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CHAPTER I 

 

 

INTRODUCTION 

 

The Middle Kalahari of northwestern Botswana (sensu Passarge, 1904) is a 

structural depression that contains lake basins which preserve a record of environmental 

change and tectonic activity (e.g., Huntsman-Mapila et al., 2006; Thomas and Shaw, 

1991; Thomas and Shaw, 2002).  Regional and local climate shifts can result in the 

environmental changes observed in these basins.  Currently, the Middle Kalahari region 

is a semiarid environment that had a wetter climate in the past that caused the 

development of lakes.  In addition to local rainfall, the lakes also receive water from 

rivers such as the Okavango and Kwando Rivers, which drain tropical watersheds in the 

Angolan highlands.  Therefore, the lake sediments are derived from local and distal 

sources. Tectonic activity associated with the south-westerly propagating Okavango Rift 

(e.g., Modisi et al., 2000) also contributes to environmental changes by altering the 

landscape and hydrology.  For example, faulting along the Okavango rift interrupted the 

flow of the Okavango River causing sedimentation that formed the Okavango Delta, 

which is actually a 25,000 km
2 

alluvial fan (McCarthy et al., 2002).  Development of the 

vast Okavango Delta has altered the topography and hydrologic conditions of the region, 

which likely changed lacustrine hydrologic and sedimentary budgets.  Lake sediments 

thus represent a unique setting that may preserve a record of local and regional climate 

change and rift tectonics. 

Early research on environmental change in the Middle Kalahari region focused on 

describing landfroms (e.g., Passarge, 1904; Wellington, 1955; Grove, 1969) but, more 

recently these investigations have centered on understanding geomorphological features 

such as beach ridges around lacustrine systems such as the Mababe Depression, Lake 

Ngami, and the Makgadikgadi Pans (Grove, 1969; Grey and Cooke, 1977; Shaw, 1985).  

Efforts to understand the timing of beach ridge formation have been improved by the 

acquisition of  age dates through the use of radiocarbon (
14

C), thermoluminescence (TL), 

and optically stimulated luminescence (OSL) dating techniques (e.g., Cooke and 

Verstappen, 1984; Shaw, 1985; Burrough et al., 2007; Burrough and Thomas, 2008; 

Ringrose et al., 2008; Burrough and Thomas, 2009).  Recent studies of shorelines around 

Lake Ngami (Shaw et al., 2003; Burrough et al., 2007) and the Mababe Depression 

(Burrough and Thomas, 2008), however, are providing new insights on the role of 

climate in contributing to lake highstand events and the development of shorelines in the 

region. 

Investigations of the local climate have been conducted on deposits in Drotsky’s 

Cave in the Kwihabe Hills of northwest Botswana (Cooke, 1975; Cooke and Verhagen,
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1977).  Climate records from the cave deposits show episodes dominated by wet and dry 

conditions in the local and regional climate, as well as cyclic climatic conditions (Cooke, 

1975; Shaw and Cooke, 1986).  Although northwest Botswana is currently a semi-arid 

environment, these studies indicate that wet periods occurred in the past.  Sinter 

deposition, which reflects high local rainfall, occurred at 45-37 ka, 34-29 ka, 16-13 ka, 2 

ka, and 750 years ago (Cooke and Verhagen, 1977; Shaw and Cooke, 1986).  These 

episodes of sinter deposition correspond to wet episodes from 17-14 ka, which includes a 

possible regional event at 16 ka, 4.35 ka, and 2 ka, that were identified by cave studies 

conducted by Cooke (1975).   

Tropical climatic signals have been recognized in sediments from Etosha Pan of 

Namibia (Brook et al., 2007) where shoreline features along the pan correspond to times 

of an overall wetter climate during the Holocene.  The headwaters of the Okavango River 

receive rainfall in the same area of the Angolan highlands that is responsible for inflow to 

the Etosha Pan, thus, shifts in the tropical climate patterns that are observed in the pan 

should also occur in the sedimentary records of the Middle Kalahari lake deposits.  In 

addition to local climate shifts recorded in cave deposits, climatic variations occurring in 

the tropical Angolan highlands influence river flow into the lakes and, also, affect the 

lacustrine hydrology and sedimentation in the Middle Kalahari basin.    

Studies on beach ridges and caves can be useful in deciphering the climatic 

history of the area; however, they cannot provide a complete record of both climatic and 

tectonic events with the same resolution as sediments collected within the lake basins.  

Beach ridges represent only the most recent occurrence of a lake highstand, because, by 

their very nature, ridges at lower levels could be reworked during subsequently higher 

lake levels, thus, past events are lost from the sedimentary record (Burrough and Thomas, 

2009).  Similarly, cave studies can provide a continuous record of local and regional 

climate change, but they cannot be used to decipher the influence of tectonic processes on 

hydrology or sedimentation.  Unlike lakes in semi-arid and arid environments that only 

derive sediments from local sources during locally wet climatic episodes, lakes of the 

Middle Kalahari receive water and sediment input from tropical environments such as the 

Angolan highlands.  During dry local conditions, sediments may only be derived from 

distal sources; however, lake levels may still be affected by conditions such as 

evaporation that could affect lake productivity and chemical sedimentation.  Sediments 

from the Kalahari lake basins, therefore can provide the most complete record of local 

and regional climate influence on the region and can provide insight into the timing of 

tectonic events based on changes in sedimentation that are preserved in the lake 

sediments.   

Geochemical proxies measured from sediments within Lake Ngami (Huntsman-

Mapila et al., 2006), at the distal end of the Okavango Delta, show similar results to 

climate variations preserved from beach ridge and cave studies.  Additionally, the study 

also revealed a possible tectonic control on the sedimentation.    

In this study, sediment samples were collected from within the Mababe 

Depression and analyzed for particle size distribution, high frequency magnetic 

susceptibility, carbonate, organic matter, and metal content.  Each of these data sets were 

examined in combination to determine how environmental changes related to climate and 

tectonics are recorded in lake sediments.  
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CHAPTER II 

 

 

GEOLOGIC SETTING  

 

2.1 Okavango River System 

 

 The Cubango and Cuito Rivers are major tributaries that drain the tropical 

Angolan highlands and come together to form The Okavango River (Fig. 1a).  The 

Cubango River, in the western Angolan catchment, is affected by variations in the 

Atlantic equatorial westerlies, while the Cuito River, to the east, responds to tropical lows 

in Indian Ocean Easterlies, both of which are affected by the position of the Intertropical 

Convergence Zone (ITCZ) (Huntsman-Mapila et al., 2006).  Rainfall in the catchment of 

Angola can have a profound impact on the Okavango River because it is sourced from 

this area.  It is these rivers that supply the majority of water to the Okavango Delta, an 

average of 9200 million m
3
 yr

-1
, but this value varies considerably each year (McCarthy 

and Ellery, 1998).   

 

2.2 The Okavango Delta 

  

 The Okavango River enters the Makgadikgadi-Okavango-Zambezi (MOZ) rift 

depression (Ringrose et al., 2005) of northern Botswana through a narrow swamp, known 

as the Panhandle, that has developed along a fault trending NW-SE (Gumbricht et al., 

2001), before spreading out into a series of permanent and seasonally flooded swamps.  

Although the catchment for the Okavango Delta is sourced in the tropics, the ―delta‖ is 

located in the semi-arid environment of the Middle Kalahari region (sensu Passarge, 

1904; Fig. 1a).  At over 25,000 km
2
, the Okavango Delta is one of the world’s largest 

alluvial fans and has been characterized as a losimean, or, low sinuosity-meandering fan 

(Stainstreet and McCarthy, 1993).  Topographic relief across the fan is very low, with 

gradients averaging only 1:3550 (Gumbricht et al., 2001). 

Local precipitation also contributes an average of 6140 million m
3
 yr

-1
 of water to 

the Okavango Delta (McCarthy et al., 1998).  Rainfall and river flow in the Okavango 

Delta maintains about 4,000 km
2 

of permanent swamps and up to 12,000 km
2 

of seasonal 

swamps (McCarthy et al., 2002).  Water from the catchment along with local flow carries 

~209,000 tonnes of sediment, of which approximately 77% is bedload material 

(McCarthy et al., 2002).  Total dissolved solids entering the Okavango Delta contribute 

another 450,000 tonnes of material, but, only ~30,000 tonnes leave as outflow (McCarthy 

and Metcalfe, 1990).  In contrast, almost no sediment leaves the Okavango Delta and 

~96% of inflow to the delta is lost to evapotranspiration, while the remainder leaves as 
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surface or groundwater flow (Dincer et al., 1979).  Due to the exceedingly high 

evapotranspiration rates across the Okavango Delta, sodium salts, such as trona, 

accumulate on the fan surface (McCarthy et al., 1986; McCarthy and Metcalfe, 1990).  

Calcium carbonate and silica are the most abundant chemical sediments accumulating on 

the fan each year, and, chemical sedimentation results in 250,000 tonnes of accumulation 

compared to ~40,000 tonnes of clastic materials (McCarthy and Metcalfe, 1990). 

 

2.3 The Mababe Depression 

 

 The Mababe Depression is a heart-shaped feature that lies at the distal end of the 

Okavango Delta (~18º S to 19º S, 24º E to 24º30’ E), and is ~90 x 50 km
 
at its’ widest 

dimensions (Fig. 1a).  Inflow to the Mababe Depression occurs where the Khwai River 

joins the channel of the Thamalakane River to form the Mababe River at the southern end 

of the depression, which supplies water to the Mababe Swamp (Fig. 1b).  Along the 

northwestern margin, flow from the Okavango Delta moves east through the Selinda 

Spillway before joining flow from the Kwando-Linyanti River and flow down the Savuti 

channel into the Mababe Depression, where it terminates in the Savuti Swamp (Fig. 1b).  

Inflow from the Savuti, however, is infrequent at present (Shaw, 1988), but, greater 

volumes of water once flowed through the channel, as it is presently an underfit channel 

(Shaw, 1985).  Rivers in the northeast, such as the Ngwezumba, Kashaba, and Gautumbi 

can also provide water to the Mababe Depression during times of high local rainfall (Fig. 

1b).  

 The Magikwe Ridge, on the western side of the basin, is a remnant shoreline 

feature located to the southeast of the Linyanti Fault.  Bounding Mababe to the southeast 

is the northeast-southwest striking Thamalakane Fault.  Scholz et al. (1976) noted that the 

south-eastern edge of the depression is nearly linear along the strike of this fault and 

suggested that the Mababe Depression is fault-bound.  The Thamalakane Fault serves as a 

link between the Mababe Depression and Lake Ngami, located to the southwest.  Low 

gradient channels that flow alongside the Thamalakane Fault can connect Lake Mababe 

and Lake Ngami during times of high lake levels.  Another sub-basin connected to 

Mababe and Ngami is the Makgadikgadi Pans towards the southeast, which is linked by 

the Boteti River to the Thamalakane River. 

 

2.4 Paleo-lacustrine System 

 

2.4.1 Lake Makgadikgadi Stage 

  

 Evidence that the Mababe, Ngami, and Makgadikgadi subbasins were once 

connected is apparent via a series of beach ridges seen along each basin at 945 m above 

sea level that suggest the coalescence of these basins during the Quaternary (Grove, 

1969; Grey and Cooke, 1977; Shaw, 1985; Shaw, 1988).  Beach ridges, or shoreline 

features that are relict wave or wind-built ridges (Otvos, 2000), at the 945 m level 

represent the formation of Paleo-lake Makgadikgadi.  Geomorphological evidence from 

beach ridges indicate that this lake-stage would have encompassed an area of ~60,000 

km
2
 (Grey and Cooke, 1977) but, possibly as much as 120,000 km

2 
(Thomas and Shaw, 



5 

 

1991).  Based on 
14

C dating the Makgadikgadi stage was last present at ~40,000 to 

35,000 BP, but may be as older than 52,000 BP (Cooke and Verstappen, 1984). 

 

 

2.4.2 Lake Thamalakane Stage 

 

 Lake Thamalakane (Shaw, 1988) is identified by a series of shoreline features 

around the Mababe and Ngami basins at 936 m elevation, which is indicative of the 

coalescence of the two lakes around the Thamalakane axis (Shaw and Cooke, 1986).  

Burrough and Thomas (2008) document the existence of Lake Thamalakane using OSL 

dating methods.  Shaw et al. (1988) postulated that outflow along the Boteti River may 

have resulted in a lake level of 920 m in the Makgadikgadi basin that coincided with the 

936 m stage inferred in Mababe Depression and Lake Ngami.  Estimates on the size of 

Lake Thamalakane based on SRTM data suggest a total surface area of ~32,000 km
2
 

(White and Eckardt, 2006).   

 At least two periods of this lake level are identified by Shaw (1985) based on 
14

C 

dates of pedogenic calcretes which date the events from 17,000 to 12,000 BP and ~2,000 

BP with episodes of low lake levels up to 932 m at 6,000 BP.  Burrough and Thomas 

(2008) identified other possible Thamalakane stages between ~38,000 to 35,000 BP in 

the Mababe Depression that correspond to the formation of the Dautsa Ridge in Lake 

Ngami between 38,000 and 30,000 BP (Burrough et al., 2007).  Another Thamalakane 

stage occurred as a transgressive ridge building episode between ~8,000 to 5,000 BP and 

can be observed on the western shorelines of the Mababe Depression (Burrough and 

Thomas, 2008).   

  

2.5 Tectonic Setting 

 

 The Mababe Depression is situated within the Okavango Rift Zone (ORZ), which 

locally extends from the Gomare Fault in the Panhandle area to the Kunyere and 

Thamalakane Faults that mark the SE boundary of the rift (Modisi, 2000; Fig. 1a).  The 

ORZ is at the terminus of the southwestern branch of the East African Rift System 

(EARS) and represents a segment of the rift system that formed in the Quaternary 

(Modisi et al., 2000; Kinabo et al., 2007).  The northeast-southwest trending 

southwestern branch, however, is considerably younger than the eastern and western 

branches of the EARS system, which are >15 Ma and <15 Ma years, respectively 

(Kampunzu et al., 1998). 

 Tectonic activity observed from Lake Tanganyika to central Botswana led to the 

interpretation by Fairhead and Girdler (1969) that the area was part of an incipient rift 

zone.  Scholz et al. (1976) noted that the Okavango Delta was situated in a 150 km wide, 

possibly asymmetric graben, which is believed to be a foundation of a developing 

continental rift (Scholz and Contreras, 1998).  While other works have examined graben 

development in the area (e.g. Modisi, 2000) it is unclear what stage of development the 

ORZ is in.  Kinabo et al. (2007) postulate that the area is part of a synformal depression 

to early half-graben stage, but, McCarthy et al. (2002) suggest that the area is a 

depression formed by uparching and upthrow along northeast-striking faults and not an 

incipient rift graben. 
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Figure 1 a)  Map showing the Okavango, Kwando, and Zambezi River systems.  Insert A shows the 

study area in more detail in Figure 1b) Map of the of the Mababe Depression.  Sample locations MabX

and Mab6 are shown (Modified from Burrough and Thomas, 2008).

b)

a)
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CHAPTER III 

 

 

METHODS 

 

3.1 Field Work 

3.1.1 Sample Collection 

 

Samples were collected from two trenches, MabX (19ºS, 06’19.8‖, 24ºE, 

05’04.8‖) and Mab6 (19ºS 07’42.2‖, 24ºE 03’28.6‖), located in the southwest portion of 

the Mababe Depression, near the terminus of the Mababe River (Fig. 1b).  Trenches were 

constructed by an excavator.  Sediments observed on the walls of the trenches were 

described prior to sampling.  MabX was sampled every five centimeters to a depth of 5.6 

m, aside from intervals 545 and 555, which were not collected due to sampling 

difficulties.  Mab6 was sampled every 20 cm to a depth of 4.4 m.  Sediment from each 

sampled interval was stored in a plastic bag and transported to the laboratory, where 50 g 

of sample was crushed with a mortar and pestle and stored in scintillation vials. 

During sample collection five intervals were selected for OSL (Optically 

Stimulated Luminescence) dating.  Four samples from MabX at 45 cm, 135 cm, 380 cm, 

and 500 cm-depth, respectively, were collected as boulder-sized samples.  These samples 

were then protected from exposure to sunlight by wrapping the samples in layers of 

aluminum foil, and were then returned to the lab for dating. 

 

3.1.2 Lithologic Description   

 

Sediments from both MabX and Mab6 consist mainly of silty diatomites, 

diatomaceous clayey-silts, clayey-silts, and organic-rich sediments.  Clay layers, silts 

with clay clasts, clayey-silty diatomites, clayey diatomites, sands, sandy clay silts, and 

silty diatomites also occur in MabX (see Appendix A1).  Layers observed from 560-240 

cm appear cyclic in nature with the exception of 375 cm to 335 cm-depth.  Below 485 cm 

in MabX the lithology is dominated by sandy-clay silts from 560 cm to 530 cm and 505 

cm to 485 cm.  Silty diatomites are present in the section from 530 cm to 520 cm.  

Diatomite layers dominate the section from 485 cm to 375 cm-depth, but show variability 

in color that includes light-brown, light-gray, white, light-tan, and white-gray diatomites.  

A clayey-silt layer is present from 370 cm to 350 cm-depth and is overlain by a 15 cm-

thick sand layer.  Diatomaceous layers occur again from 335 cm to 240 cm.  Clayey-silty 

diatomite is present from 335 cm to 320 cm and is overlain by 20 cm of diatomaceous 

clayey silt that is interbedded with 5 cm of brown diatomite.  At 300 cm to 240 cm-depth
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light-tan and white-gray diatomites are observed in the section, except for a 5 cm-thick 

clayey-silt at 245 cm. 

Diatomite layers are noticeably absent above 240 cm, except for a 15 cm-thick 

interval of light-brown gray diatomite overlain by a light-brown diatomite from 145 cm 

to 120 cm-depth.  Lithologies above 240 cm are non-cyclic in nature and are dominated 

by diatomaceous clayey-silts, silts with clay clasts, and organic-rich sediments. 

Diatomaceous clayey-silt occurs from 240 cm to 195 cm-depth and is overlain by a silt 

with clay clasts, with clasts increasing upwards in abundance, from 195 cm to 155 cm-

depth.  A clay lens 10 cm-thick overlies the silt with clay clasts and is overlain by 

diatomite layers from 145 cm to 120 cm-depth.  Another diatomaceous clayey-silt is 

present at 120 cm to 110 cm-depth and is overlain by a 35 cm-thick clayey silt.  Capping 

the section is an interval of organic-rich sediments.  At 75 cm to 50 cm-depth is an 

organic-rich silt, followed by an organic-rich clayey-silt to 25 cm-depth.  Within the top 

25 cm is another organic-rich silt layer.    

 

3.2 Sample Analyses 

 

3.2.1 Magnetic Susceptibility   

 

Variable concentrations of magnetizeable materials such as ferromagnetic, 

paramagnetic, and diamagnetic minerals present in sediments affect the strength of 

magnetism in a given sample (Ellwood et al., 2004). Magnetic susceptibility (MS) is a 

technique used to determine the concentration of magnetizeable materials in a sample.  

High frequency magnetic susceptibility (Xhf) was measured for each sample collected 

from the MabX and Mab6 trenches using a Bartington MS2 magnetic susceptibility meter 

with an MS2B dual frequency sensor.  MS values were measured on approximately 10 g 

samples and reported in terms of mass, due to the ease and efficiency in obtaining high

precision measurements by this method (Ellwood et al., 2008) 

 

3.2.2 Particle Size Analysis  

 

Particle size analysis was performed using laser defractometry on a Cilas1180 

particle size analyzer with a detection range of 0.04 to 2500 µm.  Approximately 100 ml 

of deionized water was added to ~10 g of uncrushed sample and dish detergent was used 

as a dispersal agent.  Samples were kept undisturbed for 24 hours before being mixed by 

a magnetic stirrer and introduced to the Cilas1180 by pipette analysis.  Target 

obscurations of 15-20% were obtained for all samples.  Each sample was run for 120 s 

with ultrasonics to break up any agglomerates (Sperazza et al., 2004).  Samples were then 

measured five times, without ultrasonics, and analyzed using the Fraunhofer theory.  

Grain size distribution statistics were calculated according to the method of Folk and 

Ward (1957). 

 

3.2.3 Inorganic Carbon and Organic Carbon Analysis 

 

Total inorganic carbon (TIC) and total organic carbon (TOC) concentrations were 

determined using a CM5014 Coulometer equipped with a CM5130 Acidification Module 
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and a CM5300 Furnace Module.  For TIC analysis, a pre-weighed sample was reacted 

with 2N H2SO4 to release CO2, which was titrated electronically.  Total carbon (TC) was 

determined by combusting a pre-weighed sample in the furnace module at 950˚C.  TOC 

was calculated by the difference between TC and TIC values. 

 

3.2.4 Metal Analysis   

 

Approximately 100 mg of sample were dissolved using aqua regia (3:1 mixture of 

HCl:HNO3) in a microwave digestion unit.  Dissolution in aqua regia is a widely used 

method that can yield recoveries of metals in sediments that range from 89 to 110% 

(Sastre et al., 2002).  Microwave-assisted digestion was performed using a MarsXpress 

microwave oven.  After digestion, samples were evaporated and reconstituted with 20 ml 

of 2% HNO3 three times.  After the final evaporation and reconstitution, the samples 

were cooled and filtered through a 45 m Whatman filter into acid pre-washed 

polyethylene bottles and diluted to a total volume of about 60 ml with 2% HNO3.  Metals 

were measured using a PerkinElmer Optima 2100DV inductively coupled plasma optical 

emission spectrometer (ICP-OES).  

 

3.2.5 X-ray Diffractometry  

 

  Two samples from MabX (265 cm and 305 cm) and two samples from Mab6 (200 

cm and 320 cm) were selected for bulk mineralogy runs on a Philips PW 1830 X-ray 

diffractometer (XRD) equipped with a Cu  radiation source.  Samples were powdered 

and run from 5-40˚ at 2 per minute.  Subsequently, clays were extracted according to the 

methods of Kittrick and Hope (1963).  Extracted samples were then run from 2-30° at 

2 per minute to determine clay mineralogy. 

 

3.2.6 Optically Stimulated Luminescence (OSL) Dating 

 

 After samples were collected in the field they were returned to the Radiation 

Dosimetry Laboratory at Oklahoma State University for processing.  Samples were 

sieved and treated with HCl and H2O2 to remove carbonates and organic matter, 

respectively, before a 50-minute treatment with HF to remove the outer portion of the 

grains that were affected by radiation.  Sediments were then retreated with HCl and 

quartz grains were separated.  Water content of the samples was determined based on the 

weight difference between the wet and dried sample.  Water content for all the samples 

ranged from 1% to 3% but, an average water content of 10% was assumed for the 

samples because they were deposited in a lacustrine environment.  Following this, 

samples were stored in air-tight containers for four weeks before Th, U, and K 

concentrations were measured according to the conversion factors of Adamiec and 

Aitken (1998).   

 The natural equivalent dose (De) is determined by comparison of the natural 

luminescence signal with the one obtained from the response of samples to a known 

radiation exposure in the laboratory.  The intensity of the luminescence signal is 

proportional to that of the radiation dose and is reported in units of Gray (Gy).   

Measurements were conducted using a Risø TL/OSL-DA-15 reader, Risø National 
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Laboratory, with a bialkali PM tube (Thorn EMI 9635QB) and Hoya U-340 filters (290-

370 nm) with a built-in 
90

Sr/
90

Y beta source.  Blue LEDs (470 nm) were used for optical 

stimulation.  

 The dose rate of the samples that is attributed to cosmic radiation is dependent on 

the geographical location of the sample site (19ºS, 24ºE, 930 m asl) and was calculated 

according to the methods of Prescott and Stephan (1982) and Barbouti and Rastin (1983).  

A final age was then determined based on the equivalent dose divided by the dose rate.  

Equivalent dose, dose rate, and determined age are reported in Table 1. 

 

 
Table 1: Results of Optically Stimulated Luminescence Dating 

Sample Dose
1 

Dose Rate
2 

Age
3 

  (Gy) (Gy/ka) (ka) 

MabX 45 21.6 ± 1.3 1.847 ± 0.087 11.70 ± 0.90 
MabX 135 35.9 ± 2.0 1.332 ± 0.061 27.0 ± 2.0 
MabX 380 60.7 ± 2.6 1.469 ± 0.070 41.3 ± 2.7 
MabX 500 147.3 ± 7.7 2.27 ± 0.12 64.8 ± 4.7 
1
Equivalent Dose 

   
2
Dose Rate 

3
Age in thousands of year 
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CHAPTER IV 

 

 

RESULTS 

 

Zones are defined for the sedimentary section based on multi-proxy data sets to 

delineate events that are significant in altering sediment type and relative grain size 

distribution of paleo-lake Mababe. Zones are determined based on changes in trends of 

the percent silt and clay content (Fig. 2) and Xhf  (Fig. 3) , assuming, the variations could 

be attributed to processes that control lake water levels.  Sorting and skewness (Fig. 2) of 

the samples, as well as carbonate and organic matter content (Fig. 3) were used to further 

identify the zones.  After zones were identified, metal results (Figs. 4-7) were used to 

support the established zones and provide further insight on processes affecting 

sedimentation in the Mababe Depression. 

 

4.1 Zone I: 560-485 cm 

 

Zone I consists of a 30 cm-thick sandy clay silt layer at the base, which is overlain 

by 5 cm-thick layers of silty diatomite and clayey diatomite, followed by a 15 cm-thick 

clayey silt.  The upper 20 cm of this zone is marked by another sandy clay silt layer.  

Sediments in the basal sandy clay silt average 4% sand in the lower part of the layer 

before increasing to 10% near the top, and, then decreasing to 3% at the top of the layer.  

Sand content in the diatomaceous and the clayey silt layers is less than 0.5%.  Within the 

sandy clay silt layer at the top of the zone, sand increases to 12% before declining to 4% 

at the top of the zone.  In the basal sandy clay layer, silt remains nearly constant while 

clay content decreases from 19% to 14% near the top of the unit, due to increase sand 

content. The clay content remains at ~15% in the silty diatomite layer.  Within the clayey 

diatomite, however, clay increases to 22%, and then to 26% at the base of the clayey silt 

unit but varies from 18-20% throughout the upper sand clay silt layer.  The decrease in 

silt and clay in the upper sandy clay silt layer corresponds to increase in sand to about 

10%. 

Sediments in Zone I are poorly sorted, although to slightly different degrees in each 

layer, with an average SD value of 1.6  within the basal sandy clay silt layer and a lower 

SD of 1.5  within the diatomaceous and clayey silt layers, but the upper sandy clay silt 

layer is the most poorly sorted  The skewness of sediments is also highly variable 

throughout this zone.  The basal sandy clay silt is coarsely-skewed to finely-skewed  

while the diatomaceous and clayey silt layers vary between finely and very finely- 

skewed and the upper sandy clay silt is near-symmetrical. 
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Xhf values in the basal sandy clay silt (~7x10
-8

 m
3
/kg) decrease slightly in the silty 

diatomite layer and increase markedly within the clayey diatomite to a maximum value of 

1.2x10
-7 

m
3
/kg in the clayey silt layer.  The Xhf  decreases again to ~7x10

-8
 m

3
/kg in the 

upper sandy clay silt layer.  Carbonate content is generally low (<0.1%) and remains low 

in the zone except for slight increase to 0.4% in the base of the clayey silt layer.  This 

increase in carbonate corresponds to the highest Xhf values and Al and Fe content in the 

clayey silt layer.  The organic matter content is low and nearly constant at 0.1% 

throughout the zone. 

 

4.2 Zone II: 485-375 cm 

 

 Zone II consists of 110 cm of diatomaceous layers that display subtle variations in 

color.  Light-brown diatomite marks the basal 10 cm of the zone and is overlain by a 15 

cm-thick light-gray diatomite, followed by a 35 cm interval of white diatomite, and a 25 

cm-thick light-tan diatomite.  The upper layer of this unit is a 15 cm-thick white-gray 

diatomaceous bed.  Sand accumulation in Zone II sediments is < 0.1%, and, no 

measureable sand is recorded within the white diatomite.  Silt content, however, shows a 

pronounced increase from ~75% to 90% and clay decreases from 25% to only 10% from 

the base of the zone to the top of the light-gray diatomite.   Silt averages of 86-87% in the 

white diatomite and the overlying light tan diatomite.  Clay averages 10-14% across the 

white diatomite layer until the base of the light-tan diatomite layer, where clay steadily 

increases to over 14%.  At 435 cm-depth, in the white diatomite layer, clay increases to 

14% and silt decreases to 86%.  The white-gray diatomite that marks the top of the unit 

has a silt content of 92% and a markedly lower clay content of ~7.5%.    

Within the zone, sediments are poorly sorted and average 1.25 Φ throughout the 

light-gray, white, and white-gray diatomite layers.  Poorer sorting is observed in the light-

brown and light-tan diatomites with averages of 1.6 Φ and 1.5 Φ, respectively.  Skewness 

also changes from finely-skewed in the light brown diatomite to very finely-skewed 

across the light-gray diatomite.  Sediments trend toward finely-skewed within the lower 

white diatomite, before becoming increasingly very finely-skewed within the rest of the 

layer.  Another trend toward very finely-skewed occurs in the light-tan diatomite, before 

trending toward finely-skewed sediments in the upper light-tan and white-gray diatomites 

at the top of the zone. 

 Xhf  values peak at 8x10
-8 

(m
3
/kg) at the base of the section in the light brown 

diatomite and decline to 4x10
-8

 (m
3
/kg) at the top of the light-gray diatomite.  Xhf  values 

in the white diatomite average 5.5x10
-8 

(m
3
/kg).  In the light-tan diatomite, Xhf  increases 

again to highs of 8x10
-8 

(m
3
/kg) before declining to < 3.5x10

-8
 (m

3
/kg) in the white-gray 

diatomite layer, where it remains nearly constant.  Carbonate and organic matter maintain 

average values of 0.1% and 0.3%, respectively, throughout this zone.  At 390 cm-depth, 

however, carbonate spikes to > 3%, which coincides with an increase in organic matter to 

~0.4%. 

 

4.3 Zone III: 375-280cm 

 

Zone III consists of a 20 cm-thick clayey silt overlain by 15 cm of sand.  

Diatomaceous sediments overly the sand and include a clayey-silty diatomite for 15 cm, 
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overlain by a diatomaceous clayey silt that contains a 5 cm-thick interbed of brown 

diatomite, that caps the zone.  The basal clayey silt has sand values of < 0.5% that 

increase to 4% upward in the bed, and silt values average 80%.  Almost 50% sand is 

obtained at the base of the sand layer, which then decreases to ~2% at the top of the layer.  

As sand content increases across the layer, both silt and clay decrease proportionally, 

with silt decreasing to 42% and clay decreases to ~10%.   The top of the sand unit marks 

a transition into a clayey-silty diatomite layer that contains negligible sand content and 

silt and clay values that average 81% and 19%, throughout the upper diatomite layers.   

Most units within the zone are poorly sorted and have an average SD of ~1.5 Φ, 

however, the sandiest interval is very poorly sorted (SD=2.1 Φ).  Grains are finely-

skewed throughout the clayey silt but are very finely-skewed within the sand before 

becoming near-symmetric within the upper sand.  Sediments that border between finely-

skewed and very finely-skewed occur within the clayey-silty diatomite, before becoming 

finely-skewed throughout the rest of the zone. 

Within Zone III, distinct patterns in Xhf  values that range from 8.5x10
-8

(m
3
/kg) to      

6x10
-8 

(m
3
/kg) observed in the clayey silt.  Xhf  values ranges from 2x10

-8
 (m

3
/kg) at the 

base of the sand layer to over 8x10
-8

 (m
3
/kg) at the top of the layer.  Steady Xhf  values 

occur throughout the clayey-silty diatomite layer, with an average of 7.5x10
-8

 (m
3
/kg).  

Increasing Xhf  is seen within the bottom portion of the diatomaceous clayey silt, but, the 

brown diatomite interval marks the beginning of a decrease from 1x10
-7 

(m
3
/kg) to 

7.5x10
-8 

(m
3
/kg) throughout the remainder of the zone.  Organic matter is nearly constant 

at ~0.4% in the silty-clay layer, and displays subtle increases to 0.3% and 0.4% within 

the sand and overlying diatomite layers.  Carbonate values remain low (< 0.1%) until the 

clayey-silty diatomite layer, when values increase to ~0.3%.   

 

4.4 Zone IV: 280-240 cm 

 

 Zone IV consists of a light-tan diatomite layer 20 cm-thick, followed by a 40 cm-

thick white diatomite layer with a 5 cm-thick clayey silt layer interbedded at 245 cm.  

The base of the light-tan diatomite represents a sand accumulation of ~4%, but, sand is   

< 0.3% across the remainder of the zone.  Silt increases from 80% at the base of the light-

tan diatomite to 86% at the top of the layer.  Clay decreases from 15% at the base of this 

bed to 10% at the top of the layer, followed by a continuous increase to ~20%, except for 

in the clayey silt layer where clay decreases to ~17%.  

Poor sorting occurs throughout this zone.  Sorting at the base of the zone averages 

~1.75 Φ but, becomes more poorly sorted throughout the light-tan diatomite, before 

increasing to the top of the zone.  In the lower light-tan diatomite, basal portions of the 

overlying white diatomite, and the upper 10 cm of the zone, sediments are finely-skewed, 

but become very finely-skewed from 270 to 250 cm, with the exception of the finely-

skewed interval at 260 cm. 

 Magnetic susceptibility increases slightly within the light-tan diatomite from 

5.75x10
-8

 to 7 x10
-8 

(m
3
/kg) before decreasing across the bottom 20 cm of the white 

diatomite from 5.5x10
-8

 to 3.5x10
-8 

(m
3
/kg).  Zone IV is characterized in large part by 

increasing carbonate values.  Carbonate values increase from the base of the zone to 

3.5%, except for the clayey silt layer that declines 1.3%.  Organic matter in this zone 
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increases continually to 0.5% between the white diatomite layer and the top of the zone, 

with a spike of 1.5% at 265 cm. 

  

4.5 Zone V: 240-195 cm 

 

 A diatomaceous clayey-silt layer 45 cm-thick comprises Zone V.  No significant 

variation in sand (0.1%) is observed in the unit.  Silt content averages 76% and, clay 

24%, for the bottom 30 cm of the layer before silt steadily increases to 78% and clay 

decreases to 21%.  The bottom of the zone is poorly sorted with a SD of 1.45 Φ that 

increases to 1.55 Φ in the upper portion of the zone.  Sediments are finely-skewed 

throughout the zone but, show better sorting across the bottom 25 cm of the zone and 

become increasingly finely-skewed in the upper portion of the zone.  

 Xhf  steadily decreases across the entire zone from 8.5x10
-8 

(m
3
/kg) to 6x10

-8
 

(m
3
/kg).  Carbonate values decrease from 3.5% at the contact with Zone IV and remain 

negligible until an increase to 1% occurs from 215 to 205 cm, before declining again.  

Organic matter steadily increases to ~0.5% across the zone.  

 

4.6 Zone VI: 195-145 cm 

  

 Zone VI contains two layers, a silt with clay clasts, where the clasts become 

increasingly abundant upward in the layer.  The silt layer comprises 35 cm of the zone 

and a clay lens that is 10 cm-thick caps the zone.  Less than 0.2% sand is observed in the 

lower silty layer, and no measureable sand occurs in the clay lens.  Silt content steadily 

decreases from 80% to 69% across the silty layer, while clay increases steadily from 20% 

to 30%.  Within the clay lens, silt decreases to 62% and clay increases to 36%.  SD 

averages 1.5 Φ in this poorly sorted zone.  Sediments are finely-skewed across the base 

of the zone and become near-symmetrical at the top of the clay layer. 

 Xhf  is 5.5x10
-8

 (m
3
/kg) within the basal 5 cm of the silty layer and increases to an 

average of 7x10
-8

 (m
3
/kg) in the lower silt layer and clay layer.  Within the upper silt 

layer, where clay clasts comprise a higher percentage of the sediment, a slight decline in 

the Xhf  occurs with an average of 6x10
-8

 (m
3
/kg).  Carbonate values maintain background 

levels throughout the zone.  Organic matter, however, shows a continuously increasing 

trend upwards in the zone with values of 0.2% at the base to 1% at the top of the zone.   

 

4.7 Zone VII: 145-75 cm 

 

 Zone VII is marked by a light brown-gray diatomite at the base, overlain by a 10 

cm-thick light brown diatomite, a 10 cm diatomaceous clayey silt layer, and a 25 cm-

thick clayey silt bed that tops the zone.  The base of the light brown diatomite contains a 

2% sand interval that declines to an average of ~0.1% throughout the layer and overlying 

diatomaceous clayey silt layers before spiking again to 2% within the lower clayey silt.  

Initially, silt content increases in the light brown-gray diatomite as clay decreases, but, 

throughout the remainder of the zone, silt decreases continuously from 83% to 62% and 

clay increases from 15-36%.   

Zone VII is poorly sorted throughout, but, shows slightly better sorting 

throughout the diatomaceous layers (SD=1.2 to 1.5 Φ) and becomes increasingly poorly 
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sorted (SD= 1.7-1.4 Φ) throughout the clayey silt.  Grains are finely-skewed in much of 

the diatomaceous layers and border between near-symmetrical and finely-skewed 

throughout most of the clayey-silt and light-brown diatomite layers, except from 90 to 85 

cm-depth where grains are finely-skewed. 

Xhf  drops to 4x10
-8

 (m
3
/kg), from values seen in the underlying zone, at the base 

of the diatomite in this zone and averages 5.5x10
-8

 (m
3
/kg) across the remainder of the 

diatomite layers. Within the diatomaceous clayey silt Xhf  decreases to ~7.5x10
-8

 (m
3
/kg) 

while the  lower clayey silt averages 5.75x10
-8

 (m
3
/kg), but increases to 8.0x10

-8
 (m

3
/kg) 

in the upper clayey silt layer.  Carbonate values maintain background levels of ~0.2% 

throughout the zone.  Shifts in organic matter, however, are discernable.  These shifts 

include an increase to ~0.6% from the base of the zone to 100 cm-depth and a decrease in 

organic matter in the upper 20 cm of the zone, where values range from 1.1% to 0.8%.  

An anomalous spike of 1.25% is seen at 105 cm, which corresponds to the sand spike 

seen in the clayey silt. 

 

4.8 Zone VIII: 75-0 cm 

 

 The top portion of the section is comprised of organic-rich sediments; however, 

three variations within the zone can be identified.  At the base of the zone to 50 cm-depth 

is an organic-rich silt layer with relatively constant silt and clay contents that average 

64% and 36%, respectively.  Overlying this layer is an organic-rich clayey silt from 45-

25 cm that contains a lower silt (57.5%) and higher clay (42.5%) content, and has no 

measureable amount of sand.  The upper 20 cm of the zone is comprised of an organic-

rich silt which exhibits a slight increase in silt (60-65%) and sand content (~0.1%), with a 

decrease in clay values from 39% to 36%, upwards.  At 10 cm-depth, the interval 

contains 2% sand, highest in the zone, as well as the highest silt content (68%) and lowest 

amount of clay (30%).   

 Sediments in Zone VIII are poorly sorted throughout, however, the lower organic-

rich silt trends toward increasingly poor sorting, whereas the overlying organic-rich 

clayey silt trends toward better sorting, upward.  Sorting remains constant within the 

upper layer, except for at 10 cm, where sorting is slightly better.  Within this zone, all 

units are near-symmetrical.  Skewness within the lower silty layer remains constant, as 

does the clayey-silt, however, this layer borders on coarsely-skewed.  In the upper silt, 

however, a trend toward finely-skewed exists.   

 Relatively stable Xhf  values of ~7.5x10
-8

 (m
3
/kg) are seen throughout Zone VIII, 

except for a decrease to 6x10
-8

 (m
3
/kg) at 10 cm-depth.  Carbonate remains at 

background levels (0.1%) and organic matter increases continuously from 1% to 1.5% 

towards the top of the zone.  Organic matter spikes at 10 cm to over 2.5%, the highest 

value seen at the MabX location. 

 

4.9 Metals 

 

 The presence of the eight zones is supported by the early transition metals Al, V, 

Cr, Mn, and Fe (Fig. 4).  In zone I, Al, V, Cr, Mn, and Fe metal concentrations vary 

below 525 cm but, these metals show decreasing concentrations from 525 cm to the top 

of the zone.  In the lower portion of Zone II Al, V, Cr, and Fe decrease overall before  
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increasing with a peak at ~405 cm-depth followed by decreses in the top 15 cm of the 

zone.  Steady increases in Mn concentration, however, occur before a large peak in 

concentration at 390 cm-depth, which is consistent with an increase in carbonate (Fig. 3).  

Early transition metals in Figure 6 are relatively constant in the basal 20 cm of Zone III 

before showing a marked decrease to some of the lowest values in the section within the 

sand layer.  Throughout the remainder of Zone III, these metals increase in concentration, 

except for a marked decrease in V and Cr observed at 325 cm-depth.  Al, V, Cr, and Fe 

gradually decrease across the Zone IV diatomite layers, while Mn increases in this zone. 

 Above 240 cm-depth, Al, V, Cr, and Fe show more subtle changes in 

concentration than below 240 cm and, these metals systematically shift toward higher 

average concentrations above 240 cm.  In Zone V, Al, V, and Cr concentrations tend to 

fluctuate around average concentrations, while a decrease in Fe and an increase in Mn 

occur at 205 cm-depth.  A concentration spike in Mn at 205 cm-depth is consistent with 

the occurrence of carbonate (Fig. 3).  In Zone VI, the early transition metals decrease at 

195 cm-depth and subsequently increase to average values before decreasing again at 160 

cm-depth.  Above 160 cm-depth, these metals increase in concentration throughout the 

remainder of the zone.  Al, V, Cr, Mn, and Fe concentrations increase overall throughout 

Zone VII while, Al, V, and Cr decrease from 100 cm to 85 cm-depth.  Within Zone VIII, 

Al increases overall and Mn maintains nearly constant values.  Shifts in the concentration 

of V and Cr, however, occur in Zone VIII that coincide with the organic-rich sediment 

layers (Fig. 3).  A decrease in all early transition metals is observed at 10 cm-depth. 

 Transition metals Co, Ni, and Cu (Fig. 5) define a unique boundary at 240 cm-

depth where concentrations of each metal shifts to higher values above 240 cm than those 

observed below 240 cm.  This boundary event is also present in Li, K, Rb, and Mg 

concentrations (Fig. 6).  Above 240 cm Li concentrations decrease to averages that are 

among the lowest in the section.  Concentrations of K above show an overall increasing 

trend throughout the section but, shift toward even higher concentrations above 240 cm-

depth.  Decreasing trends in Rb concentration occur from 560 cm to 240 cm-depth before 

shifting to higher concentrations above 240 cm-depth.  Below 240 cm, Mg concentrations 

increase but, above 240 cm-depth, Mg has a decreasing trend.  Consistent with the the 

boundary event at 240 cm-depth observed in other metal data sets, Cs, Ca, Sr, and Ba 

concentrations (Fig. 7) increase considerably from 265 cm to 240 cm-depth, but remain 

relatively constant throughout the rest of the section.
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CHAPTER V 

 

 

DISCUSSION 

 

 Multi-proxy data sets collected in this study can be used to determine the effects 

of local and regional climatic influence, as well as provide insight as to how the effects of 

faulting associated with the ORZ can be observed in the lake sediment record.  Grain size 

analysis of sediments within the lake basin is the primary tool used to delineate whether 

or not sediments being deposited are of local or distal origin.  Local sediments supplied 

by channels such as the Ngwezumba and Gautumbi Rivers (Fig. 1b), as well as from 

nearby dune fields and beach ridges, for instance, will have a larger average grain size 

and higher sand content than sediments originating from distal sources such as the 

Angolan highlands.  Allocthonous sediments from Angolan highlands are altered by the 

fractionating effects of the Okavango Delta swamp and, therefore, will contain higher 

percentages of silt and clay-sized material, and little, if any, sand-sized sediment by the 

time the sediments reach Mababe.  Additionally, the lithology of the sediment section and 

the thickness of each of the lithologies can be used to distinguish periods dominated by 

local and regional sedimentation.  The influence of a local climate would result in the 

occurrence of sand-sized sediments and the appearance of lithologies such as sandy-clay 

silts, whereas the effects of a regional climate would be manifest in the lake record as 

clay.  

 

5.1 Tectonics and Lake Sedimentation 

5.1.1 Evidence of Tectonism 

A major change in the trends of the multi-proxy data is observed at 240 cm-depth.  

Marked differences in the sedimentation patterns above and below 240 cm are reflected 

in the relative sand, silt, and clay content and distribution (Fig. 2), as well as the 

magnitude and variations of the magnetic susceptibility values (Fig. 3).  Alkali metals 

(Li, K, Rb, Be, and Mg) also show major shifts in concentration and distribution patterns 

above and below 240 cm (Fig. 6).  Between 240 and 260 cm, the boundary is 

characterized by anomalously high carbonate content (Fig. 3) and high concentrations of 

Cs, Ca, Sr, and Ba (Fig. 7).   These changes in the sedimentological and geochemical 

properties above and below 240 cm reflect variations in allochtonous sediment sources 

and their relative contribution to the lake sedimentary budget.  Allochtonous sediments 

from local sources supplied to the depression are transported by ephemeral rivers with 

watersheds in the Kalahari basin (e.g., Burrough and Thomas, 2008).  Additionally, 
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sediments can be brought into the depression from the Angolan highlands via the present 

day Okavango River, and in the past by the Kwando and Zambezi Rivers (e.g., Shaw, 

1985; McCarthy and Metcalfe, 1990; Burrough and Thomas, 2008). 

There are fundamental differences in the sediment characteristics and 

geochemistry of sediments derived locally within the Kalahari basin and those from the 

upper watershed of the Okavango, Kwando, and Zambezi Rivers.  Local sediments from 

the Kalahari basin consist mainly of aeolian quartz sands and soils rich in calcrete and 

silcrete (Shaw et al., 2003; Ringrose et al., 2005).  Mean grain size of dunefield 

sediments in the Kalahari range from 2.2 Φ to 3.0 Φ (Cooke, 1980), while the beach 

ridges around the Mababe Depression range from 0.28 mm to 0.18 mm (1.84 Φ to 2.47 

Φ) (Burrough and Thomas, 2008) and averaged 2.6 Φ where sampled along the Magikwe 

Ridge (Cooke, 1980).  Typically the beach ridges near Mababe consist of greater than 

90% sand, with silt and clays making up the difference (Burrough and Thomas, 2008; 

Burrough and Thomas, 2009).  Silcretes and calcretes, however, can form as a result of 

pedogenic and non-pedogenic processes occurring from the semi arid climate of Kalahari 

basin (McCarthy and Metcalfe, 1990; Nash et al., 1994; Nash and McLaren, 2003; 

Ringrose et al., 2005).   

Sediments derived from the upper watershed of the Okavango, Kwando and 

Zambezi Rivers are produced by the weathering of bedrock in a tropical climate.  These 

sediment properties can be further modified by processes occurring in swamps before 

reaching the Mababe Depression.  Modern sediments transported by the Okavango River 

at Mohembo, located at the tip of the Panhandle represent sediments that have not been 

significantly altered by transport through the swamps of the Okavango Delta.  Sediments 

arriving at Mohembo can therefore be used to infer the characteristics and geochemistry 

of sediments derived from the upper watersheds of the Okavango and Kwando Rivers in 

the Angolan highlands.  

Extensive swamps of the Okavango Delta can modify sediment distribution by 

causing preferential loss of the sand-sized fraction as water velocity decreases (McCarthy 

and Metcalfe, 1990).  Sediment size distributions measured near the Panhandle are 

markedly different than those observed more distally in the delta.  Grain size near 

Mohembo, for example, ranges from 0.2 mm to 0.4 mm (2.3 Φ to 1.3 Φ) (McCarthy et 

al., 1991).  Sediments located near in the permanent swamp area along the 

Khiandiandavhu channel, however, averaged ~0.19 mm (2.4 Φ) (McCarthy and Metcalfe, 

1990).  Approximately 90% of the sand-sized material is deposited when entering the 

panhandle region of the Delta (McCarthy and Metcalfe, 1990).  Thus, given the 

modifying effect of the Okavango Delta swamps on sediments transported beyond 

Mohembo, it can be inferred that the presence of the Linyanti Swamp along the Kwando 

River, near Mababe, will impact sedimentation in a similar manner by varying the 

physical and geochemical characteristics of sediments transported from the Angolan 

highlands. 

Sediment grain size distributions indicate that deposition of sand below 240 cm-

depth is prominent in the sedimentary record and accounts for up to ~10% of the 

sediments deposited in various layers below 480 cm-depth (Fig. 2).  A significant layer of 

~45% sand occurs at 345 cm-depth with an average grain size of 0.062 mm for the layer.  

Overall, sediments located at and below 240 cm-depth have an average grain size of 

0.017 mm (6.4 Φ).  Occurrences of sand above 240 cm are not as significant and average 
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only ~2% of sediments where sand accumulations are observed (Fig. 2).  Sediments 

above the 240 cm boundary have an average grain size of only 0.01 mm (7.07 Φ) and 

show a shift towards a finer grain size overall.  This suggests that during the time interval 

above 240 cm, sedimentation was likely dominated by fine-grained allochtonous 

sediments from the Angolan highlands, compared to locally derived coarser sands.  

Alternatively, the influx of local sediments into the depression could have declined due to 

decreased fluvial transport resulting from a locally drier climate.  

Differences in the sediment type and geochemistry above and below 240 cm, such 

as the increased abundance of sediments from the Angolan highlands above 240 cm-

depth, suggests a fundamental shift in the source and supply of sediment.  An increase in 

the relative volume of water and sediment load from the Angolan highlands would cause 

sediments from the Angolan watershed to dominate the lake record at Mababe.  Such a 

shift in the relative proportion of sediments derived from local versus distal sources 

above and below 240 cm would require a major reorganization of the hydrology of 

northwestern Botswana.  

Reorganization of the hydrology is hypothesized to have changed the proportion 

of water and sediments from a local source to a system that was dominated by water and 

sediments transported from the Angolan highlands.  Hydrologic reorganization is also 

hypothesized to affect the residence time of water in the depression.  For example, if 

water were to pool in the Mababe Depression for long periods of time, it could explain 

the gradual changes in the sedimentary and geochemical characteristics of sediments 

above 240 cm, such as the steady accumulation of clay-sized material and more 

systematic shifts in metal concentrations.  In comparison, below 240 cm rapid changes 

occurred during the deposition of sand-sized sediments.  Changes observed in the 

sediment properties above and below 240 cm require that rivers that supplied water and 

sediments to the Mababe Depression undergo a fundamental change in hydrology, a shift 

that is attributed to tectonic processes (Huntsman-Mapila et al., 2005). 

 

5.1.2 Tectonic Alteration of Hydrology and Sedimentation 

 

Tectonic processes in the ORZ have caused the geomorphologic form of the delta 

and the surrounding region to evolve over time, which altered the regional hydrologic 

system.  Presently, topographic evidence suggests two main inlets for rivers flowing from 

the Angolan highlands into the Mababe depression (Fig. 1b).  In the northwest, the Savuti 

River transports water from the Kwando River through the Savuti swamps and the 

Tsatsara gap, while in the south, the Mababe River carries water from the Khwai and 

Thamalakane Rivers, sourced from the Okavango River (Fig. 1b).  Given the present day 

topographic configuration of the Okavango Delta and its’ surroundings, lake levels in the 

Mababe Depression would be controlled by the elevation of the inlets in the northwest 

and southern portions of the depression.  

Lake levels in the Mababe Depression that result from inflow along the Mababe 

River, at the southern end of the basin, would be controlled by the elevation of the Savuti 

inlets (~927 m), since lake levels exceeding this elevation would drain through the Savuti 

channel in the northwest (Fig. 1b).  Also, lake levels are controlled by topographic 

thresholds along the Thamalakane River at 936 m and at 940 m in the channel of the 

Boteti River that flows into the Makgadikgadi Pans (Gumbricht et al., 2001).  Because of 
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these topographic thresholds, lake levels rising above 936 m would flood most of the 

lower delta and inundate Lake Ngami and the Mababe Depression along the 

Thamalakane axis, resulting in the formation of Paleolake Thamalakane (Shaw, 1988).  

Post-tectonic topographic controls influence how water and sediment reach the Mababe 

Depression. 

  

5.1.2.1 Sedimentation Pre-240 cm-depth 

 

Sedimentation below 240 cm requires a different tectonic configuration and 

hydrologic regime from that above 240 cm.  In order for local sediments to dominate 

sedimentation below 240 cm, lower volumes of river water supplied from the Angolan 

highlands are required.  In the absence of the present day topographic configuration and 

control on sedimentation in the depression, sedimentation patterns suggest that higher 

frequency lake level fluctuations occurred below 240 cm.  Accumulation of coarse-

grained material below 240 cm, and in particular below 485 cm, could represent the 

influence of a locally wet climate.  Lake levels inferred from sediments between 240 cm 

and 485 cm-depth were sufficiently deep to support the growth and deposition of diatoms 

(Fig. 2).  Therefore, this time period could be the result of a wet climate in Angola, as 

well as locally, that would have sustained river flow and maintained a deep lake within 

the Mababe Depression.  

 

5.1.2.2 Sedimentation Post-240 cm-depth 

 

An important aspect in the history of the Mababe Depression is the tilting of the 

basin, that likely occurred during the tectonic events that reorganized the hydrology of 

the region.  Tilting of the basin led to its’ present-day configuration that has resulted in 

variations in elevation north to south along the 936 m ridge (Gumbricht et al., 2001).  In 

the absence of a tilted basin, topographic thresholds controlling lake levels in the Mababe 

Depression would have been different and would have allowed the lake to retain larger 

volumes of water before outflow would have occurred.  Tectonic and hydrologic changes 

altered how the Mababe Depression was filled with water and also affected sedimentation 

patterns above 240 cm.  Sedimentation appears to have occurred uninterrupted in the 

basin (below 240 cm) until faulting diverted the Kwando River away from the 

depression.  Okavango Delta sedimentation beginning ~40 ka (Ringrose et al., 2008), 

may have led to the development of distributary channels that characterize the modern 

delta configuration.  Development of the Okavango Delta led to new landscape 

conditions that controlled water and sedimentation in the Mababe Depression.  

The sedimention record from the Mababe Depression suggests a timing for the 

movement along the Linyanti Fault and is marked by the significant change observed at 

240 cm-depth in the multi-proxy data sets.  Sedimentation above 240 cm-depth occurred 

after faulting along the Linyanti diverted river inflow away from the Mababe Depression 

and the Okavango Delta formed, thereby, creating a new hydrologic regime in the area.  

Grain size distribution of sediments above 240 cm show predominantly silt and clay-

sized fractions (Fig. 2) and have a distinct sediment sorting signature and geochemistry 

that is consistent with the lithologic and chemical fractionation of sediments by marshes 

in the Okavango and Linyanti deltas.  These characteristics indicate that sediments 
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dominating deposition above 240 cm were sourced primarily from the Angolan 

highlands. 

 

5.2 Paleoenvironmental History  

 

Climate change can also affect sediment supply and water levels in the Mababe 

Depression, and the resulting shifts in sediment properties and geochemistry will be 

superimposed on the record of tectonic processes.  The Okavango Delta and lakes in this 

region are unique in that they can be affected directly by local climate, as well as 

indirectly by the climate changes in the Angolan highlands. When the timing of local wet 

periods coincide with that in the Angolan highlands, it may be difficult to separate these 

events in the sedimentary record.  However, when the local climate is dry and the climate 

in the Angolan highlands is wet, the dry local climate may be recorded by a decrease in 

local autochthonous sediments in the sedimentary.  Sedimentation in the Mababe 

Depression and other lakes within the region provide a record of both local and regional 

climate change (Huntsman-Mapila et al., 2005; Burrough and Thomas, 2008; Burrough et 

al., 2009).   

Four major episodes in the history of sedimentation in Paleolake Mababe, thought 

to represent different climatic conditions, are defined based on grain size distribution, 

magnetic susceptibility, and geochemical data.  These episodes represent sedimentation 

in the Mababe Depression when lake levels rose above 923 m, the approximate elevation 

of the sampling site in this study.  The sediment depths that define each spidode are 

shown to the right of Figures 2-7.  Episodes I and II, which encompass Zones I and II, 

respectively, represent sedimentation below 240 cm, before movement along the Linyanti 

and Thamalakane Faults caused a reconfiguration in the regional hydrology. Episode III, 

which encompasses Zones III and IV, occurs below 240 cm encompasses the period in 

which tectonic activities changed the hydrological system. Episode IV, comprised of 

Zones V, VI, VII, and VIII, occurs under the new hydrologic and tectonic regime and 

consists of sedimentation above 240 cm. 

 

5.2.1 Episode I (560-485 cm) >65 ka 

 

Episode I is older than 65 ka and encompasses a period in which local climate and 

the climate in the Angolan headwaters alternately affected sedimentation within the 

Mababe Depression.  Locally wet climatic events are expressed in the sedimentary record 

as higher influxes of sand-sized sediments and, overall, higher contributions to 

sedimentation during this episode (Fig. 2).  Prior to tectonic activity, that diverted flow of 

the Kwando River to the Zambezi River, the entire discharge of the Kwando River likely 

flowed into the Mababe Depression via the inlet of the now underfit Savuti channel and 

the Tsatsara gap (Grove, 1969; Shaw, 1985).  Sedimentation from the Angolan highlands 

deposited by the Kwando River, however, was likely characterized by higher silt and clay 

content consistent with higher magnetic susceptibility values (Fig. 3) than those observed 

in the sandy intervals derived locally.   

Lake levels were probably shallow during this episode, as evidenced by rare 

accumulations of diatoms.  Furthermore, the absence of diatom accumulations may 

indicate the lack of a stable water body in the lake over long time periods.  Alternatively, 
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lake water chemistry was not conducive for diatom growth.  The physical properties of 

the sediments in conjunction with the evidence that lake levels were stable for relatively 

short periods of time, may indicate that the climate in the Angolan highlands was 

relatively dry, but, that periodic wet periods occurred within the local climate throughout 

this interval.  Deposition of sediments during the locally wet climate would have masked 

a dry climate signal in Angola throughout the episode.  Overall, sedimentation during 

Episode I is consistent with a regionally arid climate (Burrough et al., 2009).   

 

5.2.2 Episode II (485-375 cm) ~65 ka to 41 ka 

 

Episode II ranges from ~65 ka to about 41 ka and is characterized entirely by 

diatomite layers (Fig. 2).  Lake levels were likely sufficiently deep to support diatom 

growth throughout this time period.  Therefore, this interval represents a period in which 

the climate in the Angolan highlands was wet and able to sustain flow to the Mababe 

Depression.  A distal source of sedimentation for this interval is supported by elevated 

lake levels over the duration of this event.  The predominance of diatomite suggests that 

lake levels were stable above the 924 m elevation for prolonged periods to promote 

diatom productivity that ultimately generated an ~1 m-thick layer of diatomite.  In order 

to promote the growth and accumulation of extensive diatomite layers, water supplied to 

the basin must have been high in nutrients and high productivity resulted in excellent 

preservation of diatoms.   

Sediments in this episode as a whole are moderately sorted and very-finely 

skewed, which are inferred to be characteristics of unfractionated sediments from the 

Angolan highlands.  This is in addition to an overall increase in silt content, indicative of 

a distal sediment source.  A wet climate in the Kwando River headwaters in the Angolan 

highlands would have been required to sustain lake levels over this ~24,000 year time 

period.  Modeling based on present day evaporation and river discharge rates suggest that 

the Kwando/Chobe River is capable of providing enough water to maintain a lake of 

~2,000 km
2 

in size, which is sufficient to sustain lacustrine conditions in the Mababe 

depression (Grove, 1969 and references therein).  Therefore, in order for the Kwando 

River to have been the source of sustained water during this time, this episode must have 

occurred prior to tectonic events that diverted the Kwando River away from the Mababe 

Depression along the Linyanti Fault.  

Although precipitation from a locally wet climate could contribute to the higher 

lake levels, it is not obvious from the sedimentary evidence in that such a situation 

occurred for the entire episode.  The absence of a predominance of sand that would 

characterize a local sediment supply can be explained, however, if sand transport to the 

lake occurred when lake levels were high and the sand was deposited at the mouths of the 

rivers to form deltas.  It is likely then that any sand expected to accompany locally wet 

climatic conditions was deposited in deltas at the mouths of the Ngwezumba and 

Gautumbi Rivers (Burrough and Thomas, 2008). 

Local climate likely influenced sedimentation during the top 15 cm of Episode II 

where a significant shift in sedimentation patterns, such as the increase in silt and 

decrease in clay (Fig. 2) that occur, in conjunction with a decrease in magnetic 

susceptibility values (Fig. 3).  Despite the fact that this interval has the highest silt 

content in this episode, there is no significant increase in sand (< 1%).  Sediments 
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supplied to the depression that have a low magnetic susceptibility and a decreased 

abundance of transition metals (Figs. 3 and 4) are interpreted to represent sediments 

brought in from the local environment and, thus,  suggest a wet local climate for this 

event.  Prior to this locally wet climate, a period of drought likely occurred that resulted 

in evaporation of the lake, increased salinity, and led to the precipitation of carbonate just 

below the upper diatomite layer (Fig. 3).  Carbonate in this interval is likely due to intra-

lake processes because concentrations of Ca increased and concentrations of Cs, Sr and 

Ba that should accompany pedogenic carbonate formation are low (Fig. 7).   

 

5.2.3 Episode III (375-240 cm) 41 ka to < 27 ka 

 

Episode III occurs between 41 ka and < 27 ka, however, no age constraints for the 

upper boundary are available.  This episode represents a period with high variability in 

local and regional climate.  Lake sedimentation over this interval is characterized by an 

overall shift towards increasing silt and decreasing clay content, variable sorting, and a 

shift towards finely-skewed grains (Fig. 2).  Sediments at the beginning of this episode 

indicate a local source from a locally wet climate, which is expressed as an increase in 

sand content with better sorting and skewness.  Continuously increasing silt content, 

however, reflects greater sediment delivery from the Angolan highlands over time and a 

continuously increasing lake level can be inferred from the overall increase in silt 

towards the top of this episode.  Diatomite-silt mixed sediments followed by 

predominantly diatomite layers suggests that lake conditions, which initially fluctuated 

perhaps due to variability in the local climate, became more stable.  Stable water levels 

occurred in the Mababe Depression over long periods of time in order to accumulate 

thick layers of diatomaceous material.  

This episode is marked by a prominent occurrence of carbonate at its terminus 

(Fig. 3), which can be correlated with a carbonate layer in Lake Ngami (Huntsman-

Mapila et al., 2005).  Occurrence of the carbonate layer in both lakes, separated by ~275 

km, indicates an event of regional magnitude.  The carbonate layer in Lake Ngami is 

dated at ~40 ka, a period when the region was covered by an extensive body of water 

referred to as Lake Makgadikgadi (Grove, 1969), which had an elevation of 945 m at its 

highest level and occupied an area of ~60,000 km
2 

(Cooke, 1980) to 80,000 km
2
 (Mallick 

et al., 1981).  Lake Makgadikgadi encompassed an area that included the current 

Makgadikgadi pans, a large portion of the current delta, Lake Ngami, the Mababe 

Depression and, extends into the Chobe-Zambezi River Valley and Caprivi Strip in the 

Zambezi area (Grove, 1969; Shaw and Thomas, 1988), although the Zambezi area is not 

considered in the size estimates (Thomas and Shaw, 1991).  

The origin of these extensive carbonates throughout the lakes during this episode 

is not clear.  Two possible sources of the carbonate include the erosion of local calcretes, 

or, authigenic precipitation within the lake itself.  It is hypothesized that the carbonates 

are local in origin and were derived from erosion of local calcretes.  Formed during a 

previously dry period, these calcretes could have been eroded by local rains and 

deposited within the lake basins.  This is consistent with a locally wet climate that 

contributed to the formation of Lake Makgadikgadi (Cooke and Verhagen, 1977; Shaw 

and Cooke, 1986).  However, there is also a lack of local sands during this time that 

would have been an integral part of the sediment record, and is inconsistent with the 
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hypothesis of extensive erosion required to deposit the calcretes.  Alternatively, 

formation of the carbonates within the lake would require evaporation to achieve 

carbonate saturation, as observed in other lakes of the Kalahari region during dry periods 

(Thomas et al., 2003).  In such a scenario, there should be a regionally equivalent 

carbonate layer present in soils in non-lake basins that should correlate with those 

observed in Lake Ngami (Huntsman-Mapila et al., 2005) and the Mababe Depression.  

Because of the paucity of sedimentary geochemical data, further research is needed to 

verify or refute calcrete erosion or in-situ precipitation as the source of the carbonates. 

Lake Makgadikgadi at a 945 m elevation would not have been constrained by 

topography given that it is believed to have been both a locally and regionally wet 

climate.  Constraints to the lake level would have been a mechanism for draining such an 

extensive lake.  An outlet hypothesized to have drained the lake was through tectonic 

controls to the north of the Mababe Depression, which likely would have drained the lake 

into the Zambezi River via the Kwando/Chobe River (Grey and Cooke, 1977). 

Alternatively, the waters of the lake could have evaporated over time.  

 

5.2.4 Episode IV (240-0 cm) < 41 ka 

 

Episode IV has no age-constraint at its’ lower boundary, but was dated at 135 cm-

depth at 27 ka.  This episode is controlled primarily by climate variations in the Angolan 

highlands and is represented by sediments from 240 cm-depth to the surface.  The 

sediments above 240 cm-depth are attributed to the Lake Makgadikgadi stage and suggest 

a different hydrologic regime could have been initiated by local or regional tectonics.  

Reactivation of the rift faults would have altered the region in two main ways: 1) cutoff 

of the Kwando River as a regular source filling the Mababe depression by diversion of 

the Kwando River via faulting to form the Linyanti-Chobe River, which served as a 

drainage pathway into the Zambezi River and 2) the impoundment of the Okavango 

River and initiation of the formation and development of the delta to its current form.  

The end of Episode III was due to a tectonic interplay that created a new hydrologic 

regime in the region and altered sedimentation and geochemistry patterns observed in 

Mababe depression sediments above 240 cm-depth.   

Water brought into the Mababe Depression from the Angolan highlands during 

this Episode was likely a result of inflow from the Okavango River because tectonic 

activities had previously diverted the Kwando River, the main source of water to the 

Mababe Depression, to the Zambezi River.  Even though the Okavango River became the 

new regular source of water to the Mababe depression, after the Kwando River was 

diverted, a topographic control (knob) at 936 m elevation along the Thamalakane River 

caused flow into the Mababe depression to occur only during regionally wet and 

extremely wet local periods.  River water flowed into the Mababe Depression via the 

Khwai River to sustain marsh-like conditions.  The elevation to which the lake levels 

could rise during local wet periods was restricted by the elevation at the inlet of the 

Savuti channel which can serve as an outlet, except during regional flooding events.   

Assuming no erosion of sediments has occurred in the depression, there is no 

evidence of waning from Lake Makgadikgadi at the 945 m level to completely dry 

conditions (Fig. 2).  Instead, the sediment record shows an abrupt change in sediment 

characteristics and geochemistry, which remained nearly constant for a prolonged time 
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(~240 to 195 cm). The lack of a characteristic decrease in clay associated with a 

desiccation event is not observed in this zone.  Grey and Cooke (1977) hypothesized that 

reactivation of the Linyanti fault, which diverted the Kwando River through the Linyanti-

Chobe River to the Zambezi River, could have provided an outlet for draining Lake 

Makgadikgadi.  The sediment record suggests that if Lake Makgadikgadi was being 

drained in this manner, it would leave evidence in the sediment record of drainage in the 

form of constant sediment type.   

The first occurrence of sediments in this episode are those of Zone V.  This period 

is marked by a relatively stable lake levels sourced from the Angolan highlands, as 

evidenced by the lack of sand accumulation.  Clay and silt levels also remain fairly 

constant throughout the zone, indicating the source of sediments remained constant.  

Prior to the end of this zone, a layer containing carbonate of similar nature to that 

observed in Episode III occurs, but its origin also remains unclear.   

Following stable lake conditions, a decline in lake levels is marked by an increase 

in clay content from ~18% to 38% throughout Zone VI.  Organic matter also increases 

throughout the zone and represents the encroachment of aquatic and wetland vegetation 

at the sample site as lake levels declined.  A brief period of local climate influence occurs 

at 165 cm-depth, resulting in a small increase in sand content (Fig. 2). 

Lake levels rise again between Zone VI and VII.  This rise in lake levels is 

evidenced by the return of diatomite and diatomaceous clayey-silt layers at the base of 

Zone VII that overlie clay-rich beds in Zone VI.  The early part of Zone VII is 

characterized by a sharp increase in silt and decrease in clay.  This is coupled with a 

decrease in organic matter at the base of the zone that may represent deeper water 

conditions that do not support aquatic plants at the sample site.  Rising lake levels of this 

interval were likely the result of increased water supply from the Angolan highlands, 

coupled with an increase of sediments from a wetter local climate, as indicated by higher 

sand sedimentation that exceeds 2%.  An age constraint of ~27 ka is given during this wet 

interval at 135 cm-depth. 

Throughout the remainder of Zone VII lake levels begin to decline but a shallow 

lake level is maintained by a periodic supply of water into the lake.  Overall, clay content 

increases and silt decreases, although fluctuations occur throughout Zone VII (Fig. 2).  

While the sediment geochemistry and organic matter content show fluctuations, few 

changes in metal concentrations occur (Figs. 2, 3, 4, 5, 6, and 7).  These fluctuations in 

the sediment and sediment geochemistry support a shallow lake that periodically receives 

water.  During low lake levels organic matter concentrations increase as marsh-like 

conditions prompted vegetation growth in the lake basin. 

Within the organic-rich sediment layers of Zone VIII one age date of 11.7 ka is 

available at 45 cm-depth.  Marsh-like conditions likely dominated the zone, as evidenced 

by the higher levels of organic matter.  Alternatively, increases in organic matter may be 

the result of increased inflow from the Okavango River bringing in organic matter.  

Higher lake levels likely occurred during this zone when shifts occurred in the clay 

content.  At 10 cm-depth, a brief lake highstand occurs that is evidenced by a drop in clay 

and Xhf  and an increase in organic matter as more water is brought into the lake.  This 

event is consistent with a wetter local climate, as evidenced by the increase in sand. 

When lake levels decline, as in Zone VI and VII, changes in sedimentation and 

chemical sedimentation patterns can be observed.  Figure 8 depicts the desiccation of the 



32 

 

  

Figure 8:  A conceptual model for the draining of Lake Mababe where a) is a full lake 

b) drying lake with swamp formation c) lake margins are dry and further swamp 

development d) only the sump and inlets contain water e) the sump has become swampland 

and only inlets contain water f) inlets are swamps and lake is otherwise dry and, g) total 

desiccation of Lake Mababe

b)

a)

f)

g)

e)

c)

d)

Lake

Swamp
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lake in the Mababe Depression and how changes in lake levels will affect sedimentation 

at the sample location.  As lake levels decline, as in Figure 8b and 8c, vegetation will 

begin to invade the sample site and promote aquatic and wetland vegetation growth.  As 

marsh conditions move close to the sump, as depicted in Figure 8d and 8e, more 

terrestrial plant growth will occur at the sample site.  Currently the Mababe Depression is 

represented by Figure 8f, where only the swamps retain water.   

 

5.3 Paleoclimate 

 

 Periods of elevated lake levels in the Mababe Depression with available age-

constraints can be correlated to lake highstand events in the Makgadikgadi and Ngami 

basins.  A regional paleo-shoreline research program utilizing OSL dating techniques 

establishes a chronology of lake highstand events over the last 300 ka for Lake 

Makgadikgadi (Burrough et al., 2009), Lake Ngami (Burrough et al., 2007), and the 

Mababe Depression (Burrough and Thomas, 2008).  The  work of Burrough and Thomas 

(2008) established lake highstand events in the Mababe Depression over the last ~40 ka 

based on beach ridges, while this study, based on sediment samples, extends the paleo-

lake record to > 64 ka.  Comparisons made with data from lake highstands is qualitative 

in nature given that beach ridges preserve only the most recent lake highstands.  

Additionally, processes responsible for the formation of ridges occur over a much shorter 

time span compared to the duration of high lake levels. 

 Based on the limited OSL dates available from this study, the ages of lake 

highstand events of regional extent (Burrough et al., 2009), and those reported in the 

Mababe Depression (Burrough and Thomas, 2008) appear to occur in close proximity to 

the deposition of sediments with high clay content, such as clayey-silt layers and clay 

layers (Fig. 2).  Clay-rich sediments representing high lake levels near the end of Episode 

I (520-505 cm) were deposited around 64.8 ka.  This age is close to that of a lake 

highstand determined in the Makgadikgadi basin at ~64 ka (Burrough et al., 2009) and 

Lake Ngami around 59 ka (Burrough and Thomas, 2008).  A 20 cm-thick silty-clay layer 

occurs at the beginning of Episode III (~375 cm depth) that may represent higher lake 

levels.  Sedimentation during this lake highstand occurred ~41 ka, based on an age 

obtained in the underlying diatomite layer.  It is reasonable to suggest that high lake 

levels that occurred during this interval may correspond to lake highstands determined in 

the Makgadikgadi basin at 39 ka (Burrough et al., 2009), however, equivalent lake 

highstands are not reported for Lake Ngami during this period.  Hunstman-Mapilla et al. 

(2005) describe sediments in Lake Ngami  ~40 ka, but provide no clear indication if this 

represented high lake levels that correspond to lake highstands.   

During Episode IV, an age of 27 ka was determined from a diatomite layer at 135 

cm-depth.  This diatomite layer is located above clay-rich layers and suggests that high 

lake levels occurred prior to 27 ka.  This age is also consistent with lake highstands 

observed in the Makgadikgadi basin ~27 ka (Burrough et al., 2009).  This age also post-

dates a sharp decrease in clay content between Zones VI and VII that represents an 

increase in lake levels within the Mababe Depression.  Sand accumulations occur above 

and below the boundary between the declining lake-stage in Zone VI and the high lake 

levels that mark the onset of Zone VII.  These sands are representative of sediments 

derived during a wet local climate and may correspond to a wet local climate observed in 
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Drotsky’s Cave ~29 ka (Cooke and Verhagen, 1977; Shaw and Cooke, 1986).  Although 

age dates are not available in Zone VI, the interval is believed to represent a lake 

desiccation event that may correspond to a drier climate associated with periods of dune 

building documented by O’Connor and Thomas (1999) from 32 ka to 28 ka and by 

Thomas et al., (2000) from 36 ka to 39 ka.  Despite the fact that the lake highstand record 

for the Mababe Depression extends over 40 ka, beach ridges are not reported by 

Burrough and Thomas (2008) or in the Makgadikgadi basin by Burrough et al (2009) 

between 32 ka and 28 ka.  Lake highstands were identified in Lake Ngami by Burrough 

et al. (2007) between 32 ka and 30 ka, however, Huntsman-Mapila et al. (2006) do not 

provide descriptions that indicate a high lake level for this time period.  A clay layer is 

observed at 245 cm-depth that may also represent high lake levels in the Mababe 

Depression that occurred between 41 ka and 27 ka and, may be equivalent to lake 

highstands reported by Burrough et al. (2007) for Lake Ngami about 38 ka. 

A clay-rich sediment layer is observed from 100 cm to 75 cm-depth that is younger 

than 27 ka and older than ~12 ka, an age that was determined at 40 cm-depth.  Lake 

highstands ranging between 17 ka and 12 ka are reported for the Makgadikgadi basin, the 

Mababe depression, and Lake Ngami (Burrough et al., 2009; Burrough and Thomas, 

2008; Burrough et al., 2007).  Huntsman-Mapila et al. (2006) describe a locally wet phase 

that sustained lake levels in Lake Ngami around this period as well.  The last clay-rich 

layer observed in the sediment section occurs from 45 cm to 25 cm-depth and is younger 

than ~12 ka.  Burrough et al. (2009) and Burrough and Thomas (2008) report a lake 

highstand in Lake Ngami at ~9 ka and Huntsman-Mapila et al. (2006) also report  

increasing lake levels around 4 ka in Lake Ngami.  

Attempts to reconcile high lake levels with lake highstands suggest that although 

the events could not be directly correlated, the number of occurrences of high lake levels 

that produced preserved beach ridges appear consistent.  It is important to note, however, 

that if clay layers are a record of high lake levels, not all clay layers will correspond to 

beach ridges because beach riges are susceptible to being reworked by subsequent 

highstands.  Processes that produce beach ridges relative to high lake levels operate on 

different time scales, and, thus, may account for the discrepancies between the ages of the 

beach ridges compared to recorded ages of the high lake levels. 
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CHAPTER VI 

 

CONCLUSIONS 

 

Mutli-proxy data collected from the Mababe Depression preserves a record of 

climate change and tectonic controls that affected the Middle Kalahari environment over 

the last > 64 ka.  A major change in sedimentation occurs at 240 cm-depth at the sample 

site that records a different series of climatic and tectonic controls affecting 

sedimentation above and below this boundary.  Events that can be discerned in the 

sedimentary record of Lake Mababe include: 

 

1) Sedimentation influenced mainly by the local climate during a period of relatively 

dry conditions in the catchment area of Angola occurred from 560-485 cm-depth, 

until ~64 ka. 

 

2) This episode was followed by relatively stable lacustrine conditions until ~41 ka.  

Lake levels were maintained largely by the influx of water and sediment from the 

Kwando River during a wet climatic period in Angola.  Local climatic influence 

was minimal during this period, as evidence by the low levels of sand 

accumulation throughout the interval. 

 

3) Following the stable lacustrine conditions, lake levels were affected by the input 

of multiple sources from the local and regional environment.  This time period 

corresponds to the Lake Makgadikgadi stage identified in the area.  During this 

same interval, from 375-240 cm, tectonic movement diverted the Kwando River 

away from the Mababe Depression and the present-day Okavango Delta began 

forming.  These events permanently altered the hydrologic regime of the area and 

affected how sediments and water were transported to Lake Mababe. 

 

4) Sedimentation above 240 cm reflects a post-tectonic period and the onset of new 

hydrologic controls and sedimentation patterns within the depression.  Without a 

sustained river source flowing into Lake Mababe, river levels were controlled 

primarily by input from the Okavango River during wet climatic periods in 

Angola.  The highest lake levels observed during this interval may reflect events 

that correspond to Lake Thamalakane stages observed elsewhere in the region. 
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CHAPTER VII 

 

FUTURE WORK 

 

 

 

Although this study has enhanced the existing record for paleo-lake Mababe, and, 

in doing so, has provided additional information on the climate and tectonic setting of the 

region over the last >64 ka, further research needs to be conducted.  Studies focused on 

understanding the species of diatoms found in the lake record, as well as the paleosalinity

of the lake could only enhance the current understanding of paleo-lake levels.  These 

types of studies may provide a more-detailed understanding of lake fluctuations as they 

relate to the paleo-climate of the region, and may also indicate whether changes in lake 

levels were basin specific.  Additional studies on sediments from within the lake that 

include stable isotope data, C:N ratios, and nutrient status may confirm whether declining 

lake levels discussed in this work in fact resulted in an observable shift in the type of 

vegetation at the sample location and paleoproductivity indicated by diatoms. 

Sediments also need to be collected from elsewhere in the basin, such as near the 

Savuti and Ngwezumba inlets, as well as within the sump, in order to provide additional 

locations for correlation of lake events.  These locations will provide a clearer 

understanding of the history of Lake Mababe.  Additional locations would also indicate 

whether or not the sample location creates a bias in the sediments and, therefore, the 

interpretation of lake levels and the paleoclimate of the region.  A sample interval of 5 

cm, and not to exceed 10 cm, is recommended in similar studies within the Mababe 

Depression because a larger sample interval will by-pass rapid changes known to occur 

within the lake and would make correlations increasingly difficult. 

In an effort to extricate the source of sediments being supplied to the Mababe 

Depression, it is imperative that samples be collected from the Okavango, Kwando, and 

Zambezi Rivers.  Analyzing the grain size, particularly in the Kwando and Zambezi 

Rivers where this information is lacking, as well as metal concentration and water 

chemistry of sediments supplied by these rivers may indicate unique markers that can 

identify sediments being supplied to the Mababe Depression from individual rivers. 
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MabX Physical Propterties



 

 

Sample Xhf   Graphic Mean  Sand  Silt  Clay Sorting  Skewness Description 

 Depth (cm) (m
3
/kg)   Φ (%) (%) (%) (SD)     

 5 7.31E-08 7.27 0.2 63.7 36.1 1.63 0.01 organic-rich silt 

 10 6.24E-08 6.91 2.3 68.0 29.7 1.74 0.02 organic-rich silt 

 15 7.51E-08 7.44 0.1 60.6 39.3 1.63 -0.01 organic-rich silt 

 20 7.68E-08 7.40 0.1 60.8 39.0 1.63 -0.03 organic-rich silt 

 25 7.57E-08 7.61 0.0 57.7 42.3 1.46 -0.07 organic-rich clayey-silt  

 30 7.94E-08 7.64 0.0 57.1 42.9 1.42 -0.08 organic-rich clayey-silt  

 35 7.92E-08 7.56 0.0 58.3 41.7 1.53 -0.05 organic-rich clayey-silt  

 40 7.60E-08 7.64 0.0 57.1 42.9 1.45 -0.06 organic-rich clayey-silt  

 45 7.70E-08 7.61 0.0 57.6 42.4 1.48 -0.06 organic-rich clayey-silt  

 50 7.67E-08 7.35 0.1 62.9 37.0 1.61 0.04 organic-rich silt 

 55 7.71E-08 7.44 0.0 61.4 38.6 1.55 0.02 organic-rich silt 

 60 7.32E-08 7.31 0.0 64.6 35.4 1.56 0.06 organic-rich silt 

 65 7.50E-08 7.39 0.0 62.9 37.1 1.54 0.04 organic-rich silt 

 70 7.44E-08 7.36 0.0 64.5 35.5 1.47 0.03 organic-rich silt 

 75 7.72E-08 7.43 0.0 63.4 36.6 1.41 0.03 organic-rich silt 

 80 7.36E-08 7.22 0.0 67.8 32.2 1.50 0.10 clayey-silt 

 85 6.89E-08 7.15 0.0 70.8 29.2 1.46 0.14 clayey-silt 

 90 5.90E-08 6.97 0.1 74.9 25.0 1.48 0.14 clayey-silt 

 95 6.43E-08 7.03 0.2 71.2 28.7 1.57 0.10 clayey-silt 

 100 5.76E-08 6.95 0.2 74.7 25.2 1.50 0.11 clayey-silt 

 105 6.00E-08 6.82 2.0 72.6 25.4 1.67 0.08 clayey-silt 

 110 7.19E-08 6.74 0.2 79.6 20.2 1.47 0.17 diatomaceous clayey-silt 

 115 7.68E-08 6.93 0.1 77.0 22.9 1.40 0.09 diatomaceous clayey-silt 

 120 5.56E-08 6.59 0.2 83.4 16.5 1.35 0.13 light-brown diatomite 

 125 5.59E-08 6.80 0.1 79.2 20.7 1.44 0.15 light-brown diatomite 
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 Sample Xhf   Graphic Mean  Sand  Silt  Clay Sorting  Skewness Description 

 Depth (cm) (m
3
/kg)   Φ (%) (%) (%) (SD)     

 130 5.10E-08 6.52 0.1 85.9 14.0 1.26 0.15 light-brown gray diatomite 

 140 4.23E-08 6.45 1.7 82.3 16.0 1.48 0.17 light-brown gray diatomite 

 145 6.98E-08 7.45 0.0 62.5 37.5 1.43 -0.03 clay  

 150 6.93E-08 7.48 0.0 63.5 36.5 1.32 0.01 clay  

 155 6.36E-08 7.21 0.0 69.3 30.7 1.42 0.06 silt with clay clasts 

 160 6.24E-08 7.22 0.0 69.5 30.5 1.41 0.05 silt with clay clasts 

 165 6.55E-08 7.03 1.3 69.8 28.8 1.58 0.05 silt with clay clasts 

 170 6.90E-08 7.00 0.1 74.2 25.7 1.47 0.11 silt with clay clasts 

 175 6.85E-08 6.87 0.2 74.4 25.4 1.56 0.09 silt with clay clasts 

 180 6.63E-08 6.89 0.1 76.1 23.8 1.49 0.14 silt with clay clasts 

 185 6.84E-08 6.76 0.1 78.1 21.8 1.53 0.20 silt with clay clasts 

 190 5.47E-08 6.72 0.1 80.5 19.4 1.41 0.15 silt with clay clasts 

 195 6.41E-08 6.83 0.0 78.3 21.7 1.44 0.18 diatomaceous clayey-silt 

 200 6.21E-08 6.75 0.0 78.7 21.2 1.54 0.23 diatomaceous clayey-silt 

 205 6.67E-08 6.76 0.1 77.6 22.3 1.56 0.19 diatomaceous clayey-silt 

 210 7.35E-08 6.84 0.0 75.7 24.3 1.56 0.19 diatomaceous clayey-silt 

 215 7.15E-08 6.93 0.0 75.8 24.2 1.46 0.14 diatomaceous clayey-silt 

 220 8.11E-08 6.96 0.0 75.4 24.5 1.45 0.13 diatomaceous clayey-silt 

 225 8.30E-08 6.91 0.0 76.4 23.6 1.46 0.19 diatomaceous clayey-silt 

 230 8.96E-08 6.88 0.0 77.4 22.6 1.45 0.22 diatomaceous clayey-silt 

 235 8.42E-08 6.83 0.0 77.1 22.9 1.53 0.26 diat. clayey-silt, gastropds 

 240 4.43E-08 6.67 0.2 76.2 23.6 1.70 0.28 white diatomite 

 245 5.56E-08 6.54 0.2 82.4 17.4 1.50 0.23 clayey-silt 

 250 3.69E-08 6.75 0.2 74.3 25.6 1.70 0.31 white diatomite 
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Sample Xhf   Graphic Mean  Sand  Silt  Clay Sorting  Skewness Description 

 Depth (cm) (m
3
/kg)   Φ (%) (%) (%) (SD)     

 255 3.66E-08 6.58 0.2 78.7 21.1 1.66 0.35 white diatomite 

 265 3.90E-08 6.31 0.2 84.9 14.9 1.48 0.32 white diatomite 

 270 5.26E-08 6.23 0.2 87.6 12.2 1.28 0.23 white diatomite 

 275 5.35E-08 6.13 0.2 89.3 10.5 1.22 0.20 white diatomite 

 280 5.62E-08 6.31 0.2 86.4 13.5 1.34 0.23 white diatomite 

 285 6.66E-08 6.50 0.2 82.6 17.2 1.52 0.26 light-tan diatomite 

 290 6.14E-08 6.37 1.3 82.9 15.8 1.60 0.26 light-tan diatomite 

 295 5.67E-08 6.31 3.8 80.5 15.7 1.62 0.21 light-tan diatomite 

 300 7.91E-08 6.89 0.0 77.0 22.9 1.43 0.12 diatomaceous clayey-silt 

 305 9.70E-08 6.61 0.0 83.4 16.6 1.31 0.21 brown diatomite 

 310 1.02E-07 6.82 0.0 75.8 24.2 1.54 0.23 diatomaceous clayey-silt 

 315 8.95E-08 6.75 0.0 77.5 22.5 1.51 0.22 diatomaceous clayey-silt 

 320 7.56E-08 6.46 0.1 82.5 17.4 1.53 0.33 clayey-silty diatomite 

 325 7.65E-08 6.65 0.0 80.4 19.6 1.46 0.25 clayey-silty diatomite 

 330 7.58E-08 6.68 0.0 80.1 19.9 1.45 0.28 clayey-silty diatomite 

 335 8.25E-08 6.75 1.7 75.1 23.2 1.62 0.18 sand 

 340 5.42E-08 5.88 23.0 60.0 17.0 2.13 0.03 sand 

 345 2.84E-08 4.76 48.3 42.0 9.7 1.91 0.52 sand 

 350 6.13E-08 6.51 4.0 77.8 18.2 1.62 0.17 clayey-silt 

 355 7.22E-08 6.57 1.2 80.1 18.6 1.56 0.23 clayey-silt 

 360 7.52E-08 6.79 0.1 79.3 20.6 1.41 0.17 clayey-silt 

 365 8.21E-08 6.77 0.8 77.7 21.6 1.50 0.11 clayey-silt 

 370 8.43E-08 6.76 0.1 78.7 21.1 1.46 0.14 clayey-silt 

 375 4.80E-08 5.96 0.2 91.5 8.3 1.15 0.33 white-gray diatomite 

 380 3.67E-08 6.00 0.1 92.3 7.6 1.11 0.31 white-gray diatomite 
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Sample Xhf   Graphic Mean  Sand  Silt  Clay Sorting  Skewness Description 

 Depth (cm) (m
3
/kg)   Φ (%) (%) (%) (SD)     

 385 3.77E-08 5.88 0.4 92.4 7.2 1.14 0.30 white-gray diatomite 

 395 7.76E-08 6.37 0.0 85.4 14.6 1.43 0.42 light-tan diatomite 

 400 8.38E-08 6.35 0.0 85.6 14.4 1.45 0.44 light-tan diatomite 

 405 8.19E-08 6.39 0.0 85.3 14.7 1.43 0.42 light-tan diatomite 

 410 7.98E-08 6.27 0.0 86.9 13.1 1.29 0.39 light-tan diatomite 

 415 6.85E-08 6.25 0.1 86.5 13.3 1.33 0.36 light-tan diatomite 

 420 5.91E-08 6.18 0.0 88.6 11.4 1.21 0.41 white diatomite 

 425 5.50E-08 6.20 0.0 88.6 11.4 1.20 0.41 white diatomite 

 430 6.18E-08 6.31 0.0 87.1 12.9 1.24 0.37 white diatomite 

 435 6.91E-08 6.45 0.0 85.9 14.1 1.25 0.30 white diatomite 

 440 5.96E-08 6.32 0.0 87.6 12.4 1.21 0.32 white diatomite 

 445 5.96E-08 6.26 0.0 88.2 11.8 1.20 0.41 white diatomite 

 450 5.40E-08 6.42 0.0 86.7 13.3 1.22 0.34 white diatomite 

 455 6.11E-08 6.41 0.0 86.4 13.6 1.24 0.36 white diatomite 

 460 4.35E-08 6.10 0.1 89.8 10.1 1.19 0.37 light-gray diatomite 

 465 5.22E-08 6.00 0.0 90.2 9.7 1.18 0.42 light-gray diatomite 

 470 6.06E-08 6.13 0.1 88.2 11.7 1.28 0.39 light-gray diatomite 

 475 7.50E-08 6.51 0.1 82.0 17.9 1.55 0.37 light-brown diatomite 

 480 8.33E-08 6.86 0.1 75.3 24.6 1.57 0.24 light-brown diatomite 

 485 7.14E-08 6.61 2.1 77.4 20.5 1.66 0.26 sandy-clay silt 

 490 6.87E-08 6.34 11.2 70.2 18.7 1.97 0.06 sandy-clay silt 

 495 6.51E-08 6.25 12.7 69.0 18.3 2.00 0.05 sandy-clay silt 

 500 7.83E-08 6.62 3.3 76.3 20.4 1.64 0.22 sandy-clay silt 

 505 1.04E-07 6.85 0.0 77.2 22.8 1.46 0.33 clayey-silt  

 510 9.72E-08  6.74    0.1 77.9  22.0 1.56 0.26        clayey-silt  
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Sample Xhf   Graphic Mean Sand Silt  Clay Sorting Skewness Description 

Depth (cm) (m
3
/kg)  Φ % % %  (SD)   

515 1.19E-07 7.02 0.0 74.3 25.7 1.44 0.21 clayey-silt  

525 8.32E-08 6.33 0.2 84.8 15.0 1.53 0.32 silty diatomite 

530 7.38E-08 6.22 2.8 82.3 14.9 1.63 0.26 sandy-clay silt 

535 7.39E-08 6.01 10.1 75.6 14.3 1.79 0.19 sandy-clay silt 

540 7.57E-08 6.21 3.3 82.1 14.7 1.62 0.27 sandy-clay silt 

550 9.14E-08 6.21 4.8 76.0 19.3 1.62 0.27 sandy-clay silt 

560 8.19E-08 6.31 4.5 79.2 16.3 1.69 0.22 sandy-clay silt 
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MabX Carbonate and Organic Matter
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 Sample Carbonate Organic Matter 

Depth (cm) (%)  (%) 

5 0.002 1.47 
10 0.005 2.58 
15 0.002 1.28 
20 0.003 1.37 
25 0.000 1.20 
30 0.001 1.20 
35 0.002 1.17 
40 0.003 1.08 
45 0.010 1.13 
50 0.002 0.98 
55 0.001 0.98 
60 0.001 0.98 
65 0.000 0.97 
70 0.000 0.95 
75 0.002 0.86 
80 0.007 0.85 
85 0.020 0.85 
90 0.003 0.92 
95 0.001 1.09 
100 0.000 0.61 
105 0.002 1.26 
110 0.004 0.45 
115 0.006 0.52 
120 0.029 0.33 
125 0.002 0.53 
130 0.086 0.25 
135 0.004 0.35 
140 0.076 0.43 
145 0.001 0.93 
150 0.003 0.91 
155 0.004 0.64 
160 0.015 0.63 
165 0.010 0.54 
170 0.046 0.41 
175 0.002 0.34 
180 0.073 0.27 
185 0.008 0.20 
190 0.056 0.26 
195 0.008 0.16 
200 0.107 0.11 
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Sample Carbonate Organic Matter 

Depth (cm) (%) (%) 

205 0.910 0.45 
210 0.645 0.26 
215 0.110 0.44 
220 0.009 0.52 
225 0.059 0.38 
230 0.041 0.36 
235 0.754 0.24 
240 3.343 0.28 
245 1.387 0.44 
250 3.490 0.24 
255 2.626 0.39 
260 1.139 0.27 
265 0.498 1.47 
270 0.239 0.09 
275 0.059 0.24 
280 0.138 0.09 
285 0.049 0.17 
290 0.018 0.15 
295 0.024 0.18 
300 0.072 0.17 
305 0.028 0.39 
310 0.010 0.26 
315 0.030 0.25 
320 0.127 0.22 
325 0.004 0.20 
330 0.003 0.21 
335 0.004 0.34 
340 0.001 0.28 
345 0.003 0.15 
350 0.010 0.39 
355 0.016 0.40 
360 0.008 0.37 
365 0.003 0.43 
370 0.013 0.37 
375 0.008 0.29 
380 0.007 0.21 
385 0.003 0.20 
390 3.245 0.42 
395 0.020 0.28 
400 0.003 0.27 
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Sample Carbonate Organic Matter 

Depth (cm) (%) (%) 

405 0.003 0.25 
410 0.006 0.27 
415 0.005 0.21 
420 0.003 0.20 
425 0.004 0.22 
430 0.005 0.24 
435 0.002 0.22 
440 0.002 0.22 
445 0.012 0.18 
450 0.001 0.21 
455 0.002 0.20 
460 0.001 0.18 
465 0.003 0.22 
470 0.003 0.21 
475 0.017 0.24 
480 0.021 0.31 
485 0.002 0.22 
490 0.023 0.20 
495 0.003 0.19 
500 0.002 0.23 
505 0.002 0.23 
510 0.003 0.26 
515 0.158 0.25 
520 0.116 0.20 
525 0.004 0.29 
530 0.010 0.31 
535 0.006 0.27 
540 0.003 0.23 
550 0.007 0.27 
560 0.006 0.29 
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MabX Metals Presented in Text



 

 

 

Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) ppm ppm ppm ppm 

5 31 6709 310 4903 215 0.5 360 225 5.8 160 99 136 2.7 73 45 65 12 

10 22 6425 282 4092 193 0.5 302 200 4.6 133 88 102 2.3 64 37 60 10 

15 34 7818 322 5496 227 0.6 393 226 6.7 169 110 137 3.3 72 54 66 32 

20 32 7323 320 5280 213 0.5 384 221 6.4 169 107 121 3.0 73 53 67 16 

25 34 6713 277 4985 213 0.5 358 214 6.2 156 96 144 3.1 64 61 73 32 

30 34 7193 276 5201 211 0.5 363 217 5.6 159 97 138 3.0 64 48 56 7 

35 34 6682 284 4954 216 0.5 360 213 6.2 160 98 136 3.0 66 65 68 31 

40 35 6381 266 5160 224 0.5 344 232 5.7 161 96 144 3.0 61 141 83 47 

45 34 6581 267 5247 212 0.5 353 219 5.3 153 90 136 2.9 60 56 75 21 

50 36 6593 287 5424 413 0.6 383 403 6.0 176 98 136 2.9 67 49 60 10 

55 36 6179 276 5342 225 0.6 366 225 5.4 172 97 171 3.1 65 63 63 43 

60 35 6576 289 5325 236 0.6 358 232 5.6 174 102 161 3.2 65 121 74 68 

65 36 6659 280 5518 243 0.6 386 253 5.7 170 104 150 3.1 64 75 64 27 

70 36 7066 285 5638 256 0.6 395 257 5.5 169 100 147 2.9 65 58 69 22 

75 36 7031 259 5557 280 0.7 385 272 5.4 170 94 177 3.3 60 49 62 14 

80 32 6610 293 5426 228 0.6 387 244 6.2 168 105 140 3.2 71 57 63 - 

85 26 6425 255 5066 257 0.7 341 259 4.7 149 84 128 2.6 58 51 56 15 

90 19 5018 217 3790 215 0.5 288 227 4.3 130 75 119 2.4 52 151 101 122 

95 21 4648 230 3861 238 0.6 280 246 4.3 124 78 95 2.3 54 193 257 316 

100 20 4938 297 4237 334 0.5 332 329 4.5 156 92 94 2.4 70 97 180 173 

105 23 5328 281 4408 264 0.6 339 282 5.1 155 95 106 2.5 65 54 87 50 

110 16 4597 253 4131 424 0.5 323 431 4.3 142 84 71 2.5 61 79 109 142 

115 18 5034 269 4569 271 0.5 334 276 4.7 159 96 88 2.7 65 218 222 222 

120 15 4795 273 4437 224 0.7 319 225 4.0 151 91 70 2.4 66 41 55 - 

125 19 5305 263 4667 196 0.5 326 200 4.4 150 86 93 2.5 62 76 84 30 

130 15 4463 254 3976 191 0.9 272 199 3.4 142 78 72 2.1 61 46 62 10 

135 13 4449 277 3912 172 0.4 278 185 3.5 144 83 62 2.1 67 42 58 - 
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Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (ppm) 

140 16 4638 281 3823 230 0.6 285 235 3.8 152 90 97 2.3 70 45 74 18 

145 33 6870 285 5291 251 0.5 376 253 6.4 167 110 145 3.0 66 59 70 21 

150 35 7054 295 5323 237 0.4 365 232 6.7 177 103 142 3.1 69 195 128 44 

155 23 5248 286 4455 189 0.5 323 193 4.8 136 94 103 2.6 68 56 114 52 

160 19 4354 234 3490 165 0.6 249 165 3.9 126 74 104 1.9 57 133 107 729 

165 26 5450 281 4555 219 0.4 344 218 5.2 167 93 156 2.7 66 54 72 30 

170 24 5937 281 5360 228 0.7 360 228 5.1 162 94 161 2.8 69 67 117 55 

175 20 6588 295 5492 182 0.4 347 182 4.5 156 92 147 2.8 70 49 67 2 

180 20 6392 295 5496 217 0.6 349 210 4.6 165 94 158 2.8 69 63 106 30 

185 21 7095 292 5917 198 0.5 358 204 4.5 174 101 152 3.0 70 62 71 21 

190 12 4607 269 4079 137 1.0 246 145 3.0 137 81 92 1.8 66 273 332 206 

195 22 6854 289 5726 194 3.8 367 203 4.6 172 103 137 3.1 70 71 72 36 

200 22 6363 281 5969 158 2.6 354 160 4.6 178 103 174 3.0 66 71 128 83 

205 24 5575 270 5939 296 1.0 464 286 4.6 161 99 297 3.1 66 64 168 348 

210 24 5880 300 5780 255 0.6 429 248 4.8 178 103 213 2.8 72 92 184 360 

215 22 6280 309 5691 251 0.9 407 246 4.6 190 103 190 3.5 73 50 112 52 

220 25 7698 306 6229 204 0.7 394 210 4.7 174 97 202 3.3 69 51 115 80 

225 25 7191 306 6478 236 3.9 442 232 5.2 184 101 210 3.5 72 50 77 22 

230 27 7178 305 6805 297 11.9 475 298 5.1 163 101 217 3.8 71 42 89 204 

235 26 6530 296 6524 320 5.4 548 317 5.0 179 95 234 3.4 70 55 89 474 

240 13 3511 258 6434 878 12.4 887 835 2.8 110 73 349 1.8 63 51 174 175 

245 11 4712 266 5589 559 8.6 557 527 2.7 121 73 196 2.2 64 52 108 18 

250 12 3682 276 7045 901 3.8 822 836 2.7 106 78 468 1.7 64 30 67 - 

255 49 2997 200 4708 498 6.7 466 470 2.1 107 66 395 1.5 55 33 50 1 

260 41 3525 220 4108 303 1.1 314 244 2.8 143 77 164 1.7 62 34 58 11 

265 47 3743 224 4647 361 0.6 383 296 3.1 133 78 335 1.9 61 30 51 - 

270 44 4337 224 4225 191 0.6 268 117 3.7 166 88 103 2.4 64 37 53 0 
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Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (ppm) 

275 41 4461 212 4337 195 0.4 264 136 3.7 163 85 88 2.5 59 36 50 - 

280 41 5532 230 4744 200 0.7 280 137 3.9 168 90 93 2.5 65 37 52 0 

285 46 4815 221 4792 189 0.7 303 119 4.6 184 96 123 3.0 64 39 52 - 

290 45 4355 233 4351 183 1.1 280 108 4.3 185 95 102 2.7 68 39 54 - 

295 46 3940 234 3770 181 0.6 233 94 4.0 184 95 89 2.5 69 62 116 296 

300 71 4255 241 4940 224 0.9 349 133 5.7 229 112 134 3.5 74 54 74 18 

305 41 5051 222 5221 408 0.5 411 338 5.0 198 98 190 3.9 67 54 93 38 

310 64 5078 250 5821 223 0.4 442 156 5.9 237 112 241 4.3 74 49 67 15 

315 57 4510 223 5102 197 0.5 377 135 5.6 211 106 189 3.6 66 42 51 - 

320 50 4516 266 5021 156 0.3 387 167 6.7 221 105 193 3.3 67 44 57 - 

325 27 4590 227 4612 138 0.2 291 116 5.6 133 48 161 2.9 - 14 - 28 

330 39 5197 284 4898 160 0.4 366 170 6.0 201 104 132 3.1 68 43 65 65 

335 27 5254 275 4711 186 0.5 375 195 5.1 176 98 139 3.2 69 56 91 72 

340 17 3176 228 2986 120 0.4 273 132 3.3 126 74 92 2.2 57 37 65 47 

345 6 1522 246 1411 72 0.4 168 83 1.5 98 66 16 1.1 60 33 65 34 

350 23 3013 269 3050 143 0.5 298 153 3.6 143 88 82 2.4 66 59 102 87 

355 28 4261 275 4162 183 0.3 384 191 5.5 156 98 133 3.2 70 44 67 11 

360 25 3709 244 3773 157 0.3 360 167 4.6 153 90 121 3.1 64 40 60 35 

365 26 4360 262 4081 192 0.3 411 197 4.8 160 96 154 3.5 67 45 67 11 

370 28 4474 247 4138 195 5.6 409 190 5.2 169 92 153 3.5 62 44 72 81 

375 15 2662 257 2544 106 0.6 243 115 2.8 135 81 209 1.8 66 35 68 7 

380 11 2367 244 2302 91 0.4 204 97 2.5 128 74 44 1.4 62 35 68 43 

385 14 2294 251 2311 87 0.4 214 93 2.7 130 78 48 1.5 64 33 54 9 

390 33 3625 255 3881 224 0.5 377 213 5.5 151 100 771 2.8 68 40 58 17 

395 41 3944 244 4165 155 0.4 368 149 5.5 168 100 142 3.2 61 41 52 10 

400 41 4037 272 4402 148 0.4 375 149 6.2 181 107 108 3.4 70 192 117 135 

405 43 3987 282 4417 146 0.3 391 147 6.2 186 110 108 3.3 70 51 110 24 
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Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (ppm) 

410 37 3714 257 4153 138 0.4 374 141 5.9 175 101 100 3.3 66 45 57 - 

415 37 3415 239 3643 131 0.3 333 135 5.5 154 87 87 2.7 61 39 52 - 

420 32 3416 257 3810 126 0.3 320 133 4.9 148 91 70 2.3 66 39 57 91 

425 29 3353 256 3653 128 0.3 311 131 4.8 156 89 71 2.4 66 38 61 20 

430 26 3168 269 3505 122 0.3 305 128 4.4 147 86 55 2.2 66 35 73 6 

435 28 2832 264 3261 121 0.4 339 126 4.4 148 81 55 2.5 65 36 57 2 

440 30 2965 234 3348 127 0.4 310 131 4.5 146 82 69 2.7 61 40 60 28 

445 33 3118 277 3292 129 0.5 323 130 5.1 161 94 63 2.7 71 47 66 11 

450 28 3085 276 3037 123 0.5 274 130 4.4 154 89 41 2.3 67 203 174 121 

455 32 3207 250 3174 124 0.8 274 131 5.0 162 92 68 2.4 62 153 175 234 

460 28 2600 245 2530 104 0.4 231 108 4.0 158 83 48 1.8 64 40 67 31 

465 39 3102 255 3211 127 0.5 290 130 5.5 177 99 71 2.4 66 44 68 21 

470 36 3258 245 3545 142 0.4 322 146 5.7 171 93 95 2.6 63 44 72 187 

475 50 3609 264 3819 169 0.7 374 165 6.1 210 110 135 3.3 69 67 84 56 

480 55 3930 272 4114 221 0.5 405 214 6.7 218 116 162 3.6 70 49 69 18 

485 65 4522 296 4435 238 1.0 410 226 7.6 241 127 168 3.7 80 54 68 257 

490 39 3742 271 3641 232 0.8 327 229 6.1 189 103 161 2.8 70 43 63 212 

495 51 4588 254 4099 246 0.5 384 235 7.4 199 103 197 3.4 66 45 56 202 

500 47 4172 269 4016 244 0.4 387 231 5.7 198 103 150 3.5 71 47 145 25 

505 52 4629 270 4522 256 0.7 451 246 7.8 215 108 228 4.1 71 48 63 28 

510 55 4717 297 4425 212 0.5 434 210 6.8 222 118 170 3.9 80 52 69 113 

515 60 4673 287 4933 232 1.0 519 218 5.2 237 121 219 5.1 80 54 78 244 

520 61 5245 283 5336 246 0.8 544 232 5.5 237 121 251 4.9 76 51 66 213 

525 48 4214 277 3988 172 0.5 368 168 6.4 199 109 130 3.3 72 51 64 74 

530 37 3790 277 3929 169 0.5 369 162 6.3 195 114 148 3.3 74 45 60 61 

535 35 3510 293 3676 180 0.4 360 177 5.8 190 110 165 3.0 76 47 64 81 

540 40 3648 277 3637 159 0.4 369 158 6.1 184 105 163 3.0 73 45 58 75 
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Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (ppm) 

550 40 4058 281 4146 197 0.5 432 193 6.6 193 115 207 3.8 76 48 59 55 

560 29 3750 262 4052 159 0.5 383 156 5.7 187 114 180 3.3 74 50 63 205 

                  

                  

-  Indicates not detected by analysis 
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APPENDIX A5 

 

 

MabX Additional Metals 
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Sample Na Ag Cd Pb Ga 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) 

5 161 18 25 22 175 
10 107 18 23 28 150 
15 144 13 24 23 187 
20 152 12 25 29 188 
25 171 8 20 30 169 
30 160 7 20 22 174 
35 198 8 20 22 170 
40 195 4 19 29 169 
45 225 9 19 20 161 
50 256 11 21 24 177 
55 254 15 20 32 146 
60 279 8 21 18 175 
65 283 6 20 29 186 
70 296 5 20 20 186 
75 300 6 18 27 163 
80 293 12 22 19 174 
85 298 7 19 24 161 
90 192 10 16 24 125 
95 236 10 18 33 130 
100 226 16 25 36 168 
105 233 16 23 29 162 
110 229 14 21 33 152 
115 257 12 21 41 162 
120 203 15 23 29 167 
125 229 10 21 42 160 
130 191 13 22 27 150 
135 184 16 24 24 160 
140 202 15 24 31 168 
145 185 9 22 42 178 
150 248 15 22 41 171 
155 234 14 24 25 173 
160 325 12 18 39 135 
165 207 12 23 32 176 
170 212 11 22 24 174 
175 249 15 24 34 187 
180 238 14 23 23 178 
185 264 11 22 38 181 
190 221 17 23 43 147 
195 260 9 22 31 180 
200 325 9 21 39 170 
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Sample Na Ag Cd Pb Ga 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) 

205 732 12 21 109 157 
210 1111 17 24 58 177 
215 657 15 24 34 178 
220 871 12 23 37 168 
225 503 8 23 25 175 
230 385 11 23 56 170 
235 381 10 22 78 174 
240 939 17 25 55 143 
245 617 18 23 27 145 
250 376 19 25 29 150 
255 462 15 20 22 123 
260 221 14 22 20 145 
265 250 16 23 39 143 
270 236 15 22 44 149 
275 236 11 20 35 155 
280 613 11 22 44 168 
285 335 10 22 53 175 
290 299 10 24 50 185 
295 264 12 25 84 183 
300 294 7 22 25 203 
305 384 8 20 30 166 
310 820 9 22 62 192 
315 391 4 20 44 178 
320 628 6 21 53 191 
325 304 - - - - 
330 240 8 23 41 193 
335 276 8 23 51 189 
340 144 12 20 49 140 
345 96 17 24 54 142 
350 352 14 24 37 171 
355 339 8 22 28 189 
360 196 8 21 49 161 
365 203 7 21 35 173 
370 238 6 20 33 185 
375 149 16 24 58 171 
380 547 11 24 48 166 
385 193 12 24 48 167 
390 290 8 22 53 190 
395 270 3 18 26 188 
400 257 6 21 42 200 
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Sample Na Ag Cd Pb Ga 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) 

405 315 8 22 34 190 
410 621 6 21 45 184 
415 325 6 20 40 173 
420 354 11 21 53 176 
425 267 9 22 53 174 
430 191 15 24 41 168 
435 204 17 23 25 157 
440 206 11 20 50 153 
445 206 14 25 64 170 
450 255 15 23 44 161 
455 328 11 21 44 160 
460 191 15 23 55 150 
465 218 11 23 47 174 
470 210 8 20 60 165 
475 270 10 22 54 174 
480 263 4 21 36 200 
485 572 3 24 60 227 
490 456 7 23 65 193 
495 580 0 20 46 204 
500 307 9 22 23 184 
505 269 1 21 57 197 
510 351 2 24 63 233 
515 518 - 21 60 208 
520 527 - 19 30 225 
525 334 4 22 23 204 
530 280 2 23 31 211 
535 274 8 25 35 211 
540 299 8 22 26 208 
550 284 7 22 15 202 
560 428 1 21 59 197 - Not detected in sample 
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Mab6 Physical Properties
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Sample Xhf   Graphic Mean  Sand  Silt  Clay Sorting  Skewness 

Depth (cm)  Φ (%) (%) (%) (SD)  

20 6.09E-08 7.21 3.8 64.2 32.0 1.59 -0.09 
40 5.68E-08 7.17 1.9 69.2 28.9 1.47 -0.01 
60 6.02E-08 7.25 0.8 68.1 31.0 1.45 -0.01 
80 5.83E-08 6.98 2.8 68.5 28.6 1.66 0.04 
100 5.31E-08 6.88 1.7 73.4 24.8 1.57 0.09 
120 4.92E-08 6.95 0.9 75.3 23.8 1.45 0.06 
140 4.10E-08 6.24 12.8 67.3 20.0 1.93 0.01 
160 4.24E-08 6.90 1.2 74.7 24.0 1.52 -0.01 
180 3.89E-08 6.73 0.2 76.7 23.1 1.63 0.15 
200 2.79E-08 5.87 3.1 88.4 8.5 1.34 0.16 
220 3.14E-08 6.99 0.0 70.1 29.9 1.65 0.17 
240 5.12E-08 6.87 0.1 76.1 23.8 1.52 0.12 
260 6.01E-08 6.79 0.1 76.4 23.5 1.59 0.19 
280 4.47E-08 7.11 0.0 66.7 33.3 1.71 0.21 
300 9.46E-08 5.89 3.0 88.3 8.7 1.34 0.16 
320 1.06E-07 5.92 1.7 90.3 8.0 1.26 0.17 
340 9.28E-08 6.51 0.0 85.8 14.2 1.24 0.23 
360 8.51E-08 6.64 0.1 83.2 16.7 1.31 0.15 
380 7.98E-08 6.67 3.1 76.7 20.3 1.56 0.07 
400 6.55E-08 6.44 11.4 68.2 20.3 1.86 -0.03 
420 7.32E-08 6.69 2.5 77.4 20.1 1.51 0.09 
440 4.45E-08 5.89 1.4 90.1 8.5 1.22 0.30 
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Mab6 Carbonate and Organic Matter
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Sample Carbonate Organic Matter 

Depth (cm) (%) (%) 

20 0.007 1.52 
40 0.333 0.84 
60 0.202 0.67 
80 0.495 0.63 
100 0.465 0.46 
120 0.488 0.40 
140 0.580 0.38 
160 0.341 0.62 
180 2.986 0.24 
200 6.091 0.45 
220 5.085 0.42 
240 1.791 0.43 
260 1.645 0.46 
280 4.649 0.41 
300 0.155 0.11 
320 0.537 1.52 
340 0.070 0.44 
360 0.122 0.38 
380 0.042 0.50 
400 0.138 0.28 
420 0.064 0.35 
440 0.041 0.23 
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Mab6 Metals Presented in Text



 

 

 

 
Sample Li K Rb Mg Cs Ca Sr Ba Al V Cr   Mn   Fe Co   Ni   Cu  Zn 

Depth 

(cm) 

(ppm) (ppm) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (wt. %) (ppm) (ppm) (ppm) (ppm) 

20 26 5968 289 4632 194 0.5 325 193 4.8 147 96 115 2.5 70 44 61 119 

40 25 6229 288 5915 214 1.0 373 213 4.9 158 92 52 2.2 70 40 62 61 

60 28 6522 278 5408 245 0.9 363 232 5.0 164 93 86 2.5 68 40 60 49 

80 20 5624 274 4654 320 1.8 347 311 4.0 153 84 78 2.1 66 33 67 9 

100 19 4959 273 4033 242 1.6 315 234 3.7 148 83 69 2.0 67 36 57 1 

120 19 4801 269 3975 330 1.9 327 323 3.8 149 85 106 2.1 66 37 57 61 

140 11 3644 265 3263 225 2.9 335 219 2.7 122 76 170 1.6 66 35 57 5 

160 7 3721 266 3318 226 1.7 293 217 2.0 107 69 90 1.5 65 29 58 20 

180 10 3477 256 4609 359 10.1 650 338 2.4 103 71 424 1.6 62 32 62 18 

200 6 2326 234 6076 664 12.3 918 597 1.7 68 65 1284 1.0 59 27 39 - 
220 8 2456 262 5979 489 9.9 700 438 2.2 95 77 1055 1.2 68 31 47 33 

240 18 4577 278 5172 302 7.5 466 283 4.1 144 89 318 2.3 69 47 75 81 

260 18 5339 291 5588 442 6.4 600 406 3.7 140 87 247 2.6 72 40 58 39 

280 10 3229 277 5851 890 15.5 835 776 2.0 102 76 847 1.7 68 30 48 - 
300 4 5640 232 4531 1115 1.4 447 1015 2.2 111 67 101 3.4 67 36 54 55 

320 3 4890 257 4271 720 2.4 451 663 2.1 130 71 86 3.3 70 35 51 45 

340 23 5318 259 5240 254 1.3 426 245 5.5 181 98 137 3.8 69 52 74 54 

360 19 6098 273 5445 249 1.6 440 247 4.7 185 98 144 3.6 73 46 68 49 

380 20 4090 246 3754 224 0.6 394 217 4.4 159 87 130 3.5 65 44 64 31 

400 20 3113 253 3278 259 1.5 324 247 3.9 150 87 121 2.4 66 38 53 - 
420 25 3535 246 3660 217 0.9 320 207 4.5 172 93 118 2.6 64 44 62 57 

440 21 2861 232 2791 127 0.4 251 124 3.7 160 80 1 2.0 61 37 54 38 

 

- Not detected in sample
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APPENDIX B4 

 

 

Mab6 Additional Metals
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Sample Na Ag Cd Pb Ga 

Depth (cm) (ppm) (ppm) (ppm) (ppm) (ppm) 

20 277 14 24 57 168 
40 677 15 25 56 167 
60 484 15 23 58 155 
80 670 15 23 36 154 
100 650 16 24 56 155 
120 613 17 24 51 160 
140 602 18 24 54 155 
160 491 19 24 22 140 
180 703 18 23 27 140 
200 439 23 24 43 114 
220 479 24 26 54 134 
240 596 13 24 31 167 
260 452 18 24 57 159 
280 535 24 26 56 134 
300 929 15 20 58 124 
320 670 17 23 58 135 
340 417 6 21 59 173 
360 367 6 22 55 183 
380 309 8 20 53 177 
400 231 8 22 46 188 
420 287 9 20 50 170 
440 277 10 21 45 159 
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APPENDIX C 

 

 

X-ray Diffractometry Results
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1 

Determined from bulk run 
2 

Determined from clay extraction 

X Indicates present in sample 
- Not detected in sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Quartz
1 

Calcite
1 

Smectite
2 

Illite
2
  Kaolinite

2 

MabX 265 X X X X X 

MabX 305 X - X X X 

Mab6 200 X X X X X 

Mab6 320 X X X X X 
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Lacustrine sediments preserve a record of environmental change from climate shifts and 

landscape evolution.  Paleo-lake Mababe in northwest Botswana was investigated to 

determine how the effects of tectonics along the incipient Okavango Rift, as well as local 

and regional climatic changes are recorded in lake sediments.  This multi-proxy study 

using grain size distribution, magnetic susceptibility, organic and inorganic carbon 

content, and metal data revealed a major shift in hydrology and sedimentation.  The shift 

is due to tectonic activity associated with movement along faults that diverted river flow 

away from the Mababe Depression.  Sediments deposited prior to tectonic activity show 

evidence of local and regional climate.  Post-tectonic sedimentation revealed local and 

regional climatic shifts and the new hydrologic regime established by neotectonics. Major 

reorganization of regional hydrology resulting from tectonic activity in the Okavango rift 

zone affected sedimentation in lakes in the middle Kalahari in northwest Botswana.  
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