ELECTROFACIES, DEPOSITIONAL ENVIRONMENTS AND PETROLEUM GEOLOGY OF THE HARTSHORNE FORMATION IN PARTS OF HUGHES AND PITTSBURG COUNTIES, OKLAHOMA

BY

### CORY JOHN GODWIN

Bachelor of Science

Oklahoma State University

1997

Submitted to the Faculty of the Graduate College Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2004

# COPYRIGHT

By

Cory John Godwin

July, 2004

ELECTROFACIES, DEPOSITIONAL ENVIRONMENTS AND PETROLEUM GEOLOGY OF THE HARTSHORNE FORMATION IN PARTS OF HUGHES AND PITTSBURG COUNTIES, OKLAHOMA

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

#### ACKNOWLEDGEMENTS

I would like to first like to thank Dr. Jim Puckette for his patience and guidance, not only during the process of compiling this work, but also during the time spent in class and in the field at Oklahoma State University. I would also like to extend my gratitude to the other members of my thesis committee Dr. Surinder Sahai and Dr. Stan Paxton.

I would also like to thank the many other professors who have tought me so much during my time at Oklahoma State University: Dr. Zuhair Al-Shaieb, Dr. Arthur Cleaves, Dr. Gary Stewart, and Dr. Ibrahim Cemen. I would like to thank my friends and family for their support. A special thanks to Doug and Nikki Dennis (and Jacob) for feeding me and being my adopted family as I passed though on my way from one school to another. I have met so many people and made so many friends during my time in geology that it would take too many pages to thank them all, and thus making this thesis even longer. I would want them all to know how much I have appreciated them.

I would also like to thank all the people at the Questar Exploration and Production Company, Tulsa Division for their support and the chance to earn a living doing something I enjoy.

And a special thank you to my parents, without whom none of this would be possible.

iii

# TABLE OF CONTENTS

| Chapter                                                   |    |
|-----------------------------------------------------------|----|
| I. INTRODUCTION                                           | 1  |
| Purpose                                                   | 1  |
| Location                                                  |    |
| Methods                                                   | 2  |
| Previous Work                                             | 12 |
| General Stratigraphy                                      | 14 |
| II. GEOLOGIC SETTING                                      | 19 |
| Tectonic and Depositional History of the Arkoma Basin     | 19 |
| Overview of Deltaic Deposition                            | 20 |
| Tectonic Influence                                        | 22 |
| Sea Level Change                                          | 22 |
| Climatic Conditions                                       | 23 |
| Fluvial-Dominated Deltaic Systems                         | 24 |
| Deltaic Facies                                            | 27 |
| Prodelta                                                  |    |
| Delta Front                                               | 29 |
| Delta Plain                                               | 29 |
| Incised Valley Fill/Incised Channel                       | 30 |
| III. HARTSHORNE DEPOSITIONAL MODEL                        |    |
| Overview                                                  |    |
| Deltaic Facies of the Hartshorne Delta System             | 46 |
| Prodelta                                                  | 46 |
| Delta Front                                               | 47 |
| Delta Plain                                               | 50 |
| Incised Valley Fill/Entrenched Distributary Channels      | 51 |
| Hartshorne Coal                                           |    |
| Discussion of Hartshorne Depositional Model as Applied to |    |
| the Study Area                                            |    |
| Lower Hartshorne Member                                   | 61 |

| Prodelta                                              | 61  |
|-------------------------------------------------------|-----|
| Delta Front                                           |     |
| Distributary Mouth Bar and Bar Fringe                 |     |
| Delta Plain                                           |     |
| Distributary Channel Sandstone                        |     |
| Crevasse Splay                                        |     |
| Lower Hartshorne Coal                                 |     |
| Upper Hartshorne Member                               |     |
| Prodelta                                              |     |
| Delta Front                                           |     |
| Delta Plain                                           |     |
| Incised Valley Fills/Entrenched Distributary Channels |     |
| Local Structure.                                      |     |
|                                                       | 7(  |
| IV. PETROLEUM GEOLOGY                                 |     |
| Regional Overview                                     |     |
| Volumetric Methodology                                |     |
| Conventional Hartshorne Play                          |     |
| Coalbed Methane                                       |     |
| Gas Field Summaries                                   |     |
| Cabannis NW Field                                     |     |
| Hill Top Field                                        |     |
| Hill Top North Field                                  |     |
| Horntown SE Field                                     |     |
| Lamar East Field                                      |     |
| Reams Northwest Field                                 |     |
| Scipio Northwest Field                                |     |
| Shady Grove Field                                     |     |
| South Pine Hollow Field                               |     |
| Stuart Southwest Field                                |     |
| Ulan Field                                            |     |
| Calvin and Greasy Creek Fields                        |     |
| Coalbed Methane Production                            |     |
| Hydrocarbon Production Potential                      |     |
| Coalbed Methane Play                                  | 147 |
| V. SUMMARY                                            | 149 |
| Evidence Supporting the Depositional Model            | 150 |
| Conclusions                                           |     |
|                                                       |     |
| BIBLIOGRAPHY                                          | 161 |
| APPENDIXES                                            | 165 |
|                                                       |     |
| Appendix A: Hartshorne Gas Production Data            | 166 |

| Appendix B: Hartshorne Production Sorted By Field                 | 178 |
|-------------------------------------------------------------------|-----|
| Appendix C: Hartshorne Production Sorted By Facies Interpretation | 184 |
| Appendix D: Hartshorne Isopach Values                             | 192 |
| Appendix E: Formation Tops                                        | 201 |
|                                                                   |     |

# LIST OF FIGURES

# Figure

# Page

| 1. Regional tectonic map                                               | 3   |
|------------------------------------------------------------------------|-----|
| 2. Location Map                                                        | 6   |
| 3. Gamma-ray type log                                                  | 7   |
| 4. Stratigraphic column                                                |     |
| 5. Historical nomenclature chart                                       | 17  |
| 6. Coal-split illustration                                             |     |
| 7. Idealized tectonic model                                            |     |
| 8. Facies distribution and log signatures                              |     |
| 9. Deltaic Model: Lower Hartshorne                                     |     |
| 10. Deltaic Model: Upper Hartshorne                                    |     |
| 11. Entrenched Distributary Model: Lower Hartshorne                    | 39  |
| 12. Entrenched Distributary Model: Upper Hartshorne                    | 40  |
| 13. Incised Valley Model: Lower Hartshorne                             | 41  |
| 14. Incised Valley Model: Upper Hartshorne                             |     |
| 15. Picture – lenticular bedding, distal delta front                   | 48  |
| 16. Picture – horizontal burrows, upper delta front                    | 49  |
| 17. Picture – Heavner roadcut                                          | 43  |
| 18. Picture – Lower Hartshorne Coal underclay, Heavner roadcut         | 56  |
| 19. Picture – Lower Hartshorne Coal underclay, Heavener roadcut        |     |
| 20. Picture – outcrop illustrating the cyclicity the delta front       |     |
| 21. Type-1 and Type-2 Distributary Channels                            |     |
| 22. Local structural trends                                            |     |
| 23. Diagram showing how volume of reservoir was taken from net pay     |     |
| 24. Hartshorne Production Map: Cabannis NW Field                       | 82  |
| 25. Hartshorne Net Pay Isopach Map: Cabannis NW Field                  |     |
| 26. Distributary mouth bar/distributary channel succession             | 84  |
| 27. Type-2 distributary channel                                        |     |
| 28. Picture – possible upper distributary mouth bar facies             |     |
| 29. Hartshorne Production Map: Hill Top Field                          |     |
| 30. Distributary mouth bar, Hill Top Field                             |     |
| 31. Distributary mouth bar, Hill Top Field                             |     |
| 32. Hartshorne Production Map: Hill Top North Field                    |     |
| 33. Lower Hartshorne gross sandstone Isopach map: Hill Top North Field |     |
| 34. Distributary mouth bar production, Hill Top North Field            |     |
| 35. Bar fringe production, Hill Top North Field                        | 101 |

| 36. | Delta front/distributary mouth bar, Hill Top North Field               | .102 |
|-----|------------------------------------------------------------------------|------|
|     | 7. Lower Hartshorne Net Pay Isopach Map, Horntown SE Field             |      |
| 38. | 8. Type-1 distributary channel production, Horntown SE Field           |      |
| 39. | 39. Hartshorne Production Map: Lamar East Field                        |      |
| 40. | Type-2 distributary channel production, Lamar East Field               | .109 |
| 41. | Hartshorne Production Map: Reams NW Field                              | .112 |
| 42. | Example of Incised Channel (IC-1) production, Reams NW Field           | .113 |
|     | Structure Map: Reams NW Field                                          |      |
| 44. | Net Pay Isopach Map: Reams NW Field                                    | .115 |
|     | Distributary channel gas production, Scipio NW Field                   |      |
| 46. | Distributary mouth bar gas production, Scipio NW Field                 | .120 |
| 47. | Distributary mouth bar/crevasse splay, Scipio NW Field                 | .121 |
| 48. | Productive facies within Shady Grove South Field                       | .125 |
| 49. | Type-1 distributary channel facies, Shady Grove South Field            | .126 |
|     | Net Pay Isopach Map: Shady Grove South Field                           |      |
|     | Type-2 distributary channel and coalbed gas production                 |      |
|     | Type-2 distributary channel facies, South Pine Hollow Field            |      |
| 53. | Distributary mouth bar/bar fringe/delta front, South Pine Hollow Field | .134 |
|     | Hartshorne Production Map: Stuart SW Field                             |      |
| 55. | Incised Channel (IC-1) facies production, Stuart SW Field              | .138 |
|     | Structure Map: Top of Lower Hartshorne Coal, Stuart SW Field           |      |
| 57. | Distributary mouth bar/channel margin? Succession, Stuart SW Field     | .141 |
|     | Coalbed gas production, Ulan Field                                     |      |
|     | Upper Hartshorne delta/incised valley cycle model                      |      |
|     | T1: Lower Hartshorne delta progradation                                |      |
|     | T2: Lower Hartshorne incised valley development                        |      |
| 62. | T3: Lower Hartshorne peat marsh development                            | .157 |
| 63. | T4: Upper Hartshorne delta progradation                                | .158 |
|     | T5: Upper Hartshorne incised valley development                        |      |
| 65. | T6: Upper Hartshorne peat marsh development                            | .160 |
|     |                                                                        |      |

# LIST OF TABLES

## Table

# Page

| I. Volumetric Summary: Cabanniss NW Field         | 89  |
|---------------------------------------------------|-----|
| II. Volumetric Summary: Hill Top Field            | 93  |
| III. Volumetric Summary: Hill Top North Field     | 97  |
| IV. Volumetric Summary: Horntown SE Field         | 103 |
| V. Volumetric Summary: Lamar East Field           | 110 |
| VI. Volumetric Summary: Reams NW Field            | 116 |
| VII. Volumetric Summary: Scipio NW Field          | 122 |
| VIII. Volumetric Summary: Shady Grove South Field | 128 |
| IX. Volumetric Summary: South Pine Hollow Field   | 135 |
| X. Volumetric Summary: Stuart SW Field            | 142 |
| XI. Volumetric Summary: Ulan East Field           |     |
| XII. Depositional Environment Summary             | 152 |

## LIST OF PLATES

- Plate 1: Basemap
- Plate 2: Hartshorne Production Map
- Plate 3: Gross Sandstone Isopach Map: Lower Hartshorne
- Plate 4: Gross Sandstone Isopach Map: Hartshorne Undifferentiated
- Plate 5: Net Sandstone Isopach Map: Lower Hartshorne: Porosity  $\geq 8\%$
- Plate 6: Net Sandstone Isopach Map: Lower Hartshorne: Porosity  $\geq 12\%$
- Plate 7: Net Sandstone Isopach Map: Hartshorne Undifferentiated: Porosity  $\geq 8\%$
- Plate 8: Net Sandstone Isopach Map: Hartshorne Undifferentiated: Porosity ≥12%
- Plate 9: Net Pay Isopach Map: Lower Hartshorne: Porosity  $\ge 8\%$ , Sw  $\le 40\%$
- Plate 10: Net Pay Isopach Map: Lower Hartshorne: Porosity ≥12%, Sw ≤40%
- Plate 11: Net Pay Isopach Map: Hartshorne Undifferentiated: Porosity ≥8%, Sw ≤40%
- Plate 12: Net Pay Isopach Map: Hartshorne Undifferentiated: Porosity ≥12%, Sw ≤40%
- Plate 13: Structure Map: Top of Lower Hartshorne Coal
- Plate 14: Structure Map: Base of Hot Shale Marker
- Plate 15: Coal Thickness Isopach Map: Lower Hartshorne Coal
- Plate 16: Coal Thickness Isopach Map: Upper Hartshorne Coal
- Plate 17: Facies Map
- Plate 18: Cross-Section Location Map
- Plate 19: Cross-Section A-A'
- Plate 20: Cross-Section B-B'
- Plate 21: Cross-Section C-C'
- Plate 22: Cross-Section D-D'
- Plate 23: Cross-Section E-E'
- Plate 24: Cross-Section F-F'
- Plate 25: Cross-Section G-G'
- Plate 26: Cross-Section H-H'

## NOMENCLATURE

| bcf   | billion cubic feet          |
|-------|-----------------------------|
| CBM   | coal bed methane            |
| FCP   | flowing casing pressure     |
| FTP   | flowing tubing pressure     |
| mcf   | thousand cubic feet         |
| mcfd  | thousand cubic feet per day |
| mmcf  | million cubic feet          |
| mmcfd | million cubic feet per day  |
| OGIP  | original gas in place       |
| psi   | pounds per square inch      |
| RGIP  | recoverable gas in place    |
| Rw    | formation water resistivity |
| SITP  | shut-in tubing pressure     |
| SP    | spontaneous potential       |
| Sw    | formation water saturation  |
| tcf   | trillion cubic feet         |

## Electrofacies, Depositional Environments, and Petroleum Geology of the Hartshorne Formation in parts of Hughes and Pittsburg Counties, Oklahoma

#### **CHAPTER I**

### **INTRODUCTION**

#### **Purpose**

The Hartshorne Formation is an important source of natural gas in the Arkoma Basin. Natural gas is produced from the sandstone and coal within the Hartshorne Formation. The purpose of this study is to interpret the depositional facies from subsurface logs, establish depositional environments, and describe the occurrence of petroleum within the Hartshorne Formation in parts of Pittsburg and Hughes Counties, Oklahoma.

The Hartshorne Formation is composed of a succession of shale, sandstone, and coal. Three models for the deposition of the Hartshorne Formation are presented and examined. The first model is that the Hartshorne Formation was deposited within two primary cycles of delta progradation and delta abandonment represented by widespread coal. The second is a modified version of the first with the inclusion of entrenched distributary channels resulting from processes outside of the delta system. The third model suggests that a drop in sea level and formation of incised valleys followed each

delta progradation. This was followed by a rise in sea level that flooded the old delta plain and formed a mire or marsh system in which the coal forming peat was deposited.

The occurrence of coal and natural gas within the Hartshorne Formation is well known and the exploitation of these hydrocarbons has a long history. A better understanding of the Hartshorne depositional model is needed to help identify bypassed reserves in mature areas. In addition, a modern conceptual model is required to gain a greater understanding of the overall distribution of gas-producing Hartshorne lithofacies in order to predict new exploration trends. This study is not designed to identify new reserves, but rather to establish a model that can be applied to development of mature area and locate new reserves in underexplored areas. The final purpose of the study is to use the depositional model to help predict gas producing facies.

#### **Location**

The study area is located within the Arkoma Basin geologic province of Oklahoma and Arkansas (Figure 1). The Arkoma Basin is bordered on the south by the Ouachita Mountains/Ouachita Thrust Belt. To the northeast is the Ozark Uplift, a likely source area for much of the Hartshorne Sandstone. To the northwest is the Northeast Oklahoma Platform, also known as the Cherokee Platform. To the southwest is the Arbuckle Uplift. The Arkoma Basin is bordered/covered to the east in Arkansas by the onlapping Gulf Coastal Plain. The study area is comprised of a nine township block that includes T.5N. to T.7N. and R.11E. to R.13E. in Pittsburg and Hughes County, Oklahoma (Figures 2).

## **Methods**

An extensive literature search was conducted to establish a history of previous work on the Hartshorne Formation and coal-bearing strata. Wireline electric logs from more than 500 wells within the nine township study area were collected and correlated using a grid of East-West and North-South trending cross-sections. A stratigraphic framework was established using accepted economic and oil and gas industry nomenclature. The upper and lower members of the Hartshorne were identified, where both are present.

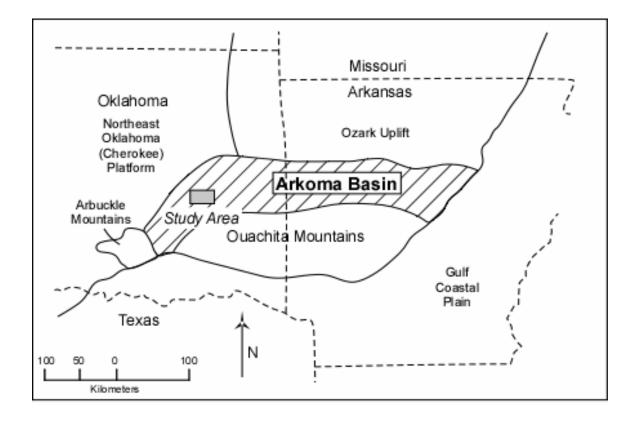



Figure 1: Regional tectonic map (Modified from Matteo, 1983)

A series of maps were constructed to analyze gas production, establish sandstone trends, interpret structural attitude and define coal thickness. The first map that was constructed was a production map that shows the cumulative gas production for wells that produce gas from the Hartshorne Formation. Data for this map were compiled to assess the area's potential for additional gas production. The second map that was constructed was a gross sandstone map of the Lower Hartshorne Member (Plate 3). For this map, a 50% "clean" sandstone cut-off was established based on the gamma ray A second gross sandstone map was built for the southernmost thicker sandstone curve. body (Plate 4). Houseknecht et al (1983), Matteo (1981), Fields (1987), and Andrews (1997) have divided thick, linear sandstone bodies that lie south of the coal split into the Lower and Upper Hartshorne Members. This interpretation was based on the premise that distributary channels or incised valley/channels of the Upper Hartshorne delta system eroded into the Lower Hartshorne Member and are superimposed on the Lower Hartshorne channel sandstones, giving the appearance of a thick stacked channel succession. The boundary between the Upper and Lower Hartshorne Members within this sandstone body is typically interpreted to occur at a shale break within the sandstone. Two wells encountered a coal within the thick sandstone body. This coal has been interpreted as the Lower Hartshorne Coal, and supports the division of the sandstone body into Upper and Lower Hartshorne. However, the depth of the coal within the sandstone body does not correlate to the Lower Hartshorne Coal away from the thick sandstone body, and does not fit with the gradual thickening of the Upper Hartshorne Member away from the coal-split. Instead, the coal within the thick sandstone body appears to be lower in the section than the Lower Hartshorne Coal in wells that show a

distinctive Lower and Upper Hartshorne division. This difference in position could be a result of differential compaction of the sand and adjacent mud, but the vertical difference in position appears to be too great. Therefore it was decided to map the southern sandstone body as Hartshorne "Undifferentiated," and suggest that the entire sandstone body may be composed of sediments deposited during Upper Hartshorne time.

After the gross sandstone maps were completed and the overall sandstone trends were defined, net sandstone and net pay maps were constructed, and compared to the gross sandstone map to determine if similarity exists. Net sandstone is simply defined as all clean sandstone (mapped as gross sandstone as explained previously) that has porosity equal to or greater than a defined minimum porosity. Net pay is defined as all clean sandstone that has a porosity greater than or equal to a defined minimum value and a water saturation (Sw) less than or equal to a defined maximum value.

The porosity cut-off was established after examining the porosity values in wells that produced natural gas in varying quantities and comparing those values to porosity values in reservoirs that are too "tight" (too low of porosity) to produce economic volumes of natural gas. It should be noted that low porosity is not the only reason gas is not produced from a sandstone reservoir. Low permeability (the connectedness of the pore space and the ability of fluid to move through the rock) is often more important than porosity in determining the ability of the reservoir to hold and produce fluids, including oil and gas. After comparing numerous resistivity and density porosity logs of highvolume and low-volume, gas-producing wells, as well as dry holes, two porosity cut-offs were established for mapping. These are density porosities of 8% and 12%. Both values

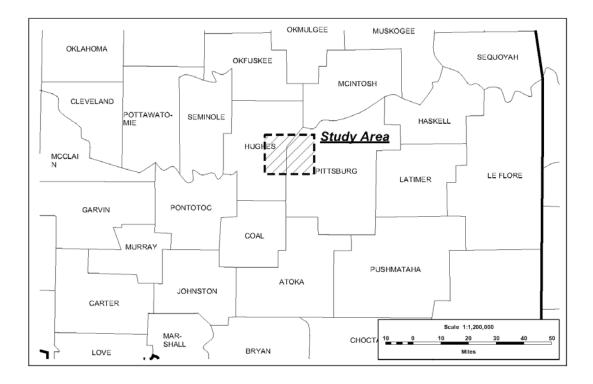



Figure 2: Location of study area along the boundary between Hughes and Pittsburg Counties, Oklahoma.

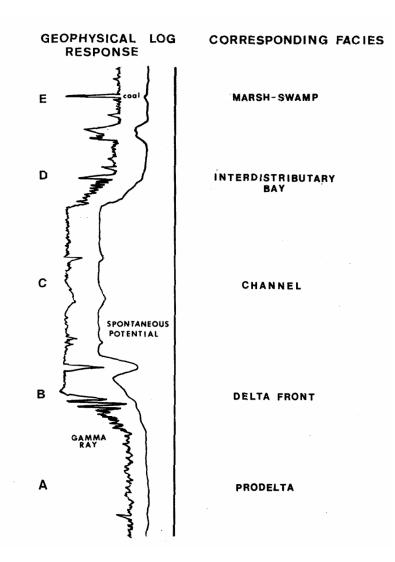



Figure 3: Type log of gamma ray response profiles through the various deltaic facies (Matteo, 1983)

were used to establish net sandstone and net pay, which was subsequently mapped (Plate 5-8). The thickness of net sandstone was compared to production volume to determine which porosity cut-off value was a better predictor of gas production volumes and trends. The primary porosity cut-off value that effectively predicted economic gas production is the 8% density porosity value. The net sandstone map based on the 12% density porosity cut-off is still useful for high-grading potential drilling locations. The next step was to define a water saturation cut-off so that net pay could be mapped. Net pay maps were constructed using the 8% and 12% porosity cut-offs. A water saturation value of 40% was used in combination with both the 8% and 12% porosity cut-off to construct net pay maps and define the trend of gas-producing Hartshorne sandstone. The resulting net pay maps support the production trends seen on the Hartshorne production map.

Two structure maps were then constructed using various formation tops and subsurface markers. The first structure map was constructed on the top of the Lower Hartshorne Coal (Plate 13), which is assumed to be correlative to the single Hartshorne Coal north of the coal-split line. The second structure map was constructed using the base of the "hot shale" marker in the McAlester Formation above the Hartshorne Formation (Plate 14). The Lower Hartshorne Coal is very extensive, and therefore a good subsurface marker. Coal-forming peat tends to be deposited on relatively flat surfaces near sea level; therefore it serves as a very good structural marker. The only difficulty that arose during mapping the structure of the Lower Hartshorne Coal is that it is absent or unidentifiable within the wells that penetrate the southern-most thick sandstone body. This relationship indicates that during Upper Hartshorne time a channel eroded down into the Lower Hartshorne, removing the coal. There is also some question as to the true identity of the Hartshorne coal that lies to the north of the coal split. Is it solely Lower Hartshorne Coal equivalent, or does it represents continuous peat deposition that began in Lower Hartshorne time and continued, uninterrupted, into Upper Hartshorne time? Houseknecht et al (1983), Andrews (1998), and others have stated that the Hartshorne Coal north of the coal split is correlative to the Lower Hartshorne Coal that is identified south of the coal split line. It is possible that this single Hartshorne coalbed north of the coal split line is correlative to the Upper Hartshorne Coal. Therefore a structure map of the Lower Hartshorne Coal may not present an accurate depiction of the structural attitude. Fortunately the "hot shale" marker that lies about 40 to 80 feet above the Hartshorne Formation in the McAlester is widespread and easily recognized. It is used during drilling of horizontal Hartshorne coalbed methane wells to establish a vertical position of the Hartshorne Coal. The "hot shale" marker also represents the top of the Lower Booch Sandstone interval. The Lower Booch Sandstone is present in the southeastern part of the study area. This hot shale marker was the primary structural marker used in this study, despite being located more than fifty feet above the Hartshorne Formation. Comparison of the "hot shale" marker and the Lower Hartshorne Coal structure maps indicates that there is no significant change in structural attitude and grain between the two. Stratigraphic thickening from north to south is evident in McAlester, Hartshorne, and Atoka Formations. A structure map was not constructed on the boundary between the Hartshorne and the Atoka since the identification of the boundary is questionable. Workers who have mapped the Hartshorne-Atoka boundary on the surface place it at the base of the lowermost sandstone in the Hartshorne Formation (Andrews, 1998). Workers who have mapped the boundary in the subsurface place it at a

resistivity marker lower in the Hartshorne Formation. Two "hot shale" markers are evident in the upper part of the Atoka, but sparse well control in most of the study area prevented their use. Based on correlations evident on the grid of cross-sections, structure does not change appreciably from below to above the Hartshorne. Therefore, it was determined that the two structure maps are suitable. The structure maps indicate an overall structural dip to the south-southeast, which is the same as the general direction of overall thickening of the stratigraphic column.

Electrofacies were interpreted using published log signatures for the various deltaic facies (Visher et al, 1971; Brown, 1979; Matteo, 1981; Houseknecht et al, 1983; Fields, 1987; Galloway and Hobday, 1997; Suneson, 1998; Andrews, 1998). The primary electric log curve used to determine lithofacies within the Hartshorne Formation was the gamma-ray curve.

Figure 3 illustrates the accepted gamma ray log profiles for the various lithofacies within a deltaic system (Matteo, 1983). The gamma-ray curve reflects clay content within the rock. The gamma-ray curve is almost always located on the left track of an electric log display. The more volume of shale (clay) within the rock the higher the gamma ray curve will read (high gamma ray deflects to the right). The scale on the gamma ray is usually 0 (or negative) to the left and 150 units on the right, with some variation in the scale based on logging preferences of companies and individuals. The highest reading will represent the shale baseline and any deflection to the left indicates a decrease in shale, thus an increase in sandstone or limestone. The spontaneous potential (SP) curve may be used to interpret lithofacies, but is not as reliable as the gamma-ray tool because it is influenced by porosity, permeability, and formation fluid types. It

should be noted that gamma ray curve profiles are not unique to specific facies. A delta front sandstone has a coarsening-upward profile caused by an upward increase in sand and decrease in clay content. Bed thickness will also increase upward in a delta front succession. A prograding barrier bar system will exhibit a similar profile. Distributary channel sandstones typically have a blocky to fining upward (bell shaped) electric log pattern (gamma-ray and resistivity). Shaley facies such as prodelta, interdistributary bay, and lower (distal) delta front will have very little deflection away from the shale base line on the gamma ray curve. Distributary mouth bar sandstones will have a blocky to upward coarsening profile. Because the distributary channel and distributary mouth bar share a common blocky profile, as well as their proximity to one another within the depositional system, it is often difficult to distinguish between the two facies on the electric log. Coal can be a very distinctive marker on an electric log given the proper log and thickness. If the coal is 2 or more feet thick, a very distinctive negative or leftward deflection in the gamma-ray curve is present. Coal will also read anomalously low on the bulk density curve (less than 2 grams per cubic centimeter) and high on the neutron and density porosity curves (greater than 30% porosity). This combination of log curve signatures can form a very distinctive subsurface marker. Without the gamma-ray and porosity curves, coal is very difficult to identify. It is almost indistinguishable on wireline logs with only SP and resistivity curves.

Volumetric calculations were used to determine the original gas in place (OGIP) and the recoverable gas in place (RGIP). These equations and explanations of their use are in Chapter IV.

#### **Previous Work**

Chance (1890) first described rocks of the Hartshorne Formation, calling the coal the Grady Coal Group and the sandstone the Tobucksy Sandstone. Taff (1899) later renamed these units the Hartshorne Coal and the Hartshorne Sandstone. Taff (1899) defined the top of the Hartshorne Sandstone as the first sandstone below the Hartshorne Coal, with the Hartshorne Coal being grouped with the overlying McAlester Formation (Suneson, 1998). Taff and Adams (1900) identified a second Hartshorne Coal and named them the Upper and Lower Hartshorne Coals. The Lower Hartshorne Coal and the shale separating it from the sandstone were defined as part of the Hartshorne Sandstone, whereas the Upper Hartshorne Coal was still grouped with the overlying McAlaster Formation. The base of the Hartshorne Sandstone now became the base of the lowermost sandstone. Oakes and Knechtel (1948) noted, "The two coals coalesce or are separated by only a few inches of bony coal or coaly shale" (Matteo, 1981). Branson (1956) suggested the Hartshorne Sandstone be changed to the Hartshorne Formation. McDaniel (1961) suggested that the Hartshorne be divided into Upper and Lower Members, with the Upper Member containing the Upper Hartshorne Coal and all sandstone and shale between the upper and lower coal, and the Lower Member consisting of the Lower Hartshorne Coal and all sandstone and shale between the lower coal and the top of the Atoka Formation.

Housknecht (1983) at the University of Missouri, with the help of numerous graduate students, did extensive work on the Hartshorne Formation in both Oklahoma and Arkansas. His work was the foundation for the current accepted model for

Hartshorne deposition. The most important contribution, to this study was the work of Matteo (1981), who focused on the Hartshorne Formation within an area in eastern Pittsburg County and western Haskell and Latimer Counties, Oklahoma. The work done by Housknecht (1983) and his students was the most important contribution to the accepted Hartshorne depositional model. The model of Hartshorne deposition developed by earlier workers and further refined by Houseknecht et al (1983) was that of a multiple cycle high destructive deltaic system.

McQueen (1982) examined the Hartshorne Formation in a generalized study that covered the entire Arkoma Basin McQueen's (1982) study contained a broad overview of the Hartshorne Formation within the Arkoma Basin and was useful in establishing the basic regional depositional system.

Fields' (1987) subsurface study covered an area in parts of Pittsburg, Hughes, and Haskell Counties, and in fact overlaps the area in this study. Fields (1987) described the petrologic characteristics of the Hartshorne Formation using two cores that were taken from the Hartshorne Formation in Oklahoma. Fields (1987) determined the mineralogical composition of the Hartshorne Sandstone and reported that the sandstone is primarily composed of quartz (76% in the cores examines). The sandstone also contained rock fragments, feldspar, and minor amounts of muscovite, tourmaline, and zircon. The sandstone contained 2% detrital matrix. There were also trace amounts of organic matter. Fields (1987) also examined core from a well within the current study area, the Hunt Garrett #1 (Section 34-T.6N.-R.13E.), located in South Pine Hollow Field. Two intervals were cored, 3555 to 3561 feet and 3561 to 3601 feet, and the overall condition of the core was poor. Fields (1987) interpreted these cores to contain Upper Hartshorne

distributary channel sandstone, stacked on top of Lower Hartshorne distributary sandstone. Neither the upper or lower contacts were cored.

The Oklahoma Geological Survey has published a significant volume of work on the Pennsylvanian of southeastern Oklahoma. Hemish (1988) reported on coal core drilling program. Hemish (1991, 1992, 1993, and 1995) and Hemish, Suneson, and Furgeson (1990) also constructed several surface geologic maps of quadrangles in Le Flore, Latimer, and Pittsburg Counties. The most recent stratigraphic and sedimentological work done was by Andrews and others (1998). Andrews et al (1998) introduced sequence stratigraphy into the depositional model of Hartshorne deposition.

Suneson (1998) published a field trip guide containing numerous measured section descriptions. Many of the measured sections correlated back to nearby wireline logs. The field trip stops are south and east of the study area but were valuable in interpreting the Hartshorne depositional history.

### **General Stratigraphy**

The Hartshorne Formation, which is named for the town of Hartshorne Oklahoma, is the oldest formation in the Krebs Group, Desmoinesian Series (Pennsylvanian). The Hartshorne, which is composed of shale, sandstone, and coal, is immediately underlain by the Atoka Formation (Atoka Series) and overlain by the McCurtain Shale Member of the McAlester Formation (Krebs Group) (Figure 4).

The Atoka Formation is composed primarily of shale with some interbedded sandstone. The lower part of the Atoka Formation is considered to be of deep marine origin, while the Upper Atoka is thought to be composed shallow marine shelf and transition deposits. The uppermost part of the Atoka may represent the distal prodelta facies of the Hartshorne delta system (Matteo, 1981). Within the uppermost Atoka there are sandstone stringers that are known by various local names, one of the sandstones can is present in several wells in the northwest part of the study area.

The overlying McAlester Formation is dominantly shale. Within the McAlester there are localized sandstone, coal, and limestone beds and stringers, including the Booch sandstones and coals. The lower Booch sandstone develops in the southeast part of the study area, the top of which is represented by the upper "hot-shale" marker. The "hot-shale" marker may represent a marine maximum flooding surface or highly carbonaceous shale of paralic or terrestrial origin. Based on the interpretation of Pennsylvanian hot shales (Marshall, 2002) this "hot shale" may be the key to interpreting the sequence stratigraphic of the Hartshorne and McAlester Formations.

As mentioned previously, the Hartshorne Formation was originally defined as the sandstone lying directly beneath the Hartshorne Coal (Taff, 1899). Later the Hartshorne was redefined to include both the Lower and Upper Hartshorne Coals. The Hartshorne was subsequently divided into two members, the Upper and the Lower. The Upper Hartshorne Member includes the Upper Hartshorne Coal and sandstone between the Upper Hartshorne Coal and the Lower Hartshorne Coal. The lower member includes the sandstone body below the Lower Hartshorne Coal, as well as the coal itself. The historical development of the Hartshorne nomenclature is illustrated in Figure 5.

The Upper Member is only present in the southern part of the Arkoma Basin in Oklahoma (Matteo, 1982). In the northern part of the Oklahoma portion of the Arkoma Basin and the entire basin in Arkansas, the Hartshorne Formation is represented by a

15

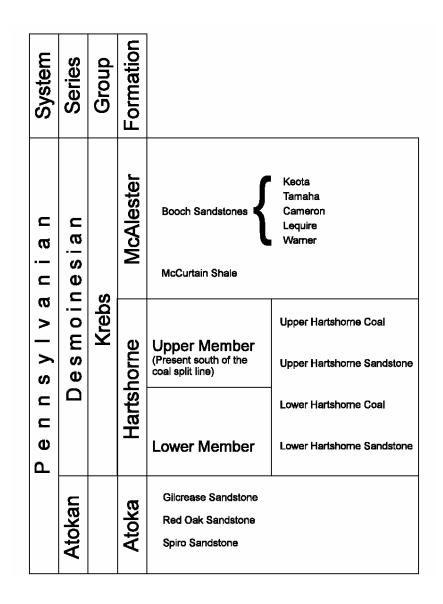



Figure 4: Generalized stratigraphic column, Arkoma Basin, Oklahoma (Modifiedf from Andrews, 1997 and Hemish & Suneson, 1997).

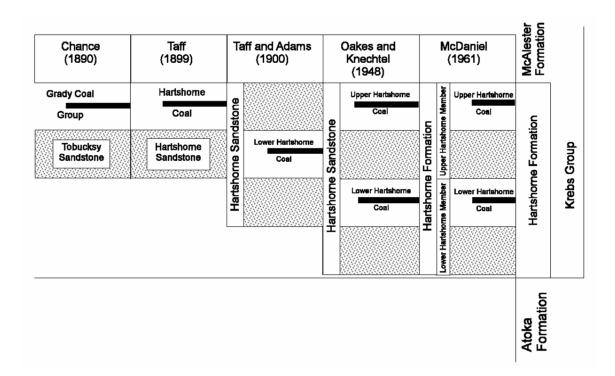



Figure 5: Summary of the history of the Hartshorne Formation nomenclature.

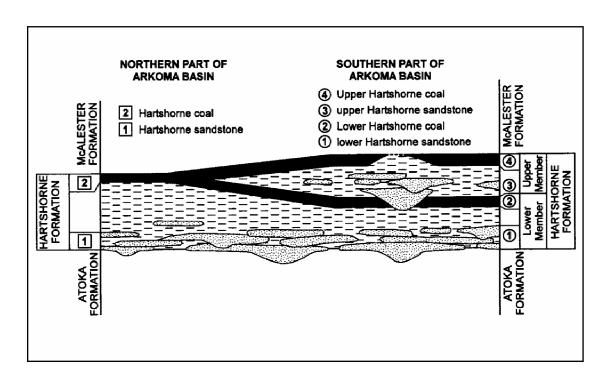



Figure 6: Illustration of the coal-split that occurs within the Hartshorne Formation from north to south in the Arkoma Basin, Oklahoma (From Hemish & Suneson, 1997).

single sandstone-coal package that is presumed to be correlative to the Lower Member in the south (Figure 6). For the purpose of this study and simplicity, the term "Lower Hartshorne Member" will be used to indicate that part of the formation below the Upper Hartshorne Member where both members are present. In addition, Lower Hartshorne will be used to describe the Hartshorne Formation (undivided) north of the coal-split line. This nomenclature is the same as reported by Houseknecht et al (1983) Andrews (1998).

The Hartshorne Formation in Arkansas differs in several ways to the Hartshorne in Oklahoma.. In most of the Arkoma basin within Arkansas, the Hartshorne Formation consists of a single coal and sandstone package and no coal-split is evident, except in the far western part (Houseknecht et al, 1983). The Hartshorne Formation is interpreted to be of dominantly fluvial origin and described as a series of thick, broad channel sandstones (Houseknecht et al, 1983). Near the Arkansas-Oklahoma border these channel sandstones become narrower and thinner (Houseknecht et al, 1983).

#### **CHAPTER II**

#### **GEOLOGIC SETTING**

#### **Tectonic and Depositional History**

The Arkoma Basin extends from south-central Oklahoma into central Arkansas (Figure 1). Bounding structural features include the Ouachita and Arbuckle Uplifts to the south and the Ozark Uplift to the northeast. To the southeast is the Gulf Coastal plain that extends from southeastern Arkansas to the Gulf of Mexico. To the northwest is the Oklahoma Platform, also known as the Cherokee Platform, which extends into Kansas. The history of the Arkoma Basin begins in the Late Precambrian. During this period of time, rifting occurred as the North American plate began to separate from Africa and South America. All were previously sutured together to form the supercontinent "Proto-Pangea." As rifting continued into the Paleozoic, a passive margin developed along the southern edge of North America. During the Early Mississippian, part of the present day trough within the Arkoma Basin was structurally high (Rieke and Kirr, 1984). During the passive margin stage of the Early and Middle Paleozoic, shallow water carbonates and clastics were deposited on a broad shelf. This passive margin continued into the Late Devonian and Early Mississippian, at which time the ocean basin began to close and a southward dipping subduction zone formed (Houseknecht et al, 1983). This is supported by evidence for a Devonian metamorphic event (Denison, 1982). During this transition from passive to active continental margin the rate of sedimentation increased.

Throughout most of the Mississippian, the depositional setting remained a shelf, which was dominated by clastic deposition (Houseknecht et al, 1983). During the Pennsylvanian, sediment continued to be shed into the basin as it transformed into an active continental margin. Sediment was deposited in the basin in fluvial dominated deltaic systems during the Pennsylvanian. During the Late Pennsylvanian, the Arbuckle orogeny formed the Arbuckle Uplift in southern Oklahoma, which separated the present Ft. Worth and Arkoma Basins (Rieke and Kirr, 1984). The tectonic evolution of southern Oklahoma is illustrated in Figure 7 (Houseknecht et al, 1983).

### **Overview of Deltaic Depositional Systems**

Deltaic depositional models have dominated the interpretations of the Hartshorne Formation. Therefore, an overview of deltaic processes and resulting facies is included. A delta forms at the point where a flowing river enters a standing body of water such as the ocean or a lake. The delta represents the building out or progradation of the river plain into the body of water. As the river enters the standing water, the fluvial system gradually loses current energy and deposits its sediment load. The sediment load contains grains with a wide variety of sizes and densities. The particles with the greatest mass, which are typically larger, are deposited first, proximal to the stream mouth, whereas less massive, smaller sediment is deposited at increasing distances from the mouth. The result is a lateral gradation of grain sizes from the mouth of the river to the more distal part of the delta. There is also a vertical gradation of grain sizes that results as the delta builds out into the standing body

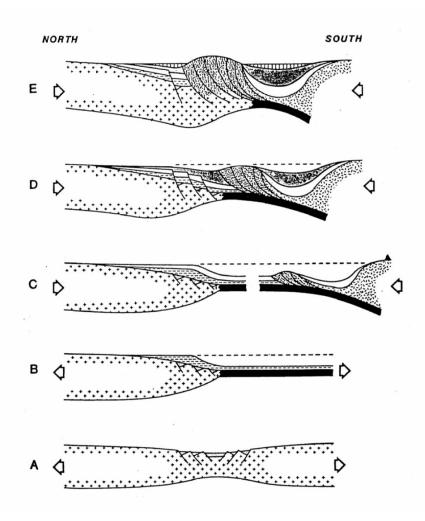



Figure 7: Idealized model for the evolution of the Arkoma Basin (from Houesknecht et al, 1983).

of water. Proximal, coarser grain facies are deposited above the more distal, finer grain facies.

The processes that control the formation of a delta system can be divided into three categories, fluvial, wave, and tidal, with wave and tidal often being grouped together (and with other basin processes) as marine processes. In any delta system, all three of these processes are present and act upon the delta in varying degrees. This interaction creates a unique type of delta, which is then defined and named by the dominant process, hence fluvial-dominated deltas, wave-dominated deltas, and tidedominated deltas.

There are several factors outside of fluvial and marine processes that influence the morphology and evolution of a delta system. These factors include tectonic setting, relative sea level changes, climate and the geometry of the depositional basin The most important factor is relative sea level, which may be influenced by tectonic activity, eustatic sea level changes, and subsidence (basin wide and local).

### Tectonic Influence

Tectonic activity can affect a delta system in several ways. Regional uplift may create topographically high areas that increase river gradient and sediment supply. This increase in gradient and sediment load will directly affect the delta system by rejuvenating the constructive phase. This can change a wave-dominated delta to a fluvial-dominated delta system as the influence of river processes increase. The magnitude of the affect of tectonic activity on the delta system is controlled by both the intensity of the tectonic event as well as the proximity of the uplift to the delta system. For example, if uplift occurs close to the shoreline, a fan-delta may form, or a preexisting fluvial-dominated delta may transform into a fan delta system.

#### Sea Level Change

The evolution of sequence stratigraphy has redefined and enhanced the role of sea level change on defining patterns of deposition within coastal environments. Typically, changes in sea level can be placed into two categories, (i) regional and (ii) eustatic.

22

Regional changes in sea level are restricted to a particular basin and are not seen at a global level. Eustatic sea level changes are those that are recognized globally. Relative changes in sea level typically result from the interaction of tectonic uplift, basin subsidence, lobe switching, delta subsidence, and other events that are confined to the basin, as well as the ongoing eustatic fluctuations of sea level.

A delta forms at the point at which a river enters a basin or intersects shoreline. Changes in sea level cause the shoreline to migrate, thus affecting any depositional system linked to the shoreline, including a delta. The effect on the delta system can vary. Minor fluctuations will have a minimal affect on the delta system and result in a redistribution of deltaic facies. Major regressive or transgressive events induce a much larger affect on the depositional system, including the complete destruction of the delta system in both cases. In the case of a major regressive event, the delta will be cannibalized by its own distributaries as they erode or incise into it. A major transgressive event, which overtakes fluvial discharge, will flood the delta plain, and sediments may be reworked and redistributed by marine processes, leaving little evidence of the former deltaic system. In instances of regional tectonic activity or subsidence, there may be a localized, drops or rises in sea level that are not related to global eustatic processes.

### Climatic Conditions

Regional climate is a controlling factor in the formation and evolution of delta systems. For sediment to be delivered to the basin by the delta system, there must be a flow of water. In an arid climate the amount of rainfall runoff may be minimal and small

volumes of sediment is delivered to the delta system. This is especially true if the sediment source is distal to the delta. In an area that receives seasonally high discharges, a delta may form, but because of the lack of constant discharge, may be dominated by marine processes. In more moderate climates, a year round discharge would allow for continual delta building. Periods of high water discharge may cause both the upstream fluvial system and the deltaic distributary systems to erode into their underlying substrate.

#### **Fluvial-Dominated Deltaic Systems**

Deltas are composed of a proximal and distal framework facies. The proximal framework for all deltas (wave-, tide- and fluvial-dominated) is the distributary channel sand (Galloway and Hobday, 1996). The differences between the delta types are exposed in the distal framework facies. For fluvial-dominated deltas, the distal framework facies include distributary mouth bars and delta front sheet sands. The distal framework facies component for wave-dominated and tide-dominated deltas are beach ridge or strand plain sands and tidal ridge/bar sands, respectively (Galloway and Hobday, 1996).

Both fluvial and tide-dominated deltas contain a high amount of mud and clay, whereas wave-dominated deltas are cleaner or sand rich as a result of wave action that winnows away the finer material. Although the composition of fluvial and tidedominated deltas is similar, geometry and sedimentary structures are quite different. Tidal inundation often creates irregular geometries; the Me-Kong Delta is a good example of a tidal dominated delta. Fluvial-dominated deltas show a greater protuberance as the influx of sediment builds the delta basinward in a lobate or elongate (birdsfoot)

The Mississippi Delta is a good example of a fluvial-dominated delta. Sand pattern. bodies in fluvial-dominated deltas contain sedimentary structures that indicate a singular direction of flow, whereas sedimentary structures in sands associated with tide-dominated deltaic sediments show patterns indicating bimodal directional water flow associated with the ebb and flow of tidal currents. Fluvial-dominated deltas may contain some marine influenced sedimentary structures that occur mostly in the distal delta front. In contrast, marine influence in a tide-dominated delta may extend up into the distributary channel during high tide. Wave-dominated deltas also contain sedimentary structures that display patterns indicating bimodal sediment transport resulting from wave action. Both fluvial- and wave-dominated deltas may display a lobate geometry, but they are different in that the distal framework of wave-dominated systems is composed of sands (beach ridge/strandplain) that strike subparallel with the coastline. The distal framework facies of a fluvial-dominated delta system (distributary mouth bars and delta front sands) will strike perpendicular to the coastline and extend basinward.

Some delta descriptions have characterized fluvial dominated deltas as "constructive," whereas deltas that are more heavily influenced by wave and tidal energy are "destructive" (Houseknecht et al, 1983). The origin of this description is understandable as river-dominated deltas will typically prograde basinward more than either wave- or tide-dominated deltas. The description is also accurate in that sediments that are deposited in wave- and tide-dominated deltas are heavily reworked by marine processes, often exhibiting characteristics that are more indicative of shallow-marine deposition than fluvial. In reality, these delta types are all influenced, to varying degrees, by both fluvial and marine processes. The terms "constructive" and "destructive" are

25

more aptly applied to phases within the lifespan of the delta. As long as a river is depositing sediment at its mouth and supply exceeds accommodation space, it should be considered to be in its constructive phase. Once that fluvial input diminishes and the delta is dominated by marine processes, it may be considered to be in a destructive phase. This is an important distinction because in major delta systems there are typically multiple phases of construction and destruction occurring simultaneously as one delta lobe is abandoned and another develops as a result of lobe switching. This process is evident in modern deltas such as the Mississippi and most likely was the case for large ancient delta systems such as the Hartshorne, which had multiple active distributaries.

Relative sea level change must be considered when describing the evolution of a delta system. Change in sea level may be the result of subsidence due to compaction of the sediment, tectonic uplift in the hinterlands, basin subsidence, or global sea level changes. A fluvial-dominated delta system develops because a river feeds sediment to a system than can be altered by marine processes. Marine processes can dominate the fluvial process if flooding that results from a relative rise in sea level and increasing accommodation space. If this occurs at a rate that exceeds the rivers sediment supply, the fluvial system will be unable to maintain the delta. It should be noted that sand and mud within the delta contain a high volume of water and will compact over time, resulting in subsidence and a relative rise is sea level. Unlike the "constructive" and "destructive" phase in delta evolution, sea level changes do not necessarily end the existence of the delta. Fluctuations in sea level may simply adjust the location of the delta lobes and the distribution of sediment. Given a relatively stationary sea level and sediment input exceeding the rate of delta subsidence resulting from compaction, a delta will build out or

prograde into the basin. This is referred to as a progradational delta stage. If the sediment input remains constant and the rate and magnitude of sea level rise increases, but is not so great as to overtake it, the delta may backstep away from the basin or retrograde. Older deltaic sediments will be flooded, but sufficient sediment delivery will maintain a delta system as the coastline. This is the retrogradational delta stage. While the progradational stage of deltaic development is always in the constructional phase, retrogradational stages may be either in the constructional or destructional phase of development. If marine incursion overtakes the sediment input volume the distributary channels will be flooded and an estuarine-type environment may form, which is similar to a tide-dominated delta. This would be classified as a destructional phase of delta evolution. If sea level is maintained and sediment is delivered to the delta at a rate that is approximately equal to the amount needed to fill the accommodation space created by deltaic subsidence, then a delta will simply aggrade, or build upon itself at its current location. This is referred to as the aggradational stage of delta development, which is constructional because fluvial process still dominate.

#### **Deltaic Facies**

There are three primary facies within a deltaic depositional system, prodelta, delta front, and delta plain (Bhattacharya and Walker, 1992). Each of these can be divided into subfacies. Figure 3 illustrates the typical vertical succession of deltaic facies and their gamma ray response profile on an electric log. Figure 8 illustrates the distribution of the deltaic facies and their respective electric log response profiles.

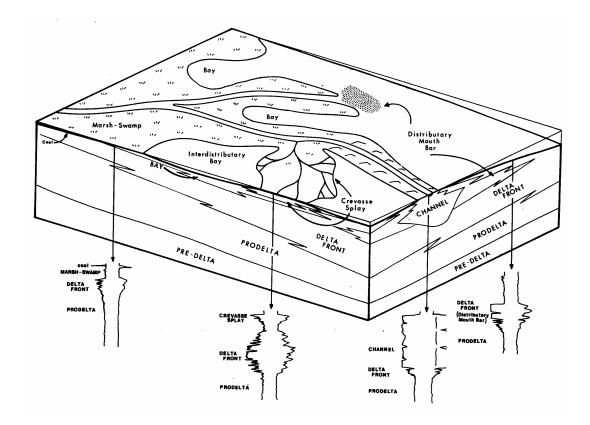



Figure 8: Distribution of facies within a deltaic system and their representative log curve signatures (From Matteo, 1981)

## Prodelta

The prodelta represents the most distal part of the delta system. This is where the smallest-sized material is deposited. The prodelta is often divided into distal and proximal subfacies. The prodelta facies of the delta depositional system is composed primarily of clay or mud with minor amounts of silt and sand. The minor amounts of silt and sand are deposited as a result of periods of high stream discharge. The volume of sand will increase up section in a prograding delta system. This represents the initial coarsening upward vertical profile that is characteristic of a prograding delta system.

### Delta Front

The delta front facies consists of the delta fringe (distal delta front) and distributary mouth bar subfacies. The delta fringe represents the transition from proximal prodelta deposition to delta front deposition. The delta fringe or distal delta front is composed of fine-grained sandstone, with interbedded shale and siltstone (Brown, 1979). The thickness and frequency of sandstone beds will increase upward as the delta fringe grades into the distributary mouth bar. The distributary mouth bar represents the point of the most active deposition and is deposited at the head of the distributary channels as elongate sand bodies. The distributary mouth bar consists of fine- to medium-grained sand. Sedimentary structures include medium- to large-scale trough cross bedding within a thick sand body. In both delta fringe and distributary mouth bar deposits where there is a high rate of deposition, water-laden sediment is deposited. As more sediment is deposited and overburden increases, the water is forced out of the sediment and the result is a variety of soft-sediment deformation features including flame structures and ball and pillow structures. The proximal part of the delta front is represented by the distributary mouth bar subfacies.

### Delta Plain

The delta plain facies is the most diverse of the three primary facies. Subfacies within the delta plain facies includes distributary channel, interdistributary bay, marsh and swamp, and crevasse splay.

The distributary channel subfacies is the local fluvial component of the delta system. Distributary channels may, like their terrestrial counterpart, have a tendency to

migrate laterally or meander. Distributary channels may also become well entrenched and take on a more linear trend.

Crevasse splays develop when the distributary channels breach their natural levees and the sediment load spills into the low energy environment of the interdistributary bay. The result is the formation of a small scale delta system, compared to the larger delta system of which it is a part. Some crevasse splays may be very large, depending on the nature of the flooding event. The crevasse splay facies may exhibit a coarsening upward profile that reflects the progradational nature of the deposit.

#### **Incised Valley Fill/Entrenched Distributary Channel**

Incised valley systems and incised valley fills, including those in the Hartshorne, have become a very important topic because of their significance as oil and gas reservoirs and their role in sequence stratigraphy. The recognition of incised valley deposits is not new, but their interpretation in the context of sequence stratigraphy has accentuated their importance to interpreting depositional systems.

Incised valley systems form when a river erodes underlying sediment to create a topographic low river valley. The erosion is a response to disequilibria with base level, which may result from uplift or the lowering of base level relative to the current river mouth. If the base level begins to rise and marine waters inundate the valley, stretches of the valley may fill with marine sediment. The drop of base level is often a result of relative sea level fall and the resulting valley may represent a sequence boundary (Van Wagoner et al, 1990).

The presence of an incised valley system is one of the primary criteria for identifying a sequence boundary, as the base of the valley is correlative to the regional sequence boundary. During the regressive event, the existing deltaic, marginal marine, and marine sediments are often exposed and evidence for exposure within the interfluve areas can be identified (Zaitlin et al 1994). The valley will incise underlying strata, including any regionally significant markers in the area (Zaitlin et al, 1994). In the sequence stratigraphic framework, the incised valley is an important indicator of a sequence-scale event; the base of the valley (and the correlative interfluve) is defined as a sequence boundary. The fill of the incised valley may contain fluvial deposits toward the base that represent deposition during the lowstand systems tract. During the subsequent transgression, these fluvial deposits are flooded and the valley transitions into an estuarine-type depositional system. Thus the valley-fill shows an upward transition from fluvial to marine deposition. However, not all incised valleys and incised valley fill deposits represent a sequence boundary or are a result of relative sea-level fall. Incision may result from climatic change, stream capture, or a tectonic uplift in the sediment source area, all of which may increase discharge that results in channel entrenchment or incision.

Channel-fill sandstone that are interpreted as valley fill deposits are the most important economic facies within the Hartshorne delta system. This facies was added to the Hartshorne depositional model by workers at the Oklahoma Geological Survey (Andrews, 1998). Van Wagoner et al (1990) and Dalrymple et al (1994) explain that not all valleys are "incised valleys" of sequence stratigraphic definition. Van Wagoner et al (1990) and Dalrymple et al (1994) indicate that some distributary channels erode through the delta front deposits and into, but not through, the prodelta deposits, juxtaposing fluvial distributary sands on prodelta marine shale. The result is an apparent basinward shift in facies. The distributary channels become entrenched and may form a large aggradational channel complex, as it is unable to migrate laterally. As there is no major regression, the delta plain is not exposed.

## **CHAPTER III**

### HARTSHORNE DEPOSITIONAL MODEL

## **Overview**

The Hartshorne depositional model has evolved as most geological models change in response to new information and ideas. The first and most widely accepted model for Hartshorne deposition is that of a widespread fluvial-deltaic system (Figures 9 and 10). Houseknecht (1983) described it as a high-constructive lobate delta system that prograded from northeast to southwest during two primary phases (Matteo, 1981). A high-constructive delta is one that is dominated by fluvial processes and is continually prograding basinward. A high-constructive delta may also be subject to high frequency multiple lobe abandonment and lobe switching. This original interpretation was based on the widespread coal beds that were thought to have formed during multiple destructive phases that punctuated the delta progradation cycles. Peat deposition was first suggested to have occurred during delta progradation within the large interdistributary bays and within the distributary channels during channel abandonment. Later interpretations suggested that the peat was deposited within a widespread coastal marsh during a largescale delta-system abandonment. However, studies of modern systems suggest that economically viable coal forming peat is not deposited close to clastic deposition and may be separated from underlying strata by a significant hiatus (McCabe, 1984). The high influx of clastic sediments into the interdistributary bay cause the peat, and subsequent coal, to have a ash content that is too high for economical coals to form (McCabe, 1987; Hobday, 1987; Cohen et al, 1987).

The depth of the water into which the Hartshorne delta system prograded was relatively shallow and there is compelling evidence for a strong wave influence in the form of extensive mud rip-ups and eroded bedding surfaces (Andrews, 1998). The Hartshorne delta morphology is thought to be lobate, which also indicates the influence of wave action. Sources of Hartshorne are believed to include the Ozark Uplift to the north-northeast, the Ouachita Mountains to the south, and other sources to the east (Andrews, 1998).

The Lower Member (including all undivided Hartshorne north of the Coal-Split Line) represents the initial phase of deltaic sedimentation. The Lower Hartshorne Coal (and the undivided Hartshorne Coal north of the coal-split line) represents either widespread delta abandonment or an unrelated flooding event during a subsequent sea level rise. The Upper Member represents a second phase of deltaic deposition (Houseknecht et al, 1983). The Upper Hartshorne delta appears to have prograded into shallower water. Deltaic facies within the Upper Hartshorne are more poorly developed and thinner than in the Lower Hartshorne Member. There is no strong evidence for the presence of a major prodelta package within the Upper Hartshorne.

In Arkansas, the Hartshorne Formation consists of a single member, that is believed to be correlative with the Lower Hartshorne Member of the study area. In the eastern part of the Arkoma Basin in Arkansas, the Hartshorne Formation is composed of three channel sandstone bodies that merge in western Arkansas (Housknecht, 1983). These are interpreted to be fluvial and deltaic distributary channels. They are as much as

120 feet thick and 3 to 9 miles in width. Matteo (1983) explains that local differential subsidence of mud/shale below and adjacent to the active distributary created a cycle of continuous sand deposition and subsidence that resulted in the development of these thick distributary channels. They are separated by strata that are interpreted to to be the result of deposition in extensive interdistributary bays. As the Hartshorne extends into the Oklahoma side of the Arkoma Basin, it becomes two linear sandstone trends that are thinner and less widely distributed than the three to the east. As the channel sands decrease in width, the interdistributary bays increase in area. This trend continues into the western side of the Arkoma, where the interdistributary deposits are more widespread than the channel sandstones. Houseknecht et al (1983) also noted that the prodelta facies in the western Arkoma Basin is similar to that in the eastern portion of the basin, but that delta front facies are thin or absent. Within this deltaic model all sandstone bodies that exhibited characteristics of a fluvial nature were considered to be distributary channels deposits of the delta plain facies. Houseknecht et al (1983), Matteo (1981), and Fields (1987) interpret the Upper Hartshorne distributary channels as being spatially distributed directly on top of and adjacent to distributary channels of the Lower Hartshorne Member.

A second model proposed is that of a deltaic system with an entrenched distributary or fluvial system (Figures 11 and 12). This model is a modification of the purely deltaic model of Houseknecht et al (1983) and is proposed to account for the relationship of the thin deltaic sediments and the abnormally thick linear sandstone bodies or trends that had been classified as distributary channels. This model is proposed with the idea that tectonic uplift within the active Arkoma Basin caused the distributary channel to erode into the older deltaic sediments.

Andrews (1998) redefined the Hartshorne depositional model within a sequence stratigraphic framework (Figures 13 and 14). This third model suggests that a drop in sea level and the formation of an incised valley and correlative unconformity or sequence boundary, punctuated each of the two primary delta cycles. This phase was followed by a rise in sea level and flooding, the extent of which is important when considering the formation of the Hartshorne coals. The overall system of deposition remained same and contained two phases of delta progradation. The primary difference between the older model of Houseknecht et al (1983) and the Andrews (1998) model was the inclusion of an incised valley and subsequent valley fill in the latter model. The multiple incised valleys are believed by Andrews (1998) to have formed after each Hartshorne delta progradation represented by the Upper and Lower Hartshorne Members. Andrews (1998) redefined the thick distributary channel sands of Houseknecht et al (1983) as being incised valley channel sands that were deposited as a result of a major regressive event. The implications of this are twofold: 1) it would suggest a relative drop in sea level after each phase of delta deposition, and 2) sediment transported through the incised valley would be deposited elsewhere, thus implying that a significant downdip accumulation of sediment occurred if the sea level fall was sufficient enough to allow for sediment bypass (Andrews, 1998). Andrews (1998) describes the thick sandstone bodies as being "falling stage deposits" of an incised valley system, and suggests that the basic model of incised valley fill architecture does not apply, as the transition upward from fluvial to estuarine

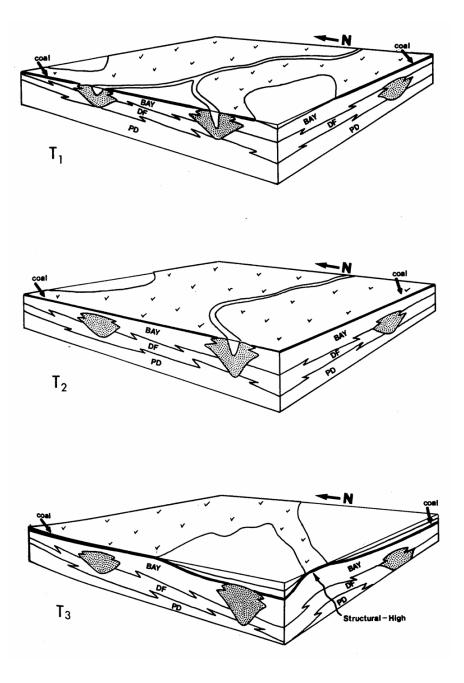



Figure 9: Deltaic Model, Lower Hartshorne deposition (from Matteo, 1983)

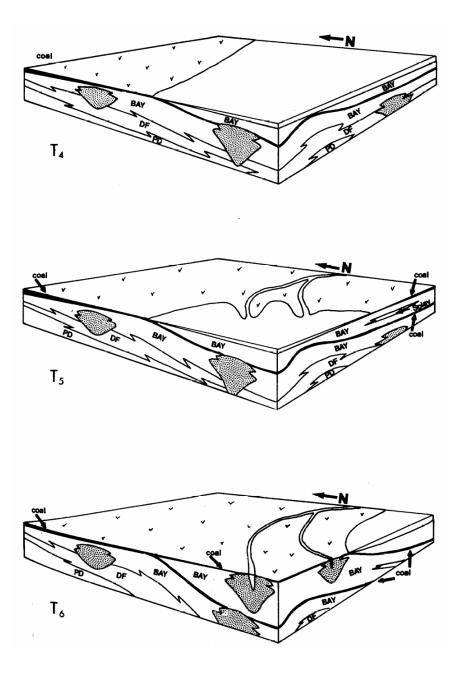
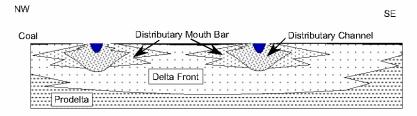
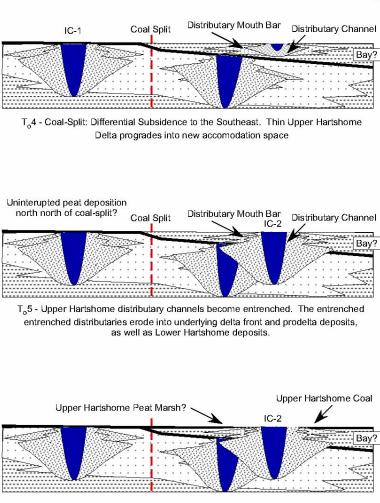




Figure 10: Deltaic Model, Upper Hartshorne deposition (from Matteo, 1983)



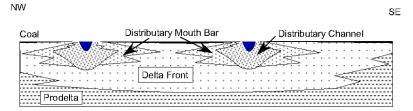
To1 - Initial Lower Hartshome delta progradation


| IC-1 | IC-2 (Lower Hartshorne?) |
|------|--------------------------|
|      |                          |

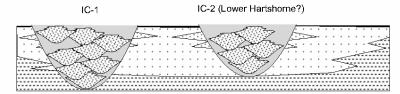
 ${\rm T_o2}$  - Entrenchment of distributary channels into the underlying delta front and prodelta deposits.

| Peat Marsh |  |
|------------|--|
|            |  |

 $\rm T_{\rm o}3$  - Regional delta abandonment and development of a widespread peat marsh.


Figure 11: Lower Hartshorne delta cycle (Entrenched Distributary Model) illustrating distributary entrenchment as the origin of the thick sandstone trends (IC-1 and IC-2)




SE

 $\rm T_o6$  - Widespread delta abandonment and development of Upper Hartshorne peat marsh system.

Figure 12: Upper Hartshorne delta cycle (Entrenched Distributary Model)) illustrating distributary entrenchment as the origin of the thick sandstone trends (IC-1 and IC-2)



T1 - Initial Lower Hartshornedelta progradation



T2 - Lower Hartshorne Incised Valley/Channel development. Andrews (1998) interprets the valley fill as falling stage deposits with some marine deposition.

| <br>Lower Hartshome Coal |
|--------------------------|
|                          |

T3 - Marine transgression and flooding and development of a coastal? peat marsh system, possible hiatus between Lower Hartshorne Coal and Lower Hartshorne sandstones and shales.

Figure 13: Lower Hartshorne depositional model with incised valley development.

| IC-1                                                       | Coal Split  | Distributary Mouth Bar                             | Distributary Channel |
|------------------------------------------------------------|-------------|----------------------------------------------------|----------------------|
|                                                            |             |                                                    | Bay?                 |
|                                                            |             |                                                    |                      |
|                                                            |             | e to the Southeast. Thin<br>new accomodation space |                      |
| Uninterupted peat deposition<br>north north of coal-split? | n<br>IC-1 ∎ | IC-2 - Upper Hartsho                               | ome?                 |
|                                                            |             | R C                                                |                      |

T5 - Upper Hartshome Incised Valley (Incised Channel?) erodes through Upper Hartshome Delta and into Lower Hartshome sediments. IC-2 as mapped represents Upper Hartshome stacked on top of Lower Hartshome or Hartshome Undifferentiated or possibly Upper Hartshome Only.

| Upper Hartshorne Peat Marsh? | Upper Hartshorne Coal |
|------------------------------|-----------------------|
|                              |                       |

T6 - Transgression and flodding. Development of Upper Hartshome coastal? peat marsh system.

Figure 14: Upper Hartshorne depositional model with incised valley development.

deposition during valley flooding did not occur. Andrews (1998) model indicates the presence of downdip delta front deposition. In this model, the extensive coalbeds of both the Lower and Upper Hartshorne Members formed during the subsequent marine transgression, which would be similar to the coal formation during delta destruction (Matteo, 1981). It is also suggested that the coals may have formed concurrently with incised valley filling (Andrews, 1998). This would imply that the coal forming peat was deposited in a raised mire system, but would not explain the presence of coal directly above the incised valley fill deposits.

The widespread coal above the incised valley fill could result from a rise in sea level as rising base level would cause a rise in the ground water table; possibly creating a poorly drained peat marsh along the interfluves and even on top of the channel sandstones (Shanley and McCabe, 1994). The rise in sea level would create accommodation space, reducing the delivery of clastic sediment to the area to minimal amounts and allowing for the deposition of low ash peat that would form economical coal beds. The formation of peat marshes represents a relatively stable period within the Arkoma Basin (Suneson, 1998).

Suneson (1998) reported that Hendricks et al (1936) documented plant fossils and brackish to freshwater invertebrate fossils contained within the shale overlying the Lower Hartshorne coal in the eastern part of the Arkoma Basin. This was interpreted to represent lacustrine deposition. Hendricks et al (1936) also reported the presence of marine beds in the western part of the Arkoma Basin that were interpreted to have been deposited at the same time as the lacustrine deposits to the east (Suneson, 1998).

43

Paleocurrent analysis using various types of sedimentary structures including cross-bedding, ripples marks, and flow casts has been done by various workers including McDaniel (1968) and Matteo (1981). These paleocurrent analyses indicated a dominant northeasterly to southwesterly flow direction. The primary sediment source was to the northeast, probably the Ozark Uplift. Housknecht et al (1983) suggested that an even more distal northeastern source contributed some sediment and bypassed the Illinois Basin.

Each model is summarized as follows:

# Deltaic Model

- 1. Lower Hartshorne delta progradation, peat deposited within interdistributary bays and above abandoned delta lobes.
- Lower Hartshorne delta abandonment, possible widespread peat marsh development.
- Differential subsidence, development of accommodation space in south part of basin.
- 4. Upper Hartshorne delta progradation, peat deposited within interdistributary bays and above abandoned delta lobes.
- 5. Delta abandonment. Possible widespread peat marsh development.

### Entrenched Distributary Model

1. (T<sub>0</sub>1) Progradation of the Lower Hartshorne Delta System

- 2.  $(T_02)$  Small sea level fall or tectonic tilting event that caused distributary channels to incise their course, but no major basinward shift of facies. Distributaries became entrenched.
- (T<sub>0</sub>3) Regional delta abandonment or small sea level rise. Development of widespread peat marsh (Lower Hartshorne Coal)
- (T<sub>0</sub>4) Differential subsidence between the north and south parts of the Arkoma Basin. Possibly caused by tectonic activity. Progradation of Upper Hartshorne delta system south of the coal-split line.
- (T<sub>0</sub>5) Small sea level fall or tectonic tilting event that caused Upper Hartshorne distributary channel entrenchment into underlying delta front and prodelta deposits, as well as Lower Hartshorne deposits.
- (T<sub>0</sub>5) Delta abandonment or small sea level rise and flooding. Development of the Upper Hartshorne peat marsh.

## Incised Valley Model

- 1. (T1) Lower Hartshorne delta progradation
- (T2) Fall is sea level and formation of Lower Hartshorne incised valley/channel system. Possible development of sequence boundary.
- 3. (T3) Rise in sea level and development of regional peat swamp/marsh, resulting in the deposition of the peat precursor to the Lower Hartshorne Coal. The development of the coal underclay (palsosol) indicates a significant depositonal hiatus.

- 4. (T4) Differential subsidence occurred within the Arkoma Basin, creating new accommodation space in the southern part of the basin for the progradation of the Upper Hartshorne delta system.
- 5. (T5) Fall in sea level and subsequent development of an incised valley/channel system and possible sequence bounding unconformity.
- (T6) Rise in sea level and development of widespread peat marsh and deposition of peat precursor to Upper Hartshorne Coal.

#### **Deltaic Facies of the Hartshorne Delta System**

### Prodelta

The uppermost part of the Atoka and the lowermost part of the Hartshorne Formation (below the lowermost sandstone) are believed to represent the prodelta facies of the Hartshorne delta system. The prodelta is composed of dark gray shale and abundant fossils and fossil debris. Although the uppermost part of the Atoka Formation is considered to be predominantly marine and representative of the prodelta part of the Hartshorne delta system, Donica (1978) reported that there were thin coalbeds present in the upper Atoka in LeFlore County, Oklahoma (Suneson, 1998). Oakes (1977) also reported coal within the Atoka in Muskogee County, Oklahoma (Suneson, 1998). This would indicate that there may have been some non-marine deposition within the uppermost Atoka, possibly concurrent with marine deposition. In the western part of the Arkoma Basin, the Hartshorne is believed to conformably overlie the Atoka Formation. However, there are instances where an unconformable relationship apparently exists between the Hartshorne and Atoka. This unconformable relationship is the result of the erosion by Hartshorne channels (possible incised valleys) through the delta front and into the Atoka prodelta deposits.

## Delta Front

The Hartshorne delta fringe, recognized by Houseknecht et al (1983) as the distalbar, represents the transition from proximal prodelta deposition to delta front deposition.

Delta front, or marine deposits, of the Hartshorne Formation are typically very fine to fine grained, and often exhibit an apparent upward increase in grain size on wireline logs (Figure 3). Delta fringe or distal delta front deposits are typically highly indurated with silica cement (Houseknecht et al, 1983; Andrews, 1998) and are low porosity and permeability. Within the study area, sandstone interpreted to be distal delta front has lower porosity. The lower portion of the delta fringe is composed of laminated and shaly siltstone and sandstone. The upper part is lenticular and flaser bedded, ripple cross-bedded, siltstone and sandstone (Figure 15) (Houseknecht et al, 1983). The base is transitional with the underlying prodelta facies. The delta front sandstone contains horizontal burrows (Figure 16).

The proximal delta front is represented by the distributary mouth bar subfacies and may grade laterally into the distributary channel facies, making it difficult to distinguish between the two.



Figure 15: Laminated shaly siltstone and sandstone of the distal delta front. The gamma ray profile on an electric log would have a very "dirty" or shaley response with a ragged deflection from the shale baseline.



Figure 16: Example of horizontal burrows found at the base of a thick (3 foot) sandstone within the upper delta front deposits.

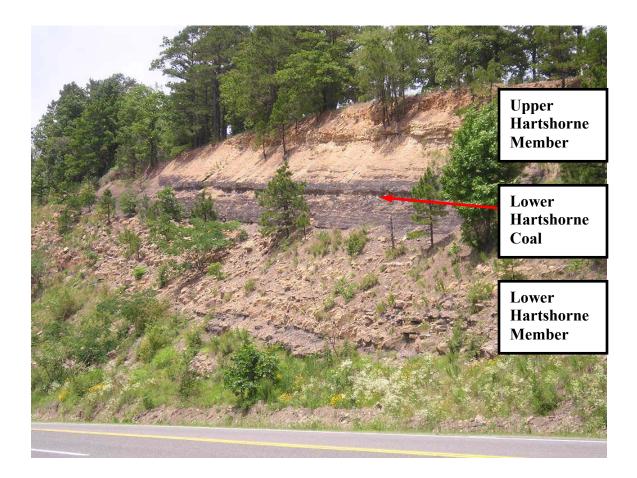



Figure 17: Roadcut south of Heavener, Oklahoma. Exposure includes the Lower Hartshorne Coal, as well as both the Lower and Upper Hartshorne Members.

# Delta Plain

In the Hartshorne delta system, the distributary channels appear to bifurcate, creating an anastomosing channel system. This is a common theme in many shallow water deltas and the result of the development of immature levees and subsequent multiple crevassing. As the delta progrades and successive channels erode earlier ones, the characteristics of distributary channels become less deltaic and more fluvial.

#### **Incised Valley Fill/Entrenched Distributary Channels**

Valley fill deposits are an important facies within the Hartshorne, since their interpretation implies an additional depositional model. Reinterpretation of the Hartshorne by Andrews (1998) suggests that thick (80-200 feet) sandstone bodies are a result of falling stage deposition within an incised valley system. These sandstones were previously interpreted to be very thick distributary channel deposits by Matteo (1981), Houseknecht et al (1983), and Fields (1987).

Subsurface work by Andrews (1998) and this study suggest that these thick sandstones are genetically unrelated to the deltaic deposits into which they erode. In most cases incised valleys appear to erode through the delta plain and delta front facies and into the prodelta facies in the uppermost Atoka. The incision was likely the result of a decline in sea level. This scenario implies that the boundary between the incised valley fill and the underlying Hartshorne delta deposits represents an unconformity and sequence boundary. Consequently, the Hartshorne may be composed of two sequences, not simply two progradational deltaic cycles.

#### **Hartshorne Coal**

Peat, the sedimentary precursor to coal, is deposited in a wide variety of depositional environments. These include, but are not limited to, locations proximal to clastic deposition such as interdistributary bays, floodplains adjacent to river systems, back barrier lagoons and marshes. More often, significant peat deposition occurs away from clastic deposition and results in higher quality (low ash, low sulfur) coal (McCabe, 1987). Fisk and McCabe (1987) suggest that interdistributary bays, such as those found

within the Mississippi Delta, are poor locations for economically important peat deposition because of the high ash content, which measures up to fifty-five percent. They also suggest that leaching during early diagenesis could lower the ash content. Ash content of Hartshorne coal beds ranges from three to fifteen percent (Suneson, 1998). Suneson (1998) also reported average sulfur content for the Hartshorne coals of 0.5 to 4.2 percent. The Lower Hartshorne Coal and Upper Hartshorne Coal have similar ash contents, but the lower coal contains less sulfur than the upper coal (Suneson, 1998 and Friedman, 1974).

In the northern part of the Arkoma Basin, the Hartshorne Coal is represented by a single laterally extensive coal bed, which is considered to be top of the Hartshorne Formation. To the south, this coal bed appears to split into two mappable coal beds (Figure 5). This coal-split has resulted in the division of the Hartshorne into two members, Upper Hartshorne and Lower Hartshorne. The two coals, which have been termed the Upper Hartshorne Coal and Lower Hartshorne Coal, represent the top of each of these members. This coal-split can be seen in subsurface logs (Wells #9, 10, and 11 on Cross-Section F-F', Plate 24) and the trend of the coal-split line can be traced (Plate 16). The genesis of the coal-split is believed to be a result of regional differential subsidence within the Arkoma Basin. The Lower Hartshorne Coal is well exposed in a roadcut south of Heavener, Oklahoma (Figure 17)

The differential subsidence model suggests that during or after the initial Lower Hartshorne delta cycle, the southern part of the Arkoma Basin subsided, while the northern part of the basin remained relatively stable. This subsidence created a shallow basin into which the second (Upper) Hartshorne delta prograded. Matteo (1983)

52

suggested that during Upper Hartshorne time, the peat marsh north of the coal-split line remained active and that the upper part of the undivided Hartshorne Coal in the north formed during the Upper Hartshorne, and is chronostratigraphically equivalent. The single coalbed north of the coal split is consistently thicker (4-8 feet) than either of the individual coals (1-6 feet) south of the coal-split. Rieke and Kirr (1984) reported that the "undivided" Hartshorne Coal north of the coal-split contains a persistent black shale parting that is approximately 1 inch thick. This shale may indicate a break between deposition of Lower and Upper Hartshorne peats. A "bony" coal layer (possibly the equivalent of the black shale parting) has been identified within the Hartshorne Coal north of the coal split and may represent a break in peat deposition during the transition from Lower to Upper Hartshorne. Hamilton and Tadros (1994) reported that bone coals form as a result of excessively wet periods of time within the peat marsh. During this wet period pH of the swamp waters increases, resulting in enhanced bacterial decay of the peat and release of mineral matter to the marsh (Hamilton and Tadros, 1994). Rieke and Kirr (1984) also reported that the Lower Hartshorne Coal is underlain by a thin underclay laver. Houseknecht et al (1983) also reported that the marsh-swamp facies of the Hartshorne contained a "rooted mudstone." This mudstones or underclay as is described as being 0 to 40 cm thick and containing "abundant root traces and macerated plant debris." It is not known if this is the same underclay that Cecil et al (2003) reported as a paleosol. If this underclay is indeed a paleosol, it may indicate a significant hiatus between the deltaic and/or incised valley fill phase and a later peat deposition phase. This hiatus could be very important to interpreting the Hartshorne within a sequence stratigraphic framework. Shanley and McCabe (1994), in referencing Coleman (1966)

and Tye and Kosters (1986) imply that a rise in base level, such as a transgressive event, would result in a rise in the groundwater table. This would create poorly drained areas (swamps or mires) around the valley margins (Shanley and McCabe, 1994), and on the interfluves between incised valleys.

It is generally accepted that the Lower Hartshorne Member identified south of the coal-split line is equivalent to the undivided Hartshorne located to the north of the line. The Upper Hartshorne Member is only present south of the coal split line, except for one instance where it is reported north of the coal-split line by Andrews (1998). Localized coal stringers are associated with some thick, amalgamated channel sandstone complexes. These likely formed from peat deposited within abandoned meanders or other limited bogs associated with the channels. Fields (1987) identified a thin coal seam in the thick sandstone that was cored in the Hunt-Garrett #1 (Section 34-T.6N.-R.13E).

The Lower Hartshorne Coal is laterally extensive, suggesting that suggesting that the peat was deposited during a widespread delta abandonment phase or widespread marine incursion at the end of Lower Hartshorne deposition. The Lower Hartshorne Coal (Hartshorne Coal north of the coal-split) overlies the Lower Hartshorne interval throughout the basin and thins or is absent only in localized areas.

Both the Lower and Upper Hartshorne Coals are now grouped with and assumed to be genetically related to their underlying sandstone and shale intervals. Each coal is interpreted by Housknecht et al (1983), Matteo (1981), and Andrews (1998) to represent the final phase of its respective depositional cycles. There is a school of thought that would suggest that the Hartshorne Coals represent the beginning of a cyclothem (Cecil et al, 2003). A thin "underclay" layer below the coal would suggest a prolonged exposure and development of a paleosol. The Desmoinesian Croweburg Coal of eastern Kansas is interpreted to unconformably overly a paleosol (Cecil et al, 2003). Cohen et al (1987) suggests that modern back-barrier salt marshes and lagoons are inadequate locations for the deposition of economically viable coal forming peats due to the proximity to active clastic deposition. Sohen et al (1987) suggests that peat deposited within this environment would form "thin lenses of high sulfur, high ash" coal. Cohen et al (1987) and McCabe (1987) both describe the Okefenokee Swamp, located far inland from the current coastline, as a location active deposition of high quality peat (that if preserved, could later form economic coal seams) that overlies Pleistocene age beach ridges and lagoonal salt marshes. They both suggest that this subtle unconformity would, if buried and preserved, would be difficult to distinguish in the rock record and the coal would probably be interpreted to be formed within the barrier bar depositional system within back barrier lagoons and marshes. McCabe (1987) suggested "In some case, the overlying strata may be more genetically related to a coal than underlying strata." A more intensive examination of the genetic relationship of the Hartshorne coals and the adjacent siliclastic deposits is highly recommended. Figures 18 and 19 show the relationship of the coal and the underlying underclay. These photographs were taken at a roadcut located 1.5 miles south of Heavener, Oklahoma on State Highway 59.

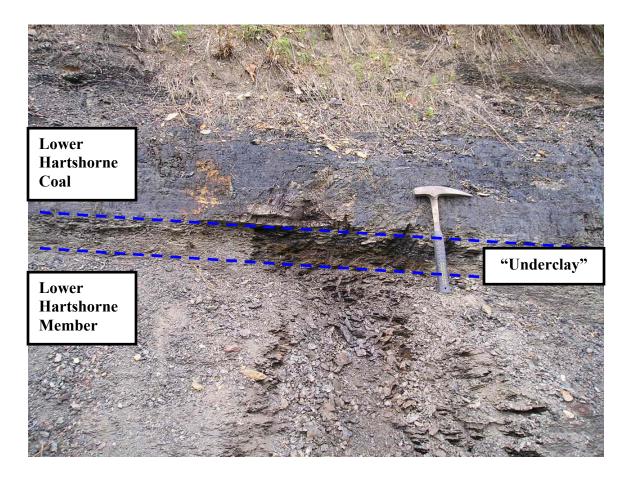



Figure 18: Relationship of Lower Hartshorne Coal to the subjacent thin underclay that shows some evidence of paleosol development. Heavener roadcut, 1.5 miles south of Heavener, Oklahoma.



Figure 19: Close up photograph of the Lower Hartshorne Coal underclay. Note yellow mottling, indicative of root traces and evidence for paleosol development.

### Discussion of the Hartshorne Depositional Model as Applied to the Study Area

Within the study area, the Hartshorne Formation is composed of sandstone, shale and coal that formed from sediments deposited within a fluvial-dominated deltaic system during what are interpreted as multiple phases of progradation, entrenchment, and abandonment. Thick shale of the uppermost Atoka and lowermost Hartshorne are believed to represent the prodelta facies. Delta front facies, including distributary mouth bar and bar crest subfacies, are present within the study area, but are not as widespread as other facies (Plate). Delta plain facies are the most abundant within the study area and include distributary channel, interdistributary bay, and crevasse splay subfacies. The overall sandstone geometry and facies distribution of the Hartshorne within the study area was determined using two gross sandstone isopach maps (Plate 3 and 4) and multiple cross-sections (Plates 18 thru 26). The most important feature; one that is most telling about the history of the Hartshorne delta system, is the coal-split that occurs within the Hartshorne Formation. As indicated in the section on stratigraphy, the coal-split line defines the boundary where the Hartshorne Formation can be divided into the Upper and Lower Hartshorne Members. The Lower Hartshorne Coal represents the top of the Lower Member south of the coal-split line, whereas the Upper Hartshorne Coal represents the top of the Upper Member and top of the Hartshorne Formation south of the coal-split line. Within the study area, the split between the Upper Hartshorne and Lower Hartshorne Members is easily mapped as a northeast-southwest trending line (Plate 16). The coal-split is illustrated in Cross-Section H-H' (Plate 26). Northwest of this line only the Lower Hartshorne Member is present and the Hartshorne Coal is undivided.

Southeast of the coal-split line, both members are present and can be mapped separately, except where there is thick fluvial succession or incised valley fill sandstones. The overall Hartshorne interval thickens from the north-northwest to the south-southeast, as do the overlying McAlester Formation and underlying Atoka Formation. This is a result of the basin geometry and increased subsidence to the south. The differential subsidence that occurred between the areas north and south of the coal-split line may have been structurally induced, as normal faulting is common and influence sediment thickness in the Atokan Series (Zachry and Sutherland, 1984).

Within the study area, there are two thick sandstone bodies that trend from the northeast to the southwest. These sandstone bodies are composed of a thick succession of fluvial deposits that were first interpreted by earlier workers as distributary channel facies of the delta system (Housknecht et al, 1983). Andrews (1998) reinterpreted these thick sandstones as falling stage fluvial deposits of an incised valley system that formed as a result of a drop in sea level. Based on mapping and cross-section work, fieldwork, and past core studies it is apparent that these thick sandstone bodies represent a significant change in the depositional system. It is possible for distributary channels to entrench very deeply into the underlying sediment, even into the prodelta mud. This is often not a result of eustatic drop in sea level, but rather a local or regional change in stream discharge, often a result of tectonic uplift or climatic changes (Schumm and Ethridge, 1994; Zaitlin et al, 1994). The northern incised valley, or entrenched distributary channel, (Incised Channel, IC-1) is generally accepted to be Lower Hartshorne only, as it is north of the coal-split line. The southern incised valley, or entrenched distributary channel (Incised Channel, IC-2) is generally thought to be

composed of Lower Hartshorne overlain by Upper Hartshorne. The division of this interval was based on a shale bed that separates the "Upper Hartshorne Sandstone" from the underlying "Lower Hartshorne Sandstone." In this study, the southern incised valley/entrenched channel (IC-2) was mapped as Hartshorne undifferentiated.

The Lower Hartshorne Member contains prodelta, delta front, and delta plain facies, as well as a possible entrenched distributary or incised valley-fill facies. It is considerably thicker than the Upper Hartshorne Member. It ranges from approximately 60 feet thick to more than 200 feet thick. The Upper Hartshorne Member only reaches approximately 60 feet of total interval thickness within the study area. This occurs in the southern area, away from the coal split line. It appears that the only recognizable deltaic facies within the Upper Hartshorne is delta plain facies, which consists of shale that contains thin (2-4 foot thick) sandstone lenses. As stated before, the upper part of the southern incised valley fill/entrenched channel deposit (IC-2, mapped as Hartshorne Undifferentiated) may be Upper Hartshorne distributary channel facies or incised valley fill facies. The accommodation space created by the subsidence of the Lower Hartshorne Delta did not create the depth required for deposition of a complete delta succession.

Matteo (1981), Houseknecht at al (1983), Suneson (1998), and Andrews (1998) interpreted the Lower and Upper Members as two distinct deltaic cycles, punctuated by marine flooding and delta destruction. They suggest that peat formation occurred at the end of Lower Hartshorne deposition, as marine waters drowned the former delta during the transgressive phase. Peat deposition may have continued north of the coal-split throughout Upper Hartshorne deposition.

### Lower Hartshorne Member

The Lower Hartshorne Member is interpreted to be correlative to the undivided Hartshorne that lies to the north of the coal split line. At some point, differential subsidence created a topographic low into which the Upper Hartshorne delta complex is thought to have prograded. The Lower Hartshorne Member is the thickest, more widespread, and complex of the two. The Lower Hartshorne Member represents the initial delta depositional cycle, during which there seems to have been several cycles of deltaic sedimentation. As the result of lobe switching and localized subsidence, proximal delta front and delta plain deposits overlie more distal facies. Consequently, the electrofacies patterns indicate that distal facies grade upward to proximal facies. The Lower Hartshorne Member thickens from northwest to southeast toward the Arkoma depocenter. The strike of the trend of sediment thickening and the coal-split parallel the strike of the major structural features within the Arkoma Basin.

### Prodelta

The uppermost part of the Atoka Series represents distal prodelta deposition and is composed primarily of shale. Within the northeastern part of the study there is a locally occurring sandstone in the uppermost Atoka, that is believed to be the Gilcrease Sandstone of economic usage. The contact between the Hartshorne and the Atoka appears to be conformable in the study area and is not easily discernable. In the northwestern part of the study area, the contact is represented by a shift in the resistivity that is evident on wireline logs. This marker is mappable throughout most of the study

61

area, but becomes hard to identify in the southern area, where thick channel sands were deposited.

The proximal prodelta/distal delta front transition is most likely represented by the lowermost portion of the Lower Hartshorne Member and comprises what others have termed the transitional facies. It represents a time during delta evolution when increasing amounts of coarser silt and very fine-grained sand was introduced into the prodelta subsystem as the delta prograded. The prodelta facies is not represented on the facies map (Plate 17).

## Delta Front

The proximal prodelta deposits grade upward into the distal delta front deposits, which are indicated on wireline logs by an increasing thickness and frequency of sandstone. The delta front facies can be seen in well log 3 in Cross-Section B-B' (Plate 20) and in most wells in the attached cross-sections as the transitional zone between the prodelta shale of the uppermost Atoka Formation and lowermost Hartshorne Formation. Sand content increases upward as the delta progrades. As progradation continued, proximal delta front sediments accumulated on those of the distal delta front. Matteo (1981), Houseknecht et al (1983), and Andrews (1998) have stated that the delta front of the Lower Hartshorne Delta is difficult to identify and may be thin to not present within the study area. The proximal delta front is represented by a very distinct coarsening upward signature on the gamma ray curve. It is typically 20 to 30 feet thick, and may be mistaken for crevasse splay deposits. This is not unusual, as the process of crevassing along a distributary channel is part of the delta building process and crevasse splays may

become new delta lobes. Differentiation between delta front and distributary mouth bar facies is made more difficult as higher frequency sea level changes are imprinted upon the larger delta progradation. This can be seen as a shallowing upward cycle, followed by a deepening upward one, which is succeeded by another shallowing upward cycle. This pattern is evident in outcrop (Figure 20) as well as in electric log profiles (well log #5, Cross-Section C-C', Plate 15). These cycles seem to increase in number and thickness in the southern part of the study area where the overall section is thicker. Well log #11 in Cross-Section C-C' is an example of multiple cycles within the Lower Hartshorne. Log signature indicates delta front and distributary mouth bar electrofacies as well as channel facies.

## Distributary Mouth Bar and Bar Fringe

The distributary or channel-mouth bar electrofacies is recognized by a blocky to slightly upward coarsening profile on the gamma-ray curve. The distributary mouth bar is adjacent and subjacent to the distributary channel deposits, as show on the facies map (Plate 17) and in various cross-sections. The channel-mouth bar represents the transition from channel to delta front, and is deposited immediately headward of the channel as the delta progrades. In some cases, it becomes difficult to distinguish between channel and channel-mouth bar electrofacies. Well log #2 in Cross-Section E-E' (Plate 23) is a good example of what is interpreted to be distributary mouth bar facies that is overlain by a Type-1 channel. In well log #2 in Cross-Section B-B' (Plate 20) the sandstone has been interpreted to be channel-mouth bar, but could represent the margin of a Type-1 Channel.

In well log #1 in Cross-Section F-F' (Plate 24) the distributary mouth bar appears to be overlain by interdistributary bay and crevasse splay deposits of the delta plain.

# Delta Plain

Within the western part of the Arkoma, including this study area, the delta plain is composed of widespread interdistributary bays crosscut by thin, bifurcating distributary channels. These bays are typically muddy, except where overbank deposits and crevasse splays spilled out into the delta plain. The distributary bay facies is not the most common facies interpreted for wells that penetrated the Hartshorne Formation, but it is widespread and present between the narrow trends of the channel/bar/delta front, as well as superposed on abandoned distributary and crevasse splay/delta front deposits.

## Distributary Channel Sandstones

The interpretation of distributary channel facies is problematic. Within the study area, three different types of channels are identified. The first two are defined as distributary channels primarily on the basis of their relationship to other deltaic facies. The third type was originally defined by Matteo (1981) and Houseknecht (1983) as distributary channels, but were redefined by Andrews (1998) as incised valley fill or entrenched channel deposits. Based on the gross sandstone isopach map and crosssections, this third channel type appears to be unrelated to the deltaic facies. Deposits interpreted to be distributary channels are divided into two categories: i) Type-1 Distributary Channels, and ii) Type-2 Distributary Channels (Figure 21). Type-1 distributary channels tend to be located near the top of the Lower Hartshorne interval and are 3 to 15 feet thick. Type-1 channels appear to be closely related to sandstones that are

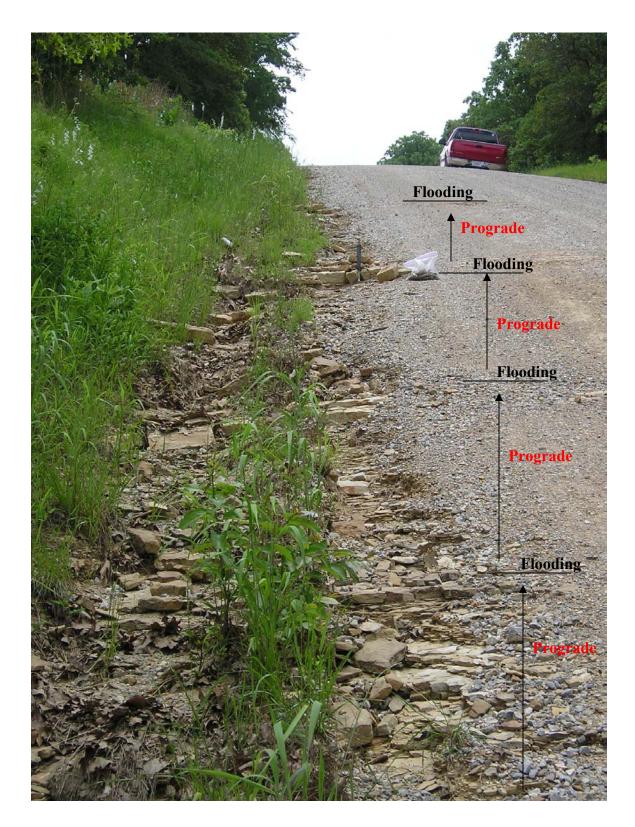



Figure 20: Example of multiple high-frequency sequences within the delta front to distributary mouth bar facies of the Hartshorne delta system. The cycles are actually about the same thickness as they increase in distance away from the camera up the hill.

A' (Plate 13) are examples of Type-1 distributary channel deposits. They have a blocky to fining upward profile on the gamma ray curve. Type-1 distributary channels can be difficult to distinguish from the channel mouth bar and may represent the bar crest portion of the distributary mouth bar, and despite their apparent fining upward log pattern. Type-2 distributary channels are easily identified because they appear to erode through Type-1 channels and distributary mouth bar deposits and into the delta front.

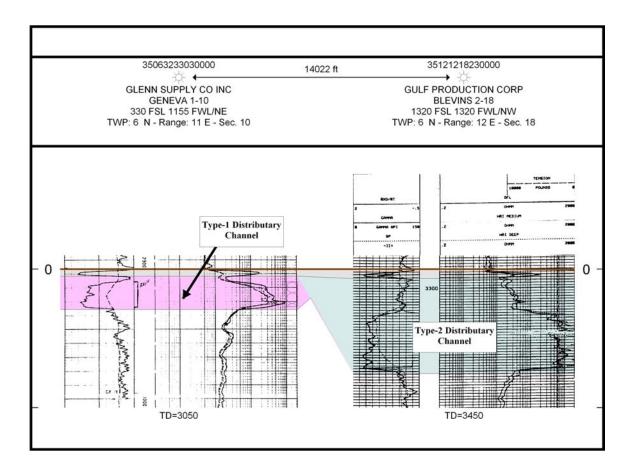



Figure 21: Example of Type-1 and Type-2 Distributary Channels.

This entrenchment of the Type-2 distributary channel may represent the initial erosion associated with an incised valley/entrenched channel system. A second interpretation could be that the Type-2 distributary channel deposits are older than the Type-1 distributary channel deposits, based on their stratigraphic position relative to each other. Type-2 channels sandstones have a blocky to fining-upward profile on the gamma ray profile, but are thicker than Type-1. Type-2 channel sandstones always exhibit a very sharp and probably erosional base. Type-1 channel sandstones may have a sharp base, but are often directly underlain by coarsening upward sandstone that is interpreted to be the distributary mouth bar facies. Type-2 distributary channels are from 20 to 50 feet thick and always overlain by abandonment phase deposits or bay fill deposits with possible crevasse splay sandstones. Well log 7 in Cross-Section B-B' (Plate 14) is a very good example of a blocky Type-2 distributary channel deposits overlain by bay fill deposits, including possible crevasse splay sandstones. This well, the Davis Operating Company Donna #1-16, is located in South Pine Hollow field and has produced significant quantities of gas. Well log 2 in Cross-Section C-C' is another example of what has been interpreted to be a Type-2 channel deposit, as evidenced by the sharp base and fining-upward gamma-ray profile. This well, the Unit Petroleum Company Duncan #1, is more than 10 miles north of the Donna #1-16. The overall interval is thinner in the northern part of the study area and the channel sandstone evident in Duncan #1 is thinner than the one in the Donna #1-16. Well log 4 in Cross-Section F-F' is interpreted to contain channel margin deposits of a Type-2 channel. The entrenchment evident in this location may represent the initial onset of the development of the entrenched channel or incised valley system.

# Crevasse Splay

Crevasse splay deposits are not easily recognized and may be mistaken for proximal delta front facies. Distinguishing crevasse splay deposits from proximal delta front (not distributary mouth bar or bar crest) relies on establishing the relationship of the sandstone in question to interpreted distributary channel and distributary mouth bar facies in offset wells. Crevasse splays are an important factor in delta lobe switching, as the splay itself is an incipient delta lobe that may develop further and lead to the flooding and destruction of the former active lobe (Galloway and Hobday, 1997). Wireline logs were closely scrutinized to establish sandstone body geometry. Geometry was integrated with distribution to identify depositional environments. As a result, crevasse splay and channel margin deposits were grouped as a subfacies of the delta plain facies. Crevasse splays occur within bay fill deposits overlying abandoned distributary channels, as is seen in well log 7 in Cross-Section B-B' (plate 14).

## Lower Hartshorne Coal

The Lower Hartshorne Coal is present throughout the study area except where it was eroded by the southern incised valley/entrenched channel (IC-2). The Lower Hartshorne Coal is considered the equivalent of the Hartshorne Coal where there is no division between the Lower and Upper Hartshorne Members. It has been suggested that Hartshorne Coal deposition north of the coal split line continued, uninterrupted from Lower Hartshorne time into Upper Hartshorne time (Andrews, 1998; Matteo, 1981).

Because the Lower Hartshorne Coal is so widespread and found above the IC-1, it is likely that the peat did not form until after the transgression that followed incision.

## Upper Hartshorne Member

The Upper Hartshorne Member is only present in the southern part of the study area (southeast of the coal-split line) and little or no sandstone is present within it. The Upper Hartshorne Member is believed to represent a second phase of delta progradation that followed the destructive phase of the Lower Hartshorne Delta System. The accommodation space created by the differential subsidence following deposition of the Lower Hartshorne was relatively limited compared to that which was present prior to Lower Hartshorne deposition. The Upper Hartshorne Member thickens to the southeast away from the coal-split, and the hingeline is represented by the regional trend of the Hartshorne Coal-Split. Within the study area, the Upper Hartshorne is mostly shale and believed to represent deposition within an interdistributary bay. There are very thin, 1 to 4 feet thick, siltstone or sandstone beds within the Upper Hartshorne Member, that may represent crevasse splay deposits. These sandstones seldom meet the "clean" sandstone cut-off of 50% that was used for gross sandstone mapping.

## Prodelta

There is no strong evidence that supports the interpretation of prodelta deposits within the study area. Very thin prodelta may be present and not distinguishable from what are interpreted to be interdistributary bay deposits. Suneson (1998), in a field trip guide containing numerous measured sections south and east of the study area, presented

69

evidence for the presence of definitive prodelta deposition. Suneson (1998) reported marine shale at the base of the Upper Hartshorne Member, directly above the Lower Hartshorne Coal.

# Delta Front

Delta front facies are rarely identified within the Upper Hartshorne in the western part of the Arkoma Basin. Houseknecht et al (1983) identified underdeveloped delta front deposits in the eastern part of the basin. In the Deer Creek #1 well located in Sec 24-T.5N.-R.13E., the Upper Hartshorne Member reaches its greatest thickness and shows some evidence of a coarsening upward electric-log profile as this coarseningupward interval capped by a shale, which is succeeded by a 3 feet thick sandstone, more shale, and finally the Upper Hartshorne Coal. This is the best example of a log profile within the study area that could be interpreted as the Upper Hartshorne delta front electrofacies

# Delta Plain

The Upper Hartshorne Member contains sedimentary features and log profiles that suggest it is likely composed primarily of delta plain deposits. There is no evidence for Upper Hartshorne distributary channel deposits.

#### Incised Valley Fill/Entrenched Distributary Channel Complexes

The Lower Hartshorne and Hartshorne Undifferentiated Gross Sandstone Isopach Maps (Plates 6 and 7) indicate the presence of two thick sandstone trends that are oriented in a northeast to southwest. These are termed IC-1 (north) and IC-2 (south). These thick sandstones were first interpreted by Houseknecht et al (1983) as thick distributary channel sandstones that were part of the original Hartshorne delta system. Andrews (1998) modified the interpretation to include sequence stratigraphic concepts. This recent work resulted in the interpretation of these sandstone trends as incised valley fills that are separate from the delta system and the resulted of a major regressive event (Andrews, 1998). According to this model, incision occurred at the end of each of the Hartshorne deltaic cycles (represented by the Lower and Upper Hartshorne Members). A lowering in sea level resulted in the erosion of older deltaic sediments, and formation of incised valleys or entrenched channels. Andrews (1998) suggests that the sandstone within these valleys represents falling stage deposition.

The northern sandstone body, IC-1, is located north of the coal-split line, and by definition is Lower Hartshorne. Well logs 3 and 4 on Cross-Section C-C' illustrate the relationship between the incised valleys/entrenched channel complex of the IC-1 trend with adjacent Hartshorne deltaic facies in well logs 2 and 5 (Plate 15). This same illustration can be seen in Cross-Section E-E' (Plate 17). A gross sandstone map of the Lower Hartshorne clearly defines the IC-1 incised valley/entrenched channel trend (Plate #3). IC-1 is always capped by the (Lower) Hartshorne Coal; in places the coal sits directly above the sandstone. In other areas there is a shale break between the sandstone and the coal, indicating that at some point this channel or valley was abandoned. The

second thick channel sandstone trend, IC-2, is located south of the coal-split line. Previous workers have divided this channel into Upper and Lower Hartshorne. This separation was based on a shale marker within the channel fill that is not easily identified. Well logs 6 and 7 in Cross-Section C-C' and well logs 7 and 8 in Cross-Section F-F' are representative of sandstone within the IC-2 trend and its relationship to adjacent facies of the Hartshorne delta system. The division of the southern IC-2 sandstone may have been based on the presence of a thin coal bed within the channel fill that was assumed to be the Lower Hartshorne Coal. The coal within the channel fill does not directly correlate to either the Lower or Upper Hartshorne Coals. IC-2 is mapped as Hartshorne Undifferentiated, but the author acknowledges that it may contain Lower and Upper Hartshorne deposits.

It is clear from relationships evident on the cross-sections and sandstone maps that the IC-1 and IC-2 trends eroded through the primary deltaic deposits. The gross sandstone isopach map of the Lower Hartshorne Member confirms that both the northern (IC-1) and southern (IC-2) thick sandstone trends eroded older delta deposits, including Type-2 distributary channel deposits, which themselves may have eroded or entrenched into the delta plain. In Cross-Section G-G' (Plate 19), the Type-2 distributary channel is traceable on either side of the northern IC-1 trend. The two wireline logs on the left of cross-section are located northwest of IC-1, the two wireline logs on the right are located southeast of IC-1, and between IC-1 and IC-2. It stands to reason that incision would occur along the course of an active channel system. As incision occurred, the distributary channel system became entrenched and developed a very linear trend as the channel was no longer allowed to migrate laterally, nor develop crevasse splay lobes; two

processes that helped generate the anastomising channel pattern in the Lower Hartshorne Delta system.

Fields (1987) described core from the Hunt Garrett #1 (Section 34-T.6N.-R.13E.), which is located in South Pine Hollow Field. Two core intervals were taken, 3555 to 3561 feet and 3561 to 3601 feet. The overall core condition was poor. Fields (1987) interpreted this to be Upper Hartshorne distributary channel sandstone, stacked on top of Lower Hartshorne distributary sandstone. Neither the upper or lower contacts were cored. The location of the well is within the mapped IC-2 trend (Plate 5), which was mapped as Hartshorne Undifferentiated. The cored sandstone contains a variety of sedimentary structures including small scale trough cross-bedding, planar bedding, and contorted bedding (Field, 1987). The overall grain size is fine with a two-foot interval of very fine-grained sandstone at the base of the core (Fields, 1987). The sandstone contains black carbonaceous debris and plant fossils, which Fields (1987) suggests indicates that the Upper Hartshorne distributary channel cut through interdistributary bay deposits of the Lower Hartshorne. All cross-bedding indicates unidirectional flow and there was no evidence for marine deposition, although there was a thin coal bed reported in the lower part of the section. A thin coal bed near the base of the may be remnant of the Lower Hartshorne coal if IC-2 sandstone trend represents both Hartshorne Members, or it could simply be a coal stringer representing a short term phase of channel abandonment phase. No evidence was presented by Fields (1987) to suggest that IC-2 trend is an incised valley fill deposit.

## Local Structure

To help evaluate the control of gas production two structure maps were constructed. The first defined the structural attitude of the top of the Lower Hartshorne Coal. The second structure map was constructed on the base of a hot shale marker above the Lower Hartshorne Coal. Several prominent structural features that have been mapped and noted by previous workers can be detected in the study area (Figure 22). This map shows that the Tonkawa Syncline and McAlester Anticline are two prominent structural features. Both have a general northeast to southwest trend and plunge. The contour patterns indicate a northeast to southwest structural trend, which coincides with the structural elements presented by Fields (1987). One fault was definitively identified in the southeastern part of the study area. Well control for structural interpretation was limited. Many wells that penetrated deeper than the Hartshorne did not contain wireline log measurements across the Hartshorne interval.

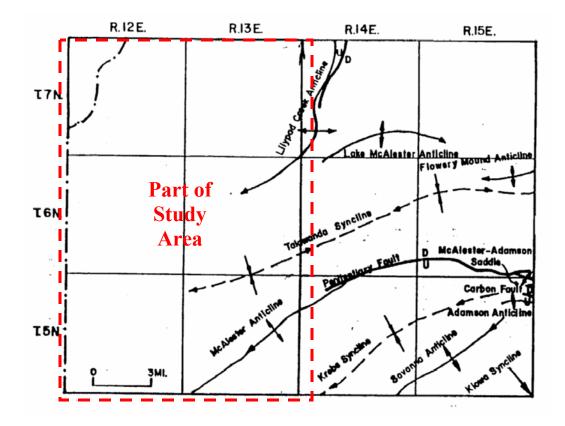



Figure 22: Map showing local structures that trend into the study area (from Fields, 1987).

# **CHAPTER IV**

### PETROLEUM GEOLOGY

## **Regional Overview**

Delta systems are prolific habitats of petroleum throughout the world, and the Hartshorne delta in the Arkoma Basin is no exception. The study area is in a gas producing province and natural gas production from the Hartshorne Formation, including coalbed methane production, in the Arkoma Basin in Oklahoma is estimated to be 1.07 tef (trillion cubic feet). Production data could not be quality checked and may include gas from other reservoirs that is commingled Hartshorne production. Within the study area the Hartshorne (including commingled production) has produced in excess of 167 bef (billion cubic feet) from 259 wells, or an average of 0.836 bef per well. This is economically important considering that the average depth of the producing Hartshorne reservoir is only 3000 feet. The current daily production from the study area is 93 mmcfd (million cubic feet per day) from 202 active wells, or an average of 460 mcfd.

# Volumetric Methodology

Volumetric calculations were performed to determine the recoverable original gas in place (recoverable OGIP) for each field. The volume of the reservoir was measured using the Net Pay Isopach Map for the Lower Hartshorne and Hartshorne Undifferentiated (Plates 9 and 11) using a porosity cut-off of 8% and a Sw (water saturation) cut-off of 40%. Areas within each contour interval were measured and subtracted from the area of the next lowest contour interval (Figure 23). The net pay value used for each volumetric calculation was the average between that contour interval and the next highest. For example, an average reservoir thickness of 12.5 feet (net pay) was used to calculate the volumetric parameters for the reservoir within the 10 feet contour interval. Similarly, 7.5 feet of net pay was used for the average thickness of pay for the reservoir within the 5 feet contour interval after the area of the 10 feet contour interval was subtracted from the area of the 5 feet contour interval (based on a 5 feet contour interval). The basic equation used in the calculation of Recoverable OGIP is:

# (43.56 x Φ x (1-Sw) x A x (Net Pay) x Pi x Tsc x Rf) (Zi x Pa x T)

43,560 is the amount of cubic feet per acre (43.56 will result in Mcf/Acre) Φ - Porosity Sw – Water Saturation Net Pay – (Feet) – Porosity >8% and Sw <40% Pi – Initial Reservoir Pressure Psc – Standard Conditions or Atmospheric Pressure T – Reservoir Temperature in Rankin (460 + degrees F) Tsc – Surface Temperature in Rankin (460 + degrees F) Zi – Gas Compressibility at initial conditions Rf – Recovery Factor

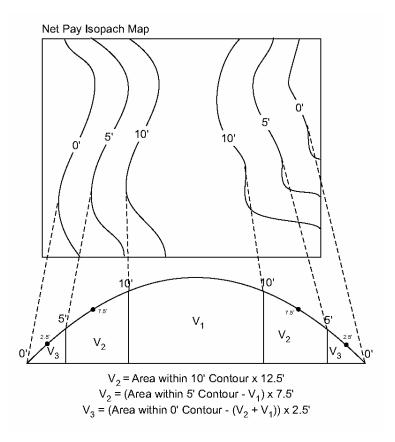



Figure 23: Diagram illustrating method used to determine reservoir volume.

## **Conventional Hartshorne Play**

Four primary gas plays are identified within the study area. They include the (1) Distributary Channel, (2) Channel Mouth Bar, (3) Incised Valley Fill/Entrenched Channel, and (4) Coalbed Methane. All are defined primarily by their stratigraphic control (facies change or pinch-out of sandstone into adjacent shale). Gas is also produced from secondary or marginal plays. Secondary gas plays in the area include channel margin, bar fringe, delta front, and crevasse splay. Production from these facies is limited and economic potential is low. The production volumes that are reported from Hartshorne wells may include production from other reservoirs. As a result, there is some inaccuracy in the production values reported for the Hartshorne. In instances where

production is commingled and initial test rates are provided, the reader can assess the contribution from the Hartshorne. Most wells cited in this study mostly produce only from the Hartshorne Formation. There are also instances where production from the Hartshorne Coal.

The Incised Valley Fill/Entrenched Channel Play has provided the most prolific or highest volume wells. The average cumulative production from this play within the study area is 1.9 bcf (based on 60 wells). The northern IC-1 has produced from 21 wells, with an cumulative production of just over 1 bcf per well. The IC-1 contains a gas-water contact in the updip end of the channel that limits the reservoir volume (see the section below on Reams NW Field). On the downdip end of the channel, the Stuart Southwest Field also appears to be limited by a water leg. Both of these fields produce gas where the valley fill sandstone crosses a structural high. The southern IC-2 has produced over 93 bcf from 39 wells, or an average of 2.4 bcf per well. These wells are all contained within the Pine Hollow South Field, which also produces from the other Hartshorne Facies.

The distributary channel facies is the second best play within the study area. The Type-1 channel facies averages 0.63 bcf per well, based on 11 wells. This production may be closely tied to production from the Distributary Mouth Bar deposits that the channel sandstones appear to overly. The Type-2 Channel Facies Play has produced an average of 0.42 bcf from 43 wells. This production comes from sandstones that are classified as channel margin facies.

The average production per well from the distributary mouth bar facies is 0.29 Bcf. This volume may be slightly overstated as a result of commingling with the Booch Sandstone in the Scipio Northwest and Lamar East Fields. Excluding dry holes, the range of cumulative production values is from 2 mmcf to over 2 bcf per well.

The Delta Front Facies within the study area has produced an average of .15 Bcf per well. The delta front facies may also be referred to as crevasse splay deposits.

Deposits classified as channel margin have produced an average of 0.21 Bcf from 37 wells.

#### **Coalbed Methane**

The Hartshorne coals are exploited within the Arkoma Basin. Rieke and Kirr (1985) estimated the gas content of the Hartshorne Coals to range from 73 to 570 cubic feet/ton. The high range for Hartshorne Coal gas content is significantly greater than that of the Booch Coals (200 to 211 cubic feet/ton) and McAlestar Coal (131 cubic feet/ton) (Rieke and Kirr, 1985). Coals located in the eastern part of the Arkoma Basin have a higher gas content than those in the western part of the basin (Rieke and Kirr, 1984).

Several wells in the study area produce gas from Hartshorne coal seams. Most are commingled with production from the underlying Lower Hartshorne sandstone. One example of a coalbed gas well is the Ott #2-22 located in Section 22-T.5N.-R. 12E. This well is completed solely in the Lower Hartshorne Coal.

To date, no horizontal wells have been drilled for coalbed methane within the study area. There is, however, significant activity east of the study area in Latimer and Haskell Counties, Oklahoma. There is potential for the application of horizontal drilling technology to exploit the Hartshorne Coal. Further work should be done; including a regional study of the distribution of ash and sulfur content of the Hartshorne coals.

Detailed microstratigraphic work on the Hartshorne coals should be done to determine the type of vegetation that was present within the mires and swamps during the Hartshorne time.

# **Gas Field Summaries**

#### Cabannis NW Field

The Cabannis NW Field, which was described in Andrews (1998), is located in Sections 12 and 13 of T.6N., R.11E. and Sections 7-9, 15-21, and 29 of T.6N., R.12E. (Figure 24). The field has produced in excess of 7.29 bcf (as of November 2003) from 21 wells. Drilling in the Cabannis NW Field began in 1979. The first well that produced from the Hartshorne was the Blevins #1-18 (Section 18-T.6N.-R.12E.), which was completed in September 1974 for an initial gas rate of 62 Mcfd, and has subsequently made 0.19 Bcf. The well produced from what is interpreted to be a Type-2 distributary channel sandstone.

The primary gas-producing reservoirs are Type-2 distributary channel sandstones of the delta plain facies and the distributary mouth bar and bar crest of the delta front facies. Gas is also produced from channel margin and bar fringe deposits. There is also production directly from the Lower Hartshorne Coal and cases where the coal gas is completed along with the sandstone and the production is commingled. The wells in the field are shallow, averaging about 3400 feet deep, and have an average cumulative production of 300 mmcf.

Structural control appears to be of minimum importance, the primary trapping mechanism is a change in lithofacies, as sandstone terminates against adjacent interdistributary bay and delta front shale. No gas-water contact is present in the field. Net pay values (based on a minimum of 8% porosity and a maximum of 40% water

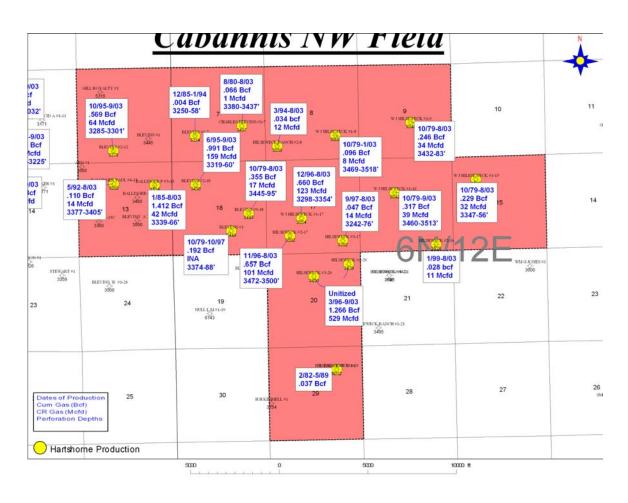



Figure 24: Hartshorne Production Map for Cabannis NW Field, Pittsburg County, Oklahoma.

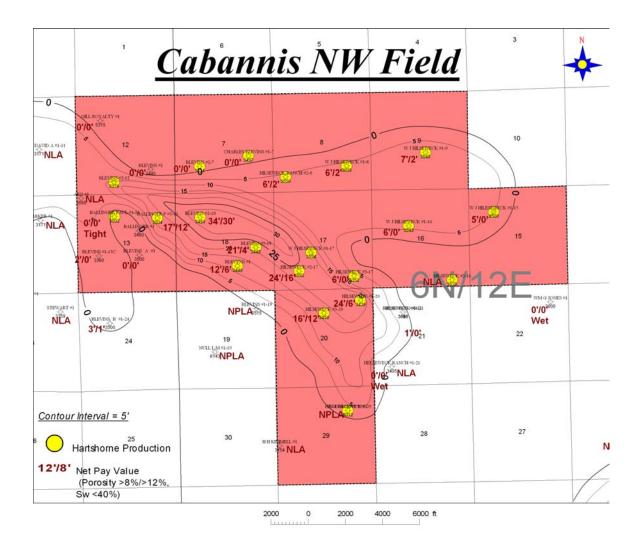



Figure 25: Lower Hartshorne Net Pay Isopach for Cabannis NW Field, Pittsburg County, Oklahoma (Countour Interval = 5 feet).

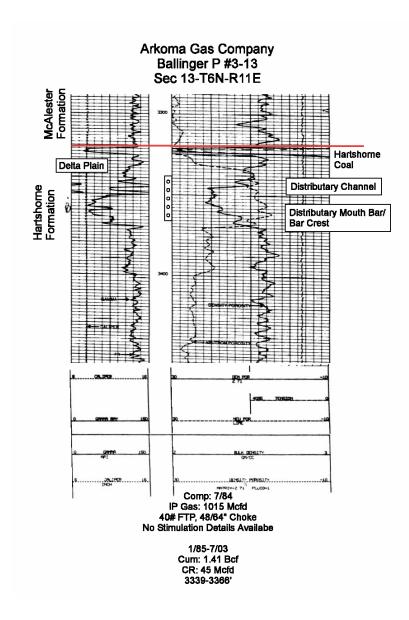



Figure 26: Example of productive distributary mouth bar/type-1 distributary channel succession, Cabannis NW Field, Pittsburg County, Oklahoma.

saturation) are as much as 34 feet within the main channel facies (Figure 25). Total gross sandstone thickness ranges from less than 10 feet to 42 feet.

The highest volume well in the field is the Ballinger 3-13 (Section 13-T.6N.-R.11E.) (Figure 26). The Ballinger #3-13 has produced 1.4 bcf since January 1985, and is currently producing 45 mcfd. The Ballinger #3-13 produces from what is interpreted to be distributary mouth bar subfacies of the delta front. The gamma ray curve through the Hartshorne interval exhibits slight overall coarsening upward character. The Ballinger P #3-13 contains 17 feet of net pay with greater than 8% porosity and less than 40% water saturation. Average porosity and water saturation are 14% and 12% respectively, based on a 0.04 ohm-m water resistivity (Rw), with 150 ohm-m resistivity as measured by the deep resistivity curve.

The Blevins #2-18 (Section 18-T.6N.-R.11E.) is another example of higher volume production from a Type-2 distributary channel sandstone (Figure 27). This well was completed in September 1994 with an initial gas rate of 527 mcfd. The well produced from June 1995 to July 2003 and reached a cumulative gas production of 0.98 bcf. The sandstone calculates 34 feet of net pay with a minimum of 8% porosity and a maximum of 40% water saturation. The average porosity is 14%. The water saturation calculates extremely low, 7%, using the 0.04 ohm-m Rw (formation water resistivity).

Production from distributary channel deposits also occurs 5 miles to the southeast, in T.5N.-R.12E in South Pine Hollow Field. Here, production is from what is interpreted to be a remnant segment of the same distributary complex as the distributary channel reservoir in the Cabannis NW Field. This segmented distributary channel play lies

85

between the two incised valley fill/entrenched channel trends, IC-1 and IC-2, which have eroded through deposits associated with the Lower Hartshorne delta.

Andrews (1998) discussed the production statistics and characteristics of the Cabannis NW Field. He reported an original gas in place (OGIP) of 8.181 Bcf, based on a gross sandstone map, with a reservoir size of 4224 acres (greater than 5 feet gross

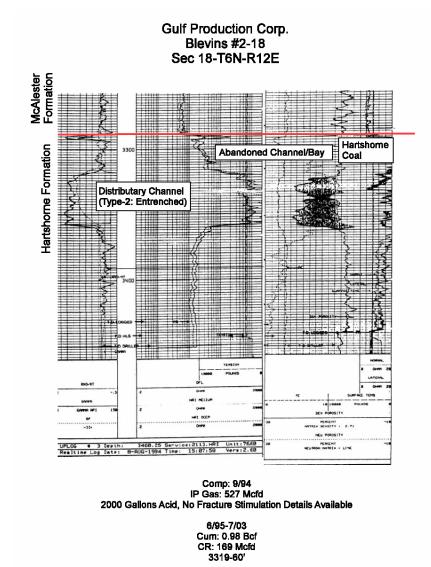



Figure 27: Exmple of a productive type-2 distributary channel sandstone, Cabannis NW Field, Pittsburg County, Oklahoma.

sandstone), an average porosity of 8%, average gross thickness of 16 feet, average Sw of 20%, reservoir temperature of 110 to 115 degrees Fahrenheit, and a initial reservoir pressure of 630 psi (pounds per square inch). Andrews (1998) reported a total field production of 3.553 Bcf, or a 43% recovery. Using Net Pay (based on 8% porosity and 40% Sw cut-offs) volumetrics were calculated for the field. An average porosity and water saturation of 12% and 25%, respectively, were used. The area within each contour interval was measured and adjusted for the area within larger contour lines. Based on the same reservoir parameters (630 psi, 110-115 degrees Fahrenheit, and gas density of .64) a recoverable OGIP (for the area greater than 5 feet net pay) was calculated to be 6.97 bcf., with an OGIP of 7.24. The field has produced 7.29 Bcf as of July, 2003, and is currently producing at a rate of 680 Mcfd from 16 active wells. At least one of the wells in the field is a commingled Hartshorne and Booch producer. It is the Hilseweck #1-29 (Section 29-T.6N.-R.12E.), which only produced 36 mmcf from February 1982 thru May 1989 and is currently inactive. Two wells, the Hilseweck #1-20 (Section 20-T.6N.-R.12E.) and Hilseweck #3-20 (Section 20-T.6N.-R.12E.) comprise a unit that has produced 1.23 bcf. As Andrews (1998) noted, some wells produce gas directly from the coal, and the reservoir potential of the channel margin shales and thinbedded sandstones, which fall outside of mapped net pay, are unknown. Thin-bedded sandstone is difficult to measure with the resolution of most wireline logging tools, and may appear very shaly, which results in pessimistic reservoir calculations. Several wells that produce contain a calculated 0 feet of net pay. Figure 28 is a picture from a Hartshorne Formation outcropping located in Sections 17 and 18 T.1S.-R.10E. The picture illustrates the shaly sandstone and interbedded sandstone and shale of the delta front facies. Suneson (1998)

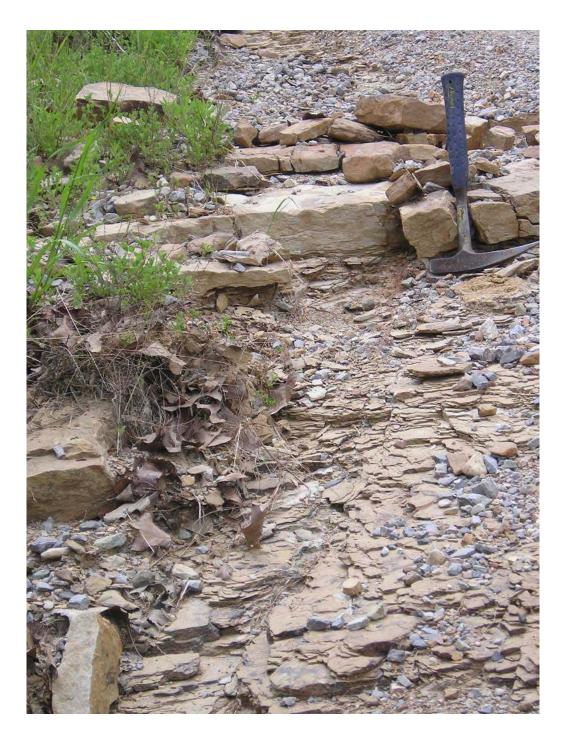



Figure 28: Picture from an outcropping of the Hartshorne Formation, Sections 17 and 18-T.1S.-R.10E. The picture illustrates the shaly sandstone and interbedded sandstone and shale of the Hartshorne Formation. Suneson (1998) interpreted this section to be possible upper distributary mouth bar facies. Rock hammer is 12 inches long.

described this section in a field trip guide as possibly being upper distributary mouth bar.

Potential for infill drilling appears to be limited, although a southwest offset to the Hilseweck #3-20 (Section 20-T.6N.-R.11E.) is one possibility. The average thickness of the Lower Hartshorne Coal is 4 feet, but does reach thicknesses of 5-6 feet within the field. Just to the northeast of the field the coal is 7 feet thick. The minimum thickness needed for horizontal wells in the coal is 4 feet, thus opening the field for possible horizontal Coalbed Methane (CBM) production. Table I contains a summary of volumetric parameters for the calculations for the Cabannis NW Field.

 Table I: Volumetric reservoir summary for the Hartshorne Formation, Cabannis NW Field,

 Pittsburg County, Oklahoma.

| Contour Interval                                         | Avg. Net Pay | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation Temp<br>(Degrees F) | Initial Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery Factor | Mcf/Acre-Foot |
|----------------------------------------------------------|--------------|---------------|---------|--------------|--------------------------|------------|---------------------------|-------------------------------|-------------------------------------|-------------------------------|-------------|-----------------|---------------|
| 0                                                        |              | 12%           | 25%     | 4484         | 1480                     | 0.61       | 0.58                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 5                                                        |              | 12%           | 25%     | 3004         | 1614                     | 1.99       | 1.91                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 10                                                       |              | 12%           | 25%     | 1390         | 537                      | 1.10       | 1.06                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 15                                                       | 17.50        | 12%           | 25%     | 853          | 302                      | 0.87       | 0.83                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 20                                                       | 22.50        | 12%           | 25%     | 551          | 423                      | 1.56       | 1.50                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 25                                                       | 27.50        | 12%           | 25%     | 238          | 128                      | 0.58       | 0.56                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| 30                                                       | 30.00        | 12%           | 25%     | 110          | 110                      | 0.54       | 0.52                      | 115                           | 630                                 | 25                            | 0.64        | 96%             | 158           |
| Total 7.24 6.97                                          |              |               |         |              |                          |            |                           |                               |                                     |                               |             |                 |               |
| Field Production: 7.29 BCF<br>Recoverable OGIP: 6.97 BCF |              |               |         |              |                          |            |                           |                               |                                     |                               |             |                 |               |
| Reserves Recovered: 105%                                 |              |               |         |              |                          |            |                           |                               |                                     |                               |             |                 |               |

### Hill Top Field

The Hill Top Field is located in the southwest corner of the study area (Plate #1). The field was discovered in 1975. The discovery well, the Pace #1 (Section 18-T.5N.- R.11E.), only produced 21 mmcf over three years. A production map for the field is presented in Figure 29, as well as Plate 2. Only 20 wells have been drilled in the field. Fifteen have a combined production of 4.6 bcf, or an average of 309 mmcf per well. Five were abandoned before production, either for lack of gas production (dry) or mechanical problems within the wellbore. Presently there are 11 active wells with an average daily rate of 33 mcfd per well.

The primary reservoir facies include distributary mouth bar and bar fringe of the delta front. The highest volume well in the field is the Travis P #1-L (Section 21-T.5N.-R.11E.) which has produced over 600 mmcf since June 1991. It appears to produce from distributary mouth bar or delta front deposits. The Travis P #1 contains 11 feet of net pay using the 8% porosity and 40% water saturation cut-offs. The average porosity and water saturation (using 0.04 ohms) are 12% and 19% respectively. The Southern Resources Vernon 1-29 (29-T.5N.-R.11E.) produces from distributary mouth bar or bar fringe, as evidenced from the very slight upward-coarsening gamma ray signature (Figure 30). The Vernon #1-29 contains 8 feet of net pay (porosity >8%, Sw<40%), but contains no net pay using the 12% porosity cut-off. The average porosity and water saturation are 9% and 33% respectively. The well has produced 0.10 Bcf since May 1990.

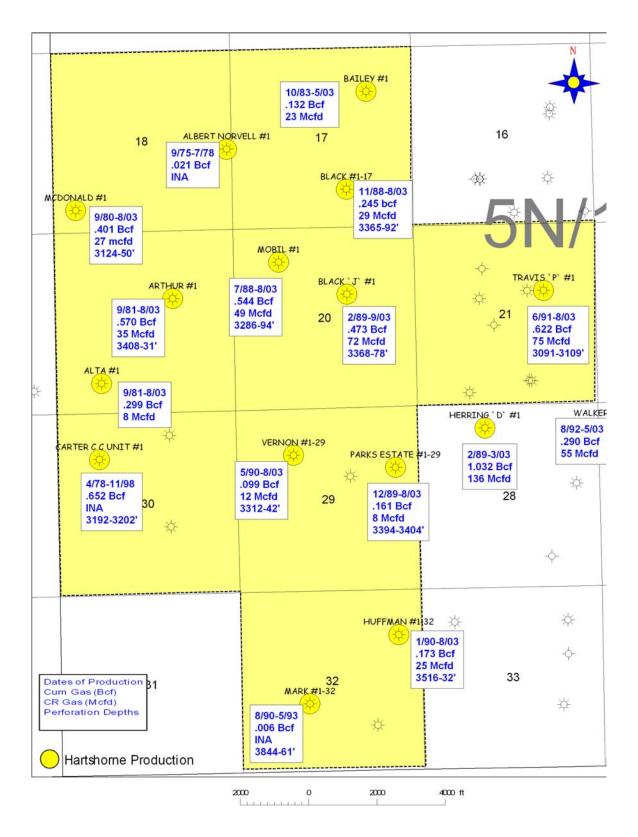



Figure 29: Hartshorne production map for Hill Top Field, Pittsburg County, Oklahoma.

The Mobil #1-20 (Section 20-T.5N.-R.11E.) is an example of a well that may be producing from the distributary mouth bar subfacies of the delta front facies (Figure 31). The Mobil #1-20, which was completed in September 1987, produced 0.54 bcf from July 1988 to July 2003. Initial production was 1400 mcfd, with a flowing tubing pressure of 240 psi on a 48/64 inch choke. Initial shut-in tubing pressure was 620 psi. No stimulation details were available. Average Hartshorne sandstone porosity in the Mobil #1-20 is 12% and average Sw is 20%. The Mobil #1-20 contains 8 feet of net pay using the 8% porosity and 40% Sw cut-offs. The well contains 6 feet of net pay using 12% porosity cut-off and 40% Sw cut-offs.

Using the reservoir parameters of 720 psi original formation pressure, 110-115 degrees Fahrenheit formation temperature, and a recovery factor of 96% and 168 mcf/acre-foot, of recoverable original gas in place (OGIP) was calculated from the net pay isopach map. An abandonment pressure of 25 psi was used. The recoverable OGIP was calculated to be 7.45 bcf from a net pay reservoir of 5930 acres greater than 0'. Volumetric calculations were done following the method described in the methodology. The percentage of the produced recoverable reserves to date is 62%, but as mentioned before this does not account for gas produced from the coal, or thin bedded bar fringe and bay deposits. It should be noted that, as seen on Plate 5, the Hill Top Field shares the same reservoir as the Stuart Southwest Field. A volumetric summary for the Hartshorne Formation is given in Table II.

 Table II: Volumetric reservoir summary for the Hartshorne Formation, Hill Top Field, Hughes

 County Oklahoma.

| Contour<br>Interval    | Avg. Net Pay            | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|------------------------|-------------------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|----------------------------------------|-------------------------------|-------------|--------------------|---------------|
| 0                      | 2.50                    | 12%           | 20%     | 5930         | 2000                     | 1.01       | 0.98                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 168           |
| 5                      | 7.50                    | 12%           | 20%     | 3930         | 2494                     | 3.78       | 3.66                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 168           |
| 10                     | 12.50                   | 12%           | 20%     | 1436         | 1436                     | 2.90       | 2.81                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 168           |
| <u>Total</u> 7.69 7.45 |                         |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |
| Field Production: 4.60 |                         |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |
| Recoverable OGIP: 7.45 |                         |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |
| Res                    | Reserves Recovered: 62% |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |

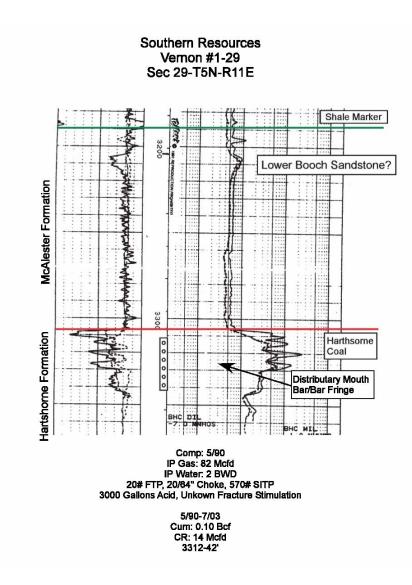



Figure 30: Example of production from possible distributary mouth bar/bar fringe or possible crevasse splay deposits, Hill Top Field, Hughes County, Oklahoma.

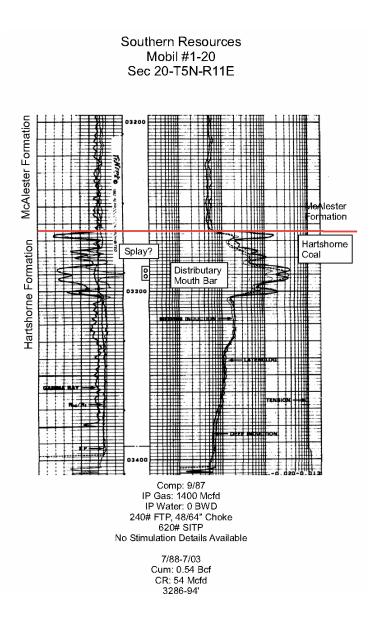



Figure 31: Example of productive distributary mouth bar sandstone in Hill Top Field, Hughes County, Oklahoma.

#### Hill Top North Field

The Hill Top North Field is located 2 miles north of the Hill Top Field and contains 4 producing wells (Figure 32). Figure 33 is a gross sandstone isopach map for Hill Top North Field. Cumulative production for the field is 478 mmcf, of which 345 mmcf comes from the Lindley #1-30 (Section 30-T.6N.-R.11E.), and includes production from the Middle Booch Sandstone. The Lindley #1-30 (Figure 34), which was completed in June 1987, was the discovery well in the Hill Top North Field. The initial production rate from the Hartshorne was 162 mcfd, whereas the initial rate from the Middle Booch was 483 mcfd, which would suggest that the majority of the production comes from the Booch.

The completion of the Hartshorne in the Lindley #1-30 included 1000 gallons of acid, type unknown, 15,550 gallons of fluid, type unknown, and 25,900 pounds of sand. Initial flowing tubing pressure was 110 psi on a 16/64 inch choke. The primary productive facies within the Hill Top North Field include thin distributary mouth bar/ bar fringe subfacies of the delta front (Plate 17). The Roland #1-20 (Sec 20-T.6N.-R.11E.) produces from distributary mouth bar/Type-1 distributary channel. (Figure 35). The Little #1-19 (Figure 36) is an example of production from thin distributary mouth bar facies.

Volumetrics (Table III) were run to determine the recoverable OGIP using a reservoir temperature of 110 degrees Fahrenheit, initial pressure of 630 psi, and abandonment pressure of 25 psi. The reservoir area was 832 acres, which included all of the area within the 0 feet net pay contour (minimum porosity of 8% and maximum water

saturation of 40%). The calculated recoverable OGIP was 0.51 Bcf, at a recovery factor of 96.32% of OGIP and 135.81 mcf/acre-foot (Table III). The total recovery to date is 78%, and the field is currently producing 59 mcfd from 3 wells, for an average of 19.6 mcfd per well. Again, this does not take into account coal gas production or pessimistic net pay and reservoir calculations due to shaly sand and thin interbedded sandstone and shale.

Table III: Volumetric reservoir summary for the Hartshorne Formation, Hill Top North Field,Hughes County, Oklahoma.

| Contour<br>Interval | Avg. Net Pay         | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) |   |     | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|---------------------|----------------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|---|-----|-------------------------------|-------------|--------------------|---------------|
| 0                   | 2.50                 | 12%           | 20%     | 832          | 319                      | 0.14       | 0.13                      | 11:                              | 5 | 630 | 25                            | 0.64        | 96%                | 168           |
| 5                   | 6.00                 | 12%           | 20%     | 513          | 513                      | 0.54       | 0.52                      | 11:                              | 5 | 630 | 25                            | 0.64        | 96%                | 168           |
|                     |                      |               |         |              | <u>Total</u>             | 0.68       | 0.65                      |                                  |   |     |                               |             |                    |               |
|                     | Field Production: 0  |               |         |              |                          |            |                           |                                  |   |     |                               |             |                    |               |
| F                   | Recoverable OGIP: 0. |               |         |              |                          |            |                           |                                  |   |     |                               |             |                    |               |
| Re                  | serves F             | Recov         | ered:   | 78%          |                          |            |                           |                                  |   |     |                               |             |                    |               |

# Horntown SE Field

This field is composed of a single producing well, the Anderson #1 (Sec 17-T.7N.-R.11E.), that produced 0.29 bcf from April 1985 through October 2002, and is currently producing at a rate of 10 mcfd (Figure 37). Production appears to come from the Type-1 distributary channel facies or distributary mouth bar delta front (Figure 38).

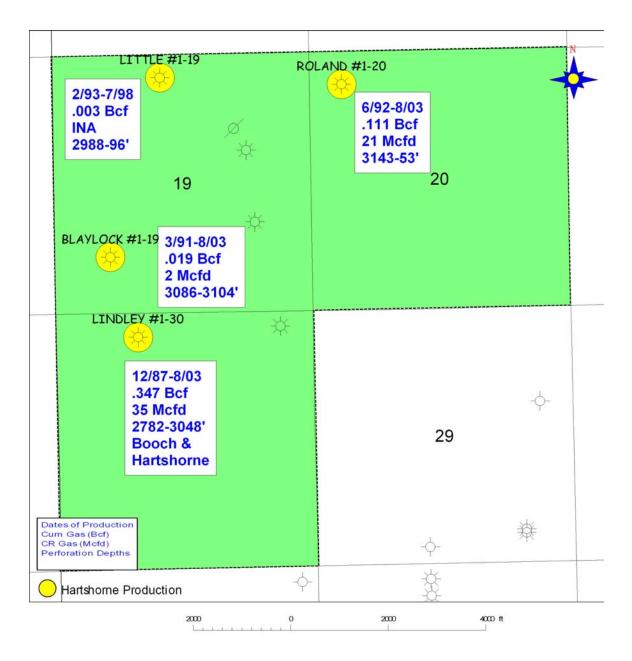



Figure 32: Hartshorne production map, Hill Top North Field, Hughes County, Oklahoma.

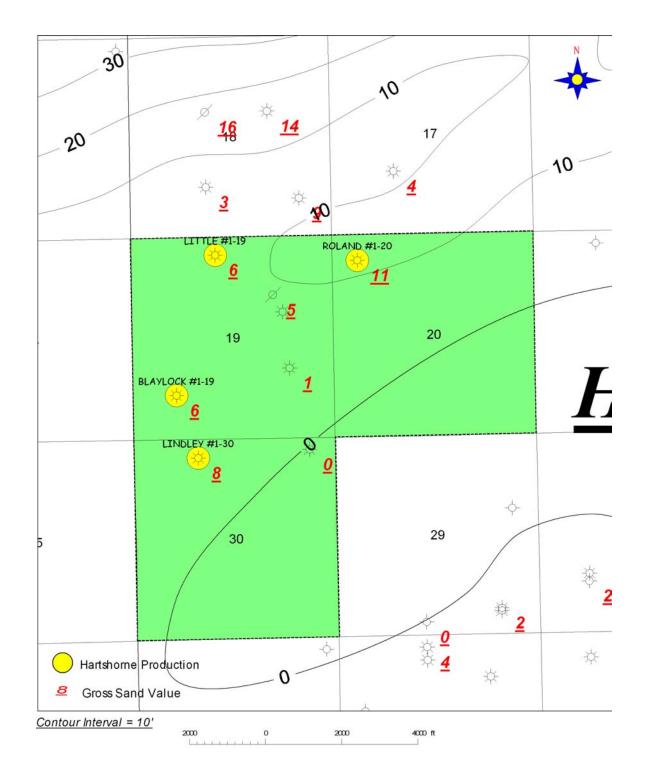



Figure 33: Lower Hartshorne gross sandstone isopach map.

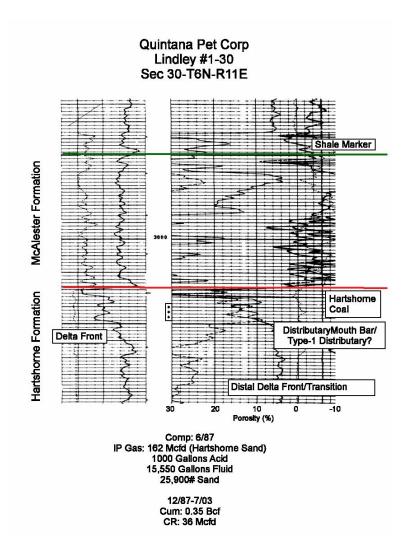



Figure 34: Example of production from distributary mouth bar/delta front and Type-1 distributary channel facies.

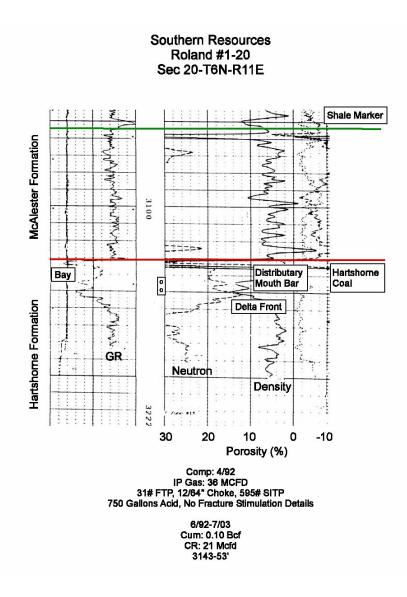
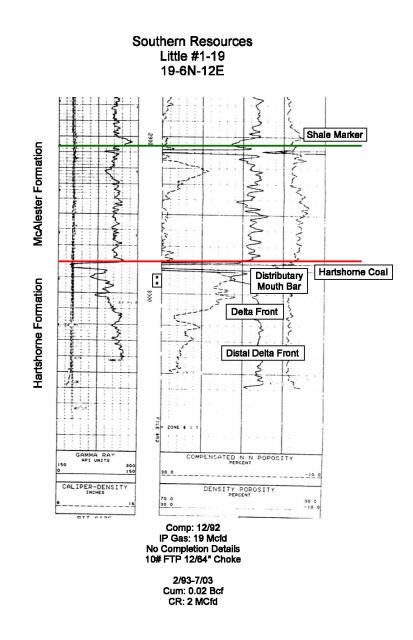
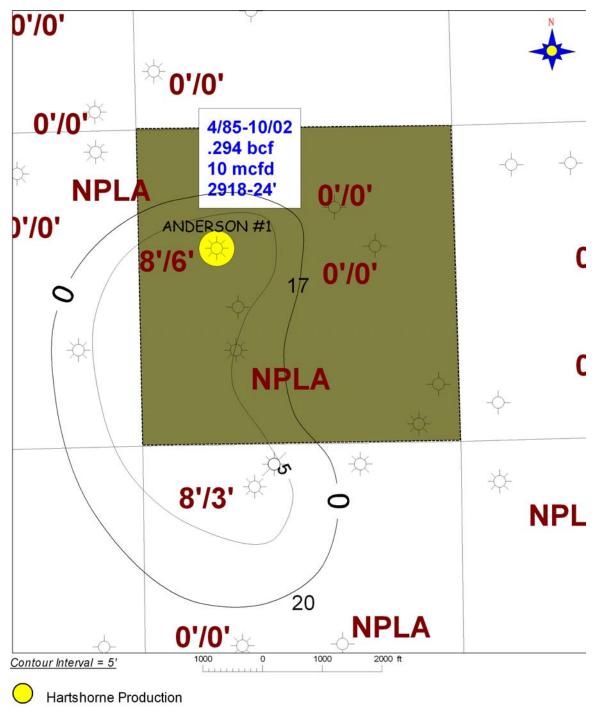



Figure 35: Example of production from distributary mouth bar/bar fringe deposits, Hill Top North Field, Pittsburg County, Oklahoma.





Figure 36: Example of production from distributary mouth bar/delta front sandstone, Hill Top North Field, Hughes County, Oklahoma.

The Anderson #1 penetrated a relatively small reservoir (Plate 5). The sandstone calculates 8 feet of net pay (minimum porosity of 8%, maximum water saturation of 40%) (Figure 37). The average porosity is 15%, average water saturation (Sw) is 24%, with a 0.04 Rw (formation water resistivity). Based on an initial reservoir pressure of 751 psi (from the initial well head shut-in pressure test), and an abandonment pressure of 25 psi, the Anderson #1 has drained and an approximate area of 173 acres. Based on the same parameters, but with 6 feet of net pay based on a minimum porosity of 12%, the Anderson #1 has drained an area of 230 acres. The overall area of the net pay (at least 8% porosity and no more than 40% Sw) within the 5 feet contour interval is 292 acres. The reservoir calculates to have 0.49 Bcf recoverable OGIP, meaning the Anderson has only produced 58% of the reserves in place. At the current rate of production, the likelihood of producing all of the reserves is low, and the need for a replacement well should be evaluated. There appears to be little structural control on production. Table IV contains the volumetric data for the Horntown SE Field.

| Contour<br>Interval | Avg. Net Pay      | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|---------------------|-------------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|----------------------------------------|-------------------------------|-------------|--------------------|---------------|
| 0                   | 2.50              | 12%           | 20%     | 832          | 319                      | 0.14       | 0.13                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 168           |
| 5                   | 6.00              | 12%           | 20%     | 513          | 513                      | 0.54       | 0.52                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 168           |
|                     |                   |               |         |              | <u>Total</u>             | 0.68       | 0.65                      |                                  |                                        |                               |             |                    |               |
|                     | Field P           | Produc        | tion:   | 0.51         |                          |            |                           |                                  |                                        |                               |             |                    |               |
| R                   | Recoverable OGIP: |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |
| Res                 | erves F           | Recov         | ered:   | 78%          |                          |            |                           |                                  |                                        |                               |             |                    |               |

 Table IV: Volumetric reservoir summary for the Hartshorne Formation, Horntown SE Field, Hughes County, Oklahoma.



8'/3' Net Pay Value (Porosity >8%/>12%, Sw <40%)

Figure 37: Lower Hartshorne net pay isopach map, Horntown SE Field, Hughes, County, Oklahoma.

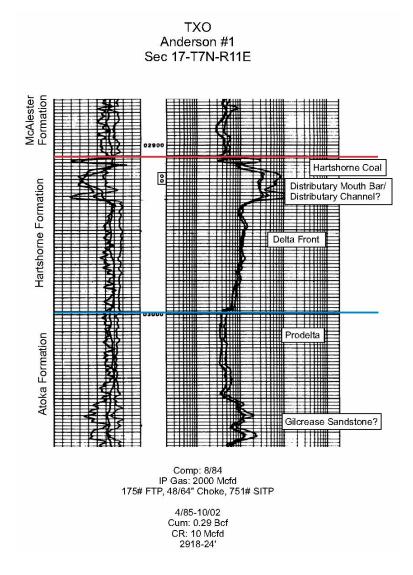



Figure 38: Example of productive Type-1 distributary channel facies, Horntown SE Field, Hughes County, Oklahoma.

### Lamar East Field

Lamar Field is located in the northern part of the study area and overlaps with the Scipio Field (Figure 39). Total cumulative gas production from the field is 6.7 bcf from 11 wells. More than 2/3 the production comes from two wells. The Sarkey Unit #1 (Section 7-T.7N.-R.12E.) and the Klene #1 (Section 1-T.7N.-R.11E.) have each produced over 2.0 bcf. These wells appear to produce from distributary mouth bar and distributary channel deposits. The Jay Petroleum Inc. White 13 #1 (Section 13-T.7N.-R.12.E.) is a good example of production from a Type-2 distributary channel, which appears to have eroded through the mouth bar deposits and into the underlying delta front (Figure 40). The classic fining upward log signature is present, indicating abandonment, and reservoir quality sandstone is limited to the base of the channel-fill sandstone. The White 13 #1 has produced 0.24 bcf from June 1985 through July 2003 and currently produces 14 mcfd.

The Sarkey Unit #1, which was the discovery well in the Lamar East Field in 1961, is still active. The primary reservoir facies in this well and the field are distributary mouth bar and distributary channel sandstones, as seen on the gross sandstone isopach and facies maps (Plate 3 and 17).

Volumetrics (Table V) were calculated based on the net pay isopach of the Lower Hartshorne/Hartshorne undivided reservoir. The parameters that were used were 675 psi initial pressure and 110 degrees Fahrenheit reservoir temperature, based on reported well tests, and a 25 psi abandonment pressure. The recoverable OGIP (original gas in place) calculates to only be 4.3 bcf. However, the field has produced 6.7 bcf, and continues to produce at a rate of 208 mcfd from 8 wells. The production reported from the Klene #1 is 2.3 bcf, but the initial gas flow rate from the Hartshorne Formation was 6 mcfd. The well was completed in 1959, reportedly in the sandstone within the interval from 2350 to 2360 feet. The well was drilled to a depth of 3414 feet and encountered other producing reservoirs, including the Booch above the Hartshorne and the Gilcrease Sandstone of the Atoka Formation. The mapped net pay for the well (no porosity log was available) is 12.5 feet, and the reservoir parameters are estimated to be 12% porosity and 20% Sw, based on offset wells. Based on these variables the well has drained more than 1000 acres, which, though possible, brings into some doubt the reliability of the reported production when coupled with the calculated volumetric reserve of the field. The discrepancy between the cumulative field production and the calculated recoverable OGIP is troublesome. Some of the difference can be attributed to thin-bedded or shaly sandstone that is not counted as pay, as well as coal gas, that do not account for a 2+ bcf difference. Part of the reservoir is shared with the Scipio Northwest Field, but the access to the Lamar East Field side of the reservoir is limited to a narrow net pay corridor defined by the deposition trend of channel and channel mouth bar sandstone. There is also an area of unknown net pay due to the lack of available porosity logs. This area in the northeast part of the field, contains only one producing well, but may extend the reservoir and account for the discrepancy in the reserve calculations.

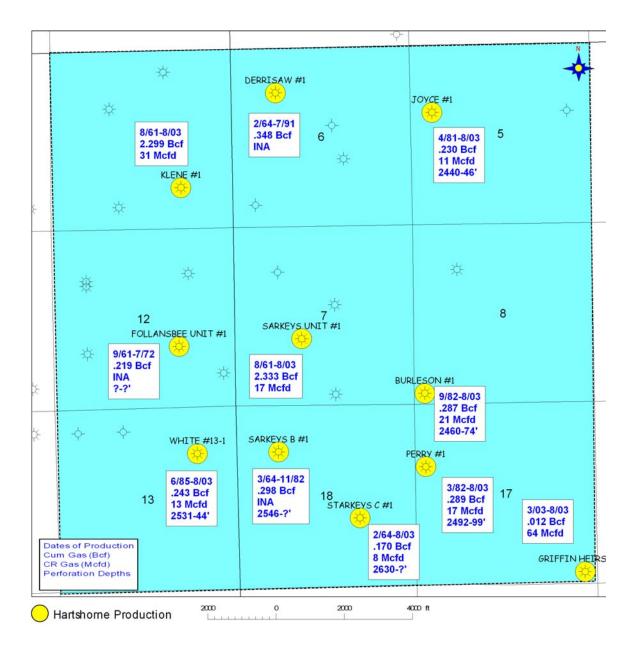



Figure 39: Hartshorne Production Map, Lamar East Field.

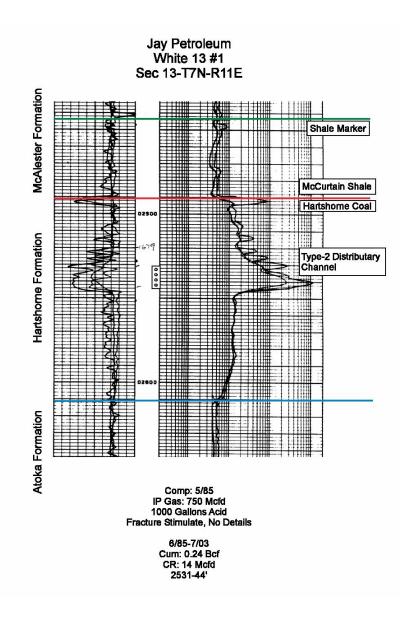



Figure 40: Example of production from a Type-2 distributary channel sandstone, Lamar East Field, Hughes County, Oklahoma.

| Contour<br>Interval | Avg. Net Pay                              | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|---------------------|-------------------------------------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|----------------------------------------|-------------------------------|-------------|--------------------|---------------|
| 0                   | 2.50                                      | 12%           | 20%     | 3350         | 997                      | 0.48       | 0.46                      | 110                              | 675                                    | 25                            | 0.64        | 96%                | 184           |
| 5                   | 7.50                                      | 12%           | 20%     | 2353         | 1144                     | 1.64       | 1.58                      | 110                              | 675                                    | 25                            | 0.64        | 96%                | 184           |
| 10                  | 12.50                                     | 12%           | 20%     | 1209         | 854                      | 2.01       | 1.94                      | 110                              | 675                                    | 25                            | 0.64        | 96%                | 184           |
| 15                  | 16.00                                     | 12%           | 20%     | 355          | 355                      | 1.08       | 1.05                      | 110                              | 675                                    | 25                            | 0.64        | 96%                | 184           |
|                     | Total 5.21 5.03<br>Field Production: 6.70 |               |         |              |                          |            |                           |                                  |                                        |                               |             |                    |               |
|                     | ecover<br>erves F                         |               |         | 5.03<br>133% |                          |            |                           |                                  |                                        |                               |             |                    |               |

 Table V: Volumetric reservoir summary for the Hartshorne Formation, Lamar East Field, Pittsburg and Hughes Counties, Oklahoma

### Reams Northwest

Reams Northwest Field is located in the northeast part of the study area. It has produced 8.8 bcf from 14 wells, for an average of 0.64 bcf per well (Figure 41). The highest cumulative volume well has produced 2.7 bcf. The average depth of the Hartshorne is 2600 feet. There are 12 active wells in the field with an average daily rate of 68 mcfd per well.

The first well, which was the the State #1-35 (Section 35-T.7N.-R.13E.) was drilled in 1980 and cumulated 0.6 bcf from October 1980 to April 1987. The State #1-35 produced from the upper part of IC-1. This thick sandstone had a gas-water contact at 2648' (-1941 feet subsea) (Figure 42). After the State #1-35 quit producing, the State #2-35 was drilled and completed in the Lower Hartshorne Formation in 1986. It has produced over 1.0 bcf from perforations in the upper part of the IC-1, above a gas-water contact at 2620 feet (-1917 feet subsea).

The State #2-35 is 24 feet structurally higher than the State #1-35. Production in the field is structurally controlled (Figure 43). The structure map indicates that the production in the IC-1 facies follows a small anticlinal nose (Plates 13 and 14). The Lower Hartshorne Net Pay map illustrates the development of pay within the sandstone as it drapes over the structure (Figure 44; Plates 9 and 10). The combination of the distribution of quality reservoir and structural attitude is responsible for gas accumulation.

Several wells in the field appear to have been completed in the channel margin of the IC-1 or the thin overbank sands of the interdistributary bay facies. These wells, located in Section 25-T.7N.-R.13E., are believed to produce primarily from Booch Sandstone, but were commingled with the Hartshorne sandstone.

Volumetrics for the Reams Northwest field were calculated using 630 psi initial reservoir pressure (based on reported tests), 25 psi of abandonment pressure, and 115 degrees Fahrenheit reservoir temperature. The average porosity and Sw are 15% and 25% respectively. The area within each net pay contour interval was measured and the internal area of the contour interval greater than each contour was subtracted. The recoverable OGIP was then calculated with a 96.32% recovery factor (based on the reservoir temperature and pressure, as well as the gas gravity of 0.64). The recoverable OGIP for the Reams Northwest Field is 13.75 bcf from a net reservoir area of 3100 acres (above the 0' contour interval). The field has produced 64% of the recoverable reserves, and continues to produce at a rate of 667 mcfd.

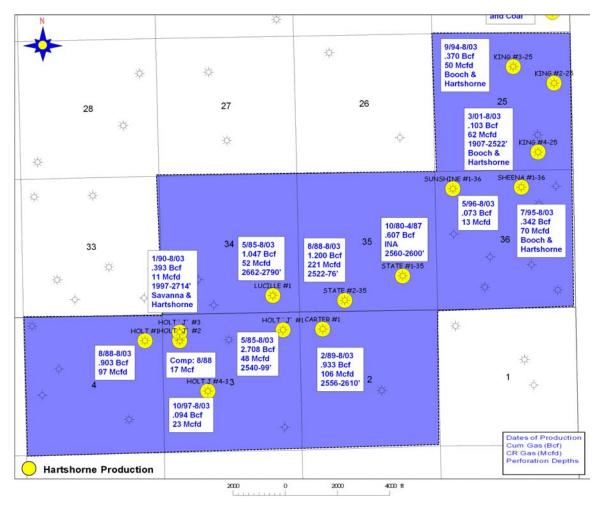



Figure 41: Hartshorne production map, Reams NW Field, Pittsburg County, Oklahoma.

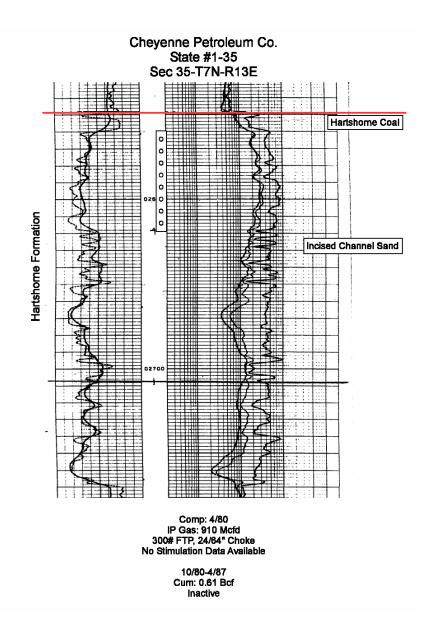



Figure 42: Example of production from the IC-1 entrenched channel/incised valley fill facies, Reams NW Field, Hughes County, Oklahoma.

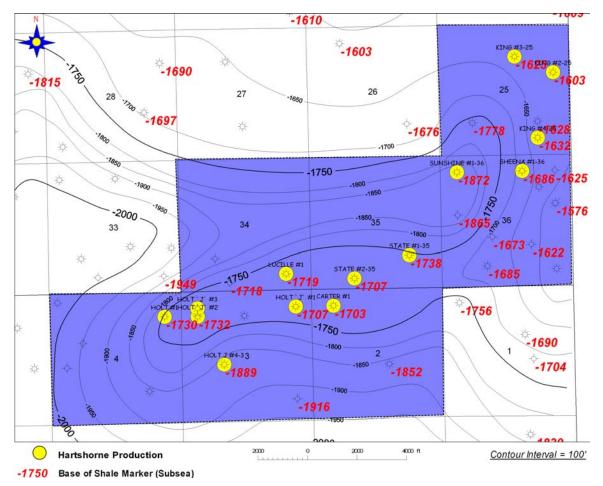



Figure 43: Structure map: Base of "Hot Shale" marker, Reams NW Field.

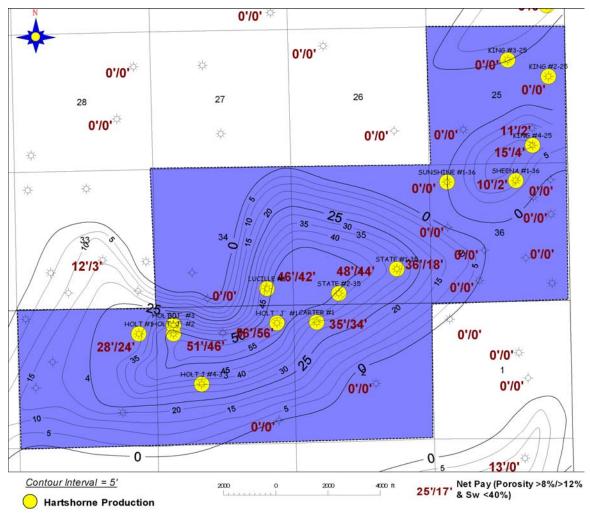



Figure 44: Net pay isopach map, Reams NW Field.

| Contour<br>Interval | Avg. Net Pay             | Avg. Porosity | Avg. Sw | Area (Acres)        | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|---------------------|--------------------------|---------------|---------|---------------------|--------------------------|------------|---------------------------|----------------------------------|----------------------------------------|-------------------------------|-------------|--------------------|---------------|
| 0                   | 5.00                     | 15%           | 25%     | 3100                | 950                      | 0.97       | 0.94                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 10                  | 15.00                    | 15%           | 25%     | 2150                | 747                      | 2.30       | 2.21                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 20                  | 25.00                    | 15%           | 25%     | 1403                | 564                      | 2.89       | 2.78                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 30                  | 35.00                    | 15%           | 25%     | 839                 | 309                      | 2.22       | 2.14                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 40                  | 45.00                    | 15%           | 25%     | 530                 | 287                      | 2.65       | 2.55                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 50                  | 50.00                    | 15%           | 25%     | 243                 | 243                      | 3.25       | 3.13                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
|                     | <u>Total</u> 14.28 13.75 |               |         |                     |                          |            |                           |                                  |                                        |                               |             |                    |               |
|                     | Field P                  |               |         | 8.80                |                          |            |                           |                                  |                                        |                               |             |                    |               |
|                     | ecover<br>erves F        |               |         | <u>13.75</u><br>64% |                          |            |                           |                                  |                                        |                               |             |                    |               |

Table VI: Volumetric reservoir summary for the Hartshorne Formation, Reams NW Field, Hughes County, Oklahoma.

#### Scipio Northwest Field

The Scipio Northwest Field is located in the northern part of the study area and is composed of the Scipio Field, West Scipio Field, East Scipio Field, and NW Scipio Field. The field has produced over 6.0 Bcf from 38 wells, an average of 0.16 Bcf per well. The field was discovered in 1963 by the drilling of the Broadstreet #1 (Section 22-T.7N.-R.12E.) which subsequently produced 0.69 bcf from 2/63 to 8/69 from commingled Hartshorne and Booch reservoirs. Commingling production makes it difficult to gauge the true productivity of the Hartshorne reservoir. The average depth of the Hartshorne Formation within Scipio Northwest Field is about 2550' (-1650' subsea).

The primary reservoir facies within the Scipio Northwest Field include distributary mouth bar and distributary channel. Some wells were completed in channel margin and bar fringe deposits on the edge of the main sandstone trend. The Broadstreet #1, (22-T.7N.-R.11E.) is a good example of production from the distributary channel facies of the delta plain (Figure 45). The channel is stratigraphically lower than some delta front deposits seen in offset well, though the channel filling sandstone is likely younger. This is the result of channel erosion and entrenchment in older sediments. The well was completed in November 1962. The initial gas production rate from the Hartshorne reservoir was 3500 mcfd, flowing after a 5000 gallon, 3000# fracture stimulation. Shut-in tubing pressure was 820 psi. The reservoir characteristics of the Hartshorne sandstone in the Broadstreet #1 are unknown, as a porosity log was not available. The strong deflection of the SP curve on the induction log indicates that the sandstone is clean and likely has good porosity and permeability. The initial gas rate from the Booch Formation was 3000 mcfd. Allocation of production solely based on the initial gas rate suggests that the cumulative production from each of the producing formations is relatively equal at 0.34 bcf.

Based of the gross sandstone and net pay isopach maps (Plate 5) the distributary channel sandstone and distributary mouth bar sandstone in the Scipio Northwest Field are less extensive than in other fields. Where thicker gross sandstone is developed on the southeast side of the field, it appears to be wet and nonproductive.

The Million #1-27 (Section 27-T.7N.-R.11E.) is an example of production from distributary mouth bar of the delta front, or crevasse splay sandstones within the interdistributary bay facies (Figure 46). The Million #1-27 only produced 2000 Mcf from January 1983 through March 1985, demonstrating the poor reservoir quality of delta front sandstones. These

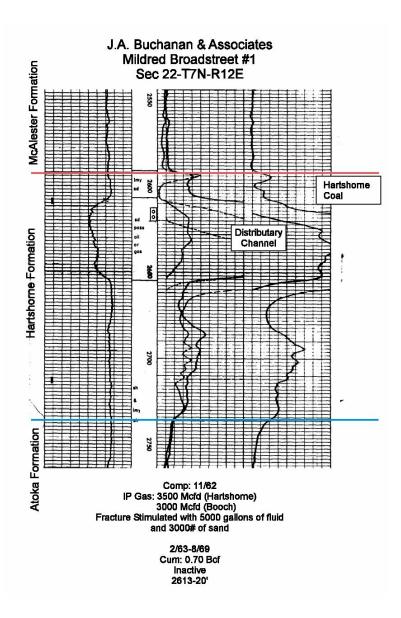



Figure 45: Example of gas production from what is interpreted to be distributary channel sandstone, Scipio NW Field, Hughes County, Oklahoma.

sandstones are thin and clay rich, and as a result have low porosity and permeability. The Million #1-27 was completed in May 1982 with an initial gas rate was 25 Mcfd from Hartshorne and 25 Mcfd from the Booch. Both reservoirs were fracture stimulated, but no details are available.

The Tag Team Resources LLC Michael #2-22 (Section 22-T.7N.-R.11E.) is a well that illustrates production from what is interpreted to be distributary mouth bar/bar fringe facies (Figure 47). The well has produced 0.12 bcf from 8 feet of net pay, that has an average porosity of 12% and calculated water saturation of 22%. The well was completed in April 2001 with an initial gas production rate of 297 mcfd through a 10/64" choke with a flowing tubing pressure (FTP) of 335 psi. The well was acidized with 500 gallons and fracture stimulated with 17,892 gallons of an unknown fluid and an unknown amount of sand-based propant. Initial shut-in pressure was 480 psi.

Volumetrics for the Scipio Northwest Field were calculated using the net pay isopach map based on the porosity and Sw cut-offs of 10% and 30%, respectively. The reservoir parameters were 675 psi initial pressure, 25 psi abandonment pressure, and 110° formation temperature. The recoverable OGIP was calculated to be 8.57 bcf, indicating the field has produced approximately 70% of its reserves.

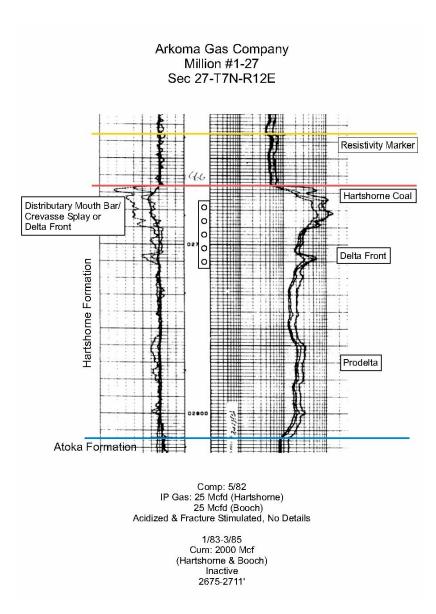



Figure 46: Example of production from possible distributary mouth bar/delta front facies, Scipio NW Field, Hughes County, Oklahoma.

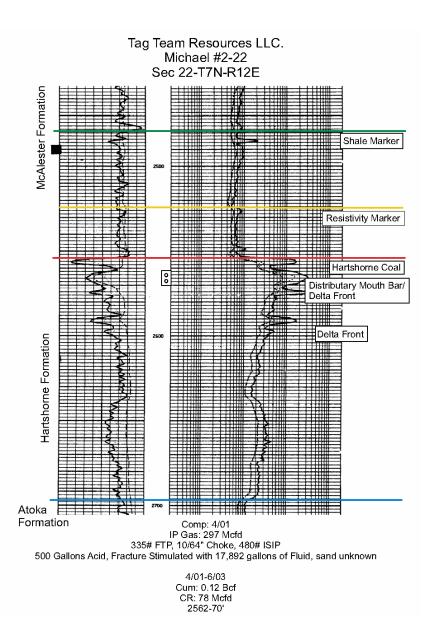



Figure 47: Example of production from fringe deposits of the distributary mouth bar facies. An alternate interpretation is that this is an example of crevasse splay deposits.

| Contour<br>Interval<br>Avg. Net Pay | Avg. Porosity | Avg. Sw | Area (Acres)        | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure (psi) | Abandonment<br>Pressure (psi) | Gas Density | Recovery<br>Factor | Mcf/Acre-Foot |
|-------------------------------------|---------------|---------|---------------------|--------------------------|------------|---------------------------|----------------------------------|----------------------------------------|-------------------------------|-------------|--------------------|---------------|
| 0 2.50                              | 10%           | 30%     | 7968                | 4776                     | 1.54       | 1.48                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 5 7.50                              | 10%           | 30%     | 5304                | 3192                     | 3.09       | 2.98                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 10 12.50                            |               | 30%     | 2473                | 2112                     | 3.41       | 3.28                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 15 17.50                            | 10%           | 30%     | 361                 | 230                      | 0.52       | 0.50                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| 20 20.00                            | 10%           | 30%     | 131                 | 287                      | 0.34       | 0.33                      | 115                              | 630                                    | 25                            | 0.64        | 96%                | 159           |
| Field<br>Recove<br>Reserves         |               | OGIP:   | 6.00<br>8.57<br>70% | <u>Total</u>             | 8.89       | 8.57                      |                                  |                                        |                               |             |                    |               |

 Table VII: Volumetric reservoir summary for the Hartshorne Formation, Scipio NW Field, Pittsburg and Hughes Counties, Oklahoma.

## Shady Grove Field

The Shady Grove Field is composed of the Shady Grove South and Shady Grove Southwest Fields. The field is located in west-central part of the study area (T.6N.-R.11E.) (Plate 1). Cumulative production is 6.7 bcf from 18 wells, for an average of 0.37 bcf per well. The first reported production was in 1964; 3 wells remain active.

The Shady Grove Field represents the westward extension of the Cabannis NW Field. The primary reservoir facies are distributary mouth bar subfacies of the delta front facies and distributary channel subfacies of the delta plain facies.

The well with the largest volume of gas production is the Hill #1-11 (Sec 11-T.6N.-R.11E.) which has produced just over 1.0 bcf from the distributary mouth bar subfacies (Figure 48). The Hill #1-11 contains 11 feet of net pay (minimum porosity of 8% and maximum water saturation of 40%), with an average of 18% porosity. The well was completed in September 1994, and is currently producing at a rate of 183 mcfd. The top of the Hartshorne sandstone (Lower Hartshorne or Hartshorne Undivided) producing zone is 3213 feet measured depth (-2399 feet subsea); top of the Hartshorne Coal is 3189 feet measured depth (-2375 feet subsea). The Hill #1-11 was fracture stimulated with 12,474 gallons of fluid (type unknown) and 11,500 pounds of sand. It was treated with 300 gallons of acid prior to the fracture stimulation. The Hill #1-11 had an initial gas rate of 361 mcfd, flowing on a 12/64 inch choke with 450 psi of flowing tubing pressure (FTP). Shut-in tubing pressure built to 620 psi. Structurally the Hill #1-11 is low compared to wells in the field to the west, and is possibly separated from them by a fault. The overall structure of the field is a northwest-southeast trending synclinal nose (Plates 3 and 4).

The Glenn Supply Co. Inc. Geneva #1-10 (Figure 48) and Glenn Supply Co. Inc. Black #3 (Figure 49) are located in Section 10-T.6N.-R.11E. Both are interpreted to be producing from Type-1 distributary channel subfacies of the delta plain facies. An alternate interpretation is distributary mouthbar/bar crest subfacies of the delta front. The Geneva #1-10 (Figure 48 and Well #4, Cross-Section A-A', Plate 13) produced 0.26 bcf from July 1995 thru July 2003. It contains 16 feet of net pay (minimum porosity of 8% and maximum water saturation of 40%) with an average porosity of 18%. The Black #3 produced 0.47 Bcf (November 1995 thru July 2003) from 18 feet of net pay (porosity >8%, Sw < 40%). Average porosity in the Black #3 is 20% and the calculated water saturation (Sw) is 8%. The calculated Sw seems anomalously low, which may be explained by an Rw that is higher than 0.04 ohm-m. The Black #3 had an initial flow rate rate of 115 mcfd with 295# flowing tubing pressure on a 18/64" choke. Shut-in tubing pressure was only 500#, which may indicate partial reservoir depletion. Figure 50 is a net pay isopach map.

In Section 7-T.6N.-R.11E., the Victor Pryot Boyd #2 produces from what is interpreted to be delta front or possibly crevasse splay deposits (Well #1 on Cross-Section E-E', Plate 15). The well has only produced 80 mmcf and is currently making 5 mcfd.

Volumetrics were calculated for the Shady Grove Field, which is a direct offset to the Cabannis NW Field and may share reserves. The OGIP that was calculated for the Shady Grove Field was 9.01 bcf, with a recovery factor of 96%. The recoverable OGIP is 8.68 bcf, for a 77% recovery to date. This does not take into consideration coal gas, gas from shaly sands outside the mapped net pay isopach, or commingled gas from other non-Hartshorne reservoirs.

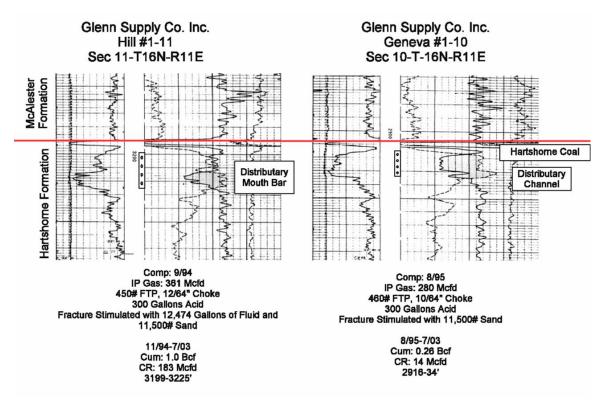



Figure 48: Examples of production from distributary mouth bar (left) and Type-1 distributary channel sandstones within the Shady Grove South Field, Pittsburg County, Oklahoma.

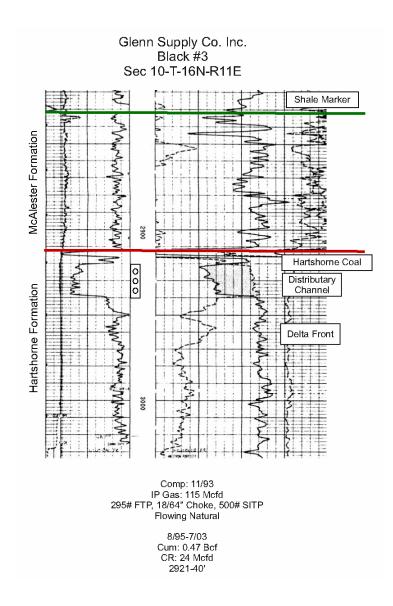
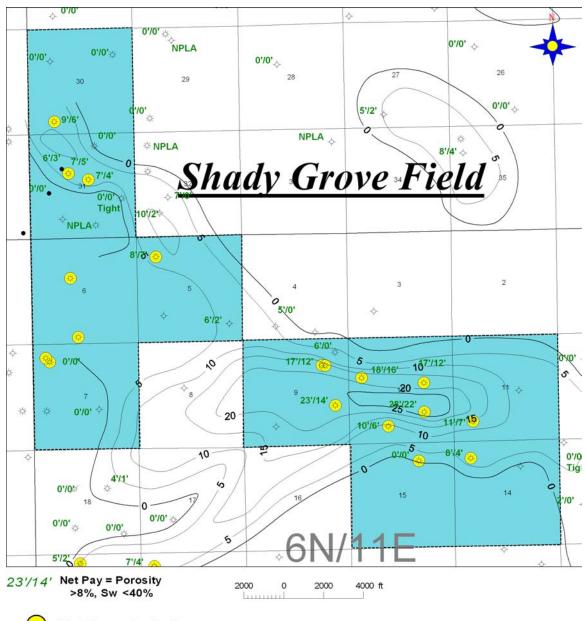




Figure 49: Example of production from the Type-1 distributary channel facies, Shady Grove South Field, Pittsburg County, Oklahoma.



**Hartshorne Production** 

Figure 50: Net pay isopach map, Shady Grove Field.

 Table VIII: Volumetric reservoir summary for the Hartshorne Formation, Shady Grove Field,

 Pittsburg County, Oklahoma.

| Contour<br>Interval | Avg. Net Pay           | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted<br>Area (Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) |     | Abandonment<br>Pressure<br>(bsi) |      | Recovery<br>Factor | Mcf/Acre-Foot |
|---------------------|------------------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|-----|----------------------------------|------|--------------------|---------------|
| 0                   | 2.50                   | 12%           | 20%     | 6048         | 2348                     | 1.03       | 0.99                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
| 5                   | 7.50                   | 12%           | 20%     | 3700         | 1763                     | 2.31       | 2.23                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
| 10                  | 12.50                  | 12%           | 20%     | 1937         | 875                      | 1.91       | 1.84                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
| 15                  | 17.50                  | 12%           | 20%     | 1062         | 535                      | 1.58       | 1.58                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
| 20                  | 22.50                  | 12%           | 20%     | 527          | 432                      | 1.70       | 1.64                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
| 25                  | 25.00                  | 12%           | 20%     | 95           | 95                       | 0.42       | 0.40                      | 115                              | 630 | 25                               | 0.64 | 96%                | 159           |
|                     | <u>Total</u> 8.95 8.68 |               |         |              |                          |            |                           |                                  |     |                                  |      |                    |               |
|                     | Field P                | roduc         | tion:   | 6.81         |                          |            |                           |                                  |     |                                  |      |                    |               |
| R                   | ecover                 | able C        | GIP:    | 8.68         |                          |            |                           |                                  |     |                                  |      |                    |               |
| Res                 | erves F                | Recov         | ered:   | 78%          |                          |            |                           |                                  |     |                                  |      |                    |               |

### South Pine Hollow Field

South Pine Hollow Field is the largest field in both area and production volume. Located in the southern part of the study area (Townships 5 and 6 North and Ranges 12 and 13 East); the field has produced over 112 bcf from 121 wells. Most gas production is from the thick sandstone of IC-1 and IC-2. Average production per well is over 900 mmcf, whereas production for individual wells ranges from less than 2 mmcf to more than 11 bcf.

The primary reservoir for the field is the IC-2 sandstone trend, or incised valley fill/entrenched distributary channel facies. Secondary reservoir facies include distributary channel, channel margin, and delta front. South Pine Hollow Field is located in the most depositionally complex part of the study area and difficult to interpret. The South Pine Hollow Field is bordered on the north by the northeast-southwest trending IC-1 channel and incised by the IC-2 channel. The IC-2 sandstone can be a great as 180

feet thick and very gas productive The incised channel sandstone IC-2, which has been mapped as Hartshorne Undifferentiated, accounts for more than 2/3 of the production in the field. The amount of modification of the original sediments resulting from incision of both channels, as well as the reworking that may have occurred during the subsequent transgression is difficult to access.

Some wells have penetrated the Type-2 distributary channel facies. The Davis Operating Co. Ott #2-22 (Section 22-T.5N.-R.12E.) is a prime example of the distributary channel facies (Figure 51). The Ott #2-22 is also an example of a well that produces from the Hartshorne Coal. The well was completed in the coal with an initial production rate of 30 mcfd in 1999. The well has cumulated 50 mmcf and currently producing 31 mcfd. The production rate has remained relatively stable over the past four years, which is typical for vertical coal wells. Another well that penetrated the Type-2 distributary channel facies is the Davis Operating Co. Donna #1-16 (Section 16-T.5N.-R.12E.), which produced 0.43 bcf from the Lower Hartshorne from September 2000 through August 2003 (Figure 52). The well was completed and flowed gas at a rate of 561 mcfd and currently produces 177 mcfd. The reservoir was fracture stimulated with 35,646 gallons of fluid and 56,240 pounds of sand. The Virgil #1-22 (Section 22-T.5N.-R.12E.) is an example of production from delta front or bar fringe facies (Figure 53).

Remnants of older distributary channel, channel margin/splay, and distributary mouth bar facies are evident within the field, but the interpretation of the original deposition framework is difficult due to possible subaerial exposure and erosion during sea level fall, as well as sediment reworking during the subsequent sea level rise.

129

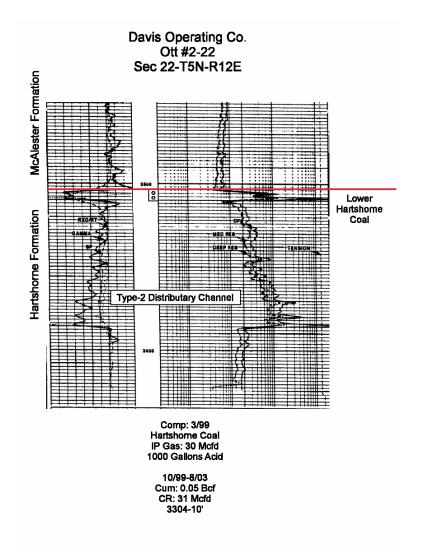



Figure 51: Example of a well that penetrated a Type-2 distributary channel sandstone. Production in this well is from the Lower Hartshorne Coal. South Pine Hollow Field, Hughes County, Oklahoma.

Production in some wells is from multiple facies. The Mustang Fuel Corporation Semeski #1-3, located in Section 3-T.5N.-R.12E., is perforated in what has been interpreted to be distributary mouth bar and possible crevasse splay facies (Well #6 on Cross-Section B-B', Plate 20). The Lower Hartshorne Coal was also perforated in the Semeski #1-3. The well produced 0.22 bcf from October 2000 to September 2003 and has a current gas production rate of 139 mcfd.

Volumetric calculations (Table IX) for the South Pine Hollow Field were calculated using a reservoir temperature used was 115 degrees Fahrenheit, and initial reservoir pressure and abandonment pressure of 650 psi and 25 psi respectively. The volumetric calculations for the South Pine Hollow Field were done in two parts. The first set of calculations was for the Lower Hartshorne, without the south incised channel (IC-2). The second set of calculations was for the southern incised channel, IC-2, mapped as Hartshorne Undifferentiated.

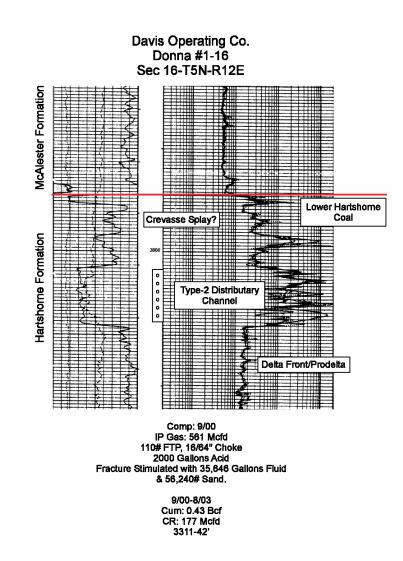



Figure 52: Example of production from the Type-2 distributary channel facies within the South Pine Hollow Field, Hughes County, Oklahoma.

Reserve calculations for the Lower Hartshorne (without the IC-2 Channel) were based on average porosity and Sw of 10% and 25%, respectively. The total recoverable OGIP was calculated to 47.31 bcf using a recovery factor of 96.2% or 132 mcf/acre-foot. Presently, that part of the field has produced 19.11 bcf, a 40% recovery.

Hartshorne Undifferentiated (IC-2) calculations were based on an average porosity of 12% and a calculated Sw of 20%. The total recoverable OGIP was 91.96 bcf using a 96% recovery factor or 174 mcf/acre-foot. The IC-2 part of the field has cumulated 93.94 bcf, or a 102% total recovery to date.

Communication between the IC-2 reservoir and the Lower Hartshorne outside of the incised channel (IC-2) may explain why the total recovery for the IC-2 reservoir exceeds 100%. Some production contribution may be from coalbed gas, as well as from commingled reservoirs. The total estimated recoverable OGIP for the combined Hartshorne reservoir is 139.27 bcf, based on a 96% recovery factor at an average of 155 mcf/Acre-Foot. Total recovery to date, is approximately 80% of the reserves in the field. As a result of higher average porosity and lower water saturation values, the recovery factor was similar for both reservoirs. Volumetric summaries for each can be found in Appendix E.

# Stuart Southwest Field

The Stuart Southwest Field is located in the southwest part of the study area and is composed of just 7 wells (Figure 54). The field has produced over 12 bcf of gas, with the majority coming from just 2 wells. The Woodfork #1 (Sec 26-T.5N.-R.11E.) and the

Lackey #1 (Sec 27-T.5N.-R.11E.) have produced 5.4 bcf and 4.2 bcf, respectively,

combining for

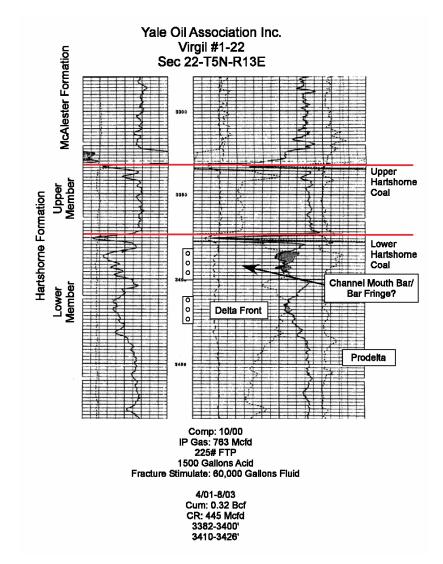



Figure 53: Example of production from distributary mouth bar/bar fringe or possible delta front facies within the South Pine Hollow Field, Hughes County, Oklahoma. Note the presence of both the Upper and Lower Hartshorne Members. Upper Hartshorne is bay facies.

| <b></b>               |                             |               |                 |                        | Lo                       | ower Ha    | rtshorn                   | e                                       |                                         |                               |               |                          |               |
|-----------------------|-----------------------------|---------------|-----------------|------------------------|--------------------------|------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|---------------|--------------------------|---------------|
| Contour<br>Interval   | Avg. Net Pay                | Avg. Porosity | Avg. Sw         | Area (Acres)           | Adjusted Area<br>(Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F)        | Initial<br>Formation<br>Pressure (psi)  | Abandonment<br>Pressure (psi) | Gas Density   | Recovery<br>Factor       | Mcf/Acre-Foot |
| 0                     | 2.50                        | 10%           | 25%             | 27268                  | 2843                     | 1.00       | 0.97                      | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 136           |
| 5                     | 7.50                        | 10%           | 25%             | 24425                  | 9108                     | 9.65       | 9.31                      | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 136           |
| 10                    | 12.50                       | 10%           | 25%             | 15317                  | 6228                     | 11.01      | 10.61                     | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 136           |
| 15                    | 17.50                       | 10%           | 25%             | 9089                   | 4991                     | 12.35      | 11.90                     | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 136           |
| 20                    | 22.50                       | 10%           | 25%             | 4098                   | 2552                     | 8.12       | 7.82                      | 115                                     | 650                                     | 25                            | 0.64          | 96%                      | 136           |
| 25                    | 27.50                       | 10%           | 25%             | 1546                   | 837                      | 3.25       | 3.13                      | 115                                     | 650                                     | 25                            | 0.64          | 96%                      | 136           |
| 30                    | 32.50                       | 10%           | 25%             | 709                    | 204                      | 0.94       | 0.90                      | 115                                     | 650                                     | 25                            | 0.64          | 96%                      | 136           |
| 35                    | 37.50                       | 10%           | 25%             | 505                    | 253                      | 1.34       | 1.29                      | 115                                     | 650                                     | 25                            | 0.64          | 96%                      | 136           |
| 40                    | 40.00                       | 10%           | 25%             | 252                    | 252                      | 1.43       | 1.38                      | 115                                     | 650                                     | 25                            | 0.64          | 96%                      | 136           |
|                       |                             |               |                 |                        | <u>Total</u>             | 49.08      | 47.31                     |                                         |                                         |                               |               | 96%                      |               |
| Re                    | serves                      | Recov         |                 | 40%<br>ncised C        | hannel (IC               | C-2) - Ha  | rtshorr                   | ne Undiffe                              |                                         |                               |               |                          |               |
| ⊂ Contour<br>Interval | Avg. Net Pay                | Avg. Porosity | <b>MS . BAR</b> | 0082<br>0082<br>12800  | Adjusted Area            | OGIP (BCF) | Recoverable<br>0GIP (BCF) | Formation<br>Temp<br>511<br>(Degrees F) | Initial<br>Formation<br>BPressure (psi) | Abandonment                   | o Gas Density | 66 Recovery<br>89 Factor | Ncf/Acre-Foot |
| 25                    | 37.50                       | 12%           | 20%             | 8943                   | 4197                     | 28.47      | 27.46                     | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 174           |
| 50                    | 62.50                       | 12%           | 20%             | 4746                   | 2742                     | 31.01      | 29.90                     | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 174           |
| 75                    | 75.00                       | 12%           | 20%             | 2004                   | 2004                     | 27.19      | 26.20                     | 115                                     | 630                                     | 25                            | 0.64          | 96%                      | 174           |
|                       | Field I<br>Recove<br>serves |               | GIP:            | 93.94<br>91.96<br>102% | <u>Total</u>             | 95.37      | 91.96                     |                                         |                                         |                               |               | 96%                      |               |

 Table IX: Volumetric reservoir summary for the Hartshorne Formation, South Pine Hollow Field,

 Pittsburg County, Oklahoma.

**Reserves Recovered:** 

80%

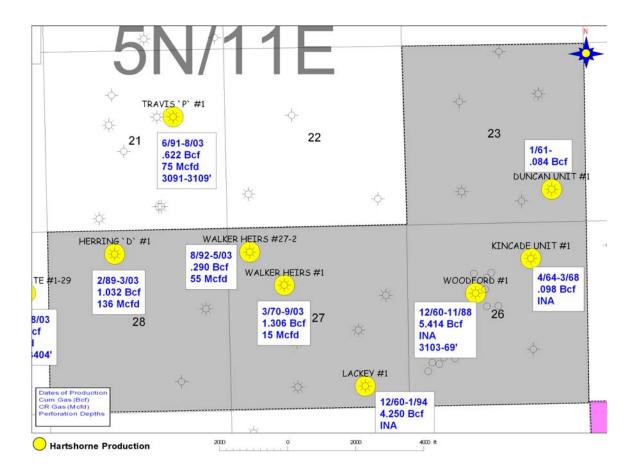



Figure 54: Hartshorne production map, Stuart SW Field, Hughes County, Oklahoma.

more than half of the field's production. Both of these wells produce from the Incised Channel Facies (IC-1) of the Lower Hartshorne. No porosity logs were available for either of these wells, which make reserve calculations difficult and may explain the discrepancy between calculated recoverable reserves and field production. Both wells are located on a small structural closure (Plates 3 and 4), and may be separated from other reservoir sandstones within the field. Another well that produced gas from incised channel facies is the Bell Oil & Gas Company Duncan Unit #1 (Sec 23-T.5N.-R.11E.). This well was completed in 1960, and produced 80 mmcf from perforations in the uppermost part of the sandstone and the Hartshorne Coal. Most of the Hartshorne section in this well is low resistivity and appears water bearing (Figure 55). The Duncan Unit #1 is about 80 feet structurally low to the Woodfork #1 and Lackey #1, demonstrating the strong structural component of production within the incised channel sandstone reservoir (Figure 56).

Several wells have produced from distributary mouth bar and distributary channel deposits that are found at the edge of the incised channel complex. These wells are the Herring D #1 (Section 28-T.5N.-R.11E.) and the Walker Heirs #1 (Section 27-T5N-R11E), have produced over 1.0 Bcf. Based on electrofacies interpretation, the Herring D #1 (Figure 57) produces from distributary mouth bar/bar fringe subfacies of the delta front facies, as well as overlying channel margin subfacies of the delta plain. The delta front exhibits a coarsening upward profile on the gamma ray curve, which is topped by a subtle fining upward signature that is interpreted as channel margin facies.

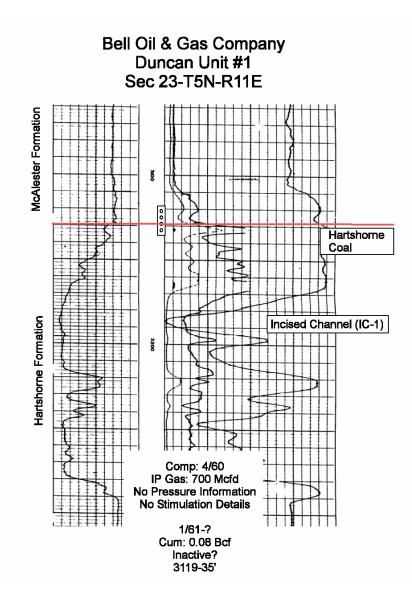



Figure 55: Example of a well that penetrated IC-1 incised channel/incised valley fill facies in Stuart SW Field, Pittsburg County, Oklahoma. Production appears to come primarily from the Hartshorne Coal.

Volumetric calculations were used to establish gas reserves for the field. These calculations were based on an initial formation pressure of 820 psi, which was reported on initial well pressure tests. The abandonment pressure was 25 psi, and the formation temperature used was 115 degrees F. Volumetric calculations for Stuart SW Field were done in two parts. The first set of calculations was for the Lower Hartshorne sandstone that is part of the initial delta system. The second set of calculations are for the Lower Hartshorne incised channel (IC-1).

For the first set of calculations are based on an average porosity and Sw values of 10% and 30%, respectively. The recoverable OGIP was calculated at 1.77 Bcf. The Hartshorne reservoir within this part of the field has produced 2.2 Bcf, or more than 100% of the calculated recoverable OGIP. Some of the discrepancy may be attributed to downhole commingling with other reservoirs, thin-bedded sandstone that does not calculate as pay, or coalbed gas. The second set of calculations used an average porosity of 15% and an average calculated Sw of 30%. The porosity values for the Woodfork #1 and Lackey #1 are unknown, but are likely 15%. The Sw is estimated at 25-30% based on the Reams Northeast Field analog, which produces updip in the IC-1. To account for the discrepancy, a rough calculation of reserves was conducted using the gross sand isopach. An area was chosen that represents the reservoir encountered by the Woodfork #1 and the Lackey #1. The Lacky #1 contains 50 feet of gross Lower Harthsorne (IC-1) sand and the Woodfork #1 contains 105 feet of gross sand. The entire Lower Hartshorne sandstone appears to be productive based on the induction log resistivity, so a base net pay of 50 feet was used in the volumetric calculations. The result was a recoverable.

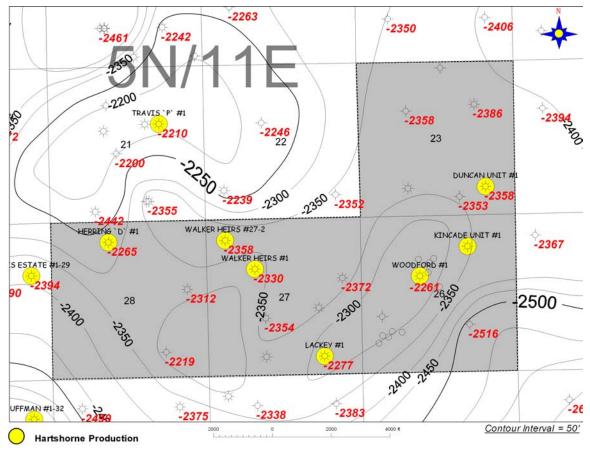



Figure 56: Structure map: Top of Lower Hartshorne Coal, Stuart SW Field.

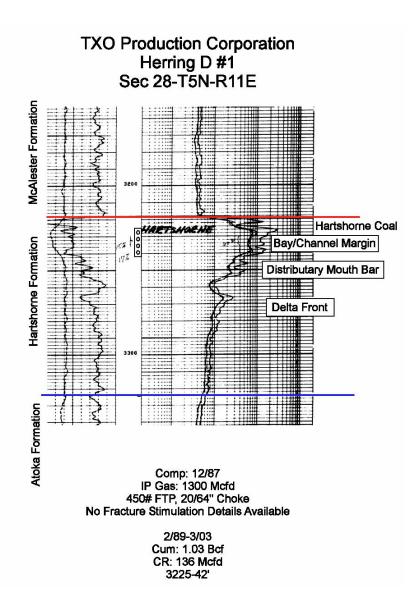



Figure 57: Example of production from the distributary mouth bar/channel margin succession within the Stuart SW Field, Pittsburg County, Oklahoma.

OGIP of 15.07 Bcf The Lackey #1, Woodfork #1, and two other wells have produced 9.8 Bcf from this reservoir, for a total recovery of 65%

The final reserve value of 16.78 Bcf recoverable OGIP, when divided into the field production, indicates that field production is only 72% of the recoverable OGIP. There is more inherent error in these calculations than in the previous field summaries, as no porosity logs were available for the two primary wells in the main producing trend and net pay was estimated. This data is summarized in Table X.

Table X: Volumetric reservoir summary for the Hartshorne Formation, Stuart SW Field, Hughes County, Oklahoma.

|                           |                          |                 |               |                                                                                                  | Inci                     | ised Ch           | annel -                   | - IC-1                                  |                                            |                               |                |                    |                  |
|---------------------------|--------------------------|-----------------|---------------|--------------------------------------------------------------------------------------------------|--------------------------|-------------------|---------------------------|-----------------------------------------|--------------------------------------------|-------------------------------|----------------|--------------------|------------------|
| ମୁ<br>Contour<br>Interval | 0.00<br>00 Avg. Net Pay  | 5 Avg. Porosity | 00<br>Avg. Sw | B<br>B<br>B<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Adjusted Area            | <b>OGIP (BCF)</b> | G<br>G<br>OGIP (BCF)      | Formation<br>Temp<br>511<br>(Degrees F) | Initial<br>Formation<br>D58 Pressure (psi) | Abandonment                   | 69<br>69<br>69 | 6<br>84<br>∭Factor | 24 Mcf/Acre-Foot |
|                           | <u>Total</u> 15.50 15.01 |                 |               |                                                                                                  |                          |                   |                           |                                         |                                            |                               |                |                    |                  |
|                           |                          |                 |               |                                                                                                  | Lower Ha                 | rtshorn           | e Delta                   | ic Deposi                               |                                            |                               |                |                    |                  |
| Contour<br>Interval       | Avg. Net Pay             | Avg. Porosity   | Avg. Sw       | Area (Acres)                                                                                     | Adjusted Area<br>(Acres) | OGIP (BCF)        | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F)        | Initial<br>Formation<br>Pressure (psi)     | Abandonment<br>Pressure (psi) | Gas Density    | Recovery<br>Factor | Mcf/Acre-Foot    |
| 0                         | 2.50                     | 10%             | 30%           | 1347                                                                                             | 494                      | 0.58              | 0.55                      | 115                                     | 820                                        | 25                            | 0.64           | 97%                | 165              |
| 5                         | 7.50                     | 10%             | 30%           | 853                                                                                              | 466                      | 0.59              | 0.58                      | 115                                     | 820                                        | 25                            | 0.64           | 97%                | 165              |
| 10                        | 10.00                    | 10%             | 30%           | 387                                                                                              | 387                      | 0.66              | 0.64                      | 115                                     | 820                                        | 25                            | 0.64           | 97%                | 165              |
|                           |                          |                 |               |                                                                                                  | <u>Total</u>             | 1.82              | 1.77                      |                                         |                                            |                               |                |                    |                  |
| Field 1                   | Totals                   |                 |               |                                                                                                  |                          |                   |                           |                                         |                                            |                               |                |                    |                  |

| Field Totals        |           |  |
|---------------------|-----------|--|
| Field Production:   | 12.00 BCF |  |
| Recoverable OGIP:   | 16.78 BCF |  |
| Reserves Recovered: | 72%       |  |

## <u>Ulan Field</u>

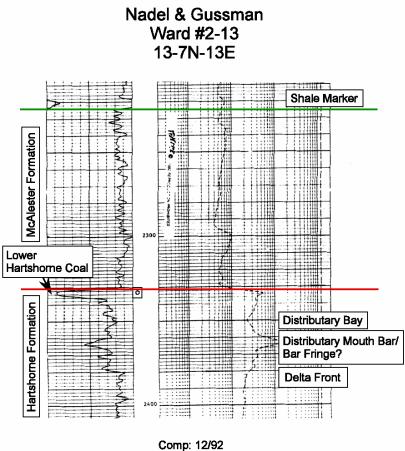
The Ulan Field is located in the northeast part of the study area and contains three wells. Total cumulative production is 0.66 bcf. The first well in the field was the Ward #2-13 (Section 13-T.7N.-R.13E.), which produced 0.16 Bcf from January 1993 thru July 2003 (Figure 58). The Ward #2-13 is a vertical Hartshorne Coal producer. The coal in the Ward #2-13 is about 5 feet thick. Only one of the wells, the Brower Oil & Gas Hill #1-24 is located within mapped net pay (Plate 5). The Hill #1-24 has produced 0.30 bcf from the Lower Hartshorne sand, Lower Hartshorne Coal, and Booch sandstones. The initial well production tests reported gas flow rates of 300 mcfd from the Booch and 200 mcfd from the Hartshorne sandstone and coal.

Volumetric calculations for the Ulan East Field can be seen in Table XI. One well produces from the Hartshorne Sandstone within the mapped net pay and it is commingled with another reservoir. Production within the field primarily comes from channel margin deposits that do calculate net pay and from the Hartshorne Coal. Judging by the production from the part of the Ulan East Field within the study area, the only economically promising development would be horizontal coalbed drilling.

#### Calvin Southeast & Greasy Creek Fields

The Calvin Southeast Field contains one well, the Murexco Petroleum Inc. Lyons #1-6, located in Section 6-T.5N.-R.11E.. No log was available for this well. Based on the gross sandstone thickness map (Plate 2) the well appears to have produced from delta front sandstones within the Hartshorne. The well had an initial rate of 201 mcfd on a  $\frac{1}{2}$ 

143


 Table XI: Volumetric reservoir summary for the Hartshorne Formation, Ulan East Field, Pittsburg

 County, Oklahoma.

| Contour<br>Interval | Avg. Net Pay | Avg. Porosity | Avg. Sw | Area (Acres) | Adjusted<br>Area (Acres) | OGIP (BCF) | Recoverable<br>OGIP (BCF) | Formation<br>Temp<br>(Degrees F) | Initial<br>Formation<br>Pressure<br>((psi) | Abandonmen<br>t Pressure<br>(psi) | Gas Density | , Recovery<br>Factor<br>Mcf/Acre-<br>Foot |
|---------------------|--------------|---------------|---------|--------------|--------------------------|------------|---------------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------|-------------------------------------------|
| 0                   | 2.50         | 12%           | 25%     | 369          | 176                      | 0.61       | 0.58                      | 110                              | 630                                        | 25                                | 0.64        | 96% 158                                   |
| 5                   | 5.00         | 12%           | 25%     | 193          | 193                      | 1.99       | 1.91                      | 110                              | 630                                        | 25                                | 0.64        | 96% 158                                   |
|                     |              |               |         |              | <u>Total</u>             | 2.59       | 2.50                      |                                  |                                            |                                   |             |                                           |
|                     | Field I      | Produc        | tion:   | 7.29         |                          |            |                           |                                  |                                            |                                   |             |                                           |
|                     | Recove       | rable C       | )GIP:   | 6.97         |                          |            |                           |                                  |                                            |                                   |             |                                           |
| Re                  | eserves      | Recov         | ered:   | 105%         |                          |            |                           |                                  |                                            |                                   |             |                                           |

inch choke with 25 psi of flowing tubing pressure. The well produced 46 mmcf from June 1984 thru August 2003, and is currently producing at a rate of 3 mcfd.

The Greasy Creek Field is a one well field located in Section 6-T.7N.-R.11E.. The sole well, Glenco Turner #5, produced 42 mmcf from commingled Hartshorne and Booch reservoirs between May 1986 thru June 2003. The well had an initial production rate of 30 mcfd on a 16/64" choke with 101 psi of flowing tubing pressure and well is currently producing 14 mcfd. The well appears to produce from the channel mouth barfringe/channel margin facies.



Comp: 12/92 IP Gas: 60 Mcfd (From Hartshorne Coal) 100# FTP, 430# SITP 10/64" Choke

1/93-8/03 Cum: 0.165 Bcf CR: 25 Mcfd 2330-36'

Figure 58: Example of a well that encountered the delta front/distributary mouth bar/distributary bay succession within the Ulan Field, Pittsburg County, Oklahoma. Note that production in this well comes from the Hartshorne Coal.

#### **Coalbed Methane Production**

Coalbed methane is an interesting play, in that the coal acts as source, reservoir, and trap for the gas. Initially, coalbed gas was produced the same way as sandstone and carbonate gas reservoirs through conventional vertical well completions that often involved multiple coal seams. With the advent of horizontal drilling technologies, the viability of drilling for coalbed methane has been increased greatly. Coalbed methane is now one of the most active gas plays in the Midcontinent, Rocky Mountain, and Appalachian Regions of the United States.

The Arkoma Basin of Oklahoma and Arkansas has seen a dramatic increase in coalbed methane exploitation using vertical and horizontal drilling and completion methods. The Hartshorne Coal is one of the most sought after coal seams within this play. Gas production from the Hartshorne in vertical or conventional wellbores is often commingled with gas production from the underlying Hartshorne Sandstone, or other reservoirs. Vertical coalbed methane wells, typically produce at a low rates for long periods of time.

Within the study area, there are a number of wells that have produced directly from the coal, either independently or commingled with production from the underlying Hartshorne sandstone. The Ott #2-22 (Section 22-T.5N.-R.12E.) is an example of a well that was completed solely in the Hartshorne Coal (Figure 51). The well was completed in January 2000 and had an initial production rate of 30 mcfd. No water was reported, but most coal wells initially produce high volumes of water. The well has produced for almost four years and has cumulated 0.05 bcf of gas. It exhibits no apparent decline in production rate, and is producing 31 Mcfd. This is typical production for many vertical

146

coal wells that do not produce at high initial flow rates, but instead produce small volumes at a sustained rate for long periods of time.

#### **Hydrocarbon Production Potential**

The Hartshorne sandstone reservoir in this area is considered a mature play, but it continues to generate drilling activity. The key to the future development is a thorough understanding of the depletion patterns and identifying potential infill locations within known reservoirs. The shallow depth of the Hartshorne makes drilling for partially depleted reservoirs a viable economic option at present gas prices.

#### Coalbed Methane Play

Coalbed completions have been a viable option for gas production within the Pennsylvanian section of Oklahoma, Arkansas, and Kansas for many years. Gas production rates from coal seams completed in vertical wellbores is usually relatively small, but these wells produce for periods of time with small rates of decline. With the advent of horizontal drilling technology an entirely new play has emerged with wells that produce at higher sustained rates. The Hartshorne Coal of the Arkoma Basin is frequently drilled using horizontal drilling technology. The minimum coal thickness needed is 4 feet. Logging-while-drilling (LWD) technology is utilized to assist the driller in keeping the bit in the coal seam.

There is sufficiently thick coal within the study area to allow for drilling of horizontal coalbed wells. However the coal does thin to as little as 0-1 foot thick in some areas. The thickest coal occurs where the Upper and Lower Hartshorne Coals are

147

undifferentiated or where they begin to 'split.' At this point, the two coal seams appear become a single coal seam, but may be separated by a layer of bony coal (Fields, 1987).

According to recent Oklahoma Corporation Commission records, several sections within the study area are proposed for horizontal coalbed methane well spacing and unit designation for the Hartshorne Coal.

# CHAPTER V

## SUMMARY

## **Depositional Models**

The Hartshorne Formation is a complex depositional system that is not completely understood. The Hartshorne has been interpreted as a multicyclic, highconstructional lobate delta system, based on various deltaic facies interpreted in outcrops and the subsurface. These facies include prodelta, delta front (distal delta front and distributary mouth bar), and delta plain (distributary channel, interdistributary bay, and crevasse splay). The upper part of the underlying Atoka Formation is believed to represent the transition from marine to deltaic sedimentation and represents initial prodelta sedimentation. Thick sandstone bodies are interpreted as distributary channel deposits in the deltaic model.

Recent work that integrated the concept of sequence stratigraphy into the earlier work reinterprets the very thick (80-250 feet) sandstone bodies as incised valley fill deposits. Within the study area, there are two such sandstone trends, IC-1 and IC-2. All models agree that the Hartshorne Formation was deposited in two primary cycles, each punctuated by widespread and fundamental changes in the depositional system. The first cycle includes the Lower Hartshorne Member south of the coal-split line and Hartshorne Formation Undivided north of the coal-split line. During this first cycle, the Lower Hartshorne delta system prograded out into the basin. This system was punctuated by a

basin-wide delta abandonment and subsidence that resulted in a large-scale coastal peat marsh system that capped the abandoned delta system. The sequence stratigraphic model suggests that a major regressive followed delta formation and a large incised valley was eroded and subsequently filled. This interpretation also suggests that peat was deposited within widespread coastal marshes as sea level rose. All models indicate that following Lower Hartshorne deposition, structurally induced differential subsidence occurred in the southern part of the area. This created accommodation space that allowed for the deposition of the Upper Hartshorne Member as a shallow delta system, which is presently capped by the Upper Hartshorne Coal. The hinge line of this differential subsidence coincides with the coal-split line and trends southwest to northeast, subparallel to major structural features within the basin. North of this coal-split line only the Lower Hartshorne Member (Hartshorne Undivided) and the Lower Hartshorne Coal are present. The sequence stratigraphic model recognizes another drop in sea level (lowstand) and incision episode within the Upper Hartshorne that occurred prior to deposition of the This valley eroded through the Lower Hartshorne Coal and into the Lower peat. Hartshorne Sandstone. It is believed that peat deposition continued uninterrupted north of the caol-split. This means that the undivided coal north of the coal split line contains both Lower and Upper Hartshorne Coal equivalents. A thin black shale or bony coal layer has been recognized within the undivided coal. This bony coal layer may represent a change in peat deposition that is the boundary between the Lower and Upper Hartshorne cycles.

#### **Evidence Supporting Depositional Model**

There is insufficient evidence to completely endorse or reject the proposed depositional models, where differences center around the origin of the thick valley fills. There is evidence concerning sand and peat deposition that should be considered in evaluating. This evidence is outlined below:

- The thick valleys or entrenched channels were eroded through local and regional markers.
- 2) Thick valley fills contain what appear to be fluvial and estuarine or shallow marine deposits, but there electrofacies were not cored. The type of fill within the valleys is key to determining their origin.
- Distribution pattern for older deltaic distributaries and thick valley fills are quite different, suggesting separate depositional systems.
- Production data indicate the delta and thick valley fills can have separate fluid types and are not a common reservoir. This suggests the two are unrelated.
- 5) The Hartshorne coals are widespread and continuous except where they are eroded by younger valley forming processes or they thin or are absent over the top of the thicker channel fills. This latter case suggests the valleys formed topographic highs as a result of differential compaction.
- 6) The thickness and lithologic characteristics of the Hartshorne Coals indicate that saltwater marshes in interdistributary bays are not viable depositional models for the Hartshorne peat. Hartshorne coal is relatively low ash and vertically continuous. Peat that form in saltwater marshes in interdistributary settings tend to contain siliclastic material that causes them to be interbedded/interlaminated

with other sediments and result in high ash content. This would make the later coal seams uneconomical.

- 7) The Hartshorne Peat was likely deposited in a marsh or mire that was distal to active silicastic deposition. This setting may be similar to the setting of the modern Okefenokee and Snuggedy marshes in southern Georgia, U.S.A.
- 8) The underclay/paleosol below the Lower Hartshorne Coal indicate it may represent a significant period of exposure and possible sequence boundary.

| tom ising<br>butary channels<br>Normal facies<br>ibution (prodelta,<br>front, mouth bar,<br>annel, and bay. | Entrenched Meander<br>Linear<br>80-250'<br>Cross-cutting relationship<br>to adjacent sediments<br>Stacked channels sandstone<br>with possible marine         | Incised Valley<br>Linear<br>80-250'<br>Cross-cutting<br>relationship to<br>adjacent sediments<br>Stacked channels with<br>possible marine                          |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| butary channels<br>Normal facies<br>ibution (prodelta,<br>front, mouth bar,                                 | 80-250'<br>Cross-cutting relationship<br>to adjacent sediments<br>Stacked channels sandstone<br>with possible marine                                         | 80-250'<br>Cross-cutting<br>relationship to<br>adjacent sediments<br>Stacked channels with                                                                         |
| ibution (prodelta,<br>front, mouth bar,                                                                     | Cross-cutting relationship<br>to adjacent sediments<br>Stacked channels sandstone<br>with possible marine                                                    | Cross-cutting<br>relationship to<br>adjacent sediments<br>Stacked channels with                                                                                    |
| ibution (prodelta,<br>front, mouth bar,                                                                     | to adjacent sediments<br>Stacked channels sandstone<br>with possible marine                                                                                  | adjacent sediments<br>Stacked channels with                                                                                                                        |
|                                                                                                             | influence                                                                                                                                                    | influence                                                                                                                                                          |
| high ash content,                                                                                           | Thick, laterally continuous,<br>except were where eroded<br>by younger processes<br>Low ash and low sulfur -<br>distal or unrelated to clastic<br>deposition | Thick, laterally<br>continuous, except<br>were where eroded by<br>younger processes<br>Low ash and low<br>sulfur - distal or<br>unrelated to clastic<br>deposition |
| numerous clastic                                                                                            | Underclay/paleosol -                                                                                                                                         | Underclay/paleosol -<br>exposure and possible<br>hiatus (sequence                                                                                                  |
| 1                                                                                                           | numerous clastic<br>as (sandstone and<br>tsone partings)                                                                                                     | numerous clastic<br>ss (sandstone and                                                                                                                              |

Table 5: Summary of Evidnece for Channel Deposition

# **Conclusions**

The following conclusions were formulated from this study:

- Interpreting the stratigraphy and depositional history of the Hartshorne Formation is hindered by the scarcity of relevant core data.
- The Hartshorne contains two deltaic systems that are identified by their respective coals.
- The presence of underclay and paleosol beneath the coal indicates a hiatus and possible genetic separation from the underlying lithologies.
- 4) The difference in the trends, fluid types, and thickness of the deltaic distributary channels and the thick valley fills/entrenched distributary channels favor the idea that these were deposited by unrelated processes.
- 5) Characteristics of the coals favor their origin as peat deposited in frewshwater swamps that are removed from siliclastic deposition and not in settings associated with saltwater marsh or distributary channels.
- 6) Highest gas recoveries in the Hartshorne Formation are from the thick valley fill sandstones that often contain a water leg that is not identifiable in older adjacent deltaic sandstones that have been cut through.
- Hartshorne coalbed methane has considerable potential in the study area, especially in the areas of thick coal development.
- Additional drilling for conventional Hartshorne Sandstone reservoir is a viable option when volumetric calculations predict remaining reserves.

- 9) Additional high-resolution stratigraphy is necessary to establish the sequence boundaries and general sequence stratigraphy and depositional history of the Hartshorne Formation.
- 10) Microstratigraphy of the Hartshorne Coals, together with geochemical studies, should be undertaken to establish the paleoenvironmental setting of the peat.
- 11) Integrated electrofacies, outcrop, and core data support a Hartshorne depositional model that contains delta cycles that are separated by en episode of relative sea level fall that resulted in deep distributary entrenchment or valley incision. Subsequent to valley filling, widespread peat marshes formed within the area in response to a relative rise in sea level. As a result, Hartshorne coals may be more genetically related to overlying strata than underlying strata.
- 12) The summary of general depositional setting and history is shown in Figures 59-64.

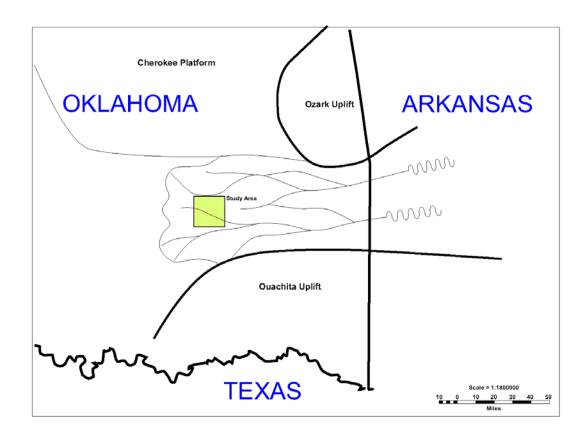



Figure 59: T-1 - Lower Hartshorne delta progradation.

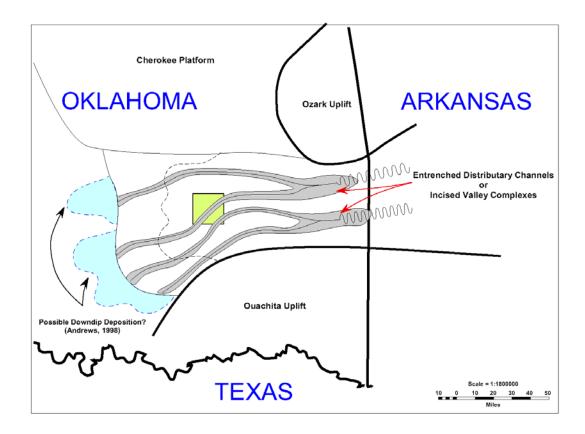



Figure 60: T-2 - Lower Hartshorne incised valley/channel development.

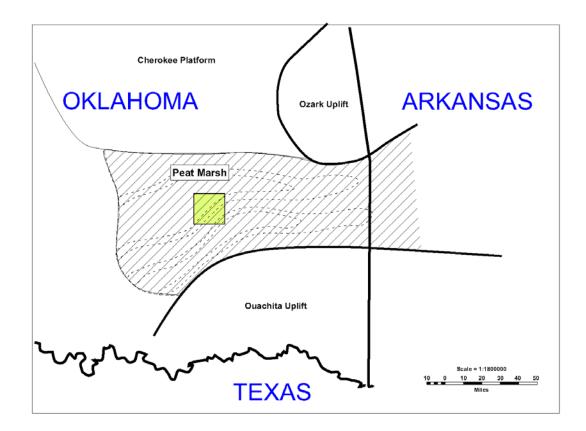



Figure 61: T-3 - Development of widespread peat marsh, with possible unconformity between peat deposits and underlying Lower Hartshorne clastic deposits.

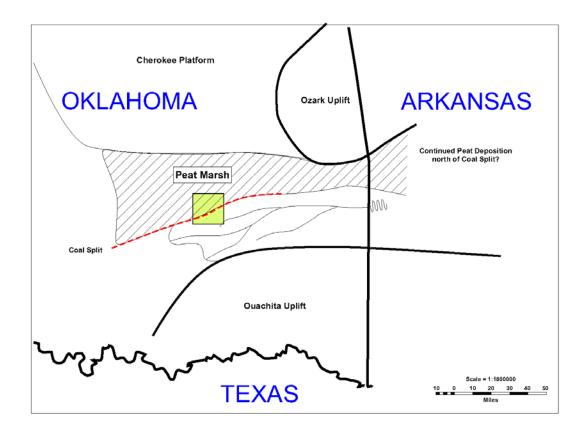



Figure 62: T-4 - Differential subsidence and Upper Hartshorne delta progradation.

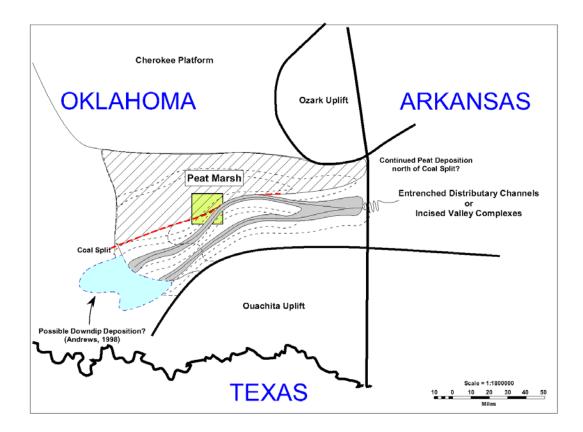



Figure 63: T-5 - Development of incised valley/channel system following Upper Hartshorne delta system.

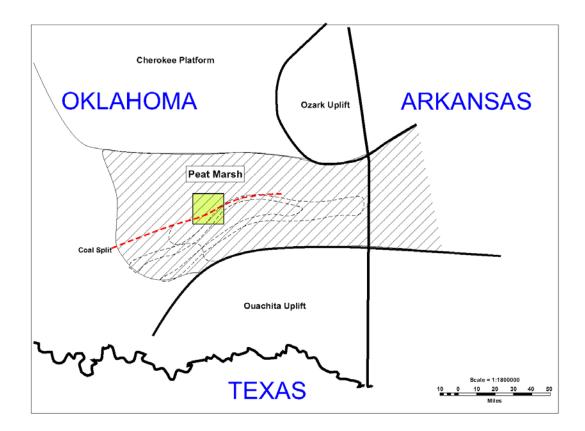



Figure 64: T-6 - Development of widespread peat marsh overlying (possibly unconformably) Upper Hartshorne clastic deposits.

# **BIBLIOGRAPHY**

- Andrews, R.D., Cardott, B.J., and Storm, T., 1998, The Hartshorne Play in Southeastern Oklahoma: Regional and Detailed Sandstone Reservoir Analysis and Coalbed-Methane Resources, Oklahoma Geological Survey Special Publication 98-7, 90 pp.
- Bohacs, K. and Suter, J., 1997, Sequence Stratigraphic Distribution of Coaly Rocks: Fundamental Controls and Paralic Examples, American Association of Petroleum Geology v. 81, p. 1612-1639.
- Bowen, D.W., Weimer, P., and Scott, A.J., 1993, The Relative Success of Siliclastic Sequence Stratigraphic Concepts in Exploration: Examples from Incised Valley Fill and Turbidite Systems Reservoirs, *in* Siliclastic Sequence Stratigraphy: Recent Developments and Applications, American Association of Petroleum Geologists, Memoir No. 58, p. 15-42.
- Busch, D.A., 1971, Genetic Units in Delta Prospecting, American Association of Petroleum Geologists Bulletin, v. 55 no. 8, p. 1137-1154.
- Cecil, C.B., 2003, The Concepts of Autocyclic and Allocyclic Controls on Sedimentation and Stratigraphy, Emphasizing the Climatic Variability, *in* Climate Controls on Stratigraphy, SEPM Special Publication No. 77, p. 13-20.
- Coleman, J.M., and Prior, D.B., 1982, Deltaic Environments of Deposition, *in* Sandstone Depositional Environments, American Association of Petroleum Geologists Memoir 31, p. 139-178.
- Eble, C.F., 2003, Palynological Perspectives of Late Middle Pennsylvanian Coal Beds, *in* Climate Controls on Stratigraphy, SEPM Special Publication No. 77, p. 123-135
- Flores, R.W., 1993, Coal-Bed and Related Depositional Environments in Methane Gas-Producing Sequences, *in* Hydrocarbons from Coal, American Association of Petroleum Geologists, Studies in Geology No. 38, p 287-302, p 13-37.
- Haley, B.R., 1961, Thickness Trends in the Hartshorne Sandstone and McAlester Formation in North-Western Arkansas, *in* Short Papers in the Geologic and Hydrologic Science, United States Geological Survey Professional Paper 424-C, p. C80-81.
- Hamilton, D.S. and Tadros, N.Z., 1994, Utility of Coal Seams as Genetic Stratigraphic Sequence Boundaries in Nonmarine Basins: An Example from the Gunnedah Basin, Australia, American Association of Petroleum Geologists Bulletin, v. 78, p. 267-286.

- Hemish L.A., 1988, Report of Core-Drilling by the Oklahoma Geological Survey in Pennsylvanian Rocks of the Northeastern Oklahoma Coal Belt, 1983-86, Oklahoma Geological Survey Special Publication 88-2, 174 p.
- Hemish, L.A., 1991, Geologic Map of the LeFlore Quadrangle, LeFlore and Latimer Counties, Oklahoma, Oklahoma Geological Survey Open-File Report 1-91, 1 sheet, scale 1:24,000.
- Hemish, L.A., 1992, Geologic Map of the Gowen Quadrangle, Latimer County, Oklahoma, Oklahoma Geological Survey Open-File Report 1-92, 1 sheet, scale 1:24,000.
- Hemish, L.A., 1993, Geology of the Wiser State Park Area, LeFlore County, Oklahoma, Oklahoma Geological Survey Guidebook 28, 28 pp.
- Hemish, L.A., 1995, Geologic Map of the Adamson Quadrangle, Pittsburg and Latimer Counties, Oklahoma, Oklahoma Geological Survey Open-File Report 4-95, 1 sheet, scale 1:24,000.
- Hemish, L.A., 1995, Geologic Map of the Krebs Quadrangle, Pittsburg County, Oklahoma, Oklahoma Geological Survey Open-File Report 3-96, 1 sheet, scale 1:24,000.
- Hemish, L.A., Suneson, N.H., and Chaplin, J.R., 1995, Stratigraphy and Sedimentation of Some Selected Pennsylvanian (Atokan-Desmoinesian) Strata in the Southeastern part of the Arkoma Basin, Oklahoma, Oklahoma Geological Survey Open-File Report 3-95, 107 p.
- Hendricks, T.A, Done, C.H., and Knechtel, M.M., 1936, Stratigraphy of the Arkansas-Oklahoma Coal Basin, American Association of Petroleum Geologists Bulletin, v. 20, p. 1342-56.
- Koinm, D. N. and Dickey, P.A., 1967, Growth Faulting in the McAlester Basin of Oklahoma, American Association of Petroleum Geologists Bulletin, v. 51, No. 4, p. 710-718.
- Kosters, E.C., and Bailey, A., 1983, Characteristics of Peat Deposits in the Mississippi River Deltaic Plain, Transactions of the Gulf Coast Association of Geological Societies 33, p. 311-325.
- Matteo, A.P., 1981, Depositional History of the Hartshorne Formation, Arkoma Basin, East-Central Oklahoma: University of Missouri unpublished M.S. thesis, 80 pp.
- McCabe, P.J., 1984, Depositional Environments of Coal and Coal-Bearing Strata, *in* Sedimentology of Coal and Coal-Bearing Sequences, p. 13-42.

- McCabe, P.J., 1987, Facies Studies of Coal and Coal-Bearing Strata, *in* Coal and Coal Bearing Strata: Recent Advances, p. 51-66.
- McDaniel, G.A., 1961, Surface Stratigraphy of the Hartshorne Formation, LeFlore, Latimer, and Pittsburg Counties, Oklahoma, in Arkoma Basin and North-Central Ouachita Mountains of Oklahoma: Tulsa Geological Society and Fort Smith Geological Society Guidebook, p. 66-71.
- McQueen, K.C., 1982, Subsurface Stratigraphy and Depositional Systems of the Hartshorne Formation, Arkoma Basin, Oklahoma: University of Arkansas unpublished M.S. thesis, 49 pp.
- Posamentier, H.W., 2001, Lowstand Alluvial Bypass Systems: Incised vs. Unincised, American Association of Petroleum Geologists Bulletin, v. 85, p. 1771-1793.
- Retallack, G.J., 1997, A Colour Guide to Paleosols, John Wiley and Sons Publisher, West Sussex, England, 175 pp.
- Rieke, H.H. and Kirr, J.N., 1984, Geologic Overview, Coal, and Coalbed Methane Resources of the Arkoma Basin – Arkansas and Oklahoma, *in* Coalbed Methane Resources of the United States, AAPG Studies in Geology Series #17, p 135-161.
- Scholes, P.L., and Johnston, D., 1993, Coalbed Methane Applications of Wireline Logs, in Hydrocarbons from Coal, American Association of Petroleum Geologists, Studies in Geology No. 38, p 287-302
- Schumm, S.A. and Ethridge, F.G., 1994, Origin, Evolution, and Morphology of Fluvial Valleys, in Incised Valley Systems: Origin and Sedimentary Sequences, SEPM Special Publication No. 51, p. 11-27.
- Shanley, K.W. and McCabe, P.J., 1994, Perspectives on the Sequence Stratigraphy of Continental Strata, American Association of Petroleum Geologists Bulletin, v. 78, p. 544-568.
- Stayaert, D.J., 1980, Facies, Depositional Environments, and Petrology of the Hartshorne Formation, Eastern Arkoma Basin, Arkansas, Unpublished Master's Thesis, University of Missouri, Columbia, MO, 115 pp.
- Suneson, N.H., 1998, Geology of the Hartshorne Formation, Arkoma Basin, Oklahoma Oklahoma Geological Survey, Guidebook 31, 74 pp.
- Tyler, R., Scott, A.R., Kaiser, W.R., and McMurry, 1997, The Application of a Coalbed Methane Producibility Model in Defining Coalbed Methan Exploration Fairways

and Sweetspots, Bureau of Economic Geology Report of Investigation No. 224, 59 pp.

- Visher, G.S., Saitta, S.B., and Phares, R.S., 1971, Pennsylvanian Delta Patterns and Petroleum Occurrences in Eastern Oklahoma, American Association of Petroleum Geologists Bulletin, v. 55, No. 8, p. 1206-1230.
- Zaengle, J.F., 1980, Depositional Environments and Sandstone Petrogenesis of The Hartshorne Formation, Arkoma Basin, West-Central Arkansas, Unpublished Master's Thesis, University of Missouri, Columbia, MO, 160 pp.
- Zaitlin, B.A., Dalrymple, R.W., and Boyd, R., 1994, The Stratigraphic Organization of Incised-Valley Systems Associated with Relative Sea-Level Change, in Incised Valley Systems: Origin and Sedimentary Sequences, SEPM Special Publication No. 51, p. 45-60.

# **APPENDIXES**

<u>Appendix A</u>: Hartshorne Gas Production Data, With Facies Interpretation.

| Well Name             | Well # | Location   | Formation             | Eield Name                    | Cumulative Gas (Mc <u>r)</u> | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | <u>Secondary Facies</u> |
|-----------------------|--------|------------|-----------------------|-------------------------------|------------------------------|--------------------------------|-----------------------|----------------------|--------|-------------------------|
| LYONS                 | 1-6    | 6-5N-11E   | HARTSHORNE            | SOUTHEAST                     | 46,254                       | 3                              | 1984/06               | 2003/08              | DF     | 1                       |
| BLACK                 | 1-17   | 17-5N-11E  | HARTSHORNE            | HILL TOP                      | 245,241                      | 29                             | 1988/11               | 2003/08              | DMB    |                         |
| BAILEY                | 1      | 17-5N-11E  | HARTSHORNE            | HILL TOP                      | 131,633                      | 23                             |                       | 2003/05              | DF     |                         |
| MCDONALD              | 1      | 18-5N-11E  | HARTSHORNE            | HILL TOP                      | 401,182                      | 27                             |                       | 2003/08              | DF     |                         |
| PACE                  | 1      | 18-5N-11E  | HARTSHORNE            | HILL TOP                      | 21,377                       | 0                              | 1975/09               |                      |        |                         |
| ARTHUR #1             | 1      | 19-5N-11E  | HARTSHORNE            | HILL TOP                      | 569,869                      | 35                             |                       | 2003/08              | DMB    |                         |
| ALTA #1               | 1      | 19-5N-11E  | HARTSHORNE            | HILL TOP                      | 299,093                      | 8                              | 1981/09               |                      | DMB    |                         |
| MOBIL #1              | 1      | 20-5N-11E  | HARTSHORNE            | HILL TOP                      | 544,250                      | 49                             | 1988/07               | 2003/08              | DMB    |                         |
| BLACK J               | 1      | 20-5N-11E  | HARTSHORNE            | HILL TOP                      | 472,784                      | 72                             | 1989/02               | 2003/09              | DMB    |                         |
| TRAVIS P              | 1L     | 21-5N-11E  | HARTSHORNE            | HILL TOP                      | 621,903                      | 75                             | 1991/06               | 2003/01              | DMB    | C-1                     |
| DUNCAN                | 1      | 23-5N-11E  | HARTSHORNE            | STUART<br>SOUTHWEST<br>STUART | 83,900                       | 0                              | 1961/01               |                      | IC-1   |                         |
| WOODFORK              | 1      | 26 EN 11E  | HARTSHORNE            | SOUTHWEST                     | 5 412 727                    | 0                              | 1060/12               | 1000/11              | IC-1   | 1                       |
| WOODFORK              |        | 26-5N-11E  | HARTSHORNE            | STUART                        | 5,413,737                    | 0                              | 1900/12               | 1988/11              | 10-1   | <b>—</b>                |
| KINCADE               | 1      | 26-5N-11E  | HARTSHORNE            | STUART                        | 97,600                       | 0                              | 1964/04               | 1968/03              | IC-1   |                         |
| LACKEY C S 2 NE       | 1      | 27-5N-11E  | HARTSHORNE            | SOUTHWEST                     | 4,249,974                    | 0                              | 1960/12               | 1994/01              | IC-1   |                         |
| WALKER HEIRS          | 1      | 27-5N-11F  | HARTSHORNE            | STUART<br>SOUTHWEST           | 1,306,286                    | 15                             | 1970/03               | 2003/09              | IC-1   |                         |
| WALKER HEIRS          |        | 27-010-112 | HARTOHORRE            | STUART                        | 1,000,200                    | 10                             | 1070/00               | 2000/00              | 10-1   | <u> </u>                |
| 27-2                  | 27-2   | 27-5N-11E  | HARTSHORNE            | SOUTHWEST                     | 290,973                      | 55                             | 1992/08               | 2003/05              | IC-1   | 1                       |
| 21 2                  | 21 2   | 21 011 112 | HARTSHORNE            | STUART                        | 200,010                      | 00                             | 1002/00               | 2000/00              | 10 1   |                         |
| HERRING D             | 1-C    | 28-5N-11E  | / JEFFERSON           | SOUTHWEST                     | 1,032,069                    | 136                            | 1989/02               |                      | IC-1   |                         |
| VERNON                | 1-29   | 29-5N-11E  | HARTSHORNE            | HILL TOP                      | 98,612                       | 12                             | 1990/05               | 2003/08              | DF     |                         |
| VERNON PARK<br>ESTATE | 1-29   | 29-5N-11E  | HARTSHORNE            | HILL TOP                      | 160,930                      | 8                              | 1989/12               | 2003/08              | DF     |                         |
| PLP CARTER            | PLP2   | 30-5N-11E  | HARTSHORNE            | HILL TOP<br>SOUTHWEST         | 652,029                      | 0                              | 1978/04               | 1998/11              |        |                         |
| CARTER C C            | 1      | 30-5N-11E  | HARTSHORNE            | HILL TOP<br>SOUTHWEST         | 251,921                      | 0                              | 1978/05               | 1980/12              | DF     | BF                      |
| HUFFMAN               | 1-32   | 32-5N-11E  | HARTSHORNE            | HILL TOP<br>SOUTHWEST         | 173,087                      | 25                             | 1990/01               | 2003/08              | DMB    |                         |
| MARK                  | 1-32   | 32-5N-11E  | HARTSHORNE            | HILL TOP<br>SOUTHWEST         | 5,954                        | 0                              | 1990/08               | 1993/05              | DF     |                         |
| SHIRLEY#1             | 1      | 36-5N-11E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH          | 87,827                       | 8                              | 1986/04               | 2003/06              | DF     | СМ                      |
| MARBET LLC            |        | 1-5N-12E   | HARTSHORNE            | REAMS<br>NORTHWEST            | 199,182                      | 150                            | 2000/04               | 2003/03              | DF     | DMB                     |
| SHERRILL              | 1      | 2 5N 12E   | HARTSHORNE            |                               | 166,008                      | 72                             | 1007/04               | 2003/08              | DF     | DMD                     |
| SHERRILL              | 3-2    | 2-5N-12E   | HARTSHORNE<br>/ BOOCH | SOUTH<br>PINE HOLLOW<br>SOUTH | 71,385                       | 73<br>77                       |                       | 2003/08              | DF     | DMB<br>DMB              |
|                       | 5-2    | 2-JIN-12E  | , 50001               | PINE HOLLOW                   | 71,505                       | ~ ~                            | 2001/00               | 2003/00              |        | DIVID                   |
| SEMESKI               | 1-3    | 3-5N-12E   | HARTSHORNE            | SOUTH<br>PINE HOLLOW          | 217,786                      | 139                            | 2000/10               | 2003/09              | СМ     | DF                      |
| EVERETT 1             | 1      | 3-5N-12E   | HARTSHORNE            | SOUTH                         | 279,023                      | 62                             | 1991/01               | 2003/08              | СМ     | DF                      |

| Well Name  | Well # | Location  | Formation             | Field Name                          | <u>Cumulative Gas (Mcf)</u> | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|------------|--------|-----------|-----------------------|-------------------------------------|-----------------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| ROSE       | 1-4    | 4-5N-12E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH<br>PINE HOLLOW | 110,079                     | 61                             | 2001/02               | 2003/08              | СМ     | DF               |
| LOFTIS     | 1      | 8-5N-12E  | HARTSHORNE            | SOUTH                               | 3,787                       | 0                              | 2000/08               | 2000/10              | IC-1   |                  |
| BETHEL     | 3      | 9-5N-12E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 154,148                     | 59                             | 2000/05               | 2003/08              | C-2    | СМ               |
| BETHAL     | 2-9    | 9-5N-12E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 118,352                     | 30                             | 1999/05               | 2003/08              | C-2    |                  |
| BLEVINS    |        | 9-5N-12E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 40,085                      | 82                             | 2002/05               | 2003/08              | C-2    |                  |
| COOPER     | 1      | 10-5N-12E | HARTSHORNE<br>/ BOOCH | PINE HOLLOW<br>SOUTH                | 778,565                     | 140                            |                       | 2003/08              | C-2    | см               |
| CRAWFORD   |        | 10-5N-12E | HARTSHORNE<br>/ BOOCH | PINE HOLLOW<br>SOUTH                |                             | 38                             |                       | 2003/08              | C-2    | СМ               |
|            | 1      |           |                       | PINE HOLLOW                         | 152,357                     |                                |                       |                      |        |                  |
| WATKINS #1 | 1      | 10-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 532,012                     | 152                            | 1984/02               | 2003/08              | C-2    | СМ               |
| WILLARD    | 1-10   | 10-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 722,003                     | 110                            | 1999/02               | 2003/08              | C-2    |                  |
| MARVIN     | 3      | 11-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 495,062                     | 225                            | 1999/10               | 2003/06              | СМ     | DMB              |
| MARVIN     | 4      | 11-5N-12E | HARTSHORNE            | SOUTH                               | 26,210                      | 0                              | 1999/12               | 2000/02              | СМ     | DMB              |
| MARVIN     | 5      | 11-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 1,227                       | 0                              | 2001/03               | 2001/03              | СМ     | DMB              |
| MARVIN     | 6      | 11-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 2,387                       | 42                             | 2003/02               | 2003/03              | СМ     | DMB              |
| MARBET     | 17     | 12-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 254,191                     | 152                            | 2000/01               | 2003/03              | DF     | СМ               |
| JEFFERSON  | 1      | 12-5N-12E |                       | PINE HOLLOW<br>SOUTH                | 258,557                     | 61                             |                       | 2003/03              |        | DF               |
| FIELD HEIR | 1      | 13-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 3,255,168                   | 24                             |                       | 2003/09              |        |                  |
|            |        |           |                       | PINE HOLLOW                         |                             |                                |                       |                      |        |                  |
| WAGEMAN    | 1      | 14-5N-12E |                       | SOUTH<br>PINE HOLLOW                | 109,498                     | 55                             |                       | 2003/08              | СМ     | DF               |
| JUDY       | 1      | 15-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 6,009                       | 200                            | 2003/07               | 2003/07              | DF     | СМ               |
| WILCOX     | 1-15   | 15-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 378,555                     | 56                             | 2001/02               | 2003/08              | C-2    |                  |
| TRACEY     | 1      | 16-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW                | 53,744                      | 67                             | 2002/06               | 2003/08              | C-2    | СМ               |
| DONNA      | 1      | 16-5N-12E | HARTSHORNE            | SOUTH                               | 434,511                     | 177                            | 2000/09               | 2003/08              | C-2    |                  |
| GOODE#1    | 1      | 16-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 456,606                     | 6                              | 1985/01               | 2003/08              | C-2    | см               |
| ADAMS J W  | 1-16   | 16-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 243,096                     | 20                             | 1998/07               | 2003/08              | C-2    |                  |
| JOHNNY     | 1-16   | 16-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH                | 716,366                     | 147                            | 1999/05               | 2003/08              | C-2    | см               |

| Well Name             | Well # | Location  | Formation              | Field Name                          | <u>Cumulative Gas (Mcf)</u> | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|-----------------------|--------|-----------|------------------------|-------------------------------------|-----------------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| ISENHOWER             | 1-17   | 17-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 463,477                     | 148                            | 1999/09               | 2003/08              | C-2    |                  |
| KRISTY LEE            | 1-17   | 17-5N-12E |                        | PINE HOLLOW<br>SOUTH                | 33,779                      | 17                             | 2000/07               | 2003/08              | C-2    | СМ               |
| BROOKS                | 1-18   | 18-5N-12E | HARTSHORNE<br>/ SENORA | PINE HOLLOW<br>SOUTH                | 16,675                      | 0                              | 1984/03               | 1996/11              | IC-1   |                  |
| HARRISON              | 1-18   | 18-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 281,510                     | 157                            | 1999/10               | 2003/08              | IC-1   |                  |
| VANDEVEER             | 1      | 19-5N-12E | HARTSHORNE<br>/ BOOCH  | PINE HOLLOW<br>SOUTH                | 517,653                     | 126                            | 1975/04               | 2003/09              | СМ     | DF               |
| VANDEVEER<br>WESTLAKE | 2-19   | 19-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH<br>PINE HOLLOW | 2,347                       | 78                             | 2003/09               | 2003/09              | СМ     | DF               |
| HEIRS                 | 1-20   | 20-5N-12E | HARTSHORNE             | SOUTH                               | 177,031                     | 26                             | 1987/05               | 2003/08              | C-2    |                  |
| ТІМ                   | 2-20   | 20-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 10,003                      | 15                             | 2002/08               | 2003/08              | СМ     | C-2              |
| BLACK                 | 1      | 20-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 1,572                       | 0                              | 1980/12               | 1982/07              | DF     | DMB              |
| GARRETT A             | 1      | 21-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 637,888                     | 29                             | 1966/04               | 2003/08              | DF     | СМ               |
| GARRETT               | 1-A    | 21-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 178,807                     | 0                              | 1966/04               |                      | СМ     | DF               |
| JENNIFER              | 1-21   | 21-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 45,011                      | 52                             | 2001/12               | 2003/08              | DF     | СМ               |
| GARRETT               | 2-21   | 21-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 16,077                      | 0                              | 1999/09               | 2000/10              | см     | DF               |
| JENNIFER              | 2-21   | 21-5N-12E |                        | PINE HOLLOW<br>SOUTH                | 17,529                      | 17                             |                       | 2003/08              | см     | DF               |
| GARRETT               | 3-21   |           | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 82,910                      | 49                             |                       | 2003/08              | см     | DF               |
| GARRETT               | 4-21   |           | HARTSHORNE             | PINE HOLLOW<br>SOUTH                |                             |                                |                       | 2003/08              | СМ     | DF               |
| MORAN S               |        |           | HARTSHORNE             | PINE HOLLOW<br>SOUTH                |                             |                                |                       | 2003/08              |        |                  |
| оп                    | 2      | 22-5N-12E |                        | PINE HOLLOW<br>SOUTH                | 52,983                      | 32                             | 1999/10               |                      | C-2    |                  |
| ELLIS G W             | <br>1B | 22-5N-12E |                        | PINE HOLLOW<br>SOUTH                | 115,101                     | 82                             | 2001/11               |                      |        |                  |
| оп                    |        |           | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 123,980                     |                                |                       | 2003/08              |        | DF               |
| DELILAH               | 1      | 23-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 1,693,279                   | 137                            | 1985/10               | 2003/09              | IC-2   |                  |
| LOFTIS                | 2      | 23-5N-12E | HARTSHORNE             | PINE HOLLOW<br>SOUTH                | 4,239,153                   | 0                              | 1968/10               | 1985/09              | IC-2   |                  |

| Well Name               | Well # | Location  | <u>Formation</u>      | Field Name           | Cumulative Gas (Mcf) | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|-------------------------|--------|-----------|-----------------------|----------------------|----------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| LOFTIS AUSTIN E         | 1      | 23-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW | 892,201              | 87                             | 1985/10               | 2003/09              | IC-2   |                  |
| DELILAH                 |        | 23-5N-12E | HARTSHORNE            | SOUTH                | 1,216,608            | 0                              | 1985/10               | 1992/11              | IC-2   |                  |
| MORRIS OSSIE            | 1      | 24-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 11,017,443           | 276                            | 1965/08               | 2003/09              | IC-2   |                  |
| MORRIS O                | 3-24   | 24-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 46,175               | 38                             | 2000/11               | 2003/09              | IC-2   |                  |
| DEPOT                   | 1      | 25-5N-12E |                       | PINE HOLLOW<br>SOUTH | 260,615              |                                |                       | 2003/09              | IC-2   |                  |
|                         |        |           |                       | PINE HOLLOW          |                      |                                |                       |                      |        |                  |
| WORKING EE              | 1      | 25-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW | 8,166,885            | 180                            | 1965/08               | 2003/09              | IC-2   |                  |
| DAVIS                   | 1      | 26-5N-12E | HARTSHORNE            | SOUTH                | 7,660,105            | 175                            | 1965/10               | 2003/09              | IC-2   |                  |
| BLACK                   | 3-28   | 28-5N-12E | HARTSHORNE<br>/ BOOCH | PINE HOLLOW<br>SOUTH | 429,743              | 80                             | 1993/08               | 2003/06              | C-2    | СМ               |
| HALL                    | 1      | 29-5N-12E | HARTSHORNE<br>/ BOOCH | PINE HOLLOW<br>SOUTH | 519,302              | 43                             | 1981/07               | 2003/09              | C-2    | СМ               |
| ROGERS                  | 1-30   | 30-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 746,296              | 41                             | 1978/06               | 2003/08              | C-2    |                  |
| LOFTIS                  | 1-30   | 30-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 1,068,855            | 122                            | 1986/10               | 2003/08              | C-2    |                  |
| HALL                    | 1      | 31-5N-12E | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 428,728              | 19                             |                       | 2003/08              | C-2    |                  |
|                         |        |           |                       | PINE HOLLOW          |                      |                                |                       |                      | C-2    |                  |
| HALL<br>MCDONALD        | 1      | 32-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW | 470,147              | 0                              | 1966/11               | 2000/10              |        |                  |
| SUSAN                   | 1      | 35-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW | 8,044,198            | 78                             | 1965/08               | 2003/09              | IC-2   |                  |
| USA #36                 | 1      | 36-5N-12E | HARTSHORNE            | SOUTH<br>PINE HOLLOW | 864,986              | 0                              | 1966/03               | 1983/11              | IC-2   |                  |
| THOMPSON                | 1      | 1-5N-13E  | HARTSHORNE            | SOUTH                | 304,160              | 32                             | 1984/10               | 2003/08              | C-2    | СМ               |
| WATKINS                 | 1      | 2-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 793,928              | 37                             | 197 <u>5/0</u> 9      | 2003/09              | IC-2   |                  |
| FOOD SE SW NW           | 1      | 3-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 2,258,446            | 40                             | 1965/08               | 2003/09              | IC-2   |                  |
| FOOD                    | 2-3    | 3-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 345,576              |                                |                       | 2003/09              |        |                  |
| GIBSON WINNIE           | 2-4    | 4-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 77,738               |                                |                       | 2003/08              |        |                  |
| GIBSON WINNIE           | 1      | 4-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 948,223              |                                |                       | 2003/09              |        |                  |
| LINDSAY GIBSON<br>NE SW | 1      | 4-5N-13E  | HARTSHORNE            | PINE HOLLOW<br>SOUTH | 3,730,939            | 0                              |                       | 1990/04              |        |                  |
| THORNTON SE             |        |           | TANTONNE              | PINE HOLLOW          |                      | -                              |                       |                      |        |                  |
| NW SE                   | 1      | 5-5N-13E  | HARTSHORNE            | SOUTH                | 1,508,564            | 34                             | 1965/08               | 2003/09              | IC-2   |                  |

| Well Name                 | Well #     | Location  | <u>Formation</u>   | Eield Name                          | Cumulative Gas (Mcf) | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | <u>Secondary Facies</u> |
|---------------------------|------------|-----------|--------------------|-------------------------------------|----------------------|--------------------------------|-----------------------|----------------------|--------|-------------------------|
| STIPE                     | 1-6        | 6-5N-13E  | HARTSHORNE         | SOUTH                               | 83,798               | 0                              | 1999/12               | 2002/07              | DF     | СМ                      |
| REYNOLDS                  | 1          | 7-5N-13E  | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 2,161,911            | 96                             | 1979/07               | 2003/09              | IC-2   |                         |
| FIRESTON                  | 1          | 7-5N-13E  | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 678,818              | 0                              | 1966/04               | 1977/04              | IC-2   |                         |
| BUSE SW NE                | 1          | 8-5N-13E  | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 6,868,237            | 113                            | 1965/08               |                      | IC-2   |                         |
| WALLACE W C<br>NE SW NW   | 1&2        | 9-5N-13E  | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 1,700,574            |                                |                       | 2003/08              | IC-2   |                         |
|                           |            |           |                    | PINE HOLLOW                         |                      |                                |                       |                      |        |                         |
| WINNIE                    | 1          | 10-5N-13E | HARTSHORNE         | SOUTH<br>PINE HOLLOW                | 101,532              | 13                             | 1988/08               | 2003/08              | СМ     | DF                      |
| GIBSON                    | 10-1       | 10-5N-13E | HARTSHORNE         | SOUTH                               | 123,071              | 17                             | 1985/01               | 2003/08              | DF     | СМ                      |
| WATKINS                   | 1          | 11-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH<br>PINE HOLLOW | 545,907              | 63                             | 1980/11               | 2003/08              | C-2    | СМ                      |
| WATKINS                   | 1          | 12-5N-13E | HARTSHORNE         | SOUTH                               | 520,858              | 66                             | 1984/10               | 2003/08              | C-2    |                         |
| HOPKINS                   | 1          | 13-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 295,379              | 46                             | 1981/09               | 2003/08              | C-2    | СМ                      |
| JUANITA                   | 1-13       | 13-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 40,369               | 26                             | 2000/09               | 2003/08              | СМ     | DF                      |
| GLENNIE                   | 1-13       | 13-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 126,153              | 58                             | 2000/04               | 2003/08              | СМ     | DF                      |
| SANDRA                    | 1-13       | 13-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 122,939              | 55                             | 2000/04               | 2003/08              | СМ     | DF                      |
| MARBET LLC                | 31         | 14-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 77,214               | 108                            | 2001/05               | 2003/07              | C-2    |                         |
| RAMSEY                    | 1          | 14-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 19,129               | 0                              | 1983/09               |                      | C-2    | СМ                      |
| RAMSEY                    | 1-14       | 14-5N-13E | HARTSHORNE<br>ZONE | PINE HOLLOW<br>SOUTH                | 9,631                | 0                              | 1983/02               | 1983/08              | C-2    |                         |
| MARBET LLC 37             | 37         | 15-5N-13E | HARTSHORNE         | PINE HOLLOW<br>SOUTH                | 57,461               | 93                             |                       | 2003/08              | C-2    |                         |
| EGGLESTON                 | 1-15       |           |                    | PINE HOLLOW<br>SOUTH                | 674,126              |                                |                       | 2003/08              |        |                         |
| EGGLESTON                 | 1-13<br>1A | 15-5N-13E |                    | PINE HOLLOW<br>SOUTH                | 286,095              |                                |                       | 2003/07              |        |                         |
| UNIT 1-A                  |            |           |                    | PINE HOLLOW<br>SOUTH                |                      |                                |                       |                      |        |                         |
| ROCK WP<br>ROCK W P C NW  | 1          | 17-5N-13E |                    | PINE HOLLOW                         | 32,358               | 0                              |                       | 1989/07              |        |                         |
| NW<br>BOOK W/ P           | 2          | 17-5N-13E |                    | SOUTH<br>PINE HOLLOW                | 4,245,468            | 0                              |                       | 2003/02              |        |                         |
| ROCK W P<br>BRUCE ROBBINS | 3-17       | 17-5N-13E |                    | SOUTH<br>PINE HOLLOW                | 1,170                | 1                              |                       | 2002/10              |        |                         |
| UNIT                      | 1          | 18-5N-13E | HARTSHORNE         | SOUTH                               | 6,535,822            | 128                            | 1965/08               | 2003/09              | IC-2   |                         |

| Well Name              | Well # | Location  | Formation             | Field Name               | <u>Cumulative Gas (Mcf)</u> | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | <u>Secondary Facies</u> |
|------------------------|--------|-----------|-----------------------|--------------------------|-----------------------------|--------------------------------|-----------------------|----------------------|--------|-------------------------|
| UNIV OF TULSA          | 1      | 19-5N-13E | HARTSHORNE            | PINE HOLLOW<br>SOUTH     | 3,516,263                   | 0                              | 1970/04               | 1998/11              | IC-2   |                         |
| GRETA                  | 1-21   | 21-5N-13E | HARTSHORNE            | POSTLE                   | 13,725                      | 101                            | 2002/12               | 2003/03              | DF     |                         |
| CRAWLEY                | 1-21   | 21-5N-13E | HARTSHORNE            | PINE HOLLOW<br>SOUTH     | 215,157                     | 342                            | 2001/07               | 2003/08              | C-2    | DMB                     |
| VIRGIL                 | 1-22   | 22-5N-13E | HARTSHORNE            | PINE HOLLOW<br>SOUTH     | 226,545                     | 446                            | 2001/04               | 2003/01              | СМ     | DMB                     |
| MARBETT LLC            | 32     | 23-5N-13E |                       | PINE HOLLOW<br>SOUTH     | 17,246                      | 19                             |                       | 2003/03              | СМ     | DMB                     |
| NELL MARY              | 4      | 24-5N-13E |                       | PINE HOLLOW<br>SOUTH     | 9,546                       | 83                             |                       | 2003/08              | СМ     | DMB                     |
| DEER CREEK             | 1-24   | 24-5N-13E |                       | PINE HOLLOW<br>SOUTH     | 73,422                      | 0                              |                       | 1989/10              |        | 2                       |
|                        |        |           |                       | SHADY GROVE              |                             |                                |                       |                      |        |                         |
| ECKLES                 | 1-5    | 5-6N-11E  | HARTSHORNE            | SOUTH                    | 85,551                      | 13                             | 1999/09               | 2003/09              | DMB    | C-1                     |
| TRUMBO                 | 1      | 6-6N-11E  | HARTSHORNE<br>/ BOOCH | SHADY GROVE<br>SOUTH     | 597,243                     | 4                              | 1964/01               | 2003/07              | DF     | DMB                     |
| STEPHENS               | 1      | 6-6N-11E  | HARTSHORNE<br>/ BOOCH | SHADY GROVE<br>SOUTH     | 525,239                     | 0                              | 1964/01               | 2003/07              | DF     |                         |
| BOYD                   | 1      | 7-6N-11E  | HARTSHORNE<br>/ BOOCH | SHADY GROVE<br>SOUTH     | 737,652                     | 9                              | 1964/01               | 2003/08              | DF     |                         |
| BOYD                   | 2      | 7-6N-11E  | HARTSHORNE            | SHADY GROVE<br>SOUTH     | 85,110                      | 6                              |                       | 2003/08              | DF     |                         |
| BLACK #2               | 2      | 9-6N-11E  | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 96,090                      | 5                              | 1993/06               | 2003/06              | DMB    | DF                      |
| BLACK #4               | 4      | 9-6N-11E  | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 456,763                     | 17                             | 1993/11               | 2003/09              | C-1    | DMB                     |
| WARREN                 | 1      | 9-6N-11E  | HARTSHORNE            | SHADY GROVE<br>SOUTH     | 77,348                      | 0                              | 1969/09               | 1972/01              | C-1    | DMB                     |
| BLACK #3               | 3      | 10-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 467,630                     | 22                             | 1993/11               | 2003/09              | DMB    |                         |
| GENEVA                 | 1-10   | 10-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 262,228                     | 15                             | 1995/07               | 2003/09              | DMB    | DF                      |
| GAYLER #1-10           | 1-10   | 10-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 852,326                     | 69                             | 1994/11               | 2003/09              | C-1    | DMB                     |
| MC DONALD #1-<br>10    | 1-10   | 10-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 132,555                     | 0                              | 1994/11               | 1999/07              | C-1    | DMB                     |
| HILL #1-11             | 1-11   | 11-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTH     | 1,028,357                   | 206                            | 1994/11               | 2003/09              | C-1    | DMB                     |
| BLEVINS                | 2-12   | 12-6N-11E | HARTSHORNE            | CABANISS<br>NORTHWEST    | 569,027                     | 64                             | 1995/10               | 2003/09              | C-1    |                         |
| BALLINGER              | 3-13   | 13-6N-11E | HARTSHORNE            | CABANISS<br>NORTHWEST    | 1,412,822                   | 42                             | 1985/01               | 2003/08              | DMB    | C-1                     |
| PAUL BALLINGER<br>4-13 | 4-13   | 13-6N-11E | HARTSHORNE            | CABANISS<br>NORTHWEST    | 109,744                     | 14                             | 1992/05               | 2003/08              | DMB    | DF                      |
| HILL                   | 4-14   | 14-6N-11E | HARTSHORNE            | SHADY GROVE<br>SOUTHWEST | 124,168                     | 23                             | 1995/06               | 2003/09              | DF     | DMB                     |

| Well Name                  | Well # | Location               | Formation                | HADY GROVE                        | Cumulative Gas (Mcf <u>)</u> | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies     | Secondary Facies |
|----------------------------|--------|------------------------|--------------------------|-----------------------------------|------------------------------|--------------------------------|-----------------------|----------------------|------------|------------------|
| HILL                       | 2-15   | 15-6N-11E              |                          | SOUTHWEST                         | 4,004                        | 0                              | 1995/06               | 1996/06              | DF         | DMB              |
| LITTLE                     | 1      | 19-6N-11E              |                          |                                   | 2,857                        | 0                              |                       | 1998/07              | DMB        | C-1              |
| BLAYLOCK 1-19              | 1-19   | 19-6N-11E              | HARTSHORNE               | HILL TOP NORTH                    | 19,043                       | 2                              |                       | 2003/08              | DF         |                  |
| ROLAND<br>ROLAND 1-20      | 1-20   | 20-6N-11E<br>20-6N-11E | HARTSHORNE<br>HARTSHORNE | HILL TOP NORTH<br>HILL TOP NORTH  | 101,522<br>9,809             | 21<br>0                        | 1992/06               | 2003/08              | DMB<br>DMB | C-1<br>C-1       |
|                            | 1 20   |                        | HARTSHORNE               |                                   | 5,005                        | ۲,                             | 1002/04               | 100211               | 0.110      |                  |
| LINDLEY                    | 1-30C  | 30-6N-11E              | / BOOCH                  | HILL TOP NORTH                    | 346,832                      | 35                             | 1987/12               | 2003/08              | DF         | СМ               |
| BLEVINS                    | 1-7    | 7-6N-12E               | HARTSHORNE               | CABANISS<br>NORTHWEST             | 66,117                       | 1                              | 1980/08               | 2003/08              | СМ         | DF               |
|                            | 27     | 7 6N 40E               |                          |                                   | 4 0 2 0                      | _                              | 1005 (10              | 1004/04              | ~          |                  |
| BLEVINS                    | 2-7    | 7-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS             | 4,030                        | 0                              | 1985/12               | 1994/01              | СМ         | DF               |
| HILSEWECK W J<br>HILSEWECK | 1-8    | 8-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS             | 95,547                       | 8                              | 1979/10               | 2003/01              | СМ         | DF               |
| RANCH                      | 2-8    | 8-6N-12E               | HARTSHORNE               | NORTHWEST                         | 34,419                       | 12                             | 1994/03               | 2003/08              | СМ         | DF               |
| HILSEWECK W J              | 1-9    | 9-6N-12E               | HARTSHORNE               | CABANISS<br>NORTHWEST             | 246,534                      | 34                             | 1979/10               | 2003/08              | СМ         | DF               |
| HILSEWECK W J              | 1-15   | 15-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST             | 229,313                      | 32                             | 1979/10               | 2003/08              | СМ         | DF               |
| HILSEWECK W J              | 1-16   | 16-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST             | 317,359                      | 39                             | 1979/10               | 2003/08              | СМ         | DF               |
| HILSENECK                  | 2-16   | 16-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST<br>CABANISS | 27,972                       | 11                             | 1999/01               | 2003/08              | СМ         | DF               |
| HILSEWECK W J              | 1-17   | 17-6N-12E              | HARTSHORNE               | NORTHWEST                         | 355,224                      | 17                             | 1979/10               | 2003/08              | C-2        | DMB              |
| HILSEWECK                  | 2-17   | 17-6N-12E              |                          | CABANISS<br>NORTHWEST             | 657,365                      |                                | 1996/11               | 2003/08              | C-2        |                  |
| HILSWECK                   | 3-17   | 17-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST<br>CABANISS | 46,551                       | 14                             | 1997/09               | 2003/08              | DMB        |                  |
| BLIVENS                    | 1-18   | 18-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST<br>CABANISS | 191,738                      | 0                              | 1979/10               | 1997/10              | СМ         | DMB              |
| BLEVINS                    | 2-18   | 18-6N-12E              | HARTSHORNE               | NORTHWEST<br>CABANISS             | 990,511                      | 159                            | 1995/06               | 2003/09              | C-2        |                  |
| BLEVINS                    | 9-18   | 18-6N-12E              | HARTSHORNE               | NORTHWEST<br>CABANISS             | 660,508                      | 123                            | 1996/12               | 2003/08              | C-2        |                  |
| HILSEWECK                  | 1&3    | 20-6N-12E              | HARTSHORNE               | NORTHWEST                         | 1,266,867                    | 529                            | 1996/03               | 2003/09              | C-2        |                  |
| JONES                      | 2-25   | 25-6N-12E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH              | 7,264                        | 30                             | 2003/02               | 2003/08              | DF         | BAY              |
| HILSEWICK                  | 1-29   | 29-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST             | 9,311                        | 0                              | 1981 <i>/</i> 06      | 1989/06              | СМ         | DF               |
| HILSEWECK                  | 1-29A  | 29-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST             | 36,728                       | 0                              | 1982/02               | 1989/05              | СМ         | DF               |

| Well Name                | Well # | Location  | Formation                | Pield Name                          | Cumulative Gas (Mcf) | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|--------------------------|--------|-----------|--------------------------|-------------------------------------|----------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| HARTSFIELD               | 1-35   | 35-6N-12E | HARTSHORNE               | PINE HOLLOW<br>SOUTH<br>PINE HOLLOW | 46,203               | 68                             | 2002/02               | 2003/08              | DF     |                  |
| HARTSFIELD               | 1-36A  | 36-6N-12E | HARTSHORNE               | SOUTH                               | 128,207              | 151                            | 2002/02               | 2003/08              | DF     |                  |
| CARTER 1-2               | 1-2    | 2-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 933,438              | 106                            | 1989/02               | 2003/08              | IC-1   |                  |
| HOLT                     | J2-3   | 3-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 17                   | 0                              | 1988/08               | 1988/08              | IC-1   |                  |
| HOLT J                   | 4-3    | 3-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 94,298               | 23                             | 1997/10               | 2003/08              | IC-1   |                  |
| HOLT J                   | 1      | 3-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 2,708,284            | 48                             | 1985/05               | 2003/08              | IC-1   |                  |
| HOLT                     | ЗJ     | 3-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 393,172              | 11                             | 1990/01               | 2003/08              | IC-1   |                  |
| HOLT                     | 1-4T   | 4-6N-13E  | HARTSHORNE               | REAMS<br>NORTHWEST                  | 902,526              | 97                             | 1988/08               | 2003/08              | IC-1   |                  |
| WHATS IF                 | 1-11   | 11-6N-13E | HARTSHORNE               | ULAN SOUTH                          | 42                   | 1                              | 2003/07               | 2003/07              | DF     |                  |
| LEO                      | 1-25   | 25-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 207,738              | 22                             | 1988/09               | 2003/07              | IC-2   |                  |
| BLEVINS                  | 1      | 25-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 1,135,398            | 49                             | 1968/05               | 2003/09              | IC-2   |                  |
| 0.0.4.V                  |        | 00 ON 405 |                          | PINE HOLLOW                         | 0 40 707             | 440                            | 1070/07               | 2002/00              |        |                  |
| GRAY                     | 1      | 26-6N-13E | HARTSHORNE<br>HARTSHORNE | SOUTH<br>PINE HOLLOW                | 842,707              | 118                            | 1978/07               | 2003/09              | IC-2   |                  |
| GLEESE                   | 1-27   | 27-6N-13E | / BOOCH                  | SOUTH<br>PINE HOLLOW                | 64,130               | 9                              | 1989/07               | 2003/08              | DF     |                  |
| GLEESE                   | 1-28   | 28-6N-13E | HARTSHORNE               | SOUTH                               | 58,494               | 10                             | 1990/02               | 2003/08              | DF     |                  |
| FRANCES 1-29             | 1-11   | 29-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 75,528               | 33                             | 1992/09               | 2003/08              | DF     | DMB              |
| MCCARTY                  | 2 22   | 22 6N 12E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 205 274              | 175                            | 1999/11               | 2003/08              | 10.0   |                  |
|                          | 3-32   | 32-6N-13E |                          | PINE HOLLOW                         | 305,371              |                                |                       |                      |        |                  |
| GLEESE J                 | 1      | 33-6N-13E | HARTSHORNE               | SOUTH<br>PINE HOLLOW                | 674,747              | 19                             |                       | 2003/08              |        |                  |
| GLEESE                   | 2-33   | 33-6N-13E | HARTSHORNE               | SOUTH<br>PINE HOLLOW                | 180,921              | 62                             | 1998/02               | 2003/08              | IC-2   |                  |
| HUNT-GARRETT<br>NW SE SW | 1      | 34-6N-13E | HARTSHORNE               | SOUTH                               | 4,041,853            | 123                            | 1965/08               | 2003/09              | IC-2   |                  |
| DOMINIC NE NW<br>SW      | 1      | 35-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 2,744,814            | 83                             | 1965/07               | 2003/09              | IC-2   |                  |
|                          | 2-35   | 35-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 149,749              | 31                             | 1993/12               | 2003/09              | IC-2   |                  |
| LEFLORE SE SW<br>NW      | 1      | 36-6N-13E | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 831,922              | 0                              | 1965/07               | 1979/02              | IC-2   |                  |
| LEFLORE                  | 1-36   |           | HARTSHORNE               | PINE HOLLOW<br>SOUTH                | 59,148               | 10                             |                       | 2003/08              |        |                  |
| KLENE UN                 | 1      | 1-7N-11E  | HARTSHORNE               | LAMAR EAST                          | 2,299,313            | 31                             | 1961/08               | 2003/08              | DMB    | C-1              |
| TURNER                   | 5      | 6-7N-11E  | HARTSHORNE<br>/ BOOCH    | GREASY CREEK                        | 42,702               | 14                             | 1986/05               | 2003/06              | DF     | СМ               |

| ameli Name<br>Follansbe | - Well # | uo<br>coation<br>12-7N-11E | Lot Hartshorne           | end<br>Bield Name<br>LAMAR EAST | Cumulative Gas (Mcf)<br>218,512 | o Current Production Rate (Mcfd) | Pirst Production Date<br>60/1961 | Last Production Date | 0 <mark>Facies</mark> | ⊠ <mark>Secondary Facies</mark><br>⊞ |
|-------------------------|----------|----------------------------|--------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------|-----------------------|--------------------------------------|
| WHITE                   | 13-1     | 13-7N-11E                  | HARTSHORNE               | LAMAR EAST                      | 242,776                         | 13                               | 1985/06                          | 2003/08              | C-2                   | DIVID                                |
|                         |          |                            |                          | HORNTOWN                        |                                 |                                  |                                  |                      |                       |                                      |
| ANDERSON#1              | 1        | 17-7N-11E                  | HARTSHORNE               | SOUTHEAST<br>SHADY GROVE        | 293,933                         | 10                               | 1985/04                          | 2002/10              | DMB                   |                                      |
| JACKSON                 | 1        | 30-7N-11E                  | HARTSHORNE               | SOUTH<br>SHADY GROVE            | 419,823                         | 0                                | 1986/04                          | 1992/01              | DMB                   |                                      |
| BE                      | 1        | 31-7N-11E                  | HARTSHORNE               | SOUTH                           | 719,276                         | 5                                | 1985/01                          | 2003/08              | DMB                   |                                      |
| KAMPERMAN               | 1        | 31-7N-11E                  | HARTSHORNE               | SHADY GROVE<br>WEST             | 137,116                         | 14                               | 1989/02                          | 2003/08              | DMB                   | DF                                   |
| JOYCE                   | 1        | 5-7N-12E                   | HARTSHORNE               | LAMAR EAST                      | 230,132                         | 11                               | 1981/04                          | 2003/08              | DF                    | СМ                                   |
| DERRISAW                | 1        | 6-7N-12E                   | HARTSHORNE               | LAMAR EAST                      | 347,958                         | 0                                | 1964/02                          | 1991/07              | DF                    | BAY                                  |
| SARKEY                  | 1        | 7-7N-12E                   | HARTSHORNE               | LAMAR EAST                      | 2,333,208                       | 17                               | 1961/08                          | 2003/08              | C-1                   | DMB                                  |
| BURLESON                | 1        | 8-7N-12E                   | HARTSHORNE               | LAMAR EAST                      | 287,131                         | 21                               | 1982/09                          | 2003/08              | C-1                   | DMB                                  |
| SARKEYS                 | 1        | 14-7N-12E                  | HARTSHORNE<br>HARTSHORNE | SCIPIO<br>NORTHWEST<br>SCIPIO   | 557,943                         | 17                               | 1963/05                          | 2003/08              | C-1                   | DMB                                  |
| MAD MAX                 | 1-14     | 14-7N-12E                  | / BOOCH                  | NORTHWEST                       | 51,994                          | 29                               | 2000/07                          | 2003/08              | DF                    | BF                                   |
| том                     | 1-14     | 14-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST<br>SCIPIO   | 54,194                          | 55                               | 2001/01                          | 2003/08              | DF                    | BF                                   |
| MYERS                   | 1        | 15-7N-12E                  | HARTSHORNE               | NORTHWEST                       | 426,770                         | 12                               | 1963/11                          | 2003/08              | DF                    | BF                                   |
| MYERS                   | 1        | 15-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST             | 54,156                          | 0                                | 1964/01                          | 1970/05              | DF                    | BF                                   |
| KLEINKE                 | 2        | 15-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST             | 467,401                         | 0                                | 1963/08                          | 1970/05              | C-1                   | DMB                                  |
| GILCREASE               | 2        | 16-7N-12E                  |                          | SCIPIO<br>NORTHWEST             | 259,338                         | 0                                |                                  | 1986/07              | DMB                   |                                      |
| PERRY                   | 1        | 17-7N-12E                  | HARTSHORNE               | LAMAR EAST                      | 289,538                         | 17                               | 1982/03                          | 2003/08              | DMB                   | C-1                                  |
| GRIFFIN HEIRS           | 1-17     | 17-7N-12E                  | HARTSHORNE               | LAMAR EAST                      | 12,152                          | 64                               | 2003/03                          | 2003/08              | DMB                   | C-1                                  |
| SARKEYS                 | 1B       | 18-7N-12E                  | HARTSHORNE               | LAMAR EAST                      | 298,179                         | 0                                | 1964/03                          | 1982/11              | DMB                   | C-1                                  |
| SARKEYS                 | 1C       | 18-7N-12E                  | HARTSHORNE               | LAMAR EAST                      | 169,548                         | 8                                | 1964/02                          | 2003/08              | DMB                   | C-1                                  |
| GILCREASE #1 #2         | 1        | 21-7N-12E                  |                          | SCIPIO<br>NORTHWEST             | 318,949                         | 0                                | 1964/12                          | 1997/06              | DMB                   | DF                                   |
| FALCON CLUB             | 1-21     | 21-7N-12E                  | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST             | 108,581                         | 64                               | 2000/08                          | 2003/08              | DF                    |                                      |
| KERN                    | 1-21     | 21-7N-12E                  | HARTSHORNE<br>/ SAVANNA  | SCIPIO<br>NORTHWEST             | 10,195                          | 10                               | 2001/08                          | 2003/08              | DF                    |                                      |
| FALCON CLUB             | 2-21     | 21-7N-12E                  | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST             | 136,167                         | 56                               | 2001/01                          | 2003/08              | DF                    | DMB                                  |
| FALCON CLUB             | 3-21     | 21-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST             | 146,922                         | 123                              | 2001/01                          | 2003/08              | DMB                   | DF                                   |
| CLARKE                  | 1        | 22-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST             | 86,270                          | 0                                | 1964/12                          | 1987/05              | DMB                   | DF                                   |
| CLARK                   | 1        | 22-7N-12E                  | HARTSHORNE               | SCIPIO<br>NORTHWEST             | 78,590                          | 0                                | 1964/12                          |                      | DMB                   | DF                                   |

| Well Name    | Well #    | Location  | Formation                | Field Name             | Cumulative Gas (Mcf) | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|--------------|-----------|-----------|--------------------------|------------------------|----------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| BRADSTREET   | 1         | 22-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 696,861              | 0                              | 1963/02               | 1969/08              | C-2    | C-1              |
| JONATHAN     | 1-22      | 22-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 31,129               | 12                             | 2000/09               | 2003/08              | DMB    | DF               |
| MELISSA      | 2-22      | 22-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 48,110               | 14                             | 2000/12               | 2003/08              | DF     | DMB              |
| MICHAEL      | 2-22      | 22-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 124,116              | 67                             | 2001/04               | 2003/08              | DMB    | DF               |
| SOUSEA       | 1         | 24-7N-12E |                          | SCIPIO<br>NORTHWEST    | 53,703               | 0                              | 1968/07               |                      | DF     | BF               |
| MYERS-HOLT   | 1         | 24-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 92,080               | 12                             |                       | 2003/08              | DF     | BF               |
| ROSS         | 1-24      | 24-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 14,240               | 0                              | 2001/08               | 2003/06              | DF     |                  |
| STIPE        | 1-27      | 27-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 178,169              | 49                             | 1997/09               | 2003/08              | DF     | DMB              |
| MILLION      | 1-27      | 27-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 2,078                | 0                              | 1983/01               | 1985/03              | DF     | DMB              |
| STIPE        | 2-27      | 27-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 102,786              | 145                            | 2001/07               | 2003/08              | DF     | DMB              |
| STIPE        | 3-27      | 27-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 67,332               | 65                             | 2001/10               | 2003/08              | DF     | DMB              |
| STIPE        | 1-28      | 28-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 437,796              | 93                             | 1996/10               | 2003/08              | DMB    | DF               |
| MYERS        | 1-28      | 28-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 77,827               | 0                              | 1980/08               | 1988/02              | DF     | DMB              |
| STIPE        | 2-28      | 28-7N-12E | HARTSHORNE<br>/ BOOCH    | SCIPIO<br>NORTHWEST    | 119,611              | 40                             | 1997/09               | 2003/08              | DMB    | DF               |
| WJHILSEWECK  | 1-29      | 29-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 142,605              | 24                             | 1988/01               | 2003/08              | DF     | BAY              |
| PUCKETT      | 1-32      | 32-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 57,410               | 0                              | 1982/12               | 1996/11              | DMB    |                  |
| PUCKETT      | 2-32      | 32-7N-12E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 23,495               | 10                             | 1995/06               | 2003/08              | DF     |                  |
| DOSS         | 1-33      | 33-7N-12E | HARTSHORNE<br>/ BOOCH    | CABANISS<br>NORTHWEST  | 42,806               | 0                              | 1982/12               | 1997/01              | DMB    |                  |
| OTHEL        | 1         | 1-7N-13E  | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 27,389               | 21                             | 1998/11               | 2003/07              | DF     | BAY              |
| HERMAN       | 1-12      | 12-7N-13E | HARTSHORNE               | SCIPIO<br>NORTHWEST    | 19,271               | 16                             | 2000/12               | 2003/07              | DMB    | C-1              |
| WARD<br>WARD | 1         | 13-7N-13E | HARTSHORNE<br>HARTSHORNE | ULAN EAST<br>ULAN EAST | 204,197<br>164,754   | 39                             |                       | 2003/08<br>2003/08   |        | C-1              |
| DUNCAN #1    | 2-13<br>1 | 13-7N-13E |                          | SCIPIO<br>NORTHWEST    | 208,699              | 25<br>31                       |                       | 2003/08              |        | C-1<br>DMB       |
| MOONEYHAM    | 1-18      | 18-7N-13E | HARTSHORNE<br>/ SAVANNA  | SCIPIO<br>NORTHWEST    | 489,300              | 18                             |                       | 2003/06              |        | DF               |

| Well Name           | Well # | Location  | <u>Formation</u>        | Field Name          | Cumulative Gas (Mcf) | Current Production Rate (Mcfd) | First Production Date | Last Production Date | Facies | Secondary Facies |
|---------------------|--------|-----------|-------------------------|---------------------|----------------------|--------------------------------|-----------------------|----------------------|--------|------------------|
| ROCKEY              | 1-18   | 18-7N-13E | HARTSHORNE<br>/ SAVANNA | SCIPIO<br>NORTHWEST | 88,122               | о                              | 1994/07               | 1999/11              | DMB    | DF               |
| MOONEYHAM #1-<br>18 | 1-18   | 18-7N-13E | HARTSHORNE<br>/ SAVANNA | SCIPIO<br>NORTHWEST | 163,419              | 18                             | 1994/02               | 2003/08              | DMB    | DF               |
| HOOTERS             | 1-18   | 18-7N-13E | HARTSHORNE              | SCIPIO<br>NORTHWEST | 19,936               | 45                             | 2002/06               | 2003/08              | DMB    | DF               |
| HILL #1-24          | 1-24   | 24-7N-13E | HARTSHORNE<br>/ BOOCH   | ULAN EAST           | 299,375              | 12                             | 1993/10               | 2003/08              | DF     |                  |
| KING                | 3-25   | 25-7N-13E | HARTSHORNE<br>/ BOOCH   | REAMS<br>NORTHWEST  | 369,985              | 50                             | 1994/09               | 2003/08              | DF     |                  |
| KING                | 4-25   | 25-7N-13E | HARTSHORNE<br>/ BOOCH   | REAMS<br>NORTHWEST  | 103,446              | 62                             | 2001/03               | 2003/08              | DF     |                  |
| LUCILLE             | 1-34   | 34-7N-13E | HARTSHORNE              | REAMS<br>NORTHWEST  | 1,046,508            | 52                             | 1985/05               | 2003/08              | IC-1   |                  |
| STATE               | 1-35   | 35-7N-13E | HARTSHORNE              | REAMS<br>NORTHWEST  | 607,018              | 0                              | 1980/10               | 1987/04              | IC-1   |                  |
| STATE               | 2-35   | 35-7N-13E | HARTSHORNE              | REAMS<br>NORTHWEST  | 1,200,399            | 221                            | 1988/08               | 2003/08              | IC-1   |                  |
| SUNSHINE            | 1-36   | 36-7N-13E | HARTSHORNE              | REAMS<br>NORTHWEST  | 73,470               | 13                             | 1996/05               | 2003/08              | IC-1   |                  |
| SHEENA #1-36        | 1-36   | 36-7N-13E | HARTSHORNE              | REAMS<br>NORTHWEST  | 342,580              | 70                             | 1995/07               | 2003/08              | IC-1   |                  |

Appendix B: Hartshorne Production Sorted By Field

|                                                      |                            |              |                        |                               | s (j                              | itest                                   | Ĩ                        | ÷.                                           | a                  |                    |
|------------------------------------------------------|----------------------------|--------------|------------------------|-------------------------------|-----------------------------------|-----------------------------------------|--------------------------|----------------------------------------------|--------------------|--------------------|
|                                                      |                            |              |                        |                               | e Ga                              | E<br>E                                  | nbei                     | Mcfo                                         | Date               | Date               |
| b<br>D                                               |                            | Ē            | F                      | tion                          | ativ                              | ction<br>(Mc                            | Nur                      | nt Ga<br>ctior<br>ate (                      | por                | por                |
| Operator                                             | ¥el                        | Well Num     | ocation                | Formation                     | Cumulative Gas<br>Production (Mcf | Gas<br>Production_Latest<br>Month (Mcf) | Active Number (<br>Wells | Current Gas<br>Production<br>RateRate (Mcfd) | First Prod Date    | ast Prod Date      |
| ō                                                    | M                          | X            | _                      | ية<br>ISS NORTHWES            |                                   | öł≥                                     | Ă۶                       | 2528                                         | Ē                  | Ľ                  |
| ARKOMA GAS CO                                        | BALLINGER                  | 3-13         | 13-6N-11E              | HARTSHORNE                    | 1,412,822                         | 1250                                    | 1                        | 42                                           | 1985/01            | 2003/08            |
| ARKOMA GAS CO                                        | BLEVINS                    | 1-7          | 7-6N-12E               | HARTSHORNE                    | 66 117                            | 37                                      | 1                        | 1                                            | 1980/08            | 2003/08            |
| ARKOMA GAS CO<br>XAE CORPORATION                     | BLEVINS<br>BLEVINS         | 2-7<br>2-12  | 7-6N-12E<br>12-6N-11E  | HARTSHORNE<br>HARTSHORNE      | 4,030<br>569,027                  | 1915                                    | 1                        | 0<br>64                                      | 1985/12<br>1995/10 | 1994/01<br>2003/09 |
| GULF PROD. CORP.                                     | BLEVINS                    | 2-18         | 18-6N-12E              | HARTSHORNE                    | 990,511                           | 4770                                    | 1                        | 159                                          | 1995/06            | 2003/09            |
| GULF PROD. CORP.                                     | BLEVINS                    | 9-18         | 18-6N-12E              | HARTSHORNE                    | 660,508                           | 3699                                    | 1                        | 123                                          | 1996/12<br>1979/10 | 2003/08            |
| ARKOMA GAS CO<br>ARKOMA GAS CO                       | BLIVENS<br>HILSENECK       | 1-18<br>2-16 | 18-6N-12E<br>16-6N-12E | HARTSHORNE<br>HARTSHORNE      | 191,738<br>27,972                 | 337                                     | 1                        | 0<br>11                                      | 1979/10            | 1997/10<br>2003/08 |
| ARKOMA GAS CO                                        | HILSEWECK                  | 2-17         | 17-6N-12E              | HARTSHORNE                    | 657,365                           | 3023                                    | 1                        | 101                                          | 1996/11            | 2003/08            |
| GULF PROD. CORP.<br>ARKOMA GAS CO                    | HILSEWECK                  | 183          | 20-6N-12E              | HARTSHORNE                    | 1,266,867                         | 15870                                   | 1                        | 529                                          | 1996/03            | 2003/09            |
| ARKUMA GAS CO                                        | HILSEWECK<br>HILSEWECK     | 1-29A        | 29-6N-12E              | HARTSHORNE                    | 36,728                            |                                         |                          | 0                                            | 1982/02            | 1989/05            |
| ARKOMA GAS CO                                        | RANCH                      | 2-8          | 8-6N-12E               | HARTSHORNE                    | 34,419                            | 352                                     | 1                        | 12                                           | 1994/03            | 2003/08            |
| ARKOMA GAS CO                                        | HILSEWECK W J              | 1-8          | 8-6N-12E               | HARTSHORNE                    | 95,547                            | 231                                     | 1                        | 8                                            | 1979/10            | 2003/01            |
| ARKOMA GAS CO                                        | HILSEWECK W J              | 1-9          | 9-6N-12E               | HARTSHORNE                    | 246,534                           | 1018                                    | 1                        | 34                                           | 1979/10            | 2003/08            |
| ARKOMA GAS CO                                        | HILSEWECK W J              | 1-15         | 15-6N-12E              | HARTSHORNE                    | 229,313                           | 957                                     | 1                        | 32                                           | 1979/10            | 2003/08            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
| ARKOMA GAS CO                                        | HILSEWECK W J              | 1-16         | 16-6N-12E              | HARTSHORNE                    | 317,359                           | 1171                                    | 1                        | 39                                           | 1979/10            | 2003/08            |
| ARKOMA GAS CO<br>ARKOMA GAS CO                       | HILSEWECK W J<br>HILSEWICK | 1-17<br>1-29 | 17-6N-12E<br>29-6N-12E | HARTSHORNE<br>HARTSHORNE      | 355,224<br>9,311                  | 514                                     | 1                        | 17<br>0                                      | 1979/10<br>1981/06 | 2003/08<br>1989/06 |
| ARKOMA GAS CO                                        | HILSWECK                   | 3-17         | 17-6N-12E              | HARTSHORNE                    | 46,551                            | 412                                     | 1                        | 14                                           | 1997/09            | 2003/08            |
|                                                      | PAUL BALLINGER             |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
| ARKOMA GAS CO                                        | 4-13                       | 4-13         | 13-6N-11E              | HARTSHORNE                    | 109,744<br><b>7,327,687</b>       | 427<br>35,983                           | 1                        | 14<br>6 1,199                                | 1992/05            | 2003/08            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
| PA ENERGY                                            | LYONS                      | 1-6          | 6-5N-11E               | IN SOUTHEAST<br>HARTSHORNE    | FIELD<br>46,254                   | 76                                      | 1                        | 3                                            | 1984/06            | 2003/08            |
| FALINEROT                                            | LIONS                      | 1-0          | 0-JIN-TIL              | HARTSHORNE                    | 46,254                            | 76                                      |                          | 1 3                                          | 1504/00            | 2003/00            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
|                                                      |                            |              | GR                     | EASY CREEK FI<br>HARTSHORNE / | ELD                               |                                         |                          |                                              |                    |                    |
| LOFTIS BOB L                                         | TURNER                     | 5            | 6-7N-11E               | BOOCH                         | 42,702                            | 408                                     | 1                        | 14                                           | 1986/05            | 2003/06            |
|                                                      |                            |              |                        |                               | 42,702                            | 408                                     |                          | 1 14                                         |                    |                    |
|                                                      |                            |              |                        | HILL TOP FIELD                | 1                                 |                                         |                          |                                              |                    |                    |
| DIAMOND HARRY H IN C.                                | ALTA #1                    | 1            | 19-5N-11E              | HARTSHORNE                    | 299,093                           | 246                                     | 1                        | 8                                            | 1981/09            | 2003/08            |
| DIAMOND HARRY H INC.                                 | ARTHUR #1                  | 1            | 19-5N-11E              | HARTSHORNE                    | 569,869                           | 1040                                    | 1                        | 35                                           | 1981/09            | 2003/08            |
| T K DRILLING CORPORATION<br>SOUTHERN RESOURCES       | BAILEY<br>BLACK            | 1<br>1-17    | 17-5N-11E<br>17-5N-11E | HARTSHORNE<br>HARTSHORNE      | 131,633<br>245,241                | 691<br>881                              | 1                        | 23<br>29                                     | 1983/10<br>1988/11 | 2003/05<br>2003/08 |
| T K DRILLING CORPORATION                             | BLACK J                    | 1            | 20-5N-11E              | HARTSHORNE                    | 472,784                           | 2165                                    | 1                        | 72                                           | 1989/02            | 2003/09            |
| TENNECO OIL COMPANY                                  | CARTER C C                 | 1            | 30-5N-11E              | HARTSHORNE                    | 251,921                           |                                         |                          | 0                                            | 1978/05            | 1980/12            |
| SOUTHERN RESOURCES<br>SOUTHERN RESOURCES             | HUFFMAN<br>MARK            | 1-32<br>1-32 | 32-5N-11E<br>32-5N-11E | HARTSHORNE<br>HARTSHORNE      | 173,087<br>5,954                  | 735                                     | 1                        | 25<br>0                                      | 1990/01<br>1990/08 | 2003/08<br>1993/05 |
| BONNELL FRANK A                                      | MCDONALD                   | 1-52         | 18-5N-11E              | HARTSHORNE                    | 401,182                           | 808                                     | 1                        | 27                                           | 1980/09            | 2003/08            |
| DIAMOND HARRY H INC.                                 | MOBIL #1                   | 1            | 20-5N-11E              | HARTSHORNE                    | 544,250                           | 1464                                    | 1                        | 49                                           | 1988/07            | 2003/08            |
| T K DRILLING CORPORATION<br>T K DRILLING CORPORATION | PACE<br>PLP CARTER         | 1<br>PLP2    | 18-5N-11E<br>30-5N-11E | HARTSHORNE<br>HARTSHORNE      | 21,377<br>652,029                 |                                         |                          | 0                                            | 1975/09<br>1978/04 | 1978/07<br>1998/11 |
| MARBET LLC                                           | TRAVIS P                   | 1L           | 21-5N-11E              | HARTSHORNE                    | 621,903                           | 2252                                    | 1                        | 75                                           | 1991/06            | 2003/01            |
| SOUTHERN RESOURCES                                   | VERNON                     | 1-29         | 29-5N-11E              | HARTSHORNE                    | 98,612                            | 361                                     | 1                        | 12                                           | 1990/05            | 2003/08            |
| SOUTHERN RESOURCES                                   | VERNON PARK<br>ESTATE      | 1-29         | 29-5N-11E              | HARTSHORNE                    | 160,930                           | 230                                     | 1                        | 8                                            | 1989/12            | 2003/08            |
| 000111211111200011020                                | LOWITE                     | 1 20         | 20 014 112             | That to horate                | 4,649,865                         | 10,873                                  | 1 <sup>.</sup>           |                                              | 1000/12            | 2000/00            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
| SOUTHERN RESOURCES                                   | BLAYLOCK 1-19              | 1-19         | HILL<br>19-6N-11E      | - TOP NORTH FI<br>HARTSHORNE  | ELD<br>19,043                     | 56                                      | 1                        | 2                                            | 1991/03            | 2003/08            |
|                                                      |                            |              |                        | HARTSHORNE /                  |                                   | 00                                      |                          | 2                                            |                    | 2000/00            |
| SOUTHERN RESOURCES                                   | UNDLEY                     | 1-30C        | 30-6N-11E              | BOOCH                         | 346,832                           | 1042                                    | 1                        | 35                                           | 1987/12            | 2003/08            |
| SOUTHERN RESOURCES<br>SOUTHERN RESOURCES             | UTTLE<br>ROLAND            | 1            | 19-6N-11E<br>20-6N-11E | HARTSHORNE<br>HARTSHORNE      | 2,857<br>101,522                  | 616                                     | 1                        | 0<br>21                                      | 1993/02<br>1992/06 | 1998/07<br>2003/08 |
| SOUTHERN RESOURCES                                   | ROLAND 1-20                | 1-20         |                        | HARTSHORNE                    | 9,809                             |                                         |                          | 0                                            | 1992/04            | 1992/11            |
|                                                      |                            |              |                        |                               | 480,063                           | 1,714                                   | :                        | 3 57                                         |                    |                    |
|                                                      |                            |              | HORNTO                 | OWN SOUTHEAS                  | ST FIELD                          |                                         |                          |                                              |                    |                    |
| SWADLEY R W & J                                      | ANDERSON#1                 | 1            | 17 78 445              | HARTSHORNE                    | 293,933                           | 303                                     | 1                        | 10                                           | 1985/04            | 2002/10            |
| SWADLEY K W & J                                      | ANDERSUN#T                 | 1            | 17-7N-11E              | HARTONURNE                    | 293,933<br>293,933                | 303<br>303                              |                          | 10<br>1 10                                   | 1900/04            | 2002/10            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |
| JAY PET. INC.                                        | BURLESON                   | 1            | 8-7N-12E               | AMAR EAST FIE<br>HARTSHORNE   | LD<br>287,131                     | 622                                     | 1                        | 21                                           | 1982/09            | 2003/08            |
| JAY PET. INC.                                        | DERRISAW                   | 1            | 6-7N-12E               | HARTSHORNE                    | 347,958                           | ~~~                                     |                          | 0                                            | 1964/02            | 1991/07            |
| JAY PET. INC.                                        | FOLLAN SBE                 | 1<br>1-17    | 12-7N-11E<br>17-7N-12E | HARTSHORNE<br>HARTSHORNE      | 218,512                           | 1919                                    | 1                        | 0<br>64                                      | 1961/09            | 1972/07            |
| TILFORD PINSON EXPL.                                 | GRIFFIN HEIRS              | 1-17         | 17-7N-12E              | HARIOTURNE                    | 12,152                            | 1919                                    | 1                        | 04                                           | 2003/03            | 2003/08            |
|                                                      |                            |              |                        |                               |                                   |                                         |                          |                                              |                    |                    |

| Bay         Bay <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>st</th> <th>-</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               | _    |            |              |              | st                    | -      |                         |         |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|------|------------|--------------|--------------|-----------------------|--------|-------------------------|---------|---------|
| JAV PET INC.         JOYCE         1         5-74-TE         MATEGRAPHIC         220,122         317         1         1         1         10106         200000           JAV PET INC.         JEARNEY         1         1         7.74-TE         MATEGRAPHIC         2.35,208         813         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         1         10106         100000         1000000         1000000         10000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |      |            |              | Gas<br>(Mcf) | , Lates               | ber of | (cfd)                   | ate     | ate     |
| JAV PET INC.         JOYCE         1         5-74-TE         MATEGRAPHIC         220,122         317         1         1         1         10106         200000           JAV PET INC.         JEARNEY         1         1         7.74-TE         MATEGRAPHIC         2.35,208         813         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         1         10106         100000         1000000         1000000         10000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                       |               | Ę    | Ę          | ņ            | tion (       | tion(Mcf)             | um Num | t Gas<br>tion<br>te (M  | O D     | od Do   |
| JAV PET INC.         JOYCE         1         5-74-TE         MATEGRAPHIC         220,122         317         1         1         1         10106         200000           JAV PET INC.         JEARNEY         1         1         7.74-TE         MATEGRAPHIC         2.35,208         813         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         10106         200000           JAV PET INC.         SARREY         1         1         1         1         1         1         10106         100000         1000000         1000000         10000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ber at                  | <u>.</u>      | el N | ocatic     | ormat        | nmula        | as<br>roduc<br>flonth | ctive  | urren<br>roduc<br>ateRa | irst P. | ast Pr  |
| JAV PET INC         SPERFY         1         177.11/2         HARTSHCREE         295/58         499         1         177         198/00         2000/00           JAV PET INC         SARREYS         1         0         77.11/2         HARTSHCREE         295/58         203         1         177         198/00         2000/00           JAV PET INC         SARREYS         10         157.11/2         HARTSHCREE         285/00         233         1         17         198/00         2000/00           JAV PET INC         SARREYS         10         157.11/2         HARTSHCREE         285/00         673         1         20         198/00         2000/00           JAV SCHER.CO         EETHEL         3         SARLE         HARTSHCREE         285/00         673         1         20         198/00         2000/00           BAVKG OFER.CO         EETHEL         3         SARLE         HARTSHCREE         285/00         17         188/00         18         18         19         198/00         2000/00           BAVKG OFER.CO         EERHEL         3         SARLE         14         95/10         14/10         19         91/10         10         95/10         11/10         11/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               |      |            |              |              |                       |        |                         |         |         |
| JAY PET INC.         SARKEY         1         7.79/128         HATSHORE         2.38/28         513         1         0         19/08         000000           JAY PET INC.         SARKEY         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |      |            |              |              |                       |        |                         |         |         |
| JAY PET INC.         SARIEY3         10         15-h12:E         HATSHORE         28,179         10         18400         182h1           JAY PET INC.         WITE         10         15-h12:E         HATSHORE         28,174         30.48         2         10         10         10000         20000           DAVS OPER CO         ADMS MW         11         16-h12:E         HATSHORE         240,55         10         10         10000         20000           DAVS OPER CO         ADMS MW         11         16-h12:E         HATSHORE         240,55         11         0         19900         20000           DAVS OPER CO         BLACK         3         S5-h12:E         HATSHORE         10,16         17.72         0         199010         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         200000         200000         200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |      |            |              |              |                       |        |                         |         |         |
| JAY PET.INC.         WHTE         13-1         13-7-11E         HARTSHORME         2427.47         76.01         19         198006         200309           DAVIS OFER CO         DAVIS OFER CO         BETHAL         2-9         9-9-11         HARTSHORME         116.20         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-90-12         9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |      |            |              | 298,179      |                       |        |                         |         | 1982/11 |
| UNIS OFER CO.         ADAME J.W.         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6         1/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |      |            |              |              |                       |        |                         |         |         |
| DAVIS OPER CO         ADAMS J.W         1-16         16-16-12         HARTSHORME         243,006         613         1         20         1998057         200308           DAVIS OPER CO         BEHHAL         3         9-54-12         HARTSHORME         119,335         65         1         30         1998057         200306         200307           ROOWNEL DOL CO         BLACK         1         29-54-12         HARTSHORME         1,252         144         17         1         49         1998057         200306         200307           DAVIS OPER CO         BLACK         3.28         25-64-13E         HARTSHORME         4,0343         2464         1         40         1998070         200306           DAVIS OPER CO         BLACK         1         1         18-44-12         BANOFA         4,038         2466         1         2         200005         200308           DAVIS OPER CO         COAPER         1         18-44-12         BANOFA         1,038         1         148         138         200102         200308           DAVIS OPER CO         COAPER         1         18-44-12         18-44-13         38         200102         200308           DAVIS OPER CO         COAPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GATTELLING.             | WINTE .       | 10-1 | 10-IN-ITE  | Instruction  |              |                       |        |                         | 1000/00 | 2000/00 |
| DAVIS OPER CO         ADAMS J.W         1-16         16-16-12         HARTSHORME         243,006         613         1         20         1998057         200308           DAVIS OPER CO         BEHHAL         3         9-54-12         HARTSHORME         119,335         65         1         30         1998057         200306         200307           ROOWNEL DOL CO         BLACK         1         29-54-12         HARTSHORME         1,252         144         17         1         49         1998057         200306         200307           DAVIS OPER CO         BLACK         3.28         25-64-13E         HARTSHORME         4,0343         2464         1         40         1998070         200306           DAVIS OPER CO         BLACK         1         1         18-44-12         BANOFA         4,038         2466         1         2         200005         200308           DAVIS OPER CO         COAPER         1         18-44-12         BANOFA         1,038         1         148         138         200102         200308           DAVIS OPER CO         COAPER         1         18-44-12         18-44-13         38         200102         200308           DAVIS OPER CO         COAPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |               |      | PINE H     | HOLLOW SOUTH | H FIELD      |                       |        |                         |         |         |
| DAVIS OPER CO         BEHNEL         3         9.40122         HARTSHORNE         1.172         1         69         200005         200306           BRAVO         BLACK         3.2         2.464.12         HARTSHORNE         1.172         1         69         109005         200306           DAVIS OPER CO         BLAVIS         2.244.12         HARTSHORNE         1.163.93         1.171         1         69         200005         200306           DAVIS OPER CO         BLAVIS OPER CO         BLAVIS OPER CO         0         199003         11         1544.12         HARTSHORNE         4.0605         2465         1         12         200306           XTO         UNIT         1         544.12         SENDAL         6.675         0         199008         200309           XTO         UNIT         1         1644.12         BOOCH         778.566         4155         1         140         199008         200309           DAVIS OPER CO         COOPER         1         1644.12         BOOCH         778.566         4155         1         140         290002         200309           TUCK STO         DAVIS OPER CO         COANUS PL         2.244.124         HARTSHORNE         157.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               |      | 16-5N-12E  | HARTSHORNE   | 243,096      |                       | 1      |                         |         |         |
| PROCIWELL DRUG CO.         BLACK         1         2094-128         HARTSHORNE         1,172         0         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1980/2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |      |            |              |              |                       |        |                         |         |         |
| BRAVO<br>WYTEX PROD<br>DAVIS OFER CO         BLACK<br>BLEVINS         5.20<br>2 894-12<br>Seh1-32         BOCH<br>HARTSHORME         4.20<br>(3.38)         1471<br>(4.1)         4.00<br>(4.1)         18000<br>(4.2)         20000<br>(4.2)           DAVIS OFER CO         BECVISS         1.01         15.44-12         1.25.44-12         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7         1.42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |               |      |            |              |              | 1758                  | 1      |                         |         |         |
| WTEX PROD.         BLEVINS         1         2-84-13E         HARTSHORNE         1, 125,398         1471         49         186405         200308           DAVIS OPER CO         BEOCKS         1-18         IBSN12E         HARTSHORNE         16,675         0         194403         195401           XTO         BUS ES WIK         1         8-8N-13E         HARTSHORNE         6,665,272         3375         1         126         196403         200308           DAVIS OFER CO         COPER         1         105N-12E         HARTSHORNE         6,665,272         3375         1         126         196400         200308           DAVIS OFER CO         COPER         1         105N-12E         BOOCH         775,565         4195         1         140         196608         200308           VALE OLASSOC         CRAWLEY         1         265-12         255-55         20000H         775,565         4195         1         140         196600         200308           UCKER ROLE SCOMPARY         DEFORT         1         265-61-12         HARTSHORNE         765,65         4195         1         767         196607         2000070         2000070         2000070         2000070         2000070         2000070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |               |      |            | HARTSHORNE / |              |                       |        |                         |         |         |
| DAVIS OPER CO         BLEVINS         9-9-N-12F         HARTSHORNE         40.085         2466         1         6.2         202005         200308           DAVIS OPER CO         BEDORS         11         18-N1-12         SENDRA/         16.675         0         199403         199611           XTO         BUSE SW NE         1         16-N1-12         SENDRA/         6.535.22         3375         1         113         196608         200309           DAVIS OPER CO         COOPER         1         10-N1-12         BOOCH         73.66         4196         1         140         199608         200309           VALE CIL ASSOC         CRAWCRP         1         10-N1-12         BOOCH         73.66         4195         1         140         199608         200309           VALE CIL ASSOC         CRAWCRP         1.21         25.49-12         HARTSHORNE         73.61.0         6223         1         342         200107         200308           VALE CIL ASSOC         CRAWCRP         1.22         25.49-12         HARTSHORNE         74.42.1         1.31         110.0         19.9072         200309         1.30         1.31         1.30         1.30         1.30         1.30         1.30         1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |      |            |              |              |                       |        |                         |         |         |
| HARTSIORNE /<br>DAVIS OPER CO         BROOKS<br>BRUCE RCEBINS<br>NTO         III         III         III         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |               | I    |            |              |              |                       |        |                         |         |         |
| BRUCE FLOGEINGS         BUILOE FLOGEINGS         Parts of the second seco |                         |               |      |            | HARTSHORNE / |              |                       |        |                         |         |         |
| XTO         UNIT         1         16.94N-162         HARTSHORME         6.582.822         3375         1         128         196008         200309           DAVIS OPER. CO         COOPER         1         10-94N-122         BOOCH         778,665         4195         1         140         199608         200309           DAVIS OPER. CO         COOPER         1         10-94N-122         BOOCH         778,665         4195         1         40         199608         200309           VALE GLASSOC.         CRAMLEY         1         10-94N-122         197007         100324         1         342         200107         200309           SAMSOM         DELLIAH         1         23-64N-122         HARTSHORNE         7,660,105         52-83         1         175         198070         200309           SAMSOM         DELLIAH         1         23-64N-12         HARTSHORNE         7,660,105         52-83         1         115         199011         200309           CHCKERAFAKE         DONINA         1         15-64N-12         HARTSHORNE         140,149         9.23         1         1         199012         200309           UNCKER RON & COMPANY         EDONINA         1         15-64N-12<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAVIS OPER. CO          |               | 1-18 | 18-5N-12E  | SENORA       | 16,675       |                       |        | 0                       | 1984/03 | 1996/11 |
| DAXIS OPER: CO         COOPER         1         10-8-172         BOCH         778,565         4195         1         140         195608         200308           DAVIS OPER: CO         CRAWFORD         1         10-8-172         BOCH         778,565         4195         1         432         200107         200308           VALLE CIL ASSOC         CRAWFORD         1-21         12-18-158         HARTSHORNE         7.66,102         5233         110         196012         200308           TUCKER T/O         COMMANY         DEBULAH         1         23-81-122         HARTSHORNE         2.66,151         1386         1         137         199011         200309           CHESAREAKE         DEPOT         1         25-81-182         HARTSHORNE         2.66,151         1386         4.66         199011         200309           CHESAREAKE         SW         1         56-81-182         HARTSHORNE         2.60,415         1386         1.465         199011         200309         199011         200307           CHESAREAKE         SW         1         56-81-182         HARTSHORNE         2.744,814         2.433         1         8.3         199017         200307           DAVIS OPER CO         DOMINIC<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | UNIT          |      |            |              |              |                       |        |                         |         |         |
| DAVIS OPER. CO         COOPER         1         10-NI-12E         BOOCH         778,565         4195         1         140         1996/02         200308           DAVIS OPER. CO         CRAWFORD         1         10-3N-12E         BOOCH         121,377         1026         132         200107         200308           VALE OLL ASSOC         DAVIS OPER. CO         CRAWLEY         1         24-5N-12E         HARTSHORNE         7,601,155         563         1         175         1986/01         200308           CMARDAM         DAVIS OPER. CO         DAVIS OPER. CO         DAVIS OPER. CO         0         1986/01         200309           CHESAREAKE         DEPOT         1         25-5N-12E         HARTSHORNE         2,744,414         2433         1         63         1996/07         200309           CHESAREAKE         DOMINA         1         16-5N-13E         HARTSHORNE         2,744,414         2433         1         63         1996/07         200309           CHECKER COV         DOMINA         1         16-5N-13E         HARTSHORNE         2,74,212         293         1831         177         200309         200309           CHECKER COV         EVELSTI         1         14-5M-15E         HARTSHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XTO                     | BUSE SW NE    | 1    | 8-5N-13E   |              | 6,868,237    | 3375                  | 1      | 113                     | 1965/08 | 2003/09 |
| DAMS OPER.CO         CRAWLEYOR         1         10-5N-12E         BOOCH         122,37         1144         1         38         201/02         203308           XTO         DAMS         1         22-5N-13E         HARTSHORNE         27,567,10         10262         1         322         2001/02         203308           SAMSON         DEER CREEK         1-24         24-N13E         HARTSHORNE         73,422         0         1980010         203308           GM PROP & INVEST, INC         DOMINIC NE BW         23         35-6K-12E         HARTSHORNE         149,144         292         1         31         198010         203309           CHESAPEAKE         DOMINIC NE BW         23         35-6K-12E         HARTSHORNE         149,144         243         1         83         199012         203309           DAMS OFER.CO         DONNA         1         15-5K-12E         HARTSHORNE         244,144         243         1         83         199072         203309           DAMS OFER.CO         EGLESTON UNIT         1         35-6K-12E         HARTSHORNE         246,055         1056         1         35         199072         203307           DAMS OFER.CO         ELIA BARTSHORNE         13-5K-12E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAVIS OPER. CO          | COOPER        | 1    | 10-5N-12E  | BOOCH        | 778,565      | 4195                  | 1      | 140                     | 1996/08 | 2003/08 |
| VALE OL. ASSOC.         CRAMLEY         1-2         2-16-118         215,157         10262         1         342         200/07         200309           TUCKER RON & COMPANY         DEER CREEK         1-2         24-59-12E         HARTSHORNE         7,66,105         52.63         1         175         1965/05         1999/10           OLESAPEAKE         DEENT         1         25-59-12E         HARTSHORNE         1863,279         4098         1         31         1990/11         200309           OMESAPEAKE         DEMNICE NEW         2-33         35-64-12E         HARTSHORNE         126,141         243         31         1990/11         200309           OMESAPEAKE         DEMNICE NEW         56-04-12E         HARTSHORNE         27,443/14         249         21         31         1990/17         200309           OMESAPEAKE         SOMPAR         1         15-64-13E         HARTSHORNE         26,136         1066         1         35         1994/07         200308           TUCKER RON & COMPANY         EVEBET1         1         3-54/12E         HARTSHORNE         266,065         1066         1         35         1994/07         200308           TUCKER RON & COMPANY         EVEBET1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAVIS OPER CO           | CRAWEORD      | 1    | 10-5N-12E  |              | 152 357      | 1144                  | 1      | 38                      | 2001/02 | 2003/08 |
| TUCKER FON & COMPANY         DEEL CREEK         1-24         24-SN-12E         HARTSHORNE         173/22         0         198005         1989/10         200305           CHESAPEAKE         DEFOT         1         25-SN-12E         HARTSHORNE         200,11         2003059           GM PROP. & INVEST INC.         DOMINIC NE NW         2-35         55-N-12E         HARTSHORNE         200,11         201,12         2003059           DAVIS OPER. CO         DOMINA         1         15-SN-12E         HARTSHORNE         243,13         31         193012         2003059           TUCKER FON & COMPANY         EGGLESTON UNIT         1-55         HARTSHORNE         443,611         5131         1.77         200009         200307           DAVIS OPER. CO         DONNA         1         1-56N-12E         HARTSHORNE         434,611         513         1940/07         200307           DAVIS OPER. CO         ELLIS G.W         18         2-5N-12E         HARTSHORNE         151,011         2468         1         62         191011         2003068           XTO         FIREJOHER         1         1-56N-12E         HARTSHORNE         275,023         1660         1         35         1940/07         200307           GM PROP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |               |      |            |              |              |                       |        |                         |         |         |
| SAMSON         DELUAH         1         23-SN-12E         HARTSHORNE         1,880,215         336         1         137         1986/10         200309           GM PROP. 8, INVEST. INC.         DOMINIC         2-35         55-SN-12E         HARTSHORNE         149,749         9:33         1         31         1993/12         200309           CHESAPEAKE         DOMINIC         2-35         55-SN-12E         HARTSHORNE         2,744,84         2483         1         83         1985/07         200309           CHESAPEAKE         DOMINA         1         55-N1-12E         HARTSHORNE         2,744,84         2483         1         83         1986/07         200309           TUCKER RON & COMPARY         EGGLESTON UNIT         1         55-N1-12E         HARTSHORNE         143,611         236         12         201/11         200308           STOVER COMPARY         EVERETIT         1         15-SN-12E         HARTSHORNE         175,75         1         24         1965/08         2003/09           STOVER COMPARY         EVERETIT         1         15-SN-12E         HARTSHORNE         2,25,46         721         14         24         1965/08         2003/09           STOVER COMPARY         FIRESTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |      |            |              |              | 5263                  | 1      |                         |         |         |
| CHESAPEAKE         DEPOT         1         25-SH-12E         HARTSHORNE         149,749         933         1         381         1990/11         200309           CHESAPEAKE         DOMINIC NE NW         35-SH-13E         HARTSHORNE         243,749         933         1         183         169507         200309           DAMIS OFER.CO         DOMNA         1         16-SH-12E         HARTSHORNE         443,611         531         177         200009         200308           TUCKER ROK S COMPANY         EGGLESTON UNIT         1         15-SH-13E         HARTSHORNE         443,611         531         177         200009         200308           STOVE COMPANY         1-A         1         15-SH-13E         HARTSHORNE         1511         2466         1         22         2001/11         200306           XTO         FIELD HER         1         1-35N-12E         HARTSHORNE         279,023         1666         1         21994/07         200307           GM PROP. & INVEST INC.         FOOD         SAN-12E         HARTSHORNE         279,023         1666         1         21994/07         200309           AUTO         FIELD HER         1         1-35N-12E         HARTSHORNE         279,0366         171<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |               |      |            |              |              | 4098                  | 1      |                         |         |         |
| GM PROP. 8. INVEST. INC.         DOMINIC         2-55         656-N3E         HARTSHORNE         147,49         923         1         31         1930/12         2030/39           CHESAPEAKE         SW         1         356-N-3E         HARTSHORNE         2,74,814         2493         1         63         1965/07         2030/09         2033/08           TUCKER RON & COMPANY         EGGLESTON         1-15         15-50-N3E         HARTSHORNE         674,126         672         1         29         1984/12         2033/08           TUCKER RON & COMPANY         EGGLESTON         1-15         15-50-N-12         HARTSHORNE         266/95         1056         1         35         1994/07         2003/07           DAVIS DPER. CO         FILLD HEIR         1         3-6N-12E         HARTSHORNE         276,768         721         1         24         1996/02         2003/09           UNOCAL         FIRED HEIR         1         3-6N-13E         HARTSHORNE         2,258,446         1199         1         40         1966/08         2003/09           DAVIS DPER. CO         FRANCES 1-29         1-11         2-6N-12E         HARTSHORNE         2,258,446         1199         1         40         1966/02         2003/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |      |            |              |              |                       |        |                         |         |         |
| CHESAPEAKE         SW         1         35-6N-13E         HARTSHORNE         2,74,814         2433         1         83         196507         200338           TUCKER RON & COMPANY         EGGLESTON         1-15         15-5N-13E         HARTSHORNE         67,126         672         1         29         1984/12         200338           TUCKER RON & COMPANY         EGGLESTON         1-15         15-5N-13E         HARTSHORNE         280,95         1056         1         35         1994/07         20037           DAVIS OPER CO         ELLIS GW         18         25-6N-12E         HARTSHORNE         2750,168         1         62         1991/01         200308           TO         FIELD HEIR         1         3-5N-12E         HARTSHORNE         2,256,168         721         1         24         198500         200309           UNCCAL         FIELD HEIR         1         3-5N-13E         HARTSHORNE         2,256,168         1         59         195002         200309           DAVIS OPER CO         FRANCES 1.29         1-1         2-5N-12E         HARTSHORNE         2,256,168         1         19         1         40         196500         200309           DAVIS OPER CO         FRANCES 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GM PROP. & INVEST. INC. |               | 2-35 | 35-6N-13E  | HARTSHORNE   | 149,749      | 923                   | 1      | 31                      | 1993/12 | 2003/09 |
| TUCKER RON & COMPANY         EGGLESTON         1-15         1-5N-13E         HARTSHORNE         674,126         872         1         29         198//12         200308           WHEELER ENERGY         1-A         1         5-N-13E         HARTSHORNE         266,095         1056         1         35         199//12         2003/01           DAVIS OFER C.O.         ELLIS G.W         18         2-SN-12E         HARTSHORNE         270,023         1686         1         62         199//10         200308           STOVER COMPANY         EVERETT 1         1         3-SN-13E         HARTSHORNE         326,516         721         24         198/00         200309           UNOCAL         FIRESTON         1         7-SN-13E         HARTSHORNE         326,516         1759         1         59         198/00         200309           DAVIS OFER CO         FOOD SE SW W         1         3-SN-13E         HARTSHORNE         326,516         1759         1         0         198/00         200309           DAVIS OFER CO         FRAM RESOURCES LLC         GARETT         2-1         1-SN-12E         HARTSHORNE         16,077         0         198/00         2000/10         2000/00         200308         SKELLY OLLOMONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHESAPEAKE              |               | 1    | 35-6N-13E  | HARTSHORNE   | 2,744,814    | 2493                  | 1      | 83                      | 1965/07 | 2003/09 |
| EGGLESTON UNIT         VHEELER ENRERGY         1.4         1.4         1.5         1.5-0N-12E         HARTSHORNE         26,095         10.56         1         3.55         1994/07         2003/07           DAVIS OPER-CO         ELUIS G.W         18         22-001-12E         HARTSHORNE         115,101         2469         1         82         2001/11         2003/08           STOVER COMPANY         FUELD HEIR         1         3-5N-12E         HARTSHORNE         32,265,168         721         1         24         1966/08         2003/08           MOCAL         FIRESTON         1         7-9N-13E         HARTSHORNE         32,65,76         1759         1         59         1996/02         2003/09           DAVIS OPER-CO         FRANCES 1-29         1-11         29-6N-13E         HARTSHORNE         32,65,76         1759         1         30         1992/09         2003/08           DAVIS OPER-CO         GARRETT         2-1         1-11         29-6N-13E         HARTSHORNE         10         176         1996/04         2003/08           TAG TEAM RESOURCES LLC         GARRETT         2-2         1-9-11         29-6N-14         12         1-9-11         29-6N-24         299         1         1996/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |      |            |              |              |                       |        |                         |         |         |
| MHEELER ENERGY         1-A         1A         15A         19         LARTSHORNE         286,095         1056         1         35         1994/07         200307           DANS OFER. CO         ELLIS GW         IB         22-5N-12E         HARTSHORNE         115,101         2469         1         62         2001/11         200308           STOVER COMPANY         EVERETT 1         1         3-5N-13E         HARTSHORNE         279,023         1668         1         62         1991/01         200308         200307           UNOCAL         FIRESTON         1         7-5N-13E         HARTSHORNE         3265,168         721         1         40         196508         200309           DANS OFER. CO         FFANCES 1-29         1-11         24-6N-13E         HARTSHORNE         2,288,446         1199         1         40         196508         200309         200309         200308         200309         200308         200309         200309         200308         200309         200308         200309         200309         200308         201308         201308         201308         201308         201308         201308         201308         201308         201308         201308         20199002         200308         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TUCKER RUN & COMPANY    |               | 1-15 | 15-5N-13E  | HARTSHURNE   | 674,126      | 872                   | 1      | 29                      | 1984/12 | 2003/08 |
| STOVER COMPANY         EVERETT 1         1         3.5N-12E         HARTSHORNE         2.79,023         1868         1         6.20         199/01         200309           UNOCAL         FIRESTON         1         7.5N-13E         HARTSHORNE         3.25,168         7.21         1         24         196708         197704           GM PROP.8 INVEST.INC.         FOOD         2-3         3.5N-13E         HARTSHORNE         345,576         1759         1         59         199502         200309           CHESAPEAKE         FOOD SE SW NW         1         3.5N-13E         HARTSHORNE         2,258,446         1199         1         40         196508         200309           TAG TEAM RESOURCES LLC         GARRETT         2-21         21-5N-13E         HARTSHORNE         8,259         1479         1         49         2000/07         200308           TAG TEAM RESOURCES LLC         GARRETT         4-21         21-5N-12E         HARTSHORNE         8,07         0         1999/09         200308           TAG TEAM RESOURCES LLC         GARRETT         4-21         21-5N-12E         HARTSHORNE         8,125         3576         1         19         2001/10         200308           SKELLY OL COMPANY         GARRETT<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 1-A           |      |            |              |              |                       |        |                         |         |         |
| NTO         FIELD HEIR         1         15-N-12E         HARTSHORNE         678 18         1         24         196708         203.09           GM PROP.& INVEST.INC.         FOOD         2-3         3-5N-13E         HARTSHORNE         345,576         1759         1         59         199502         2003.09           CHESAPEAKE         FOOD SE SW NW         1         3-5N-13E         HARTSHORNE         2,256,446         1199         1         40         196508         2003.09           DAVIS OPER.CO         FRANCES 1-29         1-11         2-94N-13E         HARTSHORNE         1,528         987         1         33         199209         2003.08           TAG TEAM RESOURCES LLC         GARRETT         2-21         21-5N-12E         HARTSHORNE         162,376         1         19         49         2000/0         203.08           TAG TEAM RESOURCES LLC         GARRETT         1-21         21-5N-12E         HARTSHORNE         812,576         1         119         2001/10         203.08           SKELLY OL COMPANY         GARRETT         1-21         21-5N-12E         HARTSHORNE         812,071         502         1         17         196604         203.08           VALE OL ASSOC         GBSON WINNIE <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |      |            |              |              |                       |        |                         |         |         |
| UNOCAL<br>GM PROP.8.INVEST.INC.         FIRESTON         1         7-5N-13E         HARTSHORNE         678.818         0         1960/02         1970/04           GM PROP.8.INVEST.INC.         FOOD         2-3         3-5N-13E         HARTSHORNE         345.576         1759         1         59         1995/02         2003/09           CHESAPEAKE         FOOD SE SW NW         1         3-5N-13E         HARTSHORNE         2,258,446         1199         1         40         1966/04         203/09           TAG TEAM RESOURCES LLC         GARRETT         2-21         21-5N-12E         HARTSHORNE         16,077         0         1999/09         2000/01           TAG TEAM RESOURCES LLC         GARRETT         4-21         21-5N-12E         HARTSHORNE         16,077         0         1966/04         2003/08           SKELLYOIL COMPANY         GARRETT         1         21-5N-12E         HARTSHORNE         17,3807         0         1966/04         2003/08           VALE CIL ASSOC         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         17,380         164         1990/02         2003/08           BROWER 0&G CO         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         17,738         567         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               |      |            |              |              |                       |        |                         |         |         |
| CHESAPEAKE<br>DAVIS OPER. CO<br>TAG TEAM RESOURCES LLC         FOOD SE SW NW<br>FRANCES 1-29<br>GARRETT         1-11<br>2-21         29-61-13E<br>2-21         HARTSHORNE<br>HARTSHORNE         2,28,446         1199         1         40         1965/08         2003/08           TAG TEAM RESOURCES LLC<br>GARRETT         GARRETT         2-21         21-5N-12E         HARTSHORNE         16,077         0         1999/09         2003/08           TAG TEAM RESOURCES LLC<br>GARRETT         GARRETT         4-21         21-5N-12E         HARTSHORNE         82,910         1479         1         49         2000/07         2003/08           SKELLY OLL COMPANY         GARRETT         1         21-5N-12E         HARTSHORNE         178,807         0         1996/04         2003/08           VALE OLL COMPANY         GARRETT         1         21-5N-12E         HARTSHORNE         637,888         662         1         29         1966/04         2003/08           CHESAPEAKE         GIBSON WINNIE         4         4-5N-13E         HARTSHORNE         132,071         502         1         17         1985/01         2003/08           BROWER 0&G CO         GLEESE         2-4         4-5N-13E         HARTSHORNE         77,738         567         1         20         1999/02         2003/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UNOCAL                  | FIRESTON      |      | 7-5N-13E   | HARTSHORNE   | 678,818      |                       |        | 0                       | 1966/04 | 1977/04 |
| DAVIS OPER. CO         FRANCES 1::29         1:11         29:01:29         1:21         21:01:12:14         HARTSHORNE         75:52:8         987         1         33         1992/09         2003/08           TAG TEAM RESOURCES LLC         GARRETT         3:21         21:5N-12E         HARTSHORNE         62:910         1479         1         49         2000/0         2003/08           TAG TEAM RESOURCES LLC         GARRETT         4:21         21:5N-12E         HARTSHORNE         81:325         3576         1         119         2001/0         2003/08           SKELLY OLLCOMPANY         GARRETT         1         21:5N-12E         HARTSHORNE         67:888         862         1         29         1966/04           ELLS H AJR ET AL         GARRETT A         1         21:5N-12E         HARTSHORNE         67:788         862         1         29         196/04         2003/08           VALE CIL ASSOC         GIBSON WINNIE         1         4:5N-13E         HARTSHORNE         77:78         567         1         20         199/02         2003/08           BROWER 0&G CO         GLEESE         2:33         3:6N-13E         HARTSHORNE         77:78         567         1         19         196/02         2003/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GM PROP. & INVEST. INC. | FOOD          | 2-3  | 3-5N-13E   | HARTSHORNE   | 345,576      | 1759                  | 1      | 59                      | 1995/02 | 2003/09 |
| TAG TEAM RESOURCES LLC       GARRETT       2-21       21-5N-12E       HARTSHORNE       16,077       0       1990/09       2000/07         TAG TEAM RESOURCES LLC       GARRETT       4-21       21-5N-12E       HARTSHORNE       82,910       1479       1       49       2000/07       2003/08         SKELLY OIL COMPANY       GARRETT       1-21       21-5N-12E       HARTSHORNE       18,325       3576       1       119       2001/10       2003/08         YALE OLASSOC.       GIBSON       10-1       10-5N-13E       HARTSHORNE       16,077       0       1996/04       2003/08         YALE OLASSOC.       GIBSON WINNIE       1       4-5N-13E       HARTSHORNE       123,071       502       1       17       1990/08       2003/08         BROWER 0&G CO       GIBSON WINNIE       2-4       4-5N-13E       HARTSHORNE       77,786       587       1       20       1990/08       2003/08         BROWER 0&G CO       GLEESE       2-33       33-6N-13E       HARTSHORNE       77,786       587       1       20       1990/02       2003/08         DAVIS OPER.CO       GLEESE       2-3       33-6N-13E       HARTSHORNE       756.3       1       19       1966/04       2003/08 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |      |            |              |              |                       |        |                         |         |         |
| TAG TEAM RESOURCES LLC         GARRETT         3-21         21-5N-12E         HARTSHORNE         82,910         1479         1         49         2000/07         2003/08           TAG TEAM RESOURCES LLC         GARRETT         4-21         21-5N-12E         HARTSHORNE         81,325         3576         1         19         2001/10         2003/08           SKELLY OL COMPANY         GARRETT         1         21-5N-12E         HARTSHORNE         18,807         0         1         1996/04         2003/08           YALE OLL ASSOC.         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         637,888         862         1         29         196/04         2003/08           BROWER O& CAR CO         GLEESE         0.5N-13E         HARTSHORNE         77,738         587         1         20         199/02         2003/08           DAVIS OPER.CO         GLEESE         2-33         356N-13E         HARTSHORNE         86,494         299         1         10         199/02         2003/08           DAVIS OPER.CO         GLEESE         1-27         7-6N-13E         BOOCH         64,130         272         1         9         198/07         2003/08           DAVIS OPER.CO         GLEENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               |      |            |              |              | 987                   | 1      |                         |         |         |
| TAG TEAM RESOURCES LLC         GARRETT         4-21         21-5N-12E         HARTSHORNE         81,325         3576         1         119         2001/0         2003/08           SKELLY OLL COMPANY         GARRETT         1-A         21-5N-12E         HARTSHORNE         178,807         0         1966/04         2003/08           YALE OLL ASSOC.         GIBSON         10-1         10-5N-13E         HARTSHORNE         123,071         502         1         17         1996/04         2003/08           CHESAPEAKE         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         948,223         4931         1         164         1990/06         2003/08           BROWER 0&G CO         GLEESE         2-33         33-6N-13E         HARTSHORNE         77,38         587         1         20         1999/02         2003/08           DAVIS OPER.CO         GLEESE         2-33         33-6N-13E         HARTSHORNE         68,494         299         1         10         1990/02         2003/08           DAVIS OPER.CO         GLEESE         2-7         2-6-0-13E         HARTSHORNE         646,130         272         1         9         198/07         2003/08           DAVIS OPER.CO         GLEESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |      |            |              |              | 1479                  | 1      |                         |         |         |
| ELLS H AJR ETAL         GARRETT A         1         21-5N-12E         HARTSHORNE         637,888         862         1         29         1966/04         2003/08           YALE OL ASSOC.         GIBSON         10-1         10-5N-13E         HARTSHORNE         123,071         502         1         17         1986/01         2003/08           CHESAPEAKE         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         77,738         587         1         20         1999/06         2003/08           BROWER 0.8G CO         GLEESE         2-33         356-N13E         HARTSHORNE         77,738         587         1         20         1999/02         2003/08           DAVIS OPER. CO         GLEESE         28-33         356-N13E         HARTSHORNE         58,494         299         1         10         1990/02         2003/08           DAVIS OPER. CO         GLEESE         28         1         35-6N-13E         HARTSHORNE         674,747         563         1         19         1966/01         2003/08           DAVIS OPER. CO         GLEENLE         1         35-6N-13E         HARTSHORNE         126,13         1753         1         56         200/04         2003/08           DAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAG TEAM RESOURCES LLC  | GARRETT       |      | 21-5N-12E  | HARTSHORNE   | 81,325       |                       | 1      |                         | 2001/10 |         |
| YALE OLLASSOC.       GIBSON       10-1       10-5N-13E       HARTSHORNE       123,071       502       1       17       1985011       200309         CHESAPEAKE       GIBSON WINNIE       1       4-5N-13E       HARTSHORNE       948,223       4931       1       164       1990/06       200309         BROWER 0&G CO       GIBSON WINNIE       2-4       4-5N-13E       HARTSHORNE       77,78       567       1       20       1990/08       200308         BROWER 0&G CO       GLEESE       2-33       33-6N-13E       HARTSHORNE       77,78       567       1       62       1990/02       200308         DAVIS OPER. CO       GLEESE       2-3       33-6N-13E       HARTSHORNE       58,494       299       1       10       1990/02       200308         DAVIS OPER. CO       GLEESE       1       33-6N-13E       HARTSHORNE       674,747       563       1       19       1965/08       200308         TAG TEAM RESOURCES LLC       GLENNIE       1       15-5N-12E       HARTSHORNE       126,153       1753       1       58       2000/04       200308         TAG TEAM RESOURCES LLC       GLENNIE       1       2-6N-13E       HARTSHORNE       442,707       3539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |      |            |              |              | 969                   | 4      |                         |         | 2002/00 |
| CHESAPEAKE         GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         948,223         4931         1         164         1990/06         2003/08           BROWER 0&G CO         GIBSON WINNIE         2-4         4-5N-13E         HARTSHORNE         77,738         567         1         20         1999/08         2003/08           BROWER 0&G CO         GLEESE         2-33         33-6N-13E         HARTSHORNE         180,921         1870         1         62         1999/02         2003/08           DAVIS OPER. CO         GLEESE         2-37         25-6N-13E         HARTSHORNE         58,494         299         1         10         199/02         2003/08           DAVIS OPER. CO         GLEESE         1-27         27-6N-13E         BOOCH         64,130         272         1         9         1989/07         2003/08           BROWER 0&G CO         GLEESE J         1         33-6N-13E         HARTSHORNE         674,747         563         1         19         196/02         2003/08           DAVIS OPER. CO         GOLENHI         1         16-6N-12E         HARTSHORNE         126,13         1753         1         68         1999/07         2003/08           DAVIS OPER. CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |      |            |              |              |                       |        |                         |         |         |
| BROWER 0.8G CO<br>DAVIS OPER CO         GLEESE         2-33<br>(28-0) - 28-28-0         33-6N-13E<br>(28-0) - 28-28-0         HARTSHORNE<br>(28-0) - 28-28-0         180.921         1870         1         62         1998/02         2003/08           DAVIS OPER CO         GLEESE         28-00-32         28-6N-13E         HARTSHORNE         58.494         299         1         10         1998/02         2003/08           DAVIS OPER CO         GLEESE         1-27         27-6N-13E         BOOCH         64,130         272         1         9         1986/07         2003/08           BROWER 0.8G CO         GLEESE         1-13         13-6N-13E         HARTSHORNE         674,747         563         1         19         1966/08         2003/08           DAVIS OPER CO         GLEESE         1         1         15-5N-12E         HARTSHORNE         674,747         563         1         19         1966/08         2003/08           DAVIS OPER CO         GODDE#1         1         15-5N-12E         HARTSHORNE         426,606         179         1         6         1986/07         2003/08           DAVIS OPER CO         GRAY         1         26-50-13E         HARTSHORNE         13,725         3043         1         101         2002/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHESAPEAKE              | GIBSON WINNIE | 1    | 4-5N-13E   | HARTSHORNE   | 948,223      | 4931                  | 1      |                         | 1990/06 | 2003/09 |
| DAVIS OPER. CO         GLEESE         28-6N-13E         HARTSHORNE /<br>HARTSHORNE /<br>HARTSHORNE /<br>BOOCH         58,494         299         1         10         199/02         2003/08           DAVIS OPER. CO         GLEESE         1-27         27-6N-13E         BOOCH         64,130         272         1         9         199/07         2003/08           BROWER 0.80.CO         GLEESE         1         33-6N-13E         HARTSHORNE         674,747         563         1         19         196/08         2003/08           TAG TEAM RESOURCES LLC         GLENNIE         1-13         15-5N-12E         HARTSHORNE         126,153         1753         1         6         1986/01         2003/08           DAVIS OPER. CO         GODDE#I         1         16-5N-12E         HARTSHORNE         426,707         3539         1         118         197/07         2003/08           DAVIS OPER. CO         GRAY         1         24-5N-12E         HARTSHORNE         432,727         3639         1         118         197/07         2003/08           VALE OL ASSOC.         GRE TA         1-21         24-5N-12E         HARTSHORNE         137,52         3043         1         101         200/07         2003/08           DAVIS OPER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               |      |            |              |              |                       |        |                         |         |         |
| HARTSHORME /           HARTSHORME /           DAVIS OPER CO         GLEESE J         1         1-27         276-1132         BOOCH         64,130         272         1         9         1989/07         2003/08           BROWER O&G CO         GLEESE J         1         33-6N-13E         HARTSHORNE         126,153         1753         1         165/08         2003/08           DAVIS OPER. CO         GODE#1         1         1         ARTSHORNE         126,153         1753         1         165/012         2003/08           CO         GODE#1         1         1         ARTSHORNE         1753         3539         1         185/012         2003/08           CO         GRETA         1         29-5N-12E         HARTSHORNE         420,707         3530         1         136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |      |            |              |              |                       |        |                         |         |         |
| BROWER 0.83 CO         GLEESE J         1         33-6N-13E         HARTSHORNE         674,747         563         1         19         1965/08         2003/08           TAG TEAM RESOURCES LLC         GLENNIE         1-13         13-5N-13E         HARTSHORNE         126,153         1753         1         58         2003/08           DAVIS OPER. CO         GODDE#1         1         16-5N-12E         HARTSHORNE         426,163         173         1         6         1986/01         2003/08           CHESAPEAKE         GRAY         1         26-6N-13E         HARTSHORNE         446,606         179         1         6         1986/01         2003/08           VALE OL ASSOC         GRETA         1-21         21-5N-13E         HARTSHORNE         432,725         3043         1         18         1978/07         2003/03           XTO         HALL         1         29-5N-12E         BOOCH         513,302         1304         1         43         1981/07         2003/08           DAVIS OPER. CO         HALL         1         31-5N-12E         HARTSHORNE         470,147         0         198/1/12         2003/08           TENNECO OLI COMPANY         HALL         1         31-5N-12E         HART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |               |      |            |              |              |                       |        |                         |         |         |
| TAG TEAM RESOURCES LLC         GLENNIE         1-13         1-56-N12E         HARTSHORNE         126,153         1753         1         58         2000/d         2003/d8           DAVIS OPER. CO         GOODE#1         1         16-50-N12E         HARTSHORNE         456,606         179         1         6         1985/01         2003/d8           CHESAPEAKE         GRAY         1         26-6N-13E         HARTSHORNE         842,707         3539         1         118         1978/07         2003/d9           YALE OLASSOC.         GRETA         1-21         21-5N-13E         HARTSHORNE         842,707         3539         1         101         2002/12         2003/d9           XTO         HALL         1         29-5N-12E         BOOCH         519,302         1304         1         43         1981/07         2003/d9           DAVIS OPER. CO         HALL         1         31-5N-12E         HARTSHORNE         428,72         568         1         19         1981/07         2003/d9           DAVIS OPER. CO         HALL         1         31-5N-12E         HARTSHORNE         428,72         568         1         19         1981/07         2003/d9           GLE EXPL.INC         HALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |      |            |              |              |                       |        |                         |         |         |
| CHESAPEAKE<br>YALE OL ASSOC.         GRAY<br>GRE TA         1         26-6N-13E<br>1-21         HARTSHORNE<br>21-5N-13E         HARTSHORNE<br>HARTSHORNE         842,707         3539         1         118         1978/07         2003/03           XTO         HALL         1         21-5N-13E         HARTSHORNE         13,725         3043         1         101         2002/12         2003/03           TATO         HALL         1         29-5N-12E         BOOCH         519,302         1304         1         43         1981/12         2003/08           DAVIS OPER. CO         HALL         1         32-5N-12E         HARTSHORNE         428,728         568         1         1         1981/12         2003/08           TENNECO OLI COMPANY         HALL         1         32-5N-12E         HARTSHORNE         420,7147         0         1986/11         2000/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         128,207         4533         1         151         2002/02         2003/08           TLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |      |            |              |              |                       |        |                         |         |         |
| YALE OIL ASSOC.         GRE TA         1-21         21-5N-13E         HARTSHORNE / LOOCH         13,725         3043         1         101         2002/12         2003/03           DAVIS OPER CO         HALL         1         29-5N-12E         BOOCH         519,302         1304         1         43         1981/07         2003/09           DAVIS OPER CO         HALL         1         31-5N-12E         HARTSHORNE         428,728         568         1         19         1981/07         2003/09           GLB EXPL.INC         HARTSHORNE         18-5N-12E         HARTSHORNE         470,147         0         1996/11         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TILFORD PINSON EXPL.         HARTSHORNE         1         35-6N-12E         HARTSHORNE         182,027         4533         1         151         2002/02         2003/08           TLGFORD PINSON EXPL.         HARTSHORNE         1         35-6N-12E         HARTSHORNE         285,379         1373         1         46         1981/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               |      |            |              |              |                       |        |                         |         |         |
| HARTSHORNE /           XTO         HALL         1         29-5N-12E         BOOCH         519,302         1304         1         43         1981/07         2003/09           DAVIS OPER. CO         HALL         1         31-5N-12E         HARTSHORNE         428,728         568         1         19         1981/07         2003/08           TENNECO OIL COMPANY         HALL         1         32-5N-12E         HARTSHORNE         470,147         0         1966/11         2003/08           GLB EXPL.INC         HARRISON         1-18         16-5N-12E         HARTSHORNE         281,510         4701         157         1999/10         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-36         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TAG TEAM RESOURCESLC         HOPKINS         1         1-36A         36-6N-12E         HARTSHORNE         28,577         1373         1         46         1991/09         2003/08           TAG TEAM RESOURCESLC         HOPKINS         1         34-6N-13E         HARTSHORNE         293,79         1373         1         46         1991/09         2003/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |      |            |              |              |                       | 1      |                         |         |         |
| DAVIS OPER CO         HALL         1         31-5N-12E         HARTSHORNE         428,728         568         1         19         198/1/2         2003/08           TENNECO OIL COMPANY         HALL         1         32-5N-12E         HARTSHORNE         470,147         0         1966/11         2003/08           GLB EXPL.INC         HARRISON         1-18         18-5N-12E         HARTSHORNE         28,510         4701         1         157         199/10         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TILFORD PINSON EXPL.         HARTSHORNE         1.35N-13E         HARTSHORNE         18,207         4533         1         161         2002/02         2003/08           TLG TEAM RESOURCES LLC         HOPKINS         1         1.35N-13E         HARTSHORNE         295,379         1373         1         46         1981/09         2003/08           HUNT-GARRETT         HARTSHORNE         4,041,853         3691         1         123         1966/08         2003/09           DAVIS OPER.CO         ISENHOWER         1.1         12-5N-12E         HARTSHORNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |      |            | HARTSHORNE / |              |                       |        |                         |         |         |
| TENNECO OL COMPANY         HALL         1         32-5N-12E         HARTSHORNE         470,147         0         1966/11         2000/10           GLB EXPL.INC         HARTSHOL         1-18         16-5N-12E         HARTSHORNE         281,510         4701         1         157         1999/10         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-36         36-6N-12E         HARTSHORNE         128,207         4533         1         151         2002/02         2003/08           TAG TEAM RESOURCES LL         HOPKINS         1         15-5N-13E         HARTSHORNE         295,379         1373         1         46         1981/09         2003/08           CHESAPEAK         NW SE SW         1         34-6N-13E         HARTSHORNE         4041,853         3691         1         123         1966/08         2003/09           DAVIS OPER CO         ISENHOWER         1-17         17-5N-12E         HARTSHORNE         463,477         4427         1         148         199/09         2003/08           WIMBERLY JAMES A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |               |      |            |              |              |                       |        |                         |         |         |
| GLB EXPL. INC         HARRISON         1-18         18-5N-12E         HARTSHORNE         281,510         4701         1         157         1999/10         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-35         35-6N-12E         HARTSHORNE         46,203         2053         1         68         2002/02         2003/08           TILFORD PINSON EXPL.         HARTSFIELD         1-36         35-6N-12E         HARTSHORNE         182,07         4533         1         151         2002/02         2003/08           TAG TEAM RESOURCES LLC         HOPKINS         1         13-6N-13E         HARTSHORNE         295,379         1373         1         46         1981/09         2003/08           CHESAPEAKE         NW SE SW         1         34-6N-13E         HARTSHORNE         4,041,853         3691         1         123         1965/08         2003/09           DAVIS OPER. CO         ISENHOWER         1.1         7-5N-12E         HARTSHORNE         463,477         4427         1         148         1999/09         2003/03           DAVIS OPER. CO         ISENHOWER         1.1         12-5N-12E         HARTSHORNE         256,57         1836         1         61         1996/08         2003/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               |      |            |              |              | 000                   | 1      |                         |         |         |
| TILFORD PINSON EXPL.         HARTSFIELD         1-36A         36-6N-12E         HARTSHORNE         128,207         4533         1         151         2002/02         2003/08           TAG TEAM RESOURCES LLC         HOPKINS         1         1.55N-13E         HARTSHORNE         295,379         1373         1         46         1981/09         2003/08           HUNT-GARRETT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLB EXPL. INC           | HARRISON      | 1-18 | 18-5N-12E  | HARTSHORNE   | 281,510      |                       |        | 157                     | 1999/10 | 2003/08 |
| TAG TEAM RESOURCES LLC         HOPKINS         1         13-5N-13E         HARTSHORNE         295,379         1373         1         46         1981/09         2003/08           HUNT-GARRETT         HUNT-GARRETT         HARTSHORNE         4,041,853         3691         1         123         1965/08         2003/09           DAVIS OPER CO         ISENHOWER         1.17         17-5N-12E         HARTSHORNE         463,477         4427         1         148         1999/09         2003/03           WIMBERLY JAMES A         JEFFERSON         1         12-5N-12E         HARTSHORNE         258,557         1836         1         61         1996/08         2003/03           TAG TEAM RESOURCES LLC         JENNIFER         1-21         21-5N-12E         HARTSHORNE         258,557         1836         1         61         1996/08         2003/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |      |            |              |              |                       |        |                         |         |         |
| HUNT-GARRETT           CHESAPEAKE         NW SE SW         1         34-6N-13E         HARTSHORNE         4,041,853         3691         1         123         1965/08         2003/09           DAVIS OPER. CO         ISENHOWER         1-17         17-5N-12E         HARTSHORNE         463,477         4427         1         148         1999/09         2003/08           WIMBERLY JAMES A         JEFFERSON         1         12-5N-12E         HARTSHORNE         268,557         1836         1         61         1996/08         2003/03           TAG TEAM RESOURCES LLC         JENNIFER         1-21         21-5N-12E         HARTSHORNE         45.011         1560         1         52         2001/12         2003/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               |      |            |              |              |                       |        |                         |         |         |
| DAVIS OPER. CO         ISENHOWER         1-17         17-5N-12E         HARTSHORNE         463,477         4427         1         148         1999/09         2003/08           WIMBERLY JAMES A         JEFFERSON         1         12-5N-12E         HARTSHORNE         259,557         1836         1         1996/08         2003/03           TAG TEAM RESOURCES LLC         JENNIFER         1-21         21-5N-12E         HARTSHORNE         45,011         1560         1         52         2003/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | HUNT-GARRETT  |      |            |              |              |                       |        |                         |         |         |
| WIMBERLY JAMES A         JEFFERSON         1         12-5N-12E         HARTSHORNE         258,557         1836         1         61         1996/08         2003/03           TAG TEAM RESOURCES LLC         JENNIFER         1-21         21-5N-12E         HARTSHORNE         45,011         1560         1         52         2003/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |      |            |              |              |                       |        |                         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WIMBERLY JAMES A        |               | 1    |            | HARTSHORNE   |              |                       |        |                         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               |      |            |              |              |                       |        |                         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO TERM REQUIRCES IEU   | JENNIFER      | 2-21 | 21-014-12C | HARIOTURNE   | 17,029       | 010                   |        | 17                      | 2002/02 | 2003/00 |

|                                          |                         |           |                        |                          | G as<br>Mcf)                      | Latest                                  | ber of                    | cfd)                                         | ate                | ate                |
|------------------------------------------|-------------------------|-----------|------------------------|--------------------------|-----------------------------------|-----------------------------------------|---------------------------|----------------------------------------------|--------------------|--------------------|
| 0 perator                                | Wei                     | Well Num  | Location               | ormation                 | Cumulative Gas<br>Production (Mcf | Gas<br>Production_Latest<br>Month (Mcf) | Active Number of<br>Wells | Current Gas<br>Production<br>RateRate (Mcfd) | First Prod Date    | ast Prod Date      |
| TAG TEAM RESOURCES LLC                   | ≤<br>JOHNNY             | 1-16      | 16-5N-12E              | HARTSHORNE               | <b>ت د</b><br>716,366             | <b>0 6 6</b><br>4413                    | <b>₹</b> ≶                | <u>ሪደድ</u><br>147                            | 1999/05            | 2003/08            |
| TILFORD PINSON EXPL.                     | JONES                   | 2-25      | 25-6N-12E              | HARTSHORNE               | 7 264                             | 902                                     | 1                         | 30                                           | 2003/02            | 2003/08            |
| TAG TEAM RESOURCES LLC<br>DAVIS OPER. CO | JUANITA<br>JUDY         | 1-13<br>1 | 13-5N-13E<br>15-5N-12E | HARTSHORNE<br>HARTSHORNE | 40,369<br>6,009                   | 771<br>6009                             | 1                         | 26<br>200                                    | 2000/09<br>2003/07 | 2003/08<br>2003/07 |
| TAG TEAM RESOURCES LLC                   | KRISTY LEE              | 1-17      | 17-5N-12E              | HARTSHORNE               | 33,779                            | 516                                     | 1                         | 17                                           | 2000/07            | 2003/08            |
| BROWER 0&G CO                            | LEFLORE                 | 1-36      | 36-6N-13E              | HARTSHORNE               | 59,148                            | 290                                     | 1                         | 10                                           | 1997/02            | 2003/08            |
| BROWER 0&G CO                            | LEFLORE SE SW<br>NW     | 1         | 36-6N-13E              | HARTSHORNE               | 831,922                           |                                         |                           | 0                                            | 1965/07            | 1979/02            |
| T K DRILLING CORPORATION                 | LEO                     | 1-25      | 25-6N-13E              | HARTSHORNE               | 207,738                           | 664                                     | 1                         | 22                                           | 1988/09            | 2003/07            |
|                                          | LINDSAY GIBSON          |           |                        |                          |                                   |                                         |                           |                                              |                    |                    |
| CHESAPEAKE<br>DAVIS OPER. CO             | NE SW<br>LOFTIS         | 1<br>1    | 4-5N-13E<br>8-5N-12E   | HARTSHORNE<br>HARTSHORNE | 3,730,939<br>3,787                |                                         |                           | 0<br>0                                       | 1965/07<br>2000/08 | 1990/04<br>2000/10 |
| SAMSON                                   | LOFTIS                  | 2         | 23-5N-12E              | HARTSHORNE               | 0,101                             |                                         |                           | Ö                                            | 2000/00            | 2000/10            |
| SAMSON                                   | LOFTIS                  | 2         | 23-5N-12E              | HARTSHORNE               | 4,239,153                         |                                         |                           | 0                                            | 1968/10            | 1985/09            |
| SAMSON                                   | LOFTIS & DELILAH        |           | 23-5N-12E              | HARTSHORNE               | 1,216,608                         |                                         |                           | 0                                            | 1985/10            | 1992/11            |
| 34113014                                 |                         |           | 20-011-120             | HARTSHORNE               | 1,210,000                         |                                         |                           | 0                                            | 1000/10            | 1552/11            |
| SAMSON                                   | LOFTIS AUSTIN E         | E1        | 23-5N-12E              | HARTSHORNE               | 892,201                           | 2596                                    | 1                         | 87                                           | 1985/10            | 2003/09            |
| DAVIS OPER. CO                           | LOFTIS#1-30             | 1-30      | 30-5N-12E<br>1-5N-12E  | HARTSHORNE               | 1,068,855                         | 3654<br>4508                            | 1                         | 122<br>150                                   | 1986/10            | 2003/08            |
| MARBET LLC<br>SJM INCORPORATED           | MARBET LLC<br>MARBET    | 17        | 12-5N-12E              | HARTSHORNE               | 199,182<br>254,191                | 4508                                    | 1                         | 150                                          | 2000/04<br>2000/01 | 2003/03<br>2003/03 |
| MARBET LLC                               | MARBET LLC              | 31        | 14-5N-13E              | HARTSHORNE               | 77,214                            | 3232                                    | 1                         | 108                                          | 2001/05            | 2003/07            |
| MARBET LLC                               | MARBET LLC 37           | 37        | 15-5N-13E              | HARTSHORNE               | 57,461                            | 2787                                    | 1                         | 93                                           | 2001/10            | 2003/08            |
| MARBET LLC                               | MARBETT LLC             | 32        | 23-5N-13E              | HARTSHORNE               | 17,246                            | 571                                     | 1                         | 19                                           | 2001/10            | 2003/03            |
| MARBET LLC<br>MARBET LLC                 | MARVIN<br>MARVIN        | 3<br>4    | 11-5N-12E<br>11-5N-12E | HARTSHORNE<br>HARTSHORNE | 495,062<br>26,210                 | 6749                                    | 1                         | 225<br>0                                     | 1999/10<br>1999/12 | 2003/06<br>2000/02 |
| MARBET LLC                               | MARVIN                  | 5         | 11-5N-12E              | HARTSHORNE               | 1,227                             |                                         |                           | 0                                            | 2001/03            | 2000/02            |
| MARBET LLC                               | MARVIN                  | 6         | 11-5N-12E              | HARTSHORNE               | 2,387                             | 1245                                    | 1                         | 42                                           | 2003/02            | 2003/03            |
| DAVIS OPER. CO                           | MCCARTY                 | 3-32      | 32-6N-13E              | HARTSHORNE               | 305,371                           | 5247                                    | 1                         | 175                                          | 1999/11            | 2003/08            |
| хто                                      | MCDONALD<br>SUSAN       | 1         | 35-5N-12E              | HARTSHORNE               | 8,044,198                         | 2352                                    | 1                         | 78                                           | 1965/08            | 2003/09            |
| DAVIS OPER. CO                           | MORAN S                 | 1         | 22-5N-12E              | HARTSHORNE               | 888,828                           | 2469                                    | 1                         | 82                                           | 1965/08            | 2003/09            |
| XTO                                      | MORRIS O                | 3-24      | 24-5N-12E              | HARTSHORNE               | 46,175                            | 1139                                    | 1                         | 38                                           | 2000/11            | 2003/09            |
| XTO                                      | MORRIS OSSIE            | 1         | 24-5N-12E              | HARTSHORNE               | 11,017,443                        | 8293                                    | 1                         | 276                                          | 1965/08            | 2003/09            |
| TAG TEAM RESOURCES LLC<br>DAVIS OPER. CO |                         | 4<br>2    | 24-5N-13E<br>22-5N-12E | HARTSHORNE               | 9,546                             | 2475                                    | 1                         | 83                                           | 2003/05            | 2003/08            |
| TAG TEAM RESOURCES LLC                   | OTT<br>OTT              | 4-22      | 22-5N-12E<br>22-5N-12E | HARTSHORNE<br>HARTSHORNE | 52,983<br>123,980                 | 955<br>570                              | 1                         | 32<br>19                                     | 1999/10<br>2000/12 | 2003/08<br>2003/08 |
| TEXAS EMPIRE EXPL.                       | RAMSEY                  | 1         | 14-5N-13E              | HARTSHORNE               | 19,129                            |                                         |                           | 0                                            | 1983/09            | 1985/12            |
| TEXAS EMPIRE EXPL.                       | DAMOEN                  | 1-14      | 14 EN 19E              | HARTSHORNE               | 0.691                             |                                         |                           | 0                                            | 1000/00            | 1000/00            |
| TREPCO PROD.                             | RAMSEY<br>REYNOLDS      | 1-14      | 14-5N-13E<br>7-5N-13E  | ZONE<br>HARTSHORNE       | 9,631<br>2,161,911                | 2893                                    | 1                         | 96                                           | 1983/02<br>1979/07 | 1983/08<br>2003/09 |
| хто                                      | ROCK W P                | 3-17      | 17-5N-13E              | HARTSHORNE               | 1 170                             | 18                                      | 1                         | 1                                            | 2002/02            | 2002/10            |
| VTO                                      | ROCK W P C NW           |           | 47 EN 40E              |                          | 4.045.400                         | 9                                       | 4                         |                                              | 1000/10            | 000000             |
| XTO<br>XTO                               | NW<br>ROCK WP           | 2<br>1    | 17-5N-13E<br>17-5N-13E | HARTSHORNE<br>HARTSHORNE | 4,245,468<br>32,358               | 9                                       | 1                         | 0                                            | 1968/10<br>1965/08 | 2003/02<br>1989/07 |
| DAVIS OPER. CO                           | ROGERS 1-30             | 1-30      | 30-5N-12E              | HARTSHORNE               | 746,296                           | 1236                                    | 1                         | 41                                           | 1978/06            | 2003/08            |
| MUSTANG FUEL CORP.                       | ROSE                    | 1-4       | 4-5N-12E               | HARTSHORNE               | 110,079                           | 1816                                    | 1                         | 61                                           | 2001/02            | 2003/08            |
| TAG TEAM RESOURCES LLC                   | SANDRA                  | 1-13      | 13-5N-13E              | HARTSHORNE               | 122,939                           | 1647                                    | 1                         | 55                                           | 2000/04            | 2003/08            |
| MUSTANG FUEL CORP.<br>STOVER COMPANY     | SEMESKI<br>SHERRILL     | 1-3<br>1  | 3-5N-12E<br>2-5N-12E   | HARTSHORNE<br>HARTSHORNE | 217,786<br>166,008                | 4158<br>2180                            | 1                         | 139<br>73                                    | 2000/10<br>1997/01 | 2003/09<br>2003/08 |
| BIOVERCOOMITANT                          | OTENNEL                 |           | 2 014 126              | HARTSHORNE /             | 100,000                           | 2100                                    |                           |                                              | 1001/01            | 2000/00            |
| TILFORD PINSON EXPL.                     | SHERRILL                | 3-2       | 2-5N-12E               | BOOCH                    | 71,385                            | 2314                                    | 1                         | 77                                           | 2001/05            | 2003/08            |
| DAVIS OPER. CO                           | SHIRLEY#1               | 1         | 36-5N-11E              | HARTSHORNE               | 87,827                            | 233                                     |                           | 8                                            | 1986/04            | 2003/06            |
| DAVIS OPER. CO<br>TUCKER RON & COMPANY   | STIPE<br>THOMPSON       | 1-6<br>1  | 6-5N-13E<br>1-5N-13E   | HARTSHORNE<br>HARTSHORNE | 83,798<br>304,160                 | 947                                     | 1                         | 0<br>32                                      | 1999/12<br>1984/10 | 2002/07<br>2003/08 |
|                                          | THORNTON SE             |           |                        |                          |                                   |                                         |                           |                                              |                    |                    |
| CHESAPEAKE                               | NW SE                   | 1         | 5-5N-13E               | HARTSHORNE               | 1,508,564                         | 1028                                    | 1                         | 34                                           | 1965/08            | 2003/09            |
| DAVIS OPER. CO<br>DAVIS OPER. CO         | TIM<br>TRACEY           | 2-20<br>1 | 20-5N-12E<br>16-5N-12E | HARTSHORNE<br>HARTSHORNE | 10,003<br>53,744                  | 451<br>2012                             | 1                         | 15<br>67                                     | 2002/08<br>2002/06 | 2003/08<br>2003/08 |
| XTO                                      | UNIV OF TULSA           | 1         | 19-5N-13E              | HARTSHORNE               | 3,516,263                         | 2012                                    |                           | 0                                            | 1970/04            | 1998/11            |
| TENNECO OIL COMPANY                      | USA #36                 | 1         | 36-5N-12E              | HARTSHORNE               | 864,986                           |                                         |                           | 0                                            | 1966/03            | 1983/11            |
| CHESAPEAKE                               | VANDEVEER               | 1         | 19-5N-12E              | HARTSHORNE /<br>BOOCH    | 617 669                           | 3784                                    | 1                         | 126                                          | 1975/04            | 2003/09            |
| CHESAPEAKE                               | VANDEVEER               | 2-19      | 19-5N-12E              | HARTSHORNE               | 517,653<br>2,347                  | 2347                                    | 1                         | 78                                           | 2003/09            | 2003/09            |
| YALE OIL ASSOC.                          | VIRGIL                  | 1-22      |                        | HARTSHORNE               | 226,545                           | 13373                                   | 1                         | 446                                          | 2001/04            | 2003/01            |
| DAVIS OPER. CO                           | WAGEMAN                 | 1         | 14-5N-12E              | HARTSHORNE               | 109,498                           | 1648                                    | 1                         | 55                                           | 1997/02            | 2003/08            |
| DAVIS OPER. CO                           | WALLACE W C NE<br>SW NW | 182       | 9-5N-13E               | HARTSHORNE               | 1,700,574                         | 1688                                    | 1                         | 56                                           | 1965/07            | 2003/08            |
| COVE PET. CORP.                          | WATKINS                 | 1         | 2-5N-13E               | HARTSHORNE               | 793,928                           | 1121                                    | 1                         | 37                                           | 1975/09            | 2003/08            |
| TAG TEAM RESOURCES LLC                   | WATKINS                 | 1         | 11-5N-13E              | HARTSHORNE               | 545,907                           | 1889                                    | 1                         | 63                                           | 1980/11            | 2003/08            |
| TUCKER RON & COMPANY                     | WATKINS                 | 1         | 12-5N-13E              | HARTSHORNE               | 520,858                           | 1994                                    | 1                         | 66                                           | 1984/10            | 2003/08            |
| DAVIS OPER. CO                           | WATKINS #1              | 1         | 10-5N-12E              | HARTSHORNE               | 532,012                           | 4568                                    | 1                         | 152                                          | 1984/02            | 2003/08            |
| DAVIS OPER. CO                           | WESTLAKE HEIRS          | 1-20      | 20-5N-12E              | HARTSHORNE               | 177,031                           | 789                                     | 1                         | 26                                           | 1987/05            | 2003/08            |
| DAVIS OPER. CO                           | WILCOX                  | 1-15      | 15-5N-12E              | HARTSHORNE               | 378,555                           | 1671                                    | 1                         | 56                                           | 2001/02            | 2003/08            |
| DAVIS OPER. CO<br>YALE OIL ASSOC.        | WILLARD<br>WINNIE       | 1-10<br>1 | 10-5N-12E<br>10-5N-13E | HARTSHORNE<br>HARTSHORNE | 722,003<br>101,532                | 3299<br>394                             | 1                         | 110                                          | 1999/02<br>1988/08 | 2003/08<br>2003/08 |
| XTO                                      | WORKING EE              | 1         | 25-5N-12E              | HARTSHORNE               | 8,166,885                         | 394<br>5414                             | 1                         | 13<br>180                                    | 1988/08            | 2003/08            |
|                                          |                         |           |                        |                          | 21.001000                         |                                         |                           |                                              |                    |                    |

|                                                  |                     |              |                        |                          | " <del>C</del>                     | test                                    | ď                      | -                                            |                    |                    |
|--------------------------------------------------|---------------------|--------------|------------------------|--------------------------|------------------------------------|-----------------------------------------|------------------------|----------------------------------------------|--------------------|--------------------|
|                                                  |                     |              |                        |                          | (Mc                                | D Lat                                   | ber                    | s<br>Acfd                                    | Date               | ate                |
| 5                                                |                     | Ę            | Ę                      | ion                      | tion                               | (Mci                                    | Mun                    | t Ga<br>tion<br>te (h                        | D po               | D po               |
| Op er at or                                      | =                   | Well Num     | ocation                | Formation                | Cumulative Gas<br>Production (Mcf) | Gas<br>Production_Latest<br>Month (Mcf) | Active Number<br>Wells | Current Gas<br>Production<br>RateRate (Mcfd) | First Prod Date    | Last Prod Date     |
| Ô                                                | Well                | We           | Γŏ                     | For                      |                                    |                                         |                        |                                              | Ë                  | Las                |
|                                                  |                     |              |                        |                          | 112,734,683                        | 118,325                                 | 44                     | 3,944                                        |                    |                    |
|                                                  |                     |              |                        | IS NORTHWEST             |                                    |                                         |                        |                                              |                    |                    |
| XTO<br>XTO                                       | CARTER 1-2<br>HOLT  | 1-2<br>1-4T  | 2-6N-13E<br>4-6N-13E   | HARTSHORNE<br>HARTSHORNE | 933,438<br>902,526                 | 3190<br>2897                            | 1<br>1                 | 106<br>97                                    | 1989/02<br>1988/08 | 2003/08<br>2003/08 |
| XTO                                              | HOLT                | ЗJ           | 3-6N-13E               | HARTSHORNE               | 393,172                            | 340                                     | 1                      | 11                                           | 1990/01            | 2003/08            |
| SONAT<br>XTO                                     | HOLT<br>HOLT J      | J2-3<br>1    | 3-6N-13E<br>3-6N-13E   | HARTSHORNE<br>HARTSHORNE | 17<br>2,708,284                    | 1453                                    | 1                      | 0<br>48                                      | 1988/08<br>1985/05 | 1988/08<br>2003/08 |
| TAG TEAM RESOURCES LLC                           | HOLT J              | 4-3          | 3-6N-13E               | HARTSHORNE               | 94,298                             | 679                                     | 1                      | 23                                           | 1997/10            | 2003/08            |
| BROWER 0&G CO                                    | KING                | 3-25         | 25-7N-13E              | HARTSHORNE /<br>BOOCH    | 369,985                            | 1505                                    | 1                      | 50                                           | 1994/09            | 2003/08            |
|                                                  |                     |              |                        | HARTSHORNE /             |                                    |                                         |                        | 00                                           |                    |                    |
| BROWER 0&G CO<br>XTO                             | KING<br>LUCILLE     | 4-25<br>1-34 | 25-7N-13E<br>34-7N-13E | BOOCH<br>HARTSHORNE      | 103,446<br>1,046,508               | 1867<br>1561                            | 1<br>1                 | 62<br>52                                     | 2001/03<br>1985/05 | 2003/08<br>2003/08 |
| BROWER 0&G CO                                    | SHEENA #1-36        | 1-36         | 36-7N-13E              | HARTSHORNE               | 342,580                            | 2106                                    | 1                      | 70                                           | 1995/07            | 2003/08            |
| BROWER 0&G CO                                    | STATE               | 1-35         | 35-7N-13E              | HARTSHORNE               | 607,018                            |                                         |                        | 0                                            | 1980/10            | 1987/04            |
| BROWER 0&G CO<br>BROWER 0&G CO                   | STATE<br>SUNSHINE   | 2-35<br>1-36 | 35-7N-13E<br>36-7N-13E | HARTSHORNE<br>HARTSHORNE | 1,200,399<br>73,470                | 6628<br>386                             | 1<br>1                 | 221<br>13                                    | 1988/08<br>1996/05 | 2003/08<br>2003/08 |
|                                                  |                     |              |                        |                          | 8,775,141                          | 22,612                                  | 11                     | 754                                          |                    |                    |
|                                                  |                     |              | SCIPI                  |                          |                                    |                                         |                        |                                              |                    |                    |
| TAG TEAM RESOURCES LLC                           | BRADSTREET          | 1            | 22-7N-12E              | HARTSHORNE               | 696,861                            |                                         |                        | 0                                            | 1963/02            | 1969/08            |
| GRIMES OTHA H INC.                               | CLARK<br>CLARKE     | 1<br>1       | 22-7N-12E<br>22-7N-12E | HARTSHORNE<br>HARTSHORNE | 78,590                             |                                         |                        | 0                                            | 1964/12            | 1987/05            |
| DEISENROTH CRAIG M                               | CLARKE              | 1            | 22-71N-12E             | HARTSHORNE /             | 86,270                             |                                         |                        | U                                            | 1964/12            | 1907/00            |
| ARKOMA GAS CO                                    | DOSS                | 1-33         | 33-7N-12E              | BOOCH                    | 42,806                             |                                         |                        | 0                                            | 1982/12            | 1997/01            |
| UNIT                                             | DUNCAN #1           | 1            | 13-7N-13E              | HARTSHORNE /             | 208,699                            | 924                                     | 1                      | 31                                           | 1995/12            | 2003/08            |
| TILFORD PINSON EXPL.                             | FALCON CLUB         | 1-21         | 21-7N-12E              | BOOCH                    | 108,581                            | 1932                                    | 1                      | 64                                           | 2000/08            | 2003/08            |
| TILFORD PINSON EXPL.                             | FALCON CLUB         | 2-21         | 21-7N-12E              | HARTSHORNE /<br>BOOCH    | 136,167                            | 1690                                    | 1                      | 56                                           | 2001/01            | 2003/08            |
| TILFORD PINSON EXPL.                             | FALCON CLUB         | 3-21         | 21-7N-12E              | HARTSHORNE               | 146,922                            | 3704                                    | 1                      | 123                                          | 2001/01            | 2003/08            |
| DEISENROTH CRAIG M                               | GILCREASE           | 2            | 16-7N-12E              | HARTSHORNE               | 259,338                            |                                         |                        | 0                                            | 1963/08            | 1986/07            |
| DEISENROTH CRAIG M                               | GILCREASE #1 #2     | 1            | 21-7N-12E              | HARTSHORNE               | 318,949                            |                                         |                        | 0                                            | 1964/12            | 1997/06            |
| XAE CORPORATION                                  | HERMAN              | 1-12         | 12-7N-13E              | HARTSHORNE               | 19,271                             | 492                                     | 1                      | 16                                           | 2000/12            | 2003/07            |
| TAG TEAM RESOURCES LLC<br>TAG TEAM RESOURCES LLC | HOOTERS<br>JONATHAN | 1-18<br>1-22 | 18-7N-13E<br>22-7N-12E | HARTSHORNE<br>HARTSHORNE | 19,936<br>31,129                   | 1346<br>356                             | 1                      | 45<br>12                                     | 2002/06<br>2000/09 | 2003/08<br>2003/08 |
|                                                  |                     |              |                        | HARTSHORNE /             |                                    |                                         |                        |                                              |                    |                    |
| TILFORD PINSON EXPL.<br>DEISENROTH CRAIG M       | KERN<br>KLEINKE     | 1-21<br>2    | 21-7N-12E<br>15-7N-12E | SAVANNA<br>HARTSHORNE    | 10,195<br>467,401                  | 295                                     | 1                      | 10<br>0                                      | 2001/08<br>1963/08 | 2003/08<br>1970/05 |
| DEISENNOTTI CICAIO M                             | REENTRE             |              |                        | HARTSHORNE /             | 407,401                            |                                         |                        |                                              |                    |                    |
| TAG TEAM RESOURCES LLC                           | MAD MAX             | 1-14<br>2-22 | 14-7N-12E<br>22-7N-12E | BOOCH                    | 51,994                             | 873<br>414                              | 1                      | 29<br>14                                     | 2000/07            | 2003/08            |
| TAG TEAM RESOURCES LLC<br>TAG TEAM RESOURCES LLC | MELISSA<br>MICHAEL  | 2-22         | 22-7N-12E              | HARTSHORNE<br>HARTSHORNE | 48,110<br>124,116                  | 2011                                    | 1                      | 67                                           | 2000/12<br>2001/04 | 2003/08<br>2003/08 |
| ARKOMA GAS CO                                    | MILLION             | 1-27         | 27-7N-12E              | HARTSHORNE               | 2,078                              |                                         |                        | 0                                            | 1983/01            | 1985/03            |
| TAG TEAM RESOURCES LLC                           | MOONEYHAM           | 1-18         | 18-7N-13E              | HARTSHORNE /<br>SAVANNA  | 489,300                            | 544                                     | 1                      | 18                                           | 1994/07            | 2003/06            |
|                                                  | MOONEYHAM #1-       |              |                        | HARTSHORNE /             |                                    |                                         |                        |                                              |                    |                    |
| TAG TEAM RESOURCES LLC<br>DEISENROTH CRAIG M     | 18<br>MYERS         | 1-18<br>1    | 18-7N-13E<br>15-7N-12E | SAVANNA<br>HARTSHORNE    | 163,419<br>426,770                 | 549<br>358                              | 1<br>1                 | 18<br>12                                     | 1994/02<br>1963/11 | 2003/08<br>2003/08 |
| DEISENROTH CRAIG M                               | MYERS               | 1            | 15-7N-12E              | HARTSHORNE               | 54,156                             | 000                                     |                        | 0                                            | 1964/01            | 1970/05            |
| ARKOMA GAS CO                                    | MYERS               | 1-28         | 28-7N-12E              | HARTSHORNE /<br>BOOCH    | 77,827                             |                                         |                        | 0                                            | 1980/08            | 1988/02            |
|                                                  |                     |              |                        | HARTSHORNE /             |                                    |                                         |                        |                                              |                    |                    |
| TILFORD PINSON EXPL.<br>XAE CORPORATION          | MYERS-HOLT<br>OTHEL | 1            | 24-7N-12E<br>1-7N-13E  | BOOCH                    | 92,080                             | 353                                     | 1                      | 12                                           | 1981/12            | 2003/08            |
| ARKOMA GAS CO                                    | PUCKETT             | 1<br>1-32    | 1-7N-13E<br>32-7N-12E  | HARTSHORNE<br>HARTSHORNE | 27,389<br>57,410                   | 633                                     | 1                      | 21<br>0                                      | 1998/11<br>1982/12 | 2003/07<br>1996/11 |
| ARKOMA GAS CO                                    | PUCKETT             | 2-32         | 32-7N-12E              | HARTSHORNE               | 23,495                             | 295                                     | 1                      | 10                                           | 1995/06            | 2003/08            |
| TAG TEAM RESOURCES LLC                           | ROCKEY              | 1-18         | 18-7N-13E              | HARTSHORNE /<br>SAVANNA  | 88,122                             |                                         |                        | 0                                            | 1994/07            | 1999/11            |
|                                                  |                     |              |                        | HARTSHORNE /             |                                    |                                         |                        |                                              |                    |                    |
| TILFORD PINSON EXPL.<br>TAG TEAM RESOURCES LLC   | ROSS<br>SARKEYS     | 1-24<br>1    | 24-7N-12E<br>14-7N-12E | BOOCH<br>HARTSHORNE      | 14,240<br>557,943                  | 2<br>509                                | 1                      | 0<br>17                                      | 2001/08<br>1963/05 | 2003/06<br>2003/08 |
| MYERS C G                                        | SOUSEA              | 1            |                        | HARTSHORNE               | 53,703                             |                                         |                        | 0                                            | 1968/07            |                    |
| ARKOMA GAS CO                                    | STIPE               | 1-27         | 27-7N-12E              | HARTSHORNE /<br>BOOCH    | 178,169                            | 1455                                    | 1                      | 49                                           | 1997/09            | 2003/08            |
| ARKOMA GAS CO                                    | STIPE               | 1-27         | 28-7N-12E              | HARTSHORNE               | 437,796                            | 2804                                    | 1                      | 49<br>93                                     | 1996/10            | 2003/08            |
|                                                  |                     |              | 07 7N 40E              | HARTSHORNE /             | 102,786                            | 4946                                    | 1                      | 145                                          | 2004/07            | 2002/00            |
| ARKOMA GAS CO                                    | STIPE               | 2-27         | 27-7N-12E              | BOOCH<br>HARTSHORNE /    | 102,706                            | 4346                                    | '                      | 145                                          | 2001/07            | 2003/08            |
| ARKOMA GAS CO<br>ARKOMA GAS CO                   | STIPE               | 2-28         | 28-7N-12E              | BOOCH                    | 119,611                            | 1202                                    | 1                      | 40                                           | 1997/09            | 2003/08            |
| TILFORD PINSON EXPL.                             | STIPE<br>TOM        | 3-27<br>1-14 | 27-7N-12E<br>14-7N-12E | HARTSHORNE<br>HARTSHORNE | 67,332<br>54,194                   | 1963<br>1644                            | 1<br>1                 | 65<br>55                                     | 2001/10<br>2001/01 | 2003/08<br>2003/08 |
| ARKOMA GAS CO                                    | W J HILSEWECK       | 1-29         |                        | HARTSHORNE               | 142,605                            | 713                                     | 1                      | 24                                           | 1988/01            | 2003/08            |
| ARNUMA GABILU                                    | ** 3 HILBEWEUK      | 1-29         | 20-114-12E             | HARTONUKNE               | 6,085,760                          | 713<br>31,407                           | 26                     | 24<br>1,047                                  | 1900/01            | 2003/00            |
|                                                  |                     |              |                        |                          |                                    |                                         |                        |                                              |                    |                    |

| 0perator                 | Wei              | Well Num | Location  | Formation                  | Cumulative Gas<br>Production (Mcf) | Gas<br>Production_Latest<br>Month (Mcf) | Active Number of<br>Wells | Current Gas<br>Production<br>RateRate (Mcfd) | First Prod Date | Last Prod Date |
|--------------------------|------------------|----------|-----------|----------------------------|------------------------------------|-----------------------------------------|---------------------------|----------------------------------------------|-----------------|----------------|
|                          | -                | -        |           | GROVE SOUT                 |                                    |                                         | ~~                        |                                              | _               | _              |
| PRYOR VICTOR W JR        | BE               | 1        | 31-7N-11E | HARTSHORNE                 | 719.276                            | 142                                     | 1                         | 5                                            | 1985/01         | 2003/08        |
| GLENN SUPPLY CO.         | BLACK #2         | 2        | 9-6N-11E  | HARTSHORNE                 | 96.090                             | 140                                     | 1                         | 5                                            | 1993/06         | 2003/06        |
| GLENN SUPPLY CO.         | BLACK #3         | 3        | 10-6N-11E | HARTSHORNE                 | 467,630                            | 665                                     | 1                         | 22                                           | 1993/11         | 2003/09        |
| GLENN SUPPLY CO.         | BLACK #4         | 4        | 9-6N-11E  | HARTSHORNE                 | 456,763                            | 506                                     | 1                         | 17                                           | 1993/11         | 2003/09        |
|                          |                  |          |           | HARTSHORNE /               |                                    |                                         |                           |                                              |                 |                |
| PRYOR VICTOR W JR        | BOYD             | 1        | 7-6N-11E  | BOOCH                      | 737,652                            | 271                                     | 1                         | 9                                            | 1964/01         | 2003/08        |
| PRYOR VICTOR W JR        | BOYD             | 2        | 7-6N-11E  | HARTSHORNE                 | 85,110                             | 166                                     | 1                         | 6                                            | 1987/10         | 2003/08        |
| ROBERSON OIL CO. INC.    | ECKLES           | 1-5      | 5-6N-11E  | HARTSHORNE                 | 85,551                             | 404                                     | 1                         | 13                                           | 1999/09         | 2003/09        |
| GLENN SUPPLY CO.         | GAYLER #1-10     | 1-10     | 10-6N-11E | HARTSHORNE                 | 852,326                            | 2082                                    | 1                         | 69                                           | 1994/11         | 2003/09        |
| GLENN SUPPLY CO.         | GENEVA           | 1-10     | 10-6N-11E | HARTSHORNE                 | 262,228                            | 453                                     | 1                         | 15                                           | 1995/07         | 2003/09        |
| GULF PROD. CORP.         | HILL             | 2-15     | 15-6N-11E | HARTSHORNE                 | 4,004                              |                                         |                           | 0                                            | 1995/06         | 1996/06        |
| GULF PROD. CORP.         | HILL             | 4-14     | 14-6N-11E | HARTSHORNE                 | 124,168                            | 694                                     | 1                         | 23                                           | 1995/06         | 2003/09        |
| GLENN SUPPLY CO.         | HILL #1-11       | 1-11     | 11-6N-11E | HARTSHORNE                 | 1,028,357                          | 6175                                    | 1                         | 206                                          | 1994/11         | 2003/09        |
| WILLIAMS REID OPER.      | JACKSON          | 1        | 30-7N-11E | HARTSHORNE                 | 419,823                            |                                         |                           | 0                                            | 1986/04         | 1992/01        |
| SOUTHERN RESOURCES       | KAMPERMAN        | 1        | 31-7N-11E | HARTSHORNE                 | 137,116                            | 406                                     | 1                         | 14                                           | 1989/02         | 2003/08        |
| GLENN SUPPLY CO.         | MC DONALD #1-10  | 1-10     | 10-6N-11E | HARTSHORNE<br>HARTSHORNE / | 132,555                            |                                         |                           | 0                                            | 1994/11         | 1999/07        |
| PRYOR VICTOR W JR        | STEPHENS         | 1        | 6-6N-11E  | BOOCH<br>HARTSHORNE /      | 525,239                            | 1                                       | 1                         | 0                                            | 1964/01         | 2003/07        |
| PRYOR VICTOR W JR        | TRUMBO           | 1        | 6-6N-11E  | BOOCH                      | 597,243                            | 116                                     | 1                         | 4                                            | 1964/01         | 2003/07        |
| LUBELL OIL COMPANY       | WARREN           | 1        | 9-6N-11E  | HARTSHORNE                 | 77,348                             |                                         |                           | ń                                            | 1969/09         | 1972/01        |
|                          |                  |          |           |                            | 6,808,479                          | 12,221                                  | 14                        | 407                                          |                 |                |
|                          |                  |          |           |                            | -,,                                | ,                                       |                           |                                              |                 |                |
|                          |                  |          | STUAR     | RT SOUTHWEST               | FIELD                              |                                         |                           |                                              |                 |                |
| BELL O&G                 | DUNCAN           | 1        | 23-5N-11E | HARTSHORNE<br>HARTSHORNE / | 83,900                             |                                         |                           | 0                                            | 1961/01         |                |
| MARBET LLC               | HERRING D        | 1-C      | 28-5N-11E | JEFFERSON                  | 1,032,069                          | 4088                                    | 1                         | 136                                          | 1989/02         | 2003/03        |
| LUBELL OIL COMPANY       | KINCADE          | 1        | 26-5N-11E | HARTSHORNE                 | 97,600                             |                                         |                           | 0                                            | 1964/04         | 1968/03        |
|                          |                  |          |           |                            |                                    |                                         |                           |                                              |                 |                |
| CENTRAL OKLA O&G         | LACKEY C S 2 NE  | 1        | 27-5N-11E | HARTSHORNE                 | 4,249,974                          |                                         |                           | 0                                            | 1960/12         | 1994/01        |
| T K DRILLING CORPORATION | WALKER HEIRS     | 1        | 27-5N-11E | HARTSHORNE                 | 1,306,286                          | 448                                     | 1                         | 15                                           | 1970/03         | 2003/09        |
|                          | WALKER HEIRS 27- |          |           |                            |                                    |                                         |                           |                                              |                 |                |
| T K DRILLING CORPORATION | 2                | 27-2     | 27-5N-11E | HARTSHORNE                 | 290,973                            | 1647                                    | 1                         | 55                                           | 1992/08         | 2003/05        |
| HUTTON GAS OPER.         | WOODFORK         | 1        | 26-5N-11E | HARTSHORNE                 | 5,413,737                          |                                         |                           | 0                                            | 1960/12         | 1988/11        |
|                          |                  |          |           |                            | 12,474,539                         | 6,183                                   | 3                         | 206                                          |                 |                |
|                          |                  |          |           |                            | -                                  |                                         |                           |                                              |                 |                |
|                          |                  |          | ι         | JLAN EAST FIEL             | .D                                 |                                         |                           |                                              |                 |                |
|                          |                  |          |           | HARTSHORNE /               |                                    |                                         |                           |                                              |                 |                |
| BROWER 0&G CO            | HILL #1-24       | 1-24     | 24-7N-13E | BOOCH                      | 299,375                            | 370                                     | 1                         | 12                                           | 1993/10         | 2003/08        |
| NADEL & GUSSMAN          | WARD             | 1        | 13-7N-13E | HARTSHORNE                 | 204,197                            | 1160                                    | 1                         | 39                                           | 1994/03         | 2003/08        |
| NADEL & GUSSMAN          | WARD             | 2-13     | 13-7N-13E | HARTSHORNE                 | 164,754                            | 735                                     | 1                         | 25                                           | 1993/01         | 2003/08        |
| TAG TEAM RESOURCES LLC   | WHATS IF         | 1-11     | 11-6N-13E | HARTSHORNE                 | 42                                 | 42                                      | 1                         | 1 _                                          | 2003/07         | 2003/07        |
|                          |                  |          |           |                            | 668,368                            | 2,307                                   | 4                         | π                                            |                 |                |

<u>Appendix C</u>: Hartshorne Production Sorted By Facies Interpretation

| Well               | Well Num     | Location               | Formation                  | Field Name                    | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date    | Last Prod Date | Facies     | Secondary Facies |
|--------------------|--------------|------------------------|----------------------------|-------------------------------|------------------------------------|--------------------------------------|--------------------|----------------|------------|------------------|
| BLACK #4           | 4            | 9-6N-11E               | HARTSHORNE                 | SHADY GROVE<br>SOUTHWEST      | 456,763                            | 17                                   | 1993/11            | 2003/09        | C-1        | DMB              |
| WARREN             | 1            | 9-6N-11E               | HARTSHORNE                 | SHADY GROVE<br>SOUTH          | 77,348                             | 0                                    | 1969/09            | 1972/01        | C-1        | DMB              |
| GAYLER #1-10       | 1-10         | 10-6N-11E              | HARTSHORNE                 | SHADY GROVE<br>SOUTHWEST      | 852,326                            | 69                                   | 1994/11            | 2003/09        | C-1        | DMB              |
| MC DONALD #1-10    | 1-10         | 10-6N-11E              | HARTSHORNE                 | SHADY GROVE<br>SOUTHWEST      | 132,555                            | 0                                    | 1994/11            | 1999/07        | C-1        | DMB              |
| HILL #1-11         | 1-11         | 11-6N-11E              | HARTSHORNE                 | SHADY GROVE<br>SOUTH          | 1,028,357                          | 206                                  | 1994/11            | 2003/09        | C-1        | DMB              |
| BLEVINS            | 2-12         | 12-6N-11E              | HARTSHORNE                 | CABANISS<br>NORTHWEST         | 569,027                            | 64                                   | 1995/10            | 2003/09        | C-1        |                  |
| SARKEY             | 1            | 7-7N-12E               | HARTSHORNE                 | LAMAR EAST                    | 2,333,208                          | 17                                   | 1961/08            | 2003/08        | C-1        | DMB              |
| BURLESON           | 1            | 8-7N-12E               | HARTSHORNE                 | LAMAR EAST<br>HORN TOWN       | 287,131                            | 21                                   | 1982/09            | 2003/08        | C-1        | DMB              |
| AN DERSON#1        | 1            | 17-7N-11E              | HARTSHORNE                 | SOUTHEAST                     | 293,933                            | 10                                   | 1985/04            | 2002/10        | DMB        |                  |
| SARKEYS            | 1            | 14-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST           | 557,943                            | 17                                   | 1963/05            | 2003/08        | C-1        | DMB              |
| KLEINKE            | 2            | 15-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST<br>SCIPIO | 467,401                            | 0                                    | 1963/08            | 1970/05        | C-1        | DMB              |
| DUNCAN #1          | 1            | 13-7N-13E              | HARTSHORNE                 | NORTHWEST                     | 208,699                            | 31                                   | 1995/12            | 2003/08        | C-1        | DMB              |
|                    |              |                        |                            |                               | 7,264,691                          | 660,426                              |                    |                |            |                  |
| RAMSEY             | 1-14         | 14-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 9,631                              | 0                                    | 1983/02            | 1983/08        | C-2        |                  |
| RAMSEY             | 1            | 14-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 19,129                             | 0                                    | 1983/09            | 1985/12        | C-2        | СМ               |
| KRISTY LEE         | 1-17         | 17-5N-12E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 33,779                             | 17                                   | 2000/07            | 2003/08        | C-2        | СМ               |
| BLEVINS            |              | 9-5N-12E               | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 40,085                             | 82                                   | 2002/05            | 2003/08        | C-2        |                  |
| ОТТ                | 2            | 22-5N-12E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 52,983                             | 32                                   | 1999/10            | 2003/08        | C-2        |                  |
| TRACEY             | 1            | 16-5N-12E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 53,744                             | 67                                   | 2002/06            | 2003/08        | C-2        | СМ               |
| MARBET LLC 37      | 37           | 15-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 57,461                             | 93                                   | 2001/10            | 2003/08        | C-2        |                  |
| DEER CREEK         | 1-24         | 24-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 73,422                             | 0                                    | 1985/05            | 1989/10        | C-2        |                  |
| MARBET LLC         | 31           | 14-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 77,214                             | 108                                  | 2001/05            | 2003/07        | C-2        |                  |
| BETHAL             | 2-9          | 9-5N-12E               | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 118,352                            | 30                                   | 1999/05            | 2003/08        | C-2        |                  |
| CRAWFORD           | 1            | 10-5N-12E              | HARTSHORNE /<br>BOOCH      | PINE HOLLOW<br>SOUTH          | 152,357                            | 38                                   | 2001/02            | 2003/08        | C-2        | СМ               |
| BETHEL             | 3            | 9-5N-12E               | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 154,148                            | 59                                   | 2000/05            | 2003/08        | C-2        | CM               |
|                    |              |                        |                            | PINE HOLLOW                   |                                    |                                      |                    |                |            | 0111             |
| WESTLAKE HEIRS     | 1-20         | 20-5N-12E              | HARTSHORNE                 | SOUTH<br>PINE HOLLOW          | 177,031                            | 26                                   | 1987/05            | 2003/08        | C-2        |                  |
| CRAWLEY<br>WHITE   | 1-21<br>13-1 | 21-5N-13E<br>13-7N-11E | HARTSHORNE<br>HARTSHORNE   | SOUTH<br>LAMAR EAST           | 215,157<br>242,776                 | 342<br>13                            | 2001/07<br>1985/06 | 2003/08        | C-2<br>C-2 | DMB              |
| ADAMS J W          | 1-16         | 16-5N-12E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 242,776                            | 20                                   | 1998/07            | 2003/08        | C-2        |                  |
| EGGLESTON UNIT 1-A | 14<br>1A     | 15-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 243,095                            | 35                                   | 1994/07            | 2003/07        | C-2        |                  |
| HOPKINS            | 1            | 13-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 295,379                            | 46                                   | 1981/09            | 2003/07        | C-2        | СМ               |
|                    |              |                        |                            | PINE HOLLOW                   |                                    |                                      |                    |                |            |                  |
| THOMPSON           | 1            | 1-5N-13E               | HARTSHORNE                 | SOUTH<br>CABANISS             | 304,160                            | 32                                   | 1984/10            | 2003/08        | C-2        | CM               |
| HILSEWECK W J      | 1-17         | 17-6N-12E              | HARTSHORNE                 | NORTHWEST<br>PINE HOLLOW      | 355,224                            | 17                                   | 1979/10            | 2003/08        | C-2        | DMB              |
| WILCOX             | 1-15         | 15-5N-12E              | HARTSHORNE                 | SOUTH<br>PINE HOLLOW          | 378,555                            | 56                                   | 2001/02            | 2003/08        | C-2        |                  |
| HALL               | 1            | 31-5N-12E              | HARTSHORNE<br>HARTSHORNE / | SOUTH<br>PINE HOLLOW          | 428,728                            | 19                                   | 1981/12            | 2003/08        | C-2        |                  |
| BLACK              | 3-28         | 28-5N-12E              | BOOCH                      | SOUTH<br>PINE HOLLOW          | 429,743                            | 80                                   | 1993/08            | 2003/06        | C-2        | CM               |
| DONNA              | 1            | 16-5N-12E              | HARTSHORNE                 | SOUTH<br>PINE HOLLOW          | 434,511                            | 177                                  | 2000/09            | 2003/08        | C-2        |                  |
| GOODE#1            | 1            | 16-5N-12E              | HARTSHORNE                 | SOUTH                         | 456,606                            | 6                                    | 1985/01            | 2003/08        | C-2        | CM               |

| Well       | Well Num | Location  | Formation                  | Field Name               | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date | Last Prod Date | Facies | Secondary Facies |
|------------|----------|-----------|----------------------------|--------------------------|------------------------------------|--------------------------------------|-----------------|----------------|--------|------------------|
| ISENHOWER  | 1-17     | 17-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 463,477                            | 148                                  | 1999/09         | 2003/08        | C-2    |                  |
| HALL       | 1        | 32-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 470,147                            | O                                    | 1966/11         | 2000/10        | C-2    |                  |
| HALL       | 1        | 29-5N-12E | HARTSHORNE /<br>BOOCH      | PINE HOLLOW<br>SOUTH     | 519,302                            | 43                                   | 1981/07         | 2003/09        | C-2    | СМ               |
| WATKINS    | 1        | 12-5N-13E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 520,858                            | 66                                   | 1984/10         | 2003/08        | C-2    |                  |
| WATKINS #1 | 1        | 10-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 532,012                            | 152                                  | 1984/02         | 2003/08        | C-2    | СМ               |
| WATKINS    | 1        | 11-5N-13E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 545,907                            | 63                                   | 1980/11         | 2003/08        | C-2    | СМ               |
| HILSEWECK  | 2-17     | 17-6N-12E | HARTSHORNE                 | CABANISS                 | 657,365                            | 101                                  | 1996/11         | 2003/08        | C-2    | 011              |
| BLEVINS    | 9-18     | 18-6N-12E | HARTSHORNE                 | CABANISS                 | 660,508                            | 123                                  | 1996/12         | 2003/08        | C-2    |                  |
|            |          |           | HARTSHORNE                 | PINE HOLLOW              |                                    | 29                                   |                 |                |        |                  |
| EGGLESTON  | 1-15     | 15-5N-13E |                            | SOUTH                    | 674,126                            |                                      | 1984/12         | 2003/08        | C-2    |                  |
| BRADSTREET | 1        | 22-7N-12E | HARTSHORNE                 | NORTHWEST<br>PINE HOLLOW | 696,861                            | 0                                    | 1963/02         | 1969/08        | C-2    | C-1              |
| JOHNNY     | 1-16     | 16-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 716,366                            | 147                                  | 1999/05         | 2003/08        | C-2    | CM               |
| WILLARD    | 1-10     | 10-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 722,003                            | 110                                  | 1999/02         | 2003/08        | C-2    |                  |
| ROGERS     | 1-30     | 30-5N-12E | HARTSHORNE<br>HARTSHORNE / | SOUTH<br>PINE HOLLOW     | 746,296                            | 41                                   | 1978/06         | 2003/08        | C-2    |                  |
| COOPER     | 1        | 10-5N-12E | BOOCH                      | SOUTH<br>PINE HOLLOW     | 778,565                            | 140                                  | 1996/08         | 2003/08        | C-2    | CM               |
| MORAN S    | 1        | 22-5N-12E | HARTSHORNE                 | SOUTH<br>CABANISS        | 888,828                            | 82                                   | 1965/08         | 2003/08        | C-2    |                  |
| BLEVINS    | 2-18     | 18-6N-12E | HARTSHORNE                 | NORTHWEST<br>PINE HOLLOW | 990,511                            | 159                                  | 1995/06         | 2003/09        | C-2    |                  |
| LOFTIS     | 1-30     | 30-5N-12E | HARTSHORNE                 | SOUTH<br>CABANISS        | 1,068,855                          | 122                                  | 1986/10         | 2003/08        | C-2    |                  |
| HILSEWECK  | 1&3      | 20-6N-12E | HARTSHORNE                 | NORTHWEST                | 1,266,867                          | 529                                  | 1996/03         | 2003/09        | C-2    |                  |
|            |          |           |                            |                          | 18,008,220                         | 418,796                              |                 |                |        |                  |
| SEMESKI    | 1-3      | 3-5N-12E  | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 217,786                            | 139                                  | 2000/10         | 2003/09        | СМ     | DF               |
| EVERETT 1  | 1        | 3-5N-12E  | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 279,023                            | 62                                   | 1991/01         | 2003/08        | СМ     | DF               |
| ROSE       | 1-4      | 4-5N-12E  | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 110,079                            | 61                                   | 2001/02         | 2003/08        | СМ     | DF               |
| MARVIN     | 3        | 11-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 495,062                            | 225                                  | 1999/10         | 2003/06        | СМ     | DMB              |
| MARVIN     | 4        | 11-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 26,210                             | 0                                    | 1999/12         | 2000/02        | СМ     | DMB              |
| MARVIN     | 5        | 11-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 1,227                              | O                                    | 2001/03         | 2001/03        | СМ     | DMB              |
| MARVIN     | 6        | 11-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 2,387                              | 42                                   | 2003/02         | 2003/03        | СМ     | DMB              |
| WAGEMAN    | 1        | 14-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH     | 109,498                            | 55                                   | 1997/02         | 2003/08        | СМ     | DF               |
| VANDEVEER  | 1        | 19-5N-12E | HARTSHORNE /<br>BOOCH      | PINE HOLLOW<br>SOUTH     | 517,653                            | 126                                  | 1975/04         | 2003/09        | СМ     | DF               |
|            |          | 19-5N-12E |                            | PINE HOLLOW              |                                    |                                      |                 |                |        |                  |
| VAN DEVEER | 2-19     |           | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 2,347                              | 78                                   | 2003/09         | 2003/09        | CM     | DF               |
| TIM        | 2-20     | 20-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 10,003                             | 15                                   | 2002/08         | 2003/08        | СМ     | C-2              |
| GARRETT    | 1-A      | 21-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 178,807                            | 0                                    | 1966/04         |                | СМ     | DF               |
| GARRETT    | 2-21     | 21-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 16,077                             | 0                                    | 1999/09         | 2000/10        | СМ     | DF               |
| JENNIFER   | 2-21     | 21-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 17,529                             | 17                                   | 2002/02         | 2003/08        | СМ     | DF               |
| GARRETT    | 3-21     | 21-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 82,910                             | 49                                   | 2000/07         | 2003/08        | СМ     | DF               |
| GARRETT    | 4-21     | 21-5N-12E | HARTSHORNE                 | SOUTH<br>PINE HOLLOW     | 81,325                             | 119                                  | 2001/10         | 2003/08        | СМ     | DF               |
| ELLIS G W  | 1B       | 22-5N-12E | HARTSHORNE                 | SOUTH                    | 115,101                            | 82                                   | 2001/11         | 2003/08        | СМ     |                  |

| Well               | Well Num | Location               | Formation                | Field Name            | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date    | Last Prod Date     | Facies | Secondary Facies |
|--------------------|----------|------------------------|--------------------------|-----------------------|------------------------------------|--------------------------------------|--------------------|--------------------|--------|------------------|
| OTT                | 4-22     | 22-5N-12E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 123,980                            | 19                                   | 2000/12            | 2003/08            | СМ     | DF               |
| WINNIE             | 1        | 10-5N-13E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 101,532                            | 13                                   | 1988/08            | 2003/08            | СМ     | DF               |
| JUANITA            | 1-13     | 13-5N-13E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 40,369                             | 26                                   | 2000/09            | 2003/08            | СМ     | DF               |
| GLENNIE            | 1-13     | 13-5N-13E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 126,153                            | 58                                   | 2000/04            | 2003/08            | СМ     | DF               |
| SANDRA             | 1-13     | 13-5N-13E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 122,939                            | 55                                   | 2000/04            | 2003/08            | СМ     | DF               |
| VIRGIL             | 1-22     | 22-5N-13E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 226,545                            | 446                                  | 2001/04            | 2003/01            | СМ     | DMB              |
|                    |          |                        |                          | PINE HOLLOW           |                                    |                                      |                    |                    |        |                  |
| MARBETT LLC        | 32       | 23-5N-13E              | HARTSHORNE               | SOUTH<br>PINE HOLLOW  | 17,246                             | 19                                   | 2001/10            | 2003/03            | СМ     | DMB              |
| NELL MARY          | 4        | 24-5N-13E              | HARTSHORNE               | SOUTH<br>CABANISS     | 9,546                              | 83                                   | 2003/05            | 2003/08            | СМ     | DMB              |
| BLEVINS            | 1-7      | 7-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS | 66,117                             | 1                                    | 1980/08            | 2003/08            | СМ     | DF               |
| BLEVINS            | 2-7      | 7-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS | 4,030                              | 0                                    | 1985/12            | 1994/01            | СМ     | DF               |
| HILSEWECK W J      | 1-8      | 8-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS | 95,547                             | 8                                    | 1979/10            | 2003/01            | СМ     | DF               |
| HILSEWECK RANCH    | 2-8      | 8-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS | 34,419                             | 12                                   | 1994/03            | 2003/08            | СМ     | DF               |
| HILSEWECK W J      | 1-9      | 9-6N-12E               | HARTSHORNE               | NORTHWEST<br>CABANISS | 246,534                            | 34                                   | 1979/10            | 2003/08            | СМ     | DF               |
| HILSEWECK W J      | 1-15     | 15-6N-12E              | HARTSHORNE               | NORTHWEST             | 229,313                            | 32                                   | 1979/10            | 2003/08            | СМ     | DF               |
| HILSEWECK W J      | 1-16     | 16-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST | 317,359                            | 39                                   | 1979/10            | 2003/08            | СМ     | DF               |
| HILSENECK          | 2-16     | 16-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST | 27,972                             | 11                                   | 1999/01            | 2003/08            | СМ     | DF               |
| BLIVENS            | 1-18     | 18-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST | 191,738                            | 0                                    | 1979/10            | 1997/10            | СМ     | DMB              |
| HILSEWICK          | 1-29     | 29-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST | 9,311                              | 0                                    | 1981/06            | 1989/06            | СМ     | DF               |
| HILSEWECK          | 1-29A    | 29-6N-12E              | HARTSHORNE               | CABANISS<br>NORTHWEST | 36,728                             | 0                                    | 1982/02            | 1989/05            | СМ     | DF               |
| FOLLANSBE          | 1        | 12-7N-11E              | HARTSHORNE               | LAMAR EAST            | 218,512<br>4,508,914               | 0<br>121,863                         | 1961/09            | 1972/07            | СМ     | DMB              |
|                    |          |                        |                          | 0.412/11              | 4,000,014                          | 121,000                              |                    |                    |        |                  |
| LYONS              | 1-6      | 6-5N-11E               | HARTSHORNE               | CALVIN<br>SOUTHEAST   | 46,254                             | 3                                    | 1984/06            | 2003/08            | DF     |                  |
| BAILEY<br>MCDONALD | 1        | 17-5N-11E<br>18-5N-11E | HARTSHORNE<br>HARTSHORNE | HILL TOP<br>HILL TOP  | 131,633<br>401,182                 | 23<br>27                             | 1983/10<br>1980/09 | 2003/05<br>2003/08 | DF     |                  |
| VERNON             | 1-29     | 29-5N-11E              | HARTSHORNE               | HILL TOP              | 98,612                             | 12                                   | 1990/05            | 2003/08            | DF     |                  |
| VERNON PARK ESTATE | 1-29     | 29-5N-11E              | HARTSHORNE               | HILL TOP              | 160,930                            | 8                                    | 1989/12            | 2003/08            | DF     |                  |
| CARTER C C         | 1        | 30-5N-11E              | HARTSHORNE               | HILL TOP<br>SOUTHWEST | 251,921                            | 0                                    | 1978/05            | 1980/12            | DF     | BF               |
| MARK               | 1-32     | 32-5N-11E              | HARTSHORNE               | HILL TOP<br>SOUTHWEST | 5,954                              | O                                    | 1990/08            | 1993/05            | DF     |                  |
| SHIRLEY#1          | 1        | 36-5N-11E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 87,827                             | 8                                    | 1986/04            | 2003/06            | DF     | СМ               |
| MARBET LLC         |          | 1-5N-12E               | HARTSHORNE               | REAMS<br>NORTHWEST    | 199,182                            | 150                                  | 2000/04            | 2003/03            | DF     | DMB              |
| SHERRILL           | 1        | 2-5N-12E               | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 166,008                            | 73                                   | 1997/01            | 2003/08            | DF     | DMB              |
| SHERRILL           | 3-2      | 2-5N-12E               | HARTSHORNE /<br>BOOCH    | PINE HOLLOW<br>SOUTH  | 71,385                             | 77                                   | 2001/05            | 2003/08            | DF     | DMB              |
| MARBET             | 17       | 12-5N-12E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 254,191                            | 152                                  | 2000/01            | 2003/03            | DF     | СМ               |
| JUDY               | 1        |                        | HARTSHORNE               | PINE HOLLOW<br>SOUTH  | 6,009                              | 200                                  | 2003/07            | 2003/03            | DF     | CM               |
|                    |          | 15-5N-12E              |                          | PINE HOLLOW           |                                    |                                      |                    |                    |        |                  |
| BLACK              | 1        | 20-5N-12E              | HARTSHORNE               | SOUTH<br>PINE HOLLOW  | 1,572                              | 0                                    | 1980/12            | 1982/07            | DF     | DMB              |
| GARRETT A          | 1        | 21-5N-12E              | HARTSHORNE               | SOUTH<br>PINE HOLLOW  | 637,888                            | 29                                   | 1966/04            | 2003/08            | DF     | CM               |
| JENNIFER           | 1-21     | 21-5N-12E              | HARTSHORNE               | SOUTH<br>PINE HOLLOW  | 45,011                             | 52                                   | 2001/12            | 2003/08            | DF     | CM               |
| STIPE              | 1-6      | 6-5N-13E               | HARTSHORNE               | SOUTH<br>PINE HOLLOW  | 83,798                             | 0                                    | 1999/12            | 2002/07            | DF     | CM               |
| GIBSON             | 10-1     | 10-5N-13E              | HARTSHORNE               | SOUTH                 | 123,071                            | 17                                   | 1985/01            | 2003/08            | DF     | СМ               |

| Well                   | Well Num      | Location               | Formation                  | Field Name                  | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date    | Last Prod Date     | Facies   | Secondary Facies |
|------------------------|---------------|------------------------|----------------------------|-----------------------------|------------------------------------|--------------------------------------|--------------------|--------------------|----------|------------------|
| GRETA                  | 1-21          | 21-5N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH        | 13,725                             | 101                                  | 2002/12            | 2003/03            | DF       |                  |
| TRUMBO                 | 1             | 6-6N-11E               | HARTSHORNE /<br>BOOCH      | SHADY GROVE<br>SOU TH       | 597,243                            | 4                                    | 1964/01            | 2003/07            | DF       | DMB              |
| STEPHENS               |               | 6-6N-11E               | HARTSHORNE /<br>BOOCH      | SHADY GROVE<br>SOUTH        |                                    | 0                                    | 1964/01            | 2003/07            | DF       | DINID            |
|                        |               |                        | HARTSHORNE /               | SHADY GROVE                 | 525,239                            |                                      |                    |                    |          |                  |
| BOYD                   | 1             | 7-6N-11E               | BOOCH                      | SOUTH<br>SHADY GROVE        | 737,652                            | 9                                    | 1964/01            | 2003/08            | DF       |                  |
| BOYD                   | 2             | 7-6N-11E               | HARTSHORNE                 | SOUTH<br>SHADY GROVE        | 85,110                             | 6                                    | 1987/10            | 2003/08            | DF       |                  |
| HILL                   | 4-14          | 14-6N-11E              | HARTSHORNE                 | SOUTHWEST<br>SHADY GROVE    | 124,168                            | 23                                   | 1995/06            | 2003/09            | DF       | DMB              |
| HILL<br>BLAYLOCK 1-19  | 2-15<br>1-19  | 15-6N-11E<br>19-6N-11E | HARTSHORNE<br>HARTSHORNE   | SOUTHWEST<br>HILL TOP NORTH | 4,004<br>19,043                    | 2                                    | 1995/06<br>1991/03 | 1996/06<br>2003/08 | DF       | DMB              |
| LINDLEY                | 1-30C         | 30-6N-11E              | HARTSHORNE /<br>BOOCH      | HILL TOP NORTH              | 346,832                            | 35                                   | 1987/12            | 2003/08            | DF       | СМ               |
| JONES                  |               |                        |                            | PINE HOLLOW                 |                                    |                                      |                    |                    |          |                  |
|                        | 2-25          | 25-6N-12E              | HARTSHORNE                 | SOUTH<br>PINE HOLLOW        | 7,264                              | 30                                   | 2003/02            | 2003/08            | DF       | BAY              |
| HARTSFIELD             | 1-35          | 35-6N-12E              | HARTSHORNE                 | SOUTH<br>PINE HOLLOW        | 46,203                             | 68                                   | 2002/02            | 2003/08            | DF       |                  |
| HARTSFIELD<br>WHATS IF | 1-36A<br>1-11 | 36-6N-12E<br>11-6N-13E | HARTSHORNE<br>HARTSHORNE   | SOUTH<br>ULAN SOUTH         | 128,207<br>42                      | 151                                  | 2002/02 2003/07    | 2003/08<br>2003/07 | DF       |                  |
| GLEESE                 | 1-27          | 27-6N-13E              | HARTSHORNE /<br>BOOCH      | PINE HOLLOW<br>SOUTH        | 64,130                             | 9                                    | 1989/07            | 2003/08            | DF       |                  |
| GLEESE                 | 1-28          | 28-6N-13E              | HARTSHORNE                 | PINE HOLLOW<br>SOUTH        | 58,494                             | 10                                   | 1990/02            | 2003/08            | DF       |                  |
| FRANCES 1-29           |               |                        |                            | PINE HOLLOW<br>SOUTH        | 75,528                             |                                      |                    | 2003/08            |          | DMB              |
|                        | 1-11          | 29-6N-13E              | HARTSHORNE /               |                             |                                    | 33                                   | 1992/09            |                    | DF       | DMB              |
| TURNER<br>JOYCE        | 5             | 6-7N-11E<br>5-7N-12E   | BOOCH<br>HARTSHORNE        | GREASY CREEK<br>LAMAR EAST  | 42,702<br>230,132                  | 14                                   | 1986/05<br>1981/04 | 2003/06 2003/08    | DF<br>DF | CM<br>CM         |
| DERRISAW               | 1             | 6-7N-12E               | HARTSHORNE                 | LAMAR EAST                  | 347,958                            | 0                                    | 1964/02            | 1991/07            | DF       | BAY              |
| MAD MAX                | 1-14          | 14-7N-12E              | HARTSHORNE/<br>BOOCH       | SCIPIO<br>NORTHWEST         | 51,994                             | 29                                   | 2000/07            | 2003/08            | DF       | BF               |
| том                    | 1-14          | 14-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST         | 54,194                             | 55                                   | 2001/01            | 2003/08            | DF       | BF               |
| MYERS                  | 1             | 15-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST         | 426,770                            | 12                                   | 1963/11            | 2003/08            | DF       | BF               |
| MYERS                  | 1             | 15-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST         | 54,156                             | 0                                    | 1964/01            | 1970/05            | DF       | BF               |
| FALCON CLUB            | 1-21          | 21-7N-12E              | HARTSHORNE /<br>BOOCH      | SCIPIO                      | 108,581                            | 64                                   | 2000/08            | 2003/08            | DF       | 5.               |
|                        |               |                        | HARTSHORNE /               | SCIPIO                      |                                    |                                      |                    |                    |          |                  |
| KERN                   | 1-21          | 21-7N-12E              | SAVANNA<br>HARTSHORNE /    | NORTHWEST<br>SCIPIO         | 10,195                             | 10                                   | 2001/08            | 2003/08            | DF       |                  |
| FALCON CLUB            | 2-21          | 21-7N-12E              | BOOCH                      | NORTHWEST<br>SCIPIO         | 136,167                            | 56                                   | 2001/01            | 2003/08            | DF       | DMB              |
| MELISSA                | 2-22          | 22-7N-12E              | HARTSHORNE                 | NORTHWEST<br>SCIPIO         | 48,110                             | 14                                   | 2000/12            | 2003/08            | DF       | DMB              |
| SOUSEA                 | 1             | 24-7N-12E              | HARTSHORNE<br>HARTSHORNE / | NORTHWEST<br>SCIPIO         | 53,703                             | 0                                    | 1968/07            |                    | DF       | BF               |
| MYERS-HOLT             | 1             | 24-7N-12E              | BOOCH<br>HARTSHORNE /      | NORTHWEST                   | 92,080                             | 12                                   | 1981/12            | 2003/08            | DF       | BF               |
| ROSS                   | 1-24          | 24-7N-12E              | BOOCH                      | NORTHWEST                   | 14,240                             | 0                                    | 2001/08            | 2003/06            | DF       |                  |
| STIPE                  | 1-27          | 27-7N-12E              | HARTSHORNE /<br>BOOCH      | SCIPIO<br>NORTHWEST         | 178,169                            | 49                                   | 1997/09            | 2003/08            | DF       | DMB              |
| MILLION                | 1-27          | 27-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST         | 2,078                              | 0                                    | 1983/01            | 1985/03            | DF       | DMB              |
| STIPE                  | 2-27          | 27-7N-12E              | HARTSHORNE /<br>BOOCH      | SCIPIO<br>NORTHWEST         | 102,786                            | 145                                  | 2001/07            | 2003/08            | DF       | DMB              |
| STIPE                  | 3-27          | 27-7N-12E              | HARTSHORNE                 | SCIPIO<br>NORTHWEST         | 67,332                             | 65                                   | 2001/10            | 2003/08            | DF       | DMB              |
| MYERS                  | 1-28          | 28-7N-12E              | HARTSHORNE /<br>BOOCH      | SCIPIO                      | 77,827                             | 0                                    | 1980/08            | 1988/02            | DF       | DMB              |
|                        |               |                        |                            | SCIPIO                      |                                    |                                      |                    |                    |          |                  |
| W J HILSEWECK          | 1-29          | 29-7N-12E              | HARTSHORNE                 | NORTHWEST                   | 142,605                            | 24                                   | 1988/01            | 2003/08            | DF       | BAY              |
| PUCKETT                | 2-32          | 32-7N-12E              | HARTSHORNE                 | NORTHWEST<br>SCIPIO         | 23,495                             | 10                                   | 1995/06            | 2003/08            | DF       |                  |
| OTHEL                  | 1             | 1-7N-13E               | HARTSHORNE                 | NORTHWEST                   | 27,389                             | 21                                   | 1998/11            | 2003/07            | DF       | BAY              |

| Weil                | Well Num | Location               | Formation                | Field Name                           | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date    | Last Prod Date     | Facies     | Secondary Facies |
|---------------------|----------|------------------------|--------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------|--------------------|------------|------------------|
| HILL #1-24          | 1-24     | 24-7N-13E              | HARTSHORNE /<br>BOOCH    | ULAN EAST                            | 299,375                            | 12                                   | 1993/10            | 2003/08            | DF         |                  |
| KING                | 3-25     | 25-7N-13E              | HARTSHORNE /<br>BOOCH    | REAMS<br>NORTHWEST                   |                                    | 50                                   | 1994/09            | 2003/08            | DF         |                  |
|                     |          |                        | HARTSHORNE /             | REAMS                                | 369,985                            |                                      |                    |                    |            |                  |
| KING                | 4-25     | 25-7N-13E              | BOOCH                    | NORTHWEST                            | 103,446<br>8,670,781               | 62<br>146,962                        | 2001/03            | 2003/08            | DF         |                  |
| DI 4 01/            |          |                        |                          |                                      | 0.15.0.11                          |                                      | 1000111            |                    |            |                  |
| BLACK<br>ARTHUR #1  | 1-17     | 17-5N-11E<br>19-5N-11E | HARTSHORNE<br>HARTSHORNE | HILL TOP<br>HILL TOP                 | 245,241<br>569,869                 | 29<br>35                             | 1988/11<br>1981/09 | 2003/08<br>2003/08 | DMB<br>DMB |                  |
| ALTA #1             |          | 19-5N-11E              | HARTSHORNE               | HILL TOP                             | 299,093                            | 8                                    | 1981/09            | 2003/08            | DMB        |                  |
| MOBIL #1            | 1 1      | 20-5N-11E              | HARTSHORNE               | HILL TOP                             | 544,250                            | 49                                   | 1988/07            | 2003/08            | DMB        |                  |
| BLACK J             | 1        | 20-5N-11E              | HARTSHORNE               | HILL TOP                             | 472,784                            | 72                                   | 1989/02            | 2003/09            | DMB        |                  |
| TRAVIS P            | 1L       | 21-5N-11E              | HARTSHORNE               | HILL TOP                             | 621,903                            | 75                                   | 1991/06            | 2003/01            | DMB        | C-1              |
| HUFFMAN             | 1-32     | 32-5N-11E              | HARTSHORNE               | HILL TOP<br>SOUTHWEST                | 173,087                            | 25                                   | 1990/01            | 2003/08            | DMB        |                  |
| JEFFERSON           | 1        | 12-5N-12E              | HARTSHORNE               | PINE HOLLOW<br>SOUTH<br>SHADY GROVE  | 258,557                            | 61                                   | 1996/08            | 2003/03            | DMB        | DF               |
| ECKLES              | 1-5      | 5-6N-11E               | HARTSHORNE               | SOUTH<br>SHADY GROVE                 | 85,551                             | 13                                   | 1999/09            | 2003/09            | DMB        | C-1              |
| BLACK #2            | 2        | 9-6N-11E               | HARTSHORNE               | SOUTHWEST<br>SHADY GROVE             | 96,090                             | 5                                    | 1993/06            | 2003/06            | DMB        | DF               |
| BLACK #3            | 3        | 10-6N-11E              | HARTSHORNE               | SOUTHWEST                            | 467,630                            | 22                                   | 1993/11            | 2003/09            | DMB        |                  |
| GENEVA              | 1-10     | 10-6N-11E              | HARTSHORNE               | SHADY GROVE<br>SOUTHWEST<br>CABANISS | 262,228                            | 15                                   | 1995/07            | 2003/09            | DMB        | DF               |
| BALLINGER           | 3-13     | 13-6N-11E              | HARTSHORNE               | NORTHWEST                            | 1,412,822                          | 42                                   | 1985/01            | 2003/08            | DMB        | C-1              |
| PAUL BALLINGER 4-13 | 4-13     | 13-6N-11E              | HARTSHORNE               | CABANISS<br>NORTHWEST                | 109,744                            | 14                                   | 1992/05            | 2003/08            | DMB        | DF               |
| LITTLE              | 1        | 19-6N-11E              | HARTSHORNE               | HILL TOP NORTH                       | 2,857                              | 0                                    | 1993/02            | 1998/07            | DMB        | C-1              |
| ROLAND              | 1        | 20-6N-11E              | HARTSHORNE               | HILL TOP NORTH                       | 101,522                            | 21                                   | 1992/06            | 2003/08            | DMB        | C-1              |
| ROLAND 1-20         | 1-20     | 20-6N-11E              | HARTSHORNE               | HILL TOP NORTH<br>CABANISS           | 9,809                              | 0                                    | 1992/04            | 1992/11            | DMB        | C-1              |
| HILSWECK            | 3-17     | 17-6N-12E              | HARTSHORNE               | NORTHWEST                            | 46,551                             | 14                                   | 1997/09            | 2003/08            | DMB        |                  |
| KLENE UN            | 1        | 1-7N-11E               | HARTSHORNE               | LAMAR EAST                           | 2,299,313                          | 31                                   | 1961/08            | 2003/08            | DMB        | C-1              |
| JACKSON             | 1        | 30-7N-11E              | HARTSHORNE               | SHADY GROVE<br>SOUTH                 | 419,823                            | 0                                    | 1986/04            | 1992/01            | DMB        |                  |
| BE                  | 1        | 31-7N-11E              | HARTSHORNE               | SHADY GROVE<br>SOUTH                 | 719,276                            | 5                                    | 1985/01            | 2003/08            | DMB        |                  |
| KAMPERMAN           | 1        | 31-7N-11E              | HARTSHORNE               | SHADY GROVE<br>WEST                  | 137,116                            | 14                                   | 1989/02            | 2003/08            | DMB        | DF               |
|                     |          |                        |                          | SCIPIO                               |                                    |                                      |                    |                    |            |                  |
| GILCREASE<br>PERRY  | 2        | 16-7N-12E<br>17-7N-12E | HARTSHORNE<br>HARTSHORNE | NORTHWEST<br>LAMAR EAST              | 259,338<br>289,538                 | 0                                    | 1963/08<br>1982/03 | 1986/07<br>2003/08 | DMB<br>DMB | C-1              |
| GRIFFIN HEIRS       | 1-17     | 17-7N-12E              | HARTSHORNE               | LAMAR EAST                           | 12,152                             | 64                                   | 2003/03            | 2003/08            | DMB        | C-1              |
| SARKEYS             | 18       | 18-7N-12E              | HARTSHORNE               | LAMAR EAST                           | 298,179                            | 0                                    | 1964/03            | 1982/11            | DMB        | C-1              |
| SARKEYS             | 10       | 18-7N-12E              | HARTSHORNE               | LAMAR EAST                           | 169,548                            | 8                                    | 1964/02            | 2003/08            | DMB        | C-1              |
| GILCREASE #1 #2     | 1        | 21-7N-12E              | HARTSHORNE               | SCIPIO<br>NORTHWEST                  | 318,949                            | 0                                    | 1964/12            | 1997/06            | DMB        | DF               |
| FALCON CLUB         | 3-21     | 21-7N-12E              | HARTSHORNE               | SCIPIO<br>NORTHWEST                  | 146,922                            | 123                                  | 2001/01            | 2003/08            | DMB        | DF               |
| CLARKE              | 1        | 22-7N-12E              | HARTSHORNE               | SCIPIO<br>NORTHWEST                  | 86,270                             | 0                                    | 1964/12            | 1987/05            | DMB        | DF               |
| CLARK               | 1        | 22-7N-12E              | HARTSHORNE               | SCIPIO<br>NORTHWEST<br>SCIPIO        | 78,590                             | 0                                    | 1964/12            |                    | DMB        | DF               |
| JONATHAN            | 1-22     | 22-7N-12E              | HARTSHORNE               | NORTHWEST                            | 31,129                             | 12                                   | 2000/09            | 2003/08            | DMB        | DF               |
| MICHAEL             | 2-22     | 22-7N-12E              | HARTSHORNE               | NORTHWEST                            | 124,116                            | 67                                   | 2001/04            | 2003/08            | DMB        | DF               |
| STIPE               | 1-28     | 28-7N-12E              | HARTSHORNE               | NORTHWEST                            | 437,796                            | 93                                   | 1996/10            | 2003/08            | DMB        | DF               |
| STIPE               | 2-28     | 28-7N-12E              | HARTSHORNE /<br>BOOCH    | SCIPIO<br>NORTHWEST                  | 119,611                            | 40                                   | 1997/09            | 2003/08            | DMB        | DF               |
| PUCKETT             | 1-32     | 32-7N-12E              | HARTSHORNE               | SCIPIO<br>NORTHWEST                  | 57,410                             | 0                                    | 1982/12            | 1996/11            | DMB        |                  |
| DOSS                | 1-33     | 33-7N-12E              | HARTSHORNE /<br>BOOCH    | CABANISS<br>NORTHWEST                | 42,806                             | 0                                    | 1982/12            | 1997/01            | DMB        |                  |
| HERMAN              | 1-12     | 12-7N-13E              |                          | SCIPIO<br>NORTHWEST                  | 19,271                             | 16<br>39                             | 2000/12            | 2003/07            | DMB        | C-1              |
| WARD<br>WARD        | 2-13     | 13-7N-13E<br>13-7N-13E | HARTSHORNE<br>HARTSHORNE | ULAN EAST<br>ULAN EAST               | 204,197<br>164,754                 | 39<br>25                             | 1994/03<br>1993/01 | 2003/08<br>2003/08 |            | C-1<br>C-1       |

| Well              | Well Num | Location  | Formation                  | Field Name                    | C umulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date | Last Prod Date | Facies | Secondary Facies |
|-------------------|----------|-----------|----------------------------|-------------------------------|-------------------------------------|--------------------------------------|-----------------|----------------|--------|------------------|
| MOONEYHAM         | 1-18     | 18-7N-13E | HARTSHORNE /<br>SAVANNA    | SCIPIO<br>NORTHWEST           | 489,300                             | 18                                   | 1994/07         | 2003/06        | DMB    | DF               |
| ROCKEY            | 1-18     | 18-7N-13E | HARTSHORNE /<br>SAVANNA    | SCIPIO<br>NORTHWEST           | 88,122                              | 0                                    | 1994/07         | 1999/11        | DMB    | DF               |
| MOONEYHAM #1-18   | 1-18     | 18-7N-13E | HARTSHORNE /<br>SAVANNA    | SCIPIO<br>NORTHWEST           | 163,419                             | 18                                   | 1994/02         | 2003/08        | DMB    | DF               |
| HOOTERS           | 1-18     | 18-7N-13E | HARTSHORNE                 | SCIPIO<br>NORTHWEST           | 19,936                              | 45                                   | 2002/06         | 2003/08        | DMB    | DF               |
|                   |          |           |                            |                               | 12,976,469                          | 288,366                              |                 |                |        |                  |
| DUNCAN            | 1        | 23-5N-11E | HARTSHORNE                 | STUART<br>SOUTHWEST           | 83,900                              | 0                                    | 1961/01         |                | IC-1   |                  |
| WOODFORK          | 1        | 26-5N-11E | HARTSHORNE                 | STUART                        | 5,413,737                           | 0                                    | 1960/12         | 1988/11        | IC-1   |                  |
|                   |          |           |                            | STUART                        |                                     |                                      |                 |                |        |                  |
| KINCADE           | 1        | 26-5N-11E | HARTSHORNE                 | SOUTHWEST<br>STUART           | 97,600                              | 0                                    | 1964/04         | 1968/03        | IC-1   |                  |
| LACKEY C S 2 NE   | 1        | 27-5N-11E | HARTSHORNE                 | SOUTHWEST                     | 4,249,974                           | 0                                    | 1960/12         | 1994/01        | IC-1   |                  |
| WALKER HEIRS      | 1        | 27-5N-11E | HARTSHORNE                 | SOUTHWEST<br>STUART           | 1,306,286                           | 15                                   | 1970/03         | 2003/09        | IC-1   |                  |
| WALKER HEIRS 27-2 | 27-2     | 27-5N-11E | HARTSHORNE<br>HARTSHORNE / | SOUTHWEST<br>STUART           | 290,973                             | 55                                   | 1992/08         | 2003/05        | IC-1   |                  |
| HERRING D         | 1-C      | 28-5N-11E | JEFFERSON                  | SOUTHWEST<br>PINE HOLLOW      | 1,032,069                           | 136                                  | 1989/02         | 2003/03        | IC-1   |                  |
| LOFTIS            | 1        | 8-5N-12E  | HARTSHORNE<br>HARTSHORNE / | SOUTH<br>PINE HOLLOW          | 3,787                               | 0                                    | 2000/08         | 2000/10        | IC-1   |                  |
| BROOKS            | 1-18     | 18-5N-12E | SENORA                     | SOUTH<br>PINE HOLLOW          | 16,675                              | 0                                    | 1984/03         | 1996/11        | IC-1   |                  |
| HARRISON          | 1-18     | 18-5N-12E | HARTSHORNE                 | SOUTH<br>REAMS                | 281,510                             | 157                                  | 1999/10         | 2003/08        | IC-1   |                  |
| CARTER 1-2        | 1-2      | 2-6N-13E  | HARTSHORNE                 | NORTHWEST<br>REAMS            | 933,438                             | 106                                  | 1989/02         | 2003/08        | IC-1   |                  |
| HOLT              | J2-3     | 3-6N-13E  | HARTSHORNE                 | NORTHWEST                     | 17                                  | 0                                    | 1988/08         | 1988/08        | IC-1   |                  |
| HOLTJ             | 4-3      | 3-6N-13E  | HARTSHORNE                 | NORTHWEST                     | 94,298                              | 23                                   | 1997/10         | 2003/08        | IC-1   |                  |
| HOLT J            | 1        | 3-6N-13E  | HARTSHORNE                 | REAMS<br>NORTHWEST            | 2,708,284                           | 48                                   | 1985/05         | 2003/08        | IC-1   |                  |
| HOLT              | ЗJ       | 3-6N-13E  | HARTSHORNE                 | REAMS<br>NORTHWEST            | 393,172                             | 11                                   | 1990/01         | 2003/08        | IC-1   |                  |
| HOLT              | 1-4T     | 4-6N-13E  | HARTSHORNE                 | REAMS<br>NORTHWEST            | 902,526                             | 97                                   | 1988/08         | 2003/08        | IC-1   |                  |
| LUCILLE           | 1-34     | 34-7N-13E | HARTSHORNE                 | REAMS<br>NORTHWEST            | 1,046,508                           | 52                                   | 1985/05         | 2003/08        | IC-1   |                  |
| STATE             | 1-35     | 35-7N-13E | HARTSHORNE                 | REAMS<br>NORTHWEST            | 607,018                             | 0                                    | 1980/10         | 1987/04        | IC-1   |                  |
| STATE             | 2-35     | 35-7N-13E | HARTSHORNE                 | REAMS<br>NORTHWEST            | 1,200,399                           | 221                                  | 1988/08         | 2003/08        | IC-1   |                  |
| SUNSHINE          | 1-36     | 36-7N-13E | HARTSHORNE                 | REAMS<br>NORTHWEST            | 73,470                              | 13                                   | 1996/05         | 2003/08        | IC-1   |                  |
| SHEENA #1-36      | 1-36     | 36-7N-13E | HARTSHORNE                 | REAMS<br>NORTHWEST            | 342,580                             | 70                                   | 1995/07         | 2003/08        | IC-1   |                  |
|                   |          |           |                            |                               | 21,078,221                          | 1,003,725                            |                 |                |        |                  |
| FIELD HEIR        | 1        | 13-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 3,255,168                           | 24                                   | 1965/08         | 2003/09        | IC-2   |                  |
| DELILAH           | 1        | 23-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 1,693,279                           | 137                                  | 1985/10         | 2003/09        | IC-2   |                  |
| LOFTIS            | 2        | 23-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 4,239,153                           | 0                                    | 1968/10         | 1985/09        | IC-2   |                  |
| LOFTIS AUSTIN E   | 1        | 23-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 892,201                             | 87                                   | 1985/10         | 2003/09        | IC-2   |                  |
| LOFTIS & DELILAH  |          | 23-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 1,216,608                           | 0                                    | 1985/10         | 1992/11        | IC-2   |                  |
| MORRIS OSSIE      | 1        | 24-5N-12E | HARTSHORNE                 | PINE HOLLOW<br>SOUTH          | 11,017,443                          | 276                                  | 1965/08         | 2003/09        | IC-2   |                  |
|                   |          | 24-5N-12E |                            | PINE HOLLOW                   |                                     |                                      |                 |                |        |                  |
| MORRIS O          | 3-24     |           | HARTSHORNE                 | SOUTH<br>PINE HOLLOW<br>SOUTH | 46,175                              | 38                                   | 2000/11         | 2003/09        | IC-2   |                  |
| DEPOT             |          | 25-5N-12E | HARISHURNE                 | PINE HOLLOW                   | 260,615                             | 46                                   | 1990/11         | 2003/09        | 10-2   |                  |

| Net         Image         Sector                                                                                                                                |                       |          |           |            |            |                                    |                                      |                 |                |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-----------|------------|------------|------------------------------------|--------------------------------------|-----------------|----------------|--------|--|
| DAVIS         1         265N-126         HARTSHORKE         SOUTH         7,680,05         175         1965/0         20309         1-2           MCDONALD SUSAN         1         355N-126         HARTSHORKE         SOUTH         864,966         0         1966/03         1983/11         1-2           USA#36         1         365N-126         HARTSHORKE         SOUTH         783,922         37         1975/03         20309         1-2           WATKINS         1         3-SN-136         HARTSHORKE         SOUTH         733,923         37         1975/03         20309         1-2           FOOD SSWW         1         3-SN-136         HARTSHORKE         SOUTH         345,576         59         1999/03         20309         1-2           GIBSON WINNE         2.4         4-SN-136         HARTSHORKE         SOUTH         345,576         59         1990/4         1-2           GIBSON WINNE         1         4-SN-136         HARTSHORKE         SOUTH         343,576         59         1990/4         1-2           GIBSON WINNE         1         4-SN-136         HARTSHORKE         SOUTH         373,339         0         1965/07         1990/4         1-2           LINDSAY GIBSON                                                                                                                                                                                                             | Well                  | Well Num | Location  | Formation  | Field Name | Cumulative Gas<br>Production (Mcf) | Current Gas<br>ProductionRate (Mcfd) | First Prod Date | Last Prod Date | Facies |  |
| MCDONALD SUBAN         1         35.8N-12E         HARTSHORKE         SOUTH         8.0.44,198         78         196.90         20.309         1.2           WATKINS         1         2-6N-12E         HARTSHORKE         PRE FOLLOW         864,966         0         196.03         196.11         1.2           WATKINS         1         2-9N-18E         HARTSHORKE         PRE FOLLOW         864,966         0         196.03         203.09         1.2           FOOD SE SW NW         1         3-9N-18E         HARTSHORKE         SOUTH         228,446         40         196.00         203.09         1.2           FOOD SE SW NW         1         4-9N-18E         HARTSHORKE         SOUTH         345.76         6.9         199.00         203.09         1.2           GIBSON WINNE         2.4         4-9N-18E         HARTSHORKE         SOUTH         345.76         6.9         199.00         203.09         1.2           GIBSON WINNE         1         4-SN-13E         HARTSHORKE         SOUTH         378.39         0         196.00         1.090.00         1.2           HORNTON SE WYSE         1         5-SN-13E         HARTSHORKE         SOUTH         3.78.39         0         196.00         203.0                                                                                                                                                                                            | DAVIS                 | 1        | 26-5N-12E | HARTSHORNE |            | 7,660,105                          | 175                                  | 1965/10         | 2003/09        | IC-2   |  |
| USA #36         1         366/11/26         HARTSHORNE         SOUTH         864,896         0         196603         1993/11         102           WATKINS         1         2-91-126         HARTSHORNE         PINE HOLLOW         733,928         37         1975/09         2003/09         10-2           FOOD SE SW NW         1         3-90-136         HARTSHORNE         PINE HOLLOW         2258,446         4.0         1965/08         2003/09         10-2           GIBSON WINNIE         2.4         4-5N-136         HARTSHORNE         FINE HOLLOW         948,223         16.4         1990/02         2003/09         10-2           GIBSON WINNIE         1         4-5N-136         HARTSHORNE         FINE HOLLOW         977,738         20         1990/02         2003/09         10-2           GIBSON WINNIE         1         4-5N-136         HARTSHORNE         FINE HOLLOW         3,730,39         0         1966/07         1990/04         10-2           LINDSAY GIBSON WE SW         1         5-5N-136         HARTSHORNE         SOUTH         5,730,393         0         1966/07         1990/01         1-2           LINDSAY GIBSON WE SW NE         1         5-5N-136         HARTSHORNE         SOUTH         1,506,564                                                                                                                                                                        | MCDONALD SUSAN        | 1        | 35-5N-12E | HARTSHORNE | SOUTH      |                                    | 78                                   | 1965/08         | 2003/09        | IC-2   |  |
| WATKINS         1         2-SH-13E         HARTSHORNE         SOUTH         793.928         37         197.69         20.030         1c.2           FOOD SESW NW         1         3-SH-13E         HARTSHORNE         SOUTH         2.258.46         4.0         196.06         200.09         1c.2           FOOD 2.3         3-SH-13E         HARTSHORNE         SOUTH         345,576         59         199.02         200.09         1c.2           GIBSON WINNIE         2.4         4-SH-13E         HARTSHORNE         FNIE HOLLOW         77.738         20         199.06         2003.08         1c.2           GIBSON WINNIE         1         4-SH-13E         HARTSHORNE         SOUTH         370.939         0         199.06         2003.09         1c.2           LINDSAY GIBSON NESW         1         4-SH-13E         HARTSHORNE         SOUTH         3.709.939         0         199.07         2003.09         1c.2           THORNTON SE NW SE         1         7-SH-13E         HARTSHORNE         SOUTH         3.708.93         0         196.061         197.04         1c.2           REVNOLDS         1         7-SH-13E         HARTSHORNE         SOUTH         3.108.64         34         196.660         103.030 <td>USA #36</td> <td>1</td> <td>36-5N-12E</td> <td>HARTSHORNE</td> <td></td> <td>864,986</td> <td>0</td> <td>1966/03</td> <td>1983/11</td> <td>IC-2</td> <td></td>                    | USA #36               | 1        | 36-5N-12E | HARTSHORNE |            | 864,986                            | 0                                    | 1966/03         | 1983/11        | IC-2   |  |
| FOOD SE SW NW         1         3-SN-13E         HARTSHORNE         PINE HOLLOW<br>SUTH         2,285,46         4.0         1965/08         2003/08         1C-2           GIBSON WINNIE         2.4         4-SN-13E         HARTSHORNE         PINE HOLLOW         345,576         59         1996/02         2003/08         IC-2           GIBSON WINNIE         2.4         4-SN-13E         HARTSHORNE         PINE HOLLOW         345,576         59         1996/02         2003/08         IC-2           GIBSON WINNIE         1         4-SN-13E         HARTSHORNE         PINE HOLLOW         346,576         59         1996/07         2003/08         IC-2           GIBSON WINNIE         1         4-SN-13E         HARTSHORNE         SOUTH         340,223         164         1990/06         2003/08         IC-2           LUNDSAY GIBSON NE SW         1         4-SN-13E         HARTSHORNE         SOUTH         1,266,54         34         1956/08         2003/08         IC-2           REYNOLDS         1         7-SN-13E         HARTSHORNE         SOUTH         2,161,911         96         196/07         2003/08         IC-2           BUSE SW NE         1         8-SN-13E         HARTSHORNE         SOUTH         32,386                                                                                                                                                                          | WATKINS               | 1        | 2-5N-13E  | HARTSHORNE |            | 793,928                            | 37                                   | 1975/09         | 2003/09        | IC-2   |  |
| FOOD         23         3-5N-13E         HARTSHORNE         SOUTH         345,576         59         199/02         202309         1C-2           GIBSON WINNIE         24         4-5N-13E         HARTSHORNE         SOUTH         7,7,38         20         199/02         200308         1C-2           GIBSON WINNIE         1         4-5N-13E         HARTSHORNE         PINE MOLLOW         948,223         164         19900         200308         1C-2           LINDSAY GIBSON NES         1         4-5N-13E         HARTSHORNE         PINE MOLLOW         3,730,99         0         196004         1C-2           THOR NON SE NW SE         1         5-5N-13E         HARTSHORNE         SOUTH         678,618         34         196604         177.0           REYNOLDS         1         7-5N-13E         HARTSHORNE         SOUTH         678,618         0         196604         1C-2           BUSE SW NE         1         8-5N-13E         HARTSHORNE         SOUTH         63,63,27         113         196,008         109,007         1C-2           WALLACE W C NE SW NW         12         7-5N-13E         HARTSHORNE         SOUTH         10,700,574         56         196,070         1C-2           ROCK W P C                                                                                                                                                                                           | FOOD SE SW NW         | 1        | 3-5N-13E  | HARTSHORNE |            | 2,258,446                          | 40                                   | 1965/08         | 2003/09        |        |  |
| GIBON WINNE         24         4-8N-13E         HARTSHORNE         SOUTH         77,738         20         1990/18         200300         IC-2           GIBON WINNE         1         4-8N-13E         HARTSHORNE         SOUTH         948,223         164         1990/08         200309         IC-2           LINDSAY GIBSON NE SW         1         4-8N-13E         HARTSHORNE         SOUTH         3,70,939         0         1965/07         1990/08         IC-2           THORNTON SE NW SE         1         5-8N-13E         HARTSHORNE         PINE MOLLOW         1,089,664         34         1965/07         200309         IC-2           REVNOLDS         1         7-5N-13E         HARTSHORNE         PINE MOLLOW         2,161,911         96         1970/07         200309         IC-2           BUSE SW NE         1         5-8N-13E         HARTSHORNE         PINE MOLLOW         66,68,237         113         1966/07         200309         IC-2           WALLACE W C NE SW NW         12         5-8N-13E         HARTSHORNE         PINE MOLLOW         1,700,574         66         1966/07         200309         IC-2           ROCK WP         1         17-5N-13E         HARTSHORNE         PINE MOLLOW         1,205,62                                                                                                                                                                            | FOOD                  | 2-3      | 3-5N-13E  | HARTSHORNE |            | 345,576                            | 59                                   | 1995/02         | 2003/09        | IC-2   |  |
| GIBON WINNE         1         4-SN-13E         HARTSHORNE         SOUTH         94.82.3         164         1990.00         10.2           LINDBAY GIBON NESW         1         4-SN-13E         HARTSHORNE         NUM         3,730.393         0         1956.07         196.07         100.07           THORNTON SE NW SE         1         5-SN-13E         HARTSHORNE         NUM         1,008.64         3.4         195.06         203.09         IC-2           REVNOLDS         1         7-SN-13E         HARTSHORNE         NUM         2,161.911         96         197.07         203.09         IC-2           BUSE SW NE         1         8-SN-13E         HARTSHORNE         NUM         6,86.237         113         196.56         100.09         1.2           WALLACE W C NE SW NW         182         9-SN-13E         HARTSHORNE         NUM         1,00.74         6.6         198.07         200.08         IC-2           ROCK WP C NW NW         1         1.5-SN-13E         HARTSHORNE         NUM         1,00.574         6.6         198.07         20.09         IC-2           ROCK WP C NW NW         2         1.7-SN-13E         HARTSHORNE         NUM         1,00.74         6.53.582         10.8         198.0                                                                                                                                                                                   | GIBSON WINNIE         | 2-4      | 4-5N-13E  | HARTSHORNE |            | 77,738                             | 20                                   | 1999/08         | 2003/08        | IC-2   |  |
| LINDSAY GIBSON NE SW         1         4 -5N-13E         HARTSHORNE         SOUTH         3,739,939         0         1950/7         1990/4         IC-2           THORNTON SE NW SE         1         5-5N-13E         HARTSHORNE         SOUTH         1,068,564         34         1950/8         2003/9         IC-2           REYNOLDS         1         7-5N-13E         HARTSHORNE         SOUTH         2,161,911         96         1970/7         2003/9         IC-2           BUSE SW NE         1         8-5N-13E         HARTSHORNE         PINE HOLLOW         6,868,237         113         1950/8         2003/9         IC-2           WALLACE W.C NE SW NW         182         9-5N-13E         HARTSHORNE         PINE HOLLOW         700,774         56         1965/07         2003/08         IC-2           WALLACE W.C NE SW NW         182         9-5N-13E         HARTSHORNE         PINE HOLLOW         700,774         56         1965/07         2003/08         IC-2           ROCK WP         1         17-5N-13E         HARTSHORNE         PINE HOLLOW         700,774         56         1960/07         1C-2           BUCE ROBBINS UNIT         1         16-5N-13E         HARTSHORNE         SOUTH         4,535,628         0                                                                                                                                                                       | GIBSON WINNIE         | 1        | 4-5N-13E  | HARTSHORNE |            | 948,223                            | 164                                  | 1990/06         | 2003/09        | IC-2   |  |
| THORNTON SE NW SE         1         5-5N-13E         HARTSHORNE         SOUTH         1,508,564         34         1955/08         203/09         1/2           REYNOLDS         1         7-5N-13E         HARTSHORNE         SOUTH         2,161,911         96         197,07         203,09         1/2         1/2           REYNOLDS         1         7-5N-13E         HARTSHORNE         SOUTH         678,818         0         196,004         197,04         1/2         1/2           BUSE SW NE         1         8-5N-13E         HARTSHORNE         SOUTH         6,669,237         113         1965/08         203,09         1/2           WALLACE W C NE SW NW         182         9-5N-13E         HARTSHORNE         SOUTH         1,700,574         56         1965/07         203,08         1/2           ROCK WP         1         17-5N-13E         HARTSHORNE         SOUTH         1,201,74         56         1968/10         203,09         1/2           ROCK WP         3-17         17-5N-13E         HARTSHORNE         SOUTH         2,455,682         1         196,08         203,09         1/2           ROCK WP         3-11         1-58,173E         HARTSHORNE         SOUTH         1,178         1/2 </td <td>LINDSAY GIBSON NE SW</td> <td>1</td> <td>4-5N-13E</td> <td>HARTSHORNE</td> <td></td> <td>3,730,939</td> <td>0</td> <td>1965/07</td> <td>1990/04</td> <td>IC-2</td> <td></td>        | LINDSAY GIBSON NE SW  | 1        | 4-5N-13E  | HARTSHORNE |            | 3,730,939                          | 0                                    | 1965/07         | 1990/04        | IC-2   |  |
| REYNOLDS         1         7-5N-13E         HARTSHORNE         SOUTH         2,161,911         96         197907         200308         10-2           FIRESTON         1         7-5N-13E         HARTSHORNE         SOUTH         6,868,237         113         196604         197704         10-2           BUSE SW NE         1         8-5N-13E         HARTSHORNE         SOUTH         6,868,237         113         196508         200309         1C-2           WALLACE W C NE SW NW         18.2         9-5N-13E         HARTSHORNE         SOUTH         32,356         0         196507         200308         1C-2           ROCK WP         1         17-5N-13E         HARTSHORNE         SOUTH         32,356         0         196507         200300         1C-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         4,245,466         0         196907         200307         1C-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         1,1070         1         200202         200210         1C-2           ROCK WP C NW NW         3.1         19-5N-13E         HARTSHORNE         SOUTH         1,1070         1         200202                                                                                                                                                                                                 | THORN TON SE NW SE    | 1        | 5-5N-13E  | HARTSHORNE |            |                                    | 34                                   | 1965/08         | 2003/09        | IC-2   |  |
| FIRESTON         1         7-5N-13E         HARTSHORNE         SOUTH<br>PINE HOLLOW         678,818         0         196,604         197704         16-2           BUSE SW NE         1         8-5N-13E         HARTSHORNE         SOUTH         6,868,237         113         196,008         203,008         1C-2           WALLACE W C NE SW NW         182         9-5N-13E         HARTSHORNE         SOUTH         1,700,574         56         196,070         203,080         1C-2           ROCK WP         1         17-5N-13E         HARTSHORNE         SOUTH         12,358         0         196,070         109,070         1C-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         4,245,466         0         196,070         100,070         1C-2           ROCK WP C NW NW         1         155N-13E         HARTSHORNE         SOUTH         6,535,822         128         196,070         200,010         1C-2           BRUCE ROBBINS UNIT         1         165N-13E         HARTSHORNE         SOUTH         3,516,263         0         199,01         200,000         1C-2           UNIV OF TULSA         1         155N-13E         HARTSHORNE         SOUTH         3,516,263         0 <td>REYNOLDS</td> <td>1</td> <td>7-5N-13E</td> <td>HARTSHORNE</td> <td></td> <td>2,161,911</td> <td>96</td> <td>1979/07</td> <td>2003/09</td> <td>IC-2</td> <td></td>     | REYNOLDS              | 1        | 7-5N-13E  | HARTSHORNE |            | 2,161,911                          | 96                                   | 1979/07         | 2003/09        | IC-2   |  |
| BUSE SW NE         1         8-5N-13E         HARTSHORNE         SOUTH         6,868,237         113         196/08         203/08         IC-2           WALLACE W C NE SW NW         182         9-5N-13E         HARTSHORNE         SOUTH         1,700,574         56         1965/07         203/08         IC-2           ROCK WP         1         17-5N-13E         HARTSHORNE         PINE HOLLOW         32,368         0         1965/07         203/07         IC-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         PINE HOLLOW         4,245,468         0         1966/07         203/07         IC-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         4,245,468         0         1966/07         203/07         IC-2           BRUCE ROBBINS UNIT         1         16-5N-13E         HARTSHORNE         SOUTH         1,170         1         200/07         IC-2           UNIV OF TULSA         1         19-5N-13E         HARTSHORNE         SOUTH         3,516,263         0         197/04         199/11         IC-2           LEO         1/25         2-6N-13E         HARTSHORNE         SOUTH         3,516,263         0         197/04         <                                                                                                                                                                               | FIRESTON              | 1        | 7-5N-13E  | HARTSHORNE |            | 678,818                            | 0                                    | 1966/04         | 1977/04        | IC-2   |  |
| WALLACE W C NE SW NW         182         9-5N-13E         HARTSHORNE         SOUTH         1,700,574         56         1965/07         2003/08         IC-2           ROCK WP         1         17-5N-13E         HARTSHORNE         SOUTH         32,358         0         1965/08         1989/07         IC-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         PINE HOLLOW         1         1968/01         2003/02         IC-2           ROCK WP C NW NW         2         17-5N-13E         HARTSHORNE         PINE HOLLOW         1         1968/01         2003/02         IC-2           BRUCE ROBBINS UNIT         1         18-5N-13E         HARTSHORNE         PINE HOLLOW         1         1968/01         2003/02         IC-2           UNIV OF TULSA         1         195N-13E         HARTSHORNE         SOUTH         3,516,263         0         1970/04         198/11         IC-2           LEO         1.2         25-6N-13E         HARTSHORNE         SOUTH         207,738         2.2         198/05         2003/07         IC-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         11,15,398         4.9         1966/05         2003/08         IC-2 </td <td>BUSE SW NE</td> <td>1</td> <td>8-5N-13E</td> <td>HARTSHORNE</td> <td></td> <td>6,868,237</td> <td>113</td> <td>1965/08</td> <td>2003/09</td> <td>IC-2</td> <td></td>        | BUSE SW NE            | 1        | 8-5N-13E  | HARTSHORNE |            | 6,868,237                          | 113                                  | 1965/08         | 2003/09        | IC-2   |  |
| ROCK WP         1         17-5N-13E         HARTSHORNE         SOUTH         32,358         0         1965/08         1989/07         1C-2           ROCK W P C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         4,245,468         0         1968/10         2003/02         1C-2           ROCK W P C NW NW         3         17-5N-13E         HARTSHORNE         SOUTH         4,245,468         0         1968/10         2003/02         1C-2           ROCK W P         3-17         17-5N-13E         HARTSHORNE         PINE HOLLOW         10.00         2002/00         1C-2         10.00         1C-2           BRUCE ROBBINS UNIT         1         185N-13E         HARTSHORNE         SOUTH         6,535,622         1128         1965/05         2003/07         1C-2           UNIV OF TULSA         1         195N-13E         HARTSHORNE         SOUTH         3,516,263         0         170/41         1981/1         1C-2           LEO         1.2         25-6N-13E         HARTSHORNE         SOUTH         3,516,263         0         1968/05         2003/07         1C-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         11,15,393         19         1968/05<                                                                                                                                                                                   | WALLACE W C NE SW NW  | 18.2     | 9-5N-13E  | HARTSHORNE |            | 1,700,574                          | 56                                   | 1965/07         | 2003/08        | IC-2   |  |
| ROCK W P C NW NW         2         17-5N-13E         HARTSHORNE         SOUTH         4,245,468         0         1968/10         2003/02         1c-2           ROCK W P         3-17         17-5N-13E         HARTSHORNE         SOUTH         1,170         1         2002/02         2002/10         1c-2           BRUCE ROBBINS UNIT         1         15-5N-13E         HARTSHORNE         SOUTH         6,535,822         128         1965/08         203/09         1c-2           BRUCE ROBBINS UNIT         1         19-5N-13E         HARTSHORNE         SOUTH         6,535,822         128         1965/08         203/09         1c-2           UNIV OF TULSA         1         19-5N-13E         HARTSHORNE         PINE HOLLOW         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROCK WP               | 1        | 17-5N-13E | HARTSHORNE | SOUTH      | 32,358                             | 0                                    | 1965/08         | 1989/07        | IC-2   |  |
| ROCK WP         3-17         17-5N-13E         HARTSHORNE         SOUTH         1,170         1         2002/02         2002/10         1C-2           BRUCE ROBBINS UNIT         1         18-5N-13E         HARTSHORNE         SOUTH         6,535,822         128         1965/08         2003/09         1C-2           UNIV OF TULSA         1         19-5N-13E         HARTSHORNE         SOUTH         3,516,263         0         1970/04         1980/10         1C-2           LEO         1-25         25-6N-13E         HARTSHORNE         SOUTH         207,738         22         1980/09         2003/07         1C-2           BLEVINS         1         25-6N-13E         HARTSHORNE         SOUTH         101,53,98         49         1968/05         2003/09         1C-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         11,155,398         49         1968/05         2003/09         1C-2           MCCARTY         1         26-6N-13E         HARTSHORNE         SOUTH         305,371         175         199/10         203/08         1C-2           GLEESE         1         3-6N-13E         HARTSHORNE         SOUTH         305,371         175         199/10         203/08                                                                                                                                                                                            | ROCK W P C NW NW      | 2        | 17-5N-13E | HARTSHORNE | SOUTH      | 4,245,468                          | 0                                    | 1968/10         | 2003/02        | IC-2   |  |
| BRUCE ROBBINS UNIT         1         18-5N-13E         HARTSHORNE         SOUTH         6,535,822         128         1965/08         2003/09         1C-2           UNIV OF TULSA         1         19-5N-13E         HARTSHORNE         SOUTH         3,516,263         0         1970/04         1980/10         1092/01         10-2           LEO         10         25-6N-13E         HARTSHORNE         SOUTH         207,738         22         1980/09         2030/07         1C-2           BLEVINS         1         25-6N-13E         HARTSHORNE         SOUTH         207,738         49         1960/05         2030/07         1C-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         1135,398         49         1960/05         2030/07         1C-2           MCCARTY         3         23-6N-13E         HARTSHORNE         SOUTH         305,371         118         1978/07         2030/05         1C-2           MCCARTY         3         23-6N-13E         HARTSHORNE         SOUTH         305,371         115         1990/11         203/08         1C-2           GLEESE J         1         33-6N-13E         HARTSHORNE         SOUTH         1067/24         199         203/08                                                                                                                                                                                            | ROCK W P              | 3-17     | 17-5N-13E | HARTSHORNE |            | 1,170                              | 1                                    | 2002/02         | 2002/10        | IC-2   |  |
| UNIV OF TULSA         1         19-5N-13E         HARTSHORNE         SOUTH         3,516,263         0         1970/04         1998/11         1C-2           LEO         1-25         25-6N-12E         HARTSHORNE         SOUTH         207,738         22         1988/09         2030/07         1C-2           BLEVINS         1         25-6N-12E         HARTSHORNE         PINE HOLLOW         1,135,398         4.9         1968/05         2030/09         1C-2           GRAY         1         25-6N-13E         HARTSHORNE         SOUTH         842,707         118         1978/07         2030/05         1C-2           MCCARTY         3-32         32-6N-13E         HARTSHORNE         SOUTH         305,371         175         199/11         203.08         1C-2           MCCARTY         3-32         32-6N-13E         HARTSHORNE         SOUTH         305,371         175         199/11         203.08         1C-2           MCCARTY         3-33         3-6N-13E         HARTSHORNE         SOUTH         305,371         199/10         203.08         1C-2           GLEESE         1         3-6N-13E         HARTSHORNE         SOUTH         160.02         196.08         203.09         1C-2                                                                                                                                                                                                           | BRUCE ROBBINS UNIT    | 1        | 18-5N-13E | HARTSHORNE |            | 6,535,822                          | 128                                  | 1965/08         | 2003/09        | IC-2   |  |
| LEO         1-25         25-6N-13E         HARTSHORNE         SOUTH         207,788         22         1988/09         2003/07         1C-2           BLEVINS         1         25-6N-13E         HARTSHORNE         SOUTH         1,135,398         Ag         1968/05         2030/07         1C-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         842,707         118         1968/05         2030/08         1C-2           MCCARTY         32         32-6N-13E         HARTSHORNE         SOUTH         842,707         118         1968/05         203/08         1C-2           MCCARTY         32         32-6N-13E         HARTSHORNE         SOUTH         842,707         118         196/05         203/08         1C-2           GLEESE         1         32-6N-13E         HARTSHORNE         SOUTH         667,474         19         196/05         203/08         1C-2           GLEESE         1         34-6N-13E         HARTSHORNE         SOUTH         1604,174         19         196/08         203/08         1C-2           HUNT-GARRETT NV SE         1         34-6N-13E         HARTSHORNE         SOUTH         4,041,83         123         196/08         203/08                                                                                                                                                                                                        | UNIV OF TULSA         | 1        | 19-5N-13E | HARTSHORNE | SOUTH      | 3,516,263                          | 0                                    | 1970/04         | 1998/11        | IC-2   |  |
| BLEVINS         1         25-6N-13E         HARTSHORNE         SOUTH         1,135,398         49         1968/05         2003/09         1C-2           GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         842,707         118         1978/07         2003/09         1C-2           MCCARTY         32         32-6N-13E         HARTSHORNE         SOUTH         842,707         118         1978/07         2003/08         1C-2           MCCARTY         32         32-6N-13E         HARTSHORNE         SOUTH         305,371         175         199/11         203/08         1C-2           GLEESE         1         33-6N-13E         HARTSHORNE         PINE HOLLOW         1667/47         199         196/08         203/08         1C-2           HUNT-GARRETT NW SES         1         34-6N-13E         HARTSHORNE         PINE HOLLOW         1660/2         199/02         2003/08         1C-2           HUNT-GARRETT NW SES         1         34-6N-13E         HARTSHORNE         SOUTH         4,041,853         162         203/09         1C-2           DOMINIC NE NW SE         1         35-6N-13E         HARTSHORNE         SOUTH         4,041,853         165.07         203/09         1C-2                                                                                                                                                                                          | LEO                   | 1-25     | 25-6N-13E | HARTSHORNE | SOUTH      | 207,738                            | 22                                   | 1988/09         | 2003/07        | IC-2   |  |
| GRAY         1         26-6N-13E         HARTSHORNE         SOUTH         842,707         118         1978/07         2003/09         1C-2           MCCARTY         3-3         32-6N-12         HARTSHORNE         SOUTH         305,371         175         199/11         2003/08         IC-2           GLEESE J         1         3-80-13E         HARTSHORNE         PINE HOLLOW         175         199/11         2003/08         IC-2           GLEESE J         1         3-6N-13E         HARTSHORNE         PINE HOLLOW         674,747         19         196/08         2003/08         IC-2           HUNT-GARRETT NW SES         1         3-6N-13E         HARTSHORNE         SOUTH         180,921         62         196/08         2003/08         IC-2           HUNT-GARRETT NW SES         1         3-6N-13E         HARTSHORNE         SOUTH         4,041,853         123         196/08         2003/08         IC-2           DOMINIC NE NW SES         1         3-6N-13E         HARTSHORNE         SOUTH         2,744,814         83         196/07         2003/08         IC-2           DOMINIC NE NW SES         1         3-6N-13E         HARTSHORNE         SOUTH         149,749         31         196/07 <td< td=""><td>BLEVINS</td><td>1</td><td>25-6N-13E</td><td>HARTSHORNE</td><td>SOUTH</td><td>1,135,398</td><td>49</td><td>1968/05</td><td>2003/09</td><td>IC-2</td><td></td></td<>         | BLEVINS               | 1        | 25-6N-13E | HARTSHORNE | SOUTH      | 1,135,398                          | 49                                   | 1968/05         | 2003/09        | IC-2   |  |
| MCCARTY         3-32         3-26-N-13E         HARTSHORNE         SOUTH         305,371         175         199/11         2003/08         1C-2           GLEESE J         1         3-6N-12E         HARTSHORNE         SOUTH         674,747         199         1965/08         203/08         1C-2           GLEESE J         1         3-6N-12E         HARTSHORNE         SOUTH         674,747         199         1965/08         203/08         1C-2           GLEESE J         3         3-6N-13E         HARTSHORNE         SOUTH         674,747         199         1965/08         203/08         1C-2           HUNT-GARRETT NWSES         1         3-6N-13E         HARTSHORNE         SOUTH         4,041,853         123         1965/08         203/08         1C-2           DOMINIC NE NWSW         1         3-6N-13E         HARTSHORNE         SOUTH         2,744,814         B0         1965/07         203/09         1C-2           DOMINIC NE NWSW         1         3-6N-13E         HARTSHORNE         SOUTH         2,744,814         B1         196,707         203/09         1C-2           LEFLORE SE SW NW         1         3-6N-13E         HARTSHORNE         SOUTH         149,749         31         196,707 <td>GRAY</td> <td>1</td> <td>26-6N-13E</td> <td>HARTSHORNE</td> <td>SOUTH</td> <td>842,707</td> <td>118</td> <td>1978/07</td> <td>2003/09</td> <td>IC-2</td> <td></td>               | GRAY                  | 1        | 26-6N-13E | HARTSHORNE | SOUTH      | 842,707                            | 118                                  | 1978/07         | 2003/09        | IC-2   |  |
| GLEESE J         1         33-6N-13E         HARTSHORNE         SOUTH         674,747         19         196,708         200,708         1C-2           GLEESE         33-6N-13E         HARTSHORNE         SOUTH         180,921         G.2         200,708         IC-2           HUNT-GARRETT NW SES         1         34-6N-13E         HARTSHORNE         SOUTH         180,921         G.2         198,002         200,708         IC-2           DOMINIC NE NW SW         1         34-6N-13E         HARTSHORNE         SOUTH         4,041,853         103.05         105,007         200,709         IC-2           DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         SOUTH         2,744,814         83         196,707         200,709         IC-2           DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         SOUTH         149,749         193,712         200,709         IC-2           DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         SOUTH         149,749         193,712         200,709         IC-2           LEFLORE SSW NW         1         36-6N-13E         HARTSHORNE         SOUTH         149,749         100         199,702         200,709         IC-2 <td>MCCARTY</td> <td>3-32</td> <td>32-6N-13E</td> <td>HARTSHORNE</td> <td>SOUTH</td> <td>305,371</td> <td>175</td> <td>1999/11</td> <td>2003/08</td> <td>IC-2</td> <td></td>  | MCCARTY               | 3-32     | 32-6N-13E | HARTSHORNE | SOUTH      | 305,371                            | 175                                  | 1999/11         | 2003/08        | IC-2   |  |
| GLEESE         2-33         33-6N-13E         HARTSHORNE         SOUTH         180,921         62         1998/02         2003/08         1C-2           HUNT-GARRETT NW SESW         1         34-6N-13E         HARTSHORNE         SOUTH         4,041,853         Call         1965/08         2003/08         1C-2           DOMINIC NE NW SESW         1         35-6N-13E         HARTSHORNE         PINE HOLLOW         2003/09         1C-2         2003/09         1C-2           DOMINIC NE NW SESW         1         35-6N-13E         HARTSHORNE         SOUTH         2,744,814         83         1965/07         2003/09         1C-2           DOMINIC NE NW SESW         1         35-6N-13E         HARTSHORNE         SOUTH         149,749         31         1993/02         2003/09         1C-2           LEFLORE SESW NW         1         36-6N-13E         HARTSHORNE         SOUTH         149,749         31         1997/02         1C-2         1C-2           LEFLORE SESW NW         1         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1979/02         1C-2           LEFLORE         1.36         36-6N-13E         HARTSHORNE         SOUTH         59,148         10 <td< td=""><td>GLEESE J</td><td>1</td><td>33-6N-13E</td><td>HARTSHORNE</td><td>SOUTH</td><td>674,747</td><td>19</td><td>1965/08</td><td>2003/08</td><td>IC-2</td><td></td></td<> | GLEESE J              | 1        | 33-6N-13E | HARTSHORNE | SOUTH      | 674,747                            | 19                                   | 1965/08         | 2003/08        | IC-2   |  |
| HUNT-GARRETT NW SE SW         1         34-6N-13E         HARTSHORNE         SOUTH         4,041,853         123         1965/08         2003/09         IC-2           DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         SOUTH         2,744,814         A83         1965/07         2003/09         IC-2           DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         PINE HOLLOW         2,744,814         A83         1995/07         2003/09         IC-2           LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         SOUTH         149,749         31         1993/12         2003/09         IC-2           LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1970/02         IC-2           LEFLORE         1.36         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1970/02         IC-2                                                                                                                                                                                                                                                                                                                                                                                                                                             | GLEESE                | 2-33     | 33-6N-13E | HARTSHORNE | SOUTH      | 180,921                            | 62                                   | 1998/02         | 2003/08        | IC-2   |  |
| DOMINIC NE NW SW         1         35-6N-13E         HARTSHORNE         SOUTH         2,744,814         83         1965/07         2003/09         IC-2           DOMINIC         2-35         35-6N-13E         HARTSHORNE         SOUTH         149,749         31         1993/12         2003/09         IC-2           LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         PINE HOLLOW<br>SOUTH         831,922         0         1905/07         1970/02         IC-2           LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1970/02         IC-2           LEFLORE         1-36         36-6N-13E         HARTSHORNE         SOUTH         59,148         10         1997/02         2003/08         IC-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HUNT-GARRETT NW SE SW | 1        | 34-6N-13E | HARTSHORNE | SOUTH      | 4,041,853                          | 123                                  | 1965/08         | 2003/09        | IC-2   |  |
| DOMINIC         2-35         35-6N-13E         HARTSHORNE         SOUTH         149,749         31         1993/12         2003/09         IC-2           LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1979/02         IC-2           LEFLORE         1.36         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1979/02         IC-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DOMINIC NE NW SW      | 1        | 35-6N-13E | HARTSHORNE | SOUTH      | 2,744,814                          | 83                                   | 1965/07         | 2003/09        | IC-2   |  |
| LEFLORE SE SW NW         1         36-6N-13E         HARTSHORNE         SOUTH         831,922         0         1965/07         1979/02         1C-2           LEFLORE         1-36         36-6N-13E         HARTSHORNE         SOUTH         59,148         10         1997/02         203/08         1C-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOMINIC               | 2-35     | 35-6N-13E | HARTSHORNE | SOUTH      | 149,749                            | 31                                   | 1993/12         | 2003/09        | IC-2   |  |
| LEFLORE 1-36 36-6N-13E HARTSHORNE SOUTH 59,148 10 1997/02 2003/08 IC-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEFLORE SE SW NW      | 1        | 36-6N-13E | HARTSHORNE | SOUTH      | 831,922                            | 0                                    | 1965/07         | 1979/02        | IC-2   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEFLORE               | 1-36     | 36-6N-13E | HARTSHORNE |            |                                    |                                      | 1997/02         | 2003/08        | IC-2   |  |

Appendix D: Hartshorne Isopach Values

| Vell                                   | ocation                | Gross Sand U HRSR (GR) | vet Sand U HRSR (>8%/>12%) | let Pay U HRSR (>8%/>12%) | Vet Sand L HRSR (>8%/>12%) | let Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | Vet Sand U HRSR Inc Val<br>⊳8%/>12%) | Vet Pay U HRSR Inc Val<br>⊳8%/>12%) | let Sand L HRSR1 (>8%/>12%) | let Pay L HRSR1 (>8%/>12%) | √et Sand HRSR Undiff<br>>8%/>12%) | √et Pay HRSR Undiff1<br>>8%/>12%) | let Sand L HRSR2 (>8%/>12%) | Vet Pay L HRSR2 (>8%/>12%) |
|----------------------------------------|------------------------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------|----------------------------|
| Wildhorse #1                           | 1-5N-11E               | 0                      | 0                          | 0                         | 7'/3'                      | 7'/3'                     | 8                   | 0                   | 8                   | 0                        | 64                                   | 69                                  |                             | 6                          | 64                                | 64                                |                             | 6                          |
| Oliver #1-3                            | 3-5N-11E               | 0                      |                            | 0                         | 2%                         | 2'/0'                     | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Cities#1                               | 4-5N-11E               | 0                      |                            | _                         |                            | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Lyons #1-6                             | 6-5N-11E               |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Wirick #1<br>S&P 15-7                  | 7-5N-11E<br>7-5N-11E   | 0                      |                            | 0                         | U<br>7'/0'                 | U<br>7'/0'                | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Bivings#1-9                            | 9-5N-11E               | 0                      |                            |                           |                            | 6'/2'                     | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Newby 1-9                              | 9-5N-11E               | Ŭ                      |                            |                           |                            | 571                       | 8                   |                     | 8                   | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Kenny 1-10                             | 10-5N-11E              | Ō                      |                            |                           |                            |                           | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Evans #1                               | 10-5N-11E              | 0                      |                            |                           |                            |                           | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Jones #1                               | 12-5N-11E              | 0                      |                            |                           |                            | 7'/2'                     | 11                  |                     | 11                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Wallace Fargo #1                       | 12-5N-11E              | 0                      |                            |                           |                            | 0                         | <u> </u>            | $\vdash$            |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Stuart 1-13<br>Anderson #1             | 13-5N-11E<br>14-5N-11E | 0                      | 0                          | 0                         | NPLA<br>337/16             | 0                         | 31                  |                     | 31                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Anderson #1<br>Null 1-14               | 14-5N-11E<br>14-5N-11E | 0                      |                            |                           | 33716<br>44'/32'           |                           | 46                  | $\vdash$            | 31<br>46            | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Ellis#1                                | 15-5N-11E              | 0                      |                            |                           |                            | 14'/3'                    | 40                  |                     | τU                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Ellis#1                                | 16-5N-11E              | 0                      |                            |                           |                            | 0                         | 20                  |                     | 20                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Pearson #2                             | 16-5N-11E              | 0                      | 0                          | 0                         | 470                        | 4'/0                      | 1                   |                     | 1                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| McKoy Heirs #2                         | 16-5N-11E              | 0                      |                            |                           |                            | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| McKoy Heirs #1                         | 16-5N-11E              | 0                      |                            |                           |                            | NPLA                      |                     |                     |                     | _                        |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Cathy #1                               | 16-5N-11E              | 0                      |                            |                           |                            | U                         | 25<br>0             |                     | 25                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Bailey #1<br>Artur #1                  | 17-5N-11E<br>19-5N-11E | 0                      | 0                          |                           | 7'/3'<br>7'/2'             | 7'/3'<br>7'/2'            | 21                  |                     | 0<br>21             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Black J #1                             | 20-5N-11E              | 0                      |                            |                           |                            | 8'/0'                     | 10                  |                     | 10                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Mobil #1                               | 20-5N-11E              | Ō                      |                            |                           |                            | 8'/6'                     | 11                  |                     | 11                  | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Patterson #1                           | 21-5N-11E              | 0                      | 0                          | 0                         | NPLA                       | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hickory Hills #1                       | 21-5N-11E              | 0                      |                            |                           |                            |                           | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hickory Hills A #1                     | 21-5N-11E              | 0                      |                            |                           |                            | 6'/1'                     | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Travis P #1                            | 21-5N-11E              | 0                      |                            |                           |                            | 1175                      | 15                  |                     | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Berman 1-22<br>Adams N #1              | 22-5N-11E<br>22-5N-11E | 0                      |                            |                           |                            | 0<br>6'/2'                | 23<br>14            |                     | 23<br>14            | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Martin Unit #1                         | 22-5N-11E              | 0                      |                            | 0                         | 072                        | 072                       | 14                  |                     | 14                  | U                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Duncan #1-A                            | 23-5N-11E              | Ō                      |                            | 0                         | NPLA                       | 0                         |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Duncan Unit #1                         | 23-5N-11E              | 0                      |                            | 0                         |                            | 0                         |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Somerville 2-23                        | 23-5N-11E              | 0                      |                            |                           |                            | 0                         | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Somerville #1                          | 23-5N-11E              | 0                      | 0                          |                           | NPLA                       | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Fern A #1                              | 24-5N-11E              | 0                      |                            |                           |                            | 0                         | 30                  |                     | 30                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Loftis Unit #1<br>Loftis 1-25          | 24-5N-11E<br>25-5N-11E | 0                      |                            |                           |                            | U 0                       | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Loftis #1-25                           | 25-5N-11E              | 0                      | 0                          |                           | >52'/30'                   | 24'/16'                   | 88                  |                     | 88                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Newton 1-25                            | 25-5N-11E              | 0                      |                            |                           | 14'/3'                     | 1473                      | 28                  |                     | 28                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Loftis #1 "O"                          | 26-5N-11E              | 0                      | 0                          | 0                         | NPLA                       | 0                         |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Woodford #1                            | 26-5N-11E              | 0                      |                            |                           |                            | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Lackey #1                              | 27-5N-11E              | 0                      |                            |                           |                            | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Holly B Trimm 1-27                     | 27-5N-11E              | 0                      |                            |                           | 71/21                      | 71/21                     | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Leon Adams 1-27<br>Walker Heirs #1     | 27-5N-11E<br>27-5N-11E | 0                      |                            |                           |                            | 11'/0'<br>NPLA            | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Walker Heirs 27-2                      | 27-5N-11E              | 0                      |                            |                           |                            | 13/2'                     | 18                  |                     | 18                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Herring D-1                            | 28-5N-11E              | Ū                      |                            |                           |                            | NPLA                      | 13                  |                     | 13                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Herring #2                             | 28-5N-11E              | 0                      | 0                          | 0                         | 6'/0'                      | 6'/0'                     | 17                  |                     | 17                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Trimm#1                                | 28-5N-11E              | 0                      |                            |                           |                            | 14'/4'                    | 21                  |                     | 21                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Wilbanks #1                            | 29-5N-11E              | 0                      |                            |                           |                            | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Щ                          |
| Parks Estate 1-29<br>Versen 1-29       | 29-5N-11E<br>29-5N-11E | 0                      |                            |                           |                            | 6'/0'<br>8'/0'            | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Vernon 1-29<br>C.C. Carter #1          | 29-5N-11E<br>30-5N-11E | 0                      |                            |                           |                            | 070                       | 0                   | $\vdash$            | d                   | U                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Derrick 1-30                           | 30-5N-11E              | 0                      |                            |                           | 8'/0'                      | 8'/0'                     | 0                   | $\vdash$            | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Wilbanks 3-30                          | 30-5N-11E              | Ő                      |                            |                           | 8'/3'                      | 8'/3'                     | 10                  |                     | 10                  | Ő                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Huffman 1-32                           | 32-5N-11E              | 0                      | 0                          | 0                         | 12'/9'                     | 12791                     | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Mark 1-32                              | 32-5N-11E              | 0                      |                            | 0                         | NPLA                       | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Norvell 32-1                           | 32-5N-11E              | 0                      |                            |                           | 0.101                      | 0.1101                    |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Ц                          |
| Loftis 33-1                            | 33-5N-11E              | 0                      |                            |                           | 6'/0'                      | 6'/0'                     |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Loftis 1-33 (Formor Op)<br>Martin 1-33 | 33-5N-11E<br>33-5N-11E | 0                      |                            |                           |                            | 1070'<br>1170'            | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Martin 1-33<br>Lackey B Unit #1        | 33-5N-11E<br>34-5N-11E | 0                      |                            |                           |                            | 0                         |                     |                     | 10                  | U                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Lackey Unit #1                         | 34-5N-11E              | 0                      |                            |                           |                            |                           |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Hall E #1                              | 35-5N-11E              | Ū                      |                            |                           |                            | Ö                         |                     |                     | 132                 | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
|                                        | 36-5N-11E              | 0                      |                            |                           |                            | 1072                      | 24                  |                     | 24                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |

| Vell                                                           | ocation                | Gross Sand U HRSR (GR) | let Sand U HRSR (>8%/>12%) | let Pay U HRSR (>8%/>12%) | let Sand L HRSR (>8%/>12%) | let Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | Vet Sand U HRSR Inc Val<br>⊳8%/>12%) | vet Pay U HRSR Inc Val<br>≻8%/>12%) | let Sand L HRSR1 (>8%/>12%) | let Pay L HRSR1 (>8%/>12%) | √et Sand HRSR Undiff<br>>8%/>12%) | vet Pay HRSR Undiff1<br>≻8%/≻12%) | let Sand L HRSR2 (>8%/>12%) | let Pay L HRSR2 (>8%/>12%) |
|----------------------------------------------------------------|------------------------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------|----------------------------|
| ><br>Shirley #1 (Viking Pet)                                   | 36-5N-11E              | 0                      | 0                          | 6                         | 10%                        | 10%                       | 6                   | 0                   | 6                   | 0                        | 20                                   | 20                                  | 6                           |                            | 20                                | 20                                |                             | 6                          |
| Marbet #19                                                     | 1-5N-12E               | 0                      |                            |                           | 6'/0'                      | 6'/0'                     | 17                  |                     | 17                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Sherrill 3-2                                                   | 2-5N-12E               | 0                      |                            | 0                         | 8'/2'                      | 8'/2'                     | 10                  |                     | 10                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Sherrill #1                                                    | 2-5N-12E               | 0                      |                            |                           |                            |                           |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Semeski 1-3                                                    | 3-5N-12E               | 0                      |                            |                           | 26'/3'                     | 2673                      | 18                  |                     | 18                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Everett #1<br>Gwinn 1-5                                        | 3-5N-12E<br>5-5N-12E   | 0                      |                            | 0                         | 14'/3'<br>10'/2'           | 14'/3'<br>10'/2'          | 23<br>8             |                     | 23<br>8             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Thelma Lee 1-6                                                 | 6-5N-12E               | 0                      |                            | 0                         | 1072                       | 1072<br>N                 | 60                  |                     | 60                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Bethel #1                                                      | 9-5N-12E               | Ö                      |                            |                           | 8'/2'                      | 8'/2'                     | 11                  |                     | 11                  | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Bethel #3-9                                                    | 9-5N-12E               | 0                      |                            |                           | 16'/0'                     | 16%                       | 31                  |                     | 31                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Crawford 1-10                                                  | 10-5N-12E              | 0                      |                            | 0                         | 8'/6'                      | 8'/6'                     | 19                  |                     | 19                  | 0                        |                                      |                                     |                             |                            |                                   |                                   | -                           |                            |
| Watkins#1                                                      | 10-5N-12E              | 0                      |                            |                           | 12'/4'                     | 1274                      | 21                  |                     | 21                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Willard 1-10                                                   | 10-5N-12E              | 0                      |                            |                           | 231/21                     | 23'/2'                    | 22                  |                     | 22                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Cooper#1<br>Mapyin #1                                          | 10-5N-12E<br>11-5N-12E | 0                      | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 24<br>8             |                     | 24<br>8             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Marvin #1<br>Orr B #1                                          | 11-5N-12E<br>11-5N-12E | 0                      |                            | NELA                      | NPLA<br>N                  | NPLA<br>N                 | 8<br>20             |                     | 8<br>20             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Marvin #4                                                      | 11-5N-12E              | 0                      |                            |                           | 0                          |                           | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Marvin #5                                                      | 11-5N-12E              | 0                      |                            |                           | 14'/0'                     | 14'/0'                    | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Watt #1                                                        | 12-5N-12E              |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Owen "B" #1                                                    | 12-5N-12E              | 21                     | 0                          | 0                         | 14'/4'                     | 14'/4'                    | 37                  |                     | 37                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Marbet #17                                                     | 12-5N-12E              | 8                      | 0                          | 0                         | 2'/0'                      | 2'/0'                     | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Mcauley #2-14                                                  | 14-5N-12E              |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Valente #1                                                     | 14-5N-12E<br>14-5N-12E | 0                      |                            | NPLA                      | NPLA<br>21/17'             | NPLA<br>21/17'            | 0<br>18             |                     | 0<br>18             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Wageman #1<br>Wilcox 1-15                                      | 14-5N-12E              | U                      | 0                          | U                         | 41/32                      | 41/32'                    | 58                  |                     | 58                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Rheinhart #1                                                   | 15-5N-12E              | -                      | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 30                  |                     | 30                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Vaughn #1                                                      | 15-5N-12E              |                        | 0                          |                           | 6'/0'                      | 6'/0'                     | 8                   |                     | 8                   | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| J.W. Adams #1-16                                               | 16-5N-12E              |                        |                            |                           | 357/21                     | 35721                     | 38                  |                     | 38                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Goode #1                                                       | 16-5N-12E              |                        |                            |                           | 14'/4'                     | 14'/4'                    | 15                  |                     | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Donna #1-16                                                    | 16-5N-12E              |                        |                            |                           | 32'/32'                    | 32'/32'                   | 51                  |                     | 51                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Black 1-16                                                     | 16-5N-12E              |                        |                            |                           | 0                          | 0                         | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Kristy Lee 1-17<br>Brown 1-17                                  | 17-5N-12E<br>17-5N-12E |                        |                            |                           | 17'/8'<br>23'/0'           | 17'/8'<br>23'/0'          | 31<br>0             |                     | 31<br>0             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| John Black G #1                                                | 17-5N-12E              |                        |                            |                           | 2370<br>N                  | 2370<br>N                 | 32                  |                     | 32                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Tag Team Brown 1-17                                            | 17-5N-12E              |                        |                            |                           | 0                          |                           | 27                  |                     | 27                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Black #1                                                       | 20-5N-12E              |                        | 0                          | 0                         | 4'/0'                      | 4'/0'                     | 7                   |                     | 7                   | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Tim #1-20                                                      | 20-5N-12E              |                        |                            |                           | 14%                        | 14'/6'                    | 25                  |                     | 25                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | П                          |
| Gattet 4-21                                                    | 21-5N-12E              |                        | 0                          | 0                         | 6'/2'                      | 6'/2'                     | 10                  |                     | 10                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Jennifer 2-21                                                  | 21-5N-12E              |                        | 0                          | 0                         | 6'/3'                      | 6'/3'                     | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Gattett 3-21?                                                  | 21-5N-12E              |                        | <u> </u>                   |                           | 4.01/01                    | 1.01/01                   | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Ott 4-22                                                       | 22-5N-12E<br>22-5N-12E |                        | <u> </u>                   |                           | 16'/8'<br>18'/2'           | 16'/8'<br>18'/2'          | 22<br>34            |                     | 22<br>34            | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Ott 2-22<br>Loftis #1                                          | 22-5N-12E<br>23-5N-12E |                        | NPLA                       | NPLA                      | 1872<br>NPLA               | 1872<br>NPLA              | 34                  |                     | 34                  | U                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Ossie Morris #1                                                | 23-5N-12E<br>24-5N-12E |                        | INFLA 0                    | INFLA<br>0                | NPLA                       | NPLA                      | 49                  | 74                  | 0                   | 123                      |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| O. Morris 3-24                                                 | 24-5N-12E              |                        | Ö                          | Ö                         | 58'/52'                    | 58'/52'                   | 48                  | 64                  | Ū                   | 112                      |                                      | 207/17                              | 207/17                      | 20717                      |                                   |                                   |                             | Η                          |
| E.E. Working Unit #1                                           | 25-5N-12E              |                        | 0                          |                           | NPLA                       | NPLA                      | 39                  | 57                  | 0                   | 96                       |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Davis Unit #1                                                  | 26-5N-12E              |                        | 0                          |                           | NPLA                       | NPLA                      | 50                  | 75                  | 0                   | 125                      |                                      |                                     |                             |                            |                                   |                                   |                             | Г                          |
| Garrett "A" Unit #1                                            | 27-5N-12E              |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 10                  |                     | 10                  |                          |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Black A #3<br>Black A #5                                       | 27-5N-12E              |                        | NPLA                       | NPLA                      | NPLA<br>30%10'             | NPLA<br>30'/10'           | 12<br>22            |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| A.B. Capp #1                                                   | 27-5N-12E<br>28-5N-12E |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 15                  |                     | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Black 3-28                                                     | 28-5N-12E              |                        | <u> </u>                   |                           | 1878                       | 1878                      | 32                  |                     | 32                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Trimm#1                                                        | 29-5N-12E              |                        | i i                        |                           | 8'/0'                      | 8'/0'                     | 26                  |                     | 26                  | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Hall #1                                                        | 29-5N-12E              |                        |                            |                           | 121/21                     | 12//2'                    | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Rogers 1-30                                                    | 30-5N-12E              |                        |                            |                           | 10%                        | 10%)                      | 38                  |                     | 38                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hall #1                                                        | 31-5N-12E              |                        |                            | NPLA                      | NPLA                       | NPLA                      | 31                  |                     | 31                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Ц                          |
| Bennet Hall #1<br>J.W. Hall Unit #1                            | 32-5N-12E<br>32-5N-12E |                        |                            | NPLA<br>NPLA              | NPLA<br>NPLA               | NPLA<br>NPLA              | 29<br>4             |                     | 29<br>4             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| J.VV. Hall Unit #1<br>Reed #1                                  | 32-5N-12E<br>33-5N-12E |                        | INPLA<br>0                 | INPLA<br>0                | NPLA<br>4'/0'              | NPLA<br>4'/0'             | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Trapp #1-33                                                    | 33-5N-12E              |                        | l                          | - <sup>-</sup>            | 470<br>2%                  | 470<br>2'/0'              | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Trapp Unit #1                                                  | 33-5N-12E              |                        | NPLA                       | NPLA                      | NPLA                       | NPLA                      | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
|                                                                | 34-5N-12E              |                        | 0                          | 0                         | NPLA                       | NPLA                      | 30                  |                     | 30                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Apache Paschall #1                                             |                        |                        |                            |                           |                            | _                         |                     | -                   |                     |                          | _                                    |                                     |                             |                            |                                   | _                                 | _                           |                            |
| Apache Paschall #1<br>Wright-Wood Unit #1                      | 34-5N-12E              |                        |                            |                           |                            |                           | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Apache Paschall #1<br>Wright-Wood Unit #1<br>Davis Paschall #1 | 34-5N-12E<br>34-5N-12E |                        |                            |                           |                            |                           | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Apache Paschall #1<br>Wright-Wood Unit #1                      | 34-5N-12E              |                        | 0                          | 0                         | 84'/55'<br>38'/10'         | 84'/55'<br>38'/10'        |                     | 37<br>38            |                     |                          |                                      | 34'/22'<br>20'/6'                   | 50'/33'<br>18'/4'           | 50'/33'<br>18'/4'          |                                   |                                   |                             |                            |

| Well                                                                                                                                                                                       | Location                                                                                                                                   | Gross Sand U HRSR (GR)     | Net Sand U HRSR (>8%/>12%) | Net Pay U HRSR (>8%/>12%) | Net Sand L HRSR (>8%/>12%)                                                                                  | Net Pay L HRSR (>8%/>12%)                                                                          | Gross Sand (LHRSR1)                                         | Gross Sand (UHRSR1) | Gross Sand (LHRSR2)                                         | Gross Sand (HRSR Undiff) | Net Sand U HRSR Inc Val<br>(>8%/>12%) | Net Pay U HRSR Inc Val<br>(>8%/>12%) | Net Sand L HRSR1 (>8%/>12%) | Net Pay L HRSR1 (>8%/>12%) | Net Sand HRSR Undiff<br>(>8%/>12%) | Net Pay HRSR Undiff1<br>(>8%/>12%) | Net Sand L HRSR2 (>8%/>12%) | Net Pay L HRSR2 (>8%/>12%) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-------------------------------------------------------------|--------------------------|---------------------------------------|--------------------------------------|-----------------------------|----------------------------|------------------------------------|------------------------------------|-----------------------------|----------------------------|
| Watkins#2                                                                                                                                                                                  | 2-5N-13E                                                                                                                                   | 0                          |                            | 370                       | 1701                                                                                                        | 1701                                                                                               | 6                                                           |                     | 6                                                           | 6                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Food #2                                                                                                                                                                                    | 3-5N-13E                                                                                                                                   | 36                         |                            |                           | 44'/14'                                                                                                     | 44'/14'                                                                                            | 18                                                          | 56                  | 0                                                           | 74                       |                                       | 34'/14'                              | 10'/0'                      | 10%                        |                                    |                                    |                             |                            |
| Food Unit #1<br>Peters #1                                                                                                                                                                  | 3-5N-13E<br>3-5N-13E                                                                                                                       | ngr                        | 0                          | 0                         | NPLA                                                                                                        | NPLA                                                                                               | 60<br>34                                                    | 40                  | 0                                                           | 100<br>34                |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Gibson-Lindsey Unit #1                                                                                                                                                                     | 4-5N-13E                                                                                                                                   |                            |                            | 0                         | NPLA                                                                                                        | NPLA                                                                                               | 87                                                          | 43                  | Ō                                                           | 130                      |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Thornton #1                                                                                                                                                                                | 5-5N-13E                                                                                                                                   |                            | 0                          |                           |                                                                                                             | 52'/14'                                                                                            |                                                             | 78                  | 0                                                           | 78                       |                                       | 52'/14'                              | NDE                         | NDE                        |                                    |                                    |                             |                            |
| Stipe #1-6                                                                                                                                                                                 | 6-5N-13E                                                                                                                                   | 5                          | 1701                       | 0                         |                                                                                                             | 11/4                                                                                               | 2                                                           |                     | 2                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Stipe #1<br>Reynolds #1                                                                                                                                                                    | 6-5N-13E<br>7-5N-13E                                                                                                                       |                            |                            |                           |                                                                                                             | 4'/0'<br>92'/55'                                                                                   | 12<br>104                                                   | 48                  | 12<br>0                                                     | 0<br>152                 |                                       | 28'/17'                              | 64'/38'                     | 64'/38'                    |                                    |                                    |                             | $\vdash$                   |
| Firestone Unit #1                                                                                                                                                                          | 7-5N-13E                                                                                                                                   |                            |                            |                           |                                                                                                             | 48'/14'                                                                                            | 104                                                         | 58                  | 0                                                           | 58                       |                                       | 48'/14'                              | NDE                         | NDE                        |                                    |                                    |                             | $\square$                  |
| Buse 1                                                                                                                                                                                     | 8-5N-13E                                                                                                                                   |                            | 0                          | 0                         | NPLA                                                                                                        | NPLA                                                                                               | 8                                                           | 92                  | 0                                                           | 100                      |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| W.C. Wallace Unit #1                                                                                                                                                                       | 9-5N-13E                                                                                                                                   |                            | 0                          |                           | 68'/18'                                                                                                     | 68'/18'                                                                                            | 32                                                          | 52                  | 0                                                           | 84                       |                                       | 42'/11'                              | 26'/7'                      | 26'/7'                     |                                    |                                    |                             |                            |
| Wallance #2                                                                                                                                                                                | 9-5N-13E                                                                                                                                   |                            | 0                          |                           | 48'/6'                                                                                                      | 48%                                                                                                | 49                                                          | 39                  | 0                                                           | 88                       |                                       | 26'/4'                               | 22'/2'                      | 22'/2'                     |                                    |                                    |                             | $\square$                  |
| Winnie #1<br>Gibson 1-10                                                                                                                                                                   | 10-5N-13E<br>10-5N-13E                                                                                                                     |                            |                            |                           |                                                                                                             | 28'/0'<br>3'/0'                                                                                    | 2                                                           | 26                  | 0                                                           | 28<br>0                  |                                       | 26'/0'                               | 2'/0'                       | 2'/0'                      |                                    |                                    |                             | $\vdash$                   |
| Grant 1-10                                                                                                                                                                                 | 10-5N-13E                                                                                                                                  |                            |                            |                           | 0                                                                                                           | 0,0                                                                                                | 9                                                           |                     | 9                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Watkins #1                                                                                                                                                                                 | 11-5N-13E                                                                                                                                  |                            | 2'/0'                      | 2'/0'                     | 20%                                                                                                         | 20%0'                                                                                              | 41                                                          |                     | 41                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Core Energy Watkins #1                                                                                                                                                                     | 12-5N-13E                                                                                                                                  |                            | 0                          |                           |                                                                                                             | 12'/0'                                                                                             | 32                                                          |                     | 32                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Watson #1                                                                                                                                                                                  | 13-5N-13E                                                                                                                                  |                            | NPLA                       | NPLA                      | NPLA                                                                                                        | NPLA                                                                                               | 65                                                          |                     | 65                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Glennie #1-13<br>Field Heirs #1                                                                                                                                                            | 13-5N-13E<br>13-5N-12E                                                                                                                     | ngr                        |                            |                           |                                                                                                             | 12'/2'<br>NPLA                                                                                     | 15<br>14                                                    | 51                  | 15<br>14                                                    | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Sandra #1-13                                                                                                                                                                               | 13-5N-13E                                                                                                                                  | ngi                        | <u> </u>                   | -                         |                                                                                                             |                                                                                                    | 14                                                          | 01                  | 14                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Ramsey #1                                                                                                                                                                                  | 14-5N-13E                                                                                                                                  |                            | 0                          | 0                         | 7 '/0'                                                                                                      | 7'/0'                                                                                              | 21                                                          |                     | 21                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Marbet #31                                                                                                                                                                                 | 14-5N-13E                                                                                                                                  |                            | 0                          | 0                         | 2'/0'                                                                                                       | 2'/0'                                                                                              | 21                                                          |                     | 21                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Watkins 114                                                                                                                                                                                | 14-5N-13E                                                                                                                                  |                            | 3'/3'                      | 3'/3'                     | 12'/4'                                                                                                      | 12'/4'                                                                                             | 17                                                          |                     | 17                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Mason 1-15<br>Investors Royalty                                                                                                                                                            | 15-5N-13E<br>15-5N-13E                                                                                                                     |                            | NPLA<br>2'/0'              | NPLA<br>0                 | NPLA<br>14'/3'                                                                                              | NPLA<br>14'/3'                                                                                     | 28<br>44                                                    |                     | 28<br>44                                                    | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Eggleston 1-15                                                                                                                                                                             | 15-5N-13E                                                                                                                                  |                            | 270                        |                           |                                                                                                             | 22/2                                                                                               | 21                                                          |                     | 21                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Marbet #37                                                                                                                                                                                 | 15-5N-13E                                                                                                                                  |                            |                            |                           | 6'/0'                                                                                                       | 6'/0'                                                                                              | 29                                                          |                     | 29                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| L.W. Chandler #1-1                                                                                                                                                                         | 16-5N-13E                                                                                                                                  |                            | 0                          |                           |                                                                                                             | 4'/0'                                                                                              | 13                                                          |                     | 13                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| W.P. Rock #2                                                                                                                                                                               | 17-5N-13E                                                                                                                                  |                            | 0                          |                           |                                                                                                             | 56'/15'                                                                                            | 65                                                          | 45                  | 65                                                          | 110                      |                                       | 30'/8'                               | 26'/7'                      | 26'/7'                     | NOD                                |                                    |                             | $\square$                  |
| W.P. Rock #1<br>Robbins Unit #1                                                                                                                                                            | 17-5N-13E<br>18-5N-13E                                                                                                                     |                            |                            |                           | NPLA                                                                                                        | NPLA                                                                                               | 62                                                          | 92                  | 0                                                           | 154                      |                                       |                                      |                             |                            | NGR                                |                                    |                             | $\vdash$                   |
| Hazelwood #1                                                                                                                                                                               | 19-5N-13E                                                                                                                                  |                            | <u> </u>                   | <u> </u>                  |                                                                                                             |                                                                                                    | 4                                                           | 02                  | 4                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Crawley #1-21                                                                                                                                                                              | 21-5N-13E                                                                                                                                  |                            | 0                          | 0                         | 7'/0'                                                                                                       | 7 '/0'                                                                                             | 52                                                          |                     | 52                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Virgil 1-22                                                                                                                                                                                | 22-5N-13E                                                                                                                                  |                            | 0                          |                           |                                                                                                             | 8'/0'                                                                                              | 21                                                          |                     | 21                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Marbet #25                                                                                                                                                                                 | 23-5N-13E                                                                                                                                  |                            | 2'/0'                      | 2'/0'                     | 14'/8'                                                                                                      | 14%                                                                                                | 40                                                          |                     | 4.0                                                         |                          |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Marbet #32<br>Deer Creek #1                                                                                                                                                                | 23-5N-13E<br>24-5N-13E                                                                                                                     |                            | 1'/0'                      | 1'/0'                     | 13'/2'<br>24'/10'                                                                                           | 13'/2'<br>24'/10'                                                                                  | 19<br>38                                                    |                     | 19<br>38                                                    | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $ \square$                 |
| Parks 1                                                                                                                                                                                    | 1-6N-10E                                                                                                                                   |                            | 170                        | 170                       | 4'/3'                                                                                                       | 4'/3'                                                                                              | 6                                                           |                     | 6                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Parks 2                                                                                                                                                                                    | 1-6N-10E                                                                                                                                   | 0                          |                            |                           | 2'/0'                                                                                                       | 2 '/0'                                                                                             | 0                                                           |                     | 0                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Lytal #1                                                                                                                                                                                   | 11-6N-10E                                                                                                                                  | 0                          |                            |                           | 1701                                                                                                        | 170                                                                                                | 3                                                           |                     | 3                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Degraffenried #1                                                                                                                                                                           | 12-6N-10E<br>13-6N-10E                                                                                                                     | 0                          |                            |                           | 6'/0'                                                                                                       | 6'/0'                                                                                              | 3                                                           |                     | 3                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Cecil Gumm<br>Warren 1                                                                                                                                                                     | 4-6N-11E                                                                                                                                   | 0                          | 0                          | 0                         | 670'<br>570'                                                                                                | 670°<br>570'                                                                                       | 8                                                           |                     | 8                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Eckles 1-5                                                                                                                                                                                 | 5-6N-11E                                                                                                                                   | 0                          | 0                          |                           |                                                                                                             | 8'/7'                                                                                              | 9                                                           |                     | 9                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Walter 1-5                                                                                                                                                                                 | 5-6N-11E                                                                                                                                   | 0                          |                            |                           | 6'/2'                                                                                                       | 6'/2'                                                                                              | 10                                                          |                     | 10                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Boyd #1                                                                                                                                                                                    | 7-6N-11E                                                                                                                                   | 0                          |                            |                           |                                                                                                             |                                                                                                    | 10                                                          |                     | 19                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Herrod #1<br>Boyd 2                                                                                                                                                                        | 7-6N-11E<br>7-6N-11E                                                                                                                       | 0                          |                            |                           | 4'/0'                                                                                                       | 4'/0'                                                                                              | 19<br>3                                                     |                     | 19<br>3                                                     | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
|                                                                                                                                                                                            | 9-6N-11E                                                                                                                                   | 0                          |                            |                           | 17/12                                                                                                       | 17/12                                                                                              | 18                                                          |                     | 18                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | Η                          |
| Black #2                                                                                                                                                                                   |                                                                                                                                            |                            |                            |                           |                                                                                                             | 6'/0'                                                                                              | 4                                                           |                     | 4                                                           | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1                                                                                                                                                                       | 9-6N-11E                                                                                                                                   | 0                          |                            |                           |                                                                                                             |                                                                                                    |                                                             |                     | 30                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4                                                                                                                                                            | 9-6N-11E                                                                                                                                   | 0                          | 0                          | 0                         | 23714                                                                                                       | 23'/14'                                                                                            | 30                                                          |                     |                                                             |                          |                                       |                                      |                             |                            |                                    |                                    |                             | —                          |
| Black #2<br>Black #1<br>Black 4<br>Black #3                                                                                                                                                | 9-6N-11E<br>10-6N-11E                                                                                                                      | 0                          | 0                          | 0                         | 23'/14'<br>18'/16'                                                                                          | 23'/14'<br>18'/16'                                                                                 | 18                                                          |                     | 18                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Black #2<br>Black #1<br>Black 4<br>Black #3<br>Gayler 1-10                                                                                                                                 | 9-6N-11E<br>10-6N-11E<br>10-6N-11E                                                                                                         | 0<br>0<br>0                | 0                          | 0                         | 23'/14'<br>18'/16'<br>28'/22'                                                                               | 23'/14'<br>18'/16'<br>28'/22'                                                                      | 18<br>31                                                    |                     | 18<br>31                                                    | 0<br>0                   |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black #3                                                                                                                                                | 9-6N-11E<br>10-6N-11E                                                                                                                      | 0                          |                            |                           | 23'/14'<br>18'/16'                                                                                          | 23'/14'<br>18'/16'                                                                                 | 18                                                          |                     | 18                                                          | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11                                                                                    | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E                                                                  | 0<br>0<br>0<br>0           |                            |                           | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'                                                | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'                                       | 18<br>31<br>20<br>16<br>22                                  |                     | 18<br>31<br>20<br>16<br>22                                  | 0 0 0 0 0                |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11<br>Gill 1                                                                          | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E                                                     |                            |                            |                           | 23/14'<br>18/16'<br>28/22'<br>17/12'<br>10/6'<br>11/7'<br>NPLA                                              | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA                               | 18<br>31<br>20<br>16<br>22<br>3                             |                     | 18<br>31<br>20<br>16<br>22<br>3                             |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11<br>Gill 1<br>Blevins 1-12                                               | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E<br>12-6N-11E                                        | 0<br>0<br>0<br>0<br>0      |                            |                           | 23/14'<br>18/16'<br>28/22'<br>17/12'<br>10/6'<br>11'/7'<br>NPLA<br>0                                        | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'                                       | 18<br>31<br>20<br>16<br>22<br>3<br>3                        |                     | 18<br>31<br>20<br>16<br>22<br>3<br>3                        |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11<br>Gill 1<br>Blevins 1-12<br>Ballinger 1-13                             | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E                                                     |                            |                            |                           | 23/14'<br>18/16'<br>28/22'<br>17/12'<br>10/6'<br>11/7'<br>NPLA<br>0                                         | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA<br>0                          | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>13                  |                     | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>3<br>13             |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11<br>Gill 1<br>Blevins 1-12                                               | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E<br>12-6N-11E<br>13-6N-11E<br>13-6N-11E<br>13-6N-11E              | 0<br>0<br>0<br>0<br>0<br>0 |                            |                           | 23/14'<br>18/16'<br>28/22'<br>17/12'<br>10/6'<br>11/7'<br>NPLA<br>0<br>17//12'                              | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA                               | 18<br>31<br>20<br>16<br>22<br>3<br>3                        |                     | 18<br>31<br>20<br>16<br>22<br>3<br>3                        |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Hill 1-11<br>Gill 1<br>Blailinger 1-13<br>Ballinger 1-13<br>Ballinger 4-13<br>Blevins 1-13-C | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E<br>13-6N-11E<br>13-6N-11E<br>13-6N-11E<br>13-6N-11E |                            |                            |                           | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA<br>0<br>17'/12'<br>0<br>2'/0'          | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA<br>0<br>17'/12'<br>0<br>2'/0' | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>13<br>26<br>14<br>5 |                     | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>13<br>26<br>14<br>5 |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Black #2<br>Black #1<br>Black 4<br>Black 4<br>Black #3<br>Gayler 1-10<br>Geneva 1-10<br>McDonald 1-10<br>Mill 1-11<br>Blevins 1-12<br>Ballinger 1-13<br>Ballinger 4-13                     | 9-6N-11E<br>10-6N-11E<br>10-6N-11E<br>10-6N-11E<br>11-6N-11E<br>12-6N-11E<br>12-6N-11E<br>13-6N-11E<br>13-6N-11E<br>13-6N-11E              |                            |                            |                           | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA<br>0<br>17'/12'<br>0<br>2'/0'<br>3'/1' | 23'/14'<br>18'/16'<br>28'/22'<br>17'/12'<br>10'/6'<br>11'/7'<br>NPLA<br>0<br>17'/12'<br>0          | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>13<br>26<br>14      |                     | 18<br>31<br>20<br>16<br>22<br>3<br>3<br>13<br>26<br>14      |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |

| Vell                             | ocation                | Gross Sand U HRSR (GR) | let Sand U HRSR (>8%/>12%) | let Pay U HRSR (>8%/>12%) | let Sand L HRSR (>8%/>12%) | let Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | Vet Sand U HRSR Inc Val<br>⊳8%/>12%) | Vet Pay U HRSR Inc Val<br>⊳8%/>12%) | let Sand L HRSR1 (>8%/>12%) | det Pay L HRSR1 (>8%/>12%) | √et Sand HRSR Undiff<br>>8%/>12%) | √et Pay HRSR Undiff1<br>>8%/>12%) | let Sand L HRSR2 (>8%/>12%) | Vet Pay L HRSR2 (>8%/>12%) |
|----------------------------------|------------------------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------|----------------------------|
| Hill 2-15                        | 15-6N-11E              | 0                      | 0                          | - 0                       | 7'/0'                      | 7'/0'                     | 11                  | 0                   | 11                  | 0                        | 64                                   | 69                                  |                             | 6                          | 29                                | 64                                |                             | 6                          |
| Smoker 1-17                      | 17-6N-11E              | 0                      |                            |                           | 5'/2'                      | 5'/2'                     | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Aldridge 1-18                    | 18-6N-11E              | 0                      | 0                          |                           | 0                          | -                         | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Nail 1-18                        | 18-6N-11E              | 0                      | 0                          | 0                         |                            | 471                       | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Rahhal A-1<br>Smoke 1-18         | 18-6N-11E<br>18-6N-11E | 0                      | 0                          | 0                         | 6'/0'<br>3'/0'             | 6'/0'<br>3'/0'            | 16<br>9             |                     | 16<br>9             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Ellen 1-19                       | 19-6N-11E              | 0                      | 0                          |                           | 570                        | 5'/0'                     | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Blaylock 1-19                    | 19-6N-11E              | Ū                      | Ŭ                          |                           | 6'/4'                      | 6'/4'                     | 5                   |                     | 5                   | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Little 1-19                      | 19-6N-11E              | 0                      | 0                          | 0                         | 5'/2'                      | 5'/2'                     | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Robertson 1-19                   | 19-6N-11E              | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 1                   |                     | 1                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Roland 1-20<br>Rioving 'R' 1-24  | 20-6N-11E<br>24-6N-11E | 0                      | 0                          | 0                         | 7'/4'<br>3'/1'             | 7'/4'<br>3'/1'            | 11<br>0             | $\vdash$            | 11<br>0             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Blevins 'B' 1-24<br>Smith 1-28   | 24-6N-11E<br>28-6N-11E | U<br>0                 | 0                          |                           | 371'<br>8'/0'              | 371'<br>870'              | 0                   | $\vdash$            | 0                   | U<br>O                   |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Vernon Smith 1-28                | 28-6N-11E              | 0                      | 0                          | 0                         | 2'/0'                      | 2'/0'                     | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| McKee 1-29                       | 29-6N-11E              | 0                      | 0                          | 0                         | 2,0                        | 0                         | 2                   |                     | 2                   | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Derrick 1-29                     | 29-6N-11E              | 0                      | 0                          |                           | 0                          | 0                         | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Lindley 1-30                     | 30-6N-11E              | 0                      | 0                          |                           |                            | 8'/4'                     | 8                   | $\square$           | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Lindley 2-30<br>McKee 3-32       | 30-6N-11E<br>32-6N-11E | 0                      | 0                          | 0                         | 0<br>6'/1'                 | U<br>6'/1'                | 0<br>4              |                     | 0<br>4              | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Richardson 1                     | 33-6N-11E              | 0                      | 0                          | 0                         | 071                        | 071                       | 4                   |                     | 4                   | U                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Blevins 1-7                      | 7-6N-12E               | Ŭ                      | 0                          | 0                         | 4'/0'                      | 4'/0'                     | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Hilseweck 1-8                    | 8-6N-12E               | 0                      | 0                          | 0                         | 7'/2'                      | 7'/2'                     | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hilseweck 2-8                    | 8-6N-12E               | 0                      | 0                          | 0                         | 6'/2'                      | 8'/2'                     | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hilseweck 1-9                    | 9-6N-12E<br>11-6N-12E  | 0                      | 0                          | 0                         | 772'                       | 7'/2'<br>NPLA             | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Garrett 1-11<br>Loftis 1-13      | 13-6N-12E              | U<br>0                 | 0                          |                           | NPLA<br>3'/0'              | NPLA<br>3'/0'             | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Hilseweck 1-15                   | 15-6N-12E              | Ū                      | Ő                          |                           | 5'/0'                      | 5'/0'                     | 5                   |                     | 5                   | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Hilsewck 1-16                    | 16-6N-12E              | 0                      | 0                          | 0                         | 6'/0'                      | 6'/0'                     | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hilseweck 2-17                   | 17-6N-12E              | 0                      | 0                          |                           | 24'/16'                    | 24'/16'                   | 35                  |                     | 35                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hilseweck 3-17<br>Blevins 1-18   | 17-6N-12E<br>18-6N-12E | 0                      | 0                          |                           | 6'/0'<br>12'/6'            | 6'/0'<br>12'/6'           | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Blevins 2-18                     | 18-6N-12E              | 0                      | 0                          |                           | 34'/30'                    | 34'/30'                   | 42                  |                     | 42                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Blevins 9-18                     | 18-6N-12E              | Ū                      | 0                          |                           | 21'/4'                     | 2174                      | 44                  |                     | 44                  | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Blevins 1-19                     | 19-6N-12E              | 0                      | 0                          |                           | NDE                        |                           |                     |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Hilseweck 1-20                   | 20-6N-12E              | 0                      | 0                          | 0                         | 24'/6'                     | 24'/6'                    | 41                  |                     | 41                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Hilseweck 3-20<br>Hilseweck 5-21 | 20-6N-12E<br>21-6N-12E | 0                      | 0                          | 0                         | 7'/4'<br>2'/0'             | 2'/0'                     | 21                  |                     | 21                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Hilseweck Ranch 1-21             | 21-6N-12E              | 0                      | 0                          | 0                         | 24/17                      | 2,0                       | 34                  |                     | 34                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| William G. Jones #1              | 22-6N-12E              | 0                      | 0                          |                           | NPLA                       | NPLA                      | 95                  |                     | 95                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Lubell 1-23                      | 23-6N-12E              | 0                      | 0                          | 0                         | 28'/12'                    | 0                         | 56                  |                     | 56                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Smalley 1                        | 26-6N-12E              | 0                      | 0                          |                           | NPLA                       | NPLA                      | 0                   | $\vdash$            | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Hilseweck 1-29<br>Durant 1-1     | 29-6N-12E<br>1-6N-13E  | 0                      | 0                          |                           | NPLA                       | NPLA                      | 74                  | $\vdash$            | 74                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Ashley 1-1                       | 1-6N-13E               | 0                      | 0                          |                           | 62718                      | 0                         | 102                 |                     | 102                 | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| McKay 1-1                        | 1-6N-13E               |                        | 0                          | 0                         | 17'/4'                     | 17'/4'                    | 35                  |                     | 35                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Brown Estate 1-2                 | 2-6N-13E               |                        | 0                          | 0                         | 57'/28'                    | 0                         | 86                  |                     | 86                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Г                          |
| Carter 1-2<br>Jaynelle #1        | 2-6N-13E<br>3-6N-13E   | 0                      | 0                          |                           |                            | 35'/34'<br>0              | 145<br>105          | $\vdash$            | 145<br>105          | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Holt J #2                        | 3-6N-13E               |                        | 0                          |                           | 92'/82'                    | 0<br>51/46'               | 148                 |                     | 148                 | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Holt J #1                        | 3-6N-13E               | 0                      | Ő                          | Ŭ                         | 122//114                   | 56'/56'                   | 174                 |                     | 174                 | Ő                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Holt 1-4                         | 4-6N-13E               |                        | 0                          | 0                         |                            | 28'24'                    | 121                 |                     | 121                 | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Jessie 1-5                       | 5-6N-13E               |                        |                            |                           |                            |                           |                     | Ц                   | 9.4                 |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Gillin #1<br>Capps Day 1-8       | 6-6N-13E<br>8-6N-13E   |                        | 0                          | 0                         | 73'/44'                    | 0                         | 34<br>140           | $\vdash$            | 34<br>140           | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Arpoika #1-9                     | 9-6N-13E               |                        |                            |                           | . 3/44                     | <u> </u>                  | 140                 | $\square$           | 140                 |                          |                                      |                                     |                             |                            |                                   |                                   |                             | ⊢                          |
| Banks Estate #1                  | 10-6N-13E              |                        | 0                          |                           | 16%                        | 1670                      | 19                  |                     | 19                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Minter #1-10                     | 10-6N-13E              |                        | 0                          | 0                         | 22'/3'                     | 22'/3'                    | 37                  |                     | 37                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Menefee #1                       | 11-6N-13E              |                        |                            |                           | 41001                      | 41/01                     |                     | $\square$           |                     |                          |                                      |                                     |                             |                            |                                   |                                   |                             | Ш                          |
| Minter #2-11<br>Warren #1-11     | 11-6N-13E<br>11-6N-13E |                        | 0                          | 0                         |                            | 4'/0'<br>24'/8'           | 4<br>34             | $\vdash$            | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| J.N. Miller #1 (12)              | 12-6N-13E              |                        | 0                          |                           |                            | 2478<br>NPLA              | 34<br>44            | $\vdash$            | 34<br>44            | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| J.N. Miller #2-12                | 12-6N-13E              |                        | 0                          |                           | 7'/2'                      | 7'/2'                     | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| McAlester #1                     | 12-6N-13E              |                        | 0                          | 0                         | 1370'                      | 1370'                     | 19                  |                     | 19                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Bryant #1                        | 13-6N-13E              |                        | 0                          | 0                         | 0                          | 0                         | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Miller "AG" #1<br>Sittel #1-13   | 13-6N-13E<br>13-6N-13E | 0                      | 0                          | 0                         | 18'/0'                     | 18%                       | 32<br>37            | $\vdash$            | 32<br>37            | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
|                                  |                        | 0                      | 0                          |                           | NPLA                       | NPLA                      | 20                  |                     | 20                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | -                          |

| Vell                                  | Location               | Gross Sand U HRSR (GR) | Net Sand U HRSR (>8%/>12%) | Net Pay U HRSR (>8%/>12%) | Net Sand L HRSR (>8%/>12%) | Net Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | Net Sand U HRSR Inc Val<br>(>8%/>12%) | Net Pay U HRSR Inc Val<br>(>8%/>12%) | Net Sand L HRSR1 (>8%/>12%) | Net Pay L HRSR1 (>8%/>12%) | Net Sand HRSR Undiff<br>(>8%/>12%) | Net Pay HRSR Undiff1<br>(>8%/>12%) | Net Sand L HRSR2 (>8%/>12%) | Net Pay L HRSR2 (>8%/>12%) |
|---------------------------------------|------------------------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|---------------------------------------|--------------------------------------|-----------------------------|----------------------------|------------------------------------|------------------------------------|-----------------------------|----------------------------|
| Gaddy 1-15                            | 15-6N-13E              |                        |                            |                           |                            |                           |                     |                     | _                   |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Phoebe #2<br>Phoebe #1                | 23-6N-13E<br>23-6N-13E |                        | 0                          | 0                         | 0<br>5'/0'                 | 0<br>5'/0'                | 2                   |                     | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Crawford 1-24                         | 23-6N-13E              | 0                      | 0                          | 0                         | 24/5                       | 2475                      | 12                  | 52                  | 0                   | 64                       |                                       | 0                                    |                             |                            |                                    |                                    |                             |                            |
| Powell 1-24                           | 24-6N-13E              | 8                      | 0                          |                           |                            | 1173                      | 17                  |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Leo #1                                | 25-6N-13E              |                        | 0                          |                           | 46'/0'                     | 46'/0'                    | 66                  | 36                  | 0                   | 102                      |                                       | 22'/0'                               | 24'/0'                      | 24'/0'                     |                                    |                                    |                             |                            |
| Frank Blevins Unit #1<br>Gray #1      | 25-6N-13E<br>26-6N-13E |                        | 0                          | 0                         | 48'/18'<br>55'/4'          | 48'/18'<br>55'/4'         | 72                  | 26<br>26            | 0                   | 98<br>147                |                                       | 14'/6'<br>0                          | 34'/12'<br>72'/23'          | 34'/12'<br>72'/23'         |                                    |                                    |                             | +                          |
| Archer Unit #1                        | 20-0N-13E              |                        | 0                          | 0                         | NPLA                       | NPLA                      | 34                  | 73                  | 0                   | 147                      |                                       | U                                    | 12123                       | 12123                      |                                    |                                    |                             |                            |
| Gleese 1-27                           | 27-6N-13E              |                        | 0                          | 0                         | 5'/0'                      | 5'/0'                     | 12                  |                     | 12                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Steed 27-1                            | 27-6N-13E              |                        | 0                          |                           | 6'/0'                      | 6'/0'                     | 0                   | 8                   | 0                   | 8                        |                                       | 6'/0'                                | 0                           | 0                          |                                    |                                    |                             |                            |
| Gleese A #1-28<br>Erangia 1, 28 (112) | 28-6N-13E              |                        | 0                          |                           |                            | 10%                       | 8                   | $\vdash$            | 8                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Francis 1-29 (11?)<br>West #2         | 29-6N-13E<br>29-6N-13E |                        |                            |                           | 19%                        | 1976                      | 11                  |                     | 11                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| Roberts #1                            | 31-6N-13E              |                        | 0                          | 0                         | 2'/0'                      | 2'/0'                     | 2                   |                     | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| White #1-31                           | 31-6N-13E              |                        | 0                          | 0                         | 0                          | 0                         | 6                   |                     | 6                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Gleese Unit #1                        | 33-6N-13E              |                        | 0                          | 0                         |                            | NPLA                      |                     |                     |                     |                          |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Buddy #1-X<br>Hunt Garret Unit #1     | 34-6N-13E<br>34-6N-13E |                        | 0                          | 0                         | NPLA<br>NPLA               | NPLA<br>NPLA              | 92                  | 62                  | 0                   | 154                      |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Dominic Unit #1                       | 35-6N-13E              |                        | 0                          | 0                         |                            | NPLA                      | 92<br>68            | 92                  | 0                   | 160                      |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| LeFlore #1                            | 36-6N-13E              |                        | 0                          | 0                         |                            | NPLA                      |                     | 73                  | Ō                   | 73                       |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| LeFlore 1-36                          | 36-6N-13E              |                        | 0                          | 0                         |                            |                           |                     | _                   | _                   |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Engleman 1-36<br>Howell #1            | 36-6N-13E<br>36-6N-13E | 26                     |                            |                           |                            |                           | 8                   | 8<br>24             | 0                   | 16<br>24                 |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| Kleine Unit #1                        | 1-7N-11E               | 20                     | 0                          | 0                         | NPLA                       | NPLA                      | 12                  | 24                  | 12                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| Bob #1                                | 1-7N-11E               | Ū                      | 0                          |                           |                            | 1 '/0'                    | 6                   |                     | 6                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Jeremy D #1                           | 1-7N-11E               | 0                      | 0                          |                           |                            | 9'/8'                     | 8                   |                     | 8                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| West Unit #1<br>Eckles Unit 1         | 1-7N-11E<br>2-7N-11E   | 0                      | 0                          | 0                         | NPLA<br>NPLA               | NPLA<br>NPLA              | 12<br>0             |                     | 12<br>0             | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| Huff 1-2                              | 2-7N-11E               | 0                      | 0                          | 0                         | NI LA O                    |                           | 0                   |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| George #1                             | 2-7N-11E               | 0                      |                            |                           | 1 70'                      | 1'/0'                     | 0                   |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| D. Harris#1                           | 3-7N-11E               | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 1                   |                     | 1                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Cowart #1<br>Nancy Harjo 1            | 3-7N-11E<br>4-7N-11E   | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 6<br>6              |                     | 6<br>6              | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | -                          |
| Sarah #1-4                            | 4-7N-11E               | 0                      | 0                          |                           |                            | NPLA                      | 2                   |                     | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| Thompson 1                            | 4-7N-11E               | Ū                      | Ū.                         |                           |                            | NPLA                      | Ũ                   |                     | 0                   | Ũ                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Lee Epps #1                           | 4-7N-11E               | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 6                   |                     | 6                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Turner 1                              | 5-7N-11E               | 0                      | 0                          | 0                         |                            | NPLA                      | 0                   |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Turner Ranch 1<br>Oliver 1            | 5-7N-11E<br>6-7N-11E   | 0                      | 0                          | 0                         | 7'/4'<br>NPLA              | 7'/4'<br>NPLA             | 7                   |                     | 7                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | +                          |
| George Turner 2                       | 6-7N-11E               | 0                      |                            |                           | 571'                       | 571'                      | 8                   |                     | 8                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| B. Bear 1                             | 6-7N-11E               | 0                      | 0                          | 0                         | 5'/3'                      | 5'/3'                     | 9                   |                     | 9                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Turner 5                              | 6-7N-11E               | 0                      |                            |                           | 8'/4'                      | 8'/4'                     | 6                   |                     | 6                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Lankford 3<br>Thomas 1                | 7-7N-11E<br>7-7N-11E   | 0                      |                            |                           | 0<br>3'/0'                 | 0<br>3'/0'                | 2                   |                     | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Lankford 2                            | 7-7N-11E               | 0                      |                            |                           | 371                        | 371                       | 2                   |                     | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Lee 1                                 | 7-7N-11E               | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 1                   |                     | 1                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| George 7-1<br>Vereeleeki #1           | 7-7N-11E               | 0                      | 0                          |                           | NPLA                       | NPLA                      | 0                   | $\square$           | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Yaroslaski #1<br>Turner               | 8-7N-11E<br>8-7N-11E   | 0                      | 0                          |                           | 2'/0'<br>N                 | 2'/0'<br>N                | 2                   | $\vdash$            | 2                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Welch 1-8                             | 8-7N-11E               | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 0                   |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Lamar Mt. #1                          | 9-7N-11E               | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 0                   |                     | 0                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Baca #1-10                            | 10-7N-11E              | 0                      |                            |                           | 8'/8'                      |                           | 14                  |                     | 14                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Freeman 1<br>Miller #1                | 11-7N-11E<br>11-7N-11E | 0                      | 0                          |                           |                            | NPLA<br>0                 | 5<br>17             | $\vdash$            | 5<br>17             | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Upchurch #1                           | 11-7N-11E              | 0                      | 0                          |                           |                            | 0                         |                     |                     | 14                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | H                          |
| Beck #1                               | 12-7N-11E              | 0                      |                            |                           | 973                        | 9'/3'                     | 9                   |                     | 9                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Follansbee #2                         | 12-7N-11E              | 0                      | 0                          |                           |                            | 17/17                     | 17                  |                     | 17                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| M.B. White #1<br>White #13-1          | 13-7N-11E<br>13-7N-11E | 0                      | 0                          |                           | 3'/2'<br>12'/9'            | 3'/2'<br>12'/9'           | 5<br>18             |                     | 5<br>18             | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\vdash$                   |
| Vvnite #13-1<br>Neal #1-14            | 13-7N-11E<br>14-7N-11E | U<br>0                 |                            | 0                         | 1279°<br>6'/0'             | 1279<br>670               | 18                  |                     | 9                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | H                          |
| Neal #2                               | 14-7N-11E              | 0                      | 0                          |                           | 8'/4'                      | 8'/4'                     | 6                   |                     | 6                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Lamar #15                             | 15-7N-11E              | 0                      | 0                          | 0                         |                            | 0                         | 8                   |                     | 8                   | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             |                            |
| Anderson #1                           | 16-7N-11E              | 0                      | 0                          | 0                         |                            | 0                         | 14                  |                     | 14                  | 0                        |                                       |                                      |                             |                            |                                    |                                    |                             | $\square$                  |
| Anderson 1-16                         | 16-7N-11E<br>16-7N-11E | 0                      | 0                          | 0                         | 4'/2'<br>7'/0'             | 4'/2'<br>7'/0'            | 8<br>13             | +                   | 8<br>13             | 0                        |                                       |                                      | <u> </u>                    |                            |                                    |                                    |                             | +                          |
| Adamas #1                             |                        |                        |                            |                           |                            |                           |                     |                     |                     |                          |                                       |                                      |                             |                            |                                    |                                    |                             |                            |

| Weil                            | ocation                | Gross Sand U HRSR (GR) | vet Sand U HRSR (>8%/>12%) | let Pay U HRSR (>8%/>12%) | let Sand L HRSR (>8%/>12%)   | let Pay L HRSR (>8%/>12%)    | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | vet Sand U HRSR Inc Val<br>≻8%/≻12%) | Vet Pay U HRSR Inc Val<br>⊳8%/>12%) | let Sand L HRSR1 (>8%/>12%) | let Pay L HRSR1 (>8%/>12%) | √et Sand HRSR Undiff<br>>8%/>12%) | √et Pay HRSR Undiff1<br>>8%/>12%) | vet Sand L HRSR2 (>8%/>12%) | Vet Pay L HRSR2 (>8%/>12%) |
|---------------------------------|------------------------|------------------------|----------------------------|---------------------------|------------------------------|------------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------|----------------------------|
| Anderson "Q" #1                 | 17-7N-11E              | 0                      |                            | 6                         | 8'/0'                        | 8'/0'                        | 2                   |                     | 2                   | 0                        | 4 4                                  | 20                                  | 6                           | 6                          | 27                                | 6 9                               |                             | 6                          |
| Jerry #1                        | 17-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | NPLA                         | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Anderson No. 1                  | 17-7N-11E              | 0                      |                            | 0                         | 8'/6'                        | 8'/6'                        | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Anderson 2-17                   | 17-7N-11E              | 0                      |                            |                           | 7'/0'<br>NPLA                | 7'/0'                        | 11                  |                     | 11                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Bolt #1<br>Bolt #2              | 18-7N-11E<br>18-7N-11E | 0                      | NPLA                       | NPLA                      | NFLA<br>2'/0'                | NPLA<br>2'/0'                | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Coats 1-18                      | 18-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | 270                          | 15                  |                     | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | -                          |
| Shields #1                      | 18-7N-11E              | Ō                      |                            | 0                         | 170                          | 1'/0'                        | 8                   |                     | 8                   | Ũ                        |                                      |                                     |                             |                            |                                   |                                   |                             | -                          |
| Lee #2                          | 18-7N-11E              | 0                      | NPLA                       | NPLA                      | NPLA                         | NPLA                         | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | П                          |
| Paula #1                        | 19-7N-11E              | 0                      |                            | 0                         | 6'/1'                        | 6'/1'                        | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Backus #1                       | 19-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | NPLA                         | 5                   | $\square$           | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Anita 1-20                      | 20-7N-11E              | 0                      |                            |                           | 5'/0'                        | 5'/0'<br>NDLA                | 17                  | $\vdash$            | 17                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Eckles A-1<br>Schilling #1-20   | 20-7N-11E<br>20-7N-11E | 0                      | NPLA                       | NPLA                      | NPLA<br>8'/3'                | NPLA<br>8'/3'                | 5<br>10             | $\vdash$            | 5<br>10             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Farris#1                        | 20-7N-11E<br>20-7N-11E |                        | INPLA                      | NPLA                      | 873<br>NPLA                  | 873<br>NPLA                  | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Factor #1                       | 22-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | NPLA                         | Ō                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Weston 1                        | 23-7N-11E              | 0                      |                            | 0                         | 2'/0'                        | 2'/0'                        | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| Rosa #1                         | 24-7N-11E              | 0                      |                            |                           | 0                            | 0                            | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Chapman #1                      | 24-7N-11E              | 0                      |                            |                           |                              | 0                            | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Kamperman 1-24                  | 24-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | NPLA                         | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Bob #1                          | 25-7N-11E              | 0                      |                            |                           |                              | 8'/0'<br>2'/0'               | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Chapman 1-26<br>Eckles 1-26     | 26-7N-11E<br>26-7N-11E | 0                      |                            |                           | 2'/0'<br>3'/1'               | 270<br>3711                  | 6<br>7              |                     | 6<br>7              | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Kamperman 1-27                  | 27-7N-11E              | 0                      |                            |                           | 572                          | 5'/2'                        | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Sultan Oil Lott #1-28           | 28-7N-11E              | Ō                      |                            |                           |                              | 2'/0'                        | -                   |                     | -                   | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Eckles #1                       | 29-7N-11E              | 0                      |                            |                           | 2'/0'                        | 2'/0'                        | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Kamperman 1-29                  | 29-7N-11E              | 0                      |                            |                           | 0                            | 0                            | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Douglass #1                     | 29-7N-11E              |                        |                            | NPLA                      | NPLA                         | NPLA                         | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Jackson #1                      | 30-7N-11E              | 0                      |                            |                           |                              | 9'/6'<br>21/01               | 15                  |                     | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Kamperman 1-30<br>Thompson 1-30 | 30-7N-11E<br>30-7N-11E | 0                      |                            |                           | 2'/0'<br>0                   | 2'/0'                        | 0                   |                     | 0 3                 | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Eckles 3-31                     | 31-7N-11E              | 0                      |                            | 0                         | 0/0                          | 0/0                          | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Eckles #1                       | 31-7N-11E              | Ō                      |                            | 0                         |                              | 6'/3'                        | 10                  |                     | 10                  | Ō                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Kamperman 1                     | 31-7N-11E              | 0                      | 0                          | 0                         | 7'/4'                        | 7'/4'                        | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Anita #1                        | 31-7N-11E              | 0                      |                            |                           | 0'/0'                        | 0'/0'                        | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Showalter #1                    | 31-7N-11E              |                        | NPLA                       | NPLA                      | NPLA                         | NPLA                         |                     |                     | -                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| B.E. #1                         | 31-7N-11E              | 0                      |                            |                           | 7 75                         | 7'/5'                        | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| B.E.#2<br>Kamperman 1-32        | 31-7N-11E<br>32-7N-11E | 0                      |                            |                           | <mark>0'/0'</mark><br>10'/2' | <mark>0'/0'</mark><br>10'/2' | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Riley #1                        | 32-7N-11E              | 0                      |                            | 0                         | NPLA                         | NPLA                         | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Rogers#1                        | 32-7N-11E              | 0                      |                            |                           | 7'/0'                        | 7'/0'                        | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Charles 1-33                    | 33-7N-11E              | 0                      | 0                          | 0                         | NPLA                         | NPLA                         | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Benham 1                        | 35-7N-11E              | 0                      |                            |                           |                              | 8'/4'                        | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Lott 1                          | 2-7N-12E               | 0                      |                            |                           |                              | 4'/0'                        | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Patsy 1-3                       | 3-7N-12E               | 0                      |                            |                           |                              | 0<br>81/11                   | 3                   | $\vdash$            | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Wagoner #1<br>Carpenter #1      | 4-7N-12E<br>5-7N-12E   | 0                      |                            |                           |                              | 6'/1'<br>3'/0'               | 1                   | $\vdash$            | 1                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | +                          |
| Shields #1                      | 6-7N-12E               | 0                      |                            |                           |                              | 0                            | 21                  |                     | 21                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Sarkeys #2                      | 7-7N-12E               | 0                      |                            |                           | 8'/4'                        | 0                            |                     |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Sanders #2                      | 7-7N-12E               | 0                      | 0                          | 0                         | 13751                        | 13751                        | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Sarkey Unit #1                  | 7-7N-12E               | 0                      |                            |                           |                              | NPLA                         | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Sanders #1                      | 7-7N-12E               | 0                      |                            |                           |                              | NPLA                         | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Burleson #1<br>Cotton-Eckles #1 | 8-7N-12E<br>8-7N-12E   | 0                      |                            |                           | 9'/3'<br>NPLA                | 9'/3'<br>NPLA                | 12                  | $\vdash$            | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Cotton-Eckles #1<br>McAfee 1-12 | 12-7N-12E              | 0                      |                            |                           | NPLA<br>10%                  | NPLA<br>1070                 | 10                  |                     | 10                  | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| McAfee 1-13                     | 13-7N-12E              | 0                      |                            |                           | 5'/0'                        | 5'/0'                        | <u> </u>            | $\square$           |                     | Ő                        |                                      |                                     |                             |                            |                                   |                                   |                             | Н                          |
| W.C. Ratledge #1                | 13-7N-12E              | 0                      |                            |                           | NPLA                         | NPLA                         | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| McAfee #1                       | 13-7N-12E              | 0                      |                            |                           |                              | NPLA                         | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| State #1                        | 13-7N-12E              | 0                      |                            |                           |                              | 0                            | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | П                          |
| Owen #1-14<br>Sorkovo #1        | 14-7N-12E              | 0                      |                            |                           |                              | 9'/4'<br>NDLA                | 8                   | $\vdash$            | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\vdash$                   |
| Sarkeys #1<br>Mad Max 1-14      | 14-7N-12E<br>14-7N-12E | 0                      |                            |                           | NPLA<br>6'/3'                | NPLA<br>6'/3'                | 5<br>10             | $\vdash$            | 5<br>10             | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Thunderdome 1-14                | 14-7N-12E              | 0                      |                            |                           | 673<br>570'                  | 573<br>570'                  | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | H                          |
| Sarkey #1                       | 14-7N-12E              | 0                      |                            |                           |                              | NPLA                         | ۲Ť                  |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             | $\square$                  |
| Theel #1                        | 14-7N-12E              | Ő                      |                            |                           | NPLA                         | NPLA                         | 1                   |                     | 1                   | Ū                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| Tom 2-14                        | 14-7N-12E              | Ō                      | 0                          | 0                         |                              | 6'/0'                        | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |
| 10/11/2 111                     | 15-7N-12E              |                        | 0                          |                           | 8'/4'                        | 2'/0'                        | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                   |                             |                            |

| Vell                           | ocation                | Gross Sand U HRSR (GR) | let Sand U HRSR (>8%/>12%) | let Pay U HRSR (>8%/>12%) | vet Sand L HRSR (>8%/>12%) | let Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | Gross Sand (HRSR Undiff) | Vet Sand U HRSR Inc Val<br>⊳8%/>12%) | Vet Pay U HRSR Inc Val<br>⊳8%/>12%) | let Sand L HRSR1 (>8%/>12%) | let Pay L HRSR1 (>8%/>12%) | Vet Sand HRSR Undiff<br>≻8%/≻12%) | vet Pay HRSR Undiff1<br>(>8%/>12%) | vet Sand L HRSR2 (>8%/>12%) | Vet Pay L HRSR2 (>8%/>12%) |
|--------------------------------|------------------------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------------|------------------------------------|-----------------------------|----------------------------|
| Kleinke 4                      | 15-7N-12E              | 0                      | 0                          | 0                         |                            | NPLA                      | 26                  |                     | 26                  | 0                        | 2 9                                  | 29                                  | 6                           | 6                          | ~~~                               | 69                                 |                             | 6                          |
| Lott 1-15                      | 15-7N-12E              | 0                      | 0                          |                           |                            | 17/3'                     | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Kleinke #2                     | 15-7N-12E              | 0                      | 0                          |                           |                            | NPLA                      | 31                  |                     | 31                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Myers 1                        | 15-7N-12E<br>16-7N-12E | 0                      | 0                          |                           |                            | 0                         | 19                  |                     | 19                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Hoehne 1-16<br>Addington 1     | 16-7N-12E              | 0                      | 0                          |                           | NPLA                       | NPLA                      | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Gilcrease 3                    | 16-7N-12E              | Ū                      | 0                          | 0                         |                            | NPLA                      | 28                  |                     | 28                  | Ō                        |                                      |                                     |                             |                            |                                   |                                    |                             | -                          |
| Gilcrease 1                    | 16-7N-12E              | 0                      |                            |                           |                            |                           |                     |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Perry 1                        | 17-7N-12E              | 0                      | 0                          |                           |                            | 10%                       | 9                   |                     | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Sarkeys B-1                    | 18-7N-12E              | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 0                   | $\vdash$            | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Sarkeys C-1<br>Shirley Jean    | 18-7N-12E<br>19-7N-12E | 0                      | 0                          |                           |                            | NPLA<br>6'/3'             | 10                  | $\vdash$            | 10<br>2             | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | ⊢-1                        |
| McCoy 1                        | 20-7N-12E              | 0                      | 0                          |                           |                            | 2'/0'                     | 8                   |                     | - 2                 | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | H                          |
| Kern 1-21                      | 21-7N-12E              | 0                      | 0                          | 0                         | 14'/2'                     | 14'/2'                    | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Falcon Club 1-21               | 21-7N-12E              | 0                      | 0                          | 0                         | 4'/0'                      | 4'/0'                     | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Falcon Club 2-21               | 21-7N-12E              | 0                      | 0                          | 0                         |                            | 9'/7'                     |                     |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | П                          |
| Falcon Club 3-21               | 21-7N-12E              | 0                      | 0                          |                           |                            | 1375                      | 15                  | $\vdash$            | 15                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Jonathan 1-22<br>Michael 2-22  | 22-7N-12E<br>22-7N-12E | 0                      | 0                          | 0                         |                            | 8'/4'<br>8'/6'            | 15<br>13            | $\vdash$            | 15<br>13            | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | ⊢-1                        |
| Melissa 2-22                   | 22-7N-12E              | 0                      | 0                          | 0                         |                            | 8'/8'                     | 16                  |                     | 16                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Broadstreet 1                  | 22-7N-12E              | 0                      | 0                          | 0                         | NPLA                       | NPLA                      | 23                  |                     | 23                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| C.G. Myers et al #1            | 22-7N-12E              | 0                      | 0                          |                           |                            | NPLA                      | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Jackie Holt 2-23               | 23-7N-12E<br>23-7N-12E | 0                      | 0                          | 0                         | 20'/8'                     | 2078                      | 20                  |                     | 20                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Upchurch 1<br>Mamie Sousea 1   | 23-7N-12E<br>24-7N-12E | 0                      | 0                          |                           | NPLA<br>NPLA               | NPLA<br>NPLA              | 11                  |                     | 11                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Soused 3                       | 24-7N-12E              | 0                      | 0                          |                           |                            | NPLA                      |                     |                     | _                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | Н                          |
| Holt 3-24                      | 24-7N-12E              | 0                      | 0                          |                           |                            | 12%                       | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Anderson 1-24                  | 24-7N-12E              | 0                      | 0                          |                           |                            | 9'/2'                     | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Holt 1                         | 24-7N-12E              | 0                      | 0                          | 0                         |                            | NPLA                      | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Rabke 1-24<br>Ross 1-24        | 24-7N-12E<br>24-7N-12E | 0                      | 0                          |                           |                            | 15'/4'<br>11'/2'          | 14<br>7             |                     | 14<br>7             | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Bruno 3-25                     | 25-7N-12E              | 0                      | 0                          |                           |                            | 2'/0'                     | ŕ                   |                     | ſ                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | Н                          |
| Whitney Heirs 1-26             | 26-7N-12E              | 0                      | 0                          |                           |                            | 0                         | 20                  |                     | 20                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Million 1-27                   | 27-7N-12E              | 0                      | 0                          |                           |                            | 6'/2'                     | 14                  |                     | 14                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Stipe 2-27                     | 27-7N-12E              | 0                      | 0                          |                           |                            | 1274                      | 20                  |                     | 20                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Stipe 1-27<br>Hilseweck A-1-29 | 27-7N-12E<br>29-7N-12E | 0                      | 0                          | 0                         | 13'/6'<br>NPLA             | 13'/6'<br>NPLA            | 12<br>2             |                     | 12<br>2             | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Stipe 1-29                     | 29-7N-12E              | 0                      | 0                          | 0                         |                            | 1 '/0'                    | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Be Ann Puckett 1-32            | 32-7N-12E              | 0                      | 0                          |                           |                            | 11/2'                     | 12                  |                     | 12                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Myers B-1                      | 32-7N-12E              | 0                      | 0                          |                           |                            | NPLA                      | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Puckett 2-32<br>Stipe 1-33     | 32-7N-12E              | 0                      | 0                          | 0                         | 5'/0'                      | 5'/0'<br>5'/0'            | 0                   |                     | 0                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Doss Royalty 1-33              | 33-7N-12E<br>33-7N-12E | 0                      | 0                          | 0                         | 5'/0'<br>10'/4'            | 570<br>1074               | 10                  |                     | 10<br>12            | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Gladstein 1-34                 | 34-7N-12E              | 0                      | 0                          |                           |                            | 4'/0'                     | 8                   |                     | 8                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Stacy 1                        | 35-7N-12E              | 0                      | 0                          | 0                         | 0                          | 0                         |                     |                     |                     | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Richison 1                     | 36-7N-12E              | 0                      | 0                          | 0                         |                            | NPLA                      | 41                  |                     | 41                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Casey 1-36<br>Brow 2-2         | 36-7N-12E<br>2-7N-13E  | 0                      | 0                          |                           |                            | 0<br>1170'                | 13<br>7             | $\vdash$            | 13<br>7             | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Brow 2-2<br>Vaughan 2-2 B      | 2-7N-13E<br>2-7N-13E   | 0                      | 0                          |                           |                            | NPLA                      | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | ⊢-1                        |
| Howard 1-3                     | 3-7N-13E               | 0                      | 0                          |                           |                            | 4'/0'                     | 8                   |                     | 8                   | Ő                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Lee #1                         | 6-7N-13E               | 0                      | 0                          | 0                         | NPLA                       | 0                         | 7                   |                     | 7                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Proctor #1                     | 7-7N-13E               | 0                      | 0                          |                           | NPLA                       | NPLA                      | 5                   |                     | 5                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Watkins 1-7<br>Reed 1-7        | 7-7N-13E<br>7-7N-13E   | 0                      | 0                          |                           |                            | 8'/0'<br>10'/2'           | 11<br>11            | $\vdash$            | 11<br>11            | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Wade 2-10                      | 10-7N-13E              | 0                      | 0                          |                           | 6'/0'                      | 6'/0'                     | 9                   | $\vdash$            | 9                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | H                          |
| Wadley 1-11                    | 11-7N-13E              | Ū                      | Ő                          |                           |                            | NPLA                      | 10                  |                     | 10                  | Ő                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Herman #1-12                   | 12-7N-13E              | 0                      | 0                          |                           |                            | 0                         | 43                  |                     | 43                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Wadley 1-12                    | 12-7N-13E              | 0                      | 0                          |                           |                            | NPLA                      |                     |                     | 4.0                 | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | Г                          |
| Ward 2-13<br>Duncan #3         | 13-7N-13E<br>13-7N-13E | 0                      | 0                          | 0                         |                            | 4'/0'<br>7'/2'            | 12<br>3             | $\vdash$            | 12<br>3             | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Ward #1-13                     | 13-7N-13E              | 0                      | 0                          |                           |                            | 9/2                       | 3                   |                     | 3                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Duncan #1                      | 13-7N-13E              | 0                      |                            |                           |                            |                           | 25                  |                     | 25                  | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\square$                  |
| Graham #3                      | 14-7N-13E              | 0                      | 0                          | 0                         | 0                          | 0                         | 2                   |                     | 2                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             |                            |
| Graham #1                      | 14-7N-13E              | 0                      | 0                          | 0                         |                            | 21/0                      | 4                   |                     | 4                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | Г                          |
| Graham #2                      | 14-7N-13E<br>15-7N-13E | 0                      | 0                          | 0                         |                            | 5'/2'<br>5'/1'            | 6                   |                     | 6                   | 0                        |                                      |                                     |                             |                            |                                   |                                    |                             | $\vdash$                   |
| Graham C #2                    |                        |                        |                            |                           |                            |                           |                     |                     |                     |                          |                                      |                                     |                             |                            |                                   |                                    |                             |                            |

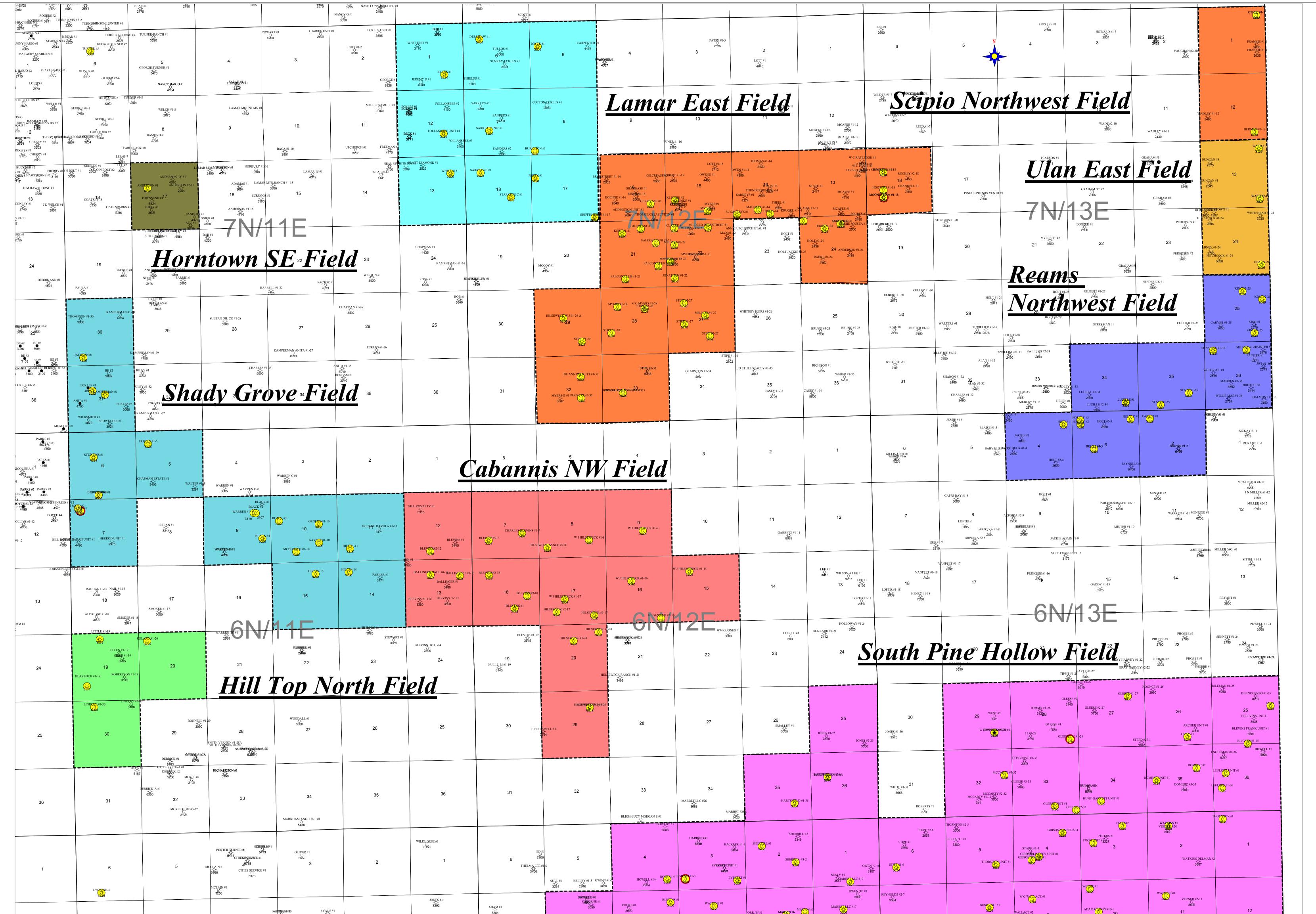
| Tandell #1-18   | pccation<br>18-7N-13E | Gross Sand U HRSR (GR) |   | Net Pay U HRSR (>8%/>12%) | Net Sand L HRSR (>8%/>12%) | Net Pay L HRSR (>8%/>12%) | Gross Sand (LHRSR1) | Gross Sand (UHRSR1) | Gross Sand (LHRSR2) | <ul> <li>Gross Sand (HRSR Undiff)</li> </ul> | Net Sand U HRSR Inc Val<br>(>8%/>12%) | Net Pay U HRSR Inc Val<br>(>8%/>12%) | Net Sand L HRSR1 (>8%/>12%) | Net Pay LHRSR1 (>8%/>12%) | Net Sand HRSR Undiff<br>(>8%/>12%) | Net Pay HRSR Undiff1<br>(>8%/>12%) | Net Sand L HRSR2 (>8%/>12%) | Net Pay LHRSR2 (>8%/>12%) |
|-----------------|-----------------------|------------------------|---|---------------------------|----------------------------|---------------------------|---------------------|---------------------|---------------------|----------------------------------------------|---------------------------------------|--------------------------------------|-----------------------------|---------------------------|------------------------------------|------------------------------------|-----------------------------|---------------------------|
| Crandell #1     | 18-7N-13E             | 0                      | 0 |                           | 8'/3'                      | 772<br>873                | 10                  |                     | 17                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Mooneyham 1-18  | 18-7N-13E             | 0                      | 0 |                           | 873<br>1273                | 873<br>1273               | 15                  |                     | 15                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Rockey #2-18    | 18-7N-13E             | 0                      | 0 |                           | 14/7                       | 14/7                      | 21                  |                     | 21                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Bush 1-19       | 19-7N-13E             | 0                      | 0 |                           | 7'/2'                      | 7'/2'                     | 10                  | -                   | 10                  | 0                                            | <u> </u>                              |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Stergios #1-20  | 20-7N-13E             | 0                      | 0 |                           | 10/2                       | 112                       |                     | -                   | 21                  | 0                                            | <u> </u>                              |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Graham #1       | 20-7N-13E             | 0                      | 0 |                           | NPLA                       | U<br>NPLA                 | 0                   |                     | 0                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | ⊢                         |
| Pedersen #2     | 23-7N-13E             | 0                      | 0 |                           | 4'/0'                      | 4'/0'                     | 8                   |                     | 8                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Pederson #1     | 23-7N-13E             | 0                      |   |                           | NPLA                       | NPLA                      | 11                  |                     | 11                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Hitchcock 1-24  | 24-7N-13E             | 0                      | 0 |                           | 0                          | 0                         |                     |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Abney 1-24      | 24-7N-13E             | 0                      | 0 |                           | 2'/0'                      | 2'/0'                     | 1                   |                     | 1                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Abney 3-24      | 24-7N-13E             | 0                      | 0 |                           | NPLA                       | NPLA                      | <u> </u>            |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\vdash$                  |
| Hill 1-24       | 24-7N-13E             | 0                      | Ö |                           | 6'/0'                      | 6'/0'                     | 6                   |                     | 6                   | Ö                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Whitehead 1-24  | 24-7N-13E             | Ū                      | Ö |                           | 6'/0'                      | 6'/0'                     | 14                  |                     | 14                  | Ũ                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Carver 1-25     | 25-7N-13E             | Ū                      | Ö |                           | 7'/2'                      | 7'/2'                     | 12                  |                     | 12                  | Ũ                                            |                                       |                                      |                             |                           |                                    |                                    |                             | Н                         |
| King #1         | 25-7N-13E             | Ō                      | Ö |                           | 12/2                       | 12/2                      | 11                  |                     | 11                  | Ō                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| King 2-25       | 25-7N-13E             | 0                      | 0 |                           | 0                          | 0                         | 2                   |                     | 2                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| King 3-25       | 25-7N-13E             | 0                      | 0 |                           | 6'/0'                      | 6'/0'                     | 6                   |                     | 6                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| King 4-25       | 25-7N-13E             | 0                      | 0 | 0                         | 15'/4'                     | 15'/4'                    | 11                  |                     | 11                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Frederick #1    | 26-7N-13E             | 0                      | 0 |                           | 6'/0'                      | 6'/0'                     | 3                   |                     | 3                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Collier 1-26    | 26-7N-13E             | 0                      | 0 | 0                         | 5'/2'                      | 5'/2'                     | 6                   |                     | 6                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Holt 1-28       | 28-7N-13E             | 0                      | 0 | 0                         | 7'/0'                      | 7'/0'                     | 12                  |                     | 12                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Holt 2-28       | 28-7N-13E             | 0                      | 0 |                           | 6'/0'                      | 6'/0'                     | 4                   |                     | 4                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Holt 1-29       | 29-7N-13E             | 0                      | 0 | 0                         | 370'                       | 3'/0'                     | 11                  |                     | 11                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Walters 1-A     | 29-7N-13E             | 0                      | 0 | 0                         | NPLA                       | NPLA                      | 8                   |                     | 8                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Elbert 1-30     | 30-7N-13E             | 0                      | 0 |                           | 0                          | 0                         | 40                  |                     | 40                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Helen 1         | 33-7N-13E             | 0                      | 0 |                           | 1273                       | 12'/3'                    | 5                   |                     | 5                   | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Lucille 2-34    | 34-7N-13E             | 0                      | 0 |                           | 94'/54'                    | 0                         |                     |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Lucille #1      | 34-7N-13E             | 0                      | 0 |                           | 93'/82'                    | 46'/42'                   | 107                 |                     | 107                 | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| State 2-35      | 35-7N-13E             | 0                      | 0 |                           | 94'/84'                    | 48'/44'                   | 147                 |                     | 147                 | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| State 1-35      | 35-7N-13E             | 0                      | 0 |                           | 92%56                      | 36718                     | 186                 |                     | 186                 | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Madden 1-36     | 36-7N-13E             | 0                      | 0 |                           | 98'/86'                    | 22'/12'                   | 117                 |                     | 117                 | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| Brite 1-36      | 36-7N-13E             | 0                      | 0 |                           |                            |                           |                     |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             |                           |
| JWP 1-36        | 36-7N-13E             | 0                      | 0 |                           | 78'/42'                    | 0                         | 90                  |                     | 90                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Painter #2      | 36-7N-13E             | 0                      | 0 |                           | 5'/0'                      | 5'/0'                     |                     |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Sheena 1-36     | 36-7N-13E             | 0                      | 0 |                           | 10%2                       | 1072                      | 16                  |                     | 16                  | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Sunshine 1-36   | 36-7N-13E             | 0                      | 0 |                           | 6'/0'                      | 6'/0'                     |                     |                     |                     | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| White AF #1     | 36-7N-13E             | 0                      | 0 |                           | 54'/22'                    | 0                         |                     |                     | 100                 | 0                                            |                                       |                                      |                             |                           |                                    |                                    |                             | $\square$                 |
| Willie Mae 1-36 | 36-7N-13E             | 0                      | 0 | 0                         | 114'/66'                   | 0                         | 127                 | 1                   | 127                 | 0                                            |                                       |                                      |                             |                           | 1                                  |                                    |                             | i                         |

<u>Appendix E</u>: Formation Tops

| Well         Losotton         NB         Top of UHCoal         Top of LNA-40         Ummania Sitetono         Deck 31         Sale         Sale <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Top of Upp</th> <th>er Marker</th> <th></th> <th></th>                                                     |                                       |           |     |                                               |      |          |          |          | Top of Upp | er Marker |             |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|-----|-----------------------------------------------|------|----------|----------|----------|------------|-----------|-------------|------------|
| Withome #1         LSP-ITE         107         2200         -2317         3456         -2354         2384         -2275         2316         -2305           Cites #1         -5.9-11E         676         3022         -2155         2333         -2355         2000         -2117         2200         -2015           Cites #1         -5.9-11E         107         -2118         3011         -2204         4011         -2217         2009         -2118           Winck #1         -5.9-11E         107         -3311         -2235         3335         -3468         2027         3116         -2306           Brung #1-7         9.9-5-11E         900         -3236         -2326         3416         -2327         3116         -2317           Even #1         0.9-5-11E         9236         -2205         3417         -3410         3237         -3237         3116         -2317           Remmy 1-10         10.9-5-11E         9236         -2205         3417         -3410         3237         -3237         3110         -220         3101         -2307         3117         -2418         1102         -2414         1026         -2307         3117         -2418         3102         -2308                                                                                                                                                                                                                                   | Well                                  | Location  | KB  | Top of UHCoal                                 | Topo | f LHCoal | Top of A | Atoka    |            |           | Base of Sha | ile Marker |
| Obversiti-3         3-89-H1TE         1873         3022         -2153         3223         -2264         2006         -2117         -2103         3021         -217           Coro #1-6         4-59-H1TE         707         -3051         -2264         NDE         -3071         -2273         3021         -217           SaP 16-7         7-8-H1TE         164         -2164         NDE         -3164         -2224         -2244           Newty 1-0         5-9-H1TE         1692         -3263         -2244         -2244         -2243         -3164         -2205         -2246         -2244         -2245         -2246         -2244         -2245         -2268         -2246         -2245         -2268         -2246         -2243         -3164         -2235         -2268         -2246         -2247         -3166         -2267         -3267         -2242         -2241         -3166         -2277         -2247         -3168         -227         -2284         -2441         -227         -2281         -2404         -247         -3161         -227         -2284         -247         -3161         -2477         -3161         -2476         -2476         -2476         -2476         -2476         -2476         -2                                                                                                                                                                                                  | Wildhorse #1                          | 1-5N-11E  | 909 |                                               |      |          |          |          |            |           |             | -2206      |
| Lyons #1-0         -0-N-11E         780         3316         -2204         NNE         3014         -2228         3022         -221           Wrick #1         7-N-11E         740         3311         -2253         3444         -2454         3211         -2221         3144         -2165           Ibrings #1-3         9-SN-11E         690         3248         -2233         3444         -2454         3217         -2221         3146         -2165           Ibrings #1-3         9-SN-11E         690         3223         -2328         3427         -2497         3117         -2248         3177         -2480         3144         -2167         3118         -2144         NICE         3105         -2317         -2323         -3307         -2323         -2300         2301         -3307         -2323         -2400         3101         -2344         NICE         3100         -2318         -2317         -2323         -2307         -2315         -2416         NICE         3105         -2422         2816         -2318         -2328         -2328         -2327         -2316         -2318         -2422         2816         -2318         -2428         2816         -2318         -2428         2816                                                                                                                                                                                                               |                                       |           |     |                                               |      |          |          |          |            |           |             | -2051      |
| SBP 15/7         7.Ph-11E         448         3164         -2200         NDE         3116         -2208         3020         -2218         2400         -216           Binngs #1-0         9-N-11E         960         1248         -2259         3250         -2228         3141         -2228         3141         -2208         3144         -2228         3141         -2208         3141         -2208         3141         -2208         3141         -2217         -2328         3141         -2208         3141         -2217         -3218         -2444         NDE         -3316         -2248         3141         -2217         -2328         3141         -2417         3141         -2217         -2328         3141         -2317         -2317         -2328         3141         -2307         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2338         -2428         2308         -2249         -2338         -2349         -2238         3138         -2438         2308         -2249         -2338         -2249         -2338         -2249         -2338         -2349         -2249         -2358         -3330 <t< td=""><td>Cities #1</td><td>4-5N-11E</td><td>944</td><td></td><td>3112</td><td>-2168</td><td>NDE</td><td></td><td>3077</td><td>-2133</td><td>3021</td><td>-2077</td></t<>                    | Cities #1                             | 4-5N-11E  | 944 |                                               | 3112 | -2168    | NDE      |          | 3077       | -2133     | 3021        | -2077      |
| Wrick #1         7-NN-11E         700         5324         -2252         3205         -2428         2920         -2218         2446         -2211         -2214         -2214         -2214         -2214         -2214         -2213         -2214         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2213         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214         -2214 <th< td=""><td>Lyons #1-6</td><td>6-5N-11E</td><td>787</td><td></td><td>3051</td><td>-2264</td><td>NDE</td><td></td><td>3014</td><td>-2227</td><td>2968</td><td>-2181</td></th<> | Lyons #1-6                            | 6-5N-11E  | 787 |                                               | 3051 | -2264    | NDE      |          | 3014       | -2227     | 2968        | -2181      |
| Bings #1-9         0-N-N1E         200         3248         -2258         3444         -2464         3211         -2223         3145         -2283         3148         -2233         3148         -2233         3148         -2233         3148         -2233         3148         -2233         3148         -2233         3148         -2233         3148         -2247         3117         -2148           Mans #1         12 4V-11E         575         3151         -2441         NUE         -3168         -2334         3154         -2240         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3164         -2200         3165         -2223         3165         -2214         3174         -2318         -2218         3183         -2424         3240         -2265         3165         -2218         3166         -2116         3166                                                                                                                                                                                                   | S&P 15-7                              | 7-5N-11E  | 848 |                                               | 3154 | -2306    | NDE      |          | 3116       | -2268     | 3062        | -2214      |
| Newby 1-0         9-N-11E         9220         3401         -2009         3245         -2228         3184         -2281         3186         -2381           Kenny 1-10         10-SN-11E         323         3233         -2286         3473         -3478         3227         -3227         -3186         -3181           Wallace Fargo #1         12-N-11E         735         3057         -2237         -3280         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2380         3011         -2381         3011 <t< td=""><td>Wirick #1</td><td>7-5N-11E</td><td>779</td><td></td><td>3031</td><td>-2252</td><td>3205</td><td>-2426</td><td>2992</td><td>-2213</td><td>2940</td><td>-2161</td></t<>                      | Wirick #1                             | 7-5N-11E  | 779 |                                               | 3031 | -2252    | 3205     | -2426    | 2992       | -2213     | 2940        | -2161      |
| Evans #1         00-RN-11E         0228         -228         3478         -2478         3227         -2227         3166         -388           Jones #1         10         10-RN-11E         935         3161         -2448         NICE         735         3167         -228           Walace Fargo #1         12-N11E         735         3151         -2411         NICE         3100         -2208         2010         -2308         3011         -2308         3011         -2308         3011         -2308         3011         -2308         3011         -2308         -2308         3011         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308         -2308                                                                                                                                                                                               | Bivings #1-9                          | 9-5N-11E  | 990 |                                               | 3248 | -2258    | 3444     | -2454    | 3211       |           | 3145        | -2155      |
| Fremy         1:0         0:5%-TE         237         2328         2428         3427         -2480         3181         -2471         3171         -2188           Jacosa H         12:5%-TE         716         3100         -2412         NUCE         3105         -2237         3024         -2301           Staut T-13         13:5%-TE         716         3115         -2415         NUCE         3100         -2204         2015         -2204         2016         -2204         2016         -2204         2016         -2204         2016         -2204         2016         -2204         2016         -2204         2016         -2202         2331         2-2351         3030         -2201         2311         2-2321         2310         2-2312         2310         -2201         2313         2-2312         2310         2-2312         2310         2-2312         2310         2-2312         2310         2-2312         2310         2-2312         2310         2-2312         2310         2-230         2300         2-231         2-2310         3040         2-231         2-2412         2-2412         2-2412         2-2412         2-2412         2-2412         2-2412         2-2412         2-2412         2-2412                                                                                                                                                                                                  | Newby 1-9                             | 9-5N-11E  | 952 |                                               | 3275 | -2323    | 3461     | -2509    | 3245       | -2293     | 3184        | -2232      |
| Junie #1         12-SN-11E         785         3057         -222           Walloo Engo #1         12-SN-11E         710         3125         2412         NDE         3100         -2280         3011         -220           Anderson #1         14-SN-11E         710         3112         2411         NDE         3100         -2280         3021         -2200         3011         -2200         3011         -2200         3011         -2200         3011         -2200         3011         -2200         3012         -2205         3020         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2205         -2007         -211         -2203         2201         -211         -2203         2201         -211         -2203         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2201         2001         2001         2001         2001         2001         2001         2001         2001         2001         2001                                                                                                                                                                                                           | Evans #1                              | 10-5N-11E |     |                                               | 3265 | -3265    | 3478     | -3478    | 3227       |           | 3166        | -3166      |
| Wallace Fargo #1         12-SN-HE         710         2412         NDE         3100         -2307         3024         -2307           Stuat 1-13         13-SN-HE         711         3112         -2415         NDE         3100         -2307         3024         -2307           Mul 1-41         14-SN-HE         771         3166         -2367         NDE         3010         -2308         2309         -226           Ellis #1         16-SN-HE         771         3166         -2367         NDE         3032         -2252         2979         -2155           Ellis #1         16-SN-HE         786         3349         -2400         NDE         -2432         2994         -2439         -2268         -2439         2926         -2439         2926         -2439         2926         2939         -2269         3337         -2239         3267         -2237         3029         -2267         3347         -2237         3367         -2237         3029         -2267         3347         -2237         3377         -2237         3372         -2237         3372         -2237         3162         -2267         3367         -2216         3337         -2238         3446         -2417         3317<                                                                                                                                                                                                                   | 4                                     |           |     |                                               |      |          |          | -2490    | 3184       |           |             | -2180      |
| Shuart 1-13         12-58-11E         7710         3112         -2415         NDE         3100         -2200         3011         -2200           Anderson #1         14-58-11E         771         3116         -2367         NDE         3132         -2280         2296         -2222           Null 1-14         14-58-11E         827         3000         -2263         NDE         3133         -2424         3240         -2421         2313         -2424         3240         -2421         2313         -2424         3263         -2681         -2421         2313         -2424         3263         -2681         -2683         3680         -2472         3263         -2686         -2683         3680         -2472         3263         -2681         -2683         3267         -2281         3261         -2373         3260         -2273         3260         -2273         3260         -2273         3261         -2373         3261         -2373         3261         -2373         3261         -2373         3261         -2273         3261         -2274         3261         -2373         3261         -2373         3261         -2373         3261         -2373         3261         -2373         3261         -23                                                                                                                                                                                                   |                                       |           |     |                                               |      |          |          |          |            |           |             | -2322      |
| Anderson #1         14-58-HE         771         3112         -2241         NDE         3075         -2234         2095         -2225         2091         -2215         2030         -2225         2010         -2215         2030         -2225         2010         -2215         2010         -2215         2010         -2215         2011         -2215         2011         -2215         2011         -2225         2011         -2225         2011         -2225         2011         -2225         2011         -2225         2013         -2225         2013         -2225         2013         -2225         2013         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011         2011                                                                                                                                                                                                      |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Null 1-14         14-8N-11E         277         3106         -2283         NDE         3102         -2283         3039         -2283           Cethy #1         16-8N-11E         389         -3343         -2460         NDE         -3313         -2424         3240         -2255           Elis #1         16-8N-11E         789         -3013         -2221         3318         -2422         2384         -2186           McKoy Heirs #1         16-8N-11E         786         -211         -0         -0         3053         -2985         -2287           McKoy Heirs #1         16-8N-11E         786         -2167         3660         -2460         3303         -2267         3501         -2276         3500         -2500         3300         -2287         3304         -2277         3304         -2278         3107         -2344         2260         -2363         -2362         3102         -2211         1660         3265         -2312         3026         -2312         3036         -2469         3026         -2217         3107         -2344         3265         -2112         1650         3162         -2211         1650         3162         -2211         1650         3162         -2211                                                                                                                                                                                                                        |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Elis #1         15-N-11E         827         3000         -2260         NDE         3052         -2225         2279         -2275           Elis #1         16-N-11E         796         3017         -221         3216         -2422         2844         3240         -235         -208           McKoy Hers #1         16-N-11E         764         2982         -2218         3180         -2422         2864         -2186         2875         -218           McKoy Hers #1         16-N-11E         764         2286         3353         -2488         3125         -2330         3287         -2286         3353         -2383         3274         2267         3350         -2350         3351         -3379         -2374         2267         3351         -3379         -2271         NDE         3311         -2324         -2324         3265         -2212         NDE         3311         -2324         -2334         3250         -2217         NDE         3311         -2324         -2334         3250         -2217         NDE         3317         -2334         3250         -2217         NDE         -3162         -225         3066         -2141         3040         -2161         -2161         -2161                                                                                                                                                                                                                   |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Cathwist         16-SN-11E         889         3349         -2420         3317         -2232         3218         -2422         2384         -2118           McKoy Herrs #1         16-SN-11E         70         0         2053         -2083         2985         -2986           McKoy Herrs #1         16-SN-11E         704         2926         3303         -2483         3125         -2211         3186         -2422         2950         -2116         3300         -2230         3000         2267           McWoy Herrs #1         16-SN-11E         702         3334         -2422         NDE         -3317         -2334         2250         -2276         3162         -2271         3164         -2413         3445         -2212         3317         -2334         3250         -2285         3046         -2414           McLay Hills #1         2-SN-11E         897         3240         -2441         3475         -2212         3333         3172         -2380         3067         -2171         73074         -2171         73074         -2171         73074         -2171         73074         -2171         73074         -2171         73074         -2171         73074         -2171         73074         -                                                                                                                                                                                                          |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Elis #1         16-N-11E         796         3017         -2221         3219         -2422         2984         -2188         2912         -2211           Mickoy Heirs #1         16-N-11E         784         -2982         -2218         3186         -2422         2950         -2186         2875         -2211           Baiky #1         16-N-11E         176N-11E         1000         3387         -2267         3350         -2268         3350         -2383         3237         -2334         3257         -2267           Baiky #1         176N-11E         1000         3367         -2267         3351         -3379         -2334         3255         -2372         NDE         3351         -3379         -2267         3351         -3370         -2326         -2216         3162         -2267         3162         -2267         3162         -2217         3353         3171         -2334         3226         -2210         3044         -2161         3000         -206         3162         -2268         3060         -2160         3007         -2208         -2160         3007         -2208         -2464         3168         -2383         -2414         -2444         3164         -2161         3000                                                                                                                                                                                                                |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| McKoy Hers #1         16-5K-11E         P         0         0         0         0053         -2053         -2053         -2053         -2053         -2016         2757         -2111           Pearson #2         16-5K-11E         895         3160         -2265         3383         -2468         3125         -2230         3060         -2267           Artur #1         19-5K-11E         983         3355         -2372         NDE         3351         -2370         -2267           Black J#1         20-5K-11E         983         3355         -2372         NDE         3324         -2260         -2268           Mobil #1         20-5K-11E         893         3265         -2315         NDE         3234         -2260         -2276         3162         -2281           Hickory Hills         21-5K-11E         897         -3244         2441         3445         -2150         3020         -2067         -2064         -2417         2383         -1272         -206         -207         3044         -2161         2072         -2064         -2076         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2076         -2074                                                                                                                                                                                                                              | 4                                     |           |     |                                               |      |          |          | 0400     |            |           |             |            |
| Mckoy Heirs #2         16-Sh-11E         764         2992         -2218         3188         -2422         2920         -2168         2875         -2213         3000         -2168           Baley #1         17-Sh-11E         1000         3367         -2267         3550         -2550         3330         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2230         3020         -2234         32270         -2217         Hickory Hills #1         25-Sh-11E         833         3172         -2231         3020         -2216         3020         -2216         3020         -2217         3162         -2265         3046         -2141         Paterson #1         25-Sh+11E         3030         -2218         3020         -2216         3020         -2008         2433         3047         -2161         2972         -2008         2435         NDE         -2007         3074         -217         3074         -2207         3074         -2207         307                                                                                                                                                                                  |                                       |           | 190 |                                               | 3017 |          | 3218     |          |            |           |             |            |
| Pearson#2         105-SN-11E         1050         2365         2368         2468         3125         -2230         3000         -2267           Attr#1         10-SN-11E         1972         334         -2265         3383         -2286         3333         -2230         3267         -2267           Black J4         0-SN-11E         997         3344         -2422         NDE         3317         -2234         3226         -2276           Mobil #1         0-SN-11E         997         3244         -2441         3445         -2285         3317         -2234         3260         -2276         3162         -2276         3162         -2276         3162         -2276         3162         -2276         3046         -2441         2483         317         -2328         3087         -2150         3006         -2167         3274         -2448         3106         -2276         3044         -2161         2977         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -2074         -                                                                                                                                                                                                           |                                       |           | 764 |                                               | 2002 | -        | 2106     | -        |            |           |             |            |
| Belley #1         17.5%.11E         972         3387         -2287         3550         -2550         3330         -2330         2237         P           Black J #1         20.5%.11E         983         3355         -2277         NDE         3331         -2234         3260         -2267           Mobil #1         20.5%.11E         983         3326         -2315         NDE         3227         2271         3102         -2221           Hickory Hills #1         21.5%.11E         833         3274         -2441         3445         -2612         833         3172         -2231           Hickory Hills #1         21.5%.11E         833         3020         -2348         NDE         3182         -2280         3004         -2161         2072         -2081           Adams N #1         22.5%.11E         839         3138         -2233         3347         -2448         3108         -2208         2983         -2171         3074         -2277         3074         -2276         3074         -2277         3074         -2277         3074         -2277         3074         -2277         3074         -2277         3074         -2277         3074         -2277         3076         -2288                                                                                                                                                                                                                         |                                       |           |     | <b>├──                                   </b> |      |          |          |          |            |           |             |            |
| Artur #1         19-5N-11E         972         3394         -2422         NDE         -2351         -2278           Black J#1         20-5N-11E         980         3265         -2315         NDE         3317         -2334         3250         -2261           Hickory-Hills #1         21-5N-11E         381         3274         -2441         3445         -2612         283         3172         -2333           Hickory-Hills #1         21-5N-11E         397         3124         -2181         3317         -2380         2007         -2008           Tarvis P #1         21-5N-11E         891         3138         -2303         -2400         3044         -2161         2072         -2008           Adams N #1         25-5N-11E         770         3005         -2245         NDE         -2078         -2078         -208         -2208           Duncan #1-A         25-5N-11E         781         -3250         NDE         -         2988         -2208         -228           Somervile #1         25-5N-11E         781         -3187         -2377         NDE         -         2980         -2232           Somervile #1         25-5N-11E         781         -2343         3102                                                                                                                                                                                                                                           |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Block J#1         20-6N-11E         983         3355         -2372         NDE         9317         -2384         3250         -2276           Hickory-Hills #1         21-6N-11E         833         3274         -2441         3445         -2012         833         3172         -2333           Hickory-Hills #1         21-6N-11E         837         3124         -2187         3317         -2380         9307         -2150         3000         -2080           Traves P#1         21-6N-11E         837         3124         -2187         3317         -2380         3046         -2144           Bernan 1-22         22-6N-11E         839         3186         -2235         NDE         -207         3074         -217           Bernan 1-22         22-6N-11E         819         3168         -2350         NDE         -         -         -         -217         -2088         -2028         2083         -2132           Sumerville #1         22-6N-11E         751         3118         -2350         NDE         -         3077         -2325         2975         -2248         -2268         -2232         3076         -2248         -2267         3160         -3160         -3160         -2350 <td></td> <td></td> <td></td> <td>     </td> <td></td> <td></td> <td></td> <td>-2000</td> <td></td> <td></td> <td>5201</td> <td>-2201</td>                                                                                   |                                       |           |     |                                               |      |          |          | -2000    |            |           | 5201        | -2201      |
| Mobil #1         20-5N-11E         950         3265         -2215         NDE         -2326         -2276         3162         -2211           Hickory Hills A #1         21-5N-11E         897         3240         -2243         NDE         -2383         3172         -2383           Paterson #1         21-5N-11E         897         3240         -2243         NDE         -2380         3087         -2480         3087         -2480         3084         -2161         2972         -2088           Adams N #1         25-5N-11E         883         3186         -2230         3347         -2448         3168         -2207         3075         -2238           Marin Unit #1         25-5N-11E         760         3105         -2350         NDE         -         -         3075         -2235           Duncan Unit #1         25-5N-11E         760         3118         -2350         NDE         -         3075         -2235         20175         -2244         3067         -2235         20175         -2244         3067         -2235         20175         -2244         3067         -2325         20175         -2244         3067         -2325         20175         -2244         3067         -2325 </td <td></td> <td>3.250</td> <td>2267</td>                                                                              |                                       |           |     |                                               |      |          |          |          |            |           | 3.250       | 2267       |
| Hickory Hills #1         21-SN-1TE         833         372         -2441         3445         -2612         833         3172         -2233           Hickory Hills A         21-SN-1TE         897         3124         -2187         3317         -2280         3087         -2150         3020         -2087           Adams N #1         22-SN-1TE         809         3138         -2230         3347         -2448         3106         -2207         3074         -2207           Berman 1-22         22-SN-1TE         809         3138         -2230         3347         -2448         3106         -2207         3074         -217           Berman 1-22         22-SN-1TE         810         3189         -2350         NDE         2988         -2018         2988         -2018         2086         -2235         2016         2016         2355         2016         -2235         2016         -2235         2016         -2235         2016         -2235         2016         -2235         2016         -2236         3076         -2236         3076         -2236         2066         -2241         2065         -2265         NDE         3186         -2377         NDE         3166         -2377         NDE                                                                                                                                                                                                                  |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Hickory-Huis A #1         21-SN-HTE         897         3240         -2243         NDE         3182         -2285         3046         -2141           Paterson #1         21-SN-HTE         833         3080         -2197         3283         -2400         3044         -2111         2972         -2083           Adams N #1         22-SN-HTE         890         3186         -2230         3347         -2448         3106         -2207         3074         -2111         2972         -2083           Martin Unit #1         22-SN-HTE         819         3108         -2230         NDE         -         -         -         -         2988         -2208         2883         -2133         -         -         2986         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2218         2988         -2238         2986         -2218         2986         -2235         3016         -2248         2988         -2248         3028         -2249         2481         3028         -2241         3006         -22717         NDE         3111                                                                                                                                                                                                                 |                                       |           |     |                                               |      |          |          | -2612    | 5220       |           |             |            |
| Patterson #1         21-5N+1TE         937         3124         -2187         3317         -2380         3087         -2150         3020         -2081           Adams N #1         22-5N+1TE         899         3188         -2230         3347         -2448         3106         -2207         3074         -2171           Berman 1-22         22-5N+1TE         819         3168         -2350         NDE         -2088         -2208         2883         -213           Duncan #1-A         23-5N+1TE         619         3168         -2350         NDE         -2072         2088         -223           Somervile #1         23-5N+1TE         756         3111         -2256         NDE         -2273         3076         -228           Somervile #1         24-5N+1TE         751         3144         -2383         NDE         -3300         -228         3000         -2247         NDE         318         -2323         3308         -228         10011         -255         551         101         3144         -2383         NDE         -2381         3028         -228         1010         -2355         F/O         -2363         3308         -2426         1016         -2381         3020                                                                                                                                                                                                                                |                                       |           |     |                                               |      |          |          | 2012     | 3182       |           |             |            |
| Travis P #1         21-5N-11E         883         3060         -2197         3283         -2400         3044         -2161         2972         -2073           Berman 1-22         22-5N-11E         170         3005         -2245         NNDE         2968         -2208         2933         -2117           Bernan 1-22         22-5N-11E         170         3060         -2245         NNDE         2968         -2208         2933         -2117           Duncan #1-A         23-5N-11E         760         3111         -2355         NDE         2007         -2235         2986         -2235           Somerville 2-13         23-5N-11E         752         3040         -2358         3211         -2479         3057         -2235         2987         -2244           Somerville 2-33         23-5N-11E         771         3146         -2248         NDE         3118         -2381         3026         -2244         3102         -2235         Lofts 41         24-5N-11E         771         3146         -2313         3183         -2432         3102         -2235         Lofts 41         Lofts 41         2444         -2428         NDE         3183         -2432         3102         -2235         Lofts 41<                                                                                                                                                                                                          |                                       |           |     |                                               |      |          |          | -2380    |            |           |             | -2083      |
| Adams N #1         22-5N-11E         760         338         -2239         3347         -2448         3106         -2207         3074         -2171           Berman 1-22         22-5N-11E         810         3106         -2236         NDE         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2208         2309         2307         2208         2308         2208         2308         2308         2308         2208         2308         2308         2208         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         2308         23028         2308         2208 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                       |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Bernan 1-22         22-5N-11E         1700         3005         2245         NDE         2968         -2208         2893         -2101           Duncan #1-A         23-5N-11E         843         3160         -2350         NDE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                            |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Martin Unit #1         22-5N-11E         819         3193         -2350         NDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |           |     |                                               |      |          |          | 2110     |            |           |             | -2133      |
| Duncan #1-A         23-Sh-11E         643         3133         -2350         NDE         900         -2233           Somerville #1         23-Sh-11E         756         3111         -2355         NDE         -2368         -2235           Somerville #1         23-Sh-11E         730         3165         -2377         NDE         3160         -2350         3076         -2286           Somerville #1         24-Sh-11E         737         3165         -2428         NDE         3160         -2381         3028         -229           Lofts Unt #1         24-Sh-11E         751         3245         -2494         3482         -2731         3183         -2432         3100         -2245           Lofts #1-25         25-Sh-11E         771         3454         -2675         NDE         3206         -2365         F/O           Newton 1-25         25-Sh-11E         779         3454         -2675         NDE         3412         -2633         3305         -2241           Woodford #1         26-Sh-11E         794         3085         -2274         NDE         3319         -2426         2945         -217           Holtp Birmin 1-27         27-Sh-11E         821         3142                                                                                                                                                                                                                                      |                                       |           |     |                                               |      |          |          |          | 2000       | 2200      | 2000        | 2100       |
| Duncan Unit #1         23-5N-11E         756         1111         2355         NDE         -2479         3057         -2325         2975         -2243           Somerville 2-23         23-5N-11E         731         3165         -2428         NDE         3160         -2350         3076         -2260           Fern A #1         24-5N-11E         751         3145         -2393         NDE         3160         -2365         F/O           Lofts Unit#1         24-5N-11E         751         3144         2308         NDE         3100         -2365           Lofts 41-25         25-5N-11E         751         3245         -2428         NDE         3206         -2365         F/O           Newton 1-25         25-5N-11E         741         3206         -2265         NDE         3206         -2265         -2241         2663         -2271           Noedord #1         26-5N-11E         744         3068         -2274         NDE         3312         -2263         -2241         2665         -2271           Holts B1/D         72-5N-11E         825         3202         -2357         3327         -200         825         2995         -2171           Lockey#1         27-5                                                                                                                                                                                                                                          |                                       |           |     |                                               |      |          |          |          |            |           | 3075        | -2232      |
| Somerville 41         23-5N-11E         732         3090         2258         3211         -2479         3057         -2355         2975         -2248           Somerville 2-23         23-5N-11E         810         3187         -2377         NDE         3180         -2350         3076         -2289           Lotis Unit #1         24-5N-11E         737         3165         -2428         NDE         3118         -2281         3000         -2245           Lotis #1-25         25-5N-11E         841         3206         -2365         NDE         3206         -2265         F/O         -           Newton 1-25         25-5N-11E         841         3349         -2508         NDE         3411         -2633         3306         -2262           Lotis #1 "O"         26-5N-11E         841         3349         -2508         NDE         3102         -2663         -2476         NDE         3305         -2241         2965         -217           Holy B Timm 1-27         27-5N-11E         839         3192         -2260         8393         3102         -2262         4285         2995         -217           Leakey #1         27-5N-11E         812         3142         -2330         <                                                                                                                                                                                                                              |                                       |           |     |                                               |      |          |          |          |            |           |             | -2232      |
| Somerville 2-23         23-5N-11E         310         3187         2277         NDE         3160         -2360         3076         -2266           Fern A #1         24-5N-11E         751         3145         -2428         NDE         3118         -2381         3028         -2264           Lofts Unit #1         24-5N-11E         751         3245         -2494         3482         -2731         3183         -2432         3100         -2245           Lofts #1-25         25-5N-11E         841         3206         -2365         NDE         3206         -2365         F/O           Newton 1-25         25-5N-11E         841         3304         -2508         NDE         3412         -2633         3306         -2527           Lofts #1 "0"         26-5N-11E         744         3086         -2274         NDE         3035         -2241         2965         -217           Holty B Trimm 1-27         27-5N-11E         839         3192         -2357         NDE         3196         -2344         3103         -2257           Lackey #1         27-5N-11E         852         3224         -2377         NDE         3196         -2344         3103         -2257 <td< td=""><td></td><td>23-5N-11E</td><td></td><td></td><td></td><td></td><td></td><td>-2479</td><td>3057</td><td>-2325</td><td></td><td>-2243</td></td<>                                                                                          |                                       | 23-5N-11E |     |                                               |      |          |          | -2479    | 3057       | -2325     |             | -2243      |
| Lotis Unit #1         24-5N-11E         751         3144         2293         NDE         3000         -2243           Lotis #1-25         25-5N-11E         751         3245         -2365         NDE         3200         -2365         NDE         3200         -2365         NDE         3200         -2365         F/O           Newton 1-25         25-5N-11E         779         3454         -2675         NDE         3412         -2233         3306         -2251           Lotis #1"O"         26-5N-11E         841         3349         -2508         NDE         841         841           Woodford #1         26-5N-11E         784         3068         -2274         NDE         3035         -2241         2965         -217           Holly B Timm 1-27         27-5N-11E         832         3102         -2352         3327         -2502         825         2995         -217           Leon Adams 1-27         27-5N-11E         851         3224         -2372         NDE         3106         -2244         3103         -2262           Valker Heirs #1         27-5N-11E         863         3220         -2357         3349         -2466         3165         -2322         3112         <                                                                                                                                                                                                                              |                                       | 23-5N-11E | 810 |                                               | 3187 | -2377    | NDE      |          | 3160       | -2350     | 3076        | -2266      |
| Lotis Unit #1         24-5N-11E         751         3144         -2393         NDE         3000         -2243           Lotis #1-25         25-5N-11E         751         3245         -2365         NDE         32006         -22835         30102         -2355           Lotis #1'0''         25-5N-11E         779         3454         -2675         NDE         3412         -2633         3306         -252           Lotis #1''O'         26-5N-11E         841         3306         -2274         NDE         841         841           Woodford #1         26-5N-11E         841         3068         -2274         NDE         841         2965         -217           Holly B Trimm 1-27         27-5N-11E         839         3192         -2353         NDE         839         3102         -2260           Lackey #1         27-5N-11E         852         3122         3327         -2502         825         2995         -217           Leon Adams 1-27         27-5N-11E         863         3220         -2357         3349         -2486         3185         -2322         3112         -2243           Herring #2         26-5N-11E         851         3214         -2212         3184                                                                                                                                                                                                                                          | Fem A #1                              | 24-5N-11E | 737 |                                               | 3165 | -2428    | NDE      |          | 3118       | -2381     | 3028        | -2291      |
| Lottis 1-25         25-5N-11E         841         3206         -2365         NDE         3206         -2365         F/O           Newton 1-25         25-5N-11E         779         3454         -2675         NDE         3412         -2633         3306         -2527           Loftis #1 "0"         26-5N-11E         744         3068         -2274         NDE         3035         -2241         2965         -217           Holly E Timm 1-27         27-5N-11E         839         3102         -2263         3027         -2502         825         2995         -217           Leon Adams 1-27         27-5N-11E         832         3224         -2372         NDE         3106         -2328         3101         -2289         3103         -2200           Walker Heirs #1         27-5N-11E         832         3220         -2357         3349         -2486         3185         -2322         3118         -2202           Walker Heirs #1         28-5N-11E         832         3218         -2265         3418         -2465         3175         -2222         3098         -2144           Trimm #1         28-5N-11E         850         3156         -2306         NDE         3540         -2354                                                                                                                                                                                                                              |                                       | 24-5N-11E | 751 |                                               | 3144 | -2393    | NDE      |          |            |           | 3000        | -2249      |
| Newton 1-25         25-5N-11E         779         3454         -2675         NDE         3412         -2633         3306         -2522           Lofts #1 '0''         26-5N-11E         841         3349         -2506         NDE         841         841         841           Woodford #1         26-5N-11E         794         3005         -2274         NDE         839         3102         -2265           Lackey #1         27-5N-11E         825         3100         -2275         3327         -2502         825         2995         -217           Leon Adams 1-27         Z7-5N-11E         812         3142         -2330         NDE         3101         -2284         3103         -2257           Walker Heirs #1         27-5N-11E         812         3142         -2330         NDE         3101         -2289         3018         -2204           Walker Heirs 27-2         27-5N-11E         822         3134         -2317         NDE         3100         -2278         3015         -2102           Herring D-1         28-5N-11E         820         3124         -2317         NDE         3100         -2278         3015         -2212         3098         -2177                                                                                                                                                                                                                                                     | Loftis#1-25                           | 25-5N-11E | 751 |                                               | 3245 | -2494    | 3482     | -2731    | 3183       | -2432     | 3102        | -2351      |
| Loftis #1 '0"         22-5N-11E         841         3349         -2508         NDE         841         841           Woodford #1         26-5N-11E         794         3068         -2274         NDE         3035         -2241         2965         -2171           Holly BTrimm 1-27         27-5N-11E         839         3102         -2265         3327         -2502         825         2995         -2177           Lackey #1         27-5N-11E         852         3224         -2372         NDE         3196         -2344         3103         -2269           Walker Heirs 27-2         27-5N-11E         812         3144         -2330         NDE         3100         -2289         3018         -2209           Walker Heirs 27-2         27-5N-11E         822         3134         -2312         NDE         3100         -2278         3015         -2122           Walker Heirs 27-2         27-5N-11E         820         3218         -2265         3418         -2465         3100         -2272         3112         -2244           Herning #2         28-5N-11E         950         3264         -2201         3098         -2144           Trimm #1         28-5N-11E         960                                                                                                                                                                                                                                          | Loftis 1-25                           | 25-5N-11E | 841 |                                               | 3206 | -2365    | NDE      |          | 3206       | -2365     | F/O         |            |
| Woodford #1         26-5N-11E         794         3088         -2274         NDE         3035         -2241         2965         -2171           Holly B Trimm 1-27         27-5N-11E         839         3192         -2353         NDE         839         3102         -2266           Lackey #1         27-5N-11E         825         3100         -2275         3327         -2502         825         2995         -2171           Leon Adams 1-27         27-5N-11E         852         3224         -2372         NDE         3101         -2289         3018         -2201           Walker Heirs #1         27-5N-11E         863         3220         -2367         3349         -2465         3185         -2322         3112         -2248           Herring D-1         28-5N-11E         953         3218         -2265         3418         -2465         3175         -2222         3098         -2144           Timm #1         28-5N-11E         986         3266         -2280         3379         -2381         a513         -2657         3284         -22274         3140         -218           Yernon 1-29         29-5N-11E         980         3367         -2381         3513         -2567                                                                                                                                                                                                                                 | Newton 1-25                           | 25-5N-11E | 779 |                                               | 3454 | -2675    | NDE      |          | 3412       | -2633     | 3306        | -2527      |
| Holly B Trimm 1-27         27-5N-11E         839         3192         -2353         NDE         839         3102         -2263           Lackey #1         27-5N-11E         825         3100         -2275         3327         -2502         825         2995         -2171           Leon Adams 1-27         27-5N-11E         812         3142         -2330         NDE         3101         -2289         3018         -2200           Walker Heirs #1         27-5N-11E         812         3142         -2330         NDE         3101         -2289         3018         -2200           Walker Heirs #1         27-5N-11E         812         3144         -2330         NDE         3101         -2289         3018         -2200           Walker Heirs #1         28-5N-11E         823         3212         NDE         3100         -2272         3098         -2143           Herring #2         28-5N-11E         963         3266         -2280         3379         -2393         NDE         8360         3034         -2143           Trimm #1         28-5N-11E         980         3307         -2317         NDE         3264         -2274         3140         -2150           Vernon 1-29 <td>Loftis #1 "O"</td> <td>26-5N-11E</td> <td>841</td> <td></td> <td>3349</td> <td>-2508</td> <td>NDE</td> <td></td> <td></td> <td>841</td> <td></td> <td>841</td>                                                                  | Loftis #1 "O"                         | 26-5N-11E | 841 |                                               | 3349 | -2508    | NDE      |          |            | 841       |             | 841        |
| Lackey #1         27-5N-11E         825         3100         -2275         3327         -2502         825         2995         -2171           Leon Adams 1-27         27-5N-11E         852         3224         -2372         NDE         3196         -2344         3103         -2250           Walker Heirs #1         27-5N-11E         863         3220         -2357         3349         -2486         3185         -2322         3112         -2243           Herring #2         28-5N-11E         853         3220         -2357         3349         -2486         3185         -2322         3112         -2243           Herring #2         28-5N-11E         953         3218         -2265         3418         -2485         3175         -2222         3098         -2143           Tirm #1         28-5N-11E         986         3266         -2260         NDE         850         3034         -2184           Parks Estate 1-29         29-5N-11E         986         3266         -2281         3513         -2567         3289         -2343         3220         -2277           Vernon 1-29         29-5N-11E         990         3307         -2381         3513         -2567         3289                                                                                                                                                                                                                                   | Woodford #1                           | 26-5N-11E | 794 |                                               | 3068 | -2274    | NDE      |          | 3035       | -2241     | 2965        | -2171      |
| Leon Adams 1-27         27-5N-11E         852         3224         -2372         NDE         3196         -2344         3103         -225'           Walker Heirs #1         27-5N-11E         812         3142         -2337         3349         -2486         3185         -2322         3112         -2244           Herring #2         28-5N-11E         822         3134         -2312         NDE         3100         -2278         3015         -2193           Herring D-1         28-5N-11E         953         3218         -2266         3418         -2465         3175         -2222         3098         -2148           Trim #1         28-5N-11E         963         3266         -2200         379         -2393         NDE         3340         -2354         3263         -2277           Vernon 1-29         29-5N-11E         986         3327         -2381         3513         -2567         3289         -2343         3220         -2275           Wilbanks #1         29-5N-11E         946         3327         -2381         3513         -2567         3289         -2343         3220         -2275           Wilbanks 3-30         30-5N-11E         927         3191         -2264                                                                                                                                                                                                                                   | Holly B Trimm 1-27                    | 27-5N-11E |     |                                               |      |          |          |          |            |           |             | -2263      |
| Walker Heirs #1         27.5N-11E         812         3142         -2330         NDE         3101         -2289         3018         -2200           Walker Heirs 27-2         27.5N-11E         863         3220         -2357         3349         -2486         3185         -2322         3112         -2248           Herring #2         28.5N-11E         953         3218         -2265         3418         -2465         3175         -2222         3098         -2148           Trimm #1         28.5N-11E         986         3266         -2206         NDE         850         3034         -2189           Parks Estate 1-29         29.5N-11E         986         3266         -2201         3307         -2317         NDE         3264         -2274         3140         -2155           Wilbanks #1         29.5N-11E         946         3327         -2317         NDE         3264         -2274         3140         -2155           Wilbanks 3.30         30-5N-11E         950         3181         -2264         NDE         3147         -2220         3068         -2165           Wilbanks 3.30         30-5N-11E         927         3191         -2264         NDE         3152         -2230 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-2502</td> <td></td> <td></td> <td></td> <td>-2170</td>                                                      | · · · · · · · · · · · · · · · · · · · |           |     |                                               |      |          |          | -2502    |            |           |             | -2170      |
| Walker Heirs 27-2         27-5N-11E         863         3220         -2357         3349         -2486         3185         -2322         3112         -2243           Herring #2         28-5N-11E         822         3134         -2312         NDE         3100         -2278         3015         -2192           Herring D-1         28-5N-11E         850         3218         -2265         3418         -2465         3175         -2222         3098         -2144           Timm #1         28-5N-11E         986         3266         -2200         3379         -2393         NDE         3340         -2354         3263         -2277           Vernon 1-29         29-5N-11E         986         3267         -2317         NDE         3264         -2274         3140         -2167           Wilbanks #1         29-5N-11E         946         3327         -2331         3513         -2567         3289         -2343         3220         -2274           C.C. Carter #1         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2165           Wilbanks 3-30         30-5N-11E         803         3502         -2609         NDE                                                                                                                                                                                                                                    |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Herring #2         28-5N-11E         822         3134         -2312         NDE         3100         -2278         3015         -2193           Herring D-1         28-5N-11E         953         3218         -2265         3418         -2465         3175         -2222         3098         -2143           Trimm #1         28-5N-11E         986         3266         -2306         NDE         850         3034         -2183           Parks Estate 1-29         29-5N-11E         986         3266         -2280         3379         -2393         NDE         3340         -2354         3263         -2277           Vernon 1-29         29-5N-11E         990         3307         -2317         NDE         3264         -2274         3140         -2157           Wilbanks #1         29-5N-11E         990         3307         -2317         NDE         3264         -2201         3080         -2137           Derrick 1-30         30-5N-11E         927         3191         -2244         NDE         3147         -2200         3085         -2167           Wilbanks 3-30         30-5N-11E         892         3198         -2266         NDE         3147         -2230         3085 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-2206</td></td<>                                                                                                       |                                       |           |     |                                               |      |          |          |          |            |           |             | -2206      |
| Herring D-1         28-5N-11E         953         3218         -2265         3418         -2465         3175         -2222         3098         -2145           Trimm #1         28-5N-11E         950         3156         -2306         NDE         850         3034         -2185           Parks Estate 1-29         29-5N-11E         990         3307         -2317         NDE         3264         -2274         3140         -2155           Witbanks #1         29-5N-11E         946         3327         -2381         3513         -2567         3289         -2243         3220         -2274           C.C. Carter #1         30-5N-11E         946         3327         -2381         3513         -2567         3289         -2233         3020         -2274           Oberrisk 1-30         30-5N-11E         950         3181         -2264         NDE         3147         -2220         3085         -2165           Wilbanks 3-30         30-5N-11E         922         3198         -2276         NDE         3147         -2220         3085         -2165           Huffman 1-32         32-5N-11E         803         3502         -2609         NDE         3454         -2561         3373                                                                                                                                                                                                                                 |                                       |           |     |                                               |      |          |          | -2486    |            | _         |             | -2249      |
| Trimm #1         28-5N-11E         850         3156         -2306         NDE         850         3034         -2184           Parks Estate 1-29         29-5N-11E         986         3266         -2280         3379         -2393         NDE         3340         -2354         3263         -2271           Vernon 1-29         29-5N-11E         946         3327         -2317         NDE         3264         -2274         3140         -2161           Witbanks #1         29-5N-11E         946         3327         -2381         3513         -2667         3289         -2343         3220         -2274           C.C. Carter #1         30-5N-11E         950         3184         -2234         3317         -2367         950         3080         -2133           Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2163           Wilbanks 3-30         30-5N-11E         892         33502         -2609         NDE         3152         -2230         3085         -2163           Mark 1-32         32-5N-11E         885         3210         -2875         NDE         3160         -2325         3090                                                                                                                                                                                                                                       | ~                                     |           |     |                                               |      |          |          |          |            |           |             | -2193      |
| Parks Estate 1-29         29-5N-11E         986         3266         -2280         3379         -2393         NDE         3340         -2354         3263         -2277           Vernon 1-29         29-5N-11E         990         3307         -2381         3513         -2567         3289         -2343         3220         -2274           Wilbanks #1         29-5N-11E         950         3184         -2234         3317         -2367         950         3080         -2130           Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2130           Wilbanks 3-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3086         -2160           Huffman 1-32         32-5N-11E         803         3502         -2609         NDE         3454         -2561         3373         -2480           Mark 1-32         32-5N-11E         805         3363         -2970         NDE         865         3682         -2811           Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801                                                                                                                                                                                                                                       | × ×                                   |           |     |                                               |      |          |          | -2465    | 3175       |           |             |            |
| Vernon 1-29         29-5N-11E         990         3307         -2317         NDE         3264         -2274         3140         -2150           Wilbanks #1         29-5N-11E         946         3327         -2381         3513         -2567         3289         -2343         3220         -2274           C.C. Carter #1         30-5N-11E         950         3184         -2234         3317         -2367         950         3080         -2130           Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2150           Wilbanks 3-30         30-5N-11E         922         3198         -2276         NDE         3152         -2230         3085         -2160           Huffman 1-32         32-5N-11E         803         3502         -2609         NDE         3454         -2561         3373         -2481           Norell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801         801         801         801         801         801         801         801         2325         13090         -2235         3090         -2255         Loftis 1-33                                                                                                                                                                                                                          |                                       |           |     |                                               |      |          |          |          | 0010       |           |             |            |
| Wilbanks #1         29-5N-11E         946         3327         -2381         3513         -2567         3289         -2343         3220         -2274           C.C. Carter #1         30-5N-11E         950         3184         -2234         3317         -2367         950         3080         -2135           Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2135           Wilbanks 3-30         30-5N-11E         922         3198         -2276         NDE         3152         -2230         3085         -2165           Huffman 1-32         32-5N-11E         893         3502         -2609         NDE         3454         -2561         3373         -2480           Mark 1-32         32-5N-11E         805         3825         -2970         NDE         865         3682         -2811           Norvell 32-1         32-5N-11E         801         6324         -2823         3818         -3017         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         80                                                                                                                                                                                                                                   |                                       |           |     | 3266 -2280                                    |      |          |          |          |            |           |             |            |
| C.C. Carter #1         30-5N-11E         950         3184         -2234         3317         -2367         950         3080         -2130           Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2200         3084         -2130           Wilbanks 3-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3085         -2160           Huffman 1-32         32-5N-11E         893         3502         -2609         NDE         3454         -2561         3373         -2480           Mark 1-32         32-5N-11E         805         3835         -2970         NDE         865         3682         -2811           Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801         801           Loftis 1-33 (Formor Op)         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2355           Martin 1-33         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2355                                                                                                                                                                                                                              |                                       |           |     |                                               |      |          |          | 0507     |            |           |             |            |
| Derrick 1-30         30-5N-11E         927         3191         -2264         NDE         3147         -2220         3084         -2157           WIlbanks 3-30         30-5N-11E         922         3198         -2276         NDE         3152         -2230         3085         -2163           Huffman 1-32         32-5N-11E         893         3502         -2609         NDE         3454         -2561         3373         -2480           Mark 1-32         32-5N-11E         805         3835         -2970         NDE         865         3682         -2811           Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801         801           Loftis 1-33 (Formor Op)         33-5N-11E         835         3210         -2375         NDE         3160         -2325         3090         -2255           Loftis 1-33         33-5N-11E         831         3294         -2413         NDE         3256         -2375         3165         -2284           Martin 1-33         33-5N-11E         880         3392         -2494         NDE         3160         -2305         3026         -2177           Lackey Unit #1                                                                                                                                                                                                                                      |                                       |           |     |                                               |      |          |          |          | 3289       |           |             |            |
| Wilbanks 3-30         30-5N-11E         922         3198         -2276         NDE         3152         -2230         3085         -2163           Huffman 1-32         32-5N-11E         893         3502         -2609         NDE         3454         -2561         3373         -2483           Mark 1-32         32-5N-11E         805         3835         -2970         NDE         865         3682         -2813           Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801         801           Loftis 1-33 (Formor Op)         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2325           Loftis 33-1         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2385           Lackey B Unit #1         34-5N-11E         892         3363         -2471         NDE         3256         -2375         3165         -2284           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -22735                                                                                                                                                                                                                                        |                                       |           |     |                                               |      |          |          | -2301    | 2147       |           |             |            |
| Huffman 1-32         32-5N-11E         893         3502         -2609         NDE         3454         -2561         3373         -2480           Mark 1-32         32-5N-11E         865         3835         -2970         NDE         865         3682         -281           Norvell 32-1         32-5N-11E         865         3210         -2823         3818         -3017         801         801           Loftis 1-33 (Formor Op)         33-5N-11E         835         3210         -2375         NDE         3160         -2325         3090         -2253           Loftis 3-31         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2355           Martin 1-33         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2355           Martin 1-33         35-5N-11E         881         3294         -2413         NDE         3160         -2305         3026         -2177           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -2234           Hall E #1                                                                                                                                                                                                                                         |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Mark 1-32         32-5N-11E         865         3835         -2970         NDE         865         3682         -2813           Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801         801                                                                                                                                                                                                                                                 |                                       |           |     |                                               |      |          |          | <u> </u> |            |           |             |            |
| Norvell 32-1         32-5N-11E         801         3624         -2823         3818         -3017         801         801           Loftis 1-33 (Formor Op)         33-5N-11E         835         3210         -2375         NDE         3160         -2325         3090         -2255           Loftis 1-33 (Formor Op)         33-5N-11E         835         3210         -2375         NDE         3160         -2325         3090         -2255           Martin 1-33         33-5N-11E         881         3294         -2413         NDE         3256         -2375         3165         -2284           Lackey B Unit #1         34-5N-11E         860         3241         -2330         NDE         3160         -2305         3026         -2177           Lackey Unit #1         34-5N-11E         860         3241         -2331         NDE         860         3095         -2284           Hall E #1         35-5N-11E         886         3392         -2494         NDE         898         3274         -2375           Shirley #1 (Joe D.Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2844         3554         -2748           Shirley #1 (Viking Pet)                                                                                                                                                                                                                           |                                       |           |     | <b>├──                                   </b> |      |          |          |          | 3434       |           |             |            |
| Loftis 1-33 (Formor Op)         33-5N-11E         835         3210         -2375         NDE         3160         -2325         3090         -2253           Loftis 33-1         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2355           Martin 1-33         33-5N-11E         892         3263         -2471         3544         -2652         3318         -2426         3246         -2355           Lackey B Unit #1         34-5N-11E         855         3185         -2330         NDE         3160         -2305         3026         -217           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         3160         -2305         3026         -217           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -2234           Hall E #1         35-5N-11E         898         3392         -2494         NDE         898         3274         -2374           Shirley #1 (Joe D.Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2748 </td <td></td> <td></td> <td></td> <td>     </td> <td></td> <td></td> <td></td> <td>_3017</td> <td></td> <td></td> <td>2002</td> <td></td>                                                                                 |                                       |           |     |                                               |      |          |          | _3017    |            |           | 2002        |            |
| Loftis 33-1         33-5N-11E         892         3363         -2471         3544         -2652         3318         -2426         3246         -2354           Martin 1-33         33-5N-11E         881         3294         -2413         NDE         3356         -2375         3165         -2237           Lackey Unit #1         34-5N-11E         881         3294         -2413         NDE         3360         -2375         3165         -2237           Lackey Unit #1         34-5N-11E         860         3241         -2330         NDE         3160         -2305         3026         -217           Lackey Unit #1         34-5N-11E         806         3241         -2381         NDE         860         3095         -2238           Hall E #1         35-5N-11E         898         3392         -2494         NDE         898         3274         -2376           Shirley #1 (vie Davis)         36-5N-11E         806         3717         -2911         NDE         38670         -2684         3554         -2749           Shirley #1 (Viking Pet)         36-5N-11E         799         3370         -2571         3548         -2749         3337         -2589         3229         -2433 <td></td> <td></td> <td></td> <td>     </td> <td></td> <td></td> <td></td> <td>-3017</td> <td>3160</td> <td></td> <td>3000</td> <td></td>                                                                                    |                                       |           |     |                                               |      |          |          | -3017    | 3160       |           | 3000        |            |
| Martin 1-33         33-5N-11E         881         3294         -2413         NDE         3256         -2375         3165         -2284           Lackey B Unit #1         34-5N-11E         855         3185         -2330         NDE         3160         -2305         3026         -2177           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -2234           Hall E #1         35-5N-11E         806         3392         -2494         NDE         898         3274         -2375           Shirley #1 (Joe D.Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2749           Shirley #1 (Viking Pet)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2749           Shirley #1 (Viking Pet)         36-5N-11E         790         3417         -2627         NDE         3379         -2589         3278         -2448           Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2448                                                                                                                                                                                                                                  |                                       |           |     |                                               |      |          |          | -2652    |            |           |             |            |
| Lackey B Unit #1         34-5N-11E         855         3185         -2330         NDE         3160         -2305         3026         -217           Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -2237           Hall E #1         35-5N-11E         880         3392         -2494         NDE         898         3274         -2375           Shirley #1 (Joe D. Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2748           Shirley #1 (Viking Pet)         36-5N-11E         790         3417         -2927         NDE         3379         -2589         3278         -2484           Marbet #19         1-5N-12E         794         3370         -2571         3548         -2749         3337         -2538         3229         -2484           Sherill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Sherill 3-2         2-5N-12E         758         3253         -2464         NDE         3208         -2419         3117         -2328                                                                                                                                                                                                                                                                               |                                       |           |     |                                               |      |          |          | -2002    |            |           |             |            |
| Lackey Unit #1         34-5N-11E         860         3241         -2381         NDE         860         3095         -2234           Hall E #1         35-5N-11E         898         3392         -2494         NDE         898         3274         -2374           Shirley #1 (Joe D. Davis)         36-5N-11E         896         3717         -2911         NDE         3670         -2844         3554         -2744           Shirley #1 (Viking Pet)         36-5N-11E         790         3417         -2627         NDE         3379         -2589         3278         -2480           Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2473           Sherrill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Sherrill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2328                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Hall E #1         35-5N-11E         898         3392         -2494         NDE         898         3274         -2376           Shirley #1 (Joe D.Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2743           Shirley #1 (Viking Pet)         36-5N-11E         790         3417         -2627         NDE         3379         -2589         3278         -2484           Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2480           Shernill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Shernill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |           |     |                                               |      |          |          |          | 5100       |           |             |            |
| Shirley #1 (Joe D. Davis)         36-5N-11E         806         3717         -2911         NDE         3670         -2864         3554         -2748           Shirley #1 (Viking Pet)         36-5N-11E         790         3417         -2627         NDE         3379         -2589         3278         -2488           Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2480           Shernill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Shernill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Shirley #1 (Viking Pet)         38-5N-11E         790         3417         -2627         NDE         3379         -2589         3278         -2488           Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2438           Sherill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Sherill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -3328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |           |     |                                               |      |          |          |          | 3670       |           |             |            |
| Marbet #19         1-5N-12E         799         3370         -2571         3548         -2749         3337         -2538         3229         -2430           Shemill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Shemill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |           |     |                                               |      |          |          |          |            |           |             |            |
| Shemill #1         2-5N-12E         754         3224         -2470         NDE         754         754           Shemill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |           |     |                                               |      |          |          | -27/10   |            |           |             |            |
| Sherrill 3-2         2-5N-12E         789         3253         -2464         NDE         3208         -2419         3117         -2326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |           |     |                                               |      |          |          | -2143    | 5551       |           | 3223        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |           |     |                                               |      |          |          | <u> </u> | 3208       |           | 3117        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Everett #1                            | 3-5N-12E  | 845 |                                               | 3310 | -2465    | 3465     | -2620    | 3264       | -2419     | 3168        | -2323      |

| Well                   | Location               | KB         | TopofL       | JHCoal | Торо         | f LHCoal       | Top of /    | Atoka | Top of Upp<br>(Unnamed |                | Base of Sha  | ale Marker     |
|------------------------|------------------------|------------|--------------|--------|--------------|----------------|-------------|-------|------------------------|----------------|--------------|----------------|
| Semeski 1-3            | 3-5N-12E               | 862        |              |        | 3243         | -2381          | 3395        | -2533 | 3202                   | -2340          | 3109         | -2247          |
| Gwinn 1-5              | 5-5N-12E               | 727        |              |        | 3208         | -2481          | 3350        | -2623 | 3172                   | -2445          | 3104         | -2377          |
| Thelma Lee 1-6         | 6-5N-12E               | 866        |              |        | 3243         | -2377          | NDE         |       | 3214                   | -2348          | 3137         | -2271          |
| Bethel #1              | 9-5N-12E               | 779        | 3086         | -2307  | 3211         | -2432          | NDE         |       | 3170                   | -2391          | 3027         | -2248          |
| Bethel #3-9            | 9-5N-12E               | 819        | <u> </u>     |        | 3304         | -2485          | NDE         |       | 3260                   | -2441          | 3166         | -2347          |
| Cooper #1              | 10-5N-12E              | 862        | 3200         | -2338  | 3338         | -2476          | NDE         | 0000  |                        | 862            | 0.10.1       | 862            |
| Crawford 1-10          | 10-5N-12E              | 864        | 3186         | -2322  | 3331         | -2467          | 3484        | -2620 | 3283                   | -2419          | 3181         | -2317          |
| Watkins #1             | 10-5N-12E              | 848        | <u> </u>     |        | 3300         | -2452          | NDE         |       | 3253                   | -2405          | 3154         | -2306          |
| Willard 1-10           | 10-5N-12E              | 824        |              |        | 3269         | -2445          | NDE         | 0750  | 3222                   | -2398          | 3123         | -2299          |
| Marvin #1              | 11-5N-12E              | 786        | <u> </u>     |        | 3370         | -2584          | 3539        | -2753 | 3354                   | -2568          | 3220         | -2434          |
| Marvin #4<br>Marvin #5 | 11-5N-12E<br>11-5N-12E | 815<br>819 | <u> </u>     |        | 3332         | -2517          | NDE<br>NDE  |       |                        | 815<br>819     | 3197         | 815            |
| Orr B #1               | 11-5N-12E              | 845        | <u> </u>     |        | 3345<br>3308 | -2526<br>-2463 | 3465        | -2620 | 3261                   | -2416          | 3166         | -2378<br>-2321 |
| Marbet #17             | 12-5N-12E              | 778        | 3258         | -2480  | 3386         | -2403          | NDE         | -2020 | 3359                   | -2581          | 3252         | -2321          |
| Owen "B" #1            | 12-5N-12E              | 786        | 3266         | -2480  | 3403         | -2617          | NDE         |       | 3372                   | -2586          | 3262         | -2476          |
| Watt #1                | 12-5N-12E              | 700        | 5200         | -2400  | 3403         | 727            | 3696        | -2969 | 3434                   | -2707          | 3335         | -2608          |
| Elliot #1              | 14-5N-12E              | 819        |              |        | 3457         | -2638          | NDE         | -2000 | 3394                   | -2575          | 3288         | -2469          |
| Mcauley #2-14          | 14-5N-12E              | 832        |              |        | 3451         | -2619          | NDE         |       | 3400                   | -2568          | 3273         | -2441          |
| Valente #1             | 14-5N-12E              | 843        | <u> </u>     |        | 0401         | 843            | NDE         |       | 3410                   | -2567          | 3300         | -2457          |
| Wageman #1             | 14-5N-12E              | 752        | <u> </u>     |        | 3387         | -2635          | NDE         |       | 3358                   | -2606          | 3245         | -2493          |
| Rheinhart #1           | 15-5N-12E              | 791        | <u> </u>     |        | 3293         | -2502          | NDE         |       | 3247                   | -2456          | 3135         | -2344          |
| Vaughn #1              | 15-5N-12E              | 750        | 3200         | -2450  | 3344         | -2594          | NDE         |       | 3300                   | -2550          | 3191         | -2441          |
| Wilcox 1-15            | 15-5N-12E              | 728        |              |        | 3248         | -2520          | NDE         |       | 3204                   | -2476          | 3096         | -2368          |
| Black 1-16             | 16-5N-12E              | 785        |              |        | 3318         | -2533          | 3463        | -2678 | 3262                   | -2477          | 3163         | -2378          |
| Donna #1-16            | 16-5N-12E              | 776        | 3120         | -2344  | 3266         | -24.90         | NDE         |       | 3217                   | -2441          | 3112         | -2336          |
| Goode #1               | 16-5N-12E              |            |              |        | 3218         | -3218          | 3379        | -3379 | 3169                   | -3169          | 3066         | -3066          |
| J.W. Adams #1-16       | 16-5N-12E              | 708        |              |        | 3209         | -2501          | NDE         |       | 3160                   | -2452          | 3058         | -2350          |
| Brown 1-17             | 17-5N-12E              | 750        |              |        | 3208         | -2458          | NDE         |       | 3220                   | -2470          | 3125         | -2375          |
| John Black G #1        | 17-5N-12E              | 792        |              |        | 3322         | -2530          | NDE         |       | 3278                   | -2486          | 3177         | -2385          |
| Kristy Lee 1-17        | 17-5N-12E              | 753        | 2947         | -2194  | 3213         | -2460          | NDE         |       | 3177                   | -2424          | 3080         | -2327          |
| Tag Team Brown 1-17    | 17-5N-12E              | 736        | 3131         | -2395  | 3257         | -2521          | NDE         |       |                        | 736            |              | 736            |
| Black #1               | 20-5N-12E              | 822        |              |        | 3534         | -2712          | 3660        | -2838 | 3486                   | -2664          | 3380         | -2558          |
| Tim #1-20              | 20-5N-12E              | 789        |              |        | 3398         | -2609          | NDE         |       | 3353                   | -2564          | 3248         | -2459          |
| Gattet 4-21            | 21-5N-12E              | 805        |              |        | 3433         | -2628          | NDE         |       | 3393                   | -2588          | 3273         | -2468          |
| Gattett 3-21?          | 21-5N-12E              | 847        |              |        | 3334         | -2487          | NDE         |       |                        | 847            |              | 847            |
| Jennifer 2-21          | 21-5N-12E              | 754        |              |        | 3314         | -2560          | NDE         |       | 3275                   | -2521          | 3158         | -2404          |
| Ott 2-22               | 22-5N-12E              | 787        |              |        | 3304         | -2517          | NDE         |       |                        | 787            | 3164         | -2377          |
| Ott 4-22               | 22-5N-12E              | 820        |              |        | 3318         | -2498          | NDE         |       | 3278                   | -2458          | 3162         | -2342          |
| Loftis #1              | 23-5N-12E              | 729        |              |        | 3288         | -2559          | nde         |       | 3265                   | -2536          |              | 729            |
| 0. Morris 3-24         | 24-5N-12E              | 689        | <u> </u>     |        | 3228         | -2539          | 3496        | -2807 |                        | 689            | 3118         | -2429          |
| Ossie Morris #1        | 24-5N-12E              | 690        |              |        | 3187         | -2497          | NDE         |       | 3161                   | -2471          |              | 690            |
| E.E. Working Unit #1   | 25-5N-12E              | 749        | <u> </u>     |        | 3285         | -2536          | NDE         |       | 3255                   | -2506          | 3168         | -2419          |
| Davis Unit #1          | 26-5N-12E              | 717        | L            |        | 3287         | -2570          | NDE         | 0747  | 3262                   | -2545          |              | 717            |
| Black A #3             | 27-5N-12E              | 681        | <u> </u>     |        | 3279         | -2598          | 3428        | -2747 | 3230                   | -2549          | 0.04.0       | 681            |
| Black A #5             | 27-5N-12E              | 807        | <u> </u>     |        | 3368         | -2561          | NDE         |       | 3333                   | -2526          | 3216         | -2409          |
| Garrett "A" Unit #1    | 27-5N-12E              | 678        | <u> </u>     |        | 3270         | -2592          | NDE         |       | 3228                   | -2550          | 2204         | 678            |
| A.B. Capp#1            | 28-5N-12E              | 822        | <b> </b>     |        | 3466         | -2644<br>-2594 | NDE         |       | 3424                   | -2602<br>-2553 | 3304         | -2482          |
| Black 3-28             | 28-5N-12E              | 777        | <u> </u>     |        | 3371         |                | NDE         |       | 3330                   |                | 3216         | -2439          |
| Hall #1<br>Trimm #1    | 29-5N-12E<br>29-5N-12E | 762        |              |        | 3493<br>3611 | -2731<br>-3611 | NDE<br>3889 | -3889 | 3448<br>3571           | -2686<br>-3571 | 3327<br>3453 | -2565<br>-3453 |
| Rogers 1-30            | 29-5N-12E<br>30-5N-12E | 828        | <del> </del> |        | 3616         | -3611          | 3889<br>NDE | -2009 | 3575                   | -3571          | 3453         | -3453          |
| Hall #1                | 30-5N-12E              | 807        | <u> </u>     |        | 3710         | -2100          | 3865        | -3058 | 3668                   | -2747          | 5400         | 807            |
| Bennet Hall #1         | 31-5N-12E<br>32-5N-12E | 789        | <u> </u>     |        | 3662         | -2903          | 3858        | -3056 | 3625                   | -2836          |              | 789            |
| J.W. Hall Unit #1      | 32-5N-12E              | 745        | <del> </del> |        | 3552         | -2807          | NDE         | -5009 | 3508                   | -2050          |              | 745            |
| Reed#1                 | 33-5N-12E              | 806        | <u> </u>     |        | 3576         | -2770          | NDE         |       | 3530                   | -2703          | 3422         | -2616          |
| Trapp #1-33            | 33-5N-12E              | 803        | <u> </u>     |        | 3484         | -2681          | NDE         |       | 3442                   | -2639          | 5422         | 803            |
| Trapp #1-33            | 33-5N-12E              | 761        | <u> </u>     |        | 3486         | -2725          | NDE         |       | 3447                   | -2686          | 3322         | -2561          |
| Apache Paschall #1     | 34-5N-12E              | 717        | <u> </u>     |        | 3450         | -2723          | 3703        | -2986 | 3419                   | -2702          | 0022         | 717            |
| Davis Paschall #1      | 34-5N-12E              | 855        | <u> </u>     |        | 3573         | -27.18         | NDE         | 2000  | 0410                   | 855            |              | 855            |
| Wright-Wood Unit #1    | 34-5N-12E              | 700        | <u> </u>     |        | 3458         | -2755          | 3622        | -2919 | 3408                   | -2705          | 3288         | -2585          |
| S. McDonald Unit #1    | 35-5N-12E              |            | <u> </u>     |        | 3375         | -2694          | NDE         |       | 3348                   | -2667          | 3250         | -2569          |
| Depot #1               | 36-5N-12E              |            | <u> </u>     |        | 3485         | -2748          | 3740        | -3003 | 3454                   | -2717          | 3368         | -2631          |
| Thompson #1            | 1-5N-13E               |            | 3464         | -3464  | 3497         | -3497          | 3658        | -3658 | 3428                   | -3428          | 3324         | -3324          |
| Watkins #2             | 2-5N-13E               | 725        | 3446         | -2721  | 3479         | -2754          | 3619        | -2894 | 3402                   | -2677          | 3298         | -2573          |
| Food #2                | 3-5N-13E               | 678        | 3204         | -2526  | 3350         | -2672          | NDE         |       | 3321                   | -2643          | 3201         | -2523          |
| Food Unit #1           | 3-5N-13E               | 655        | 3203         | -2548  | 3332         | -2677          | NDE         |       | 3305                   | -2650          | 3190         | -2535          |
| Peters #1              | 3-5N-13E               | 658        |              |        | 3200         | -2542          | NDE         |       |                        |                |              |                |
| Gibson-Lindsey Unit #1 | 4-5N-13E               | 646        | 3230         | -2584  | 3342         | -2696          | NDE         |       | 3309                   | -2663          | 3213         | -2567          |
| Thornton #1            | 5-5N-13E               | 761        |              |        | 3510         | -2749          | NDE         |       |                        |                |              |                |
|                        |                        |            |              | -      |              |                |             |       |                        | 1              |              | 1 0011         |
| Thornton #1            | 5-5N-13E               | 761        |              |        | 3490         | -2729          | NDE         |       | 3474                   | -2713          | 3375         | -2614          |

| Well                             | Location               | КВ         | Topofl       | JHCoal         | Topo         | f LHCoal       | Top of,     | Atoka    | Top of Uppe<br>(Unnamed |                | Base of Sha  | ale Marker     |
|----------------------------------|------------------------|------------|--------------|----------------|--------------|----------------|-------------|----------|-------------------------|----------------|--------------|----------------|
| Stipe #1-6                       | 6-5N-13E               | 788        | 3422         | -2634          | 3457         | -2669          | 3505        | -2717    |                         | ,              |              | <u> </u>       |
| Stipe #1-6                       | 6-5N-13E               | 815        | 3413         | -2598          | 3492         | -2677          | NDE         |          | 3390                    | -2575          | 3276         | -2461          |
| Stipe 1-6                        | 6-5N-13E               | 788        |              |                |              | 788            |             |          |                         | 788            |              |                |
| Firestone Unit #1                | 7-5N-13E               | 777        |              |                | 3434         | -2657          | NDE         |          | 3456                    | -2679          | 3368         | -2591          |
| Reynolds #1                      | 7-5N-13E               | 674        |              |                | 3317         | -2643          | NDE         |          | 3297                    | -2623          |              |                |
| Buse 1                           | 8-5N-13E               | 836        |              |                | 3495         | -2659          | NDE         |          | 3470                    | -2634          | 3375         | -2539          |
| W.C. Wallace Unit #1             | 9-5N-13E               | 655        |              |                |              | 655            | NDE         |          | 3268                    | -2613          | 3175         | -2520          |
| Wallance #2                      | 9-5N-13E               |            |              |                |              | 0              |             | 0        | 3316                    | -3316          | 3188         | -3188          |
| Gibson 1-10                      | 10-5N-13E              | 745        | 3440         | -2695          | 3470         | -2725          | NDE         |          | 3410                    | -2665          | 3290         | -2545          |
| Grant 1-10                       | 10-5N-13E              | 805        | 3546         | -2741          | 3584         | -2779          | NDE         |          | 3502                    | -2697          | 3386         | -2581          |
| Winnie #1                        | 10-5N-13E              | 651        |              |                |              | 651            |             |          | 3297                    | -2646          | 3190         | -2539          |
| Watkins #1                       | 11-5N-13E              | 774        | 3543         | -2769          | 3573         | -2799          | 3811        | -3037    | 3502                    | -2728          | 3402         | -2628          |
| Core Energy Watkins #1           | 12-5N-13E              | 698        | 2765         | -2067          | 2813         | -2115          | 3050        | -2352    | 2705                    | -2007          | 2565         | -1867          |
| Field Heirs #1                   | 13-5N-13E              | 796        |              | 1707           | 0.4.4.0      | 796            | NDE         | 1070     | 3380                    | -2584          | 3295         | -2499          |
| Glennie #1-13                    | 13-5N-13E              | 665        | 2392         | -1727          | 2448         | -1783          | 2635        | -1970    | F/O? 2311'              |                | F/0?         | 4045           |
| Marbet #31                       | 14-5N-13E              | 681        | 2727         | -2046          | 2780         | -2099          | NDE         |          | F/O? 2690'              | 707            | 2596         | -1915          |
| Sandra #1-13                     | 13-5N-13E              | 727        | 0.500        | 4057           | 0575         | 727            |             |          | 0400                    | 727            |              | 727            |
| Watson #1                        | 13-5N-13E              | 666        | 2523         | -1857          | 2575         | -1909          | 2006        | 0400     | 2466<br>2946            | -1800          | 0770         | 666            |
| Ramsey #1                        | 14-5N-13E              | 716        | 3005         | -2289          | 3051         | -2335          | 3206        | -2490    |                         | -2230          | 2778         | -2062          |
| Watkins 114<br>Eggleston 1-15    | 14-5N-13E<br>15-5N-13E | 757<br>904 | 3398<br>3563 | -2641<br>-2659 | 3440<br>3601 | -2683<br>-2697 | NDE<br>NDE  | <u> </u> | 3350<br>3516            | -2593<br>-2612 | 3230         | -2473<br>904   |
| Investors Royalty                | 15-5N-13E              | 904<br>828 | 3563         | -2609          | 3485         | -2697<br>-2657 | 3744        | -2916    | 3405                    | -2012          | 3300         | -2472          |
| Marbet #37                       | 15-5N-13E              | 808        | 3388         | -2580          | 3485         | -2657          | 3744<br>NDE | -2910    | 3405                    | -2577          | 3233         | -2472          |
| Marbel #37<br>Mason 1-15         | 15-5N-13E              | 785        | 3378         | -2580          | 3435         | -2627          | 3655        | -2870    | 3329                    | -2534          | 3233         | -2425          |
| L.W. Chandler #1-1               | 16-5N-13E              | 748        | 3406         | -2658          | 3450         | -2045          | NDE         | -2070    | 3377                    | -2629          | 3289         | -2445          |
| W.P. Rock #1                     | 17-5N-13E              | 744        | 3400         | -2000          | 5450         | 744            | NUL         | 744      | 3314                    | -2570          | 5205         | 744            |
| W.P. Rock #2                     | 17-5N-13E              | 659        |              |                | 3276         | -2617          |             | 659      | 3250                    | -2591          |              | 659            |
| Robbins Unit #1                  | 18-5N-13E              | 667        |              |                | 0270         | 667            |             | 667      | 0200                    | 667            | 3130         | -2463          |
| Hazelwood #1                     | 19-5N-13E              | 795        |              |                | 3351         | -2556          | NDE         | 007      |                         | 795            | 0100         | 795            |
| Crawley #1-21                    | 21-5N-13E              | 732        | 3324         | -2592          | 3364         | -2632          | NDE         |          | 3275                    | -2543          | 3160         | -2428          |
| Virail 1-22                      | 22-5N-13E              | 751        | 3330         | -2579          | 3374         | -2623          | 3588        | -2837    | 3288                    | -2537          | 3167         | -2416          |
| Marbet #25                       | 23-5N-13E              | 715        | 2909         | -2194          | 2961         | -2246          | NDE         | 2001     | 2848                    | -2133          | 2711         | -1996          |
| Marbet #32                       | 23-5N-13E              | 680        | 2812         | -2132          | 2862         | -2182          | NDE         |          | 2748                    | -2068          |              |                |
| Deer Creek #1                    | 24-5N-13E              | 681        | 2681         | -2000          | 2742         | -2061          | 2932        | -2251    | 2642                    | -1961          |              |                |
| Parks 1                          | 1-6N-10E               |            |              |                | 2861         | -2861          | 2970        | -2970    | 2840                    | -2840          | 2816         | -2816          |
| Parks 2                          | 1-6N-10E               |            |              |                | 2908         | -2908          | 3009        | -3009    | 2886                    | -2886          | 2860         | -2860          |
| Lytal #1                         | 11-6N-10E              |            |              |                | 2849         | -2849          | 2947        | -2947    | 2835                    | -2835          | 2800         | -2800          |
| Degraffenried #1                 | 12-6N-10E              |            |              |                | 2758         | -2758          | 2872        | -2872    | 2735                    | -2735          | 2708         | -2708          |
| Cecil Gumm                       | 13-6N-10E              |            |              |                | 2998         | -2998          | 3123        | -3123    | 2966                    | -2966          | 2936         | -2936          |
| Warren 1                         | 4-6N-11E               |            |              |                | 3000         | -3000          | NDE         |          | 2972                    | -2972          | 2935         | -2935          |
| Eckles 1-5                       | 5-6N-11E               |            |              |                | 2856         | -2856          | 2987        | -2987    | 2835                    | -2835          | 2804         | -2804          |
| Walter 1-5                       | 5-6N-11E               |            |              |                | 3179         | -3179          | NDE         |          | 3162                    | -3162          | 3120         | -3120          |
| Boyd #1                          | 7-6N-11E               |            |              |                | 2751         | -2751          | 2870        | -2870    | 2740                    | -2740          | 2700         | -2700          |
| Boyd 2                           | 7-6N-11E               | 747        |              |                | 2727         | -1980          | NDE         |          | 2707                    | -1960          | 2674         | -1927          |
| Herrod #1                        | 7-6N-11E               |            |              |                | 2764         | -2764          | 2881        | -2881    | 2740                    | -2740          |              | 0              |
| Black #2                         | 9-6N-11E               |            |              |                | 2981         | -2981          | NDE         |          | 2949                    | -2949          | 2905         | -2905          |
| Black #1                         | 9-6N-11E               |            |              |                | 2947         | -2947          | NDE         |          | 2917                    | -2917          | 2872         | -2872          |
| Black 4                          | 9-6N-11E               |            |              |                | 2894         | -2894          | NDE         |          | 2860                    | -2860          | 2812         | -2812          |
| Warren 1                         | 9-6N-11E               |            |              |                | 3030         | -3030          | NDE         |          |                         | 0              |              | 0              |
| Black #3                         | 10-6N-11E              |            |              |                | 2912         | -2912          | NDE         |          | 2880                    | -2880          | 2832         | -2832          |
| Gayler 1-10                      | 10-6N-11E              |            |              | <b>I</b>       | 2991         | -2991          | NDE         |          | 2955                    | -2955          | 2906         | -2906          |
| Geneva 1-10                      | 10-6N-11E              |            |              | <b>I</b>       | 2907         | -2907          | NDE         | #VALUE!  | 2877                    | -2877          | 2838         | -2838          |
| McDonald 1-10                    | 10-6N-11E              |            |              |                | 2955         | -2955          | NDE         | L        | 2917                    | -2917          | 2869         | -2869          |
| Hill 1-11                        | 11-6N-11E              | -          |              |                | 3191         | -3191          | NDE         | 2000     | 3154                    | -3154          | 3106         | -3106          |
| Blevins 1-12                     | 12-6N-11E              |            |              |                | 3191         | -3191          | 3320        | -3320    | 3152                    | -3152          | 3096         | -3096          |
| Gill 1                           | 12-6N-11E              |            |              | <b> </b>       | 3111         | -3111          | 3274        | -3274    | 3073                    | -3073          | 3022         | -3022          |
| Ballinger 1-13                   | 13-6N-11E              |            |              | <b>I</b>       | 3395         | -3395          | NDE         |          | 3353                    | -3353          | 3240         | -3240          |
| Ballinger 3-13<br>Ballinger 4-13 | 13-6N-11E<br>13-6N-11E |            |              |                | 3322         | -3322          | NDE         |          | 3280                    | -3280          | 3283         | -3283          |
| DI                               |                        |            |              |                | 3366         | -3366          | NDE         |          | 3326                    | -3326          | 3274         | -3274          |
| Blevins 1-13-C<br>Bloving A 1    | 13-6N-11E              |            |              |                | 3206         | -3200          | NDE         | I        | 3164                    | -3104          | 3107         | -3107          |
| Blevins A-1<br>Hill 4-14         | 13-6N-11E<br>14-6N-11E |            |              |                | 3318<br>3145 | -3318<br>-3145 | NDE<br>NDE  |          | 3273<br>3107            | -3273<br>-3107 | 3215<br>3057 | -3215<br>-3057 |
|                                  | 14-6N-11E              | 6E0        |              |                |              |                | NDE         |          | 3107<br>3012            |                |              |                |
| Parker 1-14                      |                        | UCO        |              |                | 3052         | -2402          |             |          |                         | -2362          | 2965         | -2315          |
| Hill 2-15<br>Smoker 1, 17        | 15-6N-11E              |            |              |                | 3150<br>2984 | -3150          | NDE 3142    | -3142    | 3113                    | -3113          | 3062         | -3062          |
| Smoker 1-17                      | 17-6N-11E              |            |              |                |              | -2984          | 3142<br>NDE | -3142    | 2950                    | -2950          | 2000         | 0              |
| Aldridge 1-18                    | 18-6N-11E              |            |              |                | 2961         | -2961          | NDE         | <u> </u> | 2931                    | -2931          | 2892         | -2892          |
| Nail 1-18<br>Debbel A.1          | 18-6N-11E              |            |              |                | 2910         | -2910          | NDE<br>NDE  | l        | 2877                    | -2877          | 2847         | -2847          |
| Rahhal A-1                       | 18-6N-11E              |            |              |                | 2886         | -2886          |             |          | 2854                    | -2854          | 2817         | -2817          |
| Smoke 1-18                       | 18-6N-11E<br>19-6N-11E |            |              |                | 2910<br>3080 | -2910<br>-3080 | NDE<br>NDE  | <u> </u> | 2876<br>3052            | -2876<br>-3052 | 2837<br>3011 | -2837<br>-3011 |
| Blavlock 1-19                    |                        |            |              |                |              |                |             |          |                         | -5037          |              |                |


| Well                       | Location               | KB         | Topofl   | JHCoal   | Торо         | f LHCoal       | Top of A    | Atoka          | Top of Upp<br>(Unnamed |                | Base of Sha  | ale Marker     |
|----------------------------|------------------------|------------|----------|----------|--------------|----------------|-------------|----------------|------------------------|----------------|--------------|----------------|
| Little 1-19                | 19-6N-11E              |            |          |          | 2980         | -2980          | NDE         |                | 2947                   | -2947          | 2906         | -2906          |
| Robertson 1-19             | 19-6N-11E              |            |          |          | 3050         | -3050          | NDE         |                | 3013                   | -3013          | 2968         | -2968          |
| Roland 1-20                | 20-6N-11E              |            |          |          | 3131         | -3131          | NDE         |                | 3098                   | -3098          | 3054         | -3054          |
| Blevins 'B' 1-24           | 24-6N-11E              |            |          |          | 3322         | -3322          | NDE         |                | 3278                   | -3278          | 3220         | -3220          |
| Smith 1-28                 | 28-6N-11E              |            |          |          | 3050         | -3050          |             |                | 3010                   | -3010          | 2960         | -2960          |
| Smith 1-28                 | 28-6N-11E              |            |          |          | 3048         | -3048          | 3229        | -3229          |                        |                |              |                |
| Vernon Smith 1-28          | 28-6N-11E              |            |          |          | 3011         | -3011          | NDE         |                | 2974                   | -2974          | 2917         | -2917          |
| Derrick 1-29               | 29-6N-11E              |            |          |          | 2982         | -2982          | 3145        | -3145          | 2948                   | -2948          | 2898         | -2898          |
| McKee 1-29                 | 29-6N-11E              |            |          |          | 2942         | -2942          | 3113        | -3113          | 2910                   | -2910          | 2854         | -2854          |
| Lindley 1-30               | 30-6N-11E              |            |          |          | 3029         | -3029<br>-2966 | 3194        | -3194          | 2992                   | -2992          | 2950         | -2950<br>-2882 |
| Lindley 2-30<br>McKee 3-32 | 30-6N-11E<br>32-6N-11E |            |          |          | 2966<br>3020 | -2966          | NDE<br>NDE  |                | 2928<br>2985           | -2928<br>-2985 | 2882<br>2934 | -2002          |
| Richardson 1               | 33-6N-11E              |            |          |          | 3020         | -3020          | 3225        | -3225          | 3016                   | -3016          | 2934         | -2934          |
| Blevins 1-7                | 7-6N-12E               | 985        |          |          | 3371         | -2386          | NDE         | -3223          | 3330                   | -2345          | 3282         | -2297          |
| Hilseweck 1-8              | 8-6N-12E               | 000        |          |          | 3454         | -3454          | NUL         |                | 0000                   | 2040           | 0202         | 2207           |
| Hilseweck 1-8              | 8-6N-12E               |            |          |          | 3456         | -3456          | NDE         |                | 3410                   | -3410          | 3345         | -3345          |
| Hilseweck 2-8              | 8-6N-12E               |            |          |          | 3419         | -3419          | NDE         |                | 3372                   | -3372          | 3316         | -3316          |
| Hilseweck 1-9              | 9-6N-12E               | 1025       |          |          | 3426         | -2401          | NDE         |                | 3380                   | -2355          | 3325         | -2300          |
| Garrett 1-11               | 11-6N-12E              | 1020       |          |          | 0120         | 2101           | HEE         |                | 3178                   | -3178          | 3114         | -3114          |
| Loftis 1-13                | 13-6N-12E              |            |          |          | 2533         | -2533          |             |                | 2490                   | -2490          | F/0?         |                |
| Hilseweck 1-15             | 15-6N-12E              |            |          |          |              |                | NDE         |                | 3298                   | -3298          | 3224         | -3224          |
| Hilsewck 1-16              | 16-6N-12E              |            |          |          | 3436         | -3436          | 3612        | -3612          | 3391                   | -3391          | 3333         | -3333          |
| Hilseweck 2-17             | 17-6N-12E              |            | 3321     | -3321    | 3422         | -3422          | NDE         |                | 3378                   | -3378          | 3316         | -3316          |
| Hilseweck 3-17             | 17-6N-12E              |            |          |          | 3228         | -3228          | NDE         |                | 3184                   | -3184          | 3122         | -3122          |
| Blevins 1-18               | 18-6N-12E              |            |          |          | 3350         | -3350          | NDE         |                | 3306                   | -3306          | 3246         | -3246          |
| Blevins 2-18               | 18-6N-12E              |            |          |          | 3288         | -3288          | NDE         |                | 3248                   | -3248          | 2193         | -2193          |
| Blevins 9-18               | 18-6N-12E              |            |          |          | 3272         | -3272          | NDE         |                | 3218                   | -3218          | 3170         | -3170          |
| Blevins 1-19               | 19-6N-12E              |            |          |          | 3440         | -3440          | NDE         |                | 3386                   | -3386          | 3330         | -3330          |
| Hilseweck 1-20             | 20-6N-12E              |            |          |          | 3294         | -3294          | NDE         |                | 3253                   | -3253          | 3188         | -3188          |
| Hilseweck 3-20             | 20-6N-12E              |            |          |          | 3286         | -3286          | NDE         |                |                        | 0              | 3194         | -3194          |
| Hilseweck 5-21             | 21-6N-12E              | 904        |          |          | 3458         | -2554          | NDE         |                | 3412                   | -2508          | 3341         | -2437          |
| Hilseweck Ranch 1-21       | 21-6N-12E              | 764        |          |          | 3345         | -2581          | NDE         |                | 3312                   | -2548          | 3240         | -2476          |
| William G. Jones #1        | 22-6N-12E              | 886        |          |          | 3416         | -2530          | 3677        | -2791          | 3377                   | -2491          | 3304         | -2418          |
| Lubell 1-23                | 23-6N-12E              | 795        |          |          | 3318         | -2523          |             |                | 3278                   | -2483          | 3200         | -2405          |
| Smalley 1                  | 26-6N-12E              |            |          |          | 3374         | -3374          | NDE         |                | 3344                   | -3344          | 3272         | -3272          |
| Hilseweck 1-29             | 29-6N-12E              |            |          |          | 3684         | -3684          |             |                | 3645                   | -3645          | 3568         | -3568          |
| Ashley 1-1                 | 1-6N-13E               | 665        | 2420     | -1755    | 2519         | -1854          |             |                | 2486                   | -1821          | 2420         | -1755          |
| Durant 1-1                 | 1-6N-13E               | 670        |          |          | 2470         | -1800          | NDE         |                | 2440                   | -1770          | 2376         | -1706          |
| McKay 1-1                  | 1-6N-13E               | 677        |          |          | 2480         | -1803          |             |                | 0005                   | 677            | 2367         | -1690          |
| Brown Estate 1-2           | 2-6N-13E               | 768        |          |          | 2725         | -1957          | 3004        | -2236          | 2695                   | -1927          | 2620         | -1852          |
| Carter 1-2                 | 2-6N-13E               | 711        | 0404     | 4700     | 2544         | -1833          | 2938        | -2227          | 2508                   | -1797          | 2439         | -1728          |
| Holt J #1                  | 3-6N-13E               | 722        | 2431     | -1709    | 2532         | -1810          | nde         |                | 2501                   | -1779          | 2429         | -1707          |
| Holt J #2                  | 3-6N-13E               | 000        |          | <b> </b> | 2697         | -2697          | NDE         | 0000           | 2675                   | -2675          | 2607         | -2607          |
| Jaynelle #1                | 3-6N-13E               | 982<br>875 | 2606     | 1724     | 2983<br>2697 | -2001<br>-1822 | 3375        | -2393<br>-2176 | 2952                   | -1970          | 2882         | -1900          |
| Holt 1-4<br>Jessie 1-5     | 4-6N-13E<br>5-6N-13E   | 755        | 2000     | -1731    |              | -1022          | 3051<br>NDE | -2170          | 2603                   | -1728          | 2676         | -1801          |
| Gillin #1                  | 6-6N-13E               | 734        |          |          | 2659<br>2729 | -1904<br>-1995 | NDE         |                |                        |                |              | ──             |
| Capps Day 1-8              | 8-6N-13E               | 720        |          |          | 2842         | -2122          | NDE         |                | 2810                   | -2090          | 2741         | -2021          |
| Arpoika #1-9               | 9-6N-13E               | 238        | 2839     | -2601    | 2042         | -2122          | NDE         |                | 2010                   | -2090          | 2741         | 238            |
| Banks Estate #1            | 10-6N-13E              | 705        | 2008     | -2001    | 2937         | -2099          | 3057        | -2352          | 2783                   | -2078          | 2700         | -1995          |
| Minter #1-10               | 10-6N-13E              | 694        | <u> </u> |          | 2961         | -2103          | 3231        | -2532          | 2917                   | -2223          | 2828         | -2134          |
| Menefee #1                 | 11-6N-13E              | 674        | 2659     | -1985    | 2768         | -2094          | NDE         | -2007          | 2017                   | -2225          | 2020         | -2104          |
| Minter #2-11               | 11-6N-13E              | 750        | 2000     | 1.000    | 2856         | -2106          | 3134        | -2384          | 2826                   | -2076          | 2752         | -2002          |
| Warren #1-11               | 11-6N-13E              | 712        |          |          | 2924         | -2212          | 0.01        | 2001           | 2884                   | -2172          | 2794         | -2082          |
| J.N. Miller #1 (12)        | 12-6N-13E              | 705        | 2715     | -2010    | 2715         | -2010          | 3017        | -2312          | 2667                   | -1962          | 2581         | -1876          |
| J.N. Miller #2-12          | 12-6N-13E              | 693        | 2750     | -2057    | 2750         | -2057          | 3057        | -2364          | 2700                   | -2007          | 2609         | -1916          |
| McAlester #1               | 12-6N-13E              | 697        |          |          | 2764         | -2067          | 2956        | -2259          | 2608                   | -1911          | 2520         | -1823          |
| Bryant #1                  | 13-6N-13E              | 730        | 3197     | -2467    | 3197         | -2467          | 3452        | -2722          | 3140                   | -2410          |              |                |
| Miller "AG" #1             | 13-6N-13E              | 705        | 2916     | -2211    | 2916         | -2211          | 3232        | -2527          | 2859                   | -2154          | 2767         | -2062          |
| Sittel #1-13               | 13-6N-13E              | 000        | 2977     | -2295    | 2977         | -2295          | 3295        | -2613          | 2924                   | -2242          | 2831         | -2149          |
| Ashley#1                   | 14-6N-13E              |            | 2944     | -2239    |              | -2239          | 3160        | -2455          | 2887                   | -2182          | 2789         | -2084          |
| Gaddy 1-15                 | 15-6N-13E              | 686        |          |          | 3202         | -2516          | 3428        | -2742          |                        |                |              |                |
| Phoebe #1                  | 23-6N-13E              |            | 3448     | -2775    | 3460         | -2787          |             |                | 3410                   | -2737          | 3298         | -2625          |
| Phoebe #2                  | 23-6N-13E              |            | 3446     | -3446    | 3446         | -3446          | 3626        | -3626          | 3395                   | -3395          | 3283         | -3283          |
| Crawford 1-24              | 24-6N-13E              | 649        |          |          | 3448         | -2799          | 3650        | -3001          | 3365                   | -2716          | 3230         | -2581          |
| Powell 1-24                | 24-6N-13E              | 631        | 3114     | -2483    | 3259         | -2628          | 3502        | -2871          | 3209                   | -2578          | 3104         | -2473          |
| Frank Blevins Unit #1      | 25-6N-13E              | 785        |          |          | 3672         | -2887          | NDE         |                | 3640                   | -2855          | 3555         | -2770          |
| Leo #1                     | 25-6N-13E              | 618        |          |          | 3705         | -3087          | 3950        | -3332          |                        |                | 3588         | -2970          |
| Archer Unit #1             | 26-6N-13E              | 772        |          |          | 3687         | -2915          | NDE         |                | 3655                   | -2883          | 3565         | -2793          |
| Gray #1                    | 26-6N-13E              | 750        |          |          | 3665         | -2915          | NDE         |                | 3636                   | -2886          | 3543         | -2793          |
|                            | 27-6N-13E              | 644        | 3592     | -2948    | 3595         | -2951          | 3790        | -3146          | 3538                   | -2894          | 3429         | -2785          |

| Well                       | Location               | KB   | TopofL   | JHCoal | Topot        | fLHCoal        | Top of / | Atoka          | Top of Upp<br>(Unnamed |                | Base of Sha  | ale Marker |
|----------------------------|------------------------|------|----------|--------|--------------|----------------|----------|----------------|------------------------|----------------|--------------|------------|
| Steed 27-1                 | 27-6N-13E              | 756  |          |        |              | 756            |          |                | 3648                   | -2892          | 3523         | -2767      |
| Gleese A #1-28             | 28-6N-13E              | 670  | 3652     | -2982  | 3662         | -2992          | 3820     | -3150          | 3610                   | -2940          | 3489         | -2819      |
| Francis 1-29 (11?)         | 29-6N-13E              | 779  |          |        | 3681         | -2902          | NDE      |                | 2628                   | -1849          | 3528         | -2749      |
| West #2                    | 29-6N-13E              | 778  |          |        | 3680         | -2902          | 3885     | -3107          |                        |                |              |            |
| Roberts #1                 | 31-6N-13E              | 760  | 3432     | -2672  | 3459         | -2699          | 3663     | -2903          | 3396                   | -2636          | 3294         | -2534      |
| White #1-31                | 31-6N-13E              | 811  | 3427     | -2616  | 3456         | -2645          | NDE      |                | 3398                   | -2587          | 3299         | -2488      |
| Gleese Unit #1             | 33-6N-13E              | 785  |          |        | 3602         | -2817          | NDE      |                | 3540                   | -2755          | 3430         | -2645      |
| Buddy #1-X                 | 34-6N-13E              | 773  |          |        | 3545         | -2772          |          |                |                        |                | 3430         | -2657      |
| Hunt Garret Unit #1        | 34-6N-13E              | 805  |          |        | 3825         | -3020          | NDE      |                | 3485                   | -2680          |              | 805        |
| Dominic Unit #1            | 35-6N-13E              | 802  |          |        | 3588         | -2786          | NDE      |                | 3551                   | -2749          | 3460         | -2658      |
| Engleman 1-36              | 36-6N-13E              | 802  |          |        | 3775         | -2973          | ??       |                |                        | 802            |              | 802        |
| Howell #1                  | 36-6N-13E              | 634  | 3434     | -2800  | 3637         | -3003          | NDE      |                | F/O? 3598              |                | 3427         | -2793      |
| LeFlore #1                 | 36-6N-13E              | 643  |          |        | 3522         | -2879          | NDE      |                | 3482                   | -2839          | 3388         | -2745      |
| LeFlore 1-36               | 36-6N-13E              | 639  | 3336     | -2697  | 3484         | -2845          |          |                | 3455                   | -2816          | 3348         | -2709      |
| Bob #1                     | 1-7N-11E               | 741  |          |        | 2365         | -1624          | 2412     | -1671          | 2345                   | -1604          | 2318         | -1577      |
| Jeremy D #1                | 1-7N-11E               | 774  |          |        | 2424         | -1650          | NDE      |                | 2407                   | -1633          | 2378         | -1604      |
| Kleine Unit #1             | 1-7N-11E               | 703  |          |        | 2338         | -1635          | 2445     | -1742          | 2313                   | -1610          | 2297         | -1594      |
| West Unit #1               | 1-7N-11E               | 740  |          |        | 2434         | -1694          | 2531     | -1791          | 2414                   | -1674          |              | 740        |
| Eckles Unit 1              | 2-7N-11E               | 761  |          |        | 2409         | -1648          | 2496     | -1735          | 2390                   | -1629          | 2370         | -1609      |
| George #1                  | 2-7N-11E               | 717  |          |        | 2458         | -1741          | 2553     | -1836          | 2437                   | -1720          | 2410         | -1693      |
| Huff 1-2                   | 2-7N-11E               | 755  |          |        | 2433         | -1678          | 2521     | -1766          | 2415                   | -1660          | 2389         | -1634      |
| Cowart #1                  | 3-7N-11E               | 946  |          |        | 2680         | -1734          | 2762     | -1816          |                        |                |              |            |
| D. Harris #1               | 3-7N-11E               | 846  |          |        | 2571         | -1725          | NDE      |                | 2556                   | -1710          | 2537         | -1691      |
| Lee Epps #1                | 4-7N-11E               | 720  |          |        | 2396         | -1676          | NDE      |                | 2362                   | -1642          | 2298         | -1578      |
| Nancy Harjo 1              | 4-7N-11E               | 901  |          |        | 2727         | -1826          | 2806     | -1905          | 2698                   | -1797          | 2714         | -1813      |
| Sarah #1-4                 | 4-7N-11E               | 932  |          |        | 2862         | -1930          | 2942     | -2010          | 2845                   | -1913          | 2822         | -1890      |
| Thompson 1                 | 4-7N-11E               | 836  |          |        | 2863         | -2027          | 2944     | -2108          | 2854                   | -2018          | 2885         | -2049      |
| Turner 1                   | 5-7N-11E               | 944  |          |        | 2730         | -1786          | 2806     | -1862          | 2716                   | -1772          | 2695         | -1751      |
| Turner Ranch 1             | 5-7N-11E               | 995  |          |        | 2775         | -1780          | 2852     | -1857          | 2762                   | -1767          | 2742         | -1747      |
| B. Bear 1                  | 6-7N-11E               |      |          |        | 2695         | -2695          | 2768     | -2768          | 2682                   | -2682          | 2664         | -2664      |
| George Turner 2            | 6-7N-11E               | 947  |          |        | 2688         | -1741          | 2762     | -1815          | 2674                   | -1727          | 2655         | -1708      |
| Oliver 1                   | 6-7N-11E               | 907  |          |        | 2664         | -1757          | 2733     | -1826          | 2650                   | -1743          | F/O          |            |
| Turner 5                   | 6-7N-11E               | 938  |          |        | 2704         | -1766          | 2777     | -1839          | 2690                   | -1752          | 2672         | -1734      |
| George 7-1                 | 7-7N-11E               | 937  |          |        | 2719         | -1782          | 2791     | -1854          | 2705                   | -1768          | 2012         |            |
| Lankford 2                 | 7-7N-11E               | 884  |          |        | 2729         | -1845          | 2804     | -1920          | 2715                   | -1831          | 2694         | -1810      |
| Lankford 3                 | 7-7N-11E               | 906  |          |        | 2696         | -1790          | 2768     | -1862          | 2682                   | -1776          | 2662         | -1756      |
| Lee 1                      | 7-7N-11E               | 918  |          |        | 2732         | -1814          | 2812     | -1894          | 2719                   | -1801          | 2699         | -1781      |
| Thomas 1                   | 7-7N-11E               | 960  |          |        | 2718         | -1758          | 2790     | -1830          | 2702                   | -1742          | 2684         | -1724      |
| Turner                     | 8-7N-11E               | 1027 |          |        | 2800         | -1773          | NDE      | 1000           | 2786                   | -1759          | 2767         | -1740      |
| Welch 1-8                  | 8-7N-11E               | 946  |          |        | 2790         | -1844          | NDE      |                | 2774                   | -1828          | 2752         | -1806      |
| Yaroslaski #1              | 8-7N-11E               | 988  |          |        | 2818         | -1830          | 2904     | -1916          | 2806                   | -1818          | 2784         | -1796      |
| Lamar Mt. #1               | 9-7N-11E               | 1000 |          |        | 2860         | -1860          | 2939     | -1939          | 2845                   | -1845          | 2830         | -1830      |
| Baca #1-10                 | 10-7N-11E              | 856  |          |        | 2696         | -1840          | 2794     | -1938          | 2680                   | -1824          | 2654         | -1798      |
| Freeman 1                  | 11-7N-11E              | 807  |          |        | 2030         | -1672          | 2580     | -1773          | 2462                   | -1655          | 2430         | -1623      |
| Miller #1                  | 11-7N-11E              | 753  |          |        | 2474         | -1721          | 2575     | -1822          | 2450                   | -1697          | 2400         | 1025       |
| Upchurch #1                | 11-7N-11E              | 771  |          |        | 2514         | -1743          | 2614     | -1843          | 2490                   | -1719          |              |            |
| Follansbee #2              | 12-7N-11E              | 765  |          |        | 2396         | -1631          | 2507     | -1742          | 2430                   | -1613          | 2349         | -1584      |
| Beck #1                    | 12-7N-11E              | 786  |          |        | 2330         | -1625          | 2514     | -1728          | 2394                   | -1608          | 2343         | -1580      |
| M.B. White #1              | 13-7N-11E              | 782  | <u> </u> |        | 2411         | -1662          | 2552     | -1720          | 2394                   | -1648          | 2300         | -1618      |
| White #12-1                | 13-7N-11E              | 841  | <u> </u> |        | 2444         | -1649          | 2610     | -1769          | 2430                   | -1631          | 2400         | -1601      |
| Neal #1-14                 | 14-7N-11E              | 798  | -        |        | 2430         | -1675          | 2582     | -1784          | 2472                   | -1658          | 2442         | -1636      |
| Neal #2                    | 14-7N-11E              | 790  |          |        | 2473         | -1684          | 2583     | -1793          | 2450                   | -1667          | 2434         | -1652      |
| Lamar #15                  | 15-7N-11E              | 790  | <u> </u> |        | 2610         | -1813          | 2365     | -1913          | 2594                   | -1797          | 2566         | -1769      |
| Adamas #1                  | 16-7N-11E              | 1058 |          |        | 2934         | -1876          | 3029     | -1913          | 2594                   | -1797          | 2300         | -1709      |
| Anderson #1                | 16-7N-11E              | 1038 |          |        | 2934         | -1914          | 3018     | -2006          | 2920                   | -1899          | 2888         | -1876      |
| Anderson 1-16              | 16-7N-11E              | 1012 | <u> </u> |        | 2920         | -1914          | 3018     | -1943          | 2911                   | -1828          | 2878         | -1804      |
| Scruggs #1                 | 16-7N-11E              | 1074 |          |        | 2910         | -1866          | 3068     | -1943          | 2902                   | -1020          | 2010         | 1098       |
| Anderson "Q" #1            | 17-7N-11E              | 917  |          |        | 2904         | -1000          | 2928     | -1970          | 2950                   | -1652          | 2800         | -1883      |
| Anderson Q #1              | 17-7N-11E              | 917  | <u> </u> |        | 2837         | -1920          | 2928     | -2011          | 2822                   | -1905          | 2800         | -1883      |
|                            | 47.711.445             | 1000 |          |        | 0.000        | 40.00          | 0007     | 1000           | 0004                   | 1005           | 0.070        | 1001       |
| Anderson No. 1<br>Jerry #1 | 17-7N-11E<br>17-7N-11E |      | <u> </u> |        | 2909         | -1900<br>-2808 | 2997     | -1988<br>-2898 | 2894                   | -1885<br>-2789 | 2873         | -1864      |
| Bolt #1                    | 18-7N-11E              |      |          |        | 2600         | -2000          | 2090     | -2090          | 2658                   | -2769          | 2639         | -2765      |
|                            |                        |      |          |        | 2762         | -1790          | 2840     | -1869          |                        |                |              | -1763      |
| Bolt #2<br>Coats 1-18      | 18-7N-11E<br>18-7N-11E |      |          |        | 2762         | -1791          | 2840     | -1869          | 2750<br>2746           | -1779<br>-1848 | 2738<br>2726 | -1767      |
|                            | 18-7N-11E              |      |          |        |              | -1863          | 2847     |                |                        | -1808          | 2720         | -1020      |
| Lee #2<br>Shiolds #1       |                        |      |          |        | 2757         |                |          | -1855          | 2794                   |                | 2662         | 4764       |
| Shields #1                 | 18-7N-11E<br>19-7N-11E |      | <u> </u> |        | 2696<br>2800 | -1798          | 2774     | -1876          | 2683                   | -1785          | 2662         | -1764      |
| Backus #1                  |                        |      | <u> </u> |        |              | -1936          | 2890     | -2026          | 2781                   | -1917          | 2761         | -1897      |
| Paula #1<br>Anita 1-20     | 19-7N-11E              | 918  |          |        | 2906         | -1988          | 2993     | -2075          | 2887                   | -1969          | 2865         | -1947      |
|                            | 20-7N-11E              | 1    |          |        | 2758         | -2758          | 2853     | -2853          | 2740                   | -2740          | 2714         | -2714      |
| Eckles A-1                 | 20-7N-11E              | 771  |          |        | 2538         | -1767          | 2636     | -1865          | 2522                   | -1751          | 2497         | -1726      |

| Well                                 | Location               | КВ   | Top of UHCoal | Topot        | fLHCoal        | Top of /    | Atoka | Top of Upp<br>(Unnamed |                | Base of Sha  | ile Marker     |
|--------------------------------------|------------------------|------|---------------|--------------|----------------|-------------|-------|------------------------|----------------|--------------|----------------|
| Schilling #1-20                      | 20-7N-11E              | 799  |               | 2810         | -2011          | 2904        | -2105 | 2595                   | -1796          | 2572         | -1773          |
| Factor #1                            | 22-7N-11E              | 796  |               | 2627         | -1831          | 2746        | -1950 | 2609                   | -1813          | 2580         | -1784          |
| Weston 1                             | 23-7N-11E              | 798  |               | 2589         | -1791          | 2717        | -1919 | 2570                   | -1772          | 2538         | -1740          |
| Chapman #1                           | 24-7N-11E              | 866  |               | 2652         | -1786          | 2772        | -1906 | 2630                   | -1764          | 2600         | -1734          |
| Kamperman 1-24                       | 24-7N-11E              | 789  |               | 2593         | -1804          | NDE         |       | 2567                   | -1778          | 2542         | -1753          |
| Rosa #1                              | 24-7N-11E              | 806  |               | 2584         | -1778          | 2719        | -1913 | 2561                   | -1755          | 2529         | -1723          |
| Bob #1                               | 25-7N-11E              | 896  |               | 2705         | -1809          | 2826        | -1930 | 2679                   | -1783          | 2635         | -1739          |
| Chapman 1-26                         | 26-7N-11E              | 815  |               | 2634         | -1819          | 2768        | -1953 | 2618                   | -1803          | F/0          | 0.001          |
| Eckles 1-26                          | 26-7N-11E              | 834  |               | 2960         | -2126          | 3090        | -2256 | 2931                   | -2097          | 2895         | -2061          |
| Kamperman 1-27                       | 27-7N-11E              | 833  |               | 2962         | -2129          | 3089        | -2256 | 2936                   | -2103          | 2904         | -2071          |
| Lott 1-28<br>Sultan Oil #1-28        | 28-7N-11E<br>28-7N-11E | 803  |               | 2890         | -2087          | 3006        | -2203 | 2865<br>2865           | -2865<br>-2062 | 2836<br>2836 | -2836<br>-2033 |
| Douglass #1                          | 29-7N-11E              | 874  |               | 2890         | -1937          | 2906        | -2032 | 2792                   | -1918          | 2030         | -2055          |
| Eckles #1                            | 29-7N-11E              | 856  |               | 2818         | -1957          | 2900        | -2052 | 2792                   | -1913          | 2772         | -1916          |
| Kamperman 1-29                       | 29-7N-11E              | 857  |               | 2900         | -2043          | 3009        | -2152 | 2880                   | -2023          | 2852         | -1910          |
| Jackson #1                           | 30-7N-11E              | 750  |               | 2799         | -2049          | 2900        | -2152 | 2000                   | -2028          | 2750         | -2000          |
| Kamperman 1-30                       | 30-7N-11E              | 927  |               | 2950         | -2023          | 3045        | -2118 | 2929                   | -2002          | 2902         | -1975          |
| Thompson 1-30                        | 30-7N-11E              | 863  |               | 2926         | -2063          | NDE         | 2110  | 2905                   | -2042          | 2881         | -2018          |
| Anita #1                             | 31-7N-11E              | 854  |               | 2906         | -2052          | 3008        | -2154 | 2885                   | -2031          | 2858         | -2004          |
| B.E. #1                              | 31-7N-11E              | 747  |               | 2799         | -2052          | 2903        | -2156 | 2778                   | -2031          | 2750         | -2003          |
| B.E. #2                              | 31-7N-11E              | 734  |               | 2787         | -2053          | NDE         |       | 2776                   | -2042          | 2740         | -2006          |
| Eckles #1                            | 31-7N-11E              | 754  |               | 2807         | -2053          | 2912        | -2158 | 2788                   | -2034          | 2763         | -2009          |
| Eckles 3-31                          | 31-7N-11E              | 744  |               | 2774         | -2030          | 2882        | -2138 | 2750                   | -2006          | 2724         | -1980          |
| Kamperman 1                          | 31-7N-11E              | 787  |               | 2822         | -2035          | 2928        | -2141 | 2801                   | -2014          | 2774         | -1987          |
| Showalter #1                         | 31-7N-11E              | 760  |               | 2784         | -2024          | 2896        | -2136 | 2765                   | -2005          |              | 760            |
| Kamperman 1-32                       | 32-7N-11E              | 769  |               | 2797         | -2028          | 2914        | -2145 | 2776                   | -2007          | 2748         | -1979          |
| Riley #1                             | 32-7N-11E              | 754  |               | 2774         | -2020          | 2885        | -2131 | 2754                   | -2000          |              |                |
| Rogers #1                            | 32-7N-11E              | 748  |               | 2786         | -2038          | 2897        | -2149 | 2768                   | -2020          | 2747         | -1999          |
| Benham 1                             | 35-7N-11E              | 807  |               | 2960         | -2153          | NDE         |       | 2932                   | -2125          | 2896         | -2089          |
| Lott 1                               | 2-7N-12E               |      |               | 2544         | -2544          | 2673        | -2673 | 2514                   | -2514          | 2476         | -2476          |
| Patsy 1-3                            | 3-7N-12E               |      |               | 2450         | -2450          | NDE         |       | 2417                   | -2417          | 2380         | -2380          |
| Wagoner #1                           | 4-7N-12E               | 724  |               | 2420         | -1696          | 2554        | -1830 | 2392                   | -1668          | 2356         | -1632          |
| Carpenter #1                         | 5-7N-12E               | 799  |               | 2540         | -1741          | 2659        | -1860 | 2512                   | -1713          | 2482         | -1683          |
| Shields #1                           | 6-7N-12E               | 714  |               | 2358         | -1644          | 2470        | -1756 | 2338                   | -1624          | 2310         | -1596          |
| Sanders #1                           | 7-7N-12E               | 784  |               | 2503         | -1719          | 2624        | -1840 | 2481                   | -1697          | 2448         | -1664          |
| Sanders #2                           | 7-7N-12E               | 878  |               | 2537         | -1659          | 2656        | -1778 | 2515                   | -1637          | 2485         | -1607          |
| Sarkey Unit #1                       | 7-7N-12E               | 768  |               | 2456         | -1688          | 2577        | -1809 | 2428                   | -1660          | 0.101        | 768            |
| Sarkeys #2                           | 7-7N-12E               | 004  |               | 0454         | 1050           | 0533        | 1770  | 2444                   | -2444          | 2404         | -2404          |
| Sarkeys #1                           | 7-7N-12E               | 801  |               | 2454         | -1653          | 2577        | -1776 | 0440                   | 801            | 0.005        | 801            |
| Burleson #1                          | 8-7N-12E<br>8-7N-12E   | 712  |               | 2442<br>2621 | -1730<br>-1846 | 2574<br>NDE | -1862 | 2418<br>2594           | -1706          | 2385         | -1673          |
| Cotton-Eckles #1<br>McAfee 1-12      | 12-7N-12E              | 772  |               | 2448         | -1676          | NDE         |       | 2394                   | -1819<br>-1642 | 2368         | 775<br>-1596   |
| McAfee #1                            | 13-7N-12E              | 725  |               | 2328         | -1603          | 2465        | -1740 | 2414                   | -1042          | 2300         | -1590          |
| McAfee 1-13                          | 13-7N-12E              | 745  |               | 2326         | -1591          | 2405        | -1740 | 2235                   | -1561          | 2243         | -1520          |
| State #1                             | 13-7N-12E              | 741  |               | 2345         | -1604          | NDE         | -1750 | 2313                   | -1572          | 2267         | -1526          |
| W.C. Ratledge #1                     | 13-7N-12E              | 725  |               | 2343         | -1618          | NDE         |       | 2312                   | -1587          | 2258         | -1533          |
| Mad Max 1-14                         | 14-7N-12E              | 977  |               | 2552         | -1575          | 2686        | -1709 | 2518                   | -1541          | 2468         | -1491          |
| Owen #1-14                           | 14-7N-12E              | 880  |               | 2528         | -1648          | 2657        | -1777 | 2496                   | -1616          | 2452         | -1572          |
| Sarkey#1                             | 14-7N-12E              | 1007 |               | 2597         | -1590          | NDE         |       | 2566                   | -1559          | 2522         | -1515          |
| Sarkeys #1                           | 14-7N-12E              | 954  |               | 2528         | -1574          | 2662        | -1708 | 2500                   | -1546          | 2456         | -1502          |
| Theel #1                             | 14-7N-12E              | 966  |               | 2573         | -1607          | NDE         |       | 2542                   | -1576          | 2497         | -1531          |
| Thunderdome 1-14                     | 14-7N-12E              | 875  |               | 2508         | -1633          | 2638        | -1763 | 2476                   | -1601          | 2427         | -1552          |
| Tom 2-14                             | 14-7N-12E              | 913  |               | 2505         | -1592          | NDE         |       | 2477                   | -1564          | 2428         | -1515          |
| Kleinke #2                           | 15-7N-12E              |      |               | 2472         | -2472          | NDE         |       | 2445                   | -2445          | 2402         | -2402          |
| Kleinke 4                            | 15-7N-12E              | 918  |               | 2497         | -1579          | 2638        | -1720 | 2469                   | -1551          | 2417         | -1499          |
| Lott 1-15                            | 15-7N-12E              | 893  |               | 2546         | -1653          | NDE         |       | 2515                   | -1622          | 2422         | -1529          |
| Myers 1                              | 15-7N-12E              |      |               | 2498         | -2498          | NDE         |       | 2461                   | -2461          | 2418         | -2418          |
| Owens #1                             | 15-7N-12E              | 851  |               | 2505         | -1654          | 2636        | -1785 | 2474                   | -1623          | 2428         | -1577          |
| Addington 1                          | 16-7N-12E              | 863  |               | 2504         | -1641          | 2638        | -1775 | 2474                   | -1611          | 2438         | -1575          |
| Gilcrease 1                          | 16-7N-12E              |      |               | 2493         | -2493          |             |       |                        |                |              |                |
| Gilcrease 3                          | 16-7N-12E              |      |               | 2444         | -2444          | NDE         |       | 2415                   | -2415          | 2322         | -2322          |
| Hoehne 1-16                          | 16-7N-12E              | 822  |               | 2428         | -1606          | 2618        | -1796 | 2450                   | -1628          | 2412         | -1590          |
| Perry 1                              | 17-7N-12E              | 747  |               | 2481         | -1734          | 2622        | -1875 | 2453                   | -1706          | 2422         | -1675          |
| Sarkeys B-1                          | 18-7N-12E              | 875  |               | 2528         | -1653          | NDE         |       | 2508                   | -1633          | 2476         | -1601          |
| Sarkeys C-1                          | 18-7N-12E              | 917  |               | 2622         | -1705          | NDE         | 1000  | 2597                   | -1680          | 2554         | -1637          |
| Shirley Jean                         | 19-7N-12E              | 845  |               | 2660         | -1815          | 2807        | -1962 | 2640                   | -1795          | 2602         | -1757          |
| McCoy 1                              | 20-7N-12E              | 672  |               | 2406         | -1734          | 2546        | -1874 | 2376                   | -1704          | 2334         | -1662          |
| Falcon Club 1-21                     | 21-7N-12E              | 1000 | + $+$ $+$     | 2648         | -1648          | NDE         |       | 2616                   | -1616          | 2574         | -1574          |
|                                      |                        | 886  |               | 2581         | -1695          | NDE         |       | 2548                   | -1662          | 2507         | -1621          |
| Falcon Club 2-21<br>Falcon Club 3-21 | 21-7N-12E<br>21-7N-12E | 953  |               | 2601         | -1648          | NDE         |       |                        | 953            | 2517         | -1564          |

| Well                             | Location               | КВ         | Top of UHCoal | Торо         | f LHCoal       | Top of /    | Atoka | Top of Upp<br>(Unnamed |                | Base of Shal | e Marker       |
|----------------------------------|------------------------|------------|---------------|--------------|----------------|-------------|-------|------------------------|----------------|--------------|----------------|
| Broadstreet 1                    | 22-7N-12E              | 970        |               | 2592         | -1622          | 2733        | -1763 | 2560                   | -1590          | 2516         | -1546          |
| C.G. Myers et al #1              | 22-7N-12E              | 912        |               | 2594         | -1682          | 2748        | -1836 | 2566                   | -1654          | 2522         | -1610          |
| Jonathan 1-22                    | 22-7N-12E              | 760        |               | 2452         | -1692          | 2594        | -1834 | 2420                   | -1660          | 2372         | -1612          |
| Melissa 2-22                     | 22-7N-12E              | 950        |               | 2608         | -1658          | 2732        | -1782 | 2578                   | -1628          | 2534         | -1584          |
| Michael 2-22                     | 22-7N-12E              | 880        |               | 2554         | -1674          | 2696        | -1816 | 2524                   | -1644          | 2429         | -1549          |
| Holt 3-24                        | 24-7N-12E              | 693        |               | 2332         | -1639          | NDE         |       | 2299                   | -1606          | 2244         | -1551          |
| Jackie Holt 2-23                 | 23-7N-12E              | 740        |               | 2392         | -1652          | NDE         |       | 2361                   | -1621          | 2307         | -1567          |
| Upchurch 1                       | 23-7N-12E              | 906        |               | 2586         | -1680          | NDE         |       | 2556                   | -1650          | 2510         | -1604          |
| Anderson 1-24                    | 24-7N-12E              | 693        |               | 2360         | -1667          | NDE         |       | 2325                   | -1632          | 2270         | -1577          |
| Holt 1                           | 24-7N-12E              | 737        |               | 2338         | -1601          | NDE         |       | 2308                   | -1571          | 2254         | -1517          |
| Mamie Sousea 1                   | 24-7N-12E              | 000        |               | 2313         | -2313          | NEE         |       | 2283                   | -2283          | 2240         | -2240          |
| Rabke 1-24                       | 24-7N-12E              | 693        |               | 2357         | -1664          | NDE         |       | 2324                   | -1631          | 2272         | -1579          |
| Ross 1-24                        | 24-7N-12E              | 705        |               | 2315         | -1610          | NDE<br>2404 | 0700  | 2282                   | -1577          | 2234         | -1529          |
| Soused 3                         | 24-7N-12E              | 734        |               | 2357         | -1623          | 3494        | -2760 | 2326                   | -1592          | 2277         | -1543          |
| Bruno 3-25<br>Whitnev Heirs 1-26 | 25-7N-12E<br>26-7N-12E | 727<br>976 |               | 2477<br>2888 | -1750<br>-1912 | NDE<br>NDE  |       | 2432<br>2658           | -1705<br>-1682 | 2372<br>2606 | -1645<br>-1630 |
|                                  | 20-7N-12E              | 976        |               | 2666         | -1912          | NDE         |       |                        | -1654          | 2505         | -1630          |
| Million 1-27<br>Stipe 1-27       |                        | 962        |               | 2646         | -1695          | NDE         |       | 2636                   | -1004          | 2007         | -1605          |
| Stipe 2-27                       | 27-7N-12E<br>27-7N-12E | 905        |               | 2590         | -1685          | NDE         |       | 2560                   | -1655          | 2512         | -1607          |
|                                  | 29-7N-12E              | 905        |               | 2590         | -1587          | 2715        | -1728 | 2546                   | -1559          | 2503         | -1516          |
| Hilseweck A-1-29<br>Stipe 1-29   | 29-7N-12E              | 838        |               | 2674         | -1836          | 2776        | -1938 | 2644                   | -1806          | 2505         | -1759          |
| Be Ann Puckett 1-32              | 32-7N-12E              | 978        |               | 2842         | -1864          | 2987        | -2009 | 2810                   | -1832          | 2597         | -1759          |
| Myers B-1                        | 32-7N-12E              | 830        |               | 2975         | -2145          | NDE         | 2008  | 2940                   | -2110          | 2890         | -1794          |
| Puckett 2-32                     | 32-7N-12E              | 925        |               | 2975         | -2145          | NDE         | 1     | 2940                   | -2023          | 2898         | -1973          |
| Charles 1-33                     | 33-7N-11E              | 638        |               | 2990         | -2005          | 3093        | -2455 | 2940                   | -2023          | 2090         | -1973          |
| Doss Rovalty 1-33                | 33-7N-12E              | 698        |               | 2916         | -2218          | NDE         | -2400 | 2878                   | -2180          | 2824         | -2126          |
| Stipe 1-33                       | 33-7N-12E              | 926        |               | 2750         | -1824          | 2892        | -1966 | 2766                   | -1840          | 2663         | -1737          |
| Gladstein 1-34                   | 34-7N-12E              | 946        |               | 2727         | -1781          | 2868        | -1922 | 2694                   | -1748          | F/O? 2504'   | 1707           |
| Stacy 1                          | 35-7N-12E              | 796        |               | 2656         | -1860          | NDE         | 1022  | 2621                   | -1825          | 2568         | -1772          |
| Casey 1-36                       | 36-7N-12E              | 771        |               | 2618         | -1847          | 2792        | -2021 | 2579                   | -1808          | 2516         | -1745          |
| Richison 1                       | 36-7N-12E              | 749        |               | 2589         | -1840          | 2760        | -2011 | 2557                   | -1808          | 2494         | -1745          |
| Brow 2-2                         | 2-7N-13E               | 741        |               | 2356         | -1615          | 2478        | -1737 | 2321                   | -1580          | 2260         | -1519          |
| Vaughan 2-2 B                    | 2-7N-13E               | 736        |               | 2344         | -1608          | NDE         | 1101  | 2308                   | -1572          | 2242         | -1506          |
| Howard 1-3                       | 3-7N-13E               | 662        |               | 2347         | -1685          | 2482        | -1820 | 2312                   | -1650          | 2247         | -1585          |
| Lee #1                           | 6-7N-13E               | 857        |               | 2571         | -1714          | NDE         | 1020  | 2540                   | -1683          | 2484         | -1627          |
| Proctor #1                       | 7-7N-13E               | 964        |               | 2633         | -1669          | 2770        | -1806 | 2599                   | -1635          | 2534         | -1570          |
| Reed 1-7                         | 7-7N-13E               | 744        |               | 2398         | -1654          | 2540        | -1796 | 2365                   | -1621          | 2304         | -1560          |
| Watkins 1-7                      | 7-7N-13E               | 795        |               | 2437         | -1642          | 2577        | -1782 | 2406                   | -1611          | 2354         | -1559          |
| Wade 2-10                        | 10-7N-13E              | 741        |               | 2392         | -1651          | 2556        | -1815 | 2362                   | -1621          | 2294         | -1553          |
| Wadley 1-11                      | 11-7N-13E              | 733        |               | 2371         | -1638          | NDE         |       | 2341                   | -1608          | 2274         | -1541          |
| Herman #1-12                     | 12-7N-13E              | 738        |               | 2552         | -1814          | 2693        | -1955 | 2518                   | -1780          | 2446         | -1708          |
| Wadley 1-12                      | 12-7N-13E              | 751        |               | 2405         | -1654          | NDE         |       | 2371                   | -1620          | 2302         | -1551          |
| Duncan #1                        | 13-7N-13E              | 785        |               | 2386         | -1601          | NDE         |       |                        |                |              |                |
| Duncan #3                        | 13-7N-13E              | 812        |               | 2436         | -1624          | NDE         |       | 2404                   | -1592          | 2335         | -1523          |
| Ward #1-13                       | 13-7N-13E              |            |               |              | 0              |             |       | 2484                   | -2484          | 2408         | -2408          |
| Ward 2-13                        | 13-7N-13E              | 698        |               | 2331         | -1633          | 2524        | -1826 | 2296                   | -1598          | 2224         | -1526          |
| Graham #1                        | 14-7N-13E              | 786        |               | 2416         | -1630          | 2583        | -1797 | 2386                   | -1600          | 2315         | -1529          |
| Graham #2                        | 14-7N-13E              | 770        |               | 2443         | -1673          | NDE         |       | 2410                   | -1640          | 2341         | -1571          |
| Graham #3                        | 14-7N-13E              | 760        |               | 2406         | -1646          | NDE         |       | 2378                   | -1618          | 2304         | -1544          |
| Graham C #2                      | 15-7N-13E              |            |               | 2411         | -2411          | NDE         |       | 2378                   | -2378          | 2310         | -2310          |
| Pearson 1-16                     | 16-7N-13E              | 702        |               | 2358         | -1656          | 2516        | -1814 | 2326                   | -1624          | 2266         | -1564          |
| Crandell #1                      | 18-7N-13E              | 726        |               | 2330         | -1604          | NDE         |       | 2298                   | -1572          | 2238         | -1512          |
| Crandell #1-18                   | 18-7N-13E              | 729        |               | 2325         | -1596          | 2473        | -1744 | 2292                   | -1563          | 2240         | -1511          |
| Mooneyham 1-18                   | 18-7N-13E              | 724        |               | 2321         | -1597          | NDE         |       | 2289                   | -1565          | 2236         | -1512          |
| Rockey #2-18                     | 18-7N-13E              | 715        |               | 2311         | -1596          | NDE         |       | 2279                   | -1564          | 2222         | -1507          |
| Bush 1-19                        | 19-7N-13E              | 683        |               | 2324         | -1641          | 2480        | -1797 | 2293                   | -1610          | 2238         | -1555          |
| Stergios #1-20                   | 20-7N-13E              | 665        |               | 2338         | -1673          | 2495        | -1830 | 2307                   | -1642          | 2238         | -1573          |
| Graham #1                        | 22-7N-13E              | 824        |               | 2540         | -1716          | 2698        | -1874 | 2510                   | -1686          | 2432         | -1608          |
| Pedersen #2                      | 23-7N-13E              | 830        |               | 2538         | -1708          | NDE         |       | 2506                   | -1676          | 2432         | -1602          |
| Pederson #1                      | 23-7N-13E              |            |               | 2494         | -1672          | NDE         |       | 2462                   | -1640          | 2384         | -1562          |
| Abney 1-24                       | 24-7N-13E              |            |               | 2584         | -1700          | 2738        | -1854 | 2552                   | -1668          | 2477         | -1593          |
| Abney 3-24                       | 24-7N-13E              | 910        |               | 2613         | -1703          | NDE         | L     | 2577                   | -1667          | 2505         | -1595          |
| Hill 1-24                        | 24-7N-13E              | 693        |               | 2393         | -1700          | NDE         | 10.00 | 2356                   | -1663          | 2282         | -1589          |
| Hitchcock 1-24                   | 24-7N-13E              | 897        |               | 2633         | -1736          | 2815        | -1918 | 2598                   | -1701          | 2524         | -1627          |
| Whitehead 1-24                   | 24-7N-13E              | 701        |               | 2356         | -1655          | NDE         | L     | 2322                   | -1621          | 2250         | -1549          |
| Carver 1-25                      | 25-7N-13E              | 692        |               | 2578         | -1886          | NDE         | L     | 2540                   | -1848          | 2460         | -1768          |
| King #1                          | 25-7N-13E              | 712        |               | 2456         | -1744          | NDE         |       | 2416                   | -1704          | 2336         | -1624          |
| King 2-25                        | 25-7N-13E              | 714        |               | 2400         | -1686          | NDE         |       | 2357                   | -1643          | 2286         | -1572          |
| King 3-25                        | 25-7N-13E              | 702        |               | 2431         | -1729          | NDE         | L     | 2392                   | -1690          | 2320         | -1618          |
| King 4-25                        | 25-7N-13E              | _          |               | 2476         | -2476          | NDE         |       | 2436                   | -2436          | 2354         | -2354          |
| Collier 1-26                     | 26-7N-13E              | 701        |               | 2488         | -1787          | NDE         | 1     | 2449                   | -1748          | 2378         | -1677          |

| Well            | Location  | KB  | Top of UHCoal | Торо | f LHCoal | Top of / | Atoka | Top of Upp<br>(Unnamed |       | Base of Sha | ale Marker |
|-----------------|-----------|-----|---------------|------|----------|----------|-------|------------------------|-------|-------------|------------|
| Frederick #1    | 26-7N-13E | 885 |               | 2587 | -1702    | 2779     | -1894 | 2552                   | -1667 | 2480        | -1595      |
| Holt 1-28       | 28-7N-13E | 720 |               | 2515 | -1795    | 2678     | -1958 | 2482                   | -1762 | 2410        | -1690      |
| Holt 2-28       | 28-7N-13E | 738 |               | 2540 | -1802    | NDE      |       | 2507                   | -1769 | 2435        | -1697      |
| Holt 1-29       | 29-7N-13E | 715 |               | 2528 | -1813    | NDE      |       | 2494                   | -1779 | 2528        | -1813      |
| Walters 1-A     | 29-7N-13E | 712 |               | 2536 | -1824    | 2614     | -1902 | 2504                   | -1792 | 2494        | -1782      |
| Elbert 1-30     | 30-7N-13E | 724 |               | 2526 | -1802    | NDE      |       | 2491                   | -1767 | 2426        | -1702      |
| Helen 1         | 33-7N-13E | 870 |               | 2693 | -1823    | NDE      |       | 2876                   | -2006 | 2810        | -1940      |
| Lucille #1      | 34-7N-13E | 908 |               | 2707 | -1799    | 2973     | -2065 | 2689                   | -1781 | 2619        | -1711      |
| Lucille 2-34    | 34-7N-13E | 900 |               | NP   |          | NDE      |       | 2685                   | -1785 | 2608        | -1708      |
| State 1-35      | 35-7N-13E | 707 |               | 2549 | -1842    | 2828     | -2121 | 2520                   | -1813 | 2445        | -1738      |
| State 2-35      | 35-7N-13E | 703 |               | 2510 | -1807    | 2804     | -2101 | 2482                   | -1779 | 2410        | -1707      |
| Brite 1-36      | 36-7N-13E | 642 |               | 2365 | -1723    | NDE      |       | 2328                   | -1686 | 2264        | -1622      |
| JWP 1-36        | 36-7N-13E | 658 |               | 2322 | -1664    | NDE      |       | 2298                   | -1640 | 2234        | -1576      |
| Madden 1-36     | 36-7N-13E | 704 |               | 2479 | -1775    | 2739     | -2035 | 2449                   | -1745 | 2377        | -1673      |
| Painter #2      | 36-7N-13E | 678 |               | 2413 | -1735    | NDE      |       | 2384                   | -1706 | 2303        | -1625      |
| Sheena 1-36     | 36-7N-13E | 738 |               | 2523 | -1785    | NDE      |       | 2492                   | -1754 | 2409        | -1671      |
| Sunshine 1-36   | 36-7N-13E | 671 |               | 2663 | -1992    | NDE      |       | 2632                   | -1961 | 2540        | -1869      |
| White AF #1     | 36-7N-13E | 664 |               | 2607 | -1943    | NDE      |       | 2585                   | -1921 | 2518        | -1854      |
| Willie Mae 1-36 | 36-7N-13E | 697 |               | 2454 | -1757    | NDE      |       | 2423                   | -1726 | 2352        | -1655      |

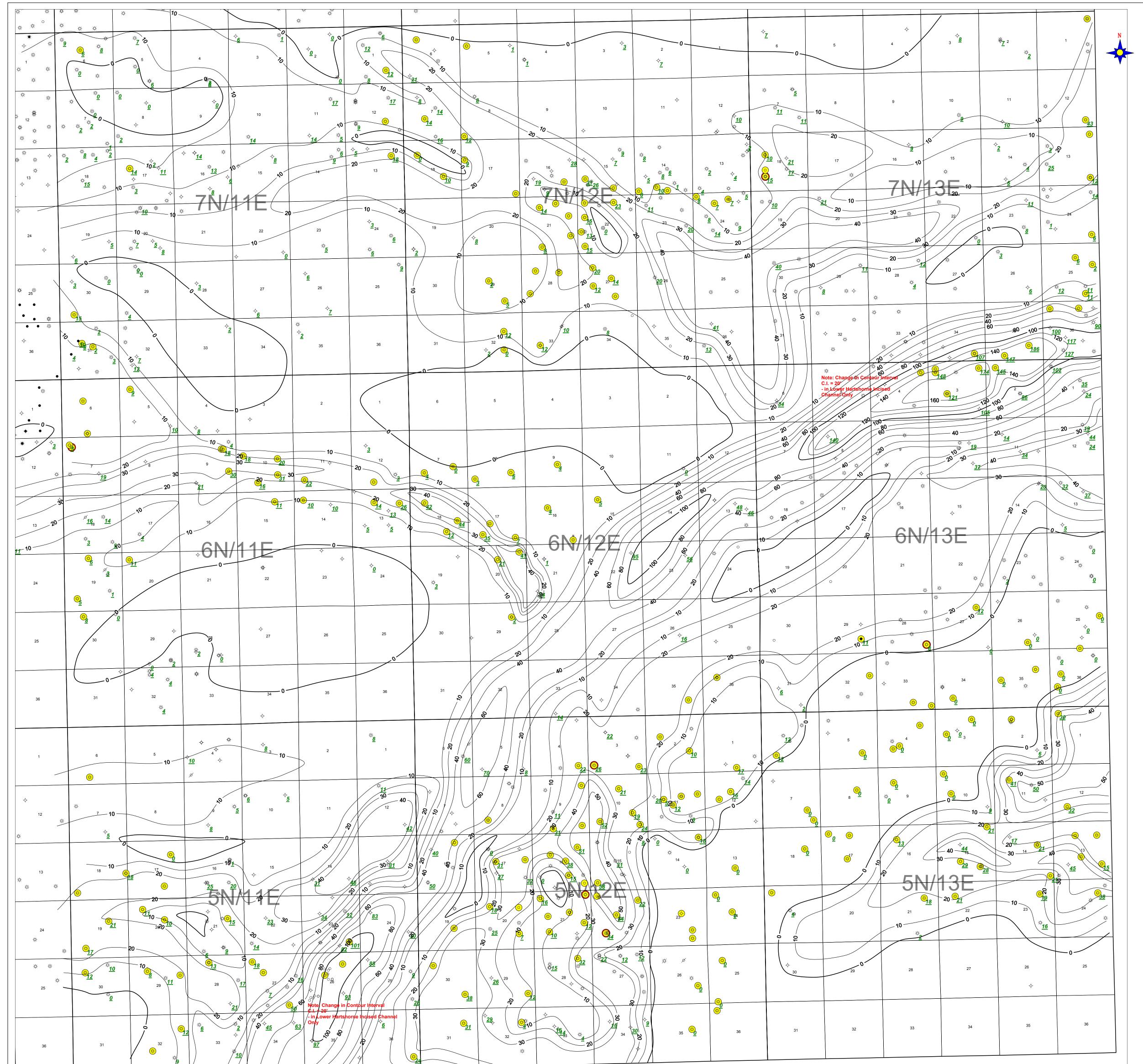


| Hillon #1<br>Billon #1<br>Top Field                                                                                                                | 9 5720 10 <b>Stuart</b> 12<br>NEWBY #1-9 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3284<br>7<br>ROOKS #1<br>3184<br>FARGO #1 IVA SIMS #1              | 8 9 10<br>BETHEL #1 CI<br>3358 WILLOW #1-10<br>3280 BETHEL #2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COOTTER #1 | 7<br>FIRESTOTE UNIT #1<br>S650<br>ATTS #1<br>REYXOLOS #1<br>S650 | 8 3547                                               | 9 Scze 10<br>GRANT #1-10<br>3829                 | 11 BIG Y #1-11<br>3360 WA2SONS #1                     |                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|
| CKEY #1<br>3140                                                                                                                                    | Southwest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3295 3198<br>GRACE FARGO #1<br>3198<br>HARRISON #1<br>HALL UNIT #1 | BEZTEN, #3<br>S448<br>S448<br>KREIMEJER #1-15<br>DONN #1<br>3459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S420         Ntel         Ntel <t< td=""><td>BRUCE ROCENS UNIT #1</td><td>2<sup>#2</sup> ROCK TR #3-17<br/>SE22 L WAYNE OF NOI</td><td>LER #16-1<br/>INVESTERS ROYALTY #1<br/>3802</td><td>NATKINS #1-14<br/>3700<br/>RAMSEY #1</td><td>-13 SANDITA #1-13<br/>2428</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BRUCE ROCENS UNIT #1                                             | 2 <sup>#2</sup> ROCK TR #3-17<br>SE22 L WAYNE OF NOI | LER #16-1<br>INVESTERS ROYALTY #1<br>3802        | NATKINS #1-14<br>3700<br>RAMSEY #1                    | -13 SANDITA #1-13<br>2428                                             |
| 13 18 ALBERRATION VELL #1 17                                                                                                                       | PEARSON #2<br>PEARSON #1<br>S476<br>16<br>15<br>ELLIS #1<br>Field<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3245<br>BROOKS #1-18<br>3225                                       | 32355         2520         JOHNESS#1-16         LOFT           KRHINKER#-17         ISENHOWSR #         -17         3363         ADAMSTW #1-16         RINEHART HEIRS :           BROWN #1-17         3352         TESSA #1-16         10411         3491         3491           BROWN #1-17         GOODS #1 MARY #1-16         LOFTERGER         105         10411         10411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IS A E #2-15 MCCAULEY #1<br>6997 3496<br>#1 14 13<br>VALENTE #1 FIELDS ATERS UN #1<br>3578 \$638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3470<br>18                                                       | W P KOSZ #1<br>SS22                                  | 16<br>MARBET LC #37<br>See EGGLMSSROPS #INITS#1A | 14<br>HOPET<br>WATSON #1<br>2771<br>MARBETS AN42#1.13 | 13<br>INS #1<br>GLENNED #1-14                                         |
| -CI-<br>310<br>GOURTEV SERA #1 WALTON JAMES UNIT #1 BLACT #1-17 CAT                                                                                | ARKE MAURICE G 'B #1 3154<br>THY #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADAMS #1-13<br>3336                                                | 3455 BLACK IQHN 61 ACK #1-16<br>3500 3550 TRACEY #11.005 #1-15<br>MARY #2-16 S500 5421<br>3120 JENN (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 | 3<br>0777745-22 WN<br>0777745-22 3528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IIVERSIPTOF TULSA #1                                             |                                                      | 5N/13E                                           | MARBETSLC #32                                         | NELL MARY # -24<br>2884<br>DEER CRESK #1-24<br>NG4<br>HILDERS UNIT #1 |
| ARPTOR #1 BLACE 7 #1                                                                                                                               | CLARKE M G-A #1<br>5576<br>WHITE-MCKON #TRAVIS ** #1 BERMAN #1-22<br>S578<br>SOMERVILLE #1<br>3336<br>3320<br>SOMERVILLE #1<br>3336<br>3249<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COFFEX #1-19<br>3470<br>19                                         | WESTLAKE DEIRS #1-20<br>S518<br>20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>TIM #3-20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1 AUSTINE OFTIS #1 OSSIE ATORRIS #1<br>23480 23480 2424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HAZELWOOD #1<br>354999                                           | 20                                                   | 21 22                                            | 23 23<br>MARBET LLC #25                               | 8365<br>24<br>NELL MARY #5-24<br>3170                                 |
| 24<br>MARSHALL /A/#1<br>3150<br>MARSHALL II A/#1                                                                                                   | PATTER SON #1     22     23       7804     DAMS.'N' #1     MARTIN #1       HOCKORY LYLES: #1 #1     SOMMERY LILE ##23     DUNC ON #1       10KORY HILLS #1     3400     3235       3215     3247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FERN,'A' #1<br>3500                                                | TIM #1-20 3000 S439<br>3545 BLACK #1 GARBETS #4-21 ANNA #1-21 00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOTT #1<br>58 DELTENH #1<br>58 DELTENH #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                      | GRETA #1-21<br>3550                              | 3186                                                  |                                                                       |
| S206     S204       THORNION #3-MICKEE #2     WILBANKS #3-30       3230     3330       CARTER CD UNIT #1     VERXOD #1-29       PARKS ESTATE #1-29 | HERRES D' #1 WALKER TISIRS #27-2<br>WALKER TISIRS #1<br>WALKER TISIRS #1<br>WALKER TISIRS #1<br>WALKER TISIRS #1<br>DATABASE FOR #10 Processing #15-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOFTIS #1-2:                                                       | BLACK A #50ABBACKAAU<br>BLACK 3. BLACK A #60-21<br>A B CAMP ETAL #1<br>BLACK VERNON J #2-38<br>BLACK VERNON J #2-38<br>BLACK VERNON J #2-38<br>BLACK A #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLACK #1-26 DAVIS #2-26<br>2943 3525 E E WORKING UNIT #1<br>S670<br>JV BLACK # 26 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USA 30-1 #1<br>                                                  | 29                                                   | 28 27                                            | 26                                                    | 25                                                                    |
| MCKEE #1<br>3444     368     3396     WILBANKS #1     3465       25     30     29       VERNON DERRICK #1-30     3313                              | S288         Intraction         Intraction <td>3330<br/>30<br/>ROG<b>275</b> #1-<br/>NEWTQN #125</td> <td>TRIMM #1     28     3300 27       4000     29     BLACK #4-28       3700AVIS UNIT #1     3575</td> <td>VERNON BLACK A' #7-27<br/>7470</td> <td></td> <td></td> <td></td> <td>F BLEVINS UNT-A #1<br/><br/>3751</td> <td></td> | 3330<br>30<br>ROG <b>275</b> #1-<br>NEWTQN #125                    | TRIMM #1     28     3300 27       4000     29     BLACK #4-28       3700AVIS UNIT #1     3575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VERNON BLACK A' #7-27<br>7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                      |                                                  | F BLEVINS UNT-A #1<br><br>3751                        |                                                                       |
|                                                                                                                                                    | TRIMM #1<br>3400         TRIMM JAMES D #27-1 LACKEY #1<br>3143         TRIMM JAMES D #27-1 LACKEY #1<br>5440         Stars           OFTUS #33-1         LOFTUS #1         JACKEY B UNIT #1         LACKY JR UNIT #1         SHIRLEY #1<br>3000         SHIRLEY #1<br>3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3625                                                               | BENNETT-HALL #1<br>3959<br>WALKER #1 JW HALL AVI #1 A<br>3200<br>PASCHALL #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USA-TEXTECO #36-1<br>WRIGHT_WOOD #1<br>3809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                                      |                                                  |                                                       |                                                                       |
| 36 31 32                                                                                                                                           | 6165 3330 3340 5350<br>LOFTIS #2<br>2950 33 34 HMILE #1 35 36<br>33 34 3350 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                 | <b>3635</b> )-<br>3650 REED #1<br><b>33</b> 3715 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3760 35 3627 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                                                               | 32                                                   | 33 34                                            | 35                                                    | 36                                                                    |
| NORVELL #32-1<br>3820                                                                                                                              | MARTIN #1-33<br>3415 STEVENSON #1<br>2901<br>ROGENS #1<br>3340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHIRTEN #<br>S820                                                  | 3846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HENDERSON #1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                      |                                                  |                                                       |                                                                       |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                      |                                                  |                                                       |                                                                       |

Hartshorne Production

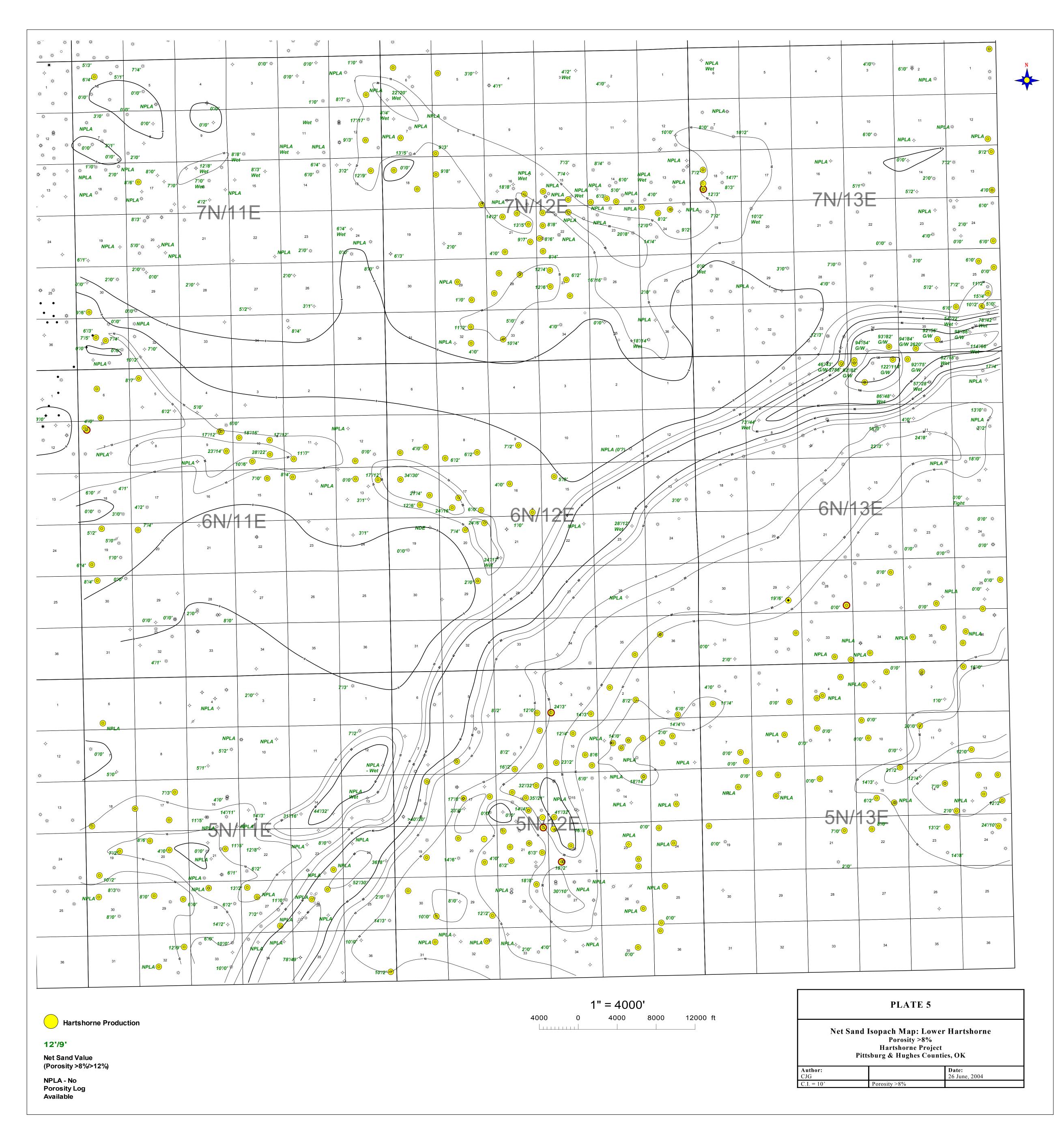
PLATE 1

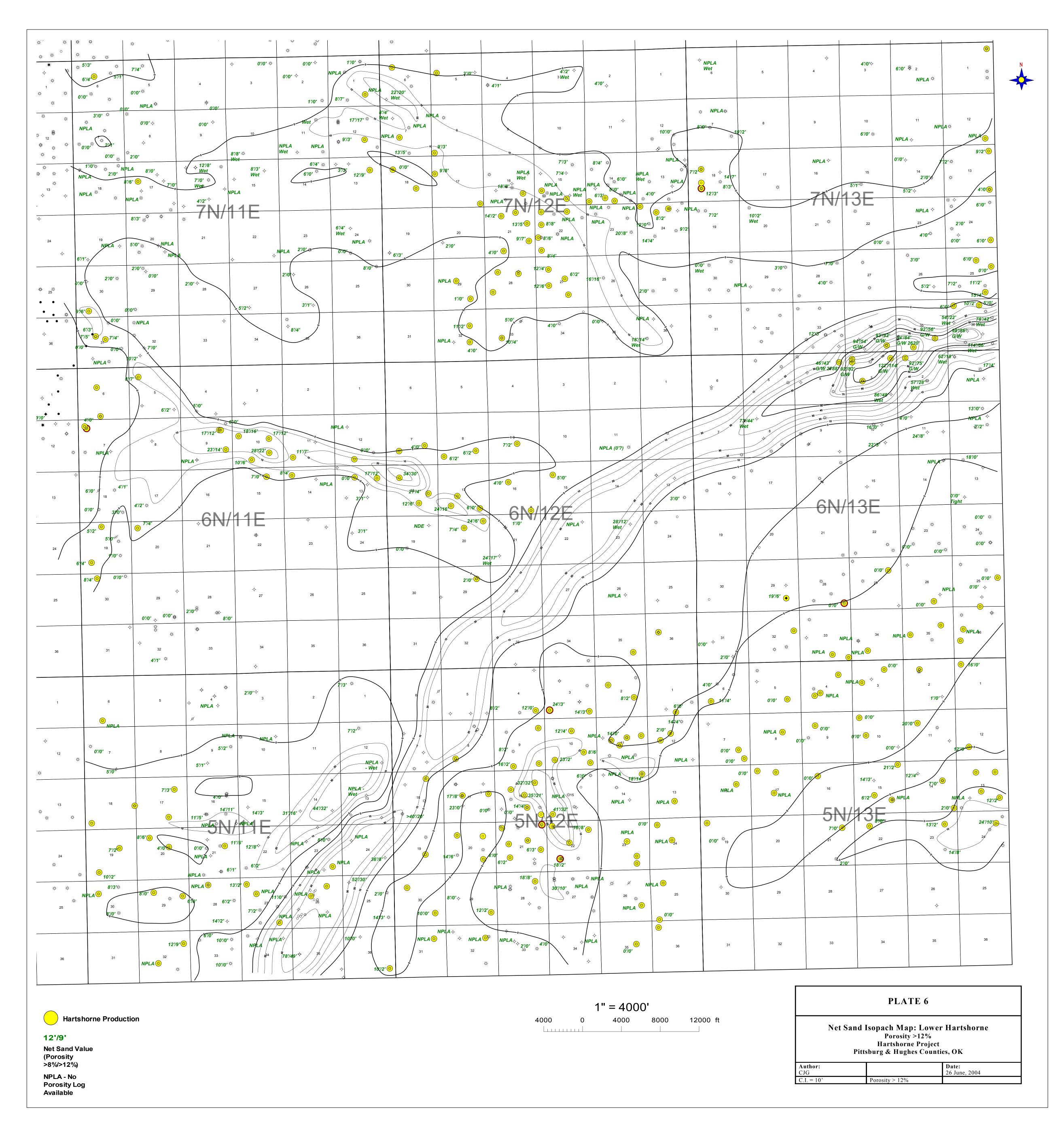
**Basemap** Hartshorne Project Pittsburg & Hughes Counties, OK


| <b>Author:</b><br>CJG | <b>Date:</b><br>15 May, 2004 |
|-----------------------|------------------------------|
|                       |                              |

|      |   | 1" = 3000' |      |          |
|------|---|------------|------|----------|
| 4000 | 0 | 4000       | 8000 | 12000 ft |
|      |   |            |      |          |

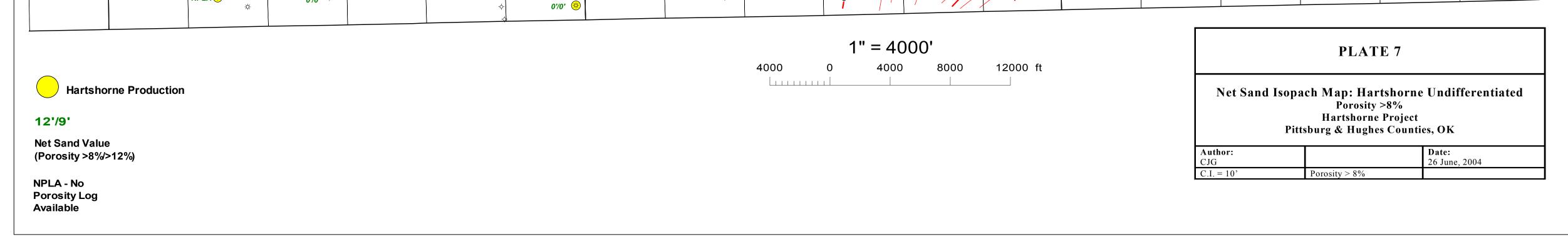
## 210


| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | びけます。<br>11/98-8/03<br>.027 Bcf<br>21 Mcfd<br>?-?'<br>登<br>2<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       ** <td< td=""><td>11<br/>→<br/>Hartshorne Coal<br/>12/00-7/03<br/>.019 Bcf<br/>16 Mcfd<br/>2550-94'<br/>HERMAN #1-12<br/>↓</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>→<br>Hartshorne Coal<br>12/00-7/03<br>.019 Bcf<br>16 Mcfd<br>2550-94'<br>HERMAN #1-12<br>↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| **     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     * </td <td>St Field<br/>↓ 13<br/>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | St Field<br>↓ 13<br>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A set of short of shor         | ↓     ↓       23     ↓       ↓     10/93-8/03       .299 Bcf       12 Mcfd       2106-2429'       Booch &       Hartshorne       and Coal       ↓       ↓       ↓       10/93-8/03       .299 Bcf       12 Mcfd       206-2429'       Booch &       Hartshorne       and Coal       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓       ↓ |
| ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Booch &<br>Hartshorne     25       3/01-8/03     .103 Bcf       62 Mcfd     1907-2522'       Booch &<br>Hartshorne     KING #4-25       SUNSHINE #1-36     SHEENA #1-36       5/96-8/03     .073 Bcf       10/80-4/87     .607 Bcf       INA     36                                                                                                                                                                                                                                                                                                                                                                                           |
| A Refused of the contraction of  | 35-8/03<br>Mcfd<br>62-2790'       35       .607 Bcf<br>INA<br>2560-2600'       .70 Mcfd<br>Booch &<br>2560-2600'         1.200 Bcf<br>221 Mcfd<br>2522-76'       35       .74 Eff<br>2522-76'       .74 Eff<br>2522-76'         LUCILLE #1       .5TATE #2-35                                                                                                                                                                                                                                                                                                                                                                                 |
| Image: series                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12     3     3     3     3     3     5     3     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5 </td <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A Constrained of the constrained | 14 13<br>-↔<br>-☆<br>-☆<br>-☆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ↔     ↔       ↔     ↔       GLEESE #1-27     ↔       ↔        ↔        ↔        Ø/88-7/03       .208 Bcf       Ø/88-7/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{bmatrix} 25 \\ 30 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rne<br>7/78-9/03<br>.843 Bcf<br>118 Mcfd<br>3783-3896'<br>.150 Bcf<br>INIC #2<br>.150 Bcf<br>INIC #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36       31       32       33       34       35       36       56       57       61       41       57       41       57       41       151       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41       41 <t< td=""><td>bold     MINIC UNIT #1     35     .032 BCT     .032 BCT       10 M A     35     .18 A     .18 A       5-9/03     2.745 Bcf     .18 A     .18 A       41 Bcf     2.745 Bcf     .064 Bcf     .064 Bcf       3 Mcfd     .064 Bcf     .064 Bcf       3605-3770*     THOMPSON #1       COOD #2     WATKINS #1       Coop #2     WATKINS #1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bold     MINIC UNIT #1     35     .032 BCT     .032 BCT       10 M A     35     .18 A     .18 A       5-9/03     2.745 Bcf     .18 A     .18 A       41 Bcf     2.745 Bcf     .064 Bcf     .064 Bcf       3 Mcfd     .064 Bcf     .064 Bcf       3605-3770*     THOMPSON #1       COOD #2     WATKINS #1       Coop #2     WATKINS #1                                                                                                                                                                                                                                                                                                         |
| Image: constraint of the                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Image: book of the state of                  | 0<br>11/80-8/03<br>.546 Bcf<br>63 Mcfd<br>3581-3631'<br>↓<br>WATKINS #1<br>12<br>WATKINS #1<br>10/84-8/03<br>.521 Bcf<br>66 Mcfd<br>2830-72'<br>9/00-8/03<br>NITA #1-13 SANDRA #1-13<br>.674 Bcf<br>29 Mcfd<br>3608-63'<br>9631 Mcf MSEY #1<br>9/00-8/03                                                                                                                                                                                                                                                                                                                                                                                      |
| 13     18     ALECT VICEVILI MI<br>1025-003<br>23 Michi<br>17     16     15     File<br>105-003<br>11     16     11     17     16     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     13     18     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803     100-803<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3608-63'<br>15<br>#37<br>:GGLESTON UNIT #1A<br>7/94-7/03<br>.286 Bcf<br>35 Mcfd<br>3418-72'<br>MARBET LLC #32<br>10/01-3/03 ♀<br>MARBET LLC #32<br>10/01-3/03 ♀<br>MARBET LLC #32<br>10/01-3/03 ♀<br>MARBET LLC #32                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24       347-3407       358-92       O/IV       III       400-103       358-92       O/IV       120-803       358-92       120-803       358-92       00-103       358-92       00-103       358-92       00-103       120-803       358-92       00-103       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       358-92       00-103       120-803       322-371       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103       100-103 <t< td=""><td>.017 Bcf<br/>19 Mcfd<br/>2866-2938'<br/>24 INA<br/>2748-2822</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .017 Bcf<br>19 Mcfd<br>2866-2938'<br>24 INA<br>2748-2822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NBRE C UNIT N         VENNUF 1-29         VENNUF 2-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 26 25<br>-¢-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All         All <td>34 35 36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 35 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hartshorne Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLATE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hartshorne Production<br>Dates of Production<br>Cumulative Gas (Bcf)<br>Current Rate Gas (Mcfd)<br>Perforations     1" = 3000'       4000     0     4000     8000     12000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hartshorne Production Map<br>Hartshorne Project<br>Pittsburg & Hughes Counties, OK<br>Date:<br>15 May, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

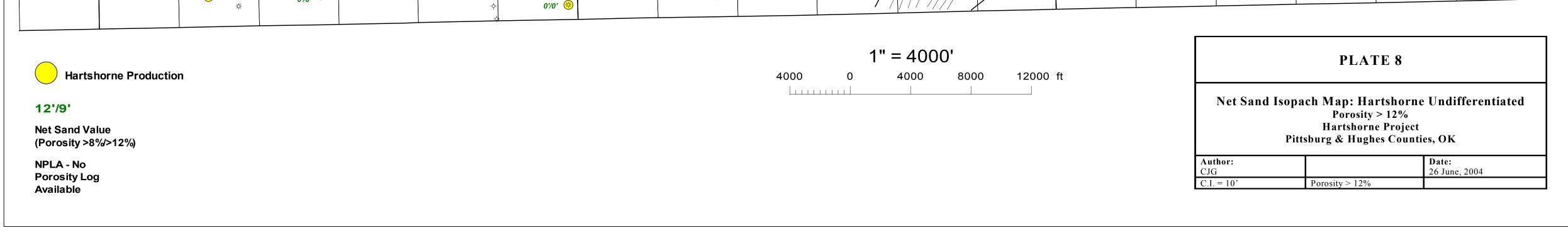

# 

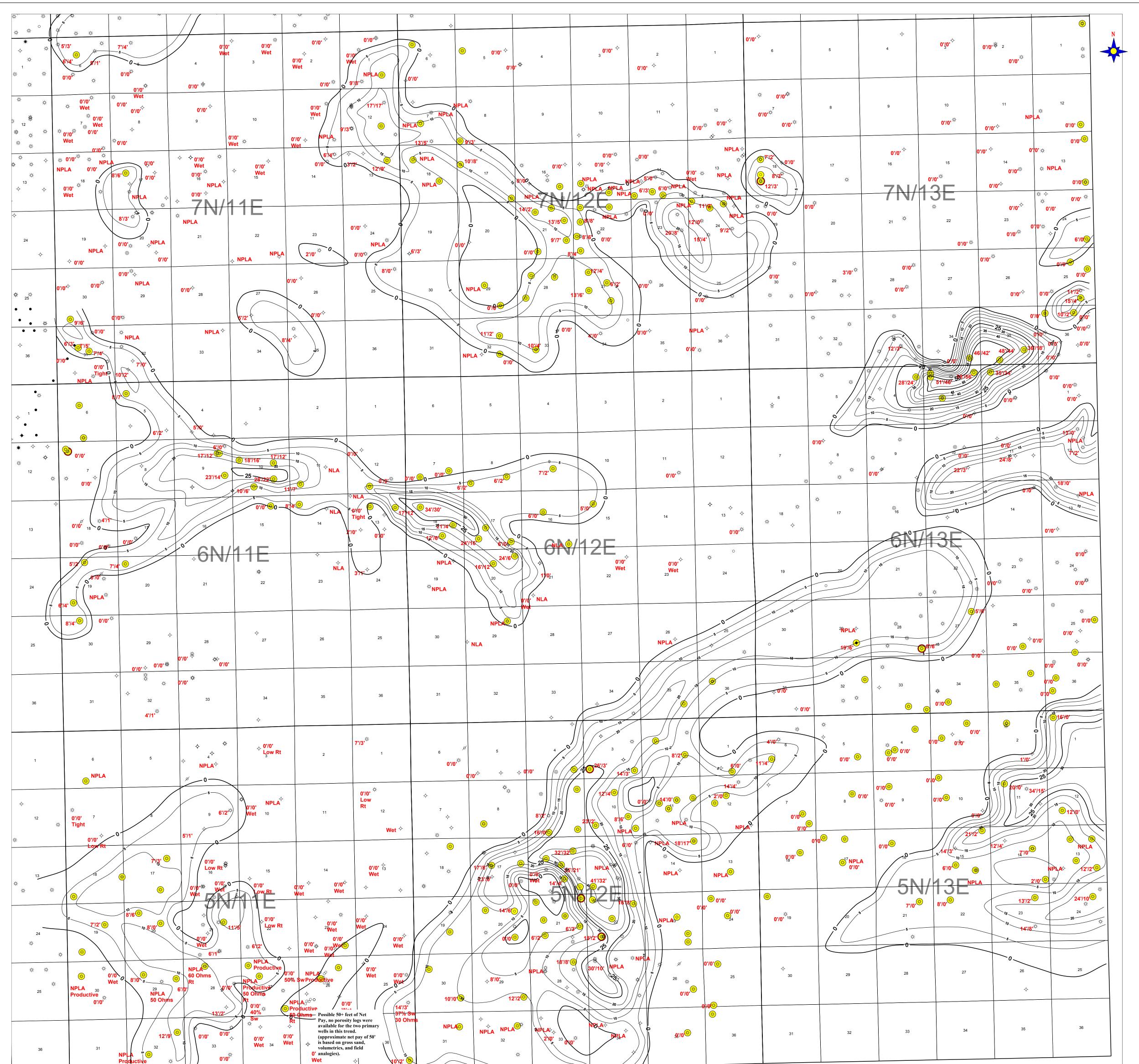


| Hartshorne Production           | 1" = 4000'                | Р                                                                | LATE 3                                                        |
|---------------------------------|---------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
| <u>10</u>                       | 4000 0 4000 8000 12000 ft | Hart                                                             | ap: Lower Hartshorne<br>shorne Project<br>Hughes Counties, OK |
| Gross Sand Value (50%           |                           | Author:<br>CJG                                                   | <b>Date:</b><br>15 May, 2004                                  |
| Clean Sand Gamma Ray<br>Cutoff) |                           | C.I. = 20' (with 10'<br>Contour for thinner<br>sandstone bodies) |                                                               |

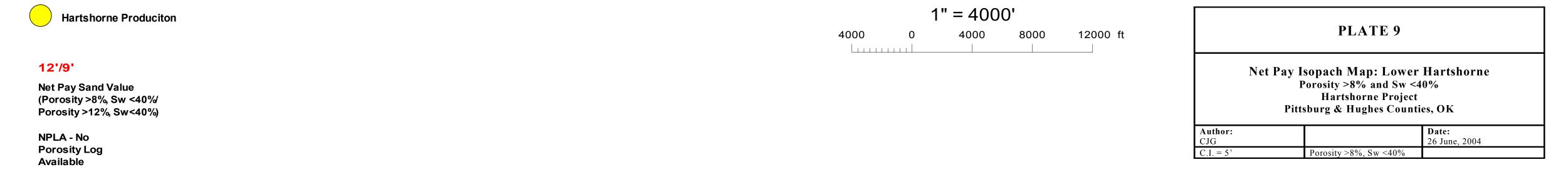

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                           | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\left \begin{array}{c c c c c c c c c c c c c c c c c c c$                                                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{vmatrix} & & & & & & & & & & & & & & & & & & $                                                                                                                           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                       | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\left \begin{array}{c cccccccccccccccccccccccccccccccccc$                                                                                                                        | $\frac{15}{22} + \frac{12}{23} + \frac{1}{24} + \frac{1}{19} + \frac{1}{20} + \frac{1}{21} + \frac{1}{22} + \frac{1}{22} + \frac{1}{24} + \frac{1}{19} + \frac{1}{20} + \frac{1}{21} + \frac{1}{22} + \frac{1}{22} + \frac{1}{24} + \frac{1}{24$ |
| $\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36     31     32     33     34     2     35     36     3        *     *     *     *     *     *     *     *     *       Hartshorne Production     *     *     *     *     *     * | I" = 4000'         4000 0 4000 8000 12000 ft         Gross Sand Map: Hartshorne Undifferentiated Hartshorne Project Pittsburg & Hughes Counties, OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>10</u><br>Gross Sand Value (50%<br>Clean Sand Gamma Ray<br>Cutoff)                                                                                                             | Author:<br>CJGDate:<br>15 May, 2004C.I. = 20' (with 10'<br>Contour for thinner<br>sandstone bodies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

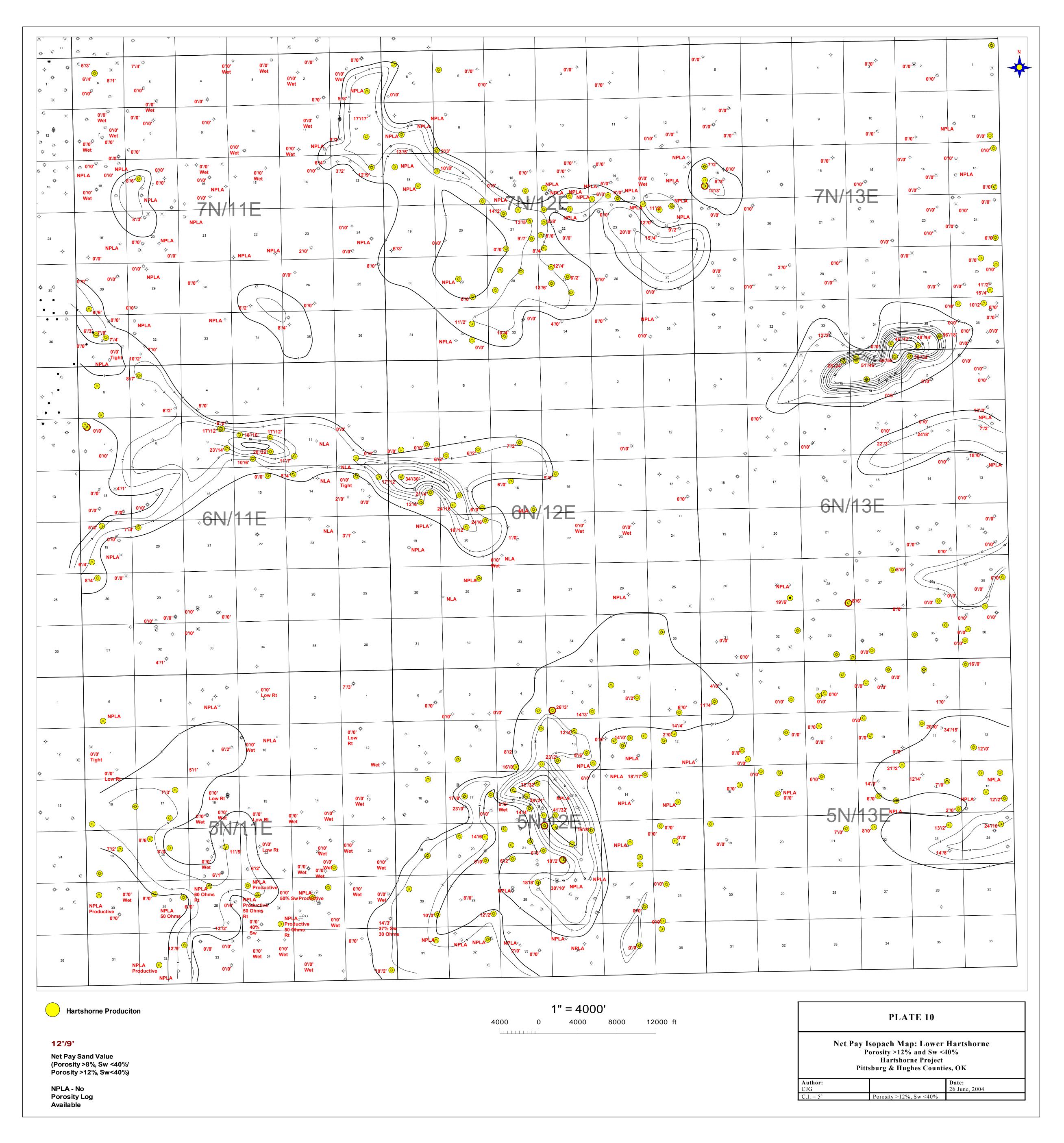




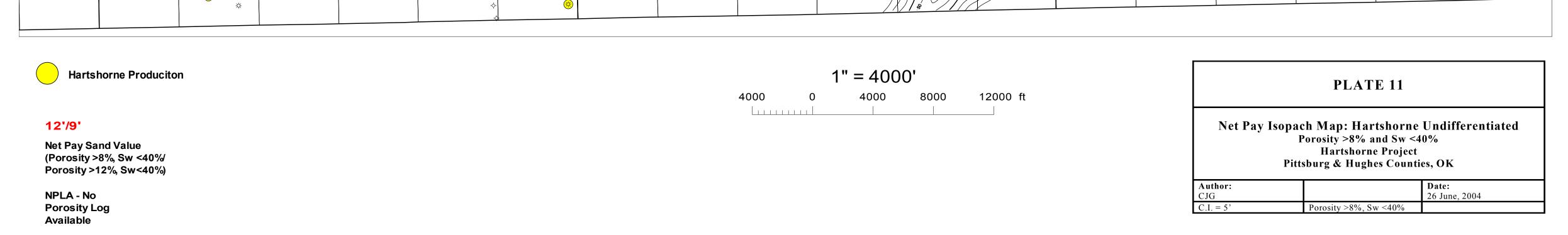


| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                          | × ↔ × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,<br>3 <b>0'/0'</b> 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>- \$-</sup> NPLA<br>Wet<br>6 5                                                                                                                               | <ul> <li>☆</li> <li>0'/0'☆</li> <li>3</li> <li>0'/0' 苓 2</li> <li>1</li> <li>※</li> <li>NPLA ※</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | × 0%'<br>NPLA ☆<br>NPLA 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0″0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ☆         NPLA☆           0'/0' ☆ <sup>7</sup> 8           **         0'/0' ☆'                                                                                    | 9 10 11 12<br>NPLA ↔ NPLA ↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                         | NPLA<br>Wet         NPLA<br>↔         T         *         0'/0' ☆           0'/0' ☆         ↔         ↔         ↔         ⊗         0'/0' ☆           0'/0' ☆         0'/0' ô'/0'         ⊗         0'/0'         ⊗         0'/0'           14         13         18         18         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0'/0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>↔</sup><br>0′∕0 <sup></sup><br><sup>18</sup> <sup>↔</sup> 17                                                                                                 | NPLA ↔       0'/0' ↔       0'/0' ↔         16       15       14       13         0/0' ☆       0'/0' ☆       *       0'/0' ☆         0/0' ★       0'/0' ☆       0'/0' ☆       0'/0' ☆         7N/13E       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           | 23<br>0′/0′ <sup>¢</sup><br>24<br>19<br>NPLA 0′/0′ ☆<br>0′/0′ ☆<br>0′/0′ ☆<br>0′/0′ ☆<br>0′/0′ ↔<br>0′/0′ ↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20<br><sup>20</sup><br><sup>20</sup><br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'<br><sup>21</sup><br>0'/0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☆         ☆         0'/0'           ⊗         0'/0'         №         0'/0'         ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☆         ☆           NPLA <sub>☆</sub> ☆         0'/0'           0'/0'         19           20                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                          | 0'/0'☆<br>26 25 30<br>0'/0'☆<br>☆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NPLA (⊕29 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕) 28 (⊕ | a'/0' ↔<br>a'/0' ↔<br>a'/0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             | 28     27     26     25     0'/0' ♀       0'/0' ♀     ☆     0'/0' ♀     0'/0' ♀     0'/0' ♀       ☆     0'/0' ♀     0'/0' ♀     0'/0' ♀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | <sup>•</sup> <b>0'/0'</b><br>35 36 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0'/0' 🛞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34 35 36 <sup>↔</sup><br><sup>36</sup> <sup>×</sup> 0′′0′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * *<br>*<br>*<br>*<br>*<br>*                                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           | 2 1 6<br>NPLA \$<br>11 \$<br>12 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3     2     1       10     11     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ·     · · ·     · · ·     · · ·       · · ·     · · ·     · · ·     · · ·       · · ·     · · ·     · · ·     · · ·       · · ·     · · ·     · · ·     · · · | * 0′/0 <sup>·</sup> 0′/0 <sup>·</sup><br>* 0′/0 <sup>·</sup> 0′/0 <sup>·</sup> 0′/0 <sup>·</sup> ×<br>9 0 <sup>*</sup> /0 <sup>*</sup> 0′/0 <sup>·</sup> NPLA <sup>+</sup><br>11 0′/0 <sup>·</sup> <sup>*</sup> 1 <sup>2</sup> 0′/0 <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | 0'/0' ↔ 0'/0' ☆ 0'/0'<br>0'/0' ↔ 0'/0' ↔ 0'/0'<br>0'/0' ↔ 0'/0' ↔ 0'/0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0' 🛞 17 0'0' 😣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0′⁄0 <sup>, *</sup><br><sup>⊗</sup> 0′∕0 <sup>,</sup><br>15 14 <sup>↔</sup><br>13 0′⁄0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0'' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0' 	 0'0'    | 22 23 24<br>→ 12E<br>NPLA <sup>↔</sup> 0'/0' <sup>↔</sup> <sup>☆</sup> <sup>↔</sup> <sup>↔</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 20<br>O                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | 26 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0'/0' 🔅<br>0 29 28<br>0 0'/0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 26 25<br>NPLA ¢<br>¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 29 ↔<br>○ 0′′0′ •                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           | 35 36 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0'/0' ↔ <sup>31</sup> <sup>32</sup> ↔<br>0'/0' ↔ <sup>3</sup> ↔<br>0'/0' ↔ <sup>3</sup> ↔<br>0'/0' ☆<br>0'/0' ☆                                                   | $33 NPLA \Rightarrow 34 NPLA \Rightarrow 35 PLA_6$ $33 NPLA \Rightarrow 8 PLA \Rightarrow 8 PLA_6$ $34 NPLA \Rightarrow 8 PLA \Rightarrow 8 PLA \Rightarrow 8 PLA \Rightarrow 9 PLA \Rightarrow$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | 2 1<br>↓ 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | NPLA     0'/0' ↔       (3)     28'/0'       (4)     28'/0'       (5)     68'/18'       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)       (7)     (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           | NPLA ↔         ×           - Wet         ×           14         13           0'/0'         ↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↔         0%' ☆         ◇         NPLA         ↔         0%'         ↔         13           (%)         ○         ※         0%'         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLA $\diamond$ 92'/55' $\textcircled{3}$<br>56'/15' $\textcircled{3}$ $\textcircled{3}$<br>NBLA $\textcircled{3}^{17}$<br>NDLA $\textcircled{3}^{17}$<br>NDLA     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | 0%0'         ↓         ↓         ★         * 0%0'           ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓ | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>4</b> ′0' <sup>*</sup> <sup>*</sup> 19 20                                                                                                                      | O'/0' ⊗       O'/0' ⊗       0'/0' ⊗       0'/0' ⊗         21       22       23       24 <sup>*</sup> 0'/0' <sup>*</sup> 0'/0' <sup>*</sup> 0'/0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *     0'/0'*     NPLA *       *     0'/0'*     NPLA *       *     0'/0'*     0'/0' *       *     0'/0' *     0'/0' *       25     30     29       0'/0'      28     0'/0' *       0'/0' *     0'/0' *       0'/0' *     0'/0' * | $A \\ O''O' \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 <sup>'</sup> /0' NPLA ⅔<br>30 0 <sup>'</sup> /0' ↔ 29 28<br>0 <sup>'</sup> /0' ↔ 0 <sup>'</sup> /0' ↔ <sup>28</sup> ↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *     0'/0'     NPLA     *     *     NPLA     *       *     27     *     26     *     25       *     *     NPLA     *     25       *     *     NPLA     *     38'/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   | 28 27 26 25<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 36     31     32     33     34       №     0'/0' ♀     ♦     №     №       №     0'/0' ♀     ♦     №       №     0'/0' ♀     ♦     №       №     0'/0' ♀     ♦     №                                                            | PLA <sup>↔</sup><br>0′/0' <sup>↔</sup><br>0′/0' <sup>↔</sup><br>35<br>36<br>0′/0' <sup>⊗</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NPLA          NPLA         NPLA.           O'/0'         33'         32'         NPLA.           O'/0'         33'         33'             NPLA.           O'/0'         33'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0'/0'<br>☆ NPLA<br>34<br>84'/55<br>84'/55<br>84'/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 31 32                                                                                                                                                           | 33 34 35 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Ν

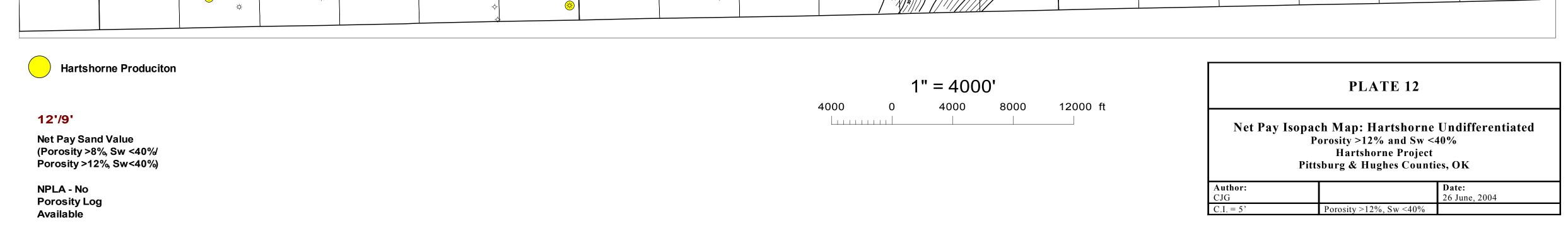


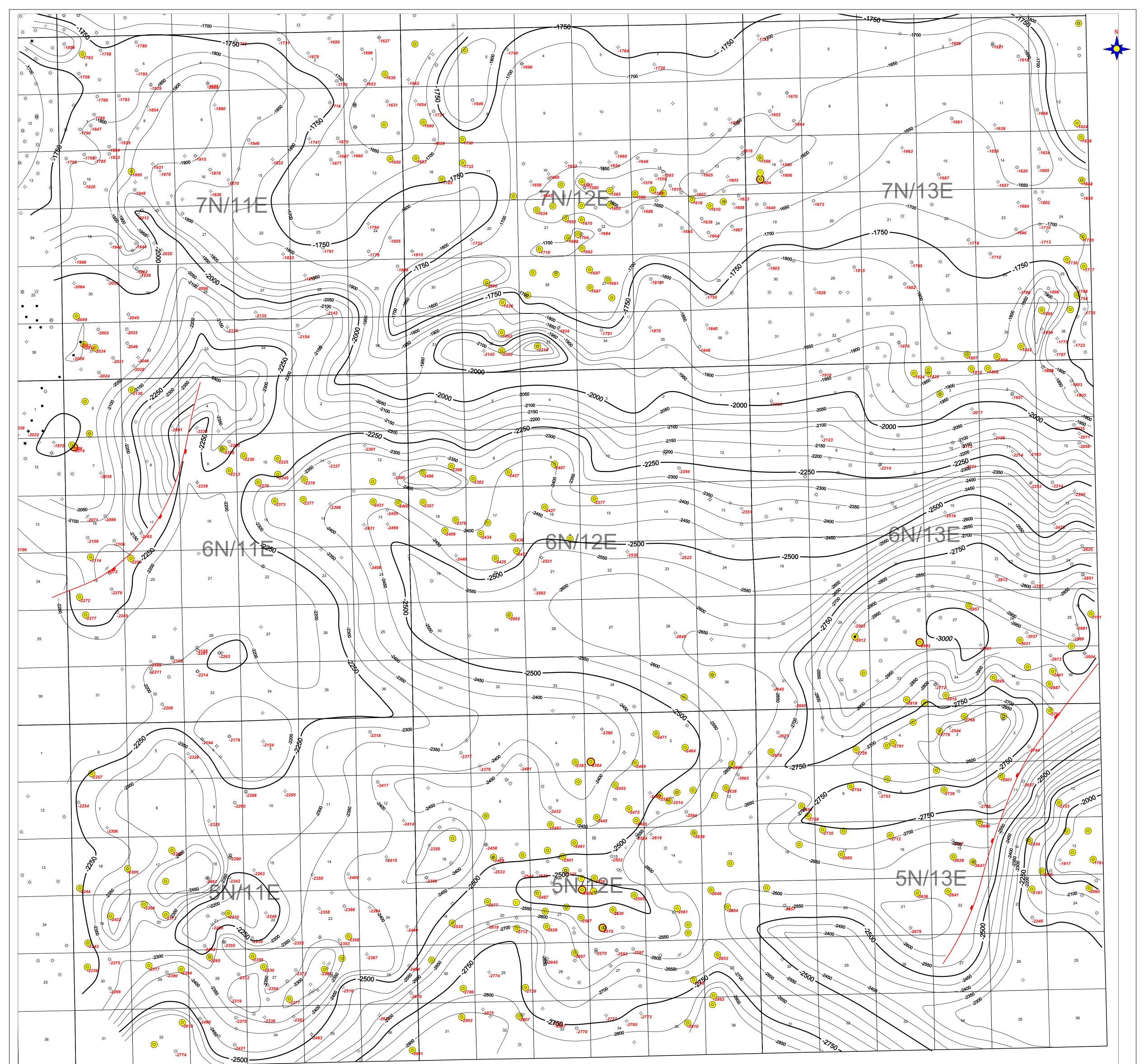


| $ \begin{bmatrix} x & x & x & x & x & x & x & x & x & x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N N |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ \begin{bmatrix} \frac{1}{2} & \frac$ |     |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| $\frac{1}{1}$ $\frac{1}$               |     |
| $\left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $\left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 12     1000 7     8     9 070° %     10     11     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     12     1     1     12     1     1     12     1     1     12     1     1     12     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $\begin{bmatrix} 2^{5} \\ 3^{0} \\ 0^{7} \\ 0^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^{6} \\ 1^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |

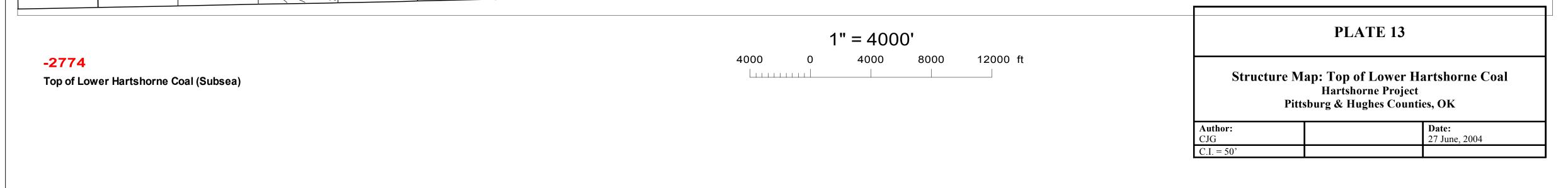


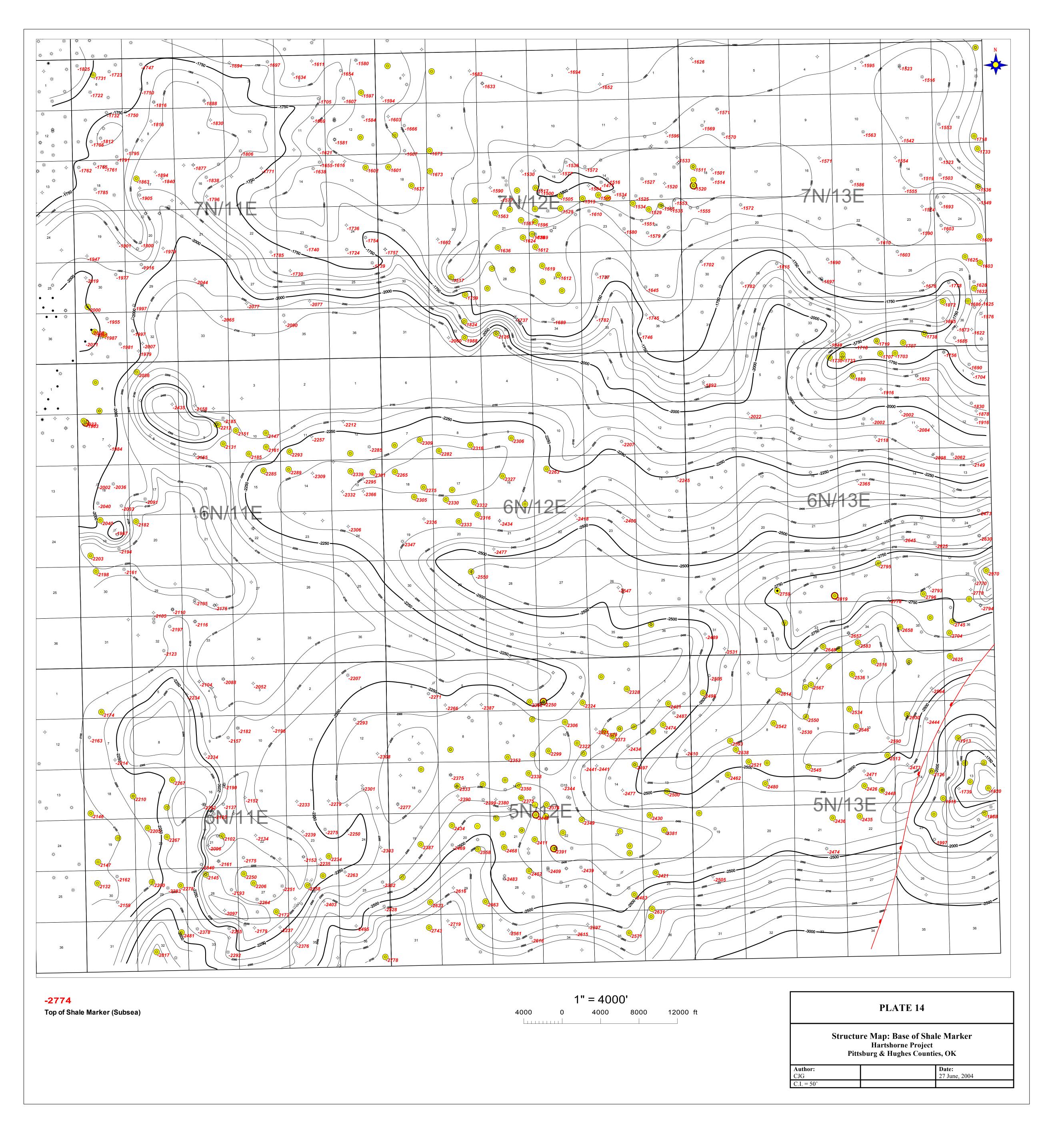


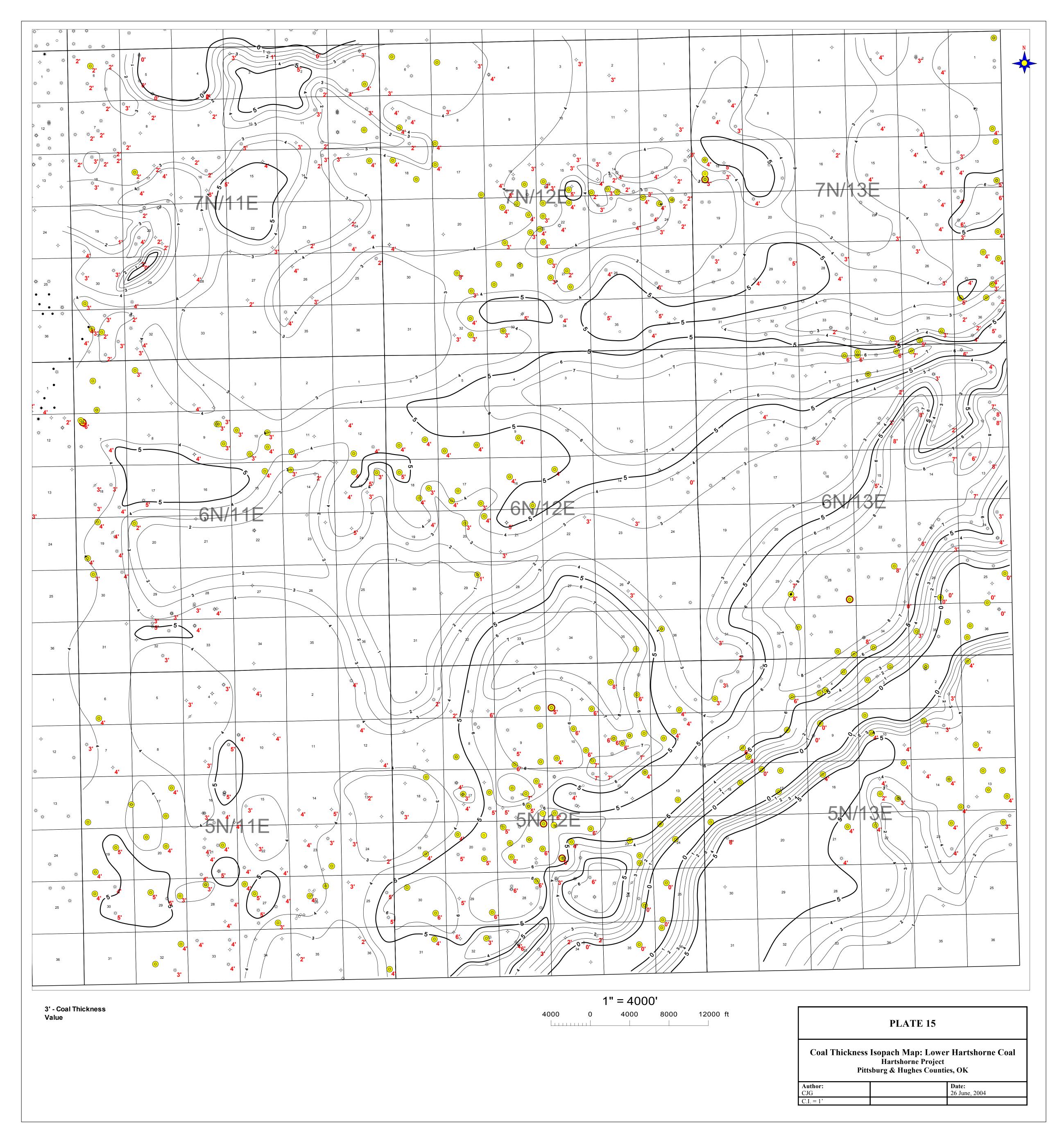


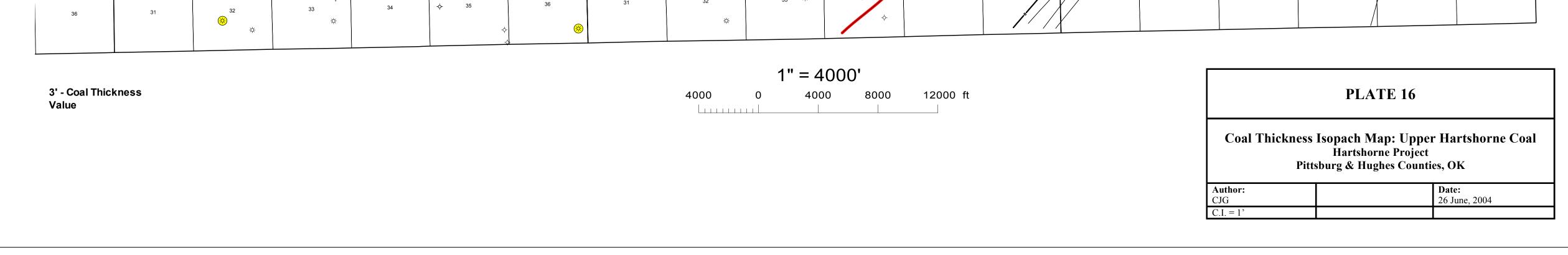



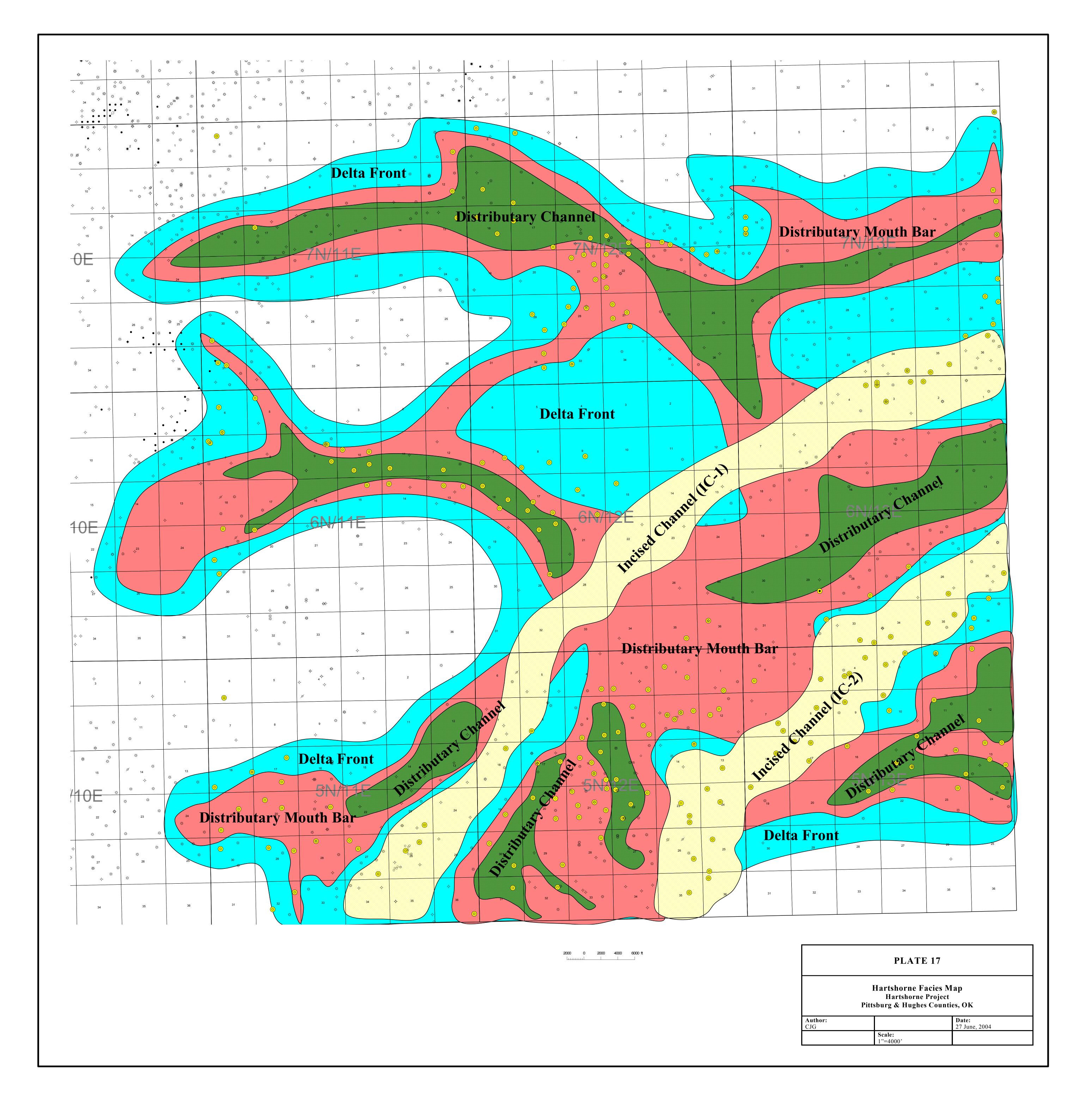


| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  |
| ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ***       ****       ***       ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  |
| 24       19       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010       010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *<br>*<br>*        |
| $ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| ***       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       ** <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| 13       13       13       13       13       13       13       13       13       14       15       16       17       16       17       16       17       16       17       16       17       16       17       16       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17 <th< td=""><td>15'</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15'                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¢                  |
| $ \begin{bmatrix} 36 \end{bmatrix} 31 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \\ 4/\tilde{P} \end{bmatrix} = \begin{bmatrix} 33 \\ 32 \end{bmatrix} 33 \end{bmatrix} \begin{bmatrix} 34 \\ 35 \end{bmatrix} 36 \end{bmatrix} \begin{bmatrix} 36 \\ 31 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix} 33 \end{bmatrix} \begin{bmatrix} 34 \\ 35 \end{bmatrix} \begin{bmatrix} 36 \\ 31 \end{bmatrix} \begin{bmatrix} 32 \\ 33 \end{bmatrix} \begin{bmatrix} 34 \\ 35 \end{bmatrix} \begin{bmatrix} 36 \\ 4 \end{bmatrix} \begin{bmatrix} 36 $ |                    |
| NPLA         NPLA <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 13     18     8     15     14     13     18     8     16     14     13     18     8     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>کو</del><br>ج |
| $ \begin{bmatrix} 24 \\ 19 \\ 20 \\ 10 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 20 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 20 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 20 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 21 \end{bmatrix} = \begin{bmatrix} 24 \\ 21 \\ 21 \end{bmatrix} = \begin{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                  |
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |

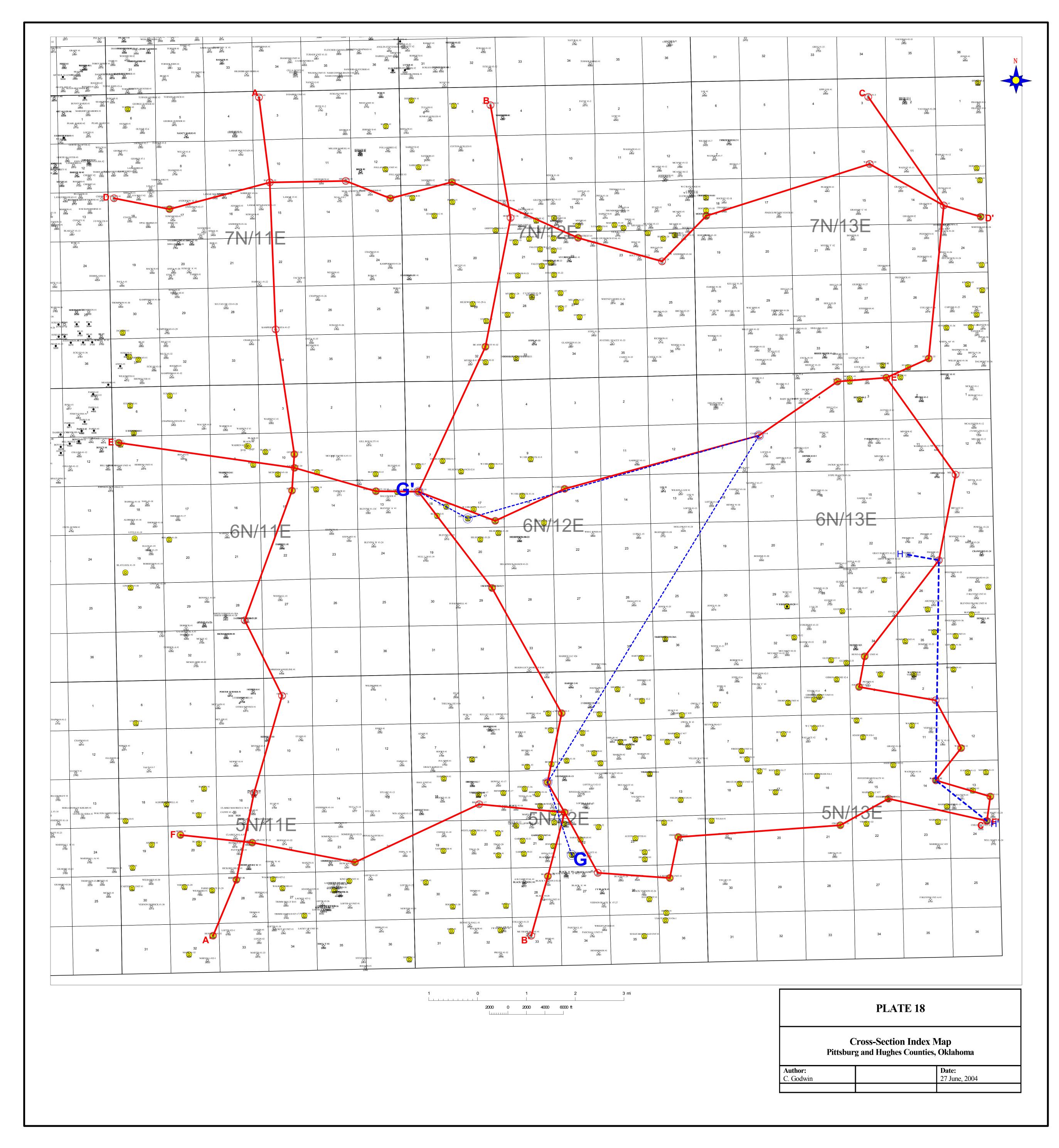


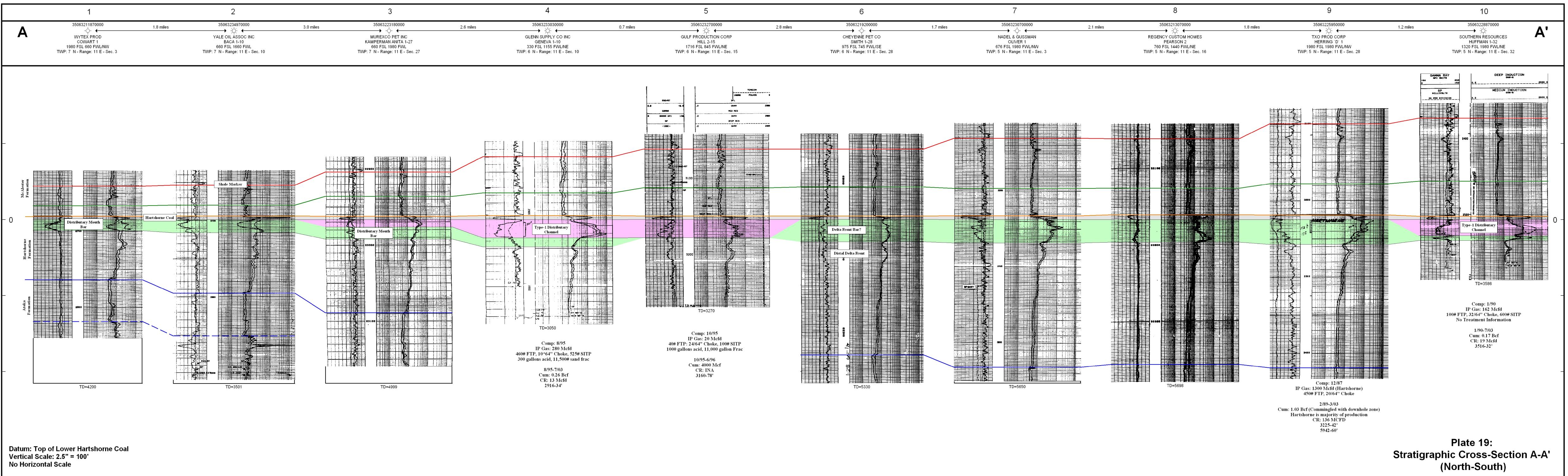


| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| NPLA       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00       0/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| $ \begin{bmatrix} 2^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3^{4} \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |
| • • *         * * 0'0         * NPLA         * NPLA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                   |
| $ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                   |
| $ \begin{bmatrix} 24 \\ 24 \\ 19 \\ 26 \end{bmatrix} = \begin{bmatrix} 36 \\ 26 \end{bmatrix} = \begin{bmatrix} 3$ | , \v<br>            |
| $\left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 1       6       5       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| A second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br><sup>(3)</sup> |
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                   |
| $ \begin{bmatrix} x \\ 25 \\ x \\ 10 \end{bmatrix} = \begin{bmatrix} x \\ 26 \\ x \end{bmatrix} = \begin{bmatrix} x \\ 26 \\ x \end{bmatrix} = \begin{bmatrix} x \\ 28 \\ x \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |



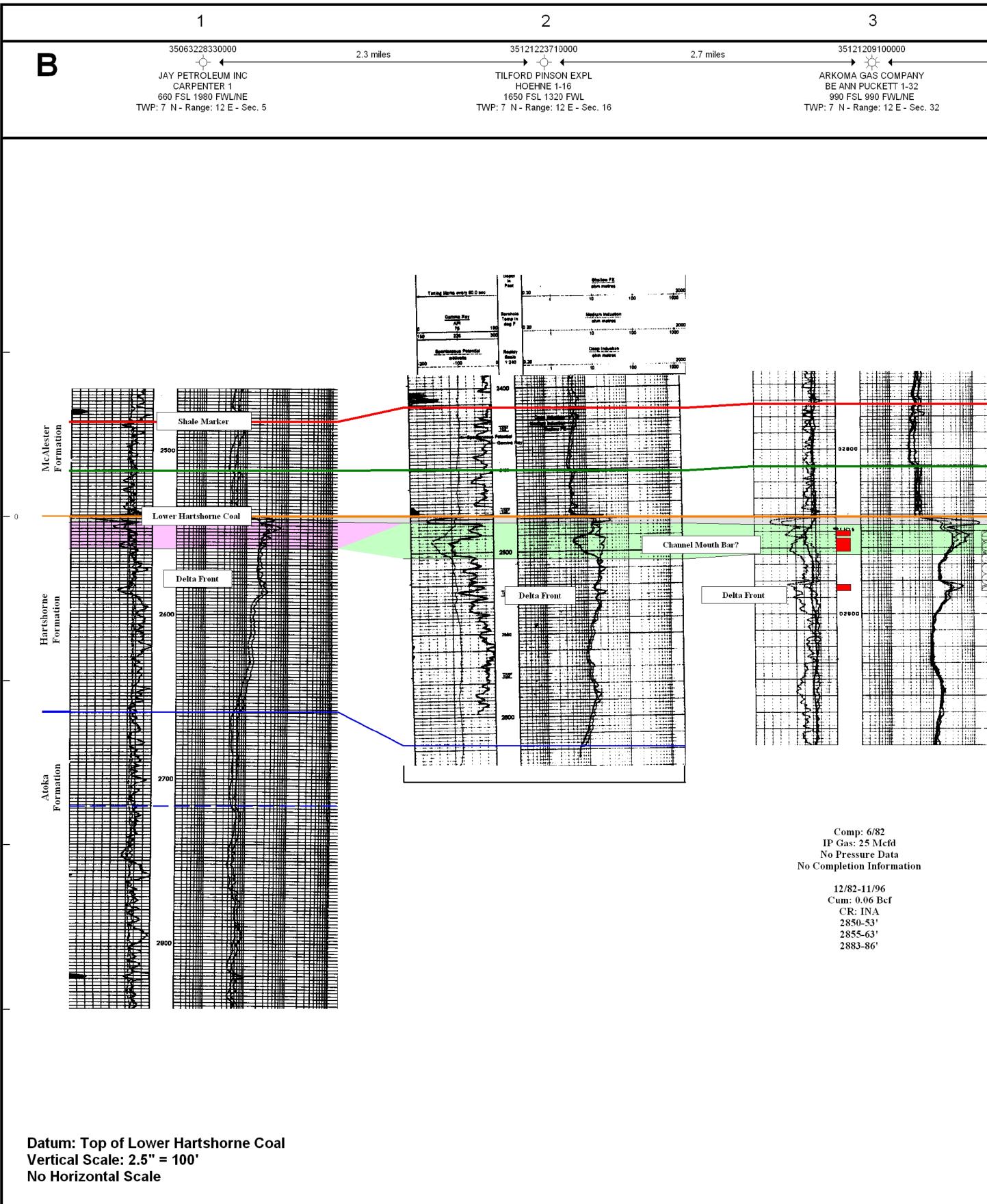



| ***         * *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1     2     3     3     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * *     * *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{vmatrix} \cancel{3} & \cancel{3}$ |
| + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25  30  29  28  27  26  25  30  29  28  27  26  25  30  29  28  27  26  29  28  27  26  29  28  27  26  29  28  29  28  27  26  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  29  28  28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36  31  32  33  34  35  36  31  32  33  34  35  a  34  35  34  35  a  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  35  34  34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $1  \begin{bmatrix} 6 \\ & 4 \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |










| -      |
|--------|
| $\sim$ |
| 5      |
|        |
| ~      |



| 0 |
|---|
| ≺ |
| 0 |

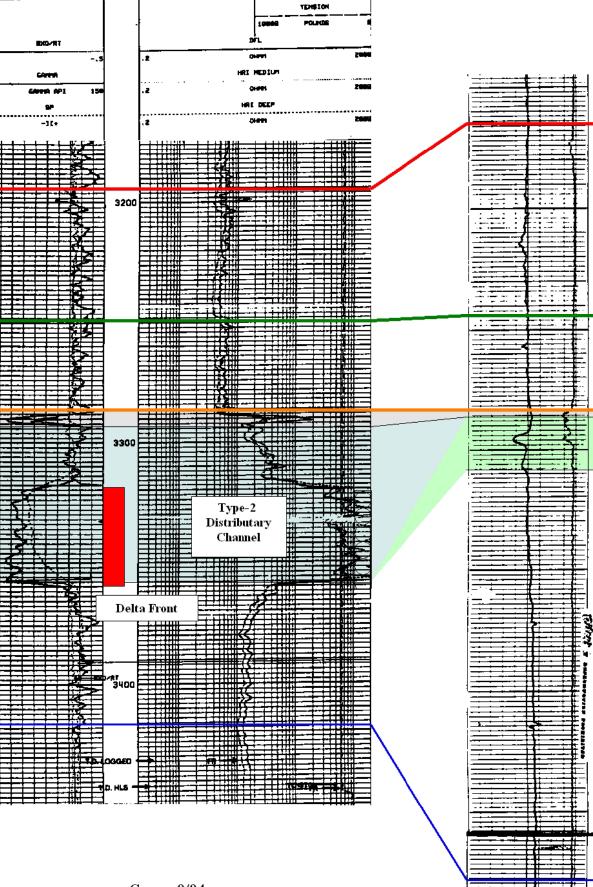
3.3 miles

35121209100000  $\rightarrow \forall \leftarrow$ ARKOMA GAS COMPANY BE ANN PUCKETT 1-32

990 FSL 990 FWL/NE TWP: 7 N - Range: 12 E - Sec. 32

35121218230000 →☆ ←── GULF PRODUCTION CORP BLEVINS 2-18 1320 FSL 1320 FWL/NW TWP: 6 N - Range: 12 E - Sec. 18

2.5 miles

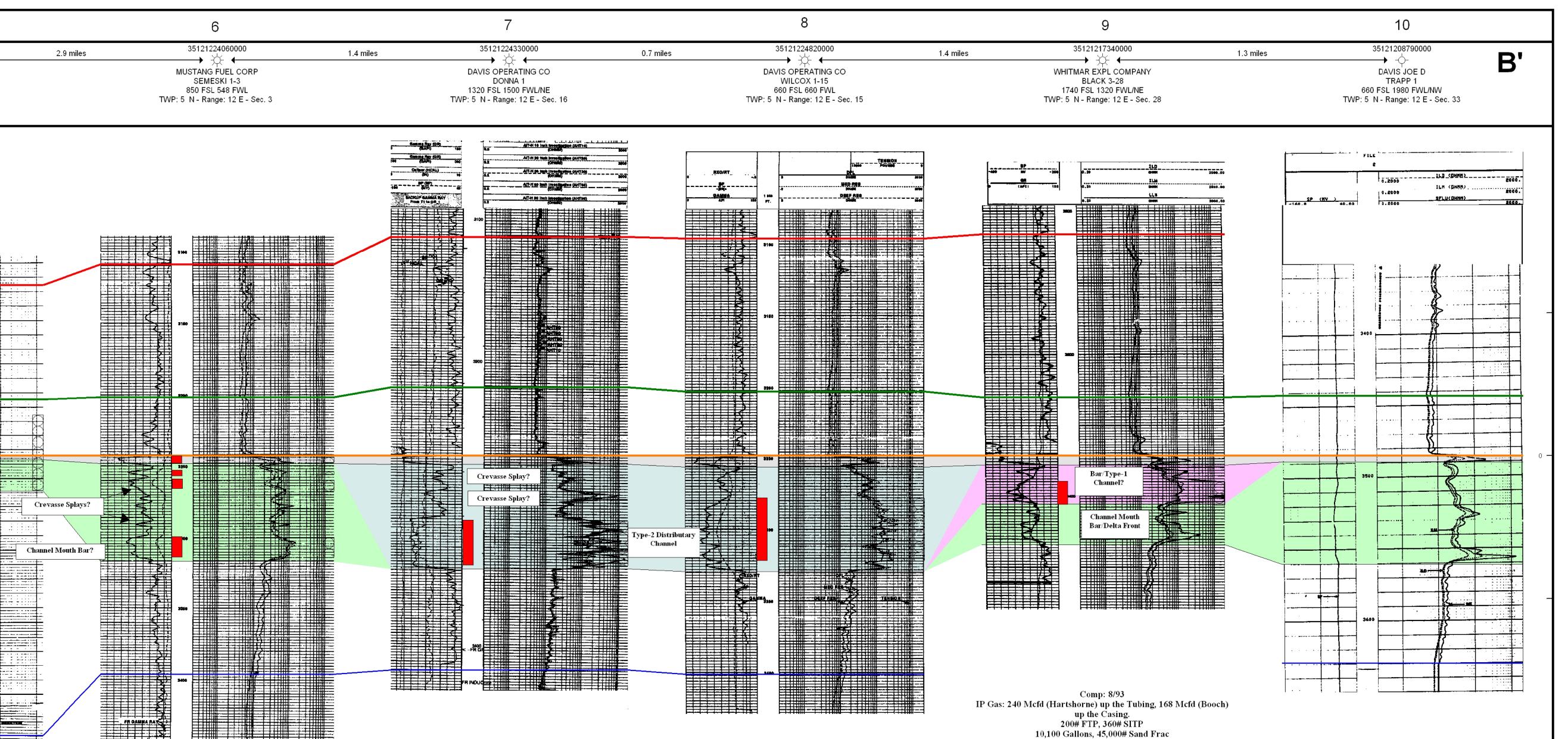

35121202410001 →☆ ←── ARKOMA GAS COMPANY HILSEWECK W J 1-29 1320 FSL 1220 FWL/NE TWP: 6 N - Range: 12 E - Sec. 29

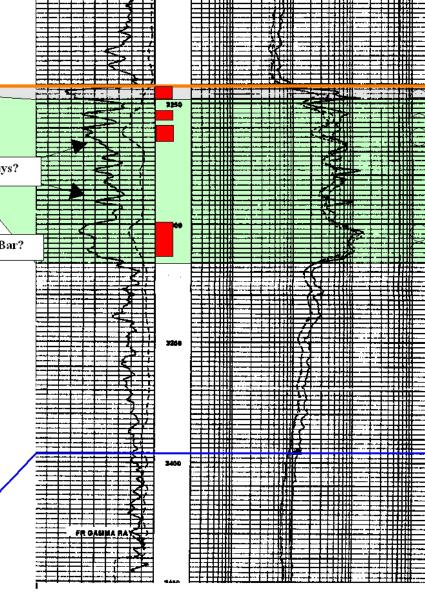
3

\_\_\_\_\_

-----

\_\_\_\_\_





Comp: 6/82 IP Gas: 25 Mcfd No Pressure Data No Completion Information

> 12/82-11/96 Cum: 0.06 Bcf CR: INA 2850-53' 2855-63' 2883-86'

Comp: 9/94 IP Gas: 527 Mcfd 140# FCP, 24/64'' Choke 505# SICP 2000 Gallons Acid

> 6/95-7/03 Cum: 0.98 Bcf CR: 169 Mcfd 3319-60'



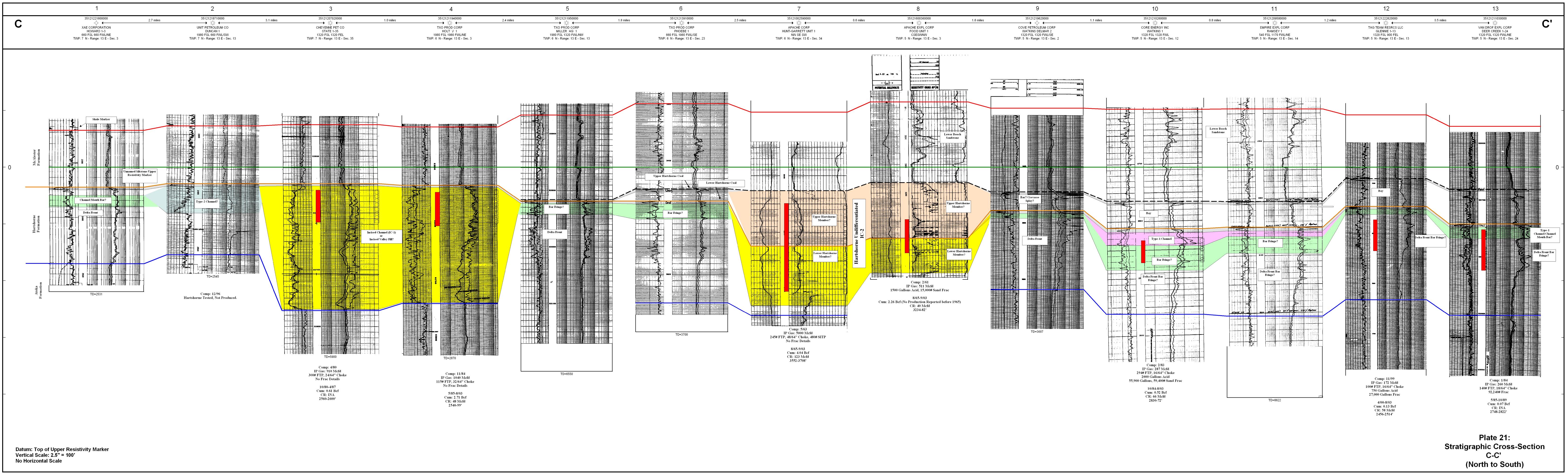


Comp: 7/00 IP Gas: 262 Mcfd 235# FTP, 14/64" Choke 450 BBL, 46,000# Frac

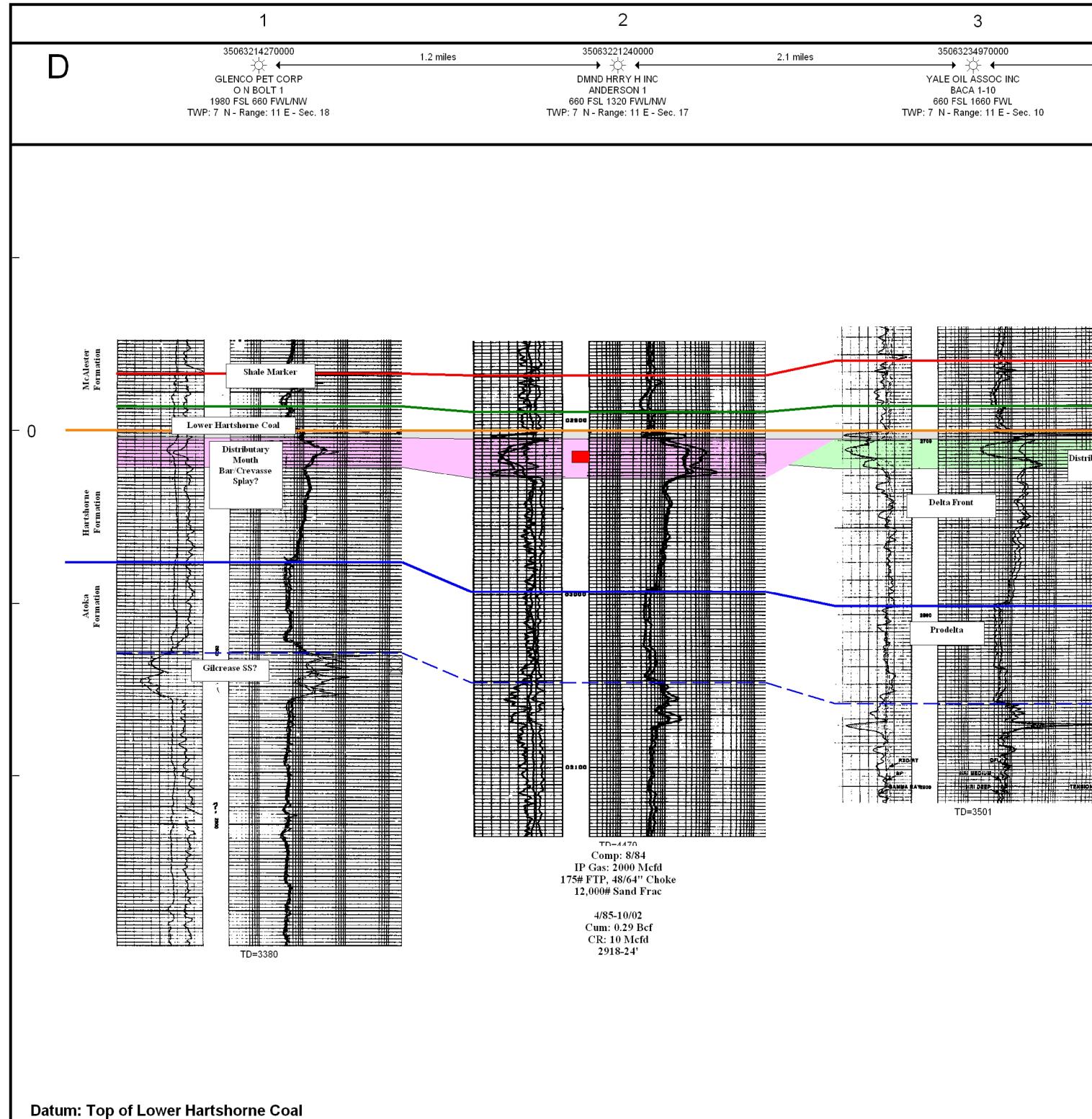
> 10/00-9/03 Cum: 0.22 Bcf CR: 139 Mcfd 3244-48' 3254-56' 3260-68' 3300-14'

Comp: 9/00 IP Gas: 561 Mcfd 110# FTP, 16/64'' Choke 2000 Gallons Acid 35,646 Gallons & 56,240# Sand Frac

> 9/00-8/03 Cum: 0.43 Bcf CR: 177 Mcfd 3311-42'


Comp: 1/01 IP Gas: 517 Mcfd 285# FTP, 20/64'' Choke 1500 Gallons HCL Acid 56,000# Sand Frac

> 2/01-8/03 Cum: 0.38 Bcf CR: 56 Mcfd 3278-3322'

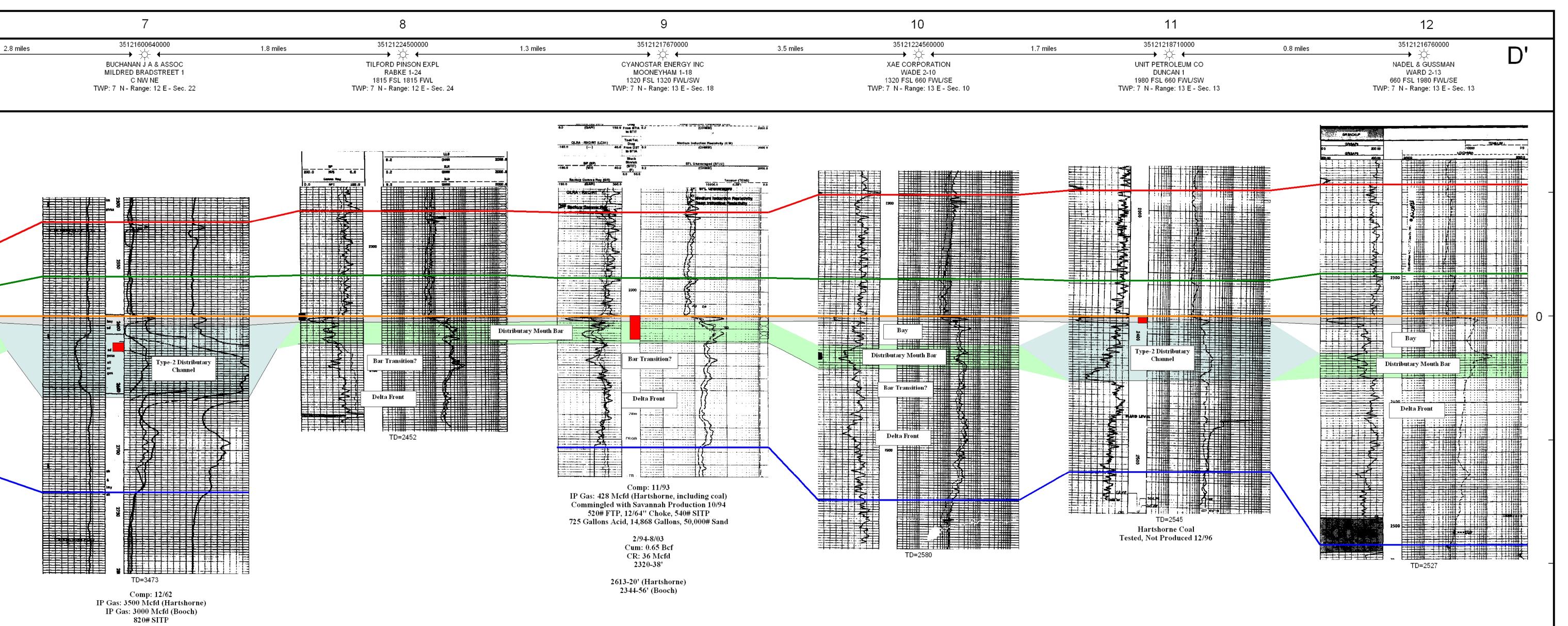

8/93-6/03 Cum: 0.43 Bcf (Hartshorne & Booch) CR: 80 Mcfd 3390-3406' (Hartshorne)

2932-46' (Booch)

Plate 20: Stratigraphic Cross-Section B-B' (North to South)



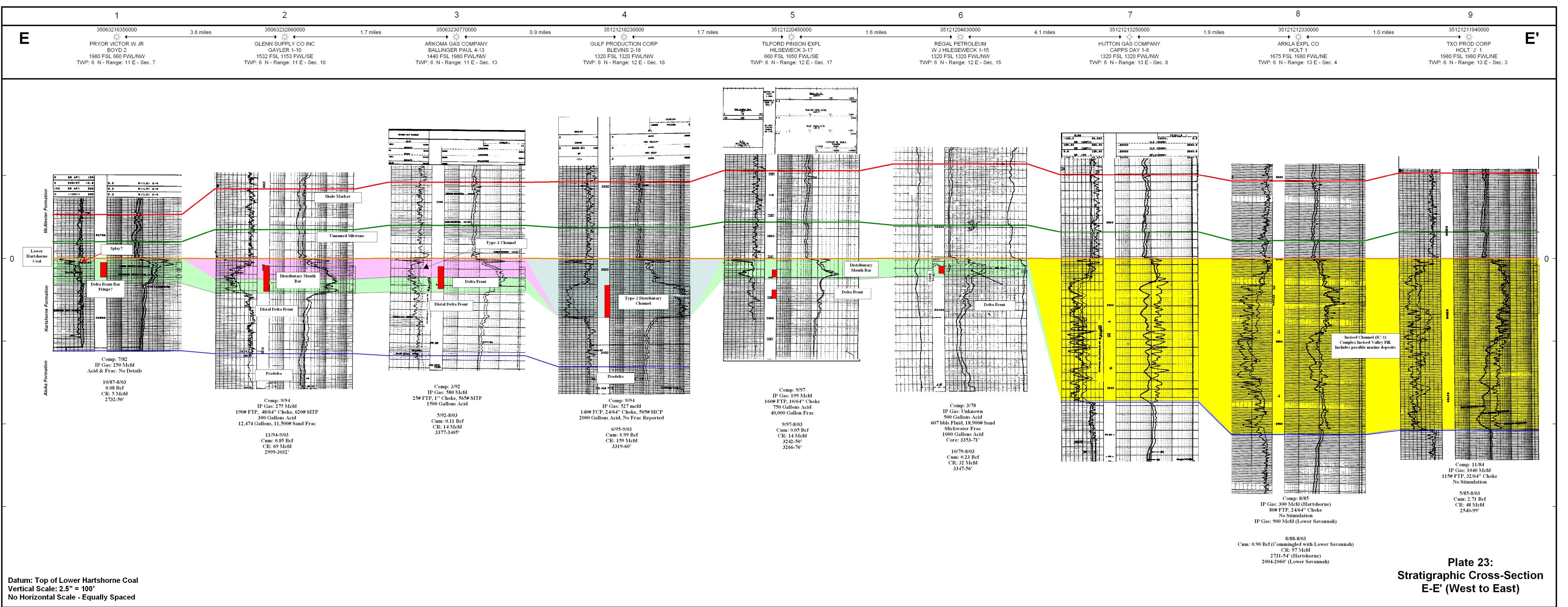
|           | 4                                                                                      |           | 5                                                                                          |           | 6                                                                                    |           |                                       |
|-----------|----------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|-----------|---------------------------------------|
| 1.0 miles | 35121211940000                                                                         | 2.4 miles | 35121211950000                                                                             | 1.8 miles | 35121213910000                                                                       | 2.5 miles | 35121                                 |
|           | TXO PROD CORP<br>HOLT `J` 1<br>1980 FSL 1980 FWL/NE<br>TWP: 6 N - Range: 13 E - Sec. 3 |           | TXO PROD CORP<br>MILLER `AG` 1<br>1980 FSL 1320 FWL/NW<br>TWP: 6 N - Range: 13 E - Sec. 13 |           | TXO PROD CORP<br>PHOEBE 1<br>660 FSL 1980 FWL/SE<br>TWP: 6 N - Range: 13 E - Sec. 23 |           | APAC<br>HUNT-GA<br>NV<br>TWP: 6 N - R |

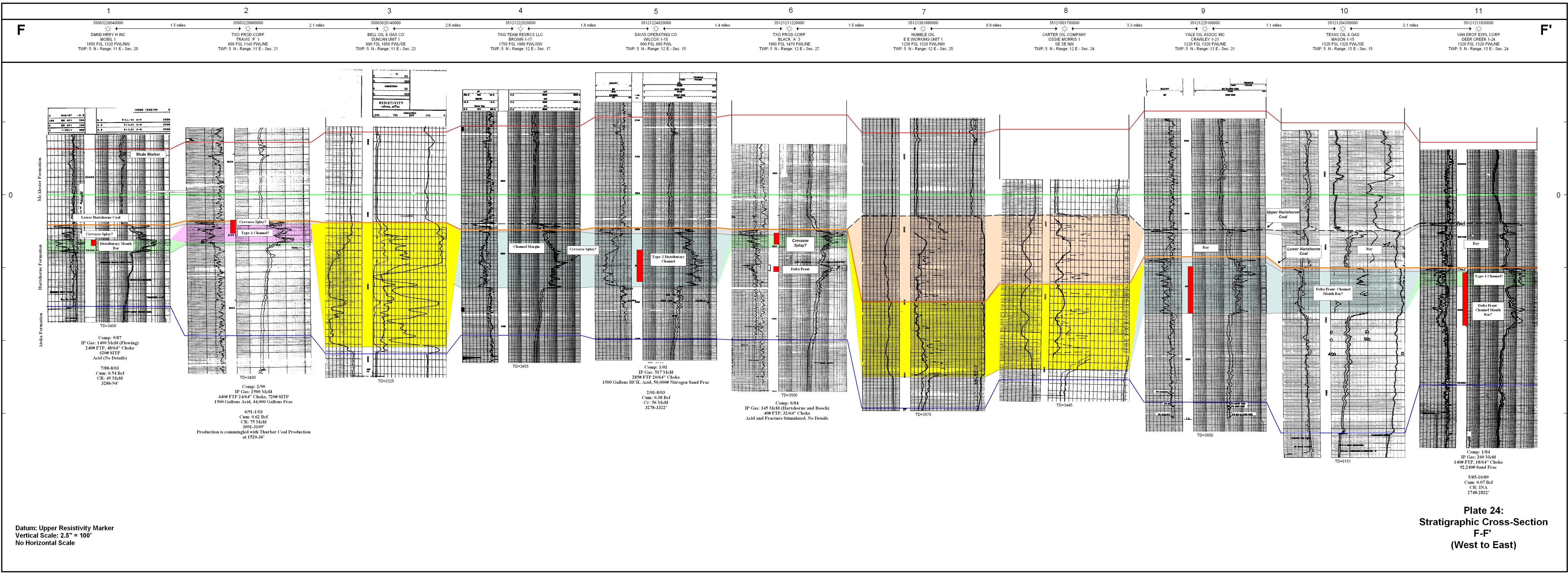


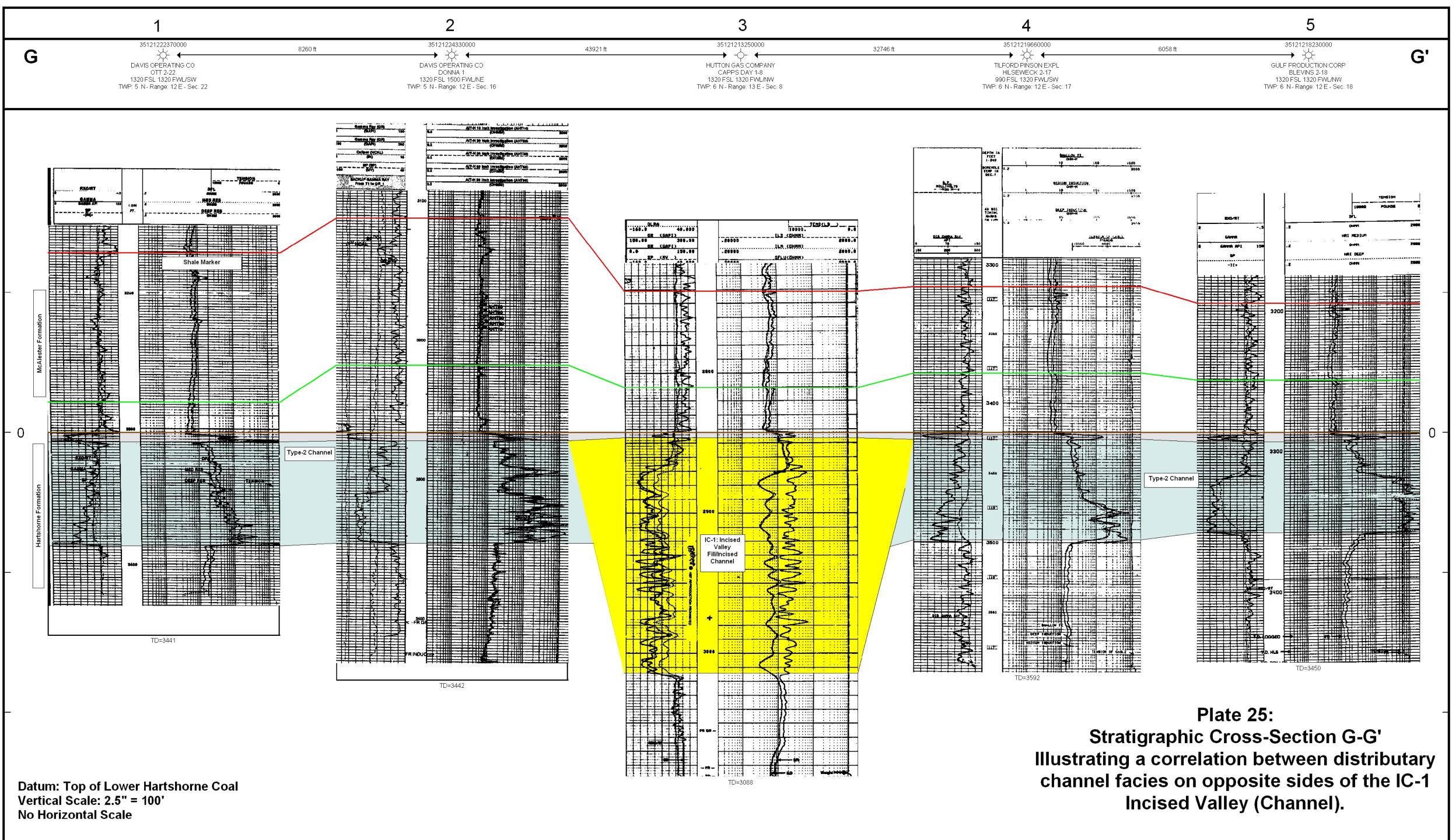

Vertical Scale: 2.5" =100' No Horizontal Scale - Equally Spaced Logs

|                                     | 4                                                                                                                   |                                                       | 5        |           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.6 miles                           | 35063230670000<br>→ ↓↓<br>JAY PETROLEUM INC<br>FREEMAN 1<br>660 FSL 1980 FWL/SE<br>TWP: 7 N - Range: 11 E - Sec. 11 | JAY PETROLEUM INC<br>FREEMAN 1<br>660 FSL 1980 FWL/SE |          | 1.3 miles | 35063216630000 2.<br>→ ↓ ←<br>L R F CORPORATION<br>BURLESON 1<br>330 FSL 330 FWL<br>TWP: 7 N - Range: 12 E - Sec. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| istributary Mouth Bar/Cre<br>Splay? |                                                                                                                     |                                                       | <image/> |           | Image: 100       Image: 100         Image: 100       I |

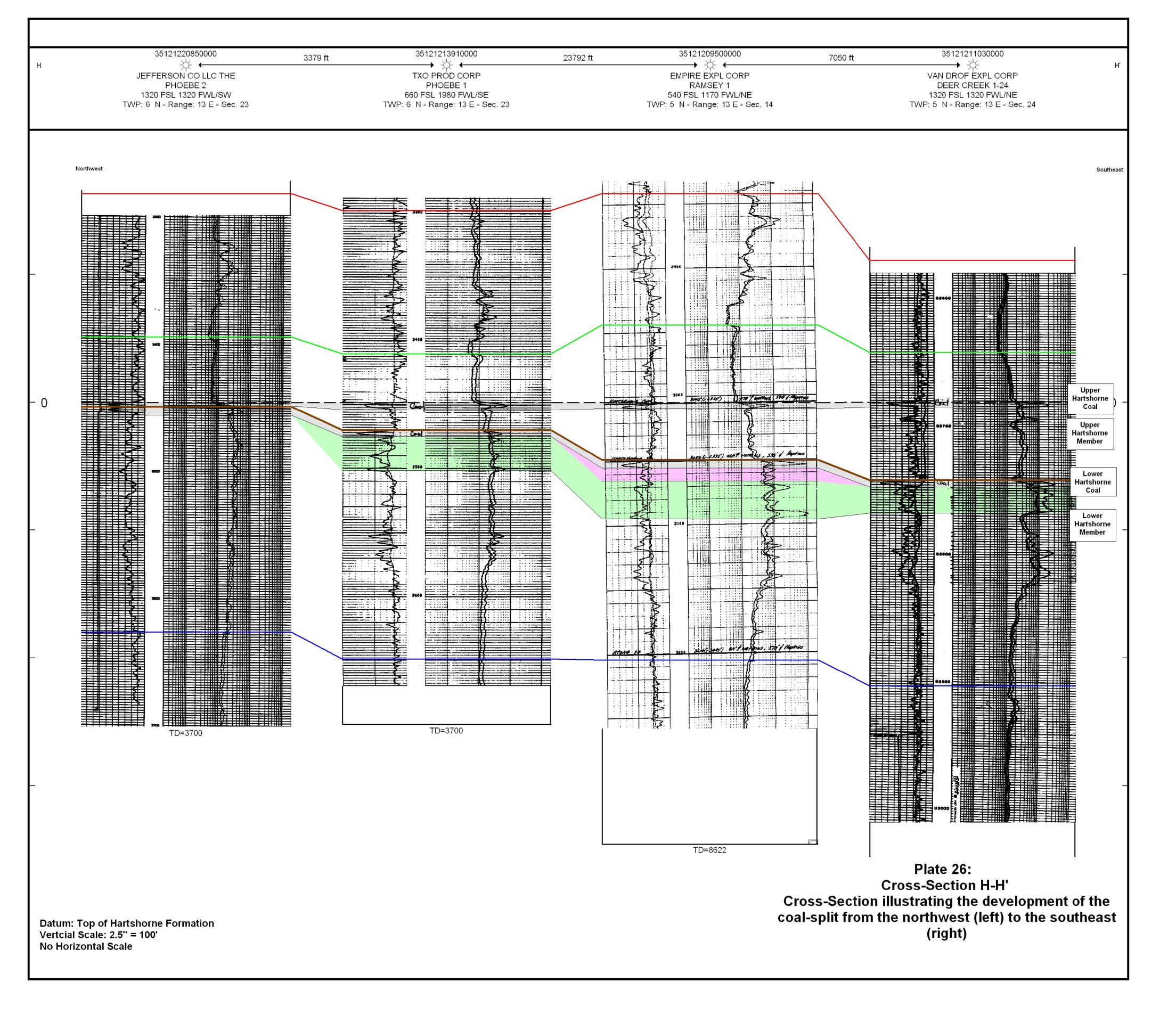
6/85-8/03 Cum: 0.24 Bcf CR: 12 Mcfd 2531-44'


4/85-10/02 Cum: 0.29 Bcf CR: 10 Mcfd 2918-24'





2/63-8/69 Cum: 0.69 Bcf CR: INA

2613-20' (Hartshorne) 2344-56' (Booch)


Plate 22: Stratigrapchic Cross-Section D-D' (West to East)











### VITA

### Cory John Godwin

Candidate for the Degree of

Master of Science

### Thesis: ELECTROFACIES, DEPOSITIONAL ENVIRONMENTS, AND PETROLEUM GEOLOGY OF THE HARTSHORNE FORMATION IN PARTS OF HUGHES AND PITTSBURG COUNTIES, OKLAHOMA

Major Field: Geology

Biographical:

- Personal Data: Born in Tulsa, Oklahoma, On June 14, 1974, the son of Robert and Sandra Godwin.
- Education: Graduated from Cascia Hall Preparatory School, Tulsa, Oklahoma in May 1993. Received Bachelor of Science Degree in Geology from Oklahoma State University, Stillwater, Oklahoma in December 1997. Completed the requirements for the Master of Science degree with a major in Geology at Oklahoma State University in August, 2004.

Experience: Worked as teaching assistant at Oklahoma State University in 1998, at the University of Tennessee in Knoxville in 1998, and at Baylor University in Waco, Texas from 1999-2000. Currently employed as an Associate Geologist with Questar Exploration and Production Company in Tulsa, Oklahoma.

Professional Memberships: American Association of Petroleum Geologists, Tulsa Geological Society, East Texas Geological Society, Shreveport Geological Society