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CHAPTER I 
 
 

INTRODUCTION 

Problem Statement 

The Williston Basin, which is located primarily in North Dakota and Eastern 

Montana (Figure 1), has been an important source of domestic oil production since the 

advent of horizontal drilling. This increase in oil production is mainly from an Upper 

Devonian/Lower Mississippian unit known as the Bakken Formation. The Bakken 

Formation consists of a black upper shale, a sandy/silty middle member sometimes 

referred in the field as the middle dolomite, and a lower black shale. The United States 

Geological Survey (USGS) recently reported that the Bakken Formation contains 4.3 

billion barrels of oil equivalent in reserves (Pollastro, 2008). Continued drilling in the 

Bakken Formation is occurring in both North Dakota and Montana despite the collapse of 

oil and gas prices in the fall of 2008. As exploration companies try to adjust to falling 

profits, drilling costs have yet to reflect the adjustment in the market. As such, 

expenditures in drilling programs, such as coring potentially productive intervals are 

some of the “science projects” that some smaller companies are eliminating from their 

drilling budgets. Although an integral part of all drilling activities, coring is a source of 

information many companies are willing to forego to obtain important rock data, such as 

lithotypes and clay mineralogy. The principal question addressed in this study concerns 

the applicability of x-ray diffractometry to determine bulk rock mineralogy and clay 

species in the absence of core. This problem is complicated by the use of modern bits, 

which essentially powder the cuttings and thereby reduce the size of rock fragments 

available for analysis.  
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Figure 1. Map of the Williston Basin with study area outlined in red (Department of 

Energy, 2009) 
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For this study, samples of bit cuttings and thin sections from core obtained from 

the North Dakota Geological Survey were analyzed and the results compared to 

determine if cuttings are a viable substitute for core. The study area (Figure 2) from 

which the samples were obtained is located in western North Dakota.  

 

Purpose and Objectives 

 In order to mineralogically characterize the Bakken Formation and evaluate the 

effectiveness of substituting bit cuttings for core samples in determining bulk mineralogy, 

the following objectives were formulated. 

1. Establish a stratigraphic framework for the Bakken Formation 

using the accepted industry convention (Pitman et al., 2001). 

2. Describe each member on the basis of lithologic and petrophysical 

properties using thin section petrography and wireline logs. 

3. Analyze bit cuttings of the Bakken Formation using powder x-ray 

diffraction to establish bulk and clay mineralogy. 

4. Compare the results of the petrographic and x-ray analyses to x-ray 

spectra of core samples to determine if bit cuttings can serve as an 

adequate proxy for core samples. 

This study should provide sufficient data to determine if bit cuttings are capable 

of serving as a substitute for core. This comparison is particularly significant in a play 

like the Bakken Formation as most wells in the oil-producing zone are horizontal and the 

opportunity for coring is rare.  
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Figure 2. Detail map of study area outlined in western North Dakota.  
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Location of Study 

 In order to capitalize on the most recently available and abundant geologic and 

engineering information, the chosen study area consists of the majority of 14 counties in 

North Dakota: Divide, Burke, Renville, Williams, Mountrail, Ward, McKenzie, Dunn, 

McLean, Mercer, Golden Valley, Billings, Stark and Morton. The study area can be 

defined by governmental townships and includes: T.152N., R.104W. to T.152N., R.89W. 

and T.164N., R.95W. to T.140N., 95W. The area including these townships is known by 

the petroleum industry as the Norse, Galaxy, Rocket and Normandy fields. The study 

location was chosen to include the Nesson Anticline (Figure 3) and also due to this area 

being the center of drilling activity to produce oil and gas from the Bakken Formation.  

 

Overview of Bakken Play 

 The Bakken Formation is a siliciclastic unit that consists of three members: upper 

and lower organic-rich shales and a middle calcareous sandstone and siltstone. 

Production from the middle member comes from areas where there is a significant 

amount of total organic carbon (TOC%) in the bounding upper and lower shales and an 

adequate thermal maturity to generate hydrocarbons from these known source rocks 

(LeFever et al., 1991). The history of oil production from the Bakken Formation began 

with reported occurrences (“shows”) of oil in vertical wellbores, and subsequent oil and 

gas production occurred in three distinct cycles. The first cycle began with the 

completion of the Bakken Formation in an oil well in 1963. This well produced only 774 

barrels of oil (bbls) before abandonment. This initial well was considered to be 
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uneconomic because of its low volume production and the low commodity prices of the 

time ($2/bbl), which  

 

Figure 3. Location map of the Williston Basin showing major structural features in 
relation to the study area in red (after Gerhard et al., 1991). 
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discouraged exploration for oil and gas production from the Bakken Formation until the 

late 1970’s when prices had risen substantially to drive the 2nd cycle. The subsequent 

depression in price and downcycle of the 1980-90 decade further discouraged drilling for 

Bakken Formation oil and gas production. This downturn lasted until the early 1990’s, 

when the combination of horizontal drilling and higher oil and gas prices launched the 

present third cycle of drilling and production.  

  

Stratigraphy 

The Bakken Formation is a Devonian to Mississippian age siliciclastic unit that 

contains three informal members. In the study area, the Bakken Formation rests 

unconformably on the underlying Three Forks Formation (Figure 4). The Lodgepole 

Formation of the Madison Group overlies the Bakken Formation. Widespread flooding 

during the upper Devonian was responsible for deposition of the Lower Bakken 

sediments, which accumulated on the erosional surface of the Three Forks Formation. 

The end of the Devonian is marked by an unconformity between the Devonian and 

Mississippian, as uplift and erosion exposed the Devonian strata along the basin flanks, 

while deposition in deeper parts of the basin continued (Pitman et al., 2001). It was 

during this time that the orientation of the seaway that occupied the study area shifted to 

the north due to the tectonic activity along the Transcontinental Arch (Pitman et al., 

2001). Basinal Devonian-Mississippian sediments represent repeated periods of 

transgression and regression and a subsequent reorientation of the basin during 

Mississippian time shifted the depocenter of the middle and upper Bakken westward to 
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the central Montana trough (Pitman et al., 2001). The boundary between the Devonian 

and Mississippian is placed within the Middle Bakken interval, whereas the Upper 

Bakken shale is considered to be exclusively Mississippian (Pitman et al., 2001). 
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Figure 4. Subsurface stratigraphic nomenclature of the Williston Basin (Moss, 2009). 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 The Bakken Formation was studied initially as a potential source rock for oil and 

gas that accumulated in older carbonate units. In the last ten to fifteen years interest in the 

Bakken Formation increased as it became a target for horizontal drilling techniques, 

which made oil and gas production economically feasible.  

According to Pitman, et al. (2001) the Bakken Formation is a closed, low 

permeability petroleum system that generated approximately 200 to 400 billion barrels of 

oil in place. Most of this oil was expelled into very fine grained sandstones and siltstones 

within the middle member, which is bounded by lower and upper organic-rich shales that 

are considered both sources and seals (Pitman et al., 2001).  

 The general tectonic setting of the region was addressed by LeFever, et al. (1991), 

who described the geologic setting of the Williston Basin and discussed the evolution of 

the basin (and other major structural features, including the Nesson, Cedar Creek and 

Billings Anticlines). The impact of structure on oil and gas production was established by 

Shurr (1995), who related horizontal production from the Bakken Formation in 

southwestern North to lineament block tectonics.  

Meissner (1978) established a relationship between the petrophysical 

characteristics of the Upper and Lower Bakken shales and thermal maturity. Shales high 

in total organic carbon (TOC) and located towards the center of the basin are thermally 
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mature and register higher values of resistivity than shales in areas where the shales are 

less thermally mature and not capable of producing hydrocarbons (Meissner, 1978). 

Smith and Bustin (1995) described the sedimentology of the Bakken Formation as 

a set of thinly laminated, fine grained, organic rich mudstones in the upper and lower 

shales with a gray mudstone middle member that contains ichnofacies including 

populations of nerites, skolithos and cruziana. These ichnofacies were used to interpret 

the cyclical depositional processes a deeper offshore setting for the lower Bakken, 

shallower shoreface for the middle Bakken and offshore setting for the upper Bakken.  

The bulk mineralogy of dark shales in other basins has been examined to 

determine the impact of mineral composition of engineering issues. Matthews et al. 

(2007) discussed the mineralogy of shales in the Fort Worth Basin and West Texas Basin 

and the effect of shale mineralogy on hydraulic fracturing and the success of oil and gas 

well completions in these shales. Matthews et al. (2007) stated that the shales of the 

Barnett Shale contain approximately equal parts of silica, clay and carbonate material and 

that this composition directly relates to the brittle nature and the enhanced response to 

hydraulic fracturing. When shales in the Fort Worth Basin were compared to those in 

West Texas, the percentages of clay and silica were found to be closer to 50:50 and that 

associated carbonate material was minimal to absent. The absence of silica or carbonate 

material creates a more elastic and less brittle reservoir rock that is resistant to hydraulic 

fracturing (Matthews et al., 2007).  

Xu and Pruess (2004) conducted a study on the effect of swelling clays on 

fracture stimulation. They tested many different applications for using geothermal fluid 

mixed with a variety of fresh water and chemical treatments to test the extent of mineral 
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scaling and clay swelling on well performance. Results indicated that increased amounts 

of smectite in shales led to an increase in swelling when exposed to aqueous solutions of 

low ionic strength and that cations bond with water molecules and the molecular 

thickness increases as bulk density decreases (Xu and Pruess, 2004).   

 

Depositional History 

  There are many interpretations as to the paleoenvironmental settings under which 

Bakken sediments were deposited (Pitman et al., 2001; Sandberg, 1982; McCabe, 1959; 

Christopher, 1961; Smith 1996). Sandberg (1982) proposed a model based on the eustatic 

sea-level changes that indicated that the deposition of Bakken sediments was initiated by 

a marine transgression that developed due to the Antler and Acadian orogenic events. 

This interpretation is based on evidence in the sharp contact between the Lower Bakken 

and Three Forks Formation. This eustatic sea-level model was expanded by Smith (1996) 

who demonstrated that the Saskatchewan portion of the Williston basin formed in part 

due to the dissolution of the Devonian Prairie Salt and erosion of the Three Forks 

Formation.  

 The black shales of the upper and lower members of the Bakken Formation are 

interpreted to represent deposition during a widespread rise in sea level (Pitman et al., 

2001). Webster (1982) detailed how the upper and lower shales represent deposition in a 

stratified hydrologic regime with anaerobic bottom-water conditions as evidenced by the 

presence high organic-matter content, pyrite and the lack of benthic fauna.  

 LeFever et al. (1991) proposed that sediments of the middle member were 

deposited in a coastal regime and displays a wider variety of facies, varying depositional 
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conditions and ichnofossils. In the central basin region, the middle member contains 

argillaceous, greenish-gray, highly fossiliferous, pyritic siltstones in the lower part, 

suggesting that it was deposited in a shallow marine environment. The shoreline 

prograded basinward as evidenced by highly burrowed, interbedded shale and sandstone. 

The presence of cruziana suggests a lower shoreface deposition. The middle part of the 

member contains skolithos and begins to grade into massive and tabular crossbedded 

sandstones that produces hydrocarbons in the Canadian portion of the basin (LeFever et 

al, 1991). Finally the upper part of the middle member was determined to be deposited in 

a marine environment with strong current action based on the evidence of disarticulated 

brachiopods that occur in thin, well-sorted siltstone and sandstone beds (LeFever et al., 

1991).  

 

Structural Setting 

 Pitman et al. (2001) describes the structural setting of the Williston Basin as being 

an intracratonic, structural, and sedimentary feature that overlies the Superior craton, the 

Trans-Hudson orogenic belt, and the Wyoming craton in the United States and Canada. 

The basin occupies portions of North Dakota, South Dakota, Montana, Saskatchewan, 

and Manitoba (Pitman et al., 2001) 

 The Williston basin (Figures 5 and 6) is a structurally simple “bowl shaped” basin 

with the only major structural feature being the Nesson Anticline which trends northward 

from the Kildeer Mountains in Dunn County to the Canadian border. The anticline is 

associated with the western Nesson fault, which extends along the western flank of the 

fold (Pitman et al., 2001). Movement along this fault and the development of the Nesson  
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Figure 5. Cross section showing the stratigraphy and present structural configuration of 
the Williston Basin (highly vertically exagerated) (DeMis, 1994). 
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Figure 6. Structure map of the Bakken Formation (Pitman et al., 2001). 
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Anticline has been attributed to basement tectonics, which also caused the dissolution of 

the Prairie Salt Formation (LeFever 1987).  

 

Reservoir Potential 

 Based on the previously referenced 4.3 billion barrels of oil equivalent reserves 

(Pollastro, 2008), the middle Bakken is an important contributor to domestic oil 

production. Pitman et al. (2001) provided a concise account of reservoir evolution. The 

thermal conditions, maturation levels and the high concentrations of organic matter in the 

upper and lower Bakken shales are consistent with the development of organic acids 

during the onset of hydrocarbon production in conjunction with maximum burial. These 

acids explain the dissolution of carbonate cement in the rock matrix and adjacent 

hydraulic fractures. While porosities and permeabilites remain low (5% and .04 

millidarcies respectively) the middle Bakken maintains a high residual oil saturation and 

high incidence of hydraulically induced fractures (Pitman et al., 2001). Most oil produced 

from the Bakken comes from open, horizontal fractures and in secondary micro-porosity 

adjacent to fractures (Figure 7). Only small amounts of oil reside in matrix pores. These 

horizontal fractures form a pervasive network in deeply buried reservoir rocks and result 

in high residual oil saturations. The converse is true for portions of the Bakken that are 

shallower and contain little to no residual oil saturation. The fractures that hold the oil in 

the Bakken are the result of superlithostatic pressures that formed in response to 

increased fluid volumes from the generation of hydrocarbons (Pitman et al.,2001). Of 

note is the observation that if these fractures are mineralized, they are incapable of 

transmitting fluids. On the other hand, the porous and permeable open horizontal 
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fractures laterally focus hydrocarbons and enhance the production of the reservoir (Figure 

8).  
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Figure 7. Thin section photomicrographs of sandstones depicting A, open (noncemented), 

discontinuous fractures parallel to bedding. Such fractures are abundant and form 
a pervasive network in sandstones adjacent to mature shales, NDGS 607, 3,223 
m; B, secondary porosity associated with horizontal fracture swarms, NDGS 
9707, 3,184 m; C, microscopic fractures cross-cutting framework quartz grains. 
Note bitumen filling secondary intergranular pores, NDGS 105, 2,312 m, and D, 
calcite cemented vertical fracture, NDGD 9707, 3,186 m. From Pitman et al., 
2001 
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Figure 8. Slabbed sandstone displaying reticulated fracture network on wet surface. Note 

that the permeable nature and distribution of fractures are not apparent when 
surface is dry. NDGS 8902, 3,186 m. From Pitman et al., 2001 
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CHAPTER III 
 
 

METHODOLOGY 

 

This study is designed to examine several types of data that can be utilized to 

characterize and analyze bulk mineralogy of the Bakken Formation of the Williston 

Basin. Before characterization is described, the stratigraphic and structural attitude of the 

basin must be presented to ensure that the subsurface stratigraphy is established with 

confidence and that correlations across the basin are not compromised by deformation or 

unconformities.  

The first feature of the Bakken Formation examined was thickness. An isopoach 

map was constructed that shows the extent of the Bakken Formation across the Williston 

Basin (Figure 9). Features of note are the thicknesses of the Bakken to the east of the 

Nesson Anticline, which is interpreted to have been an active positive feature during 

Bakken deposition. This map is noteworthy for the gradual thickening of the Bakken and 

its apparent uniform thickness and continuity across the study area.   

The second stage of the Bakken pre-characterization study involved the 

construction of cross sections using wireline logs (Figure 10) to establish an 

electrostratigraphic framework to which cores and cuttings could be correlated. Based on 

this framework and the distinct wireline log curves exhibited therein, the correlation of  
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Figure 9. Isopach of the Bakken Formation showing the gradual thinning towards the 

margins of the basin. The thicker north to south trend isolated immediately east of 
the Nesson Anticline. 
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Figure 10. Example “type log” showing the characteristic log signature across the Bakken 

Formation interval. The upper and lower members exhibit off scale gamma-ray 
values and high neutron/density porosity. 
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the upper, middle and lower Bakken member across the basin was achieved with 

confidence.  

 

Gamma-ray Signature 

 The three separate units within the Bakken are easily identifiable by their gamma-

ray log signature and thus correlative across the basin. The gamma-ray evidence for 

subdividing the Bakken Formation is distinctive, as seen in the “Typelog” (Figure 10). 

The petrophysical characteristics, or log signature, for the Bakken Formation is 

immediately recognizable based on the intensity of the gamma-ray curve, which responds 

to natural radioactivity in the rock. The gamma-ray curve across the Bakken Formation 

gives higher readings (>150 API units) in the two “hot” shales that represent the upper 

and lower members and lower or “cooler” readings in the cleaner middle member that has  

lower gamma-ray values (90-120 API units). These log signatures are consistent and can 

be traced with ease across the basin up to and including the flanks, where the formation is 

onlapping and pinching out against the unconformity on top of the Three Forks 

Formation.  

 The upper Bakken, as stated above, is a “hot” high gamma-ray reading shale and 

generally has gamma-ray readings in excess of 300 API units, or the limits of the more 

common 300 count scale which causes the gamma-ray curve to wrap or be traced over 

itself in log track one. The Bakken Formation is separated from the overlying Lodgepole 

Formation by a thin hot shale, which is called the false Bakken (Figure 10). The upper 

Bakken exhibits a sharp contact with the underlying middle Bakken. The high gamma-
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ray values for the upper Bakken are attributed to the presence of radioactive material in 

the shale that became incorporated at the time of deposition.  

 The Middle Bakken is a zone with a reduced gamma-ray value that is positioned 

stratigraphically between the two shales. The middle member is richer in silt and sand 

and can be dolomitized (Pitman et al., 2001). The decrease in clay content and variable 

lithology results in the gamma signature varying internally from as low as 40 API counts 

to as high as 90 API counts. The variance in gamma-ray values between the middle 

member and the adjacent “hotter” shales make the gamma-ray signature useful diagnostic 

tools used in horizontal drilling to determine wellbore position within the Bakken 

Formation.  

 The lower Bakken shale is similar in its response to the gamma-ray tool as the 

upper Bakken. It has a sharp contact with the Middle Bakken and also with the 

underlying Three Forks Formation. The gamma-ray curve will record an average reading 

of over 300 API units, causing the curve to go off scale and wrap around on the standard 

gamma-ray log chart (Figure 10).  

 

Resistivity Curve 

 Resistivity in the Bakken Formation displays a consistent pattern across the basin. 

However, a trend of decreasing resistivity with shallowing is evident. Where the Bakken 

is thermally mature, the resistivity will register up to 1000 ohm-m (Meissner, 1978). 

Conversely, where these Bakken Formation shales are thermally immature the resistivity 

curve will read lower and give values close to those of the middle Bakken, which makes 

correlation difficult when a gamma-ray curve is not available. The resistivity curve is 
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considered important to Bakken Formation oil and gas development because it is 

considered an indicator of areas where thermal maturity is sufficient to produce oil and 

gas (Meissner, 1978).  

 

Thickness of the Bakken Formation 

 The Williston basin has been called the structurally simplest basin in the world 

(Price, 1999). There are only two obvious faulted regions in the Williston Basin: the 

Nesson Anticline and the Brockton-Froid Fault Zone. As a result of this overall large 

scale undeformed nature, the thickness of the Bakken Formation does not change 

drastically or quickly from the center of the basin to the outer flanks, until it starts to 

pinch out along those edges. This “pancake” style of deposition is evident when cross 

section log correlations are tied back to structure and isopach (thickness) maps. As shown 

by the Bakken Formation Isopach map (Figure 9), with the only exception to the very 

gradual change in thickness occurs on the eastern edge of the Nesson Anticline, and in 

general, the Bakken Formation is relatively laterally continuous and uniform thickness. 

The total thickness of the Bakken Formation reaches a maximum of 149 ft near the east 

edge of the Nesson Anticline and a minimum of 21 feet in the mapped areas as it begins 

to pinch out toward the edge of the basin.  

 The upper Bakken shale changes thickness similar to the total formation in that it 

has a maximum thickness of over 30ft to the east of the Nesson Anticline and ultimately 

is truncated along the edge of the basin (Figure 11).  

 The middle Bakken also displays a uniform distribution throughout the Williston 

Basin and is thickest in the deepest part of the basin near the Nesson Anticline where it 
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reaches a thickness of 90ft. In the study area, the middle Bakken is a maximum of 60-70ft 

thick. Abrupt changes in the thickness of the middle Bakken are attributed mainly to the 

dissolution of the Prairie Salt Formation and ultimately the collapse of overlying strata 

(Pitman et al., 2001).  
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Figure 11. Structure map of the Bakken Formation. Note: the two dashed contours are the 

upper and lower Bakken pinchouts, colored countours represent temperature in oF. 
From Jarvie 2001. 
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The lower Bakken has a maximum thickness of approximately 30ft thick in the deeper 

part of the basin and thins to zero where it pinches out along the basin margin (Figure 

11). 

Once an understanding of the stratigraphic and structural framework for the 

Bakken Formation was established, sampling was conducted across the Bakken interval. 

Samples from each of the three members were included in the sample set. Wells were 

selected that met certain criteria: (1) vertical boreholes of recent vintage that were 

surveyed with a modern log suite, (2) depth of penetration that included the complete 

Bakken Formation section and (3) locations near the wells for which cores are available  

 After reviewing the list of potential candidate wells, bit cuttings were selected for 

four type wells. These wells were conventional vertical wells in which samples were 

collected at intervals of ten feet vertical depth (TVD). Vertical wells were chosen to 

ensure the most accurate sampling of the rock units in the stratigraphic column. Samples 

taken from horizontal wells would have introduced a higher amount of potential error 

concerning the true stratigraphic position. Bit cuttings are transported to the surface in the 

slurry of drilling mud and the fluid dynamics in horizontal wells are not as predictable as 

the dynamics for vertical holes. While the samples from horizontal wells are quite 

sufficient for geo-steering and determining host rock unit for drilling purposes, the 

position of origin for vertical well cuttings is much more predictable and appropriate for 

this study. 

 The bit cuttings used in the study samples were field separated, cleaned and dried. 

Their stratigraphic position was predicted and depth corrected, which allowed correlation 

to the wells electric logs. A split sample of each cutting was powdered in a mortar and 
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pestle to ensure consistency of texture, random orientation of grains and ease of mounting 

in the sample trays. Each tray was appropriately marked denoting the well information, 

depth and stratigraphic unit. For example, the first well and the first sample interval was 

labeled Bakken 1.1, the second Bakken 1.2, etc. Each sample tray was placed into the 

sample holder of a Philips powder x-ray diffractometer and scanned across a 2θ range of 

5 º to 50 º, using a Cu x-ray tube, 45kilovolts and 40miliamps. The x-ray instrument is 

housed in the Boone Pickens School of Geology at Oklahoma State University.  

 The resultant peaks, which reflect d-spacings in the crystal lattice of the minerals 

contained in the samples, were adjusted for background interference and analyzed using 

the Philips software suite. Once the major peaks were identified, a list of possible 

candidate compounds was generated from the software’s database. Each major peak was 

identified, and a print out of the diffractogram was obtained for each sample. These 

diffractograms are presented in Appendix A.  

 An aliquot of each sample was analyzed four times. The first was a bulk sample to 

identify all mineral species within the survey range of 2θ 5º-50 º. Samples from the three 

Bakken Formation subunits, upper, middle and lower, were analyzed. Samples from the 

upper and lower Bakken Shales, were prepared for clay extraction following the 

procedure of Kittrick and Hope (1963). Approximately 20 grams of sample was placed in 

a 250ml centrifuge bottle and treated with 100ml +/- 5ml of sodium acetate solution 

(Kittrick and Hope, 1963). Samples were stirred and heated to accelerate the removal of 

carbonate and soluble salts. Each sample was washed multiple times with lab (de-

ionized) water and centrifuged for five minutes at 1500 rpm to remove the sodium acetate 

solution and separate clays from silt and larger grains. The process of washing and 
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centrifuging was repeated until clays remained suspended in the solution and could not be 

forced to the bottom of the tube by centrifuging.  

  

Bulk Sample Run 

The bulk samples returned high intensity silica and calcite peaks. The silica peaks 

in the upper and lower Bakken shales are pronounced, possibly due to the presence of 

detrital sand and silt. The high intensity of carbonate peaks reflect calcite. 

 The samples were then pared down to only the upper and lower Bakken shales. 

This was done to target the shales for the next step in the process: clay extraction. The 

samples were placed in a plastic test tube and mixed with sodium acetate solution. This 

solution contains 82g sodium acetate, glacial acetic acid and water that were mixed 

according to procedure outlined by Kittrick and Hope (1963). The glacial acid is used to 

dissolve carbonate material that may be present. All samples were then heated to 80○ C to 

provide a catalyst to the reaction. Most samples effervesced vigorously as the acid was 

added. As a result, these samples were soaked overnight. The following day samples 

were stirred to suspend all particles and placed in a centrifuge. Samples were centrifuged 

at 1500 rpm for approximately five minutes. This process separated clays from the silt 

and sand-sized quartz material. Samples were decanted and treated again with sodium 

acetate solution to remove carbonate material. This process was repeated if carbonate 

effervesces were detected.  

 After the samples no longer showed any presence of carbonate minerals, i.e. they 

no longer effervesced, they were washed, stirred and centrifuged. This process was 

repeated until a clay suspension was present. A pipette was used to extract suspended 
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clay in solution and small drops of water were applied slowly and neatly on two ceramic 

plates that were heated on a hot plate. This process was repeated until a visible smear 

accumulated on the test plates. One sample plate was identified as “normal” and a second 

as a “glycolated”. They were labeled as N and G respectively. 

 

Extracted (Normal) Clay Analysis 

The plates marked (N) were allowed to cool before being scanned. Each sample 

was scanned from 2θ 0○ to 30○ to determine the mineralogy of clays in the sample. The 

upper limit of scanning range was chosen to include the location of the 100% quartz 

peak, which serves as a point of reference on the diffractogram.  

 

Glycolated Sample Analysis 

The samples split for glycolation were placed in a glass jar containing 

ethyleneglycol for a 24 hour period. Glycolation facilitates the expansion of clays in the 

sample. The samples were scanned in the XRD and showed very little change from the 

extracted (Normal) diffractograms.  

 

Heated Sample Analysis 

Following X-ray analysis, the glycolated samples were placed in a furnace and 

heated to 500o C for 30 minutes to destroy any expanded clay structure that may have 

formed as a result of glycolation. These samples were given an H designation, to indicate 

that they had been heated, and scanned one final time. No change in diffractogram 

patterns of the heated samples indicates that only illite is present and swelling clays such 
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as smectite are not present in detectable amounts. The importance of this will be 

described in the following chapter.  

 

Thin Section Analysis 

 Whole cores were not available for this study, but thin sections from selected 

existing cores were made available by the North Dakota Department of Natural 

Resources. Each thin section was photographed three times using an Olympus BX51 

microscope with a digital camera attachment. Each image was covered by a grid of 100 

squares to facilitate point counting. Magnification was kept constant at 50x to ensure that 

each thin section was somewhat randomly sampled over multiple regions to give the 

maximum amount of information and to prevent skewing the data. Appendix B contains 

the tabulated data for each thin section.  

 Each thin section was imaged in normal light and again in crosspolarized light to 

improve mineral identification and especially to differentiate between calcite and silica. 

Clay-rich regions in thin sections are represented by low light transmission in plane-

polarized light.  
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CHAPTER IV 
 
 

FINDINGS 

 

This study generated over 75 x-ray diffractograms from the bulk, clay extraction, 

glycolated and heated sample analyses. A total of 42 thin sections were provided from the 

North Dakota Geological Survey, from which over 320 thin section photomicrographs 

were generated and point counted. These results comprise Appendix A.  

 

Petrography 

 The analysis of 32 selected thin sections generated approximately 200 photos of 

the three subunits of the Bakken Formation. Each photo was point counted to identify 

constituents and calculate the percentages of clay, quartz and carbonate. Based on thin 

section analyses, four microfacies were established. The compositions of representative 

examples of these microfacies are shown in Table 1:  

 

Thin Section # Facies Identifier Facies Description %Clay %Carbonate %Silt

183 SC Silty Claystone 58 27 15

134 CSC Calcareous, silty claystone, carbonate matrix 11 27 62

145 SSC Silty or sandy, carbonate 14 32 54

137 CSS Calcareous Sandstone 28 41 31   
Table 1. Representative composition of the 4 microfacies described from thin section 

analyses. 
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Facies 1 (Figure 12) (silty claystone) is dominant in the upper and lower 

members. In thin section it is a dark-colored rock containing abundant clay, with lesser 

amounts of detrital silt and carbonate, which occurs as distinct euhedral crystals that align 

along bedding planes. The example thin section comes from the Supron Energy Corp. 

Federal F-6, at a depth of 10,456ft. 

The representative x-ray diffractogram of cuttings (Figure 12a) for this facies is 

from the Texaco Eisenlohr Trust #1-1 at a depth of approximately 10,760ft. Based on the 

correlation of wireline log to cutting sample depth, the x-rayed sample is of the upper 

member of the Bakken Formation and contains mostly quartz (Q), calcite (C), 

ankerite/dolomite (A) and illite (I). The representative peaks for these minerals are 

labeled in Figure 12.  

The representative x-ray diffractograms (Figure 12b,c) of this facies are from 

cores of the upper and lower Bakken. The upper Bakken sample in the Amerada 

Petroleum Co, H.H. Shelvic Tr 1-1 in Section 35, T.150N., R.97W., at a depth of 

10,950ft. The lower Bakken core sample is from the Northern Pump Co., Louis Peterson 

#1 in Section 7, T.161N., R.90W. The lower Bakken sample is from a depth of 7545ft. In 

both of these spectra, illite is a prominent peak at 2θ 8.8º. Other minerals include quartz 

and dolomite.  
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Figure 12. Photomicrograph of microfacies 1 of the Bakken Formation. This rock 
is clay-rich, silt deficient mudrock with minimal carbonate cement, silt 
grains occur scattered in clay matrix. Silt aligned along bedding planes is 
not evident in this image, but was observed in other samples. Bakken 
Formation upper member. Supron Energy Corp., Federal F-6, depth: 
10,456ft. Cross-polarized light, CPL.  
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Figure 12a. Powder x-ray diffractogram of bit cuttings represents Microfacies 1 
showing the presence of illite at 2θ 8.8º. The relative intensity of illite (I) 
relative to quartz (Q) and calcite (C) highlights the abundance of the clay. 
Bakken Formation upper member. Texaco, Eisenlohr trust #1-1. Depth: 
10,760ft.  
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Figure 12b. Powdered x-ray diffractogram of a thin section from core of Microfacies 1 

showing the presence of illite (I) in relative abundance to quartz (Q) and 
ankerite/dolomite (A). Bakken Formation upper member. Amerada Petroleum 
Co., H.H. Shelvic Tract 1-1. Depth: 10,950ft.  
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Figure 12 c. Powdered x-ray diffractogram of cored Microfaices 1 showing the presence 

of illite (I) in relative intensity to quartz (Q). Bakken Formation lower member. 
Northern Pump Co., Louis Peterson #1. Depth: 7545ft. 
 

Facies 2 (Figure 13) (calcareous, silty claystone, carbonate matrix). In thin section 

this microfacies is a medium to dark colored rock rich in carbonate and clay. Silt is 

common, but somewhat minor compared to carbonate and clay. The example thin section 

is from the middle Bakken in the Clarion Resources, Nelson #1-29, from a depth of 

7403ft. 
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Figure 13. Photomicrograph of microfacies 2 consists of silty mudrock with a carbonate-
rich matrix. Calcite and dolomite occur as distinct crystals and as fine-crystalline 
matrix. Bakken Formation, middle member. Clarion Resources, Nelson #1-29. 
Depth: 7403ft. CPL 

 

The representative x-ray diffractogram of microfacies 2 (Figure 13a) is dominated 

by quartz (Q) and calcite (C), which suppress the peaks of minor minerals such as illite. 

The ankerite/dolomite (A) peak is generated by small (silt sized) rhombohedra. This 

diffractogram is from the Chesapeake Operating Osborne #1-1 at a depth of 8762ft. A 

representative core sample of microfacies 2 was not available for x-ray diffraction.  
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Figure 13a. Powder x-ray diffractogram of Microfacies 2. The quartz peak at 2θ 26.6º is 

most intense, reflecting the abundance of detrital silt in the samples. Bakken 
Formation, middle member. Amoco Production, Thompson C #1, 11,401ft. 

 

Facies 3 (Figure 14) (silty or sandy carbonate) occurs in the middle Bakken. In thin 

section it is a light-colored rock containing abundant calcite and dolomite. Detrital sand 

and silt grains are common, but clay matrix is scarce. The example thin section is from 

the Clarion Resources, Nelson #1-29 at a depth of 7424ft. 
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Figure 14. Photomicrograph of microfacies 3. This rock is carbonate-rich with fine 
crystalline matrix and dolomite rhombohedrons. Detrital quartz is angular to 
subrounded silt to very fine grained sand and gray colored in cross-polarized 
light. Bakken Formation, middle member. Clarion Resources, Nelson #1-29. 
Depth: 7424ft. CPL 

 

The x-ray diffractogram for the cuttings of microfacies 3 (Figure 14a) comes from 

a depth of 8772ft in the Chesapeake Operating, Osborne #1-1, and shows the  relative 

intensity of quartz (Q), calcite (C) and ankerite/dolomite (A). Illite is likely suppressed as 

evidenced by an absence of peaks at the positions marked by (I). The representative x-ray 

diffractogram of core is from the middle Bakken in the Northern Pump Co., L. Peterson 

#1 at a depth of 7531ft (Figure 14b). This sample is carbonate as evidenced by the 

dominance of calcite (C) over quartz (Q). Illite (I) is not apparent. 
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Figure 14a. Powdered x-ray diffractogram of microfacies 3 showing the presence of 

quartz (Q) dominated by calcite (C). Ankerite/dolomite (A) is a minor constituent. 
Bakken Formation, middle member. Chesapeake Operating, Osborne #1-1, 
8762ft. 
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Figure 14b. Powdered x-ray diffractogram of cored Microfacies 3 showing the presence 

of quartz (Q) in relative intensity to ankerite/dolomite (A). Bakken Formation 
middle member. Northern Pump Co., Louis Peterson #1. Depth: 7517ft. 

 
 

Facies 4 (Figure 15) (calcareous sandstone) occurs sparingly in the middle 

Bakken. In thin section it is light colored and consists of angular to subrounded quartz 

grains. Euhedral dolomite rhombohedra are evident in some samples and detrital clay is a 

minor component. The representative thin section is from the Clarion Resources, Nelson 

#1-29.  
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Figure 15. Photomicrograph of microfacies 4 showing the sandstone microfacies with 
fine to very fine-grain detrital quartz. Silt is common and calcite and dolomite 
occur as cement. Bakken Formation, middle member. Clarion Resources Nelson 
#1-29. Depth: 7413ft. CPL 

 

The representative x-ray diffractogram of cuttings (Figure 15a) comes from the 

Chesapeake Operating Osborne #1-1, from a depth of approximately 8782ft. It shows 

near equal peak intensities for quartz (Q) and calcite (C). Ankerite/dolomite (A) is also 

present as cement and is represented by a moderately intense peak. Illite (I) is identified 

by the small peak at 2θ 8.8º. The representative x-ray diffractogram of core comes from 

the Northern Pump Co., L. Peterson #1 at a depth of 7542ft. 
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Figure 15a. Powdered x-ray diffractogram of cuttings from sandstone Microfacies 4. The 
relative peak intensities are interpreted to indicate abundant quartz (Q) and calcite 
(C), with lesser amounts of illite (I) and ankerite/dolomite (A). Bakken 
Formation, middle member. Chesapeake Operating, Osborne #1-1. Depth: 8782ft. 
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Figure 15b. Powdered x-ray diffractogram of cored sandstone Microfacies 4 showing the 

presence of quartz (Q) in relative intensity to ankerite/dolomite (A). Northern 
Pump Co., Louis Peterson #1. Depth: 7542ft. 

 

The x-ray results were analyzed for bit cuttings from four wells that form a north 

to south transect across the study area along the Nesson Anticline (Figure 16). In some 

instances proximity of wells whose cuttings were analyzed was within one mile of a 

cored well, for others the analyzed cuttings were for a well greater than six miles from 

the nearest cored Bakken Formation. The location of cores and bit cuttings are shown in 

Figure 12, where the blue icons represent the analyzed thin sections, red icons represent 

sample cuttings locations and yellow icons show locations of logs. 



 47

1 37N 1 00 W
13 7N  10 1W

13 7N  10 2W

13 8N 10 0W
1 38N 10 1W

1 38N 1 02 W

13 9N  1 00 W
13 9N  1 01 W

13 9N  10 2W

1 40N 10 0W
1 40N 10 1W

1 40N 1 02 W

14 1N  98 W
14 1N 99 W

1 41N 1 00 W
14 1N  1 01 W

14 1N  10 2W

1 42N 9 8W
1 42N 9 9W

14 2N  10 0W
1 42N 10 1W

1 42N 1 02 W

14 3N 98 W
1 43N 99 W

1 43N 10 0W
1 43N 1 01 W

14 3N  1 02 W

1 44N 9 8W
14 4N  9 9W

14 4N  10 0W
1 44N 10 1W

1 44N 1 02 W

15 9N  9 0W
15 9N  91 W

1 59N 92 W
1 59N 9 3W

1 59N 9 4W

16 0N  9 0W
16 0N  91 W

16 0N  92 W

16 0N 93 W
1 60N 94 W

1 61N 8 9W
16 1N  9 0W

16 1N  91 W
1 61N 9 2W

1 61N 9 3W
16 1N  9 4W

16 2N 88 W
1 62N 89 W

16 2N  9 0W
16 2N  91 W

16 2N 92 W
1 62N 93 W

1 62N 9 4W

16 3N 88 W
16 3N 89 W

1 63N 9 0W
1 63N 9 1W

16 3N  9 2W
16 3N  93 W

16 3N 94 W

16 4N  8 8W
16 4N  8 9W

16 4N  90 W
1 64N 91 W

1 64N 92 W
1 64N 9 3W

1 64N 9 4W

1 60N 95 W
1 60N 9 6W

1 60N 9 7W
16 0N  9 8W

16 0N  9 9W
16 0N  10 0W

16 0N  10 1W
1 60N 10 2W

1 60N 1 03 W

1 61N 95 W
1 61N 9 6W

16 1N  9 7W
16 1N  98 W

1 61N 99 W
1 61N 1 00 W

16 1N  10 1W
1 61N 10 2W16 1N  1 03 W

16 2N  9 5W
16 2N 96 W

1 62N 97 W
1 62N 9 8W

16 2N  9 9W
16 2N  10 0W

1 62N 10 1W
1 62N 1 02 W16 2N  10 3W

1 63N 9 5W
1 63N 9 6W

16 3N  9 7W
16 3N  98 W

1 63N 99 W
1 63N 10 0W

16 3N  1 01 W
16 3N  1 02 W1 63N 10 3W

16 4N  95 W
16 4N 96 W

1 64N 97 W
1 64N 9 8W

1 64N 9 9W
16 4N  10 0W

16 4N  10 1W
16 4N  10 2W1 64N 1 03 W

14 1N  91 W
1 41N 9 2W

1 41N 9 3W
14 1N  9 4W

14 1N  95 W
1 41N 96 W

1 41N 9 7W

14 2N  9 1W
1 42N 92 W

1 42N 9 3W
1 42N 9 4W

1 42N 9 5W
14 2N  96 W

1 42N 97 W

14 3N  9 1W
14 3N  92 W

14 3N 93 W
1 43N 94 W

1 43N 95 W
1 43N 9 6W

14 3N  97 W

14 4N  9 1W
14 4N  9 2W

14 4N  93 W
14 4N 94 W

14 4N  95 W
1 44N 96 W

1 44N 9 7W

1 45N 91 W
1 45N 9 2W

1 45N 9 3W
14 5N  94 W

1 45N 95 W
1 45N 9 6W

1 45N 9 7W

14 6N 91 W
14 6N 92 W

1 46N 9 3W
1 46N 9 4W

14 6N  95 W
14 6N 96 W

1 46N 9 7W

14 7N  91 W
14 7N 92 W

14 7N 93 W
1 47N 94 W

1 47N 9 5W
14 7N  9 6W

14 7N 97 W

1 48N 9 1W
14 8N  9 2W

14 8N  93 W
14 8N  94 W

1 48N 95 W
1 48N 9 6W

1 48N 9 7W

1 49N 9 1W
1 49N 9 2W

14 9N  93 W

13 6N  1 05 W
1 36N 1 06 W

1 37N 1 03 W
1 37N 1 04 W

13 7N  1 05 W1 37N 1 06 W

13 8N  1 03 W
13 8N  1 04 W

13 8N 10 5W13 8N  10 6W

13 9N 10 3W
1 39N 10 4W1 39N 1 05 W1 39N 10 6W

1 40N 1 03 W
1 40N 1 04 W

14 0N  1 05 W1 40N 1 06 W

1 41N 10 3W
1 41N 1 04 W

1 41N 10 5W

1 42N 1 03 W
1 42N 1 04 W

1 42N 1 05 W

14 3N  10 3W
14 3N  1 04 W

14 3N  1 05 W

1 44N 10 3W
14 4N 10 4W

14 4N 10 5W

14 5N  98 W
1 45N 99 W

1 45N 10 0W
1 45N 1 01 W14 5N  1 02 W

14 5N  10 3W1 45N 10 4W
1 45N 1 05 W

1 46N 9 8W
14 6N  9 9W

14 6N  10 0W
14 6N 10 1W1 46N 10 2W

1 46N 10 3W
1 46N 10 4W1 46N 1 05 W

14 7N 98 W
1 47N 9 9W

1 47N 10 0W
1 47N 10 1W1 47N 1 02 W

1 47N 1 03 W14 7N  1 04 W14 7N  10 5W

14 8N  9 8W
14 8N  99 W

14 8N  1 00 W
14 8N  1 01 W

14 8N  10 2W
14 8N  10 3W14 8N  1 04 W14 8N 10 5W

1 49N 94 W
1 49N 9 5W

1 49N 9 6W
1 49N 9 7W

14 9N  9 8W
1 49N 99 W

1 49N 1 00 W
1 49N 1 01 W

14 9N  1 02 W
1 49N 10 3W

1 49N 10 4W

15 0N  94 W
15 0N 95 W

15 0N 96 W
15 0N 97 W

1 50N 98 W
1 50N 9 9W

15 0N  1 00 W
15 0N 10 1W

1 50N 10 2W
1 50N 1 03 W

15 0N  1 04 W

1 51N 9 4W
15 1N  9 5W

1 51N 9 6W
15 1N  9 7W

15 1N  98 W
15 1N 99 W

1 51N 10 0W
1 51N 1 01 W

1 51N 1 02 W
15 1N  1 03 W

15 1N  10 4W

1 52N 93 W
1 52N 9 4W

1 52N 9 5W
1 52N 96 W

1 52N 9 7W
15 2N  9 8W15 2N  9 9W

15 2N  10 0W15 2N  10 1W
15 2N  10 2W

1 52N 10 3W

15 3N  9 4W
15 3N  95 W

1 53N 96 W
1 53N 9 7W

1 53N 10 1W

1 50N 9 2W
15 0N  9 3W

15 1N  8 8W
15 1N  89 W

15 1N 90 W
15 1N 91 W

1 51N 92 W
1 51N 9 3W

1 52N 8 8W
15 2N  8 9W

15 2N  9 0W
15 2N  91 W

1 52N 92 W

15 3N  88 W
1 53N 8 9W

1 53N 9 0W
15 3N  9 1W

1 53N 92 W
1 53N 9 3W

15 4N 88 W
1 54N 89 W

1 54N 9 0W
1 54N 9 1W

15 4N  9 2W
1 54N 93 W

1 54N 9 4W

15 5N 88 W
1 55N 89 W

1 55N 90 W
1 55N 9 1W

15 5N  9 2W
15 5N  93 W

15 5N 94 W

15 6N  88 W
15 6N 89 W

1 56N 90 W
1 56N 91 W

1 56N 9 2W
15 6N  9 3W

15 6N  9 4W

1 57N 8 8W
15 7N  8 9W

15 7N  90 W
1 57N 91 W

1 57N 9 2W
15 7N  93 W

15 7N 94 W

1 58N 8 8W
1 58N 8 9W

15 8N  90 W
1 58N 91 W

1 58N 9 2W
15 8N  9 3W

15 8N  9 4W

15 3N  98 W
15 3N 99 W15 3N 10 0W

15 3N  1 02 W
15 3N  10 3W

15 3N  10 4W

1 54N 9 5W
15 4N  9 6W

1 54N 97 W
1 54N 9 8W

1 54N 9 9W
1 54N 1 00 W

15 4N  1 01 W
15 4N  10 2W

1 54N 10 3W1 54N 10 4W

1 55N 95 W
1 55N 9 6W

15 5N  9 7W
15 5N  98 W

15 5N  99 W
15 5N  10 0W

15 5N 10 1W
1 55N 1 02 W

1 55N 1 03 W
1 55N 1 04 W

15 6N  95 W
15 6N  96 W

1 56N 97 W
1 56N 9 8W

1 56N 9 9W
1 56N 1 00 W

1 56N 1 01 W
15 6N  10 2W

15 6N  10 3W
15 6N 10 4W

1 57N 9 5W
15 7N  9 6W

15 7N 97 W
1 57N 98 W

1 57N 9 9W
1 57N 1 00 W

15 7N  10 1W
1 57N 10 2W1 57N 1 03 W

15 8N 95 W
1 58N 9 6W

1 58N 9 7W
15 8N  9 8W

15 8N  99 W
15 8N 10 0W

1 58N 10 1W
1 58N 1 02 W

15 8N  1 03 W

1 59N 9 5W
15 9N  96 W

15 9N 97 W
1 59N 98 W

1 59N 9 9W1 59N 1 00 W
15 9N  1 01 W

15 9N  10 2W
15 9N 10 3W

BILLINGS

BURKEDIVIDE

DUNN

G
O

LD
E

N
 V

A
LL

E
Y

MCKENZIE

MOUNTRAIL

STARK

WILLIAMS

SLB WILLISTON - Williston Basin

FEET

0 132,344

PETRA 11/3/2009 1:43:15 PM  
 
Figure 16. Map showing locations of sample wells. Red icons are sample wells with bit 

cuttings, blue icons are thin section locations, yellow are wireline logs.  
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Well #1: 

 The Amoco Production, Thompson C 1 was drilled in T.143N., R.93W. and is 

located along the Nesson Anticline along the southern flank of the basin. The Thompson 

C-1 has the thinnest section of the Bakken Formation of all the sample wells and the 

thinning is apparent in all three members. As such, this well has the least amount of rock 

data to correlate to the other sample wells. X-ray results of the Thompson C-1 cuttings 

indicate rocks relatively rich in carbonate and quartz. The distinction between the 

intensities of the carbonate and silica peaks is not as strong as for the other three sample 

wells. Illite is present in all the samples as the major clay type, but the peaks are 

suppressed. The reported interval of the sample collections, 11,080 to 11,100ft, is shown 

on the wireline log for the Thompson C-1 in Figure 18.  

   

Well #2: 

The second well in the transect (moving from south to north) is the Amoco 

Production, Bang 1-33 that was drilled in T.146N., R.96W. The Bang 1-33 has thick 

upper and lower shales, with a slightly thicker middle member (Figure 19). The bulk x-

ray samples have quartz with the highest intensity, calcite as the second highest intensity 

and lesser intensity peaks for albite and illite. The illite peak increases in diffractograms 

of sample cuttings from the middle member. 
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Figure 18. Portion of the wireline log of the Amoco, Thompson C-1, showing the 

gamma-ray and signatures across the Bakken Formation. The bit cuttings 
sampling interval ranged from 10,080 to 11,110ft.  
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Figure 19. Portion of the wireline logs of the Amoco Bang 1-33 across the interval of 

sampling (11,390 to 11,440ft.) and log characteristics of the Bakken Formation.  
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Well #3: 

 The third well in the transect is the Texaco, Eisenlohr Trust #1-1 drilled in 

T.150N., R.96W. The Eisenlohr Trust 1-1 had a thicker upper, middle, and lower sections 

(Figure 20). All x-ray results of bulk samples from the Eisenlohr indicate silica 

dominance with the quartz peak most intense in all samples. The 100% calcite peak came 

close to parity with the silica peak in two samples but never surpassed it. Illite is present 

in all samples, however, the stronger intensity peaks occur in diffractograms of samples 

from the middle member.  

 

Well #4: 

 The fourth and northernmost well in the transect is the Chesapeake Operating, 

Osborne #1-1 was drilled in T.161N., R.95W. The upper member is thinner in this well 

but the middle and lower members thicken (Figure 21). The bulk analysis shows a 

calcite-rich sample at the top of the sampling interval, with an increase in quartz in 

sample 3.2. The intensity of the calcite and quartz remain similar in sample 3.3, 3.4, 3.6, 

3.7, and 3.9. Calcite is higher in intensity in most samples. The illite peak is in several 

samples, and distinctive in 3.1, 3.8, and 3.9. 
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Figure 20. Portion of the wireline logs of the Texaco, Eisenlohr Trust 1 showing the 

interval of sampling (10,470 to 10810ft) and log characteristics of the Bakken 
Formation.  
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Figure 21. Portion of the wireline logs of the Chesapeake, Osborne 1 showing the interval 

of sampling (8740 to 8830ft) and log characteristics of the Bakken Formation. 
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Discussion 

Core examination by thin section analysis revealed distinct microfacies in the 

Bakken Formation. The microfacies consist of (1) silty claystone, (2) calcareous, silty 

claystone, with carbonate matrix, (3) silty or sandy, carbonate, and (4) calcareous 

sandstone. Powder X-ray diffractograms from bit cutting samples correlated to these  

microfacies show distinct changes in the intensity of the quartz, calcite and illite peaks 

that are interpreted to represent bulk mineralogy. When the position of samples collected 

for x-ray analysis and thin section are plotted on wireline logs for the respective wells, 

correlation between microfacies, bulk x-ray and log characteristics become evident. 

However, it should be noted that correlation between log-recognized units and bulk x-ray 

samples are not as evident in wells with thin subunits of the Bakken Formation.  

For example, distinct changes in the intensity of the illite peak can be evident in 

the diffractograms of samples collected within and immediately below the upper member. 

Samples collected at depths corresponding to the upper member contain limestone 

fragments from the Lodgepole Formation, whereas as a result of lag time, samples 

collected at depths immediately below the upper member contain samples of the shales. 

Assuming samples were collected timely, the drilling fluid system was proper and the 

rate of penetration normal, the lag time for cuttings to reach the surface can be estimated. 

This lag time was factored into the cuttings to log and core correlation.  

 

Sample Well 1 
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 The Amoco Thompson C-1 was sampled four times across the Bakken interval. 

Samples 4.1 (11,080ft.) and 4.2 (11,090ft.) are calcite dominant, which can be interpreted 

as samples from the overlying Scallion and Lodgepole Limestone. Samples 4.3 

(11,100ft.) shows a shift to quartz dominance, but the differences in the intensity of the 

quartz and calcite peaks are not great. Illite is present in all samples, but prominent in 4-4 

(11,110ft.). The slight increase in the illite peak in 4-4 may reflect the lag time for the 

upper Bakken shale cuttings to the surface, but this cannot be stated with confidence. The 

thinning of the Bakken in this well exacerbates the difficulty in correlating cuttings to the 

wireline logs.  

  

Sample Well 2 

 The Amoco, Bang 1-33 was sampled six times across the Bakken interval. Sample 

1.1 (11,390ft.), which according to log depth (Figure 19) was collected during drilling of 

the upper shale. Sample 1.1 is calcite dominated and contains abundant carbonate from 

the shallower Lodgepole Limestone. Using a normal lag time, the upper shale should be 

present in sample 1.3 (11,410ft.) and 1.4 (11,420ft.). The illite peak increases in 1.3 and 

1.4, which may reflect the presence of upper Bakken shale in the cuttings. More 

significantly, quartz becomes the dominant peak in 1.2 (11,400ft.) and remains so in the 

remaining samples. This change is interpreted to reflect the transition from the Lodgepole 

Limestone to the Bakken siliciclastic units. The abundance of quartz in middle Bakken 

microfacies 2, 3 and 4 is seemingly apparent in samples 1.3 to 1.6 (11,410 to 11,440ft.). 

 

Well 3: 
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 The Texaco Exploration, Eislenohr Trust 1-1 was sampled beginning in the upper 

Bakken shale and ending in the lower Bakken shale (Figure 20). Quartz dominated the 

mineralogy in the sampled intervals. The illite peak is present in all samples, but becomes 

prominent in 2.4 (10,770ft.). Sample 2.4 can be logged back to the upper Bakken shale. 

The dominance of quartz and minimalization of calcite in samples 2.5 to 2.8 (10,780 to 

10,810ft.) suggest a sandy middle Bakken as represented by microfacies 4. An x-ray 

diffractogram of the upper Bakken shale in the nearby Amerada Petroleum, Shelvic Tract 

1-1 (Figure 12b) shows a similar profile with prominent illite and quartz peaks.  

 

Well 4: 

Chesapeake Operating, Osborne #1-1 was sampled ten times across the Bakken 

Formation. Bulk mineralogy for samples 3.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 (8740 to 

8830ft.) is interpreted to be calcite and quartz-rich. Samples 3.1 and 3.10 are quartz-rich, 

with calcite being less abundant. Illite becomes apparent in samples 3.2 (8750ft.), but 

decreases in 3.3 (8760ft.) and 3.4 (8770 ft.) and is not evident in 3.5 (8780ft.). The illite 

peak reappears in 3.6 (8790ft.) and is prominent in 3.7, 3.8, 3.9, and 3.10.  

 If expected lag times are used to correlate these samples to the log, illite would be 

expected to peak in sample 3.2 to 3.4 (8750 to 8770ft.). There is a slight peak in 3.2 and 

3.3 that is gone by sample 3.4. The reemergence of the illite peak in sample 3.6 (8790 ft.) 

cannot be explained by the log-sample correlation. There are a number of possible 

explanations for this discrepancy including difference between driller’s depths and log 

depths, the available data are not sufficient to address this problem. 
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Clay Series 

The presence of illite in most samples of the Bakken Formation is evidenced by a 

2θ 8.8 o on X-ray diffractograms. Since previous studies have shown the shales to be 

organic rich and thermally mature (Meissner, 1978) we would expect to see illite in most, 

if not all samples. However, to determine the type of clay present in these cuttings, bulk 

samples were divided, clay extracted, and analyzed. The results include no evidence for 

swelling clays such as smectite following glycolation and heating, only illite. These 

results (Figures 22-24) confirm that illite is the dominant clay in the Bakken Formation.  

A graph representing the relative intensities of illite, calcite, quartz and dolomite 

is shown in Figure 25. The increase in illite intensity in the upper and lower members of 

the Bakken Formation is evident. Quartz is dominant in all samples except for one in the 

middle Bakken in the carbonate microfacies.  
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Figure 22. Powdered x-ray diffractogram of clay extracted sample showing illite (I) and 

quartz (Q) peaks. Chesapeake Operating, Osborne #1-1. Depth: 8750ft. 
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Figure 23. Powdered x-ray diffractogram of heated sample showing illite (I) and quartz 

(Q) peaks. Chesapeake Operating, Osborne #1-1. Depth: 8750ft. 
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Figure 24. Powdered x-ray diffractogram of glycolated sample showing illite (I) and 

quartz (Q) peaks. Chesapeake Operating, Osborne #1-1. Depth: 8950ft. 
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Figure 25. Graph illustrating the relative intensities of illite, calcite, quartz and dolomite.  
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CHAPTER V 
 
 

CONCLUSION 

 The problem statement of this thesis addresses the question “can XRD data 

derived from powdered bit cuttings serve as a proxy for core data in determining the bulk 

mineralogic composition and clay mineralogy”?  The results discussed in the previous 

chapter illustrate that often there is not a sufficient enough correlation between the XRD, 

log and thin section data to conclude that XRD can serve as a universal substitute for core 

data. However the findings supported the following conclusions, which were based on the 

mapping and analytical techniques used in this study: 

(1) The Bakken Formation has distinct wireline log characteristics that allow it to 

be separated into upper, middle and lower subunits, which in informal 

petroleum industry nomenclature are called members.  

(2) The Bakken Formation is thicker to the east of the Nesson Anticline and thins 

uniformly toward the margins of the basin.  

(3) The three subunits (members) and formation boundaries of the Bakken 

Formation can be correlated across the basin, allowing for correlation of bit 

cuttings to thin section from core and logs.  

(4) The x-ray analysis of bulk, clay extracted, glycolated and heated samples 

demonstrate that the Bakken Formation contains illite as the dominant clay 

species. 
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(5) Thin section analysis allowed the Bakken formation to be subdivided into 4 

distinct microfacies. These are silty claystone in the upper and lower shales, 

and calcareous, silty claystone with carbonate matrix, silty or sandy carbonate, 

calcareous sandstone in the middle member. 

(6) Powder x-ray diffraction of properly correlated samples showed bulk 

mineralogic patterns that were consistent with thin section analyses. The 

similarities improved in cuttings from thicker sections of the Bakken 

Formation. A close correlation of x-ray mineralogy to thin section mineralogy 

was more difficult to establish in wells with thin Bakken Formation intervals. 

(7) Cleaned, but further unprocessed bit cuttings are useful in determining 

mineralogy of the drilled units under most conditions if the correction for 

cutting lag times and the stratigraphy of the studied interval are known. 

 

Implications 

 The importance of clay mineralogy to drilling and stimulating of argillaceous 

rocks is summarized by Matthews et. al. (2007) and Xu and Pruess (2004). Bit cuttings 

analysis may provide a less-expensive technique to determine bulk and clay mineralogy, 

that in turn may be used to predict drilling hazards associated with swelling clays and 

elasticity of rocks to be stimulated for oil and gas production. Furthermore, bulk 

mineralogy, coupled with visual examination of cuttings should strengthen correlations of 

x-ray derived data to lithofacies.  
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APPENDICES 
APPENDIX A 
 
 

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of calcite and is 

characteristic of the upper Bakken that contains some Lodgepole

Calcite 39.3

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

This diffractogram contains high amounts of quartz and is 

characteristic of the upper Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, calcite and 

some dolomite and is characteristic of the middle Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, calcite and 

dolomite and is characteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains his amounts of quartz and is 

characteristic of the lower Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz and some 

calcite and dolomite and is characteristic of the lower Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz and is 

characteristic of the upper Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz and is 

characteristic of the upper Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, calcite and 

dolomite and is characteristic of the middle Bakken

Quartz 26.6 Calcite 29.4

Illite 8.8

Quartz 20.9

Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, calcite and 

dolomite and is characteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, however calcite and 

dolomite are barely present and is uncharacteristic of the middle Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz, however calcite and 

dolomite are barely present and is uncharacteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

Quartz 20.9 Dolomite 31.1

Calcite 39.3

This diffractogram contains high amounts of quartz and is characteristic of 

the lower Bakken

Quartz 26.6

Calcite 29.4

Quartz 20.9

Dolomite 31.1

This diffractogram contains high amounts of quartz and dolomite and is 

uncharacteristic of the lower Bakken
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Quartz 26.6

Calcite 29.4

Quartz 20.9

This diffractogram contains low amounts of quartz, however calcite is very 

high and is uncharacteristic of the upper Bakken, this sample possibly 

contains some Lodgepole

Quartz 26.6

Calcite 29.4

Quartz 20.9

Illite 8.8

This diffractogram contains high amounts of quartz, and is characteristic of 

the upper Bakken
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Quartz 26.6
Calcite 29.4

Quartz 20.9 Calcite 39.3

Dolomite 31.1

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken

Quartz 26.6
Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken

Quartz 26.6

Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken

Quartz 26.6
Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and some dolomite 

and is characteristic of the middle Bakken, illite is high showing the possible 

presence of lower Bakken in the sample
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Quartz 26.6
Calcite 29.4

Quartz 20.9
Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz but has high calcite 

content and is uncharacteristic of the lower Bakken

Quartz 26.6

Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz and is characteristic of 

the lower Bakken
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Quartz 26.6

Calcite 29.4

Quartz 20.9 Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz; calcite and dolomite 

are present and is uncharacteristic of the upper Bakken, Lodgepole

presence could be the source of the aberrant data

Quartz 26.6

Calcite 29.4

Quartz 20.9

Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken
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Quartz 26.6

Calcite 29.4

Quartz 20.9
Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is characteristic of the middle Bakken

Quartz 26.6

Calcite 29.4

Quartz 20.9
Calcite 39.3

Dolomite 31.1

Illite 8.8

This diffractogram contains high amounts of quartz, calcite and dolomite 

and is uncharacteristic of the lower Bakken, the presence of the middle 

Bakken could be the source of the aberrant data
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Quartz 26.6

Calcite 29.4

This diffractogram contains no illite and some calcite and is uncharacteristic 

of the upper Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

This diffractogram contains illite and quartz and is characteristic of the 

upper Bakken
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Quartz 26.6

Calcite 29.4

This diffractogram contains no illite and some calcite and is uncharacteristic 

of the lower Bakken

Quartz 26.6

Calcite 29.4

Illite 8.8

This diffractogram contains some illite, calcite is also present and is 

uncharacteristic of the upper Bakken
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Quartz 26.6

Illite 8.8

This diffractogram contains some illite and quartz and is characteristic of 

the upper Bakken

Quartz 26.6

This diffractogram contains no illite and is uncharacteristic of the lower 

Bakken
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Quartz 26.6

Illite 8.8

Calcite 29.4

This diffractogram contains some illite, calcite is also present and is 

uncharacteristic of the lower Bakken

Quartz 26.6

This diffractogram contains no illite and is uncharacteristic of the lower 

Bakken
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Quartz 26.6

Calcite 29.4

Illite 8.8

This diffractogram contains some illite, calcite is also present and is 

uncharacteristic of the upper Bakken

Quartz 26.6

Illite 8.8

This diffractogram contains some illite and is characteristic of the lower 

Bakken
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Quartz 26.6

Calcite 29.4Quartz 20.9

Mg Calcite 40.7

This diffractogram contains no illite, calcite is also present and is 

uncharacteristic of the upper Bakken

Quartz 26.6

Calcite 29.4

Quartz 20.9

Mg Calcite 40.7

This diffractogram contains no illite, calcite is also present and is 

uncharacteristic of the upper Bakken
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Quartz 26.6

Mg Calcite 40.7

This diffractogram contains no illite and is uncharacteristic of the lower 

Bakken

Quartz 26.6

Mg Calcite 40.7

Calcite 29.4Quartz 20.9

This diffractogram contains no illite, calcite is also present and is 

uncharacteristic of the lower Bakken
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APPENDIX B 
 
 

Sample 

# Slide # Description Lithology %S %C %Q Tot 

EC113  same w/xpolar   MB 24 53 23 100 

EC114  C-R MB    0 

EC115  same w/xpolar MB 15 58 27 100 

EC116  L MB    0 

EC117  same w/xpolar MB 20 48 32 100 

EC118 9351 10447.7 L MB    0 

EC119  same w/xpolar MB 22 54 24 100 

EC120  C MB    0 

EC121  same w/xpolar MB 18 49 33 100 

EC122  R w/xpolar MB    0 

EC123  R w/o xpolar MB 14 36 50 100 

EC124 9351 10480 C MB    0 

EC125  same w/xpolar MB 12 21 67 100 

EC126  L MB    0 

EC127  same w/xpolar MB 12 43 45 100 

EC128  R MB    0 

EC129  same w/xpolar MB 23 24 53 100 

EC130 8850 7403 U MB    0 

EC131  same w/xpolar MB 28 30 42 100 

EC132  M MB    0 

EC133  same w/xpolar MB 11 27 62 100 

EC134  L MB    0 

EC135  same w/xpolar MB 28 41 31 100 

EC136 8850 7413 U MB    0 

EC137  same w/xpolar MB 8 17 75 100 

EC138  M MB    0 

EC139  same w/xpolar MB 9 23 68 100 

EC140  L MB    0 

EC141  same w/xpolar MB 12 16 72 100 

EC142 8850 7424 U MB    0 

EC143  same w/xpolar MB 17 38 45 100 

EC144  M MB    0 

EC145  same w/xpolar MB 14 32 54 100 

EC146  L MB    0 

EC147  same w/xpolar MB 14 23 63 100 

EC148 Gone   MB       0 
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EC149 Gone   MB       0 

EC150 Florida 3F6 10449-131 U SH    0 

EC151  same w/xpolar SH 47 27 26 100 

EC152  M SH    0 

EC153  same w/xpolar SH 39 24 37 100 

EC154 Image Bad L SH       0 

EC155 Image Bad   SH       0 

EC156 Image Bad same w/xpolar SH       0 

EC157 

Florida 3F6 10452.5-

132 U SH    0 

EC159  same w/xpolar SH 29 37 34 100 

EC160  M SH    0 

EC161  same w/xpolar SH 33 38 29 100 

EC162  L SH    0 

EC163  same w/xpolar SH 38 42 20 100 

EC164 

Florida 3F6 10456.5-

134 U SH    0 

EC165  same w/xpolar SH 31 30 39 100 

EC166  M SH    0 

EC167  same w/xpolar SH 28 34 38 100 

EC168  L SH    0 

EC169  same w/xpolar SH 22 33 45 100 

EC170 7787 10795 C-RD MB    0 

EC171  same w/xpolar MB 14 39 47 100 

EC172 Gone   MB       0 

EC173 Gone   MB       0 

EC174 Gone   MB       0 

EC175 Gone   MB       0 

EC176  L MB    0 

EC177  same w/xpolar MB 9 54 37 100 

EC178  U-RD MB    0 

EC179  same w/xpolar MB 13 67 20 100 

EC180 gone           0 

EC181 gone           0 

EC182 9351 10456 U SH    0 

EC183  same w/xpolar SH 38 33 29 100 

EC184  M SH    0 

EC185  same w/xpolar SH 34 45 21 100 

EC186  L SH    0 

EC187 Image Bad   SH       0 

EC188 Image Bad   SH       0 

EC189  same w/xpolar SH 46 32 22 100 

EC190   SH    0 
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EC191 9351 10458 U w/xpolar MB 19 41 40 100 

EC192  U MB    0 

EC193  M MB 23 37 40 100 

EC194  same w/xpolar MB    0 

EC195  Retake M MB    0 

EC196  
Retake M 

w/xpolar MB    0 

EC197  L MB    0 

EC198  same w/xpolar MB 18 63 19 100 

EC199 9351 10460 U MB    0 

EC200  same w/xpolar MB 11 73 16 100 

EC201  M MB    0 

EC202  same w/xpolar MB 24 71 5 100 

EC203  L MB    0 

EC204  same w/xpolar MB 16 71 13 100 

EC205 9351 10464 U MB    0 

EC206  same w/xpolar MB 7 67 26 100 

EC207  M-R MB    0 

EC208  Retake MB 9 79 12 100 

EC209  same w/xpolar MB    0 

EC210  L-L MB 6 82 12 100 

EC211  same w/xpolar MB    0 

EC212 9351 10467 U MB 12 77 11 100 

EC213  same w/xpolar MB    0 

EC214  M-L MB 23 55 22 100 

EC215  same w/xpolar MB    0 

EC216  L MB 18 54 28 100 

EC217  same w/xpolar MB    0 

EC218 12785 11261 U MB 6 80 14 100 

EC220  same w/xpolar MB    0 

EC221  M MB 9 82 9 100 

EC222  same w/xpolar MB    0 

EC223  L MB 7 80 13 100 

EC224     MB       0 

EC225     MB       0 

EC226  same w/xpolar MB    0 

EC227 12785 11270.5 U MB 9 86 5 100 

EC228  same w/xpolar MB    0 

EC229  L-L MB 8 89 3 100 

EC230  same w/xpolar MB    0 

EC231 12785 11282 U-R MB 10 86 4 100 

EC232  same w/xpolar MB    0 

EC233  M MB 6 92 2 100 
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EC234  same w/xpolar MB    0 

EC235  L MB 11 82 4 97 

EC236  same w/xpolar MB    0 

EC237 12785 11304 U MB 16 73 11 100 

EC238  same w/xpolar MB    0 

EC239  M MB 9 83 8 100 

EC240  same w/xpolar MB    0 

EC241  L MB 12 72 16 100 

EC242  same w/xpolar MB    0 

EC243 12785 11314 L SH 27 52 21 100 

EC244  same w/xpolar SH    0 

EC245  M SH 22 50 28 100 

EC246  same w/xpolar SH    0 

EC247  U SH 19 48 33 100 

EC248  same w/xpolar SH    0 

EC249 12785 11324 U MB 14 28 58 100 

EC250  same w/xpolar MB    0 

EC251  M MB 10 18 72 100 

EC252  same w/xpolar MB    0 

EC253  L MB 11 42 47 100 

EC254  same w/xpolar MB    0 

EC255 12785 11340 U MB 21 46 33 100 

EC256  same w/xpolar MB    0 

EC257  M MB 13 40 47 100 

EC258  same w/xpolar MB    0 

EC259  L MB 17 29 54 100 

EC260  same w/xpolar MB    0 

EC261 12785 11347.5 U-R SH 28 42 30 100 

EC262  same w/xpolar SH    0 

EC263  M SH 31 60 9 100 

EC264  same w/xpolar SH    0 

EC265  L-R SH 41 40 19 100 

EC266  same w/xpolar SH    0 

EC267 12785 11358.5 U SH 24 54 22 100 

EC268  same w/xpolar SH    0 

EC269  M SH 16 66 18 100 

EC270  same w/xpolar SH    0 

EC271  L SH 19 72 9 100 

EC272  same w/xpolar SH    0 

EC273 4508 7515 U MB 4 12 84 100 

EC274  same w/xpolar MB    0 

EC275  M MB 6 18 76 100 

EC276 Image Bad same w/xpolar MB       0 
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EC277 Image Bad L MB       0 

EC278 Image Bad same w/xpolar MB       0 

EC279  L MB 8 24 68 100 

EC280  same w/xpolar MB    0 

EC281 4508 7504 U MB 9 19 72 100 

EC282  same w/xpolar MB    0 

EC283  M MB 14 31 55 100 

EC284  same w/xpolar MB    0 

EC285  L MB 16 40 44 100 

EC286  same w/xpolar MB    0 

EC287 4508 7517 U MB 8 33 59 100 

EC288  same w/xpolar MB    0 

EC289  M MB 11 23 66 100 

EC290  same w/xpolar MB    0 

EC291  L MB 16 31 53 100 

EC292  same w/xpolar MB    0 

EC293 4508 7503-04 U SH 24 62 14 100 

EC294  same w/xpolar SH    0 

EC295  M SH 8 84 8 100 

EC296  same w/xpolar SH    0 

EC297  L SH 11 82 7 100 

EC298  same w/xpolar SH    0 

EC299 4508 7504-05 U SH 29 52 19 100 

EC300  same w/xpolar SH    0 

EC301  M SH 24 65 11 100 

EC302  same w/xpolar SH    0 

EC303  L SH 19 55 26 100 

EC304  same w/xpolar SH    0 

EC305 4508 7545 U w/xpolar SH 21 74 5 100 

EC306  U SH    0 

EC307  Ua SH 31 51 18 100 

EC308  same w/xpolar SH    0 

EC309 4508 7546  UL SH 65 28 7 100 

EC310  same w/xpolar SH    0 

EC311  UR SH 80 15 5 100 

EC312  same w/xpolar SH    0 

EC313  L SH 85 13 2 100 

EC314  same w/xpolar SH    0 

EC315 4508 7529 U-L SH 85 10 5 100 

EC316  same w/xpolar SH    0 

EC319  L-R SH 86 12 2 100 

EC320  same w/xpolar SH    0 
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Figure 17. Cross section showing portions of the wireline logs of wells in the study area. 
The stratigraphy of the Bakken Formation interval is marked.  
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