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CHAPTER I 
 
 

INTRODUCTION 

 

The Arkoma Basin is a foreland basin formed during the Pennsylvanian Ouachita 

Orogeny. It is located in southeastern Oklahoma and extends east into the western part of 

Arkansas. The Arkoma Basin is approximately 250 miles long and about 50 miles wide.  

During the Ouachita Orogeny, collision of the North American Plate and a southern 

landmass known as Llanoria formed the Arkoma Basin and Ouachita mountains 

(Houseknecht and Kacena, 1983). The Pennsylvanian Ouachita Orogeny is also 

responsible for the generation of other foreland basins such as the Black Warrior and Fort 

Worth, which all lie landward along the Ouachita fold thrust belt (Figure 1). These basins 

are related both stratigraphically and tectonically (Branan, 1968).  

Foreland basins are extensively researched across the world because of their 

reservoir potential. The Arkoma Basin is one of many prolific foreland basins in North 

America. The first discovery of natural gas in the Arkoma Basin was in 1902, but 

extensive drilling did not begin until deeper Atokan sandstones were reached (Branan, 

1968). The Spiro Sandstone is one of the lower Atokan deeper sandstones that is an 

exceptional reservoir in the basin and is distributed over a large area (Branan, 1968, and 

Cemen et al., 2001).  
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Figure 1. Yellow circle indicating the approximate location of thesis study area within the 
   Arkoma Basin along the Ouachita thrust belt (after Branan, 1968).  
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The Wilburton gas field is one of the many gas fields discovered in the Arkoma 

Basin. The field first produced from deeper Atokan reservoir rocks in 1960 with 

production in the Spiro Sandstone (Tilford, 1990). The Wilburton gas field is mainly 

located in Latimer County, but also extends into the eastern part of Pittsburg County in 

Oklahoma. Over 1.3 trillion cubic feet of gas (tcf) has been produced in the Wilburton 

gas field and most of it is structurally trapped in the Spiro Sandstone. Over 733 billion 

cubic feet of gas (bcf) has been produced in the 3D survey study area. These values are 

current as of February 2008 (IHS, 2008). 

Many M.S. theses have been completed covering the geology of the Arkoma 

Basin over the years at the Oklahoma State University Boone Pickens School of Geology. 

Most focused on the stratigraphy and structural features of the basin. Recently a M.S. 

thesis was completed by William Parker (2007) in which a 3D conventional seismic data 

set was interpreted. This thesis provided a better understanding of the some of the 

structural relationships present in the Arkoma Basin. Additionally, seven cross sections 

were constructed and balanced to determine the amount of shortening in the Spiro 

Sandstone by Wahab Sadeqi (2007) for a M.S. thesis project completed in Spring 2007. 

The 3D conventional data set used by William Parker has since been inverted to acoustic 

impedance, and is now being used for this research to interpret stratigraphic relationships. 

This thesis will study the rock properties of the Spiro Sandstone by establishing 

relationships between acoustic impedance and porosity. 
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STUDY AREA 

 

The Ouachita Mountains are commonly subdivided into three sections: from north 

to south they are the Frontal Belt, Central Belt, and Broken Bow Uplift (Figure 2). These 

subdivisions are made based on their location from the continent interior. The Frontal 

Belt is the closest to the continental interior and is dominated by imbricate reverse faults. 

The Central Belt contains large synclines and fewer reverse faults. The Broken Bow 

Uplift, most southern section and farthest from the continent interior, contains tight 

overturned folds (Feenstra and Wickham, 1975). The frontal Ouachitas are highly 

deformed and are separated from the mildly deformed foreland Arkoma Basin by the 

Choctaw Fault. The Wilburton triangle zone partitions the mildly deformed strata from 

the highly deformed strata. The study area is marked in Figure 2 and is located in the 

Wilburton gas field, which is located in the transition zone between the mildly deformed 

strata of the Arkoma Basin and the tightly deformed strata of the Frontal Belt (Cemen et 

al., 2002).   

PURPOSE OF STUDY 

 

The main purpose of this study is to use proprietary 3D seismic that has been 

calibrated to well control to tie acoustic impedance changes to porosity changes in the 

Spiro Sandstone. This 3D seismic data set has been inverted to acoustic impedance; the  
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Figure 2. Study area location in the Arkoma Basin on the edge of the 
 Frontal Ouachitas (after Cemen et al., 2001). Box 1: Middle Paleozoic      
(Cambrian through Early Mississippian). Box 2: Middle to late 
Mississippian (Stanley Group of Ouachitas) Box 3: Morrowan (Jackfork 
Group and Stanley Formation of Ouachitas) Box 4: Atokan 
(Spiro/Wapanucka and Atoka Formations of the Ouachitas and Arkoma 
Basin) Box 5: Desmoinesian (Hartshorne, McAlester, Savana, and Boggy 
Formations of the Arkoma). H=town of Hartshorne, W=town of 
Wilburton, WL=Wister Lake 

 

 

 

 

 

 

STUDY AREA 
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product of multiplying density by velocity, which can be used to map property changes in 

the rocks. A few rock properties that can affect acoustic impedance are porosity, fluid 

content, clay content and cementation. For example, a porous rock will be less dense and 

have a slower velocity, giving lower acoustic impedance compared to a rock that is 

tightly cemented, which will be faster and have a higher density. In areas where well 

control is 

lacking, this relationship between acoustic impedance and porosity may help identify 

more productive areas. Seismic acoustic impedance can also be used to map thickness 

changes and help identify thin beds not resolved with conventional seismic data. In 

earlier work at OSU (Parker, 2007 and Sadeqi, 2007), the Spiro Sandstone and the 

Wapanucka Limestone, which underlies the Spiro Sandstone, were analyzed as a 

package. The inversion data shows a large acoustic impedance contrast between the Spiro 

Sandstone and Wapanucka Limestone, allowing the two units to be analyzed 

independently. Formation tops were also picked more accurately with the inverted 

seismic data. This acoustic impedance data set was used to map thickness changes in the 

Spiro Sandstone and map areas of higher porosity in the survey area.  

 

METHODOLOGY 

 

 In 2000, a 3D seismic data set was acquired in Pittsburg and Latimer counties 

within the Wilburton gas field. This 3D data set was donated by Devon Energy 

Corporation to the OSU Boone Pickens School of Geology to be used for M.S. thesis 
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projects. This data set was then inverted to acoustic impedance by Odegaard America 

Inc. in 2005.  Interpretation of this data is being done in KINGDOM Suite version 8.1,  

a software package from Seismic Micro-Technology (SMT). Picked horizons and major 

faults were interpreted by Parker (2007) on a conventional reflection seismic data set 

calibrated to well control. Since then, using the acoustic impedance data set, two 

additional horizons were picked. Well logs and acoustic impedance values taken from the 

seismic data were crossplotted to derive relationships between porosity and acoustic 

impedance. The following steps were used to carry out interpretations on the data: 

1) 3D seismic inversion data was imported into KINGDOM Suite version 8.1. 

2) Log Ascii Standard (LAS) files with logs and formation tops were imported bringing 

    the total wells in the project to 64.  

3) Time-Depth charts were created using sonic logs to change depth values into time 

    values so that calculated acoustic impedance curves in depth can be tied to the seismic.  

4) Calculated acoustic impedance curves were tied to the impedance data to calibrate well 

    data to seismic data.  

5) The base of the Spiro/ top of the Wapanucka and base of the Wapanucka were picked 

    over the survey by hand using the picking tool in KINGDOM Suite v. 8.1 

6) Wells with sonic logs were identified and velocities were compared over the survey 

    area. 

7) Relationships were established between porosity and acoustic impedance. Areas of 

    higher porosity in the Spiro Sandstone correlated to lower acoustic impedance values.  

8) Seismic thickness and amplitude maps for the Spiro Sandstone were created to 

    compare impedance changes over the area. 
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CHAPTER II 
 

GEOLOGIC OVERVIEW OF THE ARKOMA BASIN TECTONICS AND 

STRUCTURAL GEOLOGY 

 

The Arkoma Basin is a foreland basin bounded to the south by the Ouachita 

Mountains, to the north by the Ozark Uplift, to the northwest by the Oklahoma/Cherokee 

Platform, to the west by the Hunton Arch, to the southwest by the Arbuckle Mountains, 

and to the east by the Reelfoot Rift/Mississippian Embayment. The sedimentary rock 

thickness ranges from 3,000 feet on the northern shelf of the basin to 30,000 feet along 

the frontal Ouachita Mountains to the south (Branan, 1968 and Johnson, 1988).  

The Arkoma Basin began forming as a result of the opening and closing of an 

early Paleozoic ocean in the Mid-Cambrian (Houseknecht and Kacena, 1983) (Figure 3). 

Rifting began during the early Paleozoic, which resulted in the failed rift arms creating 

the Southern Oklahoma Aulacogen and Reelfoot Rift. The Paleozoic ocean started to 

close during the Late Devonian to Early Mississippian when Llanoria began encroaching 

on the southern margin of North America. A subduction zone was created during the 

Devonian, which is supported by the presence of arc-related volcanic debris in the 

Mississippian aged Stanley Shale. During this time a basin formed and accumulated 

sediment derived from the Central Appalachians to the north and northeast. During the 

Devonian to Mississippian an accretionary prism developed. This prism abducted onto 

the continental margin of North America during the Atokan, which later  
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Figure 3. Paleogeographic maps showing different stages of evolution of the Arkoma   
               Basin with structural cross sections drawn from North to South. A)Mid-Late 
               Cambrian (510Ma), B) Devonian (345Ma), C) Mississippian (345Ma), D) Early 
               Pennsylvanian (315Ma), E) Late Pennsylvanian (300Ma). (after Blakely, 2005 
               and Houseknecht and Kacena, 1983). Yellow dot corresponds to approximate 
               location of thesis study Oklahoma Ouachitas. 

 

North  South 
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became the Ouachita Mountains. During this time, flexural bending of the overriding 

plate caused normal faults, originally formed in the Cambrian to Devonian, to be 

reactivated, deepening the basin and causing an abrupt increase in the thickness of 

sediments (Branan, 1968, Houseknecht and Kacena, 1983, and Johnson, 1988).  

As discussed previously the Ouachita Mountains can be separated into three belts; 

Frontal Belt, Central Belt, and the Broken Bow uplift; based on both stratigraphy and 

structural style. The Frontal Belt lies between the Choctaw and Winding Stairs fault and 

consists of steeply tilted, imbricately thrusted and tightly folded strata, shallow water 

Morrowan basinal strata. The Central Belt has broad open synclines, separated by tight, 

typically thrust-cored anticlines. The Broken Bow Uplift consists of isoclinally folded 

and thrusted Early Ordovician to Early Mississippian deep-water strata (Suneson and 

Hemish, 1994). 

The Wilburton gas field and surrounding areas contain down-to-the-south normal 

faults that are evident on the northern part of the cross-section (Figure 4) which was 

constructed by Cemen (2001). These faults formed in the north end of the leading 

imbricate thrust of the duplex structure (Figure 4). Normal faults show a maximum 2,000 

feet dip separation. These normal faults are assumed to be formed as growth faults based 

on two lines of evidence (1) the abrupt increase in thickness of the middle and lower 

Atoka; and (2) presence of turbidite-facies present in the lower and middle Atoka. 

Normal faults in Pre-Pennsylvanian rocks may have acted as barriers that forced the 

thrusts to ramp over basement rocks (Houseknecht and Kacena, 1983).  

 



11 

 

 

 

 

 

 

 

 

Figure 4. Wilburton gas field triangle zone interpretation (after Cemen et al., 2001).  
   CF=Carbon Fault, CHF=Choctaw Fault, PMF= Pine Mountain Fault, TVF= Ti 
   Valley Fault and LAD=Lower Atokan Detachment. 
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In the early 1990’s funding became available to fund research on the subsurface 

structural styles of the Arkoma Basin. Cemen et al. (2001) proposed a well developed 

triangle zone in the Wilburton gas field area. Two major faults and one detachment 

surface comprise the triangle zone located in Wilburton gas field. The triangle zone 

(Figure 4) is formed by the southerly dipping Choctaw fault, forming one side of the 

triangle, and the northerly dipping Carbon fault, forming the other side of the triangle. 

The triangle is floored by the Lower Atokan Detachment Surface (LAD) (Cemen et al., 

2001).  

The Choctaw fault is a west-southwest to east-northeast striking and southerly 

dipping thrust fault that extends more than 120 miles in Oklahoma. The hanging wall of 

the Choctaw fault contains many asymmetrical or overturned folds that are also found in 

the hanging walls of other thrust faults including the Ti Valley and Pine Mountain faults 

(Cemen et al., 2001).  

The Ti Valley Fault is a major thrust fault extending 240 miles from near Atoka, 

Oklahoma to Jacksonville, Arkansas. The Ti Valley trends west-southwest to east-

northeast with a southeasterly dip of 70-80º. The Pine Mountain fault strikes west-

southwest to east-northeast and is subparallel to the Ti Valley fault. The Pine Mountain 

fault dips 70-80º to the south, loses dip with depth and is a splay from the Woodford 

detachment or the Choctaw fault. This interpretation was determined by seismic profiles 

and wire-line log data (Cemen et al., 2001).  

The Carbon fault is an east-west striking fault. It dips to the north approximately 

30-40º. The Carbon fault has been interpreted as formed by the continued upward and 

northward propagation of the roof thrust, or Lower Atokan Detachment (LAD), within 
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the shales of the Atoka. The incompetent shale units cause the LAD to propagate with a 

low angle and form a gentle ramp. When the detachment reached a zero-displacement 

point it encounters a hindrance to its forward (northward) movement and begins to form a 

backthrust. The Carbon fault formed in this way to accommodate back thrust movement 

in the area (Cemen et al., 2001). 

Shortening calculations were applied to the Spiro Sandstone/Wapanucka 

Limestone in the Wilburton triangle zone (Cemen et al., 2002). The Spiro Sandstone/ 

Wapanucka Limestone was used as the key bed for restoration because a) it has a very 

recognizable well-log signature and b) it is the only competent rock unit found in both the 

footwall and hanging wall of the Choctaw fault zone. The amount of shortening in the 

Wilburton triangle zone was calculated to be about 60%. Parker (2007) found shortening 

in the Spiro Sandstone in the footwall of the Choctaw fault to be about 22%-29%. These 

shortening values were consistent with earlier work by Collins (2006) and Sahai et al. 

(2007).  
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CHAPTER III 
 

STRATIGRAPHY OF THE ARKOMA BASIN 

 

The Arkoma Basin contains sedimentary rocks that date from the Cambrian to the 

middle Pennsylvanian (Figure 5). Deposition in the Arkoma Basin occurred in three 

unique depositional periods dating back to the Cambrian. The earliest depositional period 

existed from the Cambrian to Early Atokan and consisted of miogeoclinal deposits, 

which contributed 5,000 feet to the total strata (Houseknecht and McGilvery, 1990) 

(Figure 6). The Middle-Late Atokan strata were a result of syn-depostitional growth fault 

movement accounting for 18,000 feet of strata. The Pennsylvanian Desmoinesian Series 

deposition occurred during the late stages of the basin development and accounts for 

8,000 feet of strata (Houseknecht and Kacena, 1983).  

 

Pre Pennsylvanian Rock Units 
 
 

Pre-Pennsylvanian deposition was fairly continuous except for two major 

epeirogenic uplifts that occurred during the Early and Late Devonian. Pre-Pennsylvanian 

rock units range in thickness from 1,000 feet to about 6,000 feet of sediment at most in 

the Arkoma Basin (Johnson, 1988). The Arkoma Basin is floored by a Proterozoic  
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Figure 5. Stratigraphic Nomenclature of the Arkoma Basin (Modified after 
               Johnson, 1988). 
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Figure 6. Stratigraphic chart and time frames illustrating sedimentary rock thickness  

   during the evolution of the Arkoma Basin (Houseknecht and McGilvery, 1990). 
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crystalline basement. Resting unconformably above the basement rocks is the Reagan 

Sandstone which is the widespread basal sedimentary unit in the area. The Lower 

Ordovician consists primarily of the Arbuckle Group that represents deposition in a 

shallow marine environment as evident by the abundant invertebrate fossils. The Middle 

Ordovician is primarily the Simpson Group, which contains shoaling-upwards sequences 

(Ham, 1969). The Middle to Late Ordovician contains the Viola Group and consists 

mainly of shallow marine carbonates.  The Late Ordovician is represented by the Sylvan 

Shale, which is thought to represent a shallow marine environment, and the Keel 

Formation of Chimneyhill Subgroup of the Hunton Group (Sutherland, 1988). 

 The Silurian and Lower Devonian are contained within the Hunton Group which 

rests unconformably on the Sylvan Shale and is mainly limestone. An epeirogenic uplift 

causes a major unconformity separating the Hunton Group from the overlying Woodford 

shale (Johnson, 1988). The Late Devonian/Early Mississippian Woodford Shale is a 

black, organic rich shale (Ham, 1969). Woodford sediments were deposited in a deep 

marine setting (Suneson et al., 2005).  

Conditions changed drastically during the Mississippian as thick turbidites were 

deposited in the basin (Sutherland, 1988). Mississippian strata include a black, organic-

rich shale known as the Caney Shale. Late Mississippian Springer Shale serves as a major 

detachment surface between extensional dominated tectonics and compressional tectonics 

of the Pennsylvanian. Other shales comprise the Upper Mississippian Chesterian Series 

shale, but they are not well understood (Johnson, 1988). Sediment transport was thought 

to come from the southeast during this time (Sutherland, 1988). At the end of the 

Mississippian, the sea began to regress because of the broad upwarping of the 
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transcontinental arch, the relative sinking of the Ouachita trough, as well as the 

upwarping of the Ozark dome; which all corresponded to the southward tilt of the 

Arkoma shelf north of the trough. This was all occurring as the southern landmass known 

as Llanoria was encroaching upon the North American plate. Due to the collision, the 

Chesterian Series was progressively truncated creating a regional angular unconformity at 

the base of the Pennsylvanian (Houseknecht and Kacena, 1983 and Sutherland, 1988).  

 
Pennsylvanian Rock Units 

 

The Pennsylvanian rock units are some of the most noted and studied systems in 

the basin because of the highly productive reservoir sands that were deposited during this 

time. The series include in order of oldest to youngest; Morrowan Series, Atokan Series, 

and Desmoinesian Series (Figure 7) In the beginning of the Morrowan, the sea began to 

transgress north onto the Arkoma Shelf across the truncated Chesterian Series surface 

(Sutherland, 1988).  

Deposition during the Morrowan created large changes in facies and thickness of 

sediments. In the eastern part of the basin, the facies consisted of fluvial sandstones and 

shales, but moving westward into Oklahoma the facies were mainly mixed shallow-

marine offshore bank facies. In the western part of the basin there is an increase in 

limestone and a decrease in sandstone. The Morrowan Series consists of Cromwell 

Sandstone and Wapanucka Limestone. The Cromwell Sandstone is considered as the base 

of the Morrowan by many workers of subsurface data (Sutherland, 1988). The sandstone  
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Figure 7. Detailed stratigraphic chart of the Pennsylvanian Subsystem showing 

   informal units within the Arkoma Basin. Spiro Sandstone is boxed in 
   yellow, red arrow indicates detachment surface, and wavy line 
   illustrates unconformity between Morrowan and Atokan (Modified 
   Sutherland, 1988).  
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is fine-medium grained calcareous sandstone overlain by a limestone. The thickness is 

more than 35m in the western portion of Oklahoma (Sutherland, 1988).  The Union 

Valley Limestone is a fossiliferous limestone positioned between the Cromwell 

Sandstone and the Wapanucka Limestone. 

 Deposition between the base of the Atokan Series and the top of the Morrowan 

series was interrupted by a drop in sea level that exposed the Morrowan shelf. Foster 

channels that were active during the Pennsylvanian incised into the Wapanucka 

Limestone, creating an unconformity between the Spiro Sandstone and the Wapanucka 

Limestone (Fritz and Hooker, 1994). The Atokan Series consists of the lower, middle and 

upper members. The thickness ranges from 305-400m in the northern margin of the 

Arkoma Basin in Arkansas to much thicker in the southern margin (Sutherland, 1988). 

The lower part of the Atokan Series was deposited in a calm shallow marine setting with 

slow sedimentation rates. However, the Middle and Upper Atokan Series sediment were 

deposited rapidly in a turbulent marine-nonmarine environment (Houseknecht and 

McGilvery, 1990). The Middle Atokan is marked by a drastic increase in thickness due to 

syn-depositional growth faults.    

The Middle Atokan is characterized by the flexural bending of the southern 

margin of the Arkoma shelf. Basin collapse caused flexural bending leading to the 

formation or reactivation of previously formed faults that are east-trending syn- 

depositional faults. The Middle Atokan rock units thicken on the down-thrown side of 

fault blocks due to growth faulting (Sutherland, 1988). This unit consists of mainly shale 

and a few sandstones that represent rapid deposition. One of the important sandstone 

bodies in this predominately shale rich section is the Red Oak (Houseknecht and 
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McGilvery, 1990).  The Red Oak Sandstone is one of the several sandstones that 

comprise the Middle Atokan Series. Vedros and Visher (1978) proposed that the Red Oak 

Sandstone may be the result of deposition in a submarine-fan environment. However, 

Houseknecht and McGilvery (1990) suggests that the sandstone represents deposition in 

shallow water because of the continuity of some of the sandstone and the lack of 

erosional truncations on up-thrown sides of fault blocks.  

Sedimentation rates slowed in the Late Atokan because syn-depositional faults 

were no longer active. Deltaic systems that show southward progradation were 

transporting sediment from the north and east (Sutherland, 1988).  

The Desmoinesian Series is represented by the Krebs Group in the study area, 

which is the only rock unit that formed as a result of deposition during major subsidence 

and before uplift of the Ouachita fold belt (Houseknecht and McGilvery, 1990). Andrews 

and Suneson (1999), proposed that the depositional environments of the Hartshorne 

Sandstone, prominent member of the Krebs Group, range from distributary channels, 

incised valleys, interdistributary bays, delta margin/ shallow marine, and peat bogs.  

The Wapanucka Limestone and the Spiro Formation are the main rock units 

studied in this thesis. Seismic acoustic impedance data was used to analyze rock property 

changes over the survey area. Therefore, sedimentation and stratigraphy of the 

Wapanucka and Spiro will be discussed in the next chapter 
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CHAPTER IV 
 
 

SEDIMENTOLOGY OF THE WAPANUCKA LIMESTONE AND  

SPIRO SANDSTONE  

 

The Wapanucka Limestone and the Spiro Sandstone are two important reservoir 

rocks in the Arkoma Basin. Therefore, it is important to understand the depositional and 

tectonic history of these two units, which control gas production. Using seismic acoustic 

impedance data, the units were analyzed independently of each other. By analyzing the 

units separately, acoustic impedance and porosity relationships were established, which 

can be mapped and lead to more efficient exploration and production of natural gas. 

 The Wapanucka Formation represents the top of the Morrowan Series. The 

Wapanucka Formation includes both shales and limestone. The Wapanucka Limestone is 

dark-tan to medium gray. It thins irregularly to the north (Tulsa Geological Society, 

1961). The northward decrease is due to a truncation of the Wapanucka which occurred 

pre-Atoka (Lumsden et al., 1971).The Wapanucka Limestone was first named by Taff in 

1901(Koinm and Dickey, 1967). The Wapanucka Limestone contains both an oolitic 

grainstone facies as well as a carbonate mudstone facies. On the shelf, Spiro sand was 

deposited unconformably on top of Wapanucka Limestone (Sutherland, 1988). This 

unconformable contact is evidenced by Foster channels that incised the underlying 

Wapanucka (Gross et al., 1995). 
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The Spiro Sandstone is the basal unit of the Lower Atoka Formation. The Spiro 

Sandstone is generally thicker eastward, and thins to the southwest where it eventually 

grades into a limestone (Houseknecht and McGilvery, 1990). The Spiro is a very-fine to 

medium grained quartz arenite composed of quartz clasts (Lumsden et al., 1971). Due to 

the contrast between overlying shales and underlying shales of the Wapanucka 

Formation, the Spiro Sandstone and Wapanucka Limestone are easy to map using seismic 

data.  

The Spiro Sandstone, a sheet sand with good lateral continuity and high net to 

gross sand, was deposited as a result of reworking Foster channels. The Spiro is also 

interpreted to be a reworked barrier island deposit containing progradational and 

aggradational sandstones (Gross et al., 1995). The progradational/aggradational portion 

of the Spiro thins eastward (Lumsden et al., 1971). Mahaffie (1994) classifies the Spiro 

as having high net to gross in amalgamated sheets and low net to gross sand in layered 

sheets. Two sequence stratigraphy models exist for the deposition of the Spiro Sandstone. 

Lumsden and others (1971) suggests the Spiro was deposited during transgression and 

Hess and Cleaves (1995) suggest the Spiro was deposited in a lowstand systems tract. 

Evidence for a transgressive system is that the gamma ray shows blocky sandstones 

which equal high net to gross sheet sandstones and a sharp erosional base with underlying 

strata. Fining upward sequences suggest retrogradation, which also supports a 

transgression where parasequences would be back stepping (Van Wagoner et al., 1990).  

The Spiro is exceptionally fossiliferous with fauna such as brachiopods, crinoids, 

and bryozoans. Transgressive systems tract are known for having faunal abundance 

(Lumsden et al., 1971). Lowstand systems tract must have been centered in deeper parts 
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of the basin where the shelf was exposed. In these areas shelf faunas are rare and 

impoverished producing a scanty fossil record. Therefore, the widely accepted 

depositional setting for the Spiro is thought to be that it occurred during a transgression. 

The transgressive systems tract is supported by isopach maps constructed by Gross and 

others (1995) which show a trend of barrier islands (Figure 8).  

Galloway and Hobday (1983) describe three types of barrier islands; 

aggradational, progradational, and retrogradational. Aggradational barrier islands occur 

when the rate of sea level rise equals the sediment supply rate. Progradational barrier 

islands occur when accumulation is in the seaward direction. Retrogradational barrier 

islands are defined as landward migrating. A modern day analog of a progradational 

barrier island would be Galveston Island.  The Spiro Sandstone contains both 

progradational and aggradational barrier islands facies (Gross et al., 1995). However, in 

Le Flore County, Oklahoma and into Yell County, Arkansas the Spiro becomes a tight, 

retrogradational sandstone.  

In general, the Spiro was deposited on a broad shelf from updip northerly fluvial 

systems to downdip southerly shallow marine environments. In some areas the Spiro and 

underlying Wapanucka have an unconformable contact. This unconformable contact was 

suggested by Lumsden and others (1971) to be caused during lowstand systems tract 

including incised valley fills and other associated lowstand shoreline deposits. Evidence 

used to support this include channel incision into shelf facies in an updip position, and 
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Figure 8. Isopach map showing Foster channel complex of the Spiro (after Gross et al., 
               1995). Yellow circle indicates the approximate location of the study area. 
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subsequent infill of Spiro fluvial sandstones. Sutherland (1988) suggested two sources of 

the sand that was deposited to comprise the Spiro Sandstone. One source is to the 

northeast and the other is located up-dip of the Foster channel complex. In the western 

part of the Spiro trend, the sandstone changes facies into a shallow shelf limestone where 

it is farthest from the source. Foster channels were transporting and depositing sand from 

the North. Interaction of sediment supply and accommodation space controlled Spiro 

facies along the Choctaw fault trend (Gross et al., 1995).  

 

DIAGENETIC HISTORY  

 

One of the most important questions in determining reservoir quality is the nature 

and timing of hydrocarbon migration. The porosity development and timing of the 

hydrocarbon migration in the Spiro reservoir has been controversial. Understanding the 

relationship between acoustic impedance and porosity in the Spiro Sandstone is one of 

the main objectives of this thesis. Acoustic impedance data is useful in mapping porosity, 

but does not explain the origination and preservation of porosity. Therefore, the 

formation and preservation of porosity in the Spiro Sandstone is explained below. 

Petrographic studies show that Spiro is medium-fine grained in the west and very 

fine grained in the east. Two important diagenetic constituents that play a role in the 

preservation of porosity in the Spiro Sandstone are chamosite, an iron-rich form of 

chlorite, and glauconite. The deposition of chamosite and glauconite occur in different 

depositional settings and water depths within the basin (Figure 9). Chamosite was 

deposited penecontemporaenously in the northern portion of the basin in a passive  
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Figure 9. Paleogeographic map showing deposition of chamosite and glauconite facies 
               during the deposition of the Spiro Sandstone during the Early Atokan  
               (Modified Al-Shaieb and Deyhim, 2000; Sutherland, 1988). 
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shallow marine reducing environment, whereas glauconite was deposited in the southern 

part of the basin in deeper water (Al-Shaieb and Deyhim, 2000). Pittman and Lumsden 

(1968) state chamosite coatings inhibit quartz overgrowths in the west. The origin of the 

chamosite is thought to originate from erosion of iron-rich sediment sourced from the 

north (Al-Shaieb and Deyhim, 2000). The grain size and slow burial rate in the 

northwestern portion of the basin may have contributed to the development of the 

chamosite by allowing more freshwater influx from up-dip channels (Gross et al., 1995). 

Chamosite can be transported as a gel in fluvial systems and when deposited in anoxic 

shallow marine settings, like that of the Spiro Sandstone, form a clay film around 

siliceous sediments (Al-Shaieb and Deyhim, 2000). This prevents quartz overgrowths 

during the early stages of diagenesis, preserving primary porosity. Secondary porosity is 

formed by the dissolution of chamosite pellets (Al-Shaieb and Deyhim, 2000). Therefore, 

areas of Spiro Sandstone containing greater amounts of chamosite showed higher 

porosity values (Figure 10). 

In the East, where Spiro sands are finer grained and pyrobitumen is common, the 

overlying seals may have been fractured during thermal cracking of oil and gas (Gross et 

al., 1995). When the gas could not easily displace oil downward the seals were breached, 

resulting in the escape of gas and the pyrobitumen residue left behind. This leads to the 

thought that some of the gas in the overlying sands may have originated as oil trapped in 

the Spiro. Hydrocarbon migration was a late event occurring after a first phase of quartz  
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Figure 10. Porosity versus chamosite content. Strong linear correlation (Al-Shaieb and 
                  Deyhim, 2000). 
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cementation, but most likely before thrusting occurred (Cemen et al., 1995). The second 

stage of quartz overgrowths were related to thermal stress (Houseknecht and McGilvery, 

1990). 

 The second phase of diagenesis was the migration of liquid hydrocarbons in both 

the west and east. Wells in the eastern portion of the basin contain ubiquitous 

pyrobitumen, whereas wells in the west contain only minor amounts of pyrobitumen in 

finer grained zones. The presence of pyrobitumen is related to permeability. In the 

western part of the basin, as liquids were changed to gas during the heating phase, the gas 

cap swept the oil downward though the reservoir except in tight zones. Therefore, 

pyrobitumen was left behind as a residue in tight zones. Houseknecht and McGilvery 

(1990) state that pyrobitumen residue occurs where the reservoir at the hydrocarbon-

water contact was rendered non-porous by quartz cementation, thus trapping the residue. 

In the east where the Spiro sandstones are finer grained and pyrobitumen is pervasive, 

overlying seals may have been fractured during the cracking of oil to gas. Some of the 

gas in overlying Atokan sandstones may have originated as oil trapped in the Spiro 

(Gross et al., 1995).  
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CHAPTER V 
 
 

Reflection Seismology  
 
 

 
This thesis utilized 3D seismic data that has been inverted to acoustic impedance. 

Therefore, a brief summary of the theory behind seismic data, seismic acquisition, 

processing, and interpretation will be discussed in this chapter. Theory relates to the 

different modulii of rocks and how acoustic waves interact with these rocks in the 

subsurface. In seismic acquisition, devising parameters to image geologic targets is most 

important. Seismic processing takes the raw field data, where the signal is contaminated 

with noise and carried on a long unstable waveform, and attempts to create a 

representation of the acoustic properties of the earth. Interpretation is the process in 

which the geophysicist and geologist tie the earth model from well logs to the seismic. 

Seismic imaging is an important tool to help image the subsurface in areas where the 

sequence stratigraphy and structure are not well understood and are complicated by 

features not observed on the surface. Selective major references on reflection seismology 

include Macpherson (2001), Graul (1981), and Wallner (1974). 

 
 

 

 



32 

 

THEORY 

  

Seismic data is produced by sending artificial energy into the earth and recording 

its response. This idea was first discovered when large explosives were set off and 

recorded by earthquake seismographs (Wallner, 1974). An English seismologist by the 

name of Robert Mallet in the mid 1800s was the first to experiment by setting off large 

controlled sources of energy and measuring the travel times of the shock waves (Wallner, 

1974). Abbot (1878) was the first to measure velocity information from artificial seismic 

waves. In 1888, August Schmidt became the first seismologist to propose time-distance 

records that would show variations in velocities of seismic waves at depth. However, the 

first real use of seismic data for interpreting the subsurface geology was started in the 

early 1920s (Wallner, 1974).  

In the mid 1920s, Ludger Mintrop was the first to discover a petroleum reservoir 

using seismic. He discovered the Orange Salt Dome off the Texas Gulf Coast. His 

seismograph was later converted into seismometers, now known as 

geophones/hydrophones, that are sensitive electronic recorders and electromagnetic 

(Keppner, 1991).  

These early geophysicists were using a refraction method to gather information. 

Refraction seismic uses shot-detector distances that are much greater than the depth they 

are exploring. The refraction method only records the minimum time paths and thus only 

records events that are shallow in the subsurface. Reflection uses much smaller shot to 
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detector distances and is able to image formations much deeper in the subsurface. Today 

reflection is widely used in exploration seismology (Wallner, 1974).  

Seismic energy travels into the ground in a spherical wavefront, similar to 

dropping a pebble into a pond. This is explained by Hyguen’s principle which states that 

any point on a wave can be considered as a point source for the next wave (Macpherson, 

2001). When a wave enters the subsurface, that wave can be reflected, refracted, or 

transmitted and converted to different modes. Commonly, only P-waves are recorded, but 

when a P-wave is transmitted through the ground there is a mode conversion which also 

generates a transmitted S-wave, transmitted P-wave, reflected P-wave and reflected S-

wave. 

Embedded in this data is a measure of the physical characteristics of the 

subsurface rocks based on their elastic characteristics. The elastic parameters of the rocks 

are controlled by Bulk, Shear, and Young’s modulii. The Bulk modulus measures the 

compressibility of a material. The Shear Modulus measures how rigid a material is by 

measuring the stress to strain ratio. The Young’s modulus measures the stiffness of a 

material when opposing forces are applied (Davis and Reynolds, 1996). Fluid type in the 

pore space also plays a major role in how the reflected energy responds. Poisson’s ratio 

describes how that rock bulges when shortened.  

Acoustic impedance is the product of the velocity of the sound waves in rock 

times the density of the rock. Acoustic impedance is an important parameter in that it 

contains both velocity and density information. The reflection coefficient is defined as 

the amplitude of the reflected wave divided by the amplitude of the incident wave. 

Reflection coefficients are a function of the acoustic impedance. Acoustic impedance can 



34 

relate directly to rock type, pore space, pore fluid, and reservoir quality. The reflection 

coefficient is dependent upon the contrast of acoustic impedance between two layers. The 

reflection coefficient is then 

   Z2 – Z1 

Z2+Z1 

Where Rc is the reflection coefficient; Z2 is the acoustic impedance of layer 2 and Z1 is 

the acoustic impedance of layer 1 (Macpherson, 2001). For large acoustic contrasts the 

stronger the reflection coefficients are in the subsurface the larger the reflection will be 

recorded at the surface. The concept of reflection coefficients is illustrated later on in 

Figure 12.  

 

ACQUISITION 

 

During surface seismic acquisition, an energy source, for example vibroseis or 

dynamite, is used to send sound waves into the ground. Surface detectors record reflected 

events from different acoustic boundaries in the subsurface. Acoustic events are defined 

by their frequency, amplitude, and time. Seismic frequency usually ranges from 20-80 

cycles/second, or hertz. Amplitude is defined as the strength of the reflection coefficient 

from a boundary in the subsurface. The higher the reflection coefficient is the higher the 

amplitude. Time is the measurement of the downgoing energy reflected from a boundary 

and then detected at the surfaces (Wallner, 1974).  

The geophysicist’s knowledge of the subsurface will determine how the field 

acquisition of groups and shots is planned. The CDP field procedure is used to give 

RC =
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repeated reflection recordings with varying surface moveout distances of a common 

subsurface reflection area (Wallner, 1974) (Figure 11). Gain systems are used in the field 

to see the raw data. Decay of amplitude of the seismic signal occurs because of 

scattering, spherical divergence, attenuation loss, and amplitude distortion through 

frequency loss (Wallner, 1974) (Figure 12). 

During seismic acquisition, there are many important factors that need to be 

optimized to image the targets of interests. Frequency and amplitude are recorded using a 

wide band of frequencies from under 10 to over 100 cycles per second. However, high 

and low frequencies are often masked due to wind or shot-hole noises, ground roll and 

other coherent and incoherent noise sources which interfere with the reflected signal. 

Thus, the bandwidth of the data is usually somewhat narrow and thin beds are hard to 

resolve (Wallner, 1974). The type and strength of the source energy will be dependent on 

how strong the reflecting events might be. Seismic data is recorded in time and are also 

commonly displayed in time. The 3D data used for this thesis project was acquired using 

dynamite which gives a broader frequency spectrum than vibroseis, which has difficulty 

generating the low frequencies. The higher the bandwidth of frequencies sent into the 

ground the higher the resolution, resulting in thinner beds being resolved. Therefore, it is 

important to have a wide range of frequencies to get higher resolution data (Wallner, 

1974).  
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Figure 11. Common Mid-point field procedure illustration (Schlumberger, 2009). 
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Figure 12. Attenuation losses of the seismic signal (Modified Graul, 1981). 
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PROCESSING 

 

Seismic processing consists of a multitude of steps that converts raw field data 

into a seismic section that can be interpreted to better understand stratigraphy, structural 

geology, and oil and gas potential of the area where the data was acquired. Initially raw 

field seismic data is edited on a trace by trace basis eliminating bad channels or groups. 

Spherical divergence correction is then applied to account for attenuation in the Earth. 

First, deconvolution stabilizes the waveform and statics are applied to correct for 

near surface velocity anomalies. Normal Moveout (NMO) velocity is the velocity needed 

to flatten the traces in a common depth point (CDP) gather so that stacking these traces 

will enhance the signal (Figure 13). NMO velocity is found using statistics, and trial and 

error (Figure 14). Often the processor will generate semblance plots where they pick the 

best velocity to move events back to their right place in time due to large offset distances 

so that these CDPs stack properly (Graul, 1981). 

Second, migration, a processing technique, is applied to move events to their 

proper place. Today migration is commonly done before stacking and is called pre-stack 

time migration. Migration seeks to collapse diffraction events to points by moving events 

to their proper place in time and space (Gray, 2001). There are two types of migration, 

time and depth. Time migration uses an imaging velocity to produce an image that may 

not be a correct velocity model for the geology. Depth migration uses an interval velocity 

model, which is a model of the Earth’s subsurface (Gray, 2001). Unfortunately, depth 

migration requires a lot of velocity estimation leaving room for more error. Therefore,  
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Figure 13. Common Midpoint (CMP or Common Depth Point CDP) NMO 
                  correction. Before normal moveout events are not in the right time due 
                  to increasing offsets from the CMP. After NMO correction events are 
                  moved to the right place in time. (Schlumberger, 2009). 
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Figure 14. Semblance plot on the left showing best velocity picks. On the right is 
                  the NMO corrected data (Ikelle and Amundsen, 2005) 
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many geophysicists use time migration. Many different methods of migration exist such 

as Kirchoff migration (Figure 15). 

Third, stacking, the most powerful processing step, is applied to sum all traces 

that contain a common midpoint to equal one trace. Stacking the data eliminates most of 

the noise and the redundancy of traces added together to give higher amplitude signals 

(Graul, 1981).  

The data set for the study area has had an additional post migration step called 

inversion which will be discussed in the next chapter. 

 

 

INTERPRETATION 

 

Well logs have good vertical resolution of the earth, in depth, whereas seismic has good 

lateral resolution of the earth, recorded in time. Therefore, to calibrate well data to 

seismic, time-depth relationships have to be established to correlate one to the other. 

Many seismic interpretation software packages contain time to depth algorithms that can 

be applied to well data to convert depth data to time. After a time depth chart has been 

created, a geophysicist can generate a synthetic seismic trace. A synthetic seismogram is 

made by convolving a wavelet with the reflectivity series from the well. The reflectivity 

series consists of all of the reflection coefficients based on the differing acoustic 

impedance contrasts between interfaces. A synthetic seismic trace can be created from a 

sonic log of a well in the area covered by seismic data to determine how the well logs and 

formation tops correlate to the seismic data. 
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Figure 15. Simplistic view of a point diffractor collapsed to a single point using 
                  Kirchoff time migration method (Gray, 2001) 
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Knowing the phase of the seismic data is one of the most important pieces of 

information to extract from the data. A zero phase wavelet is what most geophysicists 

want to work with so that a single peak refers to an impedance increase in normal polarity 

(Figure 16). Mixed phase wavelets tend to decrease the quality of the seismic because a 

mixed phase wavelet will not image the subsurface correctly (Henry, 1997).  

At the interpretation stage, the data has been properly imaged but there is a limit 

to the resolution of data due to the lack of temporal resolution (Graul, 1981). When units 

are thick, porous and continuous they are easily imaged in seismic. However, with the 

recent advances in horizontal drilling technology thin, tight, discontinuous beds can be as 

important to oil and gas production as thicker beds, so it is necessary to be able to image 

the thin beds as well as the thick beds.  

A seismic attribute is simply a measurement derived from seismic data, usually 

based on measurements of time, amplitude, frequency, and/ or attenuation (Graul, 1981). 

Seismic attributes can be used to relate many quantities such as well productivity to the 

seismic data. They have the same common components of arrival time, amplitude, 

signature (waveform shape), and a combination of the above (Graul, 1981). Direct 

Hydrocarbon Indicators (DHI’s), for example can show up in the seismic data as a 

“bright spot,” which is related to the rocks velocity, density and acoustic impedance as a 

function of porosity and fluid in the pore space (Wallner, 1974). Polarity reversal can also 

be an indicator of hydrocarbons. Also flat spots can be good DHI’s. A fluid contact is 

expressed as a flat spot in seismic data (oil on water, or gas on water, or gas on oil) where 

there are large contrasts in amplitude from the reflected horizon. 
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Figure 16. Zero phase wavelet (on the right) versus a mixed phase wavelet (on the 
                  left) which was only seen when computing a frequency versus phase 
          cross plot. Notice the two side lobes seen in the mixed phase wavelet 
                  determined by statistical deconvolution versus the nice strong peak with 
                  no side lobes seen in the zero phase wavelet (Henry, 1997). 
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Another important seismic attribute is amplitude versus offset (AVO), which is 

defined by the normal incidence refection coefficient and the contrast in Poisson’s ratio at 

the reflector (Rutherford, 1989). This calculation is done before the CDP data is stacked. 

Three classes have been assigned to gas sands based on their AVO characteristics 

according to Rutherford. Class 1 gas sands have higher impedance than the encasing 

shale with large positive reflection coefficient values. Class 2 gas sands have nearly the 

same impedance as the encasing shale and have reflection coefficient values around zero. 

Class 3 sands have lower impedance than the encasing shale with negative reflection 

coefficient values (Rutherford, 1989). In other words, Class 3 sands are soft and slow 

while Class 1 sands are hard and fast. For this case, all show decreasing amplitude with 

offset at the top of the gas sand.  

Eissa and Castagna (2003) suggested that lower Atoka sandstones show a phase 

reversal and therefore are classified as Class 1 sands according to the Rutherford (1989) 

classification system (Figure 17). They concluded that AVO analysis can be used in these 

high impedance gas sandstones of the Arkoma Basin to locate pore fluids.  
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Figure 17. Phase reversal from a peak to a trough showing a target interval using AVO 
                 analysis to identify fluid in pore space (Eissa and Castagna, 2003).  
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Chapter VI 

 
 

SEISMIC INVERSION 
 

The data set used for this thesis is seismic data that has been inverted to acoustic 

impedance. Seismic inversion data differs from conventional reflection seismic in that it 

has been processed in a way that the effect of the wavelet has been removed. By 

removing the effect of the wavelet, the stratigraphy of the formations is better resolved. 

In this thesis, two units which were previously mapped as one unit in the conventional 

seismic, were identified independently from each other in the inversion seismic data. This 

seismic inversion data has been inverted to acoustic impedance, which relates linearly to 

porosity and can be used to map areas of potentially higher porosity. Some of the most 

useful resources used in writing this chapter are from Hampson and Russell (1999), 

Francis (2006), and personal communication with Gorka Garcia, currently employed by 

Odegaard America Inc, who performed the inversion on the data utilized in this thesis.   

Seismic inversion was first used in the 1980’s when it was realized that not every 

sample in a seismic trace represents a unique reflection coefficient (Pendrel, 2001). In 

seismic inversion the goal is to remove the wavelet and return to just the reflection 

coefficient series.  A well is commonly used to quantify the low frequency part of the 

change in impedance with depth so that the acoustic impedance values that result are 

actual values for the rocks encountered in the area. This is called absolute acoustic 

impedance (Pendrel, 2001). In other words, there is an attempt to recover the acoustic 
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impedance as a function of depth (or time) from observed normal incidence seismograms 

(Francis, 2006). Seismic inversion is especially important when studying the stratigraphy 

of an area because it removes the effect of the wavelet. Therefore, inversion data can be 

used to map thickness changes in rock units as well as to better understand changes in 

rock properties.  

 

THEORY 

 

The theory behind inversion involves the most fundamental part of a seismic 

section, the seismic trace. A seismic trace can be thought of as having three parts; a 

reflectivity series, a wavelet, and noise. Seismic inversion seeks to deconvolve the 

seismic by removing the wavelet and leaving just the reflectivity series. The reflectivity 

series would be seen as spikes ideally at every bed interface. Reflectivity is calibrated to 

acoustic impedance using well control. Since the data is bandlimited the inversion data 

traces will still have some width to their traces and will not be seen as a perfect spike at 

each interface. However, the resolution of inversion data is much higher allowing for 

thinner beds and more bed contacts to be mapped as well as mapping changes in facies 

away from well control.  

Inversion is used to estimate a model from a set of data and is often non-unique in 

the sense that a given data set can be produced by many different models. The 

mathematical objective of an inversion algorithm is to minimize the “objective function” 

which is a measure of the difference between calculated and observed data. An inversion 

algorithm is a coupling of forward modeling and an inversion engine. Forward modeling 
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generates a seismic response by combining the Earth model with a model algorithm. 

Inverse modeling simply uses an inverse algorithm to get back to the Earth model 

(Banihasan et al., 2006).  

There are nine types of inversion discussed in this thesis and they are 1) global 

inversion, 2) local search techniques, 3) deterministic, 4) descent type techniques, 5) band 

limited, 6) blocky inversion, 7) stochastic, 8) constrained, and 9) sparse spike (Figure 18). 

1) Global inversion is for highly non-linear problems and requires a very large number of 

trial solutions (Francis, 2006).  The global inversion method inverts more than one trace 

at a time which will produce a smoother looking inversion by suppressing noise while 

maintaining resolution (Pendrel, 2001). 2) Local search techniques is the simple model 

which can only be used for moderate non-linear problems and does not require as many 

trial and error steps. 3) Deterministic inversion uses well data and seismic to create a 

broad bandwidth impedance model of the Earth (Francis, 2006). The inversion data used 

for the study area was modeled using a deterministic inversion based on simulated 

annealing (Garcia, Odegaard America Inc.). 4) Descent type methods use derivative 

information and only require a small number of trial solutions. Two types of descent type 

inversion are: 1) Newton type, which requires partial derivatives, is very efficient for 

quasi-linear problems used for most types of post-stack seismic inversion, and 2) gradient 

based methods, which require only the gradient direction. Inversion comprises three basic 

steps: a) converting seismic amplitudes to reflection coefficients: b) converting the 

reflection coefficient spikes to acoustic impedance contrasts, which is the actual inversion 

step, and c) converting the impedance changes to absolute impedances by the addition of 

a low frequency model (Castagna, 2007).  
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Figure 18. A non-specific example of an inversion model where (a) is a three layer 
                 Earth model, (b) acoustic impedance, (c) reflection coefficients (d) 
                 convolution of reflectivity series with a wavelet. Remove the effect of the 
                 wavelet to get back to acoustic impedance (Modified Hampson -Russell, 
                 1999). 
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 The sole purpose of the low frequency model is to attain low frequencies from 

well log data to attain absolute impedance. As depth increases rocks are more compacted 

and thus have increased velocities. The low frequency model expands the bandwidth of 

the seismic data thus giving a more accurate interpretation of what is taking place in the 

subsurface.  

 5) Bandlimited inversion method suggests that if a seismic trace represents the 

Earth’s reflectivity series, then once that trace is inverted it would become acoustic 

impedance (Hampson-Russell, 1999). This method is flawed since the seismic trace is 

bandlimited, which means that low and high frequencies are not represented in the 

seismic trace. 6) “Blocky Inversion” model uses a series of blocky pseudo velocity logs 

resulting in a coarser resolution of the data. The average size of the block is generally 

larger than the sample rate of the data. The three pieces of data used are thickness, 

density, and velocity of the layer of interest. 7) Stochastic inversion method considers 

that the seismic trace and the initial guess impedances are two pieces of data that will be 

merged to give the final results. 8) Constrained inversion sets an initial guess as a starting 

point for the inversion data and sets absolute boundaries for other parameters that may 

deviate from that initial guess. 9) Sparse spike inversion seeks to find a reflectivity series 

from the seismic section that contains both high and low frequencies. Sparse Spike 

inversion produces two sets of data; a relative and absolute impedance data set, but other 

methods such as the deterministic method also produce two sets of data (Pendrel, 2001). 

The relative impedance data set has no low frequencies added, whereas the absolute data 

set has the low frequency model added. The seismic data used for interpretation in the 
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study area was an absolute impedance data set with the low frequency model added 

(Garcia, Odegaard America Inc, 2005).  

  

PROCESS OF INVERSION 

 

There are many different steps to generate seismic inversion data from the time it 

is processed to the time it is interpreted (Figure 19). Gorka Garcia, employed by 

Odegaard America Inc., performed the inversion in 2005 for the data used in this thesis. 

The steps used for the inversion include data quality control, of both the seismic data and 

well control, log calibration, wavelet estimation, low frequency model, and finally the 

inversion. The first step is studying the quality of the data. This step includes adjusting 

sonic and density curves and picked horizons on the seismic data. The second step 

includes calibrating the well data to the seismic data by shifting the data up and down in 

time to make a good match between the seismic and well data. The third step is wavelet 

estimation which is done by extracting a wavelet from the seismic data.   

There are three methods that are commonly used to calculate the wavelet that is 

imbedded in the data. The first method is “purely deterministic” which would measure 

the wavelet directly using surface receivers. The second method is “purely statistical” 

which would derive the wavelet from seismic data alone (Hampson-Russell, 1999). This 

method is sometimes unreliable because it is sometimes hard to determine the phase 

spectrum. The third method is using a well log which would ideally tie perfectly or 

almost perfectly to the seismic (Figure 20). The third method may not produce a good 

wavelet extraction if the tie is not exact, which results in a poor depth to time conversion.  
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Figure 19. Basic workflow of seismic inversion from processing to interpretation 
                 (Garcia, Odegaard American Inc.) 
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Figure 20. Well calibration to extract a constant phase wavelet from the data (Garcia, 
                  Odegaard America Inc).  Description: Red line on seismic section represents 
                  synthetic ties. The sonic log is being edited where a checkshot existed and is 
                  colored blue with the original shown in red.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fu llstack c onstant p hase wavel et extrac ti on  (us ing check shot & 72.0 
ms bulk  s hift)



 

55 

 
 
Wavelets can change from trace to trace as a function of time, so the optimum wavelet 

extraction method is to find an “average” wavelet for the entire seismic data cube 

(Hampson-Russell, 1999). For this study a constant phase wavelet was extracted using 

the well log method. A constant phase wavelet is extracted by calculating the amplitude 

spectrum from the seismic alone and the phase is assumed to be constant. This type of 

wavelet extraction tends to be most robust where there are imperfect well ties (Hampson-

Russell, 1999).   

The fourth step is adding the low frequency model to the data. As discussed 

earlier in this chapter the low frequency model adds low frequency data, collected from 

well data, to the seismic data since surface seismic does not record low frequencies. The 

low frequency model increases the bandwidth of the seismic data and thus allows for a 

more accurate seismic inversion. After these steps are taken, the seismic data is ready to 

be inverted to acoustic impedance using a series of algorithms. When the inversion 

process is completed, calculated acoustic impedance curves, from well data, are 

compared to the seismic for quality control checks.  

 

SEISMIC ACOUSTIC IMPEDANCE VERSUS WELL LOG ACOUSTIC 

IMPEDANCE 

 

Four well logs, calibrated to seismic, were used for the inversion used in this 

thesis project. These wells contained sonic, one with a checkshot, and density logs. A 

checkshot survey is generated with a receiver located in the borehole at a known depth. 
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After a source has been generated at the surface the time to reach the receiver is recorded 

(Schlumberger, 2009). Therefore, the depth and time are known values and can be 

compared to a sonic log to adjust the accuracy of the sonic log to the seismic.  

The wells used for the inversion were wells 1, 2, 3, and 4. Eventually well 3 was 

dropped from the inversion project because of misties. Well 1 and well 4 show similar 

velocity and density values. However, well 2 shows much different rock properties and 

thus does not make as good of a tie to the data. Therefore, to check how well log values 

compared to sonic values, a crossplot of average seismic values and well log values in the 

Spiro Sandstone was generated (Figure 21). Averages had to be used because of the 

vastly different sample rates and resolutions of seismic data and well log data. The 

sample rate of the seismic data is 4ms, approximately every 18 feet, and well logs values 

were sampled every 0.5 foot.  

Due to the wide range of velocities used for inverting the seismic data, there is a 

lack of correlation between calculated acoustic impedance (from well log values) and 

seismic acoustic impedance. The lack of correlation between calculated acoustic 

impedance and seismic acoustic impedance can be the result of many things. First, the 

low frequency model can affect the values of acoustic impedance away from wells that 

were used in the inversion process. An example of a well with a poor low frequency 

model is shown for well 4 (Figure 22). Low frequencies travel much farther than higher 

frequencies and thus are not generated by surface seismic. Therefore, addition of the low 

frequency model is important for an accurate inversion. However, the answer to the 

problem is probably due to limited data. With only 3 wells and seismic data used for the  
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Figure 21. Chart graphing acoustic impedance from seismic versus calculated acoustic 
                  impedance from well log data. Wells 1, 2, 3, and 4 were used in the inversion 
                  process.  
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Figure 22. Green arrow points to where the low frequency model (blue line) and 

      log curve values (red line) do not match (Garcia, Odegaard America 
      Inc).  
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inversion, a lot of interpolation was made in between wells. If more wells contained 

density logs, and sonic logs this issue may have been better resolved. However, for many  

reasons, it is impossible to always have a complete suite of well logs for each well 

location. Some examples of where the well log calculated acoustic impedance and 

seismic acoustic impedance differ significantly are shown (Figure 23). In general the 

seismic data has underestimated the acoustic impedance values compared to the 

calculated acoustic impedances generated from log data. However, in lower acoustic 

impedance values seen in seismic do, in fact, correlate to lower acoustic impedance 

values calculated from well logs. 
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Figure 23. Green circles indicate areas where the seismic acoustic impedance result (blue 
                  line) and log curve acoustic impedance (red curve) do not match. This is 
                  located at the Spiro Sandstone horizon. (Color scale for seismic inversion is in 
                  kg/m2s) (Garcia, Odegaard America Inc.).  
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CHAPTER VII  

 
 

INTERPRETATION OF THE INVERSION DATA 
 

 
 

The Late Morrowan Wapanucka Limestone and the Lower Atokan Spiro 

Sandstone are two important gas producing reservoirs in the study area. The two units are 

impossible to distinguish on the conventional seismic data. Therefore, in previous studies 

Parker, 2007 and Sadeqi, 2007 the two units were analyzed as a package because they 

were masked by one large peak (Figure 24). The new inversion data was able to resolve 

the two units as separate units because the effect of the wavelet has been removed and the 

large impedance contrast between the two units. This large impedance contrast was 

between the slower more porous sandstone of the Spiro and the faster less porous 

limestone of the Wapanucka Formation. In order to separate the two units a calculated 

impedance curve was tied to the seismic as well as a gamma ray log and sonic log (Figure 

25). After the logs were tied to the seismic, the picking tool was used to pick the base of 

the Spiro/ top of Wapanucka and the base of the Wapanucka. The top of the Spiro was 

previously picked using the PSTM (pre-stacked time migrated) data by Parker (2007). 

By picking the Spiro Sandstone as a unique unit, amplitude and isochron maps 

were generated to map areas of interest. In the study area an area of interest is defined as 

an area with greater thickness and lower impedance that relates to higher porosity in the  
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Figure 24. PSTM (pre-stacked time migrated) data resolving the Spiro Sandstone 
                 and Wapanucka Limestone as a single reflector in a vertical seismic 
                 display in KINGDOM Suite 8.1. Descriptions: The yellow curve is the 
                 synthetic trace and the light blue is the gamma ray. The black curves in 
                 the background are the seismic traces overlain on the color filled 
                 seismic data. The tops and bases of units are marked on the GR curve. 
                 On the synthetic the top of the Spiro would is seen as a large peak and 
                 the base of the Wapanucka is seen as a large trough.  
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Figure 25. Inversion data allowed for the differentiation between the Spiro 
                 Sandstone and Wapanucka Limestone shown in a vertical display in 
                 KINGDOM Suite 8.1. Descriptions: The pink curve is the acoustic 
                 impedance calculate curve, the red curve is the sonic curve, and the 
                 dark blue curve is the gamma ray. The display is shown in two wave 
                 travel time (TWT). The color bar is in acoustic impedance, 1= largest 
                 acoustic impedance value 0= lowest acoustic impedance (kg/m2s).  
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Spiro Sandstone. Therefore, thickness changes in the Spiro as well as rock property 

changes could be attributed solely to the Spiro Sandstone. Sonic logs were analyzed to 

check for velocity contrasts. The project contained 11 sonic logs of quality that reached 

the Spiro Sandstone. Acoustic impedance was correlated to porosity where porosity logs 

existed. Higher porosity caused a decrease in acoustic impedance, since changes in 

acoustic impedance are directly related to the rock properties. In cases where the Spiro 

Sandstone is more porous, the velocity was slower than where the sandstone was tightly 

cemented.  

 

STRUCTURE 

 

Structure plays an important role in controlling the productivity of the Spiro 

Sandstone. Impedance changes directly relate to rock property changes, which are 

controlled by either structure or stratigraphic changes within the unit. Parker (2007) and 

Sadeqi (2007) mapped four different thrust sheets in the footwall of the Choctaw fault 

zone within a duplex structure (Figure 26). Four different thrust sheets of the Spiro and 

Wapanucka were analyzed in the study area (Spiro/Wap_1, Spiro/Wap_2, Spiro/Wap_3, 

and Spiro/Wap_4). Structural changes of the Spiro Sandstone/Wapanucka Limestone 

were previously studied over seven seismic cross sections (Parker, 2007 and Sadeqi, 

2007). Four lines of cross section were parallel to dip (dip lines) and three lines were 

approximately perpendicular to dip (strike lines). The dip lines were most important in 

showing rock property changes related to structural control and the strike lines were most 

useful in looking at lateral changes.  
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Figure 26. Location of four different thrust sheets of the Spiro/Wapanucka in the 
                  study area. Time maps are in ms.  
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As mentioned earlier, a few rock properties that effect acoustic impedance are 

porosity, fluid content, cementation, and facies changes. Arbitrary lines were drawn 

across the survey area approximately parallel to dip to illustrate relationships between  

structure and acoustic impedance. In areas where the Spiro Sandstone has been tightly 

folded in an anticlinal shape, it is possible that increasing porosity may be associated with 

an increased fracture density (Figure 27). This is shown in Figure 28 where the highly 

folded hanging wall of the thrust fault of the Spiro Sandstone has more porosity than the 

broad synclinally shaped footwall of the thrust fault.  Horizon contour maps of the top of 

Spiro and base of Spiro were made to analyze areas of tighter folding (Figure 29). 

Arbitrary lines were drawn through the horizon contour maps to see if the folds 

resembled synclinal or anticlinal folding (Figure 30).  

The goal of analyzing the structure was to infer where areas of tighter folding 

existed in the study area that may contain higher porosities due to fracturing from 

compression. Lower impedance values are not necessarily seen in these areas because the 

highly folded areas experience imaging problems due to energy dispersion off the tight 

structure. However, using inversion seismic data, solely, as a tool for predicting fracture 

concentration and stress direction orientation is a broad assumption. Therefore, core data 

would have been needed to verify the existence of open fractures where porosity values 

are in the inversion data.  

All wells with sonic logs were analyzed to see what an average velocity for the 

Spiro Sandstone would be and where outliers existed in the survey (Figure 31). Velocity 

and acoustic impedance were then crossplotted to show that slower velocities would 

correspond to lower acoustic impedances (Figure 32). In areas where wells have  
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Figure 27. Two thrust of the Spiro penetrated in a well that had porosity 
                  information. The first Spiro shows a tighter anticlinal type fold. The 
                  second Spiro shows a very open syncline. PSTM Data. Color bar is in 
                  amplitude units. 
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Figure 28.  Well 2 crossplot of acoustic impedance versus porosity (density porosity 
       sandstone matrix) showing that the hanging wall (first thrust block) of the 
       Spiro Sandstone has more porosity than the footwall (second thrust block) of 
       the Spiro Sandstone. The first thrust block is in blue and the second thrust 
       block is in pink.  
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Figure 29. Base of Spiro/Top Wapanucka horizon contour map in time. Areas where 
                 the contour lines are closer together represent areas where tighter folds 
                 exist. Cooler colors (blues and greens) represent deeper areas and warmer 
                 colors (reds and yellows) represent shallower areas. Two arbitrary lines are 
                 drawn through areas of folds. White circles indicate areas of tighter folds. 
                 Color bar is in time (ms). 
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Figure 30. Arbitrary lines #1 and #2 showing a tighter #1 anticlinal fold and #2 more 
                 open anticlinal fold. The yellow line represents the top of Spiro horizon 
                 and the dark blue line is the base of Spiro/Top of Wapanucka horizon. 
                 Color scale is in acoustic impedance units (kg/m2s). 

#1 #2 



 

71 

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 31. Velocities in the Spiro Sandstone vs. depth for all wells with sonic logs. Two 
                  outliers; well 2 and well 5. Both of these wells penetrated Spiro that lie near or 
                  on faults. The arrow points to well 2 and well 5.  
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Figure 32. Average acoustic impedance values for the Spiro interval crossplotted against 
                 velocity for all wells that had sonic logs available. The acoustic impedance 
                 values are higher due to poor resolution since they lie on a fault. An R^2 value 
                 for the wells not including the outliers = 0.1224. 
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penetrated Spiro Sandstone that has been faulted, slower velocities are expected as well 

as lower acoustic impedance (Figure 33). In cases where structure was thought to control 

porosity, crossplots were generated to map acoustic impedance versus porosity for  

different thrusts of  the Spiro Sandstone. Well 2 contains highly fractured Spiro sandstone 

that contains much more porosity than the well 1 which is nearby (Figure 34). Overall 

acoustic impedance values did not always correlate with tighter folding. Therefore, using 

inversion data as tool to determine fracture content is too ambiguous to use with any 

certainty, unless fracture density could be determined from core data or FMI (Formation 

MicroImager Schlumberger registered trademark) data.  

 

POROSITY 

 

In the Spiro Sandstone, porosity can range from 2 to 30% (Lumsden et al., 1971). 

The amount of porosity is dependent on either diagenetic features or fractures. In areas 

where diagenetic features are the reason for an increased porosity, the acoustic 

impedance data set does a good job at predicting porosity. Acoustic impedance inversion 

data is commonly used in industry to predict facies changes correlating to higher 

porosities (Figure 35). Reservoir characterization can be greatly enhanced if areas of 

higher porosity are accurately mapped. Rock properties, such as porosity, have a large 

impact on the acoustic impedance. An acoustic impedance versus porosity, density 

porosity run on a sandstone matrix, crossplot was generated for well 2 which showed a 

good linear correlation between porosity and acoustic impedance (Figure 36).  
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Figure 33. Arbitrary line drawn across the survey to illustrate the faulting. PSTM Data.  
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Figure 34. A crossplot of porosity (density porosity run on a sandstone matrix) versus 
                 acoustic impedance showing the relationship between acoustic impedance and 
                 porosity contrasting a well with no fault (dark blue, well 1) to a well that 
                 penetrated a fault (pink, well 2) in the Spiro Sandstone. 

Well 1 and well 2 AI vs Porosity

0

2

4

6

8

10

26000 31000 36000 41000 46000 51000

Z Impedance (gft/ccs)

Po
ro

si
ty

 (p
hi

)

Well 1

Well 2



 

76 

 
 

 

 
 
 

 
 

Figure 35. An example of impedance vs. porosity. On the left a crossplot of porosity 
                 versus P-impedance with the color scale corresponding to different wells for 
                 Cretaceous aged sandstones in Magdalena Valley, Columbia (Calderon and 
                 Castagna, 2007). On the right examples from the Danish North Sea 
                 (Pedersen-Tatalovic, 2008).Lower acoustic impedance values correlate to 
                 higher porosity values. 
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Figure 36. Crossplot of porosity (density porosity run on a sandstone matrix) versus 
                 acoustic impedance for well 2. Correlation coefficient is 0.584.  
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As stated previously, acoustic impedance is the product of velocity and density.  

Therefore, sonic and density curves were analyzed looking for changes that could later be  

related to acoustic impedance changes. Well 5 shows a significant facies change in the 

Spiro Sandstone going from a faster, presumably tightly cemented sandstone to a slower, 

presumably more porous sandstone (Figure 37). A map of acoustic impedance values in 

the Spiro Sandstone (thrust sheet 2) was created using a volume attribute function in 

KINGDOM Suite v. 8.1 (Figure 38). This tool essentially windows from one horizon, for 

example top of the Spiro, to the next, for example base of the Spiro, and calculates a root 

mean squared (rms) value over the interval. This function then computes a horizon that 

then represents the rms value of a unit, for instance the Spiro. This horizon can then be 

displayed on the survey map giving a single rms value for each X, Y coordinate location 

on the survey map.  

Arbitrary lines including wells with sonic logs were analyzed across the survey to 

see how well velocity and acoustic impedance correlate (Figures 39 and 40). These lines 

depict the structural position of the Spiro Sandstone, which identify the thrust sheet in 

which the wells lie, and each wells average velocity (in p-wave slowness). These figures 

show how acoustic impedance changes relate to structural position and velocity. 

Structural position refers to whether the Spiro Sandstone is located in the hanging wall or 

footwall of the fault, anticlinally folded versus synclinally folded, or structurally higher 

or lower. These lines showed that there is variation between acoustic impedance values 

and structural location of the Spiro Sandstone, but more importantly that there is a greater 

correlation between velocity and acoustic impedance. Density values do not vary much in  
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 Figure 37.  Well 5 sonic curve (DT) and Gamma Ray (GR). Sonic shows a faster 
                              (boxed in green, avg. 80 µs/ft) and slower portion (boxed in red, avg. 
                              105 µs/ft) of the Spiro Sandstone which may correlate to a change in 
                              facies.  
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Figure 38. Acoustic impedance map of the Spiro Sandstone thrust sheet 2. Cooler 
                          colors (blues and greens) indicate lower acoustic impedance values and 
                          warmer colors (reds and yellows) indicate higher acoustic impedance 
                          values. Color bar is in acoustic impedance units (kg/m2s). 
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 Figure 39. Arbitrary line drawn across the western edge of the survey along dip to 
                        illustrate acoustic impedance changes. Vertical section of arbitrary line 
                        showing wells with velocity information projected onto the line. 
                        Description: acoustic impedance value (from seismic), sonic log 
                        average for Spiro Sandstone in that well, and thrust sheet (in blue). 
                        Color scale is in acoustic impedance units (kg/m2s). 
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Figure 40. Arbitrary line across the central part of the survey ~along dip with wells 
                 projected onto the line. Vertical section of arbitrary line. Wells with velocity 
                 information have been projected onto the line. Description: Well name, 
                 acoustic impedance value, sonic log average for Spiro Sandstone in that well, 
                 and thrust sheet (in blue). Color bar is in acoustic impedance units (kg/m2s). 
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the Spiro Sandstone because of the environment of deposition. The Spiro was deposited 

as a sheet sand, that is interpreted as being formed by the reworking of 

progradational/aggradational barrier islands. This study concludes that the linear 

relationship between acoustic impedance and porosity holds true for the Lower Atokan 

rocks present in the Arkoma Basin. 

 

THICKNESS 

 

 Thickness maps are important in determining the lateral and vertical extent of a 

reservoir. Generally, isopach maps are constructed from well log data and lack accuracy 

when well control is deficient. However, seismic inversion data constrains the thickness 

map even more, thus giving a more accurate interpretation since the inversion data has 

the wavelet removed, tops and bases of geological units are better resolved and are not 

masked by the wavelet. Thickness maps were generated for the Spiro Sandstone in 

different thrust sheets of the Spiro to be used as a way to derive thickness information 

from the seismic (Figure 41). A crossplot of seismic thickness versus well log thickness 

was created to check the quality of the isochron map (Figure 42). A trend line drawn 

through the data points in the crossplot gave a correlation coefficient of 0.7029. The 

correlation is good enough between actual well thickness and predicted seismic thickness 

to use the isochron map as an interpretation tool to predict Spiro sandstone thickness.  

 The isochron map was computed using the top of the Spiro to the top of the 

Wapanucka. Therefore, this thickness calculation is not only Spiro sandstone, but may  
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Figure 41. Isochron map of the Spiro thrust sheet 2. Cooler colors (blues and greens) 
                  represent thinner areas and warmer colors (reds and yellows) represent 
                  thicker areas. Color bar is in feet. 
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Figure 42. Seismic thickness (from isochron map converted to feet) versus well 
                  thickness. R^2= 0.7029 with 26 wells used.  
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contain minor amounts (<10ft) of Spiro shale. The Spiro Sandstone reaches thicknesses 

as great as 100 feet at maximum. However, wells that drill several thrust sheets 

containing the Spiro Sandstone could penetrate over 300 feet of Spiro Sandstone, due to 

repetition of the strata.  

Thickness maps generated in the Spiro Sandstone showed thickness values 

ranging from 50 to 100 feet. The depositional environment of the Spiro Sandstone 

controls the minor fluctuations in thickness. As discussed earlier, the Spiro Sandstone 

was deposited as a sheet sand derived from the reworking of progradational/aggradational 

barrier islands. The inversion data used in this thesis may be better suited for calculating 

thickness of sandstone bodies higher in the section, which may show greater fluctuations 

in thickness based on their depositional setting. Specifically, the sandstones of interest 

would be the Panola, Red Oak, and Brazil. 
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VIII 

 

CONCLUSIONS 

 

 Seismic inversion data provides a better understanding of the rock properties in 

the subsurface. Unlike conventional reflection seismic data which contains mainly 

important structural information, inversion data provides stratigraphic information. The 

findings for this thesis can be broken into three different areas based on their relationship 

to acoustic impedance; structure, porosity, and thickness.  

 

Structure: 

• Areas of tighter anticlinal shaped folds may correlate to lower acoustic 

impedance values due to fracture porosity 

• Horizon contour maps may provide additional insight as to where areas of 

greater compression are occurring possibly causing an increase in fracture 

density. 

• The absolute value of acoustic impedance was unaffected by structural 

position.  
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Porosity: 

• It is necessary to analyze core data to determine if open fractures exist. Thin 

sections are needed to determine if the porosity preserved is primary or 

secondary.  

• Acoustic impedance and porosity showed a linear correlation. Higher 

porosities were seen in areas with lower acoustic impedance 

• In areas where the Spiro Sandstone experienced facies changes the acoustic 

impedance value was a good predictor of porosity.  

 

Thickness:  

• Inversion data resolved two distinct units that were originally mapped as a 

package in seismic: the Spiro Sandstone and the Wapanucka Limestone.  

• Isochron maps were produced to predict thickness changes in the Spiro 

Sandstone. These maps were checked with well log thicknesses and showed a 

correlation of 0.707.  

• Acoustic impedance values did not show any correlation to thickness values.  

 

Two areas of interest are pointed out where acoustic impedance values are lower and 

thickness values are higher (Figure 43 and 44).  
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Future Work: 

• Middle Atokan sandstones higher up in the section (Red Oak and Brazil 

Sandstones specifically) should be analyzed as they may also be good 

candidates for evaluating using inversion data.  

• These sandstones exhibit greater fluctuations in thickness due to depositional 

processes. They are also encased in shale, which gives a large impedance 

contrast both at the top and base of the unit. Therefore, the top and base of 

each unit should be able to be picked with accuracy.  

• These sandstones may also give good linear correlation between porosity and 

acoustic impedance.  
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Figure 43. Areas of interest are circled in yellow. These areas have high producing 
                 wells nearby and show significantly lower acoustic impedance values. These 
                 areas correspond to thicker areas on the isochron map. Description: 
                 Amplitude map using the RMS function discussed in the paper displayed on 
                 a basemap. Lower acoustic impedance values are in blues and greens and 
                 higher values are reds and yellows. Color bar is acoustic impedance units 
                 (kg/m2s).  
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Figure 44. Isochron map from the top of the Spiro to the base Spiro/ top Wapanucka. 
                 Areas circled in yellow correspond to areas of greater thickness and 
                 correspond to areas of lower acoustic impedance seen in Figure 43. The 
                 color scale is in feet. 
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