns 

of cementation along the Sand Hill Fault led Mozley and Goodwin (1995) to conclude 

that calcite cements precipitated from subvertical flowing groundwater and are elongate 

parallel to the flow direction at the time of precipitation.  Analogous to the faults of the 

ORZ, the Sand Hill Fault is located in an arid environment, where carbonate precipitation 

is the dominant process in weathering horizons (Mozely and Goodwin, 1995).  Milzow et 

al. (2009) mention that the calcretes and silcretes that are mainly found in the distal parts 

of the Okavango Delta are attributed to the enrichment of silica and carbonates in the 

surface water down the flow gradient due to evapotranspiration processes (McCarthy and 
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Ellery 1995; Shaw and Nash, 1998).  Our ERT and MT data show that the Kunyere Fault 

near Lake Ngami (Figure 5A and 6C) has not moved in recent times which may have 

allowed for past surface water and groundwater from the delta to flow vertically along the 

fault and accumulate precipitated calcite and silica cements which eventually sealed the 

fault.  Fault movement and active deformation is generally (but not necessarily) required 

to maintain the interconnectivity of pore space within a rock.  The lack of tectonic 

activity can cause solutes that are carried in the fluids being channeled by the faults to 

precipitate in the pore space and eventually seal the fluid pathways (Park and Wernicke, 

2003; Hoffmann-Rothe et al., 2004). 

It is possible that the Kunyere Fault near Lake Ngami does posses a FZC that is 

too narrow to be resolved by MT, similar to the Dead Sea Transform Fault (DST - the 

Arava Fault) located in the Arava valley in Jordan.  The Arava Fault is an active left-

lateral transform fault which lacks a distinct FZC.  Ritter et al. (2003; 2005) attribute the 

absence of the FZC to a narrow damage zone (i.e., a broad highly permeable zone with an 

increase concentration of fractures, faults, and veins surrounding the fault core – Chester 

and Logan (1986); Caine et al. (1996); Evans et al. (1997); Ritter et al. (2005).  The 

narrow damage zone implies that strain has been extremely localized upon a single, very 

narrow shear zone over long periods of time (Mitra and Ismat, 2001; Ritter et al., 2003; 

2005).  According to Ritter et al. (2005), the lack of a FZC in the brittle crust is coupled 

with the fault acting as a barrier to cross-fault fluid flow transport due to an impermeable 

fault seal, a lithological contrast across the fault, or some combination of the two. 

In contrast to the active Arava Fault, we interpret the Kunyere Fault near Lake 

Ngami to be recently inactive; however, analogous to the Arava Fault, a FZC may exist 
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for the Kunyere Fault, but a narrow damage zone may cause the FZC to be too narrow to 

be imaged by the MT survey.  The source (if any) of the conductivity within the damage 

zone could be attributed to water being channeled by the fault in the northeast near the 

delta or by groundwater flow outside the permanent and seasonal delta near Lake Ngami.  

If the Kunyere Fault has undergone cementation, it would cause the fault to act as an 

impermeable barrier to cross-fault groundwater flow, similar to the Arava Fault. 

 

5.3 Fault Zone Architecture: 

The Department of Water Affairs (e.g., DWA, 2004; Milzow et al., 2009) 

conducted a major groundwater exploration program from 1995 – 1997 and 2000 – 2004 

to supply water to Maun and surrounding areas.  Over 150 boreholes were drilled an 

average of 60 m below ground level in the distal regions of the delta near the Kunyere 

and Thamalakane faults.  The boreholes revealed that the lithology both parallel and 

perpendicular to the faults consisted of clay, clayey, and silty sands inter-layered with 

fine-to-medium-grained sands.  Fluctuations between wet and dry climatic periods are 

responsible for the large-scale inter-layering of these sediments.  Wet periods allowed for 

clay-rich and silty sediments to be deposited along the faults from standing water from 

the delta being pooled directly against the faults while larger sand grains were deposited 

during drier periods when the delta was dominated by fluvial conditions.  Near the 

Thamalakane and Kunyere faults, the sand-dominated lithology pinches out while the 

more clay-dominated layers thicken.  The prevalence of clay material on or near the fault 

zones suggests that the faults act as effect barriers to lateral groundwater flow (DWA, 

2004; Milzow et al., 2009).  These observations may also suggest that the conductive 
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anomalies associated with the faults shown by our MT data are a result of clay content 

both parallel and perpendicular to the faults rather than brackish groundwater being 

channeled by the faults.  Clay minerals can have very low resistivity values ranging from 

5 – 20 Ohm.m (Palacky, 1987). 

Our ERT and MT results combined with the observations made by the DWA and 

Milzow et al. (2009) may suggest that the fault zones are acting as both conduits and 

barriers to fluid flow.  According to several authors (e.g., Chester and Logan, 1986; 

Caine et al., 1996; Evans et al., 1997; Ritter et al., 2005) the primary components that 

control fluid flow within a fault zone are fault core, damage zone, and protolith.  The 

fault core is a narrow (centimeters – meters), often impermeable zone of highly deformed 

rock where the majority of slip is accommodated.  The damage zone is a broad (up to 

hundreds of meters) highly permeable zone with an increased concentration of fractures 

and faults, while the protolith is the undeformed country rock.  The fault core is 

dominated by grain size and/or mineral precipitation whereas in the damage zone, 

permeability is dominated by the hydraulic properties of fracture networks such as small 

faults, veins, fracture, cleavage, and folds.  Whether a fault zone will act as a conduit, 

barrier, or combined conduit-barrier system is controlled by the relative percentage of 

fault core and damage zone structures and the variability in grain size and fracture 

permeability (Caine et al., 1996).  For example, the clay-rich sediments surrounding the 

Kunyere and Thamalakane faults near Maun suggest that the fault cores in this area, 

where the delta comes in direct contact with the faults, would act as barriers to lateral 

groundwater flow perpendicular to the fault zones.  Along strike towards the southwest 

near Lake Ngami, the calcite and/or silica-cemented fault breccia associated with the 
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Kunyere Fault suggests that the fault core in this area of the rift, where it is relatively dry, 

would act as post-deformational barriers to lateral fluid flow.  However, the subsidiary 

fractures and splays in the damage zones of the ORZ faults suggest that the faults would 

also act as conduits for fluid flow within the fault zones.  Multiple fault segmentation of 

individual faults along strike displayed on the aeromagnetic and SRTM maps combined 

with the localized fault splays and fractures depicted on our ERT and MT profiles reflect 

a combination of localized and distributed strain within the rift system.  Combined strain 

localization and distributed deformation suggests a barrier-conduit permeability structure 

(Caine et al., 1996).  The impermeable fault cores act as barriers to lateral groundwater 

flow between faults while the fractures, linements, and splays within the damage zones 

act as vertical conduits for fluid flow. 

 

5.4 Differences in Magnetic Signatures 

One characteristic of the faults associated with the ORZ that needs further 

attention is the differences in magnetic signatures of the faults.  For example, the Mababe 

Fault and Gumare Fault exhibit a magnetic high on regional aeromagnetic maps.  In 

contrast, the Tsau, Lecha, Kunyere, and Thamalakane faults all display a magnetic low 

(Figure 9).  Several factors may be responsible for the differences in magnetic 

expression.  One factor may be the influence of the Okavango Delta.  As previously 

stated, the faults link up and extend into the delta in the northeast (Figure 2) which 

suggests that the conductivity displayed by several of the faults is sourced from surface  
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Figure 9. Enlarged vertical derivative aeromagnetic images of segments of the faults associated with 
the ORZ.  A.) Southern Kunyere Fault.  B.) Southern Tsau Fault.  C.) Southern Lecha Fault.  D.) 
Southern Thamalakane Fault.  E). Mababe Fault.  F.) Gumare Fault.  Blue dashed lines delineate our 
magnetic acquisition profiles. 
 



 52

 

 
 
 
 
 

Figure 9 (cont). Ternary map showing the location of the conductive and magnetic anomaly along 
MT Profile 1 (stations 059 – 063) and magnetic Profile 1. 
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water and/or groundwater being channeled from the delta by the faults.  A hypothesis 

proposed by Peirce et al. (1998) suggested that magnetization along faults may be caused 

by the commingling of fluids and rocks of contrasting redox potentials.  The process 

involves iron being transported in oxidized waters flowing along vertical faults and 

fractures near basement rocks and the precipitation of exotic iron-bearing minerals during 

the ascent of the water as it undergoes redox reactions.  The redox state of the rocks are 

based on mineralogy: highly oxidizing conditions prevail during deposition of evaporites 

(abundant hematite and anhydrite) while reducing environments occur during deposition 

of anoxic marine shales (pyrite and anhydrite)(Peirce et al., 1998).  The Okavango Delta 

is a both a fluvial and lacustrine system where carbonate precipitation (i.e., evaporites) 

dominates.  If the oxidized fluids being channeled by the fault zones flow deep enough to 

encounter basement rocks at high temperature conditions, redox reactions can liberate 

iron from the basement rocks.  Geochemical reactions between iron and hematite, a 

mineral that occurs in hydrothermal and weathering environments, can result in the 

deposition of maghematite, a mineral with a high magnetic susceptibility.  The deposition 

of maghematite would in turn cause a magnetic high on aeromagnetic maps (i.e., the 

Gumare Fault and the Mababe Fault).  Weathering processes within fault zones due to 

fluid alteration where iron is not being precipitated could result in a magnetic low.  Note 

that the majority of the faults that are expressed as magnetic lows (i.e., the Tsau, Lecha, 

Thamalakane, and Kunyere faults) are located at the distal end of the delta (Figure 2) and 

are interpreted to be conducting fluids, especially the Tsau, Lecha, and Thamalakane 

faults.  This suggests that the magnetic lows for these faults are due to weathering 

processes from the presence of fluids within the fault zones.  This observation also 
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suggests that redox reactions may be occurring in only certain parts of the delta.  Reasons 

for the difference in location of magnetic and non-magnetic fault signatures include: 1.) 

current fluid flow status along the faults (i.e., no fluid flow means no redox reactions), 2.) 

chemistry of the groundwater during flow, and 3.) reactions that modify groundwater 

flow.  The chemistry of the groundwater is likely to evolve during flow.  In the case of 

the Okavango Delta, the groundwater becomes more saline down gradient from the 

beginning of the delta (McCarthy and Ellery, 1995; Shaw and Nash, 1998).  Thus, faults 

that are close to the source of the delta encounter very different fluid chemistries than 

those that are more distal.   

A second factor may be the extreme variability of the magnetic conditions within 

the rocks surrounding the faults.  For example, parts of Thamalakane Fault occur between 

rocks of contrasting magnetic properties (i.e., the magnetic Kgwebe Formation and the 

non-magnetic Ghanzi Group rocks).  Parts of the Kunyere Fault and Mababe Fault are 

lineaments that contrast shallow magnetic sources on the plateau (up-thrown) side of the 

faults to a down-thrown and deeply buried magnetic source in the basin side of the fault.  

These high contrast scenarios will be different when both sides of the fault have similar 

magnetic properties.  The reason for the contrast in the magnetic signature of the faults is 

unknown; however, we attribute the contrast to fluid-rock interactions along the fault 

planes and/or differences in magnetic properties of the rocks on either side of the faults. 

 

5.4.1. Fault Models 

Grauch et al. (2001) performed a study over the Albuquerque basin within the Rio 

Grande Rift.  They concluded from aeromagnetic surveys, profile and map analysis, and 
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studies of magnetic properties (i.e., magnetic susceptibilities) of core samples that faults 

within sedimentary basins can best be explained by juxtaposition of basin fill of differing 

magnetic properties.  Their study provides insight on how the magnetic expression of 

faults in profile can range from symmetric curves with one inflection point to curves with 

two asymmetric peaks that have two or more inflection points.  The symmetric curves 

can be modeled as a single magnetic layer juxtaposed against non-magnetic material.  

The asymmetric peaks are modeled by general geometry of a thin magnetic layer on the 

up-thrown side of the fault offset from a thicker magnetic layer on the down-thrown side 

of the fault, referred to as the “thin-thick” model.  These models provide an alternative 

explanation for apparent fault-zone lows, compared to Mozley and Goodwin’s (1995) 

conclusion that cementation along fault planes from past fluid flow can be responsible for 

loss of magnetization within a fault zone. 

Our magnetic ground data profiles that we acquired over the Tsau, Lecha, 

Kunyere, Thamalakane, and Mababe faults have both symmetric and asymmetric 

appearances similar to the profiles discussed by Grauch et al. (2001).  The reason for the 

contrast in the magnetic signature of the faults is unknown; however, we attribute the 

contrast to hydrological conditions along the fault planes and/or differences in magnetic 

properties on either side of the fault 

MT Profile 1 depicts the Tsau Fault as a conductive anomaly which we interpret 

to be an active fault that has propagated into the shallow sediments.  Our model (Figure 

10A) displays the fault as a small magnetic low that has had very little influence on 

displacing basement material.  Note how the basement rocks on Figure 9B are the same 

intensity on both sides of the fault.  An interesting observation to note about the Tsau  
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Figure 10. Magnetic models representing the A.) Tsau Fault and B.) Lecha Fault.  Models were created 
using NGA’s GM-SYS modeling program.  Susceptibilities are in SI units. 
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Figure 10 (cont). Magnetic models representing the C.) Thamalakane Fault and D.) Mababe Fault.  
Models were created using NGA’s GM-SYS modeling program.  Susceptibilities are in SI units. 
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Fault is that the fault cannot be seen on the aeromagnetic map until the first vertical 

derivative of the aeromagnetic data is taken. 

The Lecha Fault, which we interpret to be a tectonically active fault that has 

propagated into the sedimentary cover, is shown as a large well-defined low-magnetic 

linear feature (Figure 10B).  Aeromagnetic maps indicate that the Lecha Fault has 

displaced basement material (Figure 9C); therefore, the model honors this observation by 

displacing the basement rocks on the up-thrown and down-thrown blocks by a few 100 

m. 

The Thamalakane Fault (Figure 10C) is interpreted to be a tectonically active fault 

which exhibits some displacement within the basement.  It is depicted as a linear 

magnetic low on the aeromagnetic map similar to the Kunyere, Tsau, and Lecha faults; 

however, the magnetic intensity of the basement and/or dikes on both sides of the fault 

remains fairly consistent throughout majority of the fault with small areas of 

displacement along strike towards the north (Figure 9D).  The model separates the fault 

into two low-magnetic faults with an area of high magnetic material between the two 

faults.  The up-thrown and down-thrown basement blocks both exhibit lower magnetic 

susceptibilities than the rock between the two faults. 

The Mababe model (Figure 10D) represents the fault as a large magnetic high 

with significant vertical displacement of the basement material towards the northwest.  

The aeromagnetic maps depict the Mababe Fault as a very strong magnetic high followed 

by a sharp break into a magnetic low (Figure 9E).  The same characteristic high is 

exhibited by the Gumare Fault (Figure 9F).  The signature magnetic high displayed by 

the Mababe and Gumare faults are opposite that of the Tsau, Lecha, Kunyere, and 
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Thamalakane faults, which are all characterized by linear magnetic lows rather than 

magnetic highs.  The composition of the fault is unknown; however, it is apparent that the 

fault zone consists of minerals with high magnetic susceptibilities.  It has been suggested 

that the magnetic high associated with the Mababe Fault may be attributed to the 

accumulation of magnetic sands along shorelines of paleo-lake Mababe.  Similar 

magnetic sands have been observed along the shores of Lake Mweru in Zambia. 

 

5.4.2. Gravity Models 

Our gravity models for the Lake Ngami depression (Profile 1) and the Mababe 

depression (Profile 4) were created from our gravity ground surveys.  Our interpretation 

for the Ngami gravity profile (Figure 11A) depicts the Lake Ngami graben to be bounded 

by the Kunyere and Lecha faults.  A second graben is also defined near the beginning of 

the model.  We interpret the second graben to be possibly bounded by a fault to the 

northwest.  The northwestern flank of the graben closely coincides with the location of 

the strong conductor depicted by MT Profile 1 (stations 059 – 063) (Figure 6 A3) and the 

magnetic anomaly present on the magnetic Profile 1 (Figure 6 A2).  The presence of the 

potentially active fault may be an indication of how the rift is currently widening over 

time by reactivation of basement structures.  The fault may have resulted from the 

reactivation of a limb of a basement fold that was tectonically active before the  
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Figure 11. Gravity models representing A.) Profile 1 through the Ngami graben and B.) Profile 4 
through the Mababe depression.  Dashed lines delineate fault locations.  Models were created using 
NGA’s GM-SYS modeling program. 
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appearance of the Karoo dike swarm (Figure 9G).  The regional gravity data of the area 

(Figure 4A) displays a large linear gravity high near the town of Gumare that directly 

corresponds with the position of the basement fold.  Most linear gravity features are 

associated with rifting processes which suggests that the entire basement fold may have 

been a failed ancient rift. 

The shape of the graben is in the form of synformal depressions suggesting that 

the basin is in an early stage of development.  The Mababe model (Figure 11B) shows the  

shape of the Mababe depression to have the appearance of a more developed half-graben.  

Our models are consistent with the Kinabo et al. (2007) observation that the Mababe 

depression is in a more advanced stage of development than the Lake Ngami depression.  

Their study concludes that the Kunyere Fault is the main boundary fault near Lake Ngami 

(Modisi, 2000).  Towards the north, displacement along the Kunyere Fault wanes and 

strain is accommodated by the Mababe Fault via the Thamalakane Fault, making the 

Mababe Fault the main boundary fault within the Mababe graben. 

 

5.5 Seismicity 

A study of the San Andreas Fault (SAF) conducted by several authors (e.g., 

Unsworth et al., 1997; Mackie et al., 1998; Unsworth et al., 1999, Unsworth et al., 2000; 

Bedrosian et al., 2004; Unsworth and Bedrosian, 2004; Ritter et al., 2005) suggest that 

seismic behavior may be controlled by a connected network of fluid-filled cracks within 

fault zones.  Along the SAF, there is marked seismic variability, with some segments 

characterized by infrequent, large-magnitude earthquakes while others exhibit abundant 

microseismicity and aseismic creep (Allen, 1968).  The SAF is characterized by a 
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creeping central segment near Hollister, CA.  At Parkfield, CA, the fault is in a transition 

zone between a creeping segment to the north and a locked segment to the south.  The 

SAF near Carrizo Plain, CA has been locked since 1875 (Ritter et al., 2005).  The 

Hollister creeping segment is characterized by a 750-m wide damage zone (i.e., a region 

of pervasive fracturing  (Caine et al., 1996)) and localized zones of high conductivity at 

depth separated from one another by northeast dipping impermeable fault seals in the 

upper 2 – 3 km (8 km at most) between the SAF and the Calaveras Fault (Bedrosian et 

al., 2004; Ritter et al., 2005).  Similar to Hollister, the SAF at Parkfield consists of a 

broad damage zone (~ 750 m) and an anomalously high conductive zone centered on the 

fault extending from the surface to a depth of 2 – 5 km (Ritter et al., 2005).  These zones 

of high conductivity, FZC’s, source their high conductivity values from saline fluid-filled 

voids and factures within the brecciated and damaged zone of the fault (Anderson et al., 

1983; Caine et al., 1996).  In contrast, a narrow FZC is associated along the locked 

segment of the SAF near Carrizo Plain (Unsworth et al., 1999).  Here, the rock is 

resistive, crystalline, and devoid of fluid pathways (Bedrosian et al., 2004). 

The locations of the FZCs at Hollister and Parkfield coincide with zones of 

reduced seismic velocity and enhanced Vp/Vs (where Vp/Vs is the ratio of compressional 

wave velocity to shear-wave velocity)(Thurber et al., 1997, 2003; Catchings et al., 2002).  

Both Hollister and Parkfield experience abundant microseismicity, especially at Hollister 

where there is a distinct absence of earthquakes with magnitudes greater than 5.  The 

Carrizo Plain, in contrast, suffers large, damaging earthquakes such as the 1857 Forth 

Tejon quake (M = 7.8; Ellsworth, 1990; Ritter et al., 2005).  These observations reveal a 

correlation between FZC magnitude and seismicity.  The creeping segment at Hollister 



 63

and the transition segment at Parkfield both contain wide FZCs and broad damage zones 

that allow ample fluids to occupy and migrate between pore spaces within the rocks (fault 

zone conductance).  The seismicity associated with the SAF at both locations is 

characterized by abundant seismicity and a lack of severe earthquakes.  In contrast, the 

locked segment near Carrizo Plain is characterized by a smaller FZC and a narrow zone 

of deformation with only small quantities of fluid present (Unsworth et al., 1999).  Here, 

the earthquakes are infrequent and damaging.  This suggests that the fluids associated 

with the strong FZCs near Hollister and Parkfield are enhancing microseismicity by 

increasing pore pressure through fluid migration along interconnecting faults and 

fractures (Townsend & Zoback, 2000; Unsworth et al., 2000; Ritter et al., 2005).  Fluid 

migration causes high pore pressure within the rock.  The high pressure, in turn, 

ultimately reduces shear stress from the rock (i.e., earthquakes are weak) so that stress 

does not build to higher levels over time, which generates larger magnitude earthquakes.  

The shallow and weak FZC near Carrizo Plain may be imaging a closing fracture network 

across the entire fault zone (i.e., cementation and sealing processes are in 

operation)(Ritter et al., 2005). 

Seismicity and fluid flow may have a direct relationship with faulting in the ORZ, 

similar to the SAF.  The Kunyere Fault may be exhibiting similar locked and creeping 

segments as the SAF in California.  Near Lake Ngami, the fault lacks a significant FZC 

and shows evidence of fault scarp retreat due to recent inactivity.  Along strike to the 

northeast near Maun, seismicity increases substantially between the Kunyere Fault and 

the Thamalakane Fault, where strain is being transferred from the Kunyere Fault to the 

Thamalakane Fault (Figure 12).  Earthquakes in this area are predominantly weak, except  
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Figure 12. Seismicity map of the ORZ.  White circles indicate areas of seismicity.  The star 
indicates the location of the 1952 magnitude 6.7 earthquake (courtesy of Dr. Canales). 
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for the large earthquake events that were recorded during the May 1952 – May 1953 

period, with magnitudes ranging between 5.0 and 6.7 on the Richter scale (Hutchins et 

al., 1976; Milzow et al., 2009).  The Thamalakane Fault is interpreted to be channeling 

fluids in this area, suggesting that the northern segment of the Kunyere Fault may also be 

channeling fluids.  These observations suggest that the southern segment of the Kunyere 

Fault near Lake Ngami may be locked with resultant calcite/silica cement precipitation, 

similar to the SAF near Carrizo Plain.  The Arava Fault in Jordan, which also lacks a 

FZC similar to the Kunyere Fault, is nearly devoid of recent seismicity (Ambraseys and 

Jackson, 1998).  However, seismic networks in this area have only been in operation 

since the 1980s and several magnitude 7 events can be confidently attributed to the Arava 

Fault within the last millennia (Klinger et al., 2000b).  The microseismicity and lack of 

damaging earthquakes associated with the northern segments between the Kunyere Fault 

and the Thamalakane Fault suggest that fluids within the fault zones and splays may 

suggest that pore pressure is being raised in this area of the rift and reducing shear stress.  

MT Profile 2 (Figure 7B) shows the Thamalakane Fault as a wide conductive anomaly (~ 

4 km) with multiple vertical conductive zones that reach as deep as ~ 300 m throughout 

the remainder of the profile.  The conductive anomalies associated with the Tsau Fault 

and the Lecha Fault near the Lake Ngami area are smaller, weaker, and much shallower 

(~100 m) especially the Tsau Fault anomaly (Figure 6B).  This observation further 

enhances the observation made by Kinabo et al. (2008) that tectonic activity near Lake 

Ngami is wanning as the fracture network closes due to sealing and cementation. 

A study performed by Brodsky and Kanamori (2001) suggests that lubrication by 

a viscous fluid within a fault zone can reduce the frictional stress during large 
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earthquakes (M>4) by as much as 30%.  The study suggested that any large earthquake 

that produces a slip distance of greater than a few meters along a fault plane during a 

single earthquake event will have a zone of the fault that is well lubricated.  Lubrication 

also reduces high frequency energy due to contacting asperities during an earthquake.  

Consequently, large slip displacement and reduction in high frequency energy result in 

less damage.  The fluids being channeled by the faults in the ORZ may allow for easier 

slip along the fault planes during large earthquakes.  Additional geophysical and 

hydrologic data are required to further understand the relationship between crustal fluids 

and seismic behavior. 
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CHAPTER VI 
 
 

CONCLUSION 

 

The conclusions of our study of fault characteristics within the ORZ are as follows: 

1. MT data depict conductive anomalies associated with the Tsau, Lecha, and 

Thamalakane faults, but no conductive anomaly associated with the Kunyere 

Fault.  The lack of a conductive anomaly associated with the Kunyere Fault and 

calcretes covering the fault on ERT data suggest possible inactivity, a sealed fault, 

or represents an erosional scarp.  The Tsau Fault and the Lecha Fault cut through 

the sedimentary cover and are interpreted to be channeling fluids, suggesting 

either post sedimentation activity or reactivation in recent times. 

2. The faults associated with the ORZ extend into the delta suggesting that surface 

water and/or brackish to saline groundwater from the Okavango Delta is the 

source of the conductive anomalies. 

3. The relationship between the impermeable lithologies surrounding the fault cores 

and the abundance of minor faults, fractures, and splays within the damage zones 

of the fault zones suggest that the faults are acting as both conduits and barriers to 

fluid flow.
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4. The differences in magnetic character of the faults within the basement may be 

related to the precipitation of iron-bearing minerals through redox reactions or 

weathering processes as fluids are being channeled along the faults.  The 

differences may also be caused by varying magnetic properties on either side of 

the fault. 

5. The lack of strong violent earthquakes within the ORZ may be attributed to fluids 

occupying and migrating between pore spaces within the fault zone which causes 

increased pore pressure, thereby reducing the shear stress required for rupture.  

The reduction in shear stress allows for microseismicity and a lack of severe 

earthquakes.  Fluids being conducted by the faults may also enhance slip along 

fault planes, causing the rift to lengthen and widen more rapidly over time. 
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CHAPTER VII 
 
 

FUTURE WORK 

 

Research within the ORZ has provided excellent insight into the embryonic stages 

of continental rifting; however, many unanswered questions remain.  Basement fabric 

appears to have a significant influence on fault orientation; however, other factors such as 

mantle processes and extensional stress components directly beneath the ORZ should be 

investigated to assess fault placement and basin subsidence within the rift.  Thus far, 

critical information concerning the Kunyere, Thamalakane, Tsau, Lecha, and Mababe 

fault systems has been acquired; however, little is known about the youngest faults (i.e., 

the Gumare, Phuti, and Nare faults) and the role they play in the evolution of the rift.  

Since the faults are still considered to be very young, geophysical surveys across these 

faults would continue to increase our knowledge of nascent rifting processes.  Continued 

seismic investigations (reflection and refraction studies) and geophysical surveys that 

penetrate deep within the subsurface should also be utilized to present a clearer image of 

what is occurring at depth in terms of fault linkage and propagation.  Deeper geophysical 

investigations can also examine exactly how deep the conductive anomalies near the fault 

zones extend within the subsurface to shed some light on the role of fluids in fault 

development, propagation, magnetic properties, and possibly seismicity.  These results 

may provide identification of how much water is lost from the Okavango Delta through



 70

the faults.  Our interpretation that the faults associated with the ORZ are serving as 

conduits for fluids may imply that some of the annual discharge from the delta may be 

lost by fluid flow within the fault zones and not entirely attributed to evapotranspiration.  

A study performed by Ramberg et al. (2006a) revealed that direct evaporation from 

surface water was calculated to amount to 9 – 12% of the annual inflows, leaving 

approximately 90% of the inflow to be infiltrated into the groundwater system and 

removed by evaporation and transpiration from plants.  McCarthy (2006) noted that due 

to faulting, the basement rocks beneath the delta are highly fractured and groundwater 

could possibly leave the area along these discrete pathways.  In terms of the Okavango 

Delta water budget, the results of our study suggest that inflows infiltrating the delta are 

leaving the system by both evapotranspiration processes and fluid migration along fault 

zones. 
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A1 and A2. MT 2D mesh inversion models displaying fault locations and vertical zones of 
conductivity along Profile 1.  A2 is an enlarged area of MT model A1 to further investigate the 
conductive behavior of the Tsau and Lecha fault. 
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A3 and A4. MT 2D mesh inversion models displaying fault locations and vertical zones of 
conductivity.  A3 is an enlarged area of MT model A1 to further investigate the conductive behavior 
of the Kunyere Fault.  A4 is the MT 2D mesh inversion model for Profile 2. 
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Findings and Conclusions:   
 

To examine the geophysical characteristics of the faults associated with the Okavango 
Rift Zone (ORZ) in northwest Botswana, electrical resistivity tomography (ERT), 
magnetotellurics (MT), total field magnetic, and gravity surveys were conducted along 
selected faults across the rift. 

MT results show that the Tsau and Lecha faults have propagated into the sedimentary 
cover and are interpreted to be active conduits for fluid flow from the Okavango Delta 
despite their lack of surface expression.  ERT and MT data show that tectonic activity 
along the Kunyere Fault has significantly waned and strain is being accommodated by the 
tectonically active Thamalakane Fault and Mababe Fault.  Impermeable fault cores and 
an abundance of minor faults, fractures, and splays within the damage zones characterize 
the faults within the ORZ as both barriers and conduits to fluid flow.  Ground and 
aeromagnetic data display some of the faults as magnetic highs while others are depicted 
as magnetic lows in the basement.  The differences in magnetic character may be 
attributed to the 1.) commingling of fluids and basement rocks of contrasting redox 
potentials along fault planes or 2.) extreme variation of magnetic susceptibilities of the 
rocks juxtaposed on either side of the faults.  Fluids may also play a role in increasing 
pore pressure through cracks associated with interconnecting faults and fractures, causing 
the ORZ to have a lack of severe earthquakes and allowing easier slip to occur between 
fault planes which may enhance lengthening the widening of the rift. 


