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CHAPTER I 
 

 

INTRODUCTION 

 

 

Climate records for the south central High Plains of North America are sparse. The two 

commonly cited archives for climate reconstructions from the south central High Plains include 

the pollen record from Cheyenne bottoms, Kansas and the eolian deposits of the Nebraska sand 

hills. The Cheyenne bottoms pollen record contains two litho and bio-stratigraphic units have 

been identified. Radiocarbon ages from these units suggest that two periods of eolian activity 

occurred from 30,000 yr BP – 24,000 yr BP and from 11,000 yr BP – present day (Fredlund 

1994). In Nebraska, Quaternary loess, such as the Peoria and Bignell Loess are deposited 

intermittently throughout the Holocene and are chronologically constrained via radiocarbon & 

optically stimulated luminescence (OSL) (Miao, et al., 2006; Muhs 2008). Loess has proven to be 

an important archive of Quaternary climate change and provides one of the most complete 

terrestrial records of interglacial cycles (Porter 2001; Muhs 2003). Miao et al. (2006) obtained 

OSL ages of the Bignell loess ranging from 10,250±610 years BP within the lowermost deposits 

to 100±10 years BP within the uppermost deposits. Both of these records provide excellent 

archives for paleoclimate interpretations. However, the record between 24,000 yr BP and 11,000 

yr BP is absent from Cheyenne bottoms and the loess of the Nebraska sand hills was only 

deposited intermittently. A continuous record of late Quaternary deposition is needed. One 

potential source of a continuous late Pleistocene/Holocene record is the Great Salt Plains (GSP) 
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of NW Oklahoma. However, no detailed studies of its sedimentology and potential to contain a 

climate archive have been conducted. 

The GSP is a continental sabkha with very little relief. The low-relief surface of the GSP is in 

a deflation-depositional equilibrium dictated by the local level of the groundwater table (Kinsman 

1969; Gunatilaka 1987; Amiel 1971; Handford 1982). A well developed splay has been created 

by The Salt Fork of the Arkansas on the north side of the GSP. The Salt Fork of the Arkansas is 

the largest stream feeding water and sediment to the flats, but other minor creeks flow across the 

GSP as well (Figure 1). Some of the depositional environments were created by the dam 

completed in 1941; however, the vast majority of the flats not submerged by the reservoir are 

natural.  

A continental sabkha is a dry land deposit associated with arid to dry environments. The fact 

that the GSP resides in a sub-humid environment creates a contrasting situation of an isolated dry 

land area within a sub-humid environment that is undocumented elsewhere. In general, examples 

of Holocene continental evaporites are largely lacking, so further study of the GSP will contribute 

more insight into the processes operating in the continental sabkhas in sub-humid settings 

(Handford 1982). The purpose of the project is to evaluate the potential of the GSP as a climate 

archive by documenting the sedimentary processes and facies of the GSP and gain a better 

understanding of the processes and deposits of continental sabkhas. In addition to its potential as 

a climate archive, mapping the GSP and its depositional environments will provide a modern 

analogue for analogous subsurface petroleum systems (Fisher 2008). Subsurface systems 

analogous to terminal splays, such as those found on the GSP, rely on few modern analogues, 

which has led to a tremendous amount of unsupported speculation regarding the processes and 

deposits of terminal splays (Fisher 2008; North et al., 2007). Continental sabkha systems also are 

a host for valuable ecological sites.  
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Figure 1: The Great Salt Plains (GSP) location, Alfalfa County, Oklahoma.  
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The GSP is home to a number of species reliant on its sabkha environments. Whooping cranes 

pass through the GSP as part of their migratory path in the fall and spring, and the snowy plover 

nests on the flats (saltplains.fws.gov/). The snowy plover is generally located in coastal habitats, 

and inland saline environments (Purdue, 1976). Understanding the physical processes that control 

the development of the snowy plover‘s will allow the National Wildlife Refuge to maintain a safe 

haven for their livelihood.   

Other studies of continental sabkhas include that of the Moknine continental sabkha (Chairi 

2010). This continental sabkha in Tunisia (Northern Africa) provided important analysis on the 

nature of organic matter sources to salt pans (Chairi 2010). Chairi (2010) found that bacteria, 

cyanobacteria and microalgae were the primary sources of organic material in the system. This 

study provides an important modern examination of organic matter which can be analyzed for 

hydrocarbon potential of ancient sabkhas. Further research in continental sabkhas may prove 

useful not only for their proper identification in the ancient rock record, but their potential as 

hydrocarbon sources.  

Creating a comprehensive depositional model for the GSP requires the classification of the 

modern sub environments by means of facies characterization. In order to create a comprehensive 

depositional model, I will address the Following questions: 

1) What are the dominant processes controlling sedimentation?  

2) Can the eolian and fluvial sedimentary contributions be distinguished? 

3) Where would the optimal location be for a paleoclimate record? 

 

In order to answer these questions, I collected cores, topographic profiles, resistivity profiles and 

descriptions of surface and shallow trenches. 

 

 

 

 



5 
 

CHAPTER II 
 

 

GEOLOGIC BACKGROUND 

 

 

The GSP of Alfalfa County is located in north central Oklahoma just east of Cherokee, 

OK and north of Jet, OK (Figure 1).  The underlying rocks are Lower-Middle Permian clastic 

beds of the Hennessey Formation, which is around 200 m thick. Siltstone and sandstone beds of 

the Cedar Hills member comprise the upper 60 m of the Hennessey Formation. Beds of halite and 

anhydrite in the Permian rocks from the Wellington up through the Hennessey Formations occur 

at depths as shallow as 92 meters (Slaughter, 1989). These beds dip gently 3 – 10 m per km to the 

south and west and are thought to be the primary source of brine migrating through the porous 

intervals of the Hennessey Formation (Johnson, 1972) (Figure 2).  

The water table beneath the salt plains is approximately 0.5 m to 1.2 m below the surface. 

Brine migrates laterally and upward by capillary action through the Hennessey Formation into the 

Quaternary deposits (Figure 2). The fluids are saturated with chloride, sulfate, sodium and 

calcium and cause the precipitation of halite at the surface with gypsum just below the surface 

(Johnson, 1972).  One common gypsum variety found on the flats is Selenite, which contains 

distinct sand inclusions (Johnson, 1972). 
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Figure 2: Generalized cross section of GSP. (Johnson 1972) 
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The barren salt flats cover approximately 65 km
2
 (Figure 1) and range from 3 to 8 meters 

in thickness (Johnson 1972). A dam across the Salt Fork of the Arkansas River was constructed 

from 1936 to 1941. A reservoir approximately 37 km
2
 formed behind the dam and is on average 

4.5 m to 7 m deep. The overall shallow slope of the flats is roughly 2.7 meters per kilometer. The 

Salt Fork of the Arkansas River flows onto the north side of the flats (Figure 3). The GSP is 

chiefly dominated by the Salt Fork of the Arkansas and other minor creeks: Clay Creek, Sand 

Creek, Powell Creek, Spring Creek and Cotton Wood Creek (Figure 1). Sediments are transported 

onto the flats by either fluvial processes, which tend to distribute sediment in a fan-like manner, 

sheet-wash/flood events, or eolian mechanisms. Elevations of the conservation pool (GSP 

reservoir) records have been kept since November of 1994 (http://www.swt-

wc.usace.army.mil/GSAL.lakepage.html). The maximum elevation of the conservation pool 

recorded to date is 1135.03 ft above sea-level (345.96 m) in November of 1998. That particular 

elevation occurs across the middle of the GSP running north to south and it is unlikely that the 

conservation pool completely flooded all of the GSP. 

Alfalfa County is in a sub-humid environment with mean annual rainfall at 78.7 cm 

(2002 Oklahoma Climatology Survey).  Most precipitation for the area occurs between the 

months of March and October. The potential annual evaporation is approximately 239 cm (2002 

Oklahoma Climatology Survey). The predominant wind directions range from a northerly 

direction for the late fall, through winter months (November – March) and a south-southeasterly 

wind for the spring and summer months (April – October). In Fairview of Major County (52 km 

southwest of GSP), climate records were held from 1932 to 1962. The mean annual temperature 

was 61.6 °F (Brady, 1989). January was the coldest month with a mean temperature of 38.2°F 

and the warmest month was July with a mean temperature of 83.5°F (Brady, 1989). The average 

hourly wind speed is 21 kph (13 mph); however during the months of March and April it 

increases to 24 kph (15 mph) (Soil Conservation Service, 1968).  

 

http://www.swt-wc.usace.army.mil/GSAL.lakepage.html
http://www.swt-wc.usace.army.mil/GSAL.lakepage.html
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Figure 3: Topographic map illustrating the low relief of the Salt Fork of the Arkansas River delta. 

(http://www.topozone.com/states/Oklahoma.asp?county=Alfalfa)  

http://www.topozone.com/states/Oklahoma.asp?county=Alfalfa
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Eolian dunes line much of the perimeter of the GSP and blanket many of the fluvial 

terraces found along major rivers in Alfalfa and surrounding counties. The dunes are hummocky 

or lumpy in appearance and typically line the north sides of major rivers in Oklahoma (Johnson, 

1972; Lepper and Scott, 2005; Cordova et al., 2005; Forman et al., 1995). The dunes lining the 

GSP are sourced from the modern flood plains of The Salt Fork of the Arkansas and are stabilized 

by vegetation with only a few barren dunes still active (Johnson, 1972). Lepper & Scott (2005) 

used OSL and 
14

C dates to constrain late Holocene dune activity in the Cimarron river valley of 

Oklahoma and found evidence for extensive drought between 1100 and 1250 AD. Dune activity 

was determined to be episodic based on eolian sediments interbedded with paleosols representing 

stabilized dunes during intervening periods. Cordova et al. (2005) also found evidence of late 

Holocene (1100 – 1250 AD) dune activity. Reactivation of dunes also occurred during the arid 

Altithermal interval between 8,500 to 4,000 yrs. B.P. Evidence for earlier dune activity between 

20,000 – 12,000 and 11,200 – 8,000 yrs. B.P. was presented by Forman et al. (1995). Holliday 

(1999) also found evidence for dune reactivation at 6000, 4500, and 1000 yrs. B.P. 

Another useful tool for determining paleo-climate is cycles of pedogenesis and loess 

deposition. These pairs reveal cyclicity between dry periods marked by sparse vegetation and 

loess transport while humid periods are marked by soil formation. Two members, the Tertiary 

Ogallala (Miocene – Pliocene) and Quaternary Blackwater Draw (Pleistocene) formation were 

interpreted to show climatic variations (dry to wet) on the order of 30,000 – 100,000 year cycles 

(Gustavson and Holliday, 1999).  

Additional paleoclimate records for the region were reconstructed from a site in nearby 

Harper County. Here paleoclimate reconstructions are based on fauna in the Doby Springs area 

during the Pleistocene (Stephens, J.J. 1960). At this point in Western Oklahoma's climate, the 

Illinoian stage (300 – 130 ka)  represented a colder climate similar to the present day climate of 

South and North Dakota with a mean annual temperature of 42°F (Stephens, J.J. 1960). 
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Previous work on the GSP has concentrated on the geochemistry and hydrogeology rather 

than the sedimentology, geomorphology or its potential to contain paleoclimatic data. However, 

the sedimentology and geomorphology of the GSP may provide an important analogue for 

ancient deposits and characteristics for distinguishing between continental and marine in origin. 

Both modern marine and continental sabkhas contain similar features such as, desiccation 

polygons, deflation pits, salt karst depressions, salt hoppers/syntaxial overgrowths, dunes, algal 

mats and many other features (Hussain 1988). The origin of continental and marine sabkhas differ 

though, as continental sabkhas are geometrically defined by their intersection with the capillary 

fringe of a shallow water table rather than the direct interaction of the sea water of a marine 

sabkha (Warren 2006).  

Insights into the processes and sediments of the GSP may be gained by studying 

analogous settings, such as the ephemeral dryland river system of Fowlers Creek in southeast 

Australia where ripples, scours, clay layers, laminations of fine grained material and sheet flow 

deposits are documented (Wakelin-King et al. 2007). Depositional models for similar complexes 

have been documented by shallow coring, trenches and GPS measurements (Benison et al., 2007; 

Fisher et al., 2008; Tooth 2005; Wakelin-King et al., 2007) . Three specific terminal splay 

complexes (TSC) on the shoreline of Lake Eyre in Central Australia have been categorized based 

on their facies architecture: the modern Neales, Umbum and Douglas TSC‘s (Rielly et. al 2006). 

The modern Neales TSC is considered fluvial dominated, is highly constructive and triangularly 

lobate while the Umbum TSC is noted for its multiple avulsion distributary channels (Rielly et. al 

2006). The Douglas TSC is characterized by two avulsion distributary channels causing 

propagation through sheetfloods (Rielly et al., 2006). Multiple factors can influence splay 

development such as: the size of the TSC, discharge, vegetation, grain-size distribution, 

composition and the influences from the reservoir it empties into (Fisher et. al, 2008). Each 

terminal splay complex or terminal fan is considered to be unique from one another and no single 
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model is thought to fully capture the variability found in the TSC (Fisher et al., 2008, North and 

Warwick, 2007). 

The low gradient of the GSP also plays a role in the morphology of the landforms. Low 

stream gradients promote anabranching since they lead to the deposition of fine cohesive 

sediment and to lower erosional energy (North et al. 2007). Judging from the available aerial 

photographs and topography maps available, such bifurcation and anabranching-braided networks 

are present within the Clay Creek, Cotton Wood Creek  and The Salt Fork of the Arkansas River 

in the central and northern portions of the flats.  

Another extreme environment that resembles the GSP are the acid saline lakes in Yilgarn 

Craton of Australia. Several of the lake environments present in the craton undergo extreme 

processes of evaporation, high winds and flooding (Benison et at. 2007). Sedimentary processes 

were well documented during flooding, evaporation concentration and desiccation stages of these 

acid saline lakes (Benison et al. 2007). The unique surface features found in the Yilgarn Craton 

closely resemble those of the GSP.  

 In general, the term sabkha (Arabic) i.e. salt flat is generally associated with the marginal 

marine environment. There are only minor differences between the continental sabkha and marine 

sabkha: their origin and geochemistry of the evaporite-forming brines (Handford 1982). Another 

explicit way to describe their differences is that marine sabkhas are depositionally offlapping 

from marine sediments from which the evaporite precipitates from; while continental sabkhas are 

derived from the evaporation of continental waters whose evaporites may originate from either 

previous marine cycle evaporites or continental evaporites (Kinsman 1969, Amiel 1971). Both 

environments undergo similar physical and chemical process such as, intense evaporation, wind 

deflation, subaqueous and intrasedimentary precipitation of evaporites and ground water 

discharge (Handford 1982 & 1981). Both marine and non-marine Holocene sabkhas have been 

examined by Lowenstein et. al (1985) and can be characterized by three different alternating 

periods of deposition: flooding, evaporative concentration and desiccation (Lowenstein 1985, 
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Figure 4). Similar facies architectures between marine and continental sabkhas may be the culprit 

for the absence of continental sabkhas in the rock record, as many of them may be interpreted as 

marine sabkhas. 
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Figure 4: Stages of deposition for salt pan/sandflat, Lowenstein 1985. 
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CHAPTER III 
 

 

METHODOLOGY 

 

Multiple methods will be utilized for characterizing the GSP. These methods include 

field studies involving the collection of surface observations, and subsurface data as well as lab 

analysis of field samples. The field methods used for the collection of surface data include: 

sediment traps, GPS (Global Positioning System) surveying, aerial photography and surface 

observations. All surface and surface observations are presented in Figure 5.  

Sediment traps were constructed from Rubbermaid Tupperware (9 cm diameter lids), 

filter paper, rubber bands and a stake through the middle of the receptacle (lid) to hold it in place 

(Figure 6). These traps were placed in 9 locations in order to determine the rates and sources of 

sediment transport as well as distinguishing between depositional and erosional surfaces. The lids 

were slowly imbedded into the surface with the filter paper wrapped on top until level with the 

surface. A hand-held Garmin GPS was used to place all sediment traps and surface pits into a 

spatial reference frame. The first round of sediment traps were deployed for a two week period 

between 09/27/2009 – 10/09/2009 and a two month period between 10/09/2009 – 12/10/2009. 

GPS surveying was utilized to delineate the dimension of the channels from proximal to distal 

reaches of the GSP. Since the Salt Fork of the Arkansas is not the only fluvial influence, 

examination of the other channel environments was conducted. Dryland river environments 

similar to that of the GSP display a great variety of forms and processes thus; a GPS survey is 

necessary in order to illustrate the differences between the scale  
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Figure 5: All surface and subsurface locations.  
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Figure 6: Sediment trap apparatus. 
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of the features produced by the Salt Fork of the Arkansas and other creeks (Wakelin-King, 2007). 

A RTK-GPS TopCon system was used for the topography acquisition of the channels. Raw GPS 

data (ellipsoidal height) was corrected by OPUS:  Online Positioning User Service. GPS 

topography profiles have an accuracy of approximately 3 cm. Spacing for the topographic profiles 

was paced approximately 2 meters between each way point. Aerial photography was used to 

study the geomorphic changes of the GSP over time (approximately 70 year time span, beginning 

in 1941). Surface observations were also implemented for documenting modern environment and 

deciphering sedimentation processes. 

The methods used to collect subsurface data included: trenches, ERI (Electrical 

Resistivity Imaging) lines, and vibra-cores. 60 trenches were dug to a depth of 25-45 cm or until 

reaching the ground water table in order to document sedimentary structures and grain sizes. The 

position of all trenches and other observations were recorded with a GPS unit. An AGI Super 

Sting resistivity imager was used to image the depth of the Quaternary sediments. The resistivity 

acquisition was used to gain a further understanding of the three-dimensional architecture of 

paleo-environments preserved in the Quaternary subsurface of the flats. Processing of the 

resistivity data was completed with AGI EarthImager 2D software. This software is designed to 

process resistivity inversions of AGI Supersting data sets and create 2D sections for 

interpretations. Eight (8) separate lines were processed with this software, with 5 specific lines 

utilized for paleo-environment interpretation. Electrode spacing was 2 meters (4 meter dipole 

length) with 7 of the ERI lines and 1 meter electrode spacing for GSP08NA which was also a 

topographic profile line in the center of the Clay Creek system (central portion of the GSP). Due 

to the low resistivity values for the GSP, the reciprocal of the data was taken (1/ohm-m) for the 

purposes of discussing the data in conductivity, S/m (Siemens per meter). A tripod vibracore 

apparatus was used to collect 5 7-cm diameter cores from across the flats. 4 cores in 2010 and 1 

core was collected in 2006. GSP06-01 reaching a depth of 273 cm was collected in the sand flat 
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environment at the time (2006) between the Salt Fork of the Arkansas River and Clay & 

Cottonwood Creeks. Two of the cores collected were exclusive to two of the resistivity lines 

acquired. Core GSP10-01 reached a depth of 280 cm and was collected along resistivity line 

GSP02NA, as it had the strongest signature of a paleo-channel deposit. Core GSP10-03 reached a 

depth of 397 cm and was collected along resistivity line GSP08NA (modern channel area). Core 

GSP10-02, was the shortest core reaching a depth of 74 cm and was collected in the southern part 

of the GSP within the active area of Spring Creek. Core GSP10-04 was 237 cm long and was 

collected further north of core GSP10-03 (along resistivity long GSP08NA) in an active channel 

area where Cottonwood Creek and Clay Creek coalesce.  

Grain-size analysis component was conducted with a 1180L CILAS Particle Size 

Analyzer. Grain size analysis was conducted on sediment trap samples, trench samples, core and 

surface samples. Grain size analyses for all of these samples are fundamental for distinguishing 

between facies and possibly detecting sediment contribution within the entire depositional system 

(Cheetam et al., 2008).  All samples were treated with Hydrogen peroxide (H2O2) to remove 

organic materials, but not treated with acid (such as HCl) to remove carbonates as these grains 

could have potentially been allogenic and deposited via fluvial and/or eolian processes across the 

GSP. The dispersing agent to prevent flocculation was a 10% concentration of sodium 

hexametaphosphate [(NaPO3)6]. 
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CHAPTER IV 
 

 

RESULTS 

5 depositional environments were identified with in the GSP. These environments 

include: channel, sand flat, mud/algal flat, dune and delta. Each environment is marked by at least 

one characteristic sedimentary facies. Each environments exhibited changes from proximal 

through medial and distal zones of the GSP.  

Environments: 

Channel 

The channel facies is composed of a 500 – 800 m wide of anabranching-braided stream 

channels containing relatively the coarsest of the deposits. The most common facies preserved in 

cores and trenches of the GSP is the channel facies. The grain size of this faces ranged from 

granule to clay size. Most of the channel facies deposits were tan-brown to red medium to coarse 

grained sand. This facies has a mean grain size of 2.85 Φ with an average moment standard 

deviation of 1.49 Φ and an average moment skewness of 2.11 Φ. Multiple sedimentary structures 

are found in the channel facies including small scale trough cross bedding, parallel laminations, 

clay drapes, rip up clasts, starved ripples, lenticular bedding, cut and fill structures, isolated clay 

stringers, clay beds, and climbing ripples. Topographic profiles were collected from two of the 

fluvial channels delivering sediments and water to the GSP: a splay of the Salt Fork of the 

Arkansas River and Clay Creek (Figure 1).   
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Profiles A-J were collected as a series of strike profiles along the Clay Creek system at 0.1 and 

0.6 km spacing downstream (Figures 7 & 8). Profiles L-M were also collected along strike along 

a splay of the Salt Fork of the Arkansas River (Figures 9 & 10). The Salt Fork splay is much 

larger than the channels of Clay Creek as seen in the channel depths and widths of profiles L-M. 

Though the dimensions of these channels differ greatly, both fluvial systems decreased in channel 

depth downstream. The other two dimensions, width and length did not exhibit any clear trends 

from proximal, medial and distal portions of the GSP. These topographic profiles are taken from 

channels present at the time of field inspection. Aerial photos do not always reflect current 

channel locations as these channels change every rain storm locally. Therefore, some of the 

topographic lines on the aerial photography may appear not to have been collected along strike 

across a channel, but the location is accurate for a channel at the time of collection. 

At the surface, unique scour pits are present in the active flood plain (Figure 11-B). These 

scours were most common in the proximal portion of the Salt Fork of the Arkansas River in 

association with a very thin algal mat layer. This thin algal mat layer rapidly disappears 

downstream, but another thicker and more widely distributed algal mat is encountered more 

distally (Figure 12). Additionally, an array of sedimentary features such as:  armored clay balls, 

transverse-catenary ripples, isolated pools (some with halite hoppers & rafts), crevasse splays, 

and contorted over-bank deposits are present (Figures 11-D). Bedforms at the surface and 

sedimentary structures in the subsurface were observed to decrease in size distally (Figure 13). 

Trenches in the channel facies revealed an overall decrease in grain size and bed thicknesses from 

proximal, medial and to distal portions of the GSP. The sand flat facies also exhibited a similar 

trend as revealed by the trenches. Figure 12-A illustrates large asymmetrical dunes and ripples 

found in the proximal portion of the Clay Creek splay. The larger asymmetrical dunes are 10-13 

cm deep, 0.6 to 1 m wide and 1 to 1.5 m long. Figure 8 12-B provides an example of traverse-  



21 
 

 

Figure 7: Location of GPS topography profiles I – G, Clay Creek System. 
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Figure 8: GPS topography profiles: Clay Creek (W-E, proximal to distal). 
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Figure 9: Locations of GPS topography profiles L – N, Salt Fork of the Arkansas River.  
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Figure 10: GPS topography profiles: Salt Fork of the Arkansas (W-E, proximal to distal). 
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Figure 11: Channel environment observations. A: Armored clay ball. B: Scour in flood plain. C: 

Cubic halite crystals precipitating in an isolated pool. D: Collapsed bank from channel avulsion. 

E: Cut and fill structure and ripple cross lamination. 
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Figure 12: Algal mat. A: Proximal flood plain of the GSP channel: Salt Fork of the Arkansas 

River. B: Distal zone, gas dome present just to the right of shovel.  
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Figure 13:  Reduction in the size of bedforms across the channel environment. A: Anti-dunes and transverse-catenary ripples (proximal). B: 

Transverse-catenary ripples downstream (distal) 
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catenary ripples down-stream that is much smaller in dimension: 0.5-2 cm deep, 8-20 cm wide 

and 2-5 cm long. Sediment is sourced from the creeks and rivers that flow onto the flats. In 

addition to this source, eolian processes provide a minor source from nearby dunes. Eolian 

processes also re-work the channel sediments in flood plains and redistribute channel sediments 

onto the sand flats. 

Three sub-facies were identified within the channel facies: sub-facies 1 (coarse – granule 

sands), sub-facies 2 (fine – mud sized grains) and sub-facies 3 (medium – coarse sands). 

Identification of sub-facies 1 was primarily based on grain size. Sub-facies 1 is coarser material 

ranging from coarse-upper, to very coarse and granule size. Grain size samples from this sub-

facies include: G.S. 01E & F, G.S. 03A-G and G.S. 04B-D (Figures 14-17). The mean grain size 

for these samples ranged from 0.5 Φ to 4.8 Φ. The bed thicknesses of this facies ranged from 20 

– 50 cm. The sub-facies is tan-light brown to orange in color (Figures 18& 19). Beds are 

dominantly massive and structureless, and contained minor amounts of clay drapes, rip up clasts 

and cross bedding.  
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Figure 14: Vibra-core locations. 
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Figure 15: Core GSP10-01.
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Figure 16: Core GSP10-03 
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Figure 17: Core GSP06-01.
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Figure 18: Trough cross-bedding in channel sub-facies 1: Core GSP10-01, 229 – 265cm.
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Figure 19: Clay rip up clasts in channel sub-facies 1: Core GSP10-03, 246 – 283 cm.
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Sub-facies 2 contain finer grained sediments ranging from mud to fine grained sands. 

This facies contains the most plant fragments and trough cross bedding. Grain-size measurements 

taken from this sub-facies within trenches and core (Figures 16 &  21): G.S. 02 and G.S. 04-A-C 

had a mean grain size of 2.07 Φ. The color of this sub-facies is typically much darker, likely due 

to the higher organic content and ranges between brown-dark brown to black (Figure 22 & 23). 

Lighter colored sediments are found as very fine to medium sands inter-laminated with darker 

mud. One unique trait of this sub-facies was the thin fining upward sequences. Though most 

trenches and core data contain fining upward sequences, the packages of fining upward sequences 

within this particular sub-facies were thinner, 10-12 cm and 6-4 cm thick. Sub-facies 2 also 

contains horizons of precipitated selenite. When present, the selenite crystals destroyed original 

bedding and other sedimentary features.  

Sub-facies 3 contained medium to coarse grained sands that have a distinct tan, to grey 

and rusty yellow color. Two grain size samples from this facies were collected from core (Figure 

18): G.S. 03H and samples from trenches. The mean grain size of the samples was 2.88 Φ. This 

particular sub-facies also contained selenite horizons. However, as the bedding of this sub-facies 

was much thicker than sub-facies 2, precipitates did not destroy all bedding and sedimentary 

structures. Clay drapes and minor plant and wood fragments were often encountered within this 

facies, as well as flaser bedding and minor starved ripples (Figures 23 & 24-I). A repeated pattern 

of fining upward sequences was also found in core, but not as common as seen in sub-facies 2. 
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Figure 20: Core GSP10-02. 
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Figure 21: Core GSP10-04. 
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Figure 22: Channel sub-facies 2: Core GSP10-04, 78 cm – 105 cm.  
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Figure 23: Contact between sub-facies 3 & 2, selenite precipitation from 64 – 74 cm and sand to silt laminations 35 – 44 cm: Core GSP10-02, 15 

cm – end of core (74cm). 
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Figure 24: Facies. F: Oscillation ripples in delta of the Salt Fork of the Arkansas. G: Sand, silt 

and clay lamination with clay layer, within channel facies transitioning from medial to distal sub-

environments H: Swept catenary ripples of the sand flat environment post flooding stage 

transitioning into evaporation-concentration stage. I: Flaser bedding and organic matter fragment 

within channel sub-facies 3. J: Reworked asymmetrical ripples in delta of the Salt Fork of the 

Arkansas River. 
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Sediment traps ST09-01, 02, 05, 08 and 09 were deployed within the channel 

environment. Table 1 gives the textural characteristics of the sediments captured in the traps. 

These traps contained moderately to well sorted fine to coarse grained sands. Table 2 shows the 

total mass accumulation for each trap. Traps ST09-01A and 08A retained the highest mass of 

sediments over the two week period, with 49.17 g and 49.76 g, respectively. However, over a 2 

month period, traps ST09-06B and 08B had the highest mass accumulation rates with 265.69 g 

and 134.76 g, respectively (Figure 25). Locations for all sediment traps are depicted in Figure 26. 

Sand flat 

The sand flat environment is one of the most widespread and covers most of the modern 

surface of the GSP. It is a broad nearly flat and featureless plain with a gentle lake-ward dip. The 

facies comprising the deposits of these environments consists of dark brown-black to light brown 

fine to medium sand (Figure 27). This facies had samples collected from trenches and core: 

(Figures 15 & 21) G.S. 01 A-D and G.S 04 D; a mean grain-size of 3.1 Φ and a mean moment 

skewness of 2.10 Φ and a mean moment standard deviation of 1.55 Φ. At the surface this 

environment exhibits: transverse-catenary ripples, oscillation ripples (cross hatched pattern), 

isolated pools, concentrated selenite precipitates, syneresis cracks, flood wash lag deposits, 

obstacle scours, linguoid ripples, adhesion structures (Figure 28), dead wood debris, 

anthropogenic debris, efflorescence surfaces (Figure 28-E) and sand filled troughs. Some of the 

surface features seen in Figure 21 are defined as evaporitic-adhesion structures that form with 

surface salt growth (Kocurek & Fielder, 1982, Olsen et al., 1989). Ripples form when windblown 

sediment adheres to a moist surface and adhesion ‗warts‘ form when moisture is lost by the 

upwind migration of small protuberances on the adhesion ripples (Olsen et al., 1989).  

Trenches through this environment revealed: parallel laminae, rip up clasts, plant 

fragments, ripple cross lamination, flaser bedding, lenticular bedding, clay layers, black organic  
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Two (2) Weeks: 09/27/2009 - 10/09/2009 

  Field Lab 

Sample Grain size Texture Mean Φ Std Deviation Φ Skewness Φ 

ST09-01A mU ms, sub-r 2.397162117 1.754893681 1.906094157 

ST09-02A mL ws, w-sub r 2.817628073 1.087317508 2.658311237 

ST09-03A mL ws, wr 2.662444913 1.239367373 0.164537934 

ST09-04A cU ms, sub-r 3.433998443 1.455942083 1.484771696 

ST09-05A mL ms, sub-r 2.540224864 0.912253122 3.65205228 

ST09-08A fL ws, wr 3.380176982 1.182240715 2.221694365 

ST09-09A cL m-ps, sub-r sub ang 1.76202127 1.287218807 1.529093195 

lost 07a and 06a 

 

Two (2) Months 10/09/2009 - 12/10/2009 

  Field Lab 

Sample Grain size Texture Mean Φ Std Deviation Φ Skewness Φ 

ST09-01B mU-cL ms, r-subr 2.189956177 1.425664623 2.583017518 

ST09-03B mL ms, r 3.643515549 1.831985021 1.219313596 

ST09-04B cU-vcL ps, ang-wr 3.456884658 1.513022871 1.381911332 

ST09-05B cL ms, r-subr 2.759644665 0.984648664 3.154342831 

ST09-06B cL ms, r-subr 2.531230393 0.912799187 3.624153099 

ST09-08B mL m-ws, wr 3.086824406 1.12988638 2.793277841 

lost 09b, 02b, and 07b 

 

Table 1. 

Field Legend 

Grain size mm Texture 

vcU Very coarse upper 1.41 - 2.0 ws well sorted 

vcL Very coarse lower 1.0 - 1.41 ms moderately sorted 

cU Coarse upper 0.71 - 1.0 ps poorly sorted 

cL Coarse lower 0.5 - 0.71 wr well rounded 

mU Medium upper 0.35 - 0.5 

sub-

r sub rounded 

mL Medium lower 0.25 - 0.35 ang angular 

fU Fine upper 0.177 - 0.25     

fL Fine lower 0.125 - 0.177     

vfU Very fine upper 0.088 - 0.125     

vfL Very fine lower 0.062 - 0.088     
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Mass Accumulation Rates 

Two (2) 

weeks Mass Accumilation (g) Rate (g/day) Two (2) months Mass Accumilation (g) Rate (g/day) 

ST09-01A 49.17 3.51 ST09-01B 94.87 1.51 

ST09-02A 6.49 0.46 ST09-02B N/A N/A 

ST09-03A 18.41 1.31 ST09-03B 50.51 0.80 

ST09-04A 7.64 0.55 ST09-04B 121.14 1.92 

ST09-05A 21.12 1.51 ST09-05B 64.72 1.03 

ST09-06A N/A N/A ST09-06B 265.69 4.22 

ST09-08A 49.46 3.53 ST09-08B 134.76 2.14 

ST09-09A 5.05 0.36 ST09-09B N/A N/A 

* ST09-07A & 07B lost both periods   

 

Table 2.  

 

Figure 25: Mass accumulation results for sediment traps.  
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Figure 26: Sediment trap locations. 
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Figure 27: Sand flat facies: Core: GSP10-01, 100 cm – 147 cm. 
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Figure 28: Sand flat bedforms & surface features. A: Adhesion structures, gas escape pores. B: 

Raindrop imprints. C: Adhesion structure, ‗warts‘. D: Adhesion textured surface; ripples. E: 

Efflorescence surface.  
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rich sands and isolated sand lenses. Sediment sources for the sand flat facies included both eolian 

and fluvial processes. 

Sediment traps ST09-03, 04 and 06 were located in the sand flat environment. For the 2 

month deployment, trap ST09-06B had the highest mass accumulation rates and the third highest 

was trap ST09-04B with 265.69g and 121.14g, respectively (Tables 1 & 2, Figure 25). The 

second highest mass accumulation rate was trap ST09-08B with 134.76 g. It was located in the 

channel environment in close proximity to the sand flat, and channel environment boundary. 

Field observations did reveal that some debris such as grass and plant fragments were caught in 

trap 06B, which probably aided in capturing sediments leading to higher mass accumulation rates.  

Mud/Algal flat 

The algal mat/mud flat environment closely resembles the surface morphology of the 

sand flat environment. Finer grain sizes distinguish the facies deposited within this environment 

from the sand flat facies as does the presence algal mats. Mean grain size for this facies was a 

3.22 Φ.  The moment standard deviation is 1.03 Φ and the moment skewness is 2.85 Φ. 

Sedimentary structures are not as well preserved or developed in comparison to the sand flat 

facies. However, some sedimentary structures such as ripples can be found. The algal mat 

environment is only found along the reservoir shores and thus is an anthropogenic environment. 

The extent of the mud/algal flat facies is subject to the extent of water levels within the reservoir. 

One sediment trap was placed in the mud/algal flat environment, ST09-07; however, in both the 

two week and two month deployments, it was washed away (Figure 29). This was probably due 

to the wave action along reservoir shoreline. Any precipitation on the flats would cause the 

reservoir to transgress rapidly as the slope of the GSP is extremely shallow. During the 2 week 

deployment (9/27/2009-10/09/2009) one substantial rainstorm occurred which most likely 

removed the sediment trap. A cold front passed through and delivered 2.4 inches of rain within a  
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Figure 29: Sediment trap ST09-07, post 2 month deployment during retrieval. 
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24 hour period on 10/08/2009. Just one day prior to the sediment trap‘s extraction. During the two 

month deployment, multiple storms occurred, which undoubtedly removed the trap again. 

Delta 

Each of the fluvial systems entering the GSP produced a delta. However, this feature is 

not related to the GSP, but created by the man-made Great Salt Plains Reservoir. Collecting 

subsurface data in the delta front and prodelta environment proved difficult as it was submerged 

during the time of this study. However, slowly using a shovel to scoop up a layer at the surface 

provided some useful observations (discussed in Ch 5). Ripples were observed in the shallow 

depths of the reservoir in the delta from environment, from oscillation, transverse, linguoidal, and 

reworked asymmetrical ripples. These features are created by the reservoir wave action as the 

fluvial systems terminate into the waters.  

Dune 

Inactive dunes are present in the GSP extending from north to south along its western 

perimeter. These dunes were observed to act as a source of the surface deposits found on the sand 

flats on several occasions. The dunes are 10-30 m wide, 25-100 m long and 2-5 m high (Figure 

30). The sands within the dunes are much coarser than the sands encountered in the medial and 

distal portions of the channel facies and across much of the sand flat facies area.  
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Figure 30: Vegetated dunes, lining the western perimeter of the GSP. 
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Subsurface observations 

Vibra-cores 

Five vibra-cores were used to document the stratigraphy of the modern the GSP. Two 

cores were collected along ERI – Sting lines, one from Spring Creek, one from the Clay Creek 

system and one from the sand flat near the Salt Fork (Figure 14). Core descriptions are shown in 

Figures 15-17, & 20, 21. The fifth core was collected prior to this research in 2006 and was used 

to constrain the subsurface stratigraphy of the northern portion of the GSP. The cores were 

helpful for determining the facies architecture of the GSP. In general, the three cores collected in 

the current channel facies environment, cores GSP10- 02, 03 and 04 demonstrated 20-200 cm 

cycles of fining upward sequences and coarsening upward sequences. Core GSP10-04 contains 1 

meter of channel sub-facies 3 overlaying approximately 1.5 m of sand flat facies deposits. This 

particular core was collected at the confluence of Clay Creek and Cottonwood Creek systems. 

The presence of the sand flat facies within 1 m of the surface suggests that these two systems 

have not always coalesced in this location suggesting the systems are prone to avulsion. GSP10-

01 was collected in the modern sand flat environment with 1.75 m of sand flat deposits 

overlaying a little over 1 meter of channel deposits. 
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Geophysics 

An AGI SuperSting was utilized for identifying potential paleo-channels. Aerial 

photography was used to determine a location without the surface expression of a modern or 

recent channel avulsion. Seven ERI lines were acquired, seven of which were located in the area 

free of recent fluvial channeling and one was collected across an active channel of Clay Creek. 

Five of the seven ERI lines collected across the sand flat aligned parallel to one another from 

west to east (Figure 31). These lines are GSP02NA, 04NA, 05N, 06N and 07N. All of the 5 ERI 

lines demonstrated similar visual signatures at the same depths and locations across their 

respective array, however, GSP02NA demonstrated the clearest signatures. ERI line GSP02NA 

shows a package approximately 1.75 m thick of a green less conductive unit overlying a 1 m thick 

unit of red/orange more conductive materials (Figure 32). Another less conductive horizon is seen 

just below the red/orange more conductive material and is approximately 5-8 meters thick. The 

bottom unit is blue and even less conductive than any of the overlying units and ranges between 

7-10 m in thickness.  

The criteria used to identify potential channels were based on the 

sedimentological/electrical conceptual model shown in Figure 32 (Halihan). The interpreted 

channel is thought to be electrically more conductive due to the relatively larger pore spaces 

present then in coarser grained channel deposits compared with over bank-mud flat deposits. This 

allows for the interpreted channel deposits to have an electrically more conductive signature in-

cased by electrically less conductive over bank-mud flat deposits. The conductivity average of the 

5 ERI lines show robust deviations in the two locations that line GSP02NA exhibits the isolated 

signatures. This suggests that these paleo-channels are potentially continuous (Figure 31). The 

bulk average of the 5 ERI lines (Figure 33) is the horizontal hashed line and illustrates the points 

at which the robust kicks of the interpreted channels deviate from the average   
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Figure 31: Zoomed in area of ERI lines with channel signature, beginning with GSP02NA 

(Figure 32). 
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Figure 32: Conceptual channel model (Halihan) and ERI line GSP02NA. 



55 
 

 

 

Figure 33: Conductivity results of 5 ERI lines, showing two potential paleo-channels. 
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(highlighted). Additionally, the standard deviation is plotted at the bottom with its values along 

the right y-axis. This reaffirms the robust deviations of the interpreted channels as they are both 

bounded by areas exhibiting relative increases in standard deviations.  

The upper 1.75 m green less conductive unit is interpreted as sand flat deposits overlying 

5-6 m of a red/orange more conductive unit of channel deposits. Approximately 0.6 – 1 m of the 

potential channel deposits are captured in core GSP10-01 (Figures 14 & 15). Underlying the 

red/orange more conductive potential channel deposits is another green less conductive unit 5-8 

m thick and is interpreted to be either sand flat deposits or normal fine-grained floodplain 

deposits of the Salt Fork of the Arkansas River. The bright blue lower 7 – 10 m less conductive 

unit is interpreted to be the Permian bed rock that is much more consolidated than the overlying 

deposits and thus, much more resistive. Using Halihan‘s method in combination with vibra-core 

GSP10-01 (Figures 14 & 15) proved beneficial for understanding the processed images. Roughly 

1.75 m of sand flat deposits are captured in core GSP10-01 (Figure 15). Additionally, the core 

data exhibited channel sub-facies 3 with trough cross beds at the same depth (2.4 m) of the ERI 

depicted channel using Halihan‘s method. 
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CHAPTER V 
 

 

DISCUSSION 

 

The GSP can be subdivided into three zones: proximal, medial and distal. Changes with 

morphology and sedimentological processes occur within each environment zone. Changes occur 

in three stages of evolution: flooding, evaporation-concentration and desiccation. The relative 

roles and individual processes operating during each of these stages differ by location.  

Morphology 

The architecture of the GSP though considered a ―featureless surface‖ (Johnson, 1972) 

varies from proximal to medial to distal sub-environments. Topographic profiles reveal that there 

is a trend in channel dimensions, contrary to North et al. (2007) stating that, ―there is no 

systematic variation in channel dimensions‖. Channel depth does decrease from proximal to distal 

zones of the GSP as shown in Figure 34. Both charts show maximum incision defined as the 

difference from the southern bank to the lowest channel depth on the y-axis. The x-axis shows 

profile names aligned down dip, moving from west to east for Figure 34, Clay Creek and The Salt 

Fork of the Arkansas, respectively (Figures 7 & 9).  

Other trends are formed within the channel environment in which bedform size is 

observed to decrease from proximal to distal zones (Figure 13). Additionally, riparian vegetation 

decreases moving from proximal to distal zones of the GSP (Figure 35).  
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Figure 34: Clay Creek and the Salt Fork of the Arkansas maximum incision of channel profiles, 

down dip. 
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Figure 35: Decrease of riparian vegetation: Clay Creek. A: Looking due west, upstream in the 

proximal zone. B: Looking due east, downstream in the medial zone. C: Looking due west, 

upstream in the medial (nearing the distal) zone. 
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The Salt Fork is more extensive and larger and though it does demonstrate bifurcation in 

the distal sub-environment, it predominantly has an anabranching style of channel 

geomorphology in the proximal and medial sub-environments. Clay Creek and other minor creeks 

demonstrate bifurcation and anabranching, but do not always rejoin the main channel in the distal 

sub-environment (Figures 36 & 37). This constantly changing spatial distribution of channels in 

the medial sub-environment is likely partially responsible for the decrease in riparian plant life.  

The proximal zone has some of the smallest geomorphic features observed in the field 

(Figure 13). Additional features were observed in the delta environments produced by the Clay 

Creek and The salt Fork of the Arkansas delta fronts (Figure 38). 

Although it is possible some of the vibra-cores did not retain all of the possible 

sedimentary structures observed in tranches and at the surface; erosional, gradational and sharp 

contacts were preserved. These contacts provided information regarding the nature of facies 

transitions. GSP10-01 & GSP06-01 were the only cores not collected in the channel environment, 

but were collected within the sand flat environment. GSP10-01 was collected along an ERI line in 

order to calibrate potential channel signatures. This particular core did preserve trough cross 

bedding. Cores GSP10-02, 03 and 04 were all collected within the channel facies. Though cross 

stratification is not preserved in all cores, it was observed in trenches from the same locations. 

Both cores and trenches show alternating coarse and fine grained lamina (Figure 23). This is 

representative of the frequent shifts in flow magnitude. This type of sediment delivery is often 

considered a ‗pulse‘ and is generally associated with ephemeral fluvial systems (Nanson et al., 

2002). With the exception of Clay Creek, Powell Creek and The Salt Fork of the Arkansas all the 

fluvial systems of the GSP are ephemeral and only active during flooding stages. 
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Figure 36: Black solid arrows indicate main channels, red hashed indicate splitting away and black hashed indicate rejoining. Not all channels 

rejoin in Clay Creek.
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Figure 37: Arrow definition same as in Figure X, however The Salt Fork of the Arkansas is 

dominated by channels that split and rejoin (anabranching).  
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Figure 38: A: Aerial photography of the Clay Creek delta. B: Oscillation ripples submerged in 

Clay Creek delta front. C: Aerial view of The Salt Fork of the Arkansas delta. D: Reworked 

asymmetrical ripples submerged in delta front of The Salt Fork of the Arkansas. 
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Erosional vs Depositional surfaces 

The surface of the GSP undergoes both deposition & erosion. Destroyed or missing traps 

allows for the distinction between depositional and erosional surfaces. Trap 07(A & B) was never 

successfully retrieved after deployment for either time periods (Figure 25). This is an indication 

of a highly erosive surface near the shoreline of the southern portion of the GSP where ST09-

07A&B were deployed. In times of rain, the GSP is highly susceptible to flooding beginning at 

the shoreline as the reservoir quickly transgresses inland.  Mass accumulation rates for the 

sediment traps are shown in table 2 and Figure 21. The total mass accumulation was divided by 

the appropriate number of days the trap was deployed yielding a rate of grams per day. The mass 

accumulation rates were generally higher over the 2 week period than the 2 month period.  The 

only exceptions were traps not recovered and trap ST09-04A&B. Trap ST09-04A&B is in the 

proximal zone of the sand flat environment, near the vegetated dunes (Figures 1 & 30). ST09-

04A (2 week period) had the lowest accumulation rate between the two with 0.55 g/day and 1.92 

g/day during the 2 month period. This anomalous rate may be due to the proximity of the dunes 

for this particular trap which may have prevented direct flooding by overwash. One possible 

reason for the lower accumulation rates for the 2 month period (~ 63 days) is the increased 

frequency of storms. Only one minor rain shower occurred during the two week deployment, 

while multiple storm systems passed through during the 2 month period leaving the traps more 

vulnerable to a higher frequency of erosion. Initially these storm deposits are erosive, but as flow 

wanes, it has been observed that storm deposits remain, such as the obstacle scours (Figure 39 C 

& D). 

The spatial arrangement of the sediment traps and their associated mass accumulation 

results suggests the erosional capacity generally increased distally within the sand flat 

environment probably due to overland flow and sheet wash during flooding stages. However, 

within the channel facies, relief along erosional surfaces decreased distally. Trap ST09-09 
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Figure 39: Features produced across the GSP during the flooding stage. A: Debris (logs) extent 

inland on the sand flats. B: Debris washed in from Clay Creek system, close to a riparian island. 

C: Obstacle scours from sheet wash on sand flats. D: Obstacle scour. E: New ephemeral channel 

washout debris deposits. F: Wash out debris deposits. 
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retained trace amounts of sediment for the first two weeks of deployment and was completely 

gone for the 2 month retrieval. Depositional surfaces were generally tied to the channel facies 

environment within the medial and distal zones.  

Grain-size data was collected for sediment traps, however, their values are subject to the 

depression each trap was observed to have created, which was not desired and allowed for a 

potentially unnatural enhanced accumulation of sediments. 

Stages: Sedimentary Processes 

Observations of the GSP through the course of this study suggest the GSP undergoes three stages 

of development in which a unique set of processes control the character of its surfaces and the 

natures of sediments deposited. These stages start with a rain event marking the flooding stage 

and are followed by the evaporation-concentration and desiccation stages as the waters recede. 

Flooding stage 

During this stage, water leaves the channels and expands into the sand flat environment 

to compensate for discharge producing ephemeral channels (Figure 39-E & F). Bifurcation 

increases in the medial zone for the channel environment, as well as within newly formed 

ephemeral streams that appear across sand flat environment. Distally, during this stage the GSP 

reservoir levels rise (causing the shoreline to transgress resulting in suspended load deposition on 

top of the sand flat and channel environments. The landward extent of this transgression 

determines the spatial distribution of the mud/algal flat facies. During times of frequent rain 

storms such as in the spring, portions of the sand flat environment (particularly on the South side) 

can be submerged with up to 3 cm of water, as measured/observed (Figure 40). This standing 

water eventually evaporates or flows via overland flow into the GSP reservoir. Some ephemeral 

isolated pools remain scattered throughout the flats resulting in the deposition of mud and 

evaporites. Additionally, sand sized sediment is transported by sheet-wash within shallow  
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Figure 40: Lineations on sand flat surface within 30 hours of a rainstorm, ovals circle standing 

water. 
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gradient settings, as also observed by Fisher et al. (2007). This process in addition to eolian 

processes is responsible for much of the sand deposits of the sand flat environment. Debris is 

introduced across the environment from sheet-flood flows. This debris includes dead logs, plant 

debris, animal remains and anthropogenic debris (Figure 39). Relatively large logs found on the 

sand flat surface are likely introduced during heavier rain events (Figure 39-A).  

Additional surface features formed during the flooding stage include scours. Scours are 

found in the proximal zone of the channel environment and are attributed to higher velocities 

breaching the thin algal mat left behind from the previous evaporation-concentration stage. 

Debris, i.e. branches, logs, etc, breaks the thin algal surface and the high-velocity channel flow 

experienced during the flooding stage infiltrates the sandier deposits below resulting in erosion. 

Obstacle scours are also interpreted to be the result of sheet wash. Obstacle scours, found in the 

proximal zone are dotted granule to pebble sized deposits (Figure 39-C&D). The noses of these 

features are generally a large or a collection of large pebble-granule grains pointing upstream.  

Evaporation-Concentration Stage 

During the evaporation-concentration stage, precipitation of halite and selenite (gypsum 

variety) occurs at the surface and in the shallow subsurface. Sparse isolated evaporation pools are 

found throughout the sand flat and channel environments and the site of deposition of halite 

hoppers (cubic habit of precipitating halite) and halite rafts (Figure 41-A, D, E, F)(Lowenstein et 

al., 1985). Halite precipitation is not restricted to these pools as it also precipitates across the GSP 

in every zone and environment (Figure 41-B, C & Figure 42). Figure 42 illustrates the desiccation 

stage; however, the original process that introduced the halite occurs during the evaporation-

concentration stage. Figure 41-B and C, both show unique habits of halite within the medial zone 

on the sand flats. Figure 41-B shows a prominent accumulation of halite along a log which is 

interpreted to have created a scour, which later formed an isolated puddle for halite hoppers and  
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Figure 41: Evaporation-concentration stage. A: Isolated halite encrusted ephemeral pool. B: 

Accumulation of halite along log. C: Cross hatched pattern of dynamic features, asymmetrical 

straight swept ripples (halite covered) and lineations with adhered sand lenses. D: Halite hoppers. 

E: Selenite clusters precipitate in the subsurface and exposed due to erosion. F: Halite rafts. 
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Figure 42: Desiccation Stage. A: Desiccated ephemeral pool, tumble weed in the left background. 

B: Syneresis cracks and rolling log trail. C: Abandoned ephemeral channel with adhesion ripples 

and eolian sand lenses trapped in the troughs. D: Eolian halite ripples with noses pointed up wind, 

long continuous white lines are halite actively being transported. 
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rafts to form. Additional halite accumulates as the evaporation-concentration stage transitions into 

the desiccation stage and reworked halite grains were observed accumulating in the field by wind 

transport. Figure 41-C is show a unique cross hatched geometry in the medial zone of the sand 

flat environment. In this situation, asymmetrical straight-crested ripples are highlighted during the 

evaporation-concentration stage by the halite precipitation superimposed on lineations formed 

during the flooding stage. The lineations are composed of sand lenses transported by the wind and 

adhering to (at the time) the moist sand flat surface. 

 During this stage, isolated pools from abandoned ephemeral channels are observed in all 

three sub-environments. These pools are commonly halite filled and encrusted around their 

perimeters (Figure 41-A). These observed pools are most likely accountable for the discontinuous 

thin mud deposits found in trenches in both the channel facies and sand flat facies.  

Desiccation Stage 

The desiccation stage is dominated by eolian processes and impacts all zones. The medial 

zone was modified the most by eolian processes during the desiccation stage. Figures 42-B & C 

both have features that originate from the evaporation-concentration stage, but additional 

accumulation of halite and sand lenses occurred due to wind transport during the desiccation 

stage.  Figure 42-A & B shows the surface of a dried ephemeral pool and faint syneresis cracks, 

respectively. Figure 42-B illustrates the trial of a log seen in the distance similar to deposits found 

in Racetrack playa of Death Valley (Stanley 1955). Whether the log traveled solely due to sheet-

wash processes or was aided by wind is uncertain. Sand, halite or any available fragments or 

particles from the abandoned channel is redistributed by the wind and deposited on top of over-

bank deposits. This process was also observed in active channels, although, the wind tended to 

redistribute over-bank deposits of sand and halite. Additional wind transport during this stage is 
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shown in Figure 42-D. Asymmetrical ripples of reworked halite and sediment occur 

discontinuously across the surface. 

Depending on the length of the desiccation stage, perennial channels can also be 

reworked. Image J in Figure 46, shows a trench that illustrates this cyclicity between wet and dry 

stages along the channel and sad flat facies. Wetter periods (flooding stage) are represented by 

clay drapes and darker, finer sediment cutting in the laminates sands (drier – desiccation stage). 

The paramount characteristic of the desiccation stage is its ability to redistribute sediment from 

all zones and its subsequent environments. This reworking of grains makes it difficult to quantify 

the relative importance of eolian and fluvial contribution. 

  



73 
 

 

Figure 43: Zones of the GSP including some of the major trends found within some of the environments.  
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Figure 44: GSP Schematic cross section from South to North. Numbers and letters correspond to figures.
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Figure 45: A-F photographs of the GSP summarizing the key characteristics of the depositional 

model. A: Rip up layer within the distal zone of the channel environment. B: Trough of cross 

bedding, with coarse grains and rip ups at base within the proximal zone within the channel 

environment. C: Clay layer overlying sand lenses and parallel lamina of the medial – distal 

transition zone of the sand flat environment. D: Side swept catenary ripples from sheet wash 

processes in the proximal zone of the sand flat environment. E: Ripple cross lamination, with a 

degrading black wood fragment from the medial zone within the channel environment. F: Lunate 

ripples found in the distal zone within the sandflat environment. 



76 
 

 

Figure 46: G-K photographs of the GSP depositional model. G: Cut and fill feature overlying 

ripple cross stratification in the proximal zone of the channel environment. H: Dark organic rich 

sand/mud lamination package overlain by coarser sand package and another package of dark 

organic rich sand/mud package in the distal zone of the channel environment. I: Syneresis cracks 

in over-bank deposits in the distal zone of the channel environment. J: Dark sand – very fine sand 

deposits overlain by lighter, coarse sand lamination and cross stratification cycles; dark: wetter 

times, light: drier times in the proximal zone straddling the channel and sand flat environments. 

K: Efflorescence surface, halite crust from the medial zone of the sand flat environment. 
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Figure 47: Images L – P of the GSP depositional model. L: Organic fragments, close to dunes in 

the proximal zone in the sand flat environment. M: Rip up clasts, parallel laminations and ripples 

capped by fine grained sandstone with sparse ripples in the proximal zone of the sand flat 

environment. N: Nearing distal zone, dark very fine sand and clay layer capped by organic rich 

silty to fine sand laminations in the channel environment. O: Dark organic rich sand and very fine 

grained sand layer capped by medium – coarse grained sand with thin organic rich layers with 

sparse ripples in the medial zone of the boundary of the channel and sand flat environment. P: 

Organic rich sand ripples with clay drapes capped by med grained sand with sparse ripples and 

organics in the proximal zone of the channel environment.  
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ERI – Paleoclimate Potential 

 Figure 44 illustrates our conceptual stratigraphic framework for the Holocene section of 

the GSP. The GSP stratigraphy is generally a thin layer of sand flat facies overlying a 5 – 10 m 

thick interval of coalesced fluvial channels represented by the three sub-facies of the channel 

facies. It is unclear whether the low-conductivity unit beneath the channel unit shown in Figure 

32 represents an earlier period of sand flats or the finer-graines deposits of a more active Salt 

Fork of the Arkansas River. If it represents the former, a section of sandflat facies may provide a 

continuous record of Holocene sediments. However, nothing was identified with in the sand flat 

facies that could be used as a sedimentary proxy (e.g. laminations, preserved eolian lenses, etc) of 

climate.  
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CHAPTER VI 

 

 

 

 

CONCLUSIONS 

 
 

 

The GSP is a continental sabkha located within the central plains of Oklahoma. Its 

potential to hold a Holocene paleoclimate record was evaluated by documenting its sedimentary 

environments and general stratigraphy. Five (5) sedimentary environments were identified with in 

the GSP: sand flat, channel, mud/algal flat delta and dunes. The facies of each environment were 

described using field observations, shallow trenches, cores, grain-size measurements and aerial 

photography. All of the environments are subject to three different stages of evolution: flooding, 

evaporation-concentration and desiccation. The dominant processes that control sedimentation 

include: fluvial, sheet-flood, eolian and reservoir (anthropogenic) flooding processes.  

From proximal to distal zones of the GSP, a decrease in channel depth, decrease in grain-

size, an increase in channel bifurcation, and an increase in unconfined flow was observed. The 

channel depth trend is the most notable as it is contrary to the results of North et al. (2007), when 

stated that there is no systematic variation in channel dimension in the splay environment. 

However, a decrease in channel depth was found in this environment. 

 Both geophysical (ERI) and core analysis documented the presence of paleo-channels 

underlying most of the GSP. The presence of a continuous sheet of fluvial deposits beneath most 

of the GSP as well as the absence of a distinct sedimentary structures needed to produce a 
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Holocene climate proxy (e.g. laminations, eolian lenses, etc.) suggest that producing a climate 

record for the GSP may be unattainable.  
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APPPENDICES 
 

 

GRAIN-SIZE DATA 

Core Mean Φ 

Std 

Deviation Skewness Facies 

Trench & 

Surface Mean Φ 

Std 

Deviation Skewness Facies 

01A_0 

cm 3.9814594 1.6206394 1.0294616 sand flat 09_022 0.8638812 2.0522815 0.7147217 delta 

01B_50 

cm 2.7502972 1.9677537 1.2592617 sand flat 09_030F 2.9365468 1.3921222 2.7139553 channel 

01C_100 

cm 2.801759 2.186906 1.4219312 sand flat 09_031B 2.7554119 1.6071553 1.4409417 channel 

01D_150 

cm 3.5258267 2.5371471 0.4814897 sand flat 09_030D 1.7655835 2.0893622 0.5518395 channel 

01E_200 

cm 1.9972041 2.0919077 1.4714975 channel 09_032B 3.2657441 1.0801064 3.4746454 channel 

01F_250 

cm 0.5655404 1.4684138 3.0769617 channel 09_033B 3.831832 1.6048542 0.938065 channel 

02_15cm 4.3804367 1.8048575 0.3777556 channel 09_034 2.6450885 0.8418368 3.8716356 channel 

03A_0 

cm 3.3041104 1.3576147 1.992888 channel 09_036 2.9786337 0.8855289 3.4926096 channel 

03B_50 

cm 2.1564625 1.9449407 1.6971896 channel 09_037 3.2153392 1.0326605 2.8518361 

Mud/algal 

flat 

03C_100 

cm 4.7809809 2.2603823 0.5393604 channel 09_043 2.1453052 1.0747535 2.1418039 channel 

03D_150 

cm 4.1752629 2.4228927 0.499392 channel 09_045 3.2187244 1.2654936 1.8756317 channel 

03E_200 

cm 2.8902096 1.3915868 2.4292172 channel 09_046 2.2847572 0.7994803 4.4918528 channel 

03F_250 

cm 2.2071707 1.9605797 1.4871468 channel 09_048 2.4412941 1.0386202 3.3316991 channel 
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03G_300 

cm 1.9115298 1.3486604 2.4031328 channel 09_OB01 3.1267738 1.4134759 2.7710165 sand flat 

03H_350 

cm 2.1686011 1.4881832 2.4942131 channel 10_061A 2.0792271 0.9850025 2.5065339 sand flat 

04_0 cm 3.936504 1.7246673 1.6438671 channel 10_061B 3.8445863 1.4605579 2.1298219 sand flat 

04_56 

cm 1.992308 1.0083013 2.501313 channel 10_061C 2.8244358 1.3762984 2.4654916 sand flat 

04_75 

cm 3.1789206 1.7394746 1.0962409 channel 10_062 2.4062994 0.8632424 3.9043071 sand flat 

04_210 

cm 3.730136 1.4528132 2.0438416 channel 10_063 2.6583642 1.5015632 2.9897446 sand flat 

     

10_064 4.0558 1.2347323 2.4933504 sand flat 

     

beach_sand 2.8149431 1.4849161 1.7614475 sand flat 

     

ss_001 1.3616948 2.2824185 0.4697215 

mud/algal 

flat - 

surface 
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ERI DATA 

Line Name GPS - Electrode Latitude Longitude Electrodes Spacing (m) 

GSP01N E 1  N 36° 42.371' W 98° 15.875' 56 2 

GSP01N E 14 N 36° 42.381' W 98° 15.876' 56 2 

GSP01N E 28 N 36° 42.396' W 98° 15.876' 56 2 

GSP01N E 42 N 36° 42.411' W 98° 15.878' 56 2 

GSP01N E 56 N 36° 42.429' W 98° 15.880' 56 2 

GSP02NA E 1  N 36° 42.367' W 98° 15.996' 56 2 

GSP02NA E 14 N 36° 42.382' W 98° 15.996' 56 2 

GSP02NA E 28 N 36° 42.393' W 98° 15.996' 56 2 

GSP02NA E 42 N 36° 42.411' W 98° 15.996' 56 2 

GSP02NA E 56 N 36° 42.425' W 98° 15.996' 56 2 

GSP04NA E 1  N 36° 42.368' W 98° 15.989' 56 2 

GSP04NA E 14 N 36° 42.381' W 98° 15.989' 56 2 

GSP04NA E 28 N 36° 42.398' W 98° 15.990' 56 2 

GSP04NA E 42 N 36° 42.413' W 98° 15.990' 56 2 

GSP04NA E 56 N 36° 42.429' W 98° 15.990' 56 2 

GSP05N E 1  N 36° 42.429' W 98° 15.984' 56 2 

GSP05N E 14 N 36° 42.382' W 98° 15.984' 56 2 

GSP05N E 28 N 36° 42.398' W 98° 15.984' 56 2 

GSP05N E 42 N 36° 42.413' W 98° 15.984' 56 2 

GSP05N E 56 N 36° 42.369' W 98° 15.984' 56 2 

GSP06N E 1  N 36° 42.368' W 98° 15.978' 56 2 

GSP06N E 14 N 36° 42.382' W 98° 15.978' 56 2 

GSP06N E 28 N 36° 42.398' W 98° 15.978' 56 2 

GSP06N E 42 N 36° 42.413' W 98° 15.978' 56 2 

GSP06N E 56 N 36° 42.428' W 98° 15.978' 56 2 
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GSP07N E 1  N 36° 42.369' W 98° 15.970' 56 2 

GSP07N E 14 N 36° 42.383' W 98° 15.970' 56 2 

GSP07N E 28 N 36° 42.398' W 98° 15.970' 56 2 

GSP07N E 42 N 36° 42.413' W 98° 15.970' 56 2 

GSP07N E 56 N 36° 42.429' W 98° 15.970' 56 2 

GSP08N E 1  N 36° 43.727' W 98° 15.240' 56 2 

GSP08N E 14 N 36° 43.743' W 98° 15.241' 56 2 

GSP08N E 28 N 36° 43.758' W 98° 15.243' 56 2 

GSP08N E 42 N 36° 43.774' W 98° 15.245' 56 2 

GSP08N E 56 N 36° 43.789' W 98° 15.248' 56 2 
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ABSTRACT 

 

 

We investigate the potential of the Great Salt Plains (GSP) of northwestern Oklahoma for 

containing a climate archive by documenting the modern environments and creating a 

depositional model using trenches, cores, surface observations, aerial photographs, and GPS 

surveys. The GSP can be subdivided into five environments. These environments include sand 

flat, channel, mud/algal flat, delta and dunes. Each environment is marked by at least one distinct 

facies documented in trenches and surface observations. The most geographically widespread 

environment is the sand flat. Large expanses of sand flat are broken by many branching 

ephemeral channels of Spring, Clay, Powell Creeks and The Salt Fork of the Arkansas River. 

Cores and resistivity profiles were used to determine the vertical distribution of facies within the 

GSP. This subsurface data shows that although the sand flat environment is the most widespread 

environment today, the majority of the sedimentary deposits represent the channel environment 

with three (3) distinct sub-facies: sub-facies 1: tan-light brown to orange, coarse – granule sands 

with minor amounts of clay drapes, rip up clasts and cross bedding; sub-facies 2: brown-dark 

brown to black, fine – mud sized grains with plant fragments, trough cross bedding and inter-

laminated sands and muds; and sub-facies 3: tan, to grey and rusty yellow, medium – coarse 

sands with flaser bedding, minor starved ripples and woody fragments. The avulsive nature of the 

Spring, Clay, Powell Creeks and The Salt Fork of the Arkansas River probably continuously 

reworks the sand flat facies making the preservation of a long continuous record of fine-grained 

sediments necessary for paleo-climate archive unlikely. Thus it is doubtful that the GSP contains 

a continuous long-term record of Holocene climate.       
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