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INTRODUCTION 

Springs provide a location where ground water may discharge from a number of different 

sources as regional flow lines converge at a discharge point.  Ecosystems established in 

these systems may depend not only upon a continuing source of discharging ground 

water, but also a mixture of discharging waters from multiple sources.  Freeling Spring 

Group located near the Oodnadatta Track in South Australia (Figure 1) offers a study site 

where two aquifers- the sandstones of the Great Artesian Basin (GAB) in the east and the 

fractured granite of the Peake and Dennison Ranges (PD) outcropping in the west- meet 

creating an area where ground water convergence and mixing may occur. This research is 

part of  the Australian National Water Commission’s (NWC) project “Allocating water 

and maintaining springs in the Great Artesian Basin” whose objective is to better 

quantify the GAB aquifer including recharge, discharge, residency time, aquifer 

properties and basin analysis as it is one of the only sources of water in the Australian 

Outback (Habermehl, 1980). 

The Freeling Springs Group spring site (Figure 2) is both an important historical site as 

well as a tourist site that relies on the ruins of the former Peake Telegraph Station and 

Freeling Spring Group springs as its primary attractions. The spring’s habitats represent 

vital, fragile ecosystems that have adapted to modern conditions of flow and water 

chemistry and maintaining these habitats requires an understanding of the source(s) of 

water (Fensham et al., 2005). In the event that there are multiple ground water sources 

mixing or converging, these flows and flow paths must be understood in order to 

maintain spring flow and spring water chemistry in the area and secure the ecosystem. 

The loss of one or more of these source waters may impact the site ecosystem as well as 

animals that depend on the springs during droughts (Greenslade et al., 1985; Ponder, 

2002). With concerns over pressure heads decreasing in the GAB, it is important to 

understand both the flow mechanics and source water(s) for the springs to allow informed 

management decisions to be made for these systems.  
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Figure 1: Inset map of Australia overlain with the boundary of the GAB showing the 

location of Freeling Spring Group, South Australia.  Outer map is the location of 

Freeling Spring Group, nearby towns and roads/tracks in South Australia. 

 

Figure 2: Photograph of the Freeling Spring Group area taken atop the Peake and 

Dennison Ranges looking east over the Kingston Fault (represented by the dashed 

white line) onto the flats underlain by the Great Artesian Basin. Visible are the ruins 

of the former Peake Telegraph Station, the tree line generated by discharge along the 

Kingston Fault and Freeling Spring (the primary spring of the group marked with a 

pink star). Freeling Spring Group extends to the north (left) along the fault zone and 

to the east. 
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Hydrogeophysical data integration utilizing structural, geochemical, geophysical, 

biological and hydrogeological data can be used to determine information about the 

subsurface (Atekwana et al., 2004). The majority of hydrogeological investigations focus 

on integrating geological and hydrogeological data with either geophysics (Hyndman and 

Tronicke, 2005; Metwaly et al., 2006; Halihan et al., 2009) or geochemistry (Herczeg 

and Berry Lyons, 1991; Klein-BenDavid et al., 2005) but not both. Geochemical studies 

concentrate on determining sources of fluid with fluid signatures such as ionic or isotopic 

composition whereas geophysical investigations seek to infer subsurface features such as 

fracture patterns, water table depth or fluid type (oil, gas, contaminants, fresh water, etc.) 

by inferring rock/fluid properties. This hydrogeophysical investigation will incorporate 

both geochemical and geophysical data with previously known data from literature 

including structural mapping and hydrogeology in order to better understand flow paths 

and source water(s) for Freeling Spring Group. This new, combined hydrogeophysical 

data set will help better quantify flow paths and source water(s) by using geophysical 

data to infer flow paths, geochemical data to calibrate geophysical data and geochemical 

data to evaluate mixing model potentials based on end member source waters.  The 

corroboration of these results will provide a more reliable interpretation that can 

distinguish the poorly understood flow paths and source water(s) for Freeling Spring 

Group. 

Freeling Spring Group, located on the western margin of the GAB, provides a location 

where it is possible to test hydrogeophysical data integration in a setting where spring 

mixing may be occurring on a regional fault between a fractured rock granite basin (PD) 

and a deformed sandstone aquifer (GAB). This study seeks to answer the question if there 

is mixing occurring for the source water(s) for Freeling Spring Group? Thus, the purpose 

of this study is to determine if mixing is occurring for Freeling Spring Group source 

water(s). The objective of this study was to conduct a hydrogeophysical investigation of 

the site i.e. gather existing data pertaining to the geology and hydrogeology of Freeling 

Spring Group, collect additional data including Electrical Resistivity Imaging (ERI) and 

geochemical samples and examine mixing models to test spring mixing conceptual 

models. 
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SITE DESCRIPTION 

Freeling Spring Group is located at the old Peake Telegraph Station that was used to 

relay messages across the Australian Outback. Peake Telegraph Station is now a tourist 

destination off the Oodnadatta Track that relies on the springs and the ruins of the old 

telegraph station for its appeal. The springs- considered sacred by the indigenous people- 

are used as a water source by the wildlife and indigenous peoples crossing the Outback. 

The springs align with the Kingston Fault where the Peake and Dennison (PD) Ranges jut 

up against the western margin (boundary) of the GAB. Due to the region’s inaccessibility 

and the inherent difficulty associated with field work in the Outback, previous literature 

uses the Freeling Spring Group as a benchmark site for the western margin of the GAB 

because it is more accessible than most places. The site has also been defined as a 

possible mixing zone (Aldam and Kuang, 1988).  

Geology of Freeling Spring Group  

The Freeling Spring Group straddles the border between the Peake and Dennison Ranges 

(PD) and the GAB aquifer on the Kingston (thrust) Fault (Rogers and Freeman, 1994). As 

part of the NWC GAB project, Keppel (2011) mapped the structure of the boundary of 

the GAB at Freeling Springs Group (Figures 3 and 4).  To the west of the Kingston Fault 

sits the Peake and Dennison Ranges- which are represented by the fractured 

Palaeoproterozoic Wirriecurrie Granite (a foliated, coarse-grained, porphyritic fractured 

granite) (Rogers and Freeman, 1994). To the east side of the fault sits the GAB which is 

represented by two sandstones with an overlying shale at the site. Aldam and Kuang 

(1989) characterized the GAB as an artesian, multi-aquifer system comprised of Jurassic 

and Cretaceous sediments with the main aquifers consisting of the sand and silt of the 

Algebuckna Sandstone and Cadna-owie Formation.  The confining beds consist of the  
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Bulldog Shale (top) and the Oodnadatta Formation (bottom) (marine silt and clay).  The 

Oodnadatta Formation is not seen at Freeling Springs Group. 

The Late Jurassic Algebuckna Sandstone (lower aquifer) has an upper layer consisting of 

medium to very coarse quartz sandstone and a lower layer being fine to very coarse to 

conglomeratic quartz sandstone. The Early Cretaceous Cadna-Owie Formation (upper 

aquifer) is a very fine to medium-grained, micaceous, feldspthic quartz sandstone, 

siltstone and claystone. The Cretaceous Bulldog Shale is described as claystone with thin 

lenticular interbeds. Holocene alluivium and Quaternary travertine deposits are also 

mapped east of the Kingston Fault (Rogers and Freeman, 1994; Keppel, 2011).  

Hydrogeology of Freeling Spring Group 

Researchers studying springs of the Great Artesian Basin have developed a set of 

nomenclature related to the structure of the springs in the aquifer. Freeling Spring Group 

is a spring group in the sense that it is a cluster of springs at one location in a single area. 

Due to the scarcity of water in the Outback, the terms spring and seep have been used to 

describe any amount of water appearing at the surface from depth. This can include a 

clump of reeds or a single groundwater-dependent plant as well as traditionally defined 

springs. The spring orifice is the surface discharge point of a spring. Many GAB springs 

also have a spring tail which is water that exits the spring orifice and discharges over the 

surface usually supporting an ecosystem. A spring ecosystem contains many plants that 

are only able to survive on specific ground water chemistries (Greenslade et al., 1985). 

Spring tails are often considered only surface runoff from the primary springs, but 

occasionally springs appear in the tail area adding additional discharge to the surface 

flow.  This is the case for Freeling Springs Group as well.  
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Figure 3: Structural map of Freeling Spring Group area including cross section A to 

A' across the primary spring- Freeling Spring (see Figure 4) (amended from Keppel, 

2011). 
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Figure 4: Cross Section A to A’ over Freeling Spring Group with the approximate 

locations of the Kingston Fault and Freeling Spring marked (amended from Rogers 

and Freeman, 1994).  Dashed trapezoid indicates the area imaged using electrical 

resistivity imaging across the fault. 

Freeling Spring Group consists of multiple springs and seeps with the main spring being 

Freeling Spring located 75 meters to the southeast of the Peake Telegraph Station ruins. 

Over 130 locations in the Freeling Springs Group have been defined as springs or seeps 

by the NWC GAB Project. The majority of the springs are located within 500 meters of 

the Kingston Fault in a line that decreases in elevation towards the north (Figure 3).  The 

occurrence of sprigs can be grouped in a variety of ways. There is a line of springs along 

Kingston Fault, springs on top of the travertine to the east of the fault and springs in the 

Freeling Spring tail orthogonal to the fault. There are also waters coming from the 

fractured granite within 500 m west of the fault with some of them being orthogonal to 

the fault on the same plane as the Freeling Spring tail but west of the fault. The springs 

currently have sufficient discharge to support a diverse ecosystem including a range of 

vegetation, kangaroos, goannas, spiders, snakes and gobies- all of which were observed 

in the field. Flow rates measured for the Freeling Spring Group range from below 14.4 

L/min to over 61 L/min. Potentiometric levels at Freeling Springs Group are 10-40 

meters above the land surface. 
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Previous literature indicates that Freeling Spring Group is a discharge feature of the GAB 

(Habermehl, 1986; Aldam and Kuang, 1988, 1989), but that the area’s flow mechanics 

are poorly understood and need further investigation (Aldam and Kuang, 1988, 1989). 

There is also evidence (Habermehl, 1986) suggesting that Freeling Spring Group could 

be a mixing zone between a bicarbonate source and a sulfate source within the GAB. 

Freeling Spring Group’s setting would allow for a convergent flow system setting along 

the Kingston Fault (Aldam and Kuang, 1989) (Rogers and Freeman, 1994), but little 

discussion has been included in the literature regarding the potential contribution from 

the Peake and Dennison Ranges. 
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FREELING SPRING GROUP CONCEPTUAL MIXING MODELS 

Aldam and Kuang (1988) stated that determining the source of the water is important 

both to maintain current ground water needs and to maintain the springs in the Outback.  

The hypotheses for the Freeling Springs Group conceptual mixing models evaluate the 

source(s) of water and the shallow subsurface lateral migration of groundwater. The 

source(s) of water needs to be determined- possibilities include the PD (sourced from the 

Wirricurrie Granite) and the GAB (sourced from the Algebuckna Sandstone and the 

Cadna-Owie Formation). Structurally, both of these are possible. Deeper formations were 

discounted as potential sources as the springs do not have temperatures above 30 ˚C. 

Geophysically, conductive electrical zones could be expected where brackish spring 

waters (Drever, 1982) are moving near the fault zone.  End members of PD and GAB 

waters are available from other sites in the area to allow the source(s) of the water to be 

evaluated based on a regional analysis of the basins. 

Both PD waters and the GAB aquifers water could be present at the fault and either could 

be a spring source. Lateral migration of water away from Kingston Fault is also unclear. 

Possibilities include water only moving upward along the fault zone with shallow 

subsurface water migrating away from the fault to the east.  This would cause the entire 

spring group to discharge waters similar to the fault zone waters.  An additional 

possibility is that water is sourced east of the fault zone by waters moving upward from 

the GAB near the fault due to the absence of the Bulldog shale confining unit. These 

issues of spring sources become more unclear in the spring tail for Freeling Spring.  

Along the spring tail, located orthogonal to the fault and east of Freeling Spring, surface 

water are flowing towards the east away from the fault while subsurface flow is 

originating in the tail in additional springs. Surface water along the spring tail can be 
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traced from Freeling Spring while at the same time individual subsurface flow springs 

inside the tail can be found and isolated from the surface flow.  

A set of possible hypotheses for mixing conceptual models for the Freeling Spring Group 

have been generated based on the hydrogeologic setting discussed above. 

Hypothesis I: Water discharging at Peake Telegraph Station is from a single source of 

water from the PD or the GAB (Figure 5- Arrow 1 or 3). 

Hypothesis II: Water discharging at Peake Telegraph Station is from two water sources 

(PD and GAB). The waters are discharging but not mixing as seen in two independent 

water chemistries (Figure 5- Arrows 1 and 3). 

Hypothesis III: Water discharging at Peake Telegraph Station is from two water sources 

(PD and GAB). The waters are discharging and mixing as seen in water chemistries that 

reflect a mixture of both PD and GAB waters. Springs more than 50 meters east of the 

fault exhibit 100% GAB water chemistry (Figure 5- Arrows 1, 3, 2 and 4). 

Hypothesis IV: Water discharging at Peake Telegraph Station is from two water sources 

(PD and GAB). The waters are discharging and mixing as seen in water chemistries that 

reflect a mixture of both PD and GAB waters. Springs more than 50 meters east of the 

fault exhibit chemistry influenced by both the PD and GAB waters (Figure 5- Arrows 1, 

3, 2 and 5). 

The structural, geophysical, hydrogeological and geochemical data collected for the site 

should allow adequate differentiation between these four hypotheses regarding the origin 

and flow of water for the Freeling Spring Group. 
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Figure 5: Cross section A to A’ showing inferred flow paths. The yellow arrow 

represents PD water, the blue arrows represent GAB water and the green arrows 

represent mixed PD and GAB water. 
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METHODS 

A hydrogeophysical investigation on Freeling Spring Group at Peake Telegraph Station 

was conducted to test the conceptual models for the springs. Three ERI lines were 

obtained over Freeling Springs and geochemical samples were collected from nine 

springs (Figure 6). Mixing models were then evaluated using the geochemical data. The 

methods described will include 1) ERI acquisition and processing, 2) geochemical 

sampling and analyses and 3) geochemical mixing models. 

ERI 

The multi-electrode surface resistivity method is used to examine horizontal and vertical 

discontinuities in the electrical properties of the ground as well as being used in the 

detection of three-dimensional bodies of anomalous electrical conductivity (Kearey et al., 

2002). The method uses direct current or low-frequency alternating currents to study the 

electrical properties (resistivity) of the shallow subsurface.  When electrodes are in the 

subsurface, the method is referred to as electrical resistivity tomography (ERT), but when 

they are at the surface only the method is referred to as multielectrode resistivity 

profiling.  A more generic term is electrical resistivity imaging (ERI). 

The resistivity of a material is defined as the resistance in ohms between the opposite 

faces of a unit cube of the material in Ohm-meters and conductivity is the inverse of 

resistivity in units of mhos per meters or Siemens per meter. Resistivity is one of the 

most variable physical properties and is influenced by lithology, fluid properties, porosity 

structure and bioactivity (Telford et al., 1990; Kearey et al., 2002). ERI surveys are 

widely used in hydrogeological investigations due to the low cost and low environmental 

impact of the surveys coupled with a high amount of data recovered such as geologic  
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structure, lithologies, subsurface water resources and plume migration (Simmons and 

Nur, 1968; Paterson, 1983; Knight, 1991; Chelidze and Gueguen, 1999; Binley et al., 

2002; Halihan et al., 2009).  

 

Figure 6: Google Earth images overlain with the 3 ERI lines (orange lines), 

geochemical sampling locations (blue dots) and Freeling Spring (pink star). The 

whiter portions of the map are the travertine platform and the dark vegetation directly 

to the west/ under PK 345 is the location of Kingston Fault. The Peake and Dennison 

Ranges can be seen on the west side of the map while the gibber plane over the GAB 

can be seen on the east side of the map. 
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Expected electrical resistivity values 

As reported in Telford et al (1990) resistivity values of rocks vary greatly due to porosity, 

age and fluid content (Table 1). Small changes in fluid content of the rock can decrease 

resistivity exponentially (Table 1). Field and lab studies (Simmons and Nur, 1968; Urish, 

1983; Frohlich and Parke, 1989; Knight, 1991; Lane et al., 1995; Frohlich et al., 1996; 

Roberts and Lin, 1997; Taylor and Barker, 2002; Sharma and Baranwal, 2005; Halihan et 

al., 2009) show that resistivity decreases with increased porosity and/or fluid saturation. 

A compiled range of values from the above sources will be used to evaluate the ERI 

images and their resistivity values in relation to what is predicted for fractured granite 

and sandstone and what is measured for Freeling Spring Group. Resistivity values for 

granite are predominately above 1000 Ω-m, sandstones (SS) are predominately below 

200 Ω-m and fluids are below 5 Ω-m.  

Material % Fresh Water ~Electrical Resistivity 
(Ω-m) 

Medium Grained SS 0.10 1.4 x 10
8
 

Medium Grained SS 1.00 4.2 x 10
3
 

Coarse Grained SS 0.18 1.8 x 10
8
 

Coarse Grained SS 0.39 9.6 x 10
5
 

Granite 0.00 1.0 x 10
10

 

Granite 0.19 1.8 x 10
6
 

Granite 0.31 4.4 x 10
3
 

Table 1: Approximate electrical resistivity with respect to percentage of fresh water in 

rocks (amended from Telford et al. (1990). 

Electrical resistivity survey 

Three ERI lines extending 550 meters laterally and penetrating 110 meters vertically 

were collected in May 2009 using an Advanced Geosciences, Inc. (AGI) SuperSting© 

R8/IP using 56 stainless steel stakes with 10 meter spacing. Small amounts of salt water 

were poured in the granitic areas to decrease contact resistance between the ground and 

the stakes. The ERI lines were collected along the fault (ERI line PK 345), perpendicular 

to the fault (ERI Line PK 255) and off the fault (ERI Line PK 303) with Freeling Spring 

as the approximate midpoint of each line (Figure 8). Handheld and differential GPS units 

as well as standard survey equipment were used in order to collect spatial data for the 

three ERI lines.  
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ERI data acquisition and processing were completed using the proprietary Halihan-

Fenstemaker method (Halihan and Fenstemaker, 2004).  Data exceeding a repeatability 

error of 2% were eliminated from the dataset as well as data that had inversion model 

misfits of greater than 50%.  

Geochemical Analysis 

Nine water samples were collected along the ERI lines and around the Peake Telegraph 

Station during December 2010.  The nine Freeling Spring Group water sampling points 

(Figure 6) were Freeling Spring (Figure 7.a), a historic well to the northwest of Freeling 

Spring, two samples of springs along the tail section of Freeling Spring, two samples on 

the travertine platform, a sample under a travertine lid (Figure 7.b) and two samples on 

top of or near the Kingston Fault. Regional chemical data that were available included a 

PD spring water sample and GAB spring water samples collected in 2008 for the NWC 

GAB Project.  Waters sampled for this study were taken from sources with flows greater 

than 250 L/day. 

  

Figure 7: Field pictures showing a) Freeling Spring sampling and b) Glory sampling 

site under a travertine deposit. 

All water samples were filtered through a 0.45 μm filter during collection or in the 

laboratory for one sample that was turbid. The samples were collected and stored in 

HDPE bottles that were unacidified for anions and acidified to a pH <2 with high purity 

HNO3 for cations and metals. The samples were cooled on ice in the field and transported 
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to the laboratory where they were stored at 4
o
C until analyses. The samples were not 

refrigerated for ten days while in transit from Australia to Oklahoma in the mail. 

Temperature, electrical conductivity, pH and DO were measured using a Yellow Springs 

Instrument (YSI) multiprobe prior to sample collection. Alkalinity was measured by acid 

titration in the field. Water analyses were conducted at Oklahoma State University 

School of Geology chemical laboratories, Stillwater, Oklahoma.  Major anions (chloride, 

bromide, nitrate and sulfate) and major cations (sodium, potassium, ammonium, 

magnesium and calcium) were measured using a Dionex ICS 3000 ion chromatograph.   

Regional end member water samples for PD and GAB spring fluids were analyzed by the 

Commonwealth Scientific and Industrial Research Organization (CSIRO) in Adelaide, 

South Australia.  

Mixing Model Analyses 

Genereux and Pringle (1997) define mixing models as using naturally-occurring 

differences in chemical concentrations (for at least one solute) to quantitatively determine 

the proportions in which different waters contribute to flow. Mixing models are 

commonly used to determine source water and determine contamination sources in 

surface and ground water. Common inputs include temperature, electrical conductivity, 

isotopes, rare earth elements and cations/anions- especially chloride and bromide (Pinder 

and Jones, 1969; Arnórsson, 1985; Hem, 1985; Genereux and Pringle, 1997; Uliana and 

Sharp, 2001). 

Geochemical data- chloride and sodium concentrations and electrical conductivity- were 

input into mixing models to determine if the Freeling Spring Group was a mixture of PD 

water and GAB water or if they were 100% of one or the other. Modifying an equation 

from Genereux and Pringle (1997) and using the basic equation for a line, the following 

mixing model was applied to the geochemical data: 

                                                       
       

        
                                                   (1) 
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where % PD is the percentage the sample is PD, Cn is the concentration of the variable 

for a particular sample, CGAB is the concentration of the variable for a mean GAB sample 

and CPD is the concentration of the variable for the PD sample. 

Chloride and electrical conductivity were chosen as the variables for the first mixing 

model evaluation due to the conservative nature of chloride and the varying values for 

electrical conductivity seen across the site using the ERI data (Uliana and Sharp, 2001). 

Sodium and chloride were used for the second mixing model (Genereux and Pringle, 

1997). Sodium and chloride are considered conservative ions as they are not a affected by 

biogeochemical reactions at aquifer and surface conditions. 
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RESULTS 

Results of this study including geophysical data (ERI), geochemical data (cations, anions, 

EC and temperature) and mixing models are reported below. 

ERI 

The ERI data were similar in the three images.  The RMS errors for the three datasets 

ranged from 7.8 to 10.4 percent.  The lowest errors and easiest data collection were along 

the fault as the electrode contact in the granite was more difficult to achieve. The areas 

west of the Kingston Fault were more resistive than the areas east of the fault.  The range 

of inverted resistivity values were 0.1 ohm-meters to 2500 ohm-meters.  Along the fault 

ERI values had a much smaller range of 0.3-84 ohm-meters. These values are 

significantly lower than those of undeformed granite. Significant color breaks were 

established for the datasets at 5, 15 and 100 ohm-meters.  These were used in an attempt 

to evaluate areas that would not have significant fault fluids (>100 ohm-meters), and 

areas that would likely be strongly influenced by fault fluids (<15 ohm-meters).  The 

lowest break was used to evaluate more saline versus less saline fluids (5 ohm-meters). 

The results for each dataset are described in detail as follows.  

PK 255 

ERI survey line PK 255 (Figure 8) is perpendicular to the Kingston Fault with the fault 

lying at the approximate location of Freeling Spring.  The line runs approximately along 

and close to a joint that is orthogonal to the Kingston Fault.  West of the fault the line 

runs along an east-west valley in the granite and east of the fault the line runs along one 

of the tails for Freeling Spring. The west side of the Kingston Fault (LHS) shows 

resistive zones ranging from 5 Ω-m (green) to 2500 Ω-m (red) with the majority of the 

LHS having a resistivity greater than 15 Ω-m. There is a conductive vertical feature on 
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the west side of the fault ranging from 5-15 Ω-m which extends from the bottom of the 

domain to an area just east of the Freeling Spring orifice.  The east side of the fault 

(RHS) shows resistive zones ranging from 0.1 Ω-m (blue) to 900 Ω-m (red) with the 

majority of the RHS having a resistivity less than 15 Ω-m. Two prominent conductive 

features are a 0.1 to 15 Ω-m resistive zone along the top of the RHS east of the fault and 

one vertical feature coming from the bottom of the image.  

 

Figure 8: PK 255 ERI image showing resistivity values ranging from 0.1 - 2500 Ω-m.  

Three prominent conductors exist in the image that converge just east of Freeling 

Springs.  The less conductive of these three features is on the west side of the fault. 

The yellow arrow represents an inferred PD flow path while the blue arrows represent 

inferred flow paths from the GAB possibly showing both the Algebuckna Sandstone 

(lower) and the Canda-Owie Formation (upper).   

PK 303 

ERI survey line PK 303 (Figure 9) is off the Kingston Fault and the orthogonal joint. PK 

303 shows higher resistive zones ranging from up to 1110 Ω-m (red) on the west side 

(LHS) of Kingston Fault and less resistive zones ranging from as low as 0.2 Ω-m (blue) 

on the east side (RHS) of Kingston Fault. Some signatures of the three conductive zones 

observed in PK255 are present in this image as well, but they are not clearly separated 

and do not all reach the surface. 
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Figure 9: PK 303 ERI image showing resistivity values ranging from 0.2 - 1110 Ω-m. 

PK 345 

ERI survey line PK 345 (Figure 10) is along the approximate location of the Kingston 

Fault and shows less resistive zones ranging from 0.3 Ω-m (blue) to 84 Ω-m 

(orange/white) along the line with the top 50 m of the image and the central portion being 

predominately 0 to 15 Ω-m.  Electrically conductive areas below 5 ohm-meters are 

constrained to the upper portions of the image.  Although the conductive portion in the 

center of the image may represent an area of upwelling, the image may also depart from 

the fault zone and thus have higher resistivity due to the location of the line instead of 

fluid changes. 

 

Figure 10: PK 345 ERI image showing resistivity values ranging from 0.3 - 84 Ω-m. 
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Geochemical Analysis Results 

The regional water samples collected by the NWC GAB project for the Peake and 

Dennison Ranges sample (Tarlton Spring (ATS006)) has an electrical conductivity of 

3559 μS/cm, a chloride value of 15.2 mM/L and a sodium value of 19.3 mM/L (Table 2). 

The GAB is represented by two samples from Billa Kalina (KBK001 and KBK002), and 

Bakewell Spring (KBK1004) with electrical conductivity values of 8685-8969 μS/cm, 

chloride values of 60.5-64.0 - mM/L and sodium values of 73.2-77.96mM/L (Table 2). 

The water samples for the Freeling Spring Group have electrical conductivities that range 

from 1454 to 7087 μS/cm, chloride values ranging from 25.7 to 45.1 mM/L and sodium 

values ranging from 34.77 to 62.47 mM/L. 

Mixing Model Analyses 

The two mixing models were analysed for source water potential for the Freeling Spring 

Group.  The chloride versus conductivity provided insight into the fluid composition 

versus fluid electrical properties.  The chloride versus sodium model provided insight 

into the fluid composition. 
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Chloride/Fluid Conductivity Mixing Model 
 

The PD sample has an EC value of 3559 μS/cm, the median GAB EC value is 8685 

μS/cm and the PTS Spring Group samples range from 3852 to 7087 μS/cm.  The best fit 

line between the end members and the Freeling Spring Group sample has a R
2
 value of 

0.96. Using these values in Equation 1 the Freeling Spring Group samples average value 

is 20 % GAB waters with the only sample above 30 % being Glory Spring at 65 %.  The 

majority of samples are dominated by fluids from the Peake and Denison Ranges based 

on this model.  No spatial trends were observed in the model relative to the distance from 

the fault zone. 

Sodium/Chloride Mixing Model 

The PD sample has a chloride concentration of 15.2 mM/L, the median GAB chloride 

concentration is 62.7 mM/L and the PTS Spring Group samples range from 26.6 to 45.1 

mMol/L. The mixing model has a best fit R
2
 value of 0.99.  Using these values in 

Equation 1 the Freeling Spring Group samples average value is 35 % GAB.  Once again, 

the mixing model suggests the strongest signature is fluid from the Peake and Denison 

Ranges.  There is no spatial trend in the data relative to the distance away from the fault. 

 

Figure 11: Mixing model results for A) chloride versus electrical conductivity and B) 

sodium versus chloride. 
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DISCUSSION 

ERI 

Relative to literature values for unsaturated rocks, resistivity values are lower than 

expected over Freeling Spring Group. Over 50% of the dataset has resistivity values 

under 15 Ω-m which is interpreted as the result of fresh to brackish fluids in the 

underlying formations. The west side of the Kingston Fault over the Wirriecurrie Granite 

(MB) would have resistivity values exceeding 5000 Ω-m if no significant fluid were 

present, however the mean value is less than 500 Ω-m, which is interpreted as evidence 

for the presence of fluids in the granite. The east side of the images over the GAB is 

predominately under 15 Ω-m implying that the rock is fully saturated with fresh to 

brackish fluid. 

PK 255 and PK 303 

ERI survey lines PK 255 (Figure 8) and PK 303 (Figure 9) may be inferred as basement 

rocks (PD) on the west side of Kingston Fault (LHS) and the GAB (saturated sandstone) 

on the east side (RHS). PK 255 is interpreted as demonstrating three fluid flow paths 

coming from depth (marked with arrows) - one from the MB (yellow arrow) and two 

from the GAB (blue arrows) discharging at Freeling Spring. Based on geological 

mapping of the area, the less resistive blue in the top 50 m of the east side of PK 255 may 

be inferred to be the Cadna-Owie Formation (GAB) aquifer flowing to Freeling Spring 

beneath the spring tail while the lower, additional fluid path may be inferred to be the 

Algebuckna Sandstone (GAB).  
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PK 345 

ERI survey line PK 345 (Figure 10) along the Kingston Fault does not have ERI values 

normally associated with an underformed granite. The values seen under the fault imply 

that the fault is mostly fluid filled. This helps support the idea that water is coming up 

from depth along the fault zone and discharging along the surface. 

Mixing Model and Geochemical Analysis 

The mixing models show that the Freeling Spring Group samples lie between the PD and 

the GAB samples with all but one of the samples (Glory) being over 50 % PD water. The 

only sample to not follow this trend, the Glory water sample, did not have an outflow and 

its composition could have been partially influenced by rain water. This would suggest 

that PD water is coming across the fault from the Wirricurrie Granite and feeding the 

springs along the fault, on the travertine platfrom and in the Freeling Spring tail that are 

orthogonal to the fault. This also suggests that the GAB is not the most influential water 

source on the springs even though many of the springs sit directly on top of the aquifer.  

Hydrogeophysical Evaluation 

This study uses a hydrogeophysical approach to study the fluid flow/source(s) for 

Freeling Spring Group. This approach integrates the geochemical, geophysical, structural 

and hydrogeological data for the site. As part of the integrated approach, the structural 

data helped plan a geophysical investigation that could better map the spring system 

subsurface, the geophysical investigation allowed a superior understanding of where to 

conduct geochemical sampling and geochemical sampling helped calibrate the 

geophysical data. All of the data were then combined to test the hypotheses of ground 

water mixing for the Freeling Spring Group.  Alone, these data sets provide an 

incomplete answer regarding the fluid source(s) for the Freeling Spring Group, but 

together each data set can help validate the other data sets to improve the final 

interpretation.   

Although the geophysical and geochemical methods agree that multiple waters are 

exiting the Freeling Spring Group, a possible disagreement exists in the quantity of each 
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source.  The chemical mixing models show a clear dominance of PD fluid exiting the 

spring group, but the ERI data sets show only a small conductor leading to the fault from 

the west in PK 255 relative to large conductors east of the fault in the GAB.  There are 

two possible explanations for this discrepancy. The first possible explanation is that the 

two conductors to the east are the two distinct layers in the GAB- the lower Algebuckna 

Sandstone and the upper Cadna-Owie Formation. These conductors, possibly having two 

distinct chemistries, could be mixing in proportions that are not seen in the regional GAB 

samples used for the mixing model evaluation and therefore actually play a much larger 

role in the composition of the spring group chemistry than currently considered. The 

second, more likely, explanation is based on structural mapping of the area. Structural 

mapping indicates the majority of the Freeling Spring Group sits atop the Kingston Fault, 

orthogonal to the fault (both east and west of the fault) and along a possible extension 

fault to the northeast (the travertine platform). A juxtaposition of fractured aquifer PD 

source against a porous media GAB source could allow the PD water to be the dominant 

fluid source observed in the chemical dataset. At the same time, the ERI data sees this 

fracture rock source as a smaller less conductive source than the strong wide conductors 

present in the GAB. This appears to be the interpretation that satisfies all of the datasets.
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CONCLUSIONS 

The Freeling Spring Group offers a unique study site that allows an evaluation of the 

boundary of two aquifers- fluids from the Peake and Dennison Ranges and fluids from 

the Great Artesian Basin. This boundary, the Kingston Fault, is clearly influencing 

electrical resistivity images and is supported by the geochemical signatures of local and 

regional waters. The ERI results indicate converging waters with potentially two to three 

waters mixing under and around Freeling Spring. Geochemical analysis results including 

electrical conductivity and cations/anions indicate at least two distinct water types around 

the Freeling Spring Group.  

Structural evidence, vegetation, geochemical analysis and ERI all provide evidence that 

there is flow along the fault. The location of the fault is easily recognizable. There are an 

extensive number of plants along the fault that have been shown to only survive on 

ground water (Greenslade et al., 1985). The ERI data also indicate that there is water 

along the fault as the majority of the fault is underlain by low resistivity values associated 

with fresh and brackish fluid saturated rock. The geochemical signatures of Freeling 

Spring directly on top of the fault indicates that the spring is a mixture of PD and GAB 

waters and therefore not entirely fed by the GAB. These four key pieces of data indicate 

that there is fluid flow upward along the fault by both the PD and GAB waters.  

The mixing models indicate lateral movement of water in the shallow subsurface across 

the fault as well as movement of PD water onto the east side of the fault into the GAB. 

The geologic signatures of the waters indicate that the springs are a mixture of both PD 

and GAB waters with the compositions being more predominately PD rather than GAB. 

The springs on the travertine platform are over 50% PD composition in relation to the 

mixing models indicating that the PD water is moving significantly east of the fault (at 

least 500 m). This suggests that the PD aquifer is recharging the top of the GAB at Peake 

Telegraph Station for the Freeling Spring Group.  
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Based on the results of the hydrogeophysical investigation of Freeling Spring Group, data 

suggest that the Freeling Spring Group is a mixture of PD and GAB waters with the PD 

waters heavily influencing the springs in the group including springs east of the Kingston 

Fault.  
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ELECTRONIC APPPENDICES 

 

 

Two electronic appendices are included as part of this thesis. 

 

Appendix I: Full geochemical analysis of Freeling Spring Group samples 

Appendix II: ERI location and resistivity values. 
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Abstract:   

 

The Great Artesian Basin (GAB) is an aquifer system that extends across Australia 

covering over 22% of the continent and is a vital support system for ecosystems in the 

region. As part of the Australian National Water Commission’s (NWC) GAB Project, 

research is being conducted to understand the aquifer including studying the discharge of 

springs and determining flow paths of the aquifer. Water sampling at springs that are a 

part of the Freeling Spring Group were used along with Electrical Resistivity Imaging 

(ERI) data to evaluate evidence of mixing between the GAB aquifer and waters from the 

adjacent basement aquifer in the Peake and Dennison Ranges (PD).  Nine springs were 

used to evaluate fluid chemistry of the Freeling Spring Group. ERI data were collected 

along three orientations over the Freeling Spring site.  The ERI data, which extend for 

550 meters laterally and 110 meters vertically, indicate three possible flow lines 

providing mixing at the spring orifice similar to what would be predicted from traditional 

conceptual models.  Regional water samples of springs were used as end members to 

evaluate chemical mixing models for waters at the site. The chemistry of spring water 

samples indicates that the water emanating from the Freeling Spring Group is a mixture 

of waters from both the GAB and the PD, which confirms the ERI evidence for mixing at 

the site.  The data suggest the mixing occurs along a structural feature in the Peake and 

Dennison Ranges and that the spring water maintains a strong PD signature even well 

east of the fault zone.  


