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CHAPTER I 
 

INTRODUCTION 

Hypothesis and Research Problem: 

   The magnetic susceptibility (MS) of marine sediments (Liu et al., 2003; Vlag et 

al., 2004) and sedimentary rocks is thought to be controlled by inputs of terrestrial 

sediments containing detrital iron mineral particles (Ellwood et al., 2000).  Although a 

strong relationship has been reported between the content of detrital material and 

increased MS in carbonates, little work has been conducted to show the same relationship 

in shales (Ellwood et al., 2000).  Despite this shortfall, researchers have suggested the use 

of magnetic susceptibility (MS) to correlate important historical geologic boundaries on a 

global basis using both carbonate and siliciclastic rocks (Ellwood et al., 2000; Crick et 

al., 1997, 2002).  One global MS correlation of the Frasnian/Famennian (F/F) boundary 

correlated radioactive black pyrite-rich Woodford shale with carbonates, shales, and 

marls (Crick et al., 2002).  Although the section of Woodford Shale (Hass B) was 

reported to contain no carbonates, researchers correlated it with various F/F carbonate 

dominated and mixed lithology sections around the world, including the Global 

Stratotype and Stratigraphic Position (GSSP) near Coumiac, France.   

All study sections in this global study, except the Woodford Shale, are composed 

predominantly of limestone and marl (Crick et al., 2002).  In assuming detrital control of 

MS in the Woodford Shale, the significance of abundant (Kirkland et al., 1992)
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authigenic (Lyons and Severmann, 2006) paramagnetic minerals, especially pyrite (Nagata, 

1961), is overlooked.   

 The characteristic enrichment of black marine shale in authigenic pyrite, uranium, and 

several transition metals not normally associated with carbonates, is reported by Berner (1970), 

Berner et al. (1979), Cruse and Lyons, (2004), Lyons and Severmann, (2006).  The enrichment in 

uranium, along with potassium and thorium (Swanson, 1961), results in the characteristically 

high gamma-ray magnitude (Fertl, 1979; Fertl and Chingilarian, 1989) in 

Devonian/Mississippian shale units, such as the Woodford Shale (Olsen, 1982).  

Due to its characteristically high gamma-ray magnitude, the petroleum industry has used 

gamma radiation as the basis for stratigraphic correlation of Woodford Shale sections throughout 

the Anadarko Basin since the 1930’s (Fertl and Chingilarian, 1989).  The Woodford Shale 

contains large concentrations of the three radioactive elements in the gamma-ray specific 

elemental assemblage (GSEA), thorium (Th), potassium (K), and uranium (U) (Adams and 

Weaver, 1958; Bloxam, 1964).   In general, the GSEA varies with lithology (Ellis, 1987) or 

geochemical facies (Adams and Weaver, 1958); (Table 1).   Within the Chattanooga Shale, 

(Schmoker, 1980, 1981, 1993) and the Woodford Shale specifically, gamma-ray magnitude and 

GSEA variation as a function of lithology is well documented (Lambert, 1991, 1992, 1994; 

Hester et al., 1988, 1990, 1992; Dennis, 1997).   

Moving basinward in a marine depositional setting, one might expect a decrease in the 

abundance of detrital iron-bearing minerals such as magnetite, reported as the dominant control 

on MS (Crick et al., 2002), with a corresponding increase in both authigenic iron concentration 

and iron aluminum ratios (Fe/Al); (Taylor and McClennan, 1985; Cruse and Lyons, 2004).  
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Table 1.  Gamma-ray specific elemental assemblages and iron valences in idealized mudrock depositional environments. Shale 
elemental assemblages based on Swanson (1961), Bloxam, (1964), several shale standards including: NASC (Gromet et al., 1984), 
PAAS (Taylor and McClennan, 1984), and BSC (Vine and Tourtelot, 1970).  MS strength is based on reports of MS dependence on 
iron valence state in iron oxides (Nagata 1961, Retallack et al. 2003).  Iron valence state and stability is based on reports by Berner 
(1970), Berner et al. (1979), Faure (1991), Rimmer (2004a, 2004b) and Lyons and Severman (2006).  

 

Idealized  
Mudrock 
Depositional 
Environment 
(excluding 
diagenesis) 

Spectral 
Gamma-Ray 
Elemental 
Assemblage 

Gamma-
Ray 
relative to 
other 
mudrocks 

Common Fe 
Valence(s) 

Iron 
Source 
(provenance) 

predicted 
MS 
relative to other 
mudrocks 

terrestrial shale lowest U, very 
high K, highest 
Th 

low gamma Fe (III) 
hematite 

detrital 
low Fe/Al 

high 
 

marine marginal 
reducing shale 
(underclays) 

low U, very high 
Th and K 

med 
gamma  

Fe (II) 
pyrite (from 
siderite) 

mixed  
provenance 

? 

marine marginal 
oxidizing (shale) 

low U, high Th 
and K 

med 
gamma 

Fe (III) 
hematite 

detrital 
low Fe/Al 

high 

marine 
oxidizing/reducing 
(shale) 
(hemi-pelagic) 

med U, high Th 
and K 

high 
gamma 

Fe (II) pyrite 
and 
Fe (III) 
hematite 
magnetite 

mixed  
provenance 
med Fe/Al 

varies 
environmentally 
 with oxygen and  
Fe valence 

deep Marine 
Reducing  
(Pelagic) 

highest U, lowest 
Th,  med K 

highest  
gamma 
 

Fe (II) 
Pyrite 
Fe III 
unstable 

authigenic 
pyrite 
high Fe/Al 

low 

 



 4 

Enrichment in total iron (e.g. authigenic pyrite) and uranium, both precipitated 

directly from seawater in anoxic depositional environments, tends to limit the importance 

of detrital iron in black shale depositional environments associated with extremely high 

gamma magnitudes (Olson, 1982; Lyons and Severmann, 2006).  The finding that MS is 

roughly controlled by detrital iron predicts that MS magnitude based on detrital minerals 

containing iron should decrease as one moves basinward, as previously reported by 

Ellwood et al., (2000). Conversely, in clastic sedimentary rocks such as the Woodford 

Shale, gamma-ray magnitude and concentration of authigenic uranium increase as one 

moves basinward (Swanson, 1961).   Thus, it has been suggested that high gamma-ray 

magnitude is characteristic of environments containing little or no detrital iron 

component (Lyons and Severmann, 2006) in environments where Fe (III) is not 

chemically stable (Faure, 1991). 

 

Research Questions: 

 This study will test the hypothesis that “magnetic susceptibility magnitude will 

vary inversely with gamma-ray magnitude in the Woodford Shale”.  Another aim of this 

study is to estimate the control that detrital iron exerts on magnetic susceptibility in the 

Woodford Shale.  In addition to testing the aforementioned hypothesis, this study will 

provide a perspective on other economically important and scientifically significant 

questions.  These include: 

1.) Does MS or gamma- ray magnitude vary with the well studied mineralogy, 

particle size (Kirkland et al., 1992), and broad lithofacies divisions of the 

Woodford Shale (Lambert, 1991, 1992, 1993)?  The ability to predict Woodford 
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facies changes with MS could have direct bearing on predicting shifts in location, 

quality, thickness, or number of conventional and unconventional reservoirs in the 

Anadarko Basin. 

2.) Is the iron in the Woodford Shale detrital (Crick et al., 2002), or is it 

authigenic (e.g. pyrite); (Kirkland, et al., 1992)?    Using iron/aluminum (Fe/Al) 

ratios it is possible to estimate enrichment of authigenic iron vs. detrital iron 

relative to the NASC and other shale standards, (Vine and Tourtelot, 1970; 

Gromet et al., 1984; Taylor and McClennan, 1985; Quinby-Hunt et al., 1989). 

3.) Is the Lake Classen Spillway exposure of the Woodford Shale at Hass B an 

appropriate magnetic type section for the Frasnian/Famennian (F/F) Boundary in 

North America?  If shale and carbonate are found to be fundamentally different in 

their MS responses, perhaps a section of Devonian carbonates would be a more 

appropriate type section for MS correlations. 

4.) Does magnetic susceptibility vary with lithology or lithofacies?  The ability to 

predict subtle or large lithologic changes through MS variation, extended through 

MS correlation across the Anadarko Basin, could have the potential to aid 

petroleum production.  The previously cited use of spectral gamma-ray analysis to 

delineate large and subtle changes in Woodford Shale lithology is already widely 

employed (Hester et al., 1988, 1990, 1992).    

The simultaneous measurement of gamma-ray specific elemental concentrations 

and magnetic susceptibility at previously studied Woodford Shale outcrops (Krystyniak, 

2003; Krystyniak et al., 2005; Paxton et al., 2006a, 2006b, 2007) will be used to 

determine if there is a predictive correlation between MS and gamma-ray magnitude in 
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the Woodford Shale.  The concentrations of iron, aluminum, and other trace elements in 

Woodford Shale samples will be measured by the method of inductively coupled plasma-

mass spectrometry (ICP-MS).  The provenance of iron in the Woodford Shale, either 

detrital or authigenic, will be determined through comparison of observed iron/ aluminum 

ratios (Feppm/Alppm) to established shale standards such as, the Marine Sciences Group 

Black Shale Composite (BSC); (Vine and Tourtelot, 1970), the North American Shale 

Composite (NASC); (Gromet et al., 1984), and the post Archean Australian Shale 

Standard (PAAS); (Taylor and McClennan, 1985).   

 

Location of Study Area (Outcrops): 

The Chattanooga Shale and its equivalent the Woodford Shale occur over a large 

portion of the United States (Lambert, 1991).  This study will focus on two well studied 

Woodford Shale outcrops in south-central Oklahoma.  The most complete section is the 

outcrop exposed in the quarry and on the west side of Henry House Creek in Carter 

County, Oklahoma, Section 30, T. 2S., R.1E. I.M. (Figure 1).   This outcrop is also 

known as Hass A (Hass and Huddle, 1965).  The second outcrop is located at the Lake 

Classen Spillway in Murray County, Oklahoma, Section 24 T. 1S., R. 1E. I.M. (Figure 1).  

The second outcrop, also known as Hass B, is located approximately 7 miles from the 

first outcrop (Hass and Huddle 1965).  Both outcrops are located in the Arbuckle 

Mountains where long sequences of Paleozoic rocks are exposed in the Arbuckle 

Anticline (Ham, 1986); (Figure 2).   

During a preliminary survey for this study, several Woodford Shale outcrops 

other than Hass A and Hass B, were visited, photographed, and sampled.  The present 
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Figure 1.  Locations of study outcrops.  
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Figure 2. Lithologic cross-section of study area (Ham, 1986).  
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study will also incorporate observations from other Woodford Shale outcrops including: 

the former Woodford Shale type section (Gould, 1925) exposed west of Hass A near the 

town of Woodford, Oklahoma in Carter County, Oklahoma, Section 34, T. 2S., R. 1W. 

I.M., the I-35 southbound exposure of the Woodford on the southern limb of the 

Arbuckle Anticline, west of Hass A, Carter County, Oklahoma, Section 36, T. 2S., R. 1E. 

I.M., the current Woodford Shale type section, the I-35 northbound outcrop of the 

Woodford near Turner Falls (and Hass B) in Murray County, Oklahoma, Section 30, T. 1 

S., R. 1E. I.M (Fay, 1989), the exposure in the Hunton Quarry near Daugherty, 

Oklahoma, Section 6, T. 2S., R. 3E. I.M. and the exposure in the McAlister Cemetery pit 

near Ardmore Oklahoma, Section 36, T. 5S., R. 1E. I.M. 

 

Scope and Limitations: 

The main focus of this study is 2 outcrops: Hass A (Figure 3) and Hass B (Figure 

4), or Henry House Creek and Lake Classen Spillway, respectively. Although no cored 

sections of the Woodford are included in the study, significant amounts of spectral 

gamma-ray data are available for the Woodford Formation and it has been shown that 

gamma-ray lithocorrelation across the Anadarko Basin is a straightforward process (Fertl 

and Chingilarian, 1989; Hester et al., 1990; Dennis, 1997). 

Woodford lithofacies changes have been documented in the form of petroleum 

industry gamma-ray logs (Hester et al., 1990; Lambert, 1993) and resistivity logs (Hester 

et al., 1988) prepared in conjunction with Woodford petroleum production (Dennis, 

1997).  In addition to data collected during this study, data from other Woodford Shale  
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Figure 3. Modified USGS topographic map of the Hass A, Henry House Creek study area.  Woodford Shale beds strike 266o and dip 
49o SE. Note the roughly E-W trend of the Sycamore Limestone hogback and the southern limb of the Arbuckle Anticline (1), an 
outcrop of Caney Shale (2), the top of the Woodford Shale in the ranch quarry (3), the basal contact between the Hunton Limestone 
(Bois d’Arc Limestone) and the Woodford Shale at the confluence of Henry House Creek and an unnamed ephemeral creek dubbed 
“Rattlesnake Creek” in this study (4).  The largest silicified logs were located near the basal contact between the Hunton Limestone 
and the Woodford Shale in the ranch quarry (5).  
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Figure 4.  Modified USGS topographic map of the Hass B, Lake Classen spillway study area.  
Important features include: (1.) the Lake Classen Spillway outcrop of Woodford Shale at Hass B, 
(2.) the resistant hogback of Sycamore Limestone (3.) the approximate trend of Washita Valley 
Fault-Zone, (4.) the location of an unfaulted basal contact between the Henryhouse-Harragan 
Limestone and the Woodford Shale (Phl) (5.) the approximate location of contact between (Ll)  
and (PhR) repeat section of phosphatic Woodford Shale, and (6.) the approximate location of  the 
I-35 north Woodford Shale outcrop on the north limb of the anticline. 
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studies found in the literature will be used to test study results.  Biostratigraphic control for these 

outcrops is provided by other studies (Hass and Huddle, 1965; Over and Barrick, 1990; Over 

1992a, 1992b, 2002; Schwartzapfel and Holdsworth, 1996). 

The most complete outcrop at Hass A has been divided into 969 separate beds of varying 

thickness in this study (Figure 5).  This sub-division of the outcrop into this large number of sub-

units is well beyond the scope of any published Woodford Shale studies (Table 2).  Likewise, 

this study provides a detailed description of the lithologic succession at Hass B (Figure 6); 

(Table 3).  Most Woodford studies subdivide the formation into three main intervals based on 

kerogen content and well log properties (Lambert, 1991, 1992).  Other workers have noted the 

absence of, and need for, detailed Woodford Shale outcrop lithostratigraphy (e.g. Hester et al., 

1990). 

The magnetic susceptibility (MS) employed in this study is volume specific MS (κ).   It 

offers distinct advantages over other forms of MS employed in previous studies.  Volume 

specific MS (κ) is easily measurable in the field or laboratory, allowing repeated measurements 

to be made very rapidly.  Due to the rapid manner in which κ can be measured, several lateral 

MS measurements were made at each point.   

One limit on this study was the occurrence of thin covered intervals at the top and base of 

the Hass A section (Hass and Huddle, 1965).  More significantly, the Hass B section contains 

large intervals that are completely covered or altered by soil forming and tectonic processes.  The 

upper portion of Hass B has been altered by a combination of soil forming and tectonic 

processes, or covered by modern stream deposits.  In these intervals, meaningful MS 

measurements could not be obtained.  In these covered intervals, the study was often limited to 

measurements of bed thickness, lithology, and/or gamma-ray magnitude.   
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Figure 5.  Detailed stratigraphy of the Woodford Shale at Hass A, Henry House Creek (Carter 
County, Oklahoma).  A key and detailed description of stratigraphic units at the Hass A outcrop 
are located in Table 2. 
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Table 2. Detailed lithological description of Woodford Shale at Hass A 
Unit Lithology (Notes) height 

 (m above 
Bois d’Arc 
Limestone 

base) 
 

N 
 
(Mississippian) Transitional Unit → 
Sycamore Limestone 
 

 
above 

Woodford 
Shale 

 
M 

 
Cyclic black fissile shale with corresponding thick black 
blocky siliceous beds - Phosphate nodules present but less 
common up to 65.5 m of section – easily erodible  (U/Th = 
2.1 - 15.3) 
 

 
62.9-69.6 

 
L 

 
Very thin beds cyclic dark blue/gray fissile shale with 
corresponding and numerous extra blue/gray blocky and 
undulating chert, phosphate, and dolomitic beds- Spherical, 
oblate, and elliptical phosphatic nodules coalescing into 
undulating continuous beds-Phosphate nodules throughout-
Easily erodes to lag of phosphate nodules- Contains 
Devonian/Carboniferous Boundary  
 (U/Th = 2.1 - 15.3) 
 

 
56.4-62.9 

 
K 

 
Very thin beds cyclic black-blue/gray fissile shale with 
corresponding and numerous extra very thin beds blue/gray 
blocky chert and laminated hydrocarbon-rich dolomitic 
beds- Spherical phosphatic nodules common in basal beds-
Thick (12.2 cm) laminated dolomitic shale at top-Very 
well indurated  (U/Th = 4.0 – 10.8) (24-32 beds/m) 
 

 
45.7-56.4 

 

 
J 

 
Thick beds cyclic black fissile shale with thin beds of very 
well indurated black blocky siliceous shale- Contains 
common large (5 – 10 cm) pyrite nodules.  Thin pyrite bed 
Near formation U-maximum concentration (U ppm = 
112.6) (U/Th = 6.6 – 11.6) pyrite weathers with rust-
colored residue  
 

 
43-45.7 
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Table 2. Detailed lithological description of Woodford Shale at Hass A (cont.) 
 
I 

Thick beds cyclic black fissile shale with few very thin 
beds of blocky siliceous shale- Contains large (5 – 10 cm) 
pyrite nodules.  (U/Th = 3.1 – 10.7) 
 

 
36-43 

 
H 

 
Thick beds cyclic black fissile shale with corresponding 
thin black blocky siliceous beds-Erodes easily  
 

 
32.1-36 

 
G 

 
Very thick beds cyclic brown/black fissile shale with 
corresponding and very thin brown/black blocky siliceous 
beds. Very poorly indurated. (U/Th = 3.4 - 7.6) 
 

 
27.5-32.1 

 
F 

 
Thick (< 1m) beds cyclic brown/black fissile shale with 
corresponding and very thin brown/black blocky siliceous 
beds. Very poorly indurated. (U/Th = 3.6 - 7.6) 
 

 
25.6-27.5 

 
E 

 
Thick beds cyclic brown fissile shale with corresponding 
and very thin brown/black blocky siliceous beds.  Very 
poorly indurated. (U/Th = 3.1 –  6.5) 
 

 
19.5-25.6 

 
D 

 
Thick (< 1m) beds cyclic dark green/black fissile shale 
with corresponding and extra thin brown blocky siliceous 
beds. Very poorly indurated. (U/Th = 4.2 – 8.1) 
 

 
16.6-19.5 

 

 
C 

 
Thick (< 1m) beds cyclic dark green fissile shale with 
corresponding brown blocky siliceous beds. Fissile 
intervals are poorly indurated. Thick (19.4 cm) blocky 
yellow carbonate bed at top (U/Th = 2.8 – 8.3) 
 

 
6.2-16.6 

 

 
B 

 
Brown/green fissile cyclic (4-11 cycles/m) shale with inter-
bedded brown blocky siliceous shale high K (1-3 ppm)- 
green weathered mudstone, chert pebbles, chert nodules 
and silicified wood (Callixylon sp) at/near base-  Pyrite 
nodules common-(U/Th ratio =2.0 – 8.0) 
 

 
0-6.2 

 
A 

 
(Devonian) Bois d’Arc Limestone (Hunton Group)  
 

Below 
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Figure 6.  Detailed stratigraphy of the Woodford Shale at Hass B, Lake Classen Spillway 
(Murray County, Oklahoma).  A key and detailed description of stratigraphic units at the 
Hass B outcrop are located in Table 4.  
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Table 3. Detailed lithological description of Woodford Shale at Hass B* 

 
Unit 

 
Lithology (Notes) 

 

height 
 (m above 

Henryhouse 
Harragan 

base) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CZ 
Or 

(K*) 

 
 
 
 

LR 

 
Sycamore Limestone. Multiple beds of gray/green 
fresh (yellow-weathered) wackstone with fine sand-
size grains of silica residue.  No macro-fossils, no 
laminations.  Beds are parallel and blocky and 
pervasively shattered.  Individual clasts have 
subconchoidal fracture, some with slicken lines. 
 

 
55.8 m- 
109.1 m 

 
 
 

W 

 
Welden Type Woodford Shale contains grey, pink, 
and tan beds of massive silty shale with septarian 
calcareous nodules (vigorous acid reaction).  
Contains thin discontinuous siliceous beds.  
Bedding features or continuous laminations absent.  
Blocky siliceous Woodford Shale beds in situ at top 
with oblate and spherical phosphatic nodules. 
 

 
 

PhR 

 
Fractured beds of black siliceous and brown-gray 
phosphatic Woodford Shale with oblate and 
spherical phosphatic nodules.  Siliceous beds trend 
roughly 330o. Curved plates of thin deformed 
siliceous shale breccia (no acid reaction) occur as 
float. 
 

 
 
 
 

L1 

 
Multiple beds of grey/green fresh (yellow-
weathered) wackstone (vigorous acid reaction) with 
fine sand size grains silica residue.  Beds dip 
roughly 90o and strike roughly 330o.  No macro-
fossils or laminations observed.  Beds are parallel, 
blocky and pervasively shattered.  Individual clasts 
have subconchoidal fracture, some with slicken 
lines, and calcite fracture-fill.  Phosphatic 
Woodford Shale in situ at base of interval. 
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Table 3. Detailed lithological description of Woodford Shale at Hass B (cont.) 

 
CZ 
Or 

(K*) 

 
Ph1 

 
Woodford Shale.  Fractured beds of welded 
breccia. Original lithology is black siliceous and 
blue-gray phosphatic Woodford Shale with oblate 
and spherical phosphatic nodules.  Curved plates of 
thin deformed siliceous shale breccia (no acid 
reaction) occur as float.  
 

 

 
K 

 
Covered zone in spillway (CZ) 

 
 

 
 

J 

 
Cyclic fissile and siliceous thinly bedded green/ 
brown shale.  (U/Th = 1.5 – 6.2).  Gamma-ray 
Measurements impossible after 55.8 m of section.  
MS measurements impossible after 48.2 m of 
section.  Creek widens balance of outcrop missing, 
faulted, or under water in creek. (U/Th = 1.5 – 6.2) 
 

 
55.8 – 
47.1 

 
 
 
I 

 
Very thick beds of brown/green fissile, fissile 
siliceous, and thin blocky siliceous shale.  Near top 
of interval shale becomes more fissile and fissile 
packages become thicker.  Formation is fractured 
and eroded.  Weathers easily.   
(U/Th = 3.6 – 7.8) 
 

 
40.2 – 
47.1 

 

 
 
 

H 

 
 Couplets of cyclic light brown/green siliceous-
laminated and siliceous thinly bedded shale and 
blocky chert separated by multiple extra repeated 
chert beds.  Fissile beds becoming thicker at top of 
interval.   Interval (.3 m) of small pyrite nodules 
and thin discontinuous pyretic layers at approx 35.7 
m of section.  Outcrop is stained with iron oxide.  
Gamma-ray magnitude maximum at 36.6 m of 
section (U/Th = 4.0 – 6.5). 
 

 
32.7 – 
40.2 

 
 
 

G 

 
Cyclic light brown/green fissile, siliceous-
laminated and siliceous thinly bedded shale with 
corresponding and multiple repeated chert beds (i.e. 
no fissile beds intervening). Highly fractured and 
sheared.  Fissile beds very thin relative to balance 
of outcrop.   (U/Th = 2.8 – 8.2) 

 
25.0 – 
32.7  
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Table 3. Detailed lithological description of Woodford Shale at Hass B (cont.) 
 
 
 

F 

 
Cyclic packages of thickly bedded light 
brown/green fissile and thinly bedded siliceous-
laminated shale with corresponding blocky chert 
beds.  Zone of highly fractured and sheared chert 
and siliceous shale at 20.2 – 21.3 m of section.  
Weathers very easily.  Site of second pool below 
dam begins between reference beds “A8”and “A9”. 
(U/Th = 2.9 – 8.8) 
 

 
 

17.4 – 
25.0  

 

 
 

E 

 
Cyclic light brown/green fissile siliceous and 
laminated shale with corresponding very thick 
blocky siliceous beds.  Resists erosion and forms 
fall in spillway. Contains Frasnian / Famennian (F 
/F) boundary (Over, 2002). (U/Th = 3.3 – 8.7) 

  
13.7 – 
17.4 
 

 
 
 

 
D 

 
 Dark gray or black paper-thin fissile or green 
cyclic fissile and laminated siliceous shale. 
Contains corresponding thick blocky beds green 
blocky siliceous shale.  Small (≈ 1.5 cm) pyrite 
nodules occur at fissile siliceous contacts at several 
levels within interval.  Insoluble nodule at approx. 
12 m of section  (U/Th = 1.9 – 6.5) 

 
7.3 – 13.7 

 
 

C 

 
Dark gray or black cyclic fissile shale. Contains 
several thick blocky beds tan siliceous shale.  
Elliptical septarian carbonate concretions at top of 
interval.  (U/Th ratio = 3.1 – 6.9). 

 
3.2 – 7.3 

 
 
 
 

B 

 
Pink (Munsell 10R 8/4) and light blue/gray 
(Munsell 5G 8/1) gleyed claystone.  Abraded in situ 
carbonate clasts and Callixylon sp within 1m of 
base.  Spillway exposure chaotically folded, 
disrupted and faulted. First blocky bed siliceous 
shale (pink, Ibid.) at approx 1.3m of section.   Thin 
laminated dolomite and elliptical laminated 
carbonate nodules at top of interval.  Site of first 
pool below dam, from carbonate base to reference 
bed “A”.  Contains Acadian Unconformity surface. 
(U/Th ratio = 0.5 – 3.5).   
 

 
 

0 - 3.2 
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Table 3. Detailed lithological description of Woodford Shale at Hass B (cont.) 
 
 
 
 

A 

 
Harragan Formation, Henryhouse Limestone, 
Hunton Group. Thickly bedded blocky tan (fresh) 
dark gray (weathered) wackstone.  Calcite rich 
(vigorous acid reaction).  Contains sand and silt-
size insoluble silica residue. Contains middle 
Devonian Conodonts (Hass & Huddle, 1965).  No 
fossils observed. Strike measured azimuth 315o 
dipping 85o NE. Nearly vertical beds partially 
covered by alluvium and colluvium containing 
clasts of weathered Collings Ranch Conglomerate.   
 

 
 

below 
basal 

contact 
 

 * Intervals A thru J are observed and described in 
the spillway outcrop.  Interval K corresponding to a 
covered zone (CZ) is observed north of the spillway 
and is composed of zones Ph1 thru LR are described 
based on exposures immediately north of the 
spillway outcrop.  Zones L1 thru LR are described 
based on exposures immediately south of the 
spillway outcrop (Ham, 1986; Fay, 1989; Pybus, 
1995). 
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Table 4. Spectral gamma-ray measurements in basal beds of Woodford Shale at Hass A and Hass B. 

Height 
(cm) 

Above/ 
Below 

 Base 

K (wt.%) U (ppm) Th (ppm) U/Th Ratio 

(ppm/ppm) 

Gamma-Ray 

Magnitude 

(API units) 

 Hass  

A 

Hass B Hass  

A 

Hass B Hass 

 A 

Hass B Hass  

A 

Hass B Hass  

A 

Hass 

 B 

152.4 2.3 6.1 32.4 10.4 11.0 18.5 2.9 0.6 340. 255 

137.2 2.0 5.0 30.4 10.7 10,4 20.8 2.9 0.5 317 249 

121.9 2.1 5.4 28.1 10.0 11.8 15.7 2.4 0.6 306 229 

106.7 2.1 4.2 30.5 10.4 12.1 19.2 2.5 0.5 326 227 

91.4 2.0 3.4 33.5 7.9 9.4 13.9 3.6 0.6 338 173 

76.2 1.6 3.4 21.5 10.6 12.5 11.4 1.7 0.9 248 185 

61.0 2.2 3.8 25.4 10.9 11.0 16.0 2.3 0.7 262 212 

45.7 1.6 3.7 20.7 9.0 7.2 13.4 2.9 0.7 220 185 

30.5 1.1 2.9 16.6 6.5 9.2 11.3 1.8 0.6 187 144 

15.2 1.1 2.8 13.0 7.3 6.4 9.9 2.0 0.7 147 143 

-30.4 0.8 Hunton 

Limestone 

2.9 Hunton 

Limestone 

4 Hunton 

Limestone 

0.7 Hunton 

Limestone 

55 Hunton 

Limestone 
-60.8 0.7 0.9 4.3 0.2 38 
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The scope of this study is largely limited to MS in the marine clastic rocks of the 

Woodford Shale. As a result, conclusions and interpretations will be limited by the 

relatively few studies specific to MS in marine clastic sedimentary rock.  Well studied 

MS in clastic terrestrial sediments (Retallack et al., 2003) may be a poor analog for 

testing our results because by definition, sediment is unlithified.  Recent studies have 

reported significant magnetic alteration in sediment by compaction, cementation, 

diageniesis, and redox changes (Liu et al., 2003; Vlag et al., 2004, Evans and Elmore, 

2006).   

Conclusions in this study are further limited by enigmatic differences between 

modern oceans and the so-called Strangelove Oceans or Kellwasser Events (kill-water) of 

the Frasnian/Famennian boundary (House, 2002).  Even the most anoxic modern oceans 

are a poor analog to the oceans of the Devonian (Sepkowski, 1986).
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CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 

Magnetic Susceptibility: 

 Two common types of magnetic susceptibility reported in the literature are 

volume specific magnetic susceptibility (κ) and anhysteric magnetic susceptibility (χ).  

Both are dependent on the strength of magnetic induction or magnetic flux density (B), 

which is defined by the equation; 

B = H + 4π J (Eq. 1) 

where, J is the magnetic moment or strength of magnetization caused by the magnetic 

field of the material per unit volume (Nagata, 1961), and H is a uniform magnetic field 

produced by a magnetic bridge instrument such as the MS2K manufactured by Bartington 

Industries. Volume specific magnetic susceptibility (κ) is defined by; 

κ = J/H (Eq. 2) 

 dividing the volume-specific magnetic susceptibility (κ) by the density of the material 

(ρ) in either CGS or SI units, yields χ, or mass specific susceptibility;    

κ / ρ = χ (Eq. 3). 

Mass-specific magnetic susceptibility, or χ, is not as easily affected as volume-

specific MS by the size of particles (Nagata 1961, Banerjee et al., 1981, Sachs and 

Ellwood, 1981).  Because it is less influenced by size, χ can be employed as a method of 

estimating grain size.  Banarjee et al. (1981) reported that volume-specific MS is
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disproportionately affected by very fine particles of iron minerals relative to mass-

specific MS.  Mass-specific magnetism takes into account the mass of the particle and 

may be a better measure of magnetism if particle size variability is suspected.  

Furthermore, Banarjee et al. (1981) reported that the ratio of anhysteric remnant 

magnetism to mass-specific MS is a better method of characterizing fine particles of 

magnetite than mass-specific MS or volume-specific MS alone.  Ledbetter (1986) used 

this magnetic ratio to determine travel pathways of fine magnetite particles in the 

Argentine Basin.    

Ledbetter (1986) concluded that in poorly energetic basins, circulation currents 

are capable of transporting and reworking deposits of magnetic detritus.  He and Banarjee 

et al. (1981) concluded that magnetic susceptibility is not homogenous in a single modern 

basin because some parts of basins receive disproportionate quantities of magnetite or 

varied particle-size distributions of magnetite.  Neither study concluded that pyrite was 

an important control on MS (Banarjee et al., 1981; Ledbetter, 1986).   

Scheiber (1994) and Scheiber and Baird (2001) describe the reworking of large 

quantities of detrital pyrite in the Devonian Chattanooga Shale (Woodford Shale 

equivalent).  Scheiber (1994) and Scheiber and Riciputi (2004) concluded that detrital 

pyrite, originally deposited as authigenic pyrite, was the most abundant iron species 

present.  Scheiber and Elwood (1993) used MS to determine particle pathways in 

Proterozoic shale, reporting that MS variation was evidence of reworked iron particles.   

 Volume-specific magnetic susceptibility (κ) is dimensionless.  Materials with 

negative κ on the order of 10-6 are called diamagnetic or very weakly magnetic. Those 

materials which have a positive magnetic susceptibility, on the order of 10-6, are defined 
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as paramagnetic or weakly magnetic.  Materials with strong κ on the order of 10-105 are 

defined as ferromagnetic (Nagata, 1961).  Typically, iron III is ferromagnetic, while iron 

II is paramagnetic (Table 1), and substances such as carbonate and silica are diamagnetic 

(Nagata, 1961).  

Both volume-specific and mass-specific MS have been used in a variety of 

sediment studies for varied purposes including: characterizing paleosols (Nagata, 1961; 

Ďurža, 2004; Retallack, et al, 2003), relative dating of cave sediments (Ellwood et al., 

2003b), inferring paleoclimate at an archeological site (Ellwood et al. 1995), inferring 

climate change (Liu et al., 2003; Vlag et al., 2004), characterizing particle sizes and 

currents in modern basins (Ledbetter, 1986), defining sediment provenance (Lui et al., 

2003),  studying enhanced reduction of iron oxide by sulfate reducing bacteria (Li et al., 

2006), studying enhanced methane flux at gas hydrate vents (Novosel et al., 2005), 

studying control and concentration of magnetic particles in the Argentine Basin (Sachs 

and Ellwood, 1988), studying hydrocarbon contaminated aquifers (Zachara et al., 2004), 

studing sediment diagenesis in modern deep-sea fans (Dillon and Bliel, 2004), and 

correlating MS changes in lake sediments along with pollen to determine timing of 

glaciation and thresholds of anthropogenic erosion (Banarjee et al., 1981).   

The sediment-specific studies of MS cited above can be divided into two groups.  

The first group, generally earlier MS studies, often does not take into account the effects 

of lithification, sediment mineralogy and provenance, basin redox trends and diagenesis.  

Instead, early studies focus on sediment particle size, environmental energy and 

morphology of depositional basins.  This group of studies concluded that global MS is a 

function of eustatic sea-level change or weathering of magnetic minerals in soil forming 
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processes and dependent mainly on detrital iron-bearing minerals (Crick et al., 2002).  

Redox alteration of iron minerals by any cause or precipitation of authigenic minerals 

such as pyrite is not considered in these studies and the importance of pyrite as an MS 

control is specifically minimized (Ellwood et al, 2000; Crick et al., 2002).  The second 

group, or more recent MS literature, tends to conclude that MS variation is a function of, 

strongly influenced by, or later changed through environmental geochemistry (Liu et al., 

2003), biological modifications (neogenesis) of sediment after deposition (Zachara et al., 

2004), and rock diagenesis, long after lithification (Retallack, 2003).   

MS has been studied in rocks for many reasons including:  searching for middle 

Devonian asteroid impacts (Ellwood et al., 2003c), searching for K/T impacts (Ellwood 

et al. 2003a), for global lithocorrelation at several Devonian stage boundaries (Ellwood et 

al., 2001; Crick et al. 1997; Ellwood et al., 2006; Crick et al. 2002),  studying MS 

variation as a function of detrital content in carbonates (Ellwood et al., 2000; Gersl and 

Hladil, 2003), correlating in situ outcrops to petroleum well bit cuttings (Ellwood, et al., 

2000), studying Milankovitch cyclicity in the Kimmeridge Clay (Weedon et al., 2004), 

and studying the effect of ferromagnesian calcite cement in sandstone (Nash and Pittman, 

1975). Like MS sediment studies, earlier rock-specific studies appear to focus on 

magnetic detrital particles and particle transport mechanisms and ignore the effects of 

geochemical and biological alteration of sediment, the effects of compaction and 

cementation during the process of lithification, and any subsequent rock diagenesis.  In 

effect, early rock MS studies rely heavily on sediment studies without considering the 

differences between rock and sediment or all the physical and chemical changes that 

occur during the process of lithification.  Later rock-specific studies tend to emphasize 
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biogeochemical alterations to sediment after deposition (Li et al., 2006) and modification 

of MS through rock diagenesis (Retallack, 2003; Evans and Elmore, 2006).   

Studies of MS in terrestrial sedimentary rock are largely limited to descriptions of 

paleosols, where large fluctuations and cyclicity in MS is used as evidence to infer the 

presence of paleosols (Retallack et al., 2003).  MS in Cambrian and early Paleozoic 

sediments allows detection of paleosols despite the destruction of soil structures such as 

root traces (Retallack, et al., 2003).  Volume-specific MS is particularly sensitive to 

maghemite which is an iron oxide commonly produced by soil forming processes 

(Nagata, 1961).  Paleosol identification using MS to detect soil-formed magnetite is often 

made problematic due to pervasive reduction of soil-formed iron minerals and reduced 

MS magnitudes due to burial gleization, surficial gleization prior to burial, or 

groundwater gleization (Retallack et al., 1997, 2001, 2003).  Paleozoic MS signatures are 

similar to profiles in modern gleyed soils.  However, Quaternary paleosols exhibit MS 

magnitudes that are an order of magnitude higher than Paleozoic soils (Retallack, et al., 

2003).     

 Many MS studies of marine sedimentary rocks emphasize the importance of 

detrital content, particularly in carbonates (Ellwood et al., 2000).  The global studies of 

Devonian rocks conclude that MS is a function of detrital input with little discussion of 

MS alteration through redox change, diagenesis, or biological sediment modification after 

deposition of sediment (Crick et al., 1997, 2002; Ellwood et al., 1995, 2000, 2001, 2003a, 

2003b, 2003c, 2006).  Carbonate MS control by detrital fragments of minerals such as 

clay and biotite (Ellwood et al., 2000) is inferred in a study of Silurian carbonates and 
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may have limited application to the carbonates of the Frasnian/Famennian boundary and 

global correlation of upper Devonian Rocks (Crick et al., 2002).    

One practice specific to the global-scale rock MS studies is MS-based global 

correlation between strata of different lithologies (Crick et al., 2002).  In many cases, the 

possibility of lithologically controlled MS variation is not discussed (e.g. Ellwood et al., 

2000, 2001).  MS correlation is also reported in studies where sequences of mixed 

lithology are MS correlated with other sequences of mutually variable lithology (Ellwood 

et al., 2000) or a study in which strata of mixed lithology are correlated to strata of a 

single lithology such as the Woodford Shale (Crick et al., 2002) (Figure 7).    

One important carbonate MS study found magnetic susceptibility to vary directly 

with detrital content in limestone (Elwood et al., 2000).  In this study, MS response was 

reported to be the result of detrital particles that did not contain detrital or soil-formed 

magnetite, reported as the main control in earlier MS studies (e.g. Crick et al., 1997).  

Ellwood et al. (2000) reported the rocks contained little magnetite, and that the largest 

control on MS magnitude was abundance of detrital particles of paramagnetic materials, 

such as clay, ferromagnesian silicates such as biotite, iron sulfides such as pyrite, and 

other materials.  The possibility that the iron sulfides observed in the study were 

authigenic or diagenetic, or the product of reduced iron III, was not discussed.   

While iron sulfides are paramagnetic (Nagata, 1961; Ellwood et al., 2000), the 

iron that produces pyrite is often originally deposited in terrestrial sediments as magnetite 

or hematite in an oxidizing environment (Banarjee et al., 1991, Ledbetter, 1986; 

Retallack et al., 2003),  
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Woodford ShaleWoodford Shale
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Figure 7.  MS based global correlation across the Frasnian/Famennian boundary. 
Important to this study are:  (A) the section used for comparison in the recent global MS 
study at the La Serre C in the Montagne Noir, southern France, near (B) the Global 
Stratotype Stratigraphic Position (GSSP) of the Frasnian/Famennian Boundary at 
Coumiac, France, and (H) the Oklahoma Woodford Shale at Hass B, (Crick et al., 2002). 
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or may originate as an authigenic precipitate from iron scavenged from continental 

shelves (Berner, 1970; Berner et al., 1979 Raiswell, et al., 2001; Lyons and Severmann, 

2006).  Important potential sources of iron in authigenic pyrite that have been overlooked 

in global MS studies (Crick et al., 1995, 2002; Ellwood et al., 1995, 2000, 2001, 2003a, 

2003b, 2003c, 2006) include: dissolved iron (Fung et al., 2000) and dissolved or 

suspended iron (Cruse and Seewald, 2001; Seewald et al., 2003; Cruse and Lyons, 2004) 

with hydrogen sulfide (Seewald, et al., 2003) also sourced from hydrothermal fluids at 

mid ocean ridges or oceanic rift systems.   

It is important to note that calcite, and therefore limestone, may have large and 

variable proportions of a ferromagnesian component that results from the burial 

diagenesis or alteration of primary limestone to dolomite (Nash and Pittman, 1975; 

Sternbach, 1984; Weedon, 2004).  This type of alteration is common (Deer, et al., 1999) 

and variable in extent (Evans and Elmore, 2006).  Diagenetic enhancement of iron 

concentration in primary limestone is reported to result from pressure solution (Evans and 

Elmore, 2006) and interaction of fresh water and seawater along an interface (e.g., Dorag 

Model; Badiozamani, 1973).  The process of dolomitization in all models mentioned 

above involves additions (Deer et al., 1999) of paramagnetic transition metals to 

diamagnetic (Nagata, 1961) primary limestone, thereby diagenetically altering the 

original MS of the carbonates.      

The magnetic susceptibility of carbonates appears to be generally lower than shale 

and other sedimentary detrital rocks (Nash and Pittman, 1975; Ellwood et al., 2000; 

Weedon, 2004).  In studies specific to the subject of global MS correlation, shifts in MS 

at study outcrops are reported to be global-scale shifts, yet the largest reported 
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fluctuations in MS occur at lithologic transitions and could also be reasonably explained 

as functions of local changes in lithology or facies changes in individual stratigraphic 

successions reported at study sites (Crick et al., 1997, 2002; Ellwood et al., 1995, 2000, 

2001, 2003a, 2003b, 2003c, 2006); (Figure 8).   

Due to the occurrence of large pyrite nodules and framboids in the Woodford and 

Chattanooga Shale (Kirkland et al, 1992) and the generally authigenic provenance of 

pyrite (i.e. reduced iron) in black shale (Lyons and Severmann, 2006), it is reasonable to 

suspect that reducing processes may have suppressed the MS magnitude of any detrital 

iron which was originally deposited in the oxidized ferromagnetic form (Berner, 1979; 

O’Brien, 1995; Crick et al., 1997, 2002).  Precipitation of authigenic iron pyrite in shale 

has been reported by many authors (Berner et al., 1979; Rickard, 1970; Cruse and Lyons, 

2004; Lyons and Severmann, 2006).  Three possible methods of pyrite precipitation are 

replacement of bacteria and other microorganisms, crystallization of inorganic gels, and 

pseudomorphic replacement of small gas bubbles in sediment (Berner et al., 1979).   

The geochemical ratio of pyrite to pyrite plus reactive iron is called the degree of 

pyritization (DOP) and is employed as a method of inferring euxinic or anoxic 

environmental conditions (Berner et al., 1979; Rimmer, 2004a, 2004b) associated with 

carbon sequestration in Devonian black pyrite-rich marine shales (Leventhal and 

Hosterman, 1982; Russell, 1985). Reactive iron includes iron oxides and some minor 

silicate phases.  Further, Devonian age Chattanooga Shale was found to contain only iron 

in the (II) state; even though the iron had often been deposited in the (III) valence state 

(Leventhal et al., 1983).  The interpretation of MS signature in landward portions of 
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Figure 8.  Magnetic susceptibility and lithology at the Frasnian/Famennian (F/F) 
boundary at Frasnes, France.  This F/F magnetic comparison section (<3 m) was 
correlated with the Woodford Shale (25 m) at Lake Classen Spillway (Hass B) in 
Oklahoma.  The largest changes in (normalized) MS, reported as global cycles appear to 
coincide with lithofacies changes (A thru H) in the stratigraphic colomn (Crick et al., 
2002). Note MS scale is not linear.
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basins is even more problematic with rapid, repeated, or oscillatory changes in soil and 

rock MS through burial, gleization and flooding gleization (Retallack et al., 2003), 

repeated oscillations in the presence and depth of any oxygen minimum zone (OMZ) 

(Larasoaña et al., 2006), changes in oxygen abundance through corresponding changes in 

global circulation, changes in elevation of thermoclines, and changes in biological 

productivity (Wignall and Myers, 1988).   

Many locations in the Chattanooga Shale and its equivalents have been observed 

to undergo oscillations in marine oxygen content (Scheiber, 1994), which have been 

found to be partially controlled by paleobathymetry (Russell, 2004) and differing rates of 

tectonic uplift (Hester et al., 1992) in Devonian basins of North America (Charpentier 

and Schmoker, 1982; Ettensohn, 1983; Hester et al., 1990; Schmoker, 1980, 1983).  

Geochemical studies of the Chattanooga Shale suggest that time equivalent Woodford 

Shale outcrops will differ in their depositional oxygen content (Leventhal and Hosterman, 

1982; Leventhal, 1983, Beier and Hayes, 1989).  Other studies infer variable oxygen 

content in Devonian black shale from the following: degrees of pyritization (Rimmer, 

2004a, 2004b), presence of pyrite spheres and framboids (Kirkland et al., 1992; Gordon 

and Baird, 2001), petroleum source rock quality (e.g. total organic carbon, Hester et al., 

1992), gamma-ray magnitude through varying uranium concentration (Hester et al., 

1988), occurrence and thickness of carbonate intervals (Amsden et al., 1968), conodont 

assemblage and occurrence (Over, 1992a, 1992 b, 2000, 2002), total thickness of black 

shale intervals, number of benthic faunal species (Wignall and Myers, 1988), and shale 

lamination recording the suppression of bioturbation (Hallam, 1966, Cluff, 1980).  

Sediments rich in organic matter are particularly susceptible to alteration of original MS 
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signatures, especially terrestrial sediment subjected to immersion in water, burial, or 

other processes which might change the amount of available oxygen (Retallack et al., 

2003). 

 Variation of environmental oxygen content and degree of pyritization have 

significance in petroleum exploration because time-equivalent units are variable in 

carbon content (Leventhal and Hosterman, 1982) and hence, source rock potential in 

time-equivalent units is variable (Klemme and Ulmishek, 1991; Tissot and Welte, 1984).  

Oxygen content and DOP have direct bearing on the alteration of MS magnitude through 

reduction of primary magnetite to pyrite as anaerobic bacteria reduce soil-formed iron 

oxides during metabolism of soil-formed organic carbon by anaerobes in terrestrial 

environments (Retallack, 2003) or similar reduction of iron oxides during metabolism of 

carbon in marine environments (Fung et al., 2000).    

Abundant pyrite in the form of framboids, layers, ooids, and nodules is reported in 

black shales (Berner et al, 1979; O’Brien, 1995) and Devonian shales (Scheiber and 

Riciputi, 2004). The Woodford Shale contains large pyrite nodules (Kirkland et al., 

1992).  The majority of pyrite that occurs in marine shale is authigenic or diagenetic 

(Scheiber and Baird, 2001).  Some of the largest values of MS in the Woodford Shale 

may be accounted for by large nodules and layers of apparently authigenic pyrite 

(Kirkland et al, 1992) since black shale is reported to contain little or no magnetite (Crick 

et al., 2002).  Scheiber and Baird (2001) concluded that accumulations of authigenic 

sand-sized pyrite grains were often reworked far from basin margins, and the only 

important local sources of sand-sized or larger sediment in black shale.  Neither 

authigenic pyrite precipitated from seawater (Lyons and Severman, 2006), reworked 
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authigenic pyrite, originally precipitated from seawater (Scheiber and Baird, 2001), nor 

diagenetic nodules of pyrite (Kirkland et al., 1992) strongly relate to primary deposition 

of soil-formed detrital iron (Crick et al., 2002).  Anoxic and euxinic environments, 

associated with high degrees of pyritization, were favorable to deposition of high quality 

petroleum source rocks during: the Silurian and Devonian (Lüning et al., 2000), the 

Pennsylvanian (Coveney et al., 1991), the Mississippian (Montgomery et al. 2005), and 

the Jurassic (Raiswell et al, 2001).  

Thick accumulations and high concentration of authigenic iron is also possible in 

marginal marine siliciclastic sediments (Adams et al., 2006) or as bog ore associated with 

coal deposits and wetland soils (McCarthy, 2002).  In brackish environments, siderite is 

precipitated from pore water as rhizoconcretions in association with sulfate reducing 

bacteria (Adams et al., 2006).  This concentration of iron may not alter the total mass of 

iron in a given system, but it would have the effect of altering the MS pattern by 

enhancing MS in some strata while simultaneously diminishing MS in other strata.  

Altering iron in the (III) valence state to the (II) valence state may diminish the MS of the 

whole system, (Retallack, 2003) and depending on occurrence of impermeable layers of 

sediment, affect some strata disproportionately as compared to others (Sternbach, 1984).  

Differences in basin morphology, supertidal erosion, tectonic uplift, flooding, or any 

other processes not absolutely homogeneous over time and space could enhance or 

diminish iron concentrations and alter MS magnitudes or overprint MS signatures in 

sedimentary rock (Sternbach, 1984). 

Little definitive evidence exists as to whether the higher global MS signal is 

produced during eustatic highstand or eustatic lowstand.  MS magnitude is reported to be 
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generally low during highstand and high during lowstand while being highest at 

maximum flooding surfaces (Crick et al., 1997, 2002; Ellwood et al., 1999, 2000, 2006).  

Changes in biological diversity and carbonate production are found to cause changes in 

MS magnitude and rock composition (Ellwood et al., 2000).  Carbonate occurrence and 

content in marine depositional environments at all scales has been inferred to result from 

changes in water temperature as a function of regional paleolatitude, changes in ocean 

currents, changes in water oxygen content, excessive hydrogen sulfide, biological 

extinction, biological succession, rifting, changes in sediment-source detritus which 

destroy filter-feeding organisms, basin opening or closure in areas near or below mean 

sea level, and changes in glaciation induced by tectonic drift of a land mass into or out of 

high latitude positions exclusive of global climate change (McGee, 1996).  These controls 

on the organisms that produce carbonates can work in combinations causing complexity 

in geologic interpretations described by Schumm (1991).  In moving from one basin to 

another or from one lithology to another, environmental, biological, sediment-source 

mineralogy, and energy regime changes to original MS magnitude may render MS 

pattern correlation between basins difficult.   

In general, global rock-specific MS studies employ interpretations dependent on 

conclusions from sediment and paleosol studies as lines of evidence in MS interpretations 

of rock (Crick et al., 1997, 2002; Ellwood et al., 1999, 2000, 2006).  Contradictions 

between sediment-specific MS studies are present in the literature.  In a paleosol study by 

Ellwood et al. (1995) the enhanced magnetic susceptibility measurements of hearth 

sequences at an archeological site are attributed to reduction of hematite by fire.  This 

report of MS increase through iron reduction conflicts with other reports that reduced 
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iron compounds are paramagnetic and soil-formed hematite is ferromagnetic, or more 

specifically, canted antiferromagnetic (Nagata, 1961).  Chemical reduction of iron 

compounds has been reported elsewhere to diminish the MS magnitude rather than 

increase it (Retallack et al., 2003; Novosel et al, 2005).   

Lithification may have the potential to increase or dampen various types of 

magnetic susceptibility as a function of increased aggregate size of magnetic substances 

contained in rock (Nagata, 1961).  Differential compaction in the Woodford Shale 

(Rottman, 2000) and other shales (Baldwin and Butler, 1985) has the potential to affect 

volume specific MS, dependent on the volume of magnetic material in a unit volume.  

Introduction of dissolved magnetic iron and other metals to sediment (Cruse and Lyons, 

2004; Lyons and Severmann, 2006) or rock (Nash and Pittman, 1975; Evans and Elmore, 

2006) is reported.  Likewise, removal (Retallack et al., 2003), and chemical alteration of 

magnetic material in sediment (Retallack et al, 2003; Li et al., 2006) and rock (Zachara, 

2004) have been reported.  When the valence of iron in sediment is altered by sediment 

oxidation (Larasoaña et al., 2006) or reduction (Fung et al., 2000) either chemically 

(Novosel et al., 2005) or biogeochemically (Zachara, 2004; Li et al., 2006), MS values 

may be affected by orders of magnitude (Nagata, 1961). 

For example, Sternbach (1984) reported that burial diagenesis in the Anadarko 

Basin decreased the iron concentration of the Sylvan Shale while increasing the iron 

concentration, up to 5 weight percent, of the overlying Hunton Limestone.  Sternbach 

(1984) reported that these simultaneous diagenetic alterations were gradational in 

individual well-cores and not homogeneous across the Anadarko basin and controlled by 

a complicated combination of: distance above or below the Sylvan Shale/Hunton 
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Limestone, the variable depth of burial of the Sylvan Shale-Hunton Limestone contact 

across the Anadarko Basin, the original basin morphology, the smectite-illite ratios in the 

primary Hunton Limestone, the extent and distribution of prior dolomitization which had 

replaced calcium with magnesium, thereby preventing further diagenetic increases in iron 

content and preservation of primary porosity in the Hunton Limestone. 

While this study (Sternbach, 1984) was not directly focused on MS, it reported 

simultaneous diagenetic increases and decreases in the concentration of iron, the 

dominant  magnetic substance in rock (Nagata, 1961) and dominant control on rock MS 

(Crick et al, 2002, Retallack, 2003).  Of direct importance to this study, Sternbach (1984) 

reported that the Woodford Shale had not contributed significant quantities of iron in the 

observed economically important diagenesis of Hunton Limestone.  Sternbach (1984) 

concluded that flow of iron-rich fluids and hydrocarbons had been upwards 

stratigraphically in nearly horizontal strata.  Because the Anadarko Basin contains other 

simlar stratigraphic successions (e.g. Woodford Shale succeeded by Sycamore 

Limestone), it is possible that the MS pattern of the Anadarko Basin may have several 

important diagenetic controls not considered in global models of MS controlled by 

detrital sediment alone (Crick et al., 2002).     

Global MS studies, in focusing on detrital iron, may have overlooked several 

significant sources of iron in sediment and rock.  Hydrothermal vents can provide a 

source of authigenic iron in marine depositional environments in dissolved or suspended 

form (Cruse and Lyons, 2004).  Hydrothermal vents in modern oceans are associated 

with magmatic arcs (Cruse and Lyons, 2004), ocean trenches (Ballard et al., 1984) and 

mid-ocean ridges (Crane and Ballard, 1980, Ballard et al. 2001).  Studies of modern 
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oceans indicate that up to 9% of the ocean’s total iron budget is dissolved in seawater 

(Fung et al., 2000), while dissolved iron accounts for increases in MS during diagenesis 

of carbonate (Evans and Elmore, 2006).  These findings demonstrate significant marine 

sources of non-detrital paramagnetic iron in sediment and the ability of marine 

depositional systems to alter carbonate magnetism.  Dissolved iron also provides a 

potential source for precipitation of authigenic pyrite in black marine shale (Rimmer, 

2004a, 2004b; Cruse and Lyons, 2004) in environments where dissolved iron is the 

largest or only significant source of iron (Lyons and Severmann, 2006).  Although Evans 

and Elmore (2006) reported diagenetic MS changes in carbonates, they concluded that  

assemblages of iron minerals present and therefore MS strength were primarily due to 

presence or differences in redox conditions during burial and deformation.  Novosel et al. 

(2005) found methanogenisis caused detrital magnetite in marine sediment, to be reduced 

to pyrite, inducing a corresponding decrease in MS strength of 35 n-T (nano Teslas).  

Zachara et al. (2004) found that bioavailable iron (III) was reduced to iron (II) as the 

result of bacterial methanogenesis of oil contaminants in an aquifer, while significant 

alteration of paleosol MS was reported to be due to both the reduction of iron (III) and 

the dissolution of soil-formed magnetite and the subsequent diagenesis of rock after 

lithification (Retallack, 2003).  Unless rocks or sediments have similar histories, even 

rocks or sediments with similar ages and identical compositions will likely yield vastly 

different MS measurements.  In focusing on detrital iron, some MS studies have 

effectively ignored the importance and widespread precipitation of authigenic pyrite and 

other iron (II) compounds in black shale, black limestone (Wendt and Belka 1991), and 

coals (McCarthy, 2002).  
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Authigenic pyrite or reworked authigenic pyrite has been concluded to imply 

reducing or anoxic conditions prevalent in Devonian black shales (McGee, 1996; 

Scheiber and Baird, 2001; Dunk et al., 2002; Lüning and Kolonic, 2003; Lüning et al, 

2004; Scheiber and Riciputi, 2004) and Devonian limestone (Wendt and Belka, 1991).  In 

Europe especially, global MS studies (Crick et al., 2002) appear to have overlooked the 

importance of pyrite contained in Kellwasser (kill-water) limestones (Joachimski and 

Buggisch, 1993).  Global occurrence of pyrite-rich black shale (e.g. petroleum source 

rock) at important Devonian stage boundaries has been reported by Klemme and 

Ulmishek (1991).  Similar reports in: America (Beier and Hayes, 1989), Africa (Lüning 

et al., 2003), and South America (Moretti and Martinez, 1995) underscore the importance 

of pyrite in Devonian interpretations.  The rocks associated with the F/F boundary imply 

extraordinary if not unique geochemical conditions and anoxia (Joachimski and 

Buggisch, 1993; Gĕrsl and Hladil, 2004) associated with mass extinction of the marine 

organisms (McGee, 1996) that produced carbonates (Sepkowski, 1986; Sorauf and 

Pedder, 1986), anomalous concentrations of pyrite in black carbonates (Wendt and Belka, 

1991), and global-scale deposition of petroleum source rocks like the Woodford Shale 

(Lüning and Kolonic, 2003; Lüning et al.,  2003).  Black shales, as petroleum source 

rocks, undergo significant and variable biogeochemical changes associated with high 

TOC (Olsen, 1982), during natural gas generation in shale (Broadhead et al., 1982), and 

thermal petroleum source-rock maturation (Cardott and Lambert, 1987).  Some portions 

the Woodford Shale are both a source rock and minor reservoir for oil and natural gas, 

underscoring the economic and scientific importance of the diagenetic changes in the 

Anadarko Basin.   
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The relative contributions of detrital and authigenic iron in marine shales are 

commonly estimated by measuring the concentrations of iron and aluminum in shale 

samples and then comparing the calculated Fe/Al ratios to standard values from the Post 

Archaean Australian Shale Standard (PAASS), the North American Shale Composite 

(NASC), and the Marine Sciences Group Black Shale Composite (BSC) (Vine and 

Tourtelot, 1970; Gromet et al., 2004, Taylor and McLennan, 1985; Quinby-Hunt et al., 

1989, Cruse and Lyons, 2004; Doveton and Merriam, 2004; Lyons and Serverman, 2006; 

Tribovillard et al., 2006).  Aluminum as a constituent in shale has been treated as a 

conservative tracer in siliciclastic deposition with the degree of iron enrichment estimated 

by comparisons to Shale Standard (Taylor and McClennan, 1985).  Lyons and Severmann 

(2006) concluded that iron provenance in black shales such as the Woodford Shale was 

exclusively authigenic, originating as pyrite precipitated directly from seawater.  

Kirkland et al. (1992), reported that the Woodford Shale was minimally influenced by 

terrestrial sediment, with a particle size distribution dominated (98%) by particles smaller 

than silt, predominantly radiolarian tests of opaline silica.   These observations conflict 

with several reports in Global MS correlation studies that iron in Devonian black shale 

from the Frasnian/Famennian, (Crick et al, 2002), Eifelian/Givetian (Crick et al., 1997), 

and middle Devonian (Ellwood et al., 2006) has a detrital provenance and MS is 

controlled by detrital minerals containing iron (Ellwood et al., 2000) or detrital magnetite 

(Crick et al, 1997).  Large numbers of studies in black shale (Berner et al., 1979; Cluff, 

1980; Leventhal, 1983; Leventhal and Hosterman, 1982; Algeo, 2004; Rimmer, 2004a, 

2004b) report that Fe II (i.e. sulfide) is the dominant iron species and not Fe III (i.e. 

oxides) because iron (III) is relatively soluble in water (Retallack, 2003) and very 
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unstable in environments with low concentrations of oxygen or low pH (Faure, 1991). 

Gamma-Ray Spectrometry 

Shale bulk gamma-ray studies (Ellis, 1987) and spectral gamma-ray analysis 

(Fertl and Chingilarian, 1989) both commonly measure total gamma-ray magnitude in 

API units (Belknap et al., 1959; Schmoker, 1981; Doveton and Merriam, 2003).  The 

gamma radiation measured by the logging tools results from the radioactive decay of 

uranium, thorium, and potassium, and their respective daughter products (Adams and 

Weaver, 1958).  Gamma radiation measurements are a function of the energy liberated 

when unstable nuclei disintegrate (Ivanovich and Harmon, 1982).  Although the 

composition of shales varies widely, the gamma-ray magnitude and gamma-ray specific 

elemental assemblage of shales remains strikingly different from other clastic 

sedimentary rocks or carbonates (Swanson, 1961). Black marine shale in particular is 

very radioactive (Swanson, 1961).  Shale gamma-ray magnitude has been used as a proxy 

for organic richness in the Woodford Shale (Olson, 1982).  

As a common practice, gamma-ray logs are not plotted full scale (e.g. above 150 

API) and the individual contributions of Th, U, and K are combined by use of an 

algorithmic equation (Doveton and Merriam 2004).  The equation for gamma-ray 

magnitude expressed in API units (American Petroleum Institute) is: 

γAPI = 4[Th] + 8[U] + 16 [K] (Eq. 4) 

where γAPI is the gamma-ray magnitude measured in API units, Th and U represent the 

concentrations of these elements in parts per million (ppm), and K is expressed in terms 

of weight-percentage (Ellis, 1987).  Gamma-ray magnitude in API units, historically 

employed to define relative stratigraphic position of the more important sandstone and 
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carbonate petroleum reservoirs, is calibrated using an artificial concrete formation in 

Houston, Texas (Ellis, 1987). The artificial formation of known composition (24 ppm Th, 

12 ppm U, and 4% K) generates 200 API units (Belknap, 1959).  By differentiating rocks 

based on these three constituents, it is possible to infer facies changes through differences 

in their respective abundances in rocks, controlled by lithology and depositional 

environment (Adams and Weaver, 1958).  

 Much information can be lost on bulk gamma-ray logs (e.g. the use of the API 

equation) and spectral gamma-ray analysis has been successfully used to locate 

previously unrecognized productive basal intervals of uranium-rich, oil-rich, Misener 

Sandstone in the Woodford Formation (Dennis, 1997).  Gamma-ray logging of well bores 

has been used to correlate productive zones and identify lithologies in exploration for 

petroleum since the 1930’s (Fertl and Chingilarian, 1989).  Additionally, spectral gamma-

ray detectors measure the separate contributions of uranium (U), potassium (K), and 

thorium (Th) in rocks and sediments (Ellis, 1987).  Petroleum engineers routinely use the 

gamma-ray specific elemental assemblage to determine clay composition (Ellis, 1987).  

Specific clay composition and preservation of original rock porosity have been shown to 

be affected by alteration of clay composition and iron content through diagenesis 

(Sternbach, 1984).  Original depositional environment, sediment source, and particle size 

can be estimated from the quantity and composition of clay minerals in well-bores (Ellis, 

1987).  In petroleum exploration, inferred depositional facies changes often relate to 

primary porosity, permeability and diagenetic changes in reservoirs (Sternbach, 1984).  

Oil production potential is commonly evaluated as functions of clay content, mineralogy, 



 44

and facies change of sedimentary rocks through spectral gamma-ray analysis (Ellis, 

1987).  

Spectral gamma-ray logs, like older gamma-ray magnitude logs, are commonly 

used in petroleum exploration to correlate strata, evaluate lithology, and evaluate changes 

in depositional environment (Ettensohn, 1979; Fertl, 1979; Schmoker, 1980, 1981; 

Charpentier and Schmoker, 1982; Schmoker and Charpentier, 1983; Sullivan, 1985; 

Hester et al., 1988 1990, 1992; Lambert, 1991 1992, 1993; Dennis, 1997; Rottman, 

2000).  Spectral gamma-ray analysis of petroleum logs is commonly used to infer lateral 

thinning and thickening of shale units (Ettensohn et al., 1979; Ettensohn, 1995; Lambert, 

1993).  When used in conjunction with other well-log parameters such as resistivity, 

spontaneous potential, etc., conclusions based on gamma-ray log data provide additional 

evidence related to porosity and permeability in petroleum exploration (Fertl and 

Chilingarian, 1989), and aquifer evaluation (Christenson et al., 1998).  In addition to 

evaluating saturated thickness of an aquifer, Cristenson et al. (1998) were able to predict 

water quality through gamma-ray logs.  Cristenson (1998) found that hazardous trace 

metals including cadmium and arsenic in the Central Oklahoma Aquifer were 

preferentially accumulated in shale intervals, which are then easily identified on gamma-

ray logs. 

 Spectral gamma-ray analysis is a non-destructive technique (Chenourd and Lalou, 

1969) used to make inferences about rocks and stratigraphic sequences to study the 

following: depositional environment, density of water saturated sediment (Whitmarsh, 

1971), lithological variation of core from units of interest in petroleum exploration 

(Chenouard and Lalou, 1969), stratigraphy in well bores (Ettensohn, 1979), magnetic 
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susceptibility (Gĕrsl and Hladil, 2004), petroleum source rock characteristics (Hester et 

al., 1990), benthic levels of oxygen through variation in uranium content (Wignall and 

Myers, 1988), organic carbon in Devonian petroleum sourcerocks in Africa (Lüning and 

Kolonic, 2003b), carbon content of the Devonian Bakken Shale of the Williston Basin, 

(Schmoker and Hester, 1983), and organic carbon content of Devonian shales in the 

western Appalachian Basin (Schmoker et al., 1993).  Other uses of spectral gamma-ray 

analysis with applications specific to petroleum exploration include: detailed, 

identification of subtle changes in lithofacies, presence of secondary porosity and natural 

fracture systems, paleogeographic trends and facies changes across oilfields, location of 

watered-out intervals in reservoirs under enhanced recovery, determination of reservoir 

net shale percentage, and in-situ potash concentration (Fertl, 1979).  

Although marine black shales are somewhat enriched in thorium and potassium, 

black shale, especially Devonian Shales, often contain anomalously large concentrations 

of uranium (Adams and Weaver, 1958, Coveney et al., 1991; Lüning et al., 2003, 2004; 

Lüning and Kolonic, 2003).  Terrestrial shales generally have higher concentrations of 

potassium and thorium and lower uranium concentration relative to marine shales 

(Bloxam, 1964).  Uranium has been strongly correlated with organic carbon 

concentrations in marine shale through geochemical techniques, well log studies, and 

studies utilizing portable gamma-ray detectors in automobiles and airplanes (Adams and 

Weaver, 1958; Swanson, 1961, Hallam, 1966; Ettensohn, 1979, 1995; Watson and Plant, 

1979; Leventhal and Hosterman, 1982; Charpentier and Schmoker, 1982; Russell, 1985; 

Wignall and Myers, 1988; Barnes and Cochran, 1989;  Beier and Hayes, 1989; Postma 

and ten Veen, 1999; Lüning and Kolonic, 2003; Lüning et al., 2003; 2004; Algeo, 2004; 
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Rimmer, 2004a, 2004b; Tribovillard et al., 2004; Weedon et al., 2004). Strong 

correlations between total organic carbon and uranium are reported in the Chattanooga 

Shale (Schmoker, 1980, 1981, 1982; Schmoker and Hester, 1983; Leventhal et al., 1983), 

Pennsylvanian shales (Coveney et al., 1991; Fisher and Wignall, 2001), Jurassic shales 

(Pearson et al., 2004; Tyson, 2004; Morgans-Bell and Cohen, 2004), and the Woodford 

Shale specifically (Olson, 1982; Fertl and Chilingarian, 1989; Kirkland et al., 1992; 

Hester et al., 1988, 1990, 1992).  

In addition to the gamma-ray based correlation between uranium and organic 

carbon by Hester et al. (1990); (Figure 9), another black shale (e.g. Woodford Shale) 

study of bulk density derived from well logs found an inverse correlation between bulk 

density and organic carbon concentrations (Figure 10); (Schmoker, 1993).  This finding is 

consistent with reported inverse relationships between gamma-ray magnitude or uranium 

concentration and bulk density (Figure 11); (Schmoker, 1980, 1981; Schmoker and 

Hester, 1983; Meyer B. and Nederlof M., 1984; Fertl and Chilingarian, 1989; Hester et 

al., 1990, 1992; Kirkland et al., 1992; Lüning, et al., 2003).  “Hot” uranium-rich black 

shales with high organic carbon content are important source rocks (Klemme H., and 

Ulmishek G, 1997; Ormiston and Oglesby, 1995) and minor reservoirs for oil production 

(Schmoker, 1980; Comer, 1991, Dennis, 1997).  Recently, the recognition that black 

shales are important natural gas reservoirs has led to a new interest in characterizing shale 

at a more detailed level in terms of reservoir characteristics (Charpentier and Schmoker, 

1982; Schmoker, 1980, 1993).  Because gamma-ray magnitude, uranium concentration, 

and bulk density are often plotted on the same well log, three properties are available to 

characterize source-rock potential.   
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Figure 9. Gamma-ray log derived plot of uranium concentration vs. total organic carbon in the Chattanooga Shale (Woodford Shale 
equivalent) (Hester et al., 1990). 
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Figure 10. Plot of total organic carbon (TOC) vs. bulk density in Devonian black shales 
of North America including the Woodford Shale (Hester et al., 1990).  
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Figure 11. Log-derived plot of gamma-ray magnitude (API units) vs. bulk density (cgs 
units) in Devonian black shales of Appalachia including the Chattanooga Shale  
(Schmoker, 1993). 
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As shales became more important as reservoirs, the ability to characterize 

reservoir characteristics such as lithology on gamma-ray logs (Charpentier and 

Schmoker, 1982; Schmoker, 1980, 1993) was reported, along with the continued use of 

gamma-ray logs to identify and characterize source rock potential in black shales 

(Ettensohn, 1995).   Delineating subtle changes in shale depositional facies has become 

economically critical (Sullivan, 1985).  Adams and Weaver (1958) originally proposed 

the concept of geochemical facies changes in shales as a function of changes in the 

concentrations of Th, U, and the uranium / thorium (U/Th) ratio.  The gamma-ray 

specific radioactive elements arrive in the shales by different mechanisms and in varying 

quantities as the result of facies changes (Adams and Weaver, 1958; Bloxam, 1964), 

different redox properties (Dypvik and Harris, 2001), and differing chemical properties 

which respond to changes in redox conditions (Ivanovich and Harmon, 1982). 

 In sedimentary rocks, potassium is commonly found in insoluble clays whereas 

thorium is commonly found in insoluble detrital fragments (Adams and Weaver, 1958) 

and resistate minerals such as zircon or monazite (Ivanovich and Harmon, 1982).  Both 

thorium and potassium are more abundant than uranium in terrestrial or hemipelagic 

shale (Swanson, 1961). Uranium appears to be fixed in ocean sediments in reducing or 

anoxic conditions (Barnes and Cochran, 1990; Dunk et al., 2002). It is possible to 

temporarily bind uranium to clay and organic particles under oxic conditions (Ivanovich 

and Harmon, 1982).  Uranium (VI) is highly soluble and in all but highly dysoxic 

conditions.  Uranium is often remobilized in oxic environments or by environmental 

shifts that increase available oxygen (Larasoaña et al., 2006) through increased Eh, or 

increased pH (Faure, 1991).  Therefore, unless uranium (IV) is fixed and remains in a 
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reducing environment it will remobilize (Postma and ten Veen, 1999).  Dark shales in the 

Devonian Old Red Sandstone are known to have abnormally high concentrations of 

uranium relative to other terrestrial shales (Watson and Plant, 1979) but are confined to 

units containing high concentrations of organic carbon or petroleum (Michie and Cooper, 

1979).  Aerobic microorganisms feed on organic detritus. Therefore, uranium and carbon 

do not remain in high concentrations in oxic to dysoxic depositional environments 

(Wignall and Myers, 1988).  This is one reason why large concentrations of organic 

carbon, associated with high quality Devonian (Ettensohn, 1995) petroleum source rock, 

are highly though not perfectly correlated with uranium (Lüning, and Kolonic, 2003) 

especially in the Woodford Shale (Olson, 1984).   

Under oxidizing conditions, a variety of trace elements typically do not precipitate 

from seawater or are remobilized because they are electron acceptors and are only 

precipitated under reducing conditions (Dunk et al., 2002).  Because reducing conditions 

favor the sequestration of organic carbon, transition elements elements, and uranium, it is 

possible to describe facies changes in shale (Adams and Weaver, 1958; Russell, 1985; 

Tyson, 2004).  Red or brown shales containing iron oxides are interpreted as being 

deposited in oxic conditions under terrestrial influence and commonly have low 

concentrations of uranium with relatively high values of thorium and potassium (Doveton 

and Merriam, 2003).  These terrestrial shales will register above the shale baseline on a 

standard gamma-ray log and spectral gamma-ray log (Ellis, 1986).  Pelagic shales 

represent basinal depositional conditions with elevated uranium content fixed in a 

relatively anoxic environment and are usually gray or green in color, caused by slightly 

elevated concentrations of organic carbon or pyrite (Beier J. and Hayes J., 1989; Doveton 
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and Merriam, 2003; Morgans-Bell and Cohen, 2004).  The shales most distal to terrestrial 

environments are typically black with high concentrations of organic carbon, pyrite, and 

uranium (Swanson, 1961; Cochran and Barnes, 1990).  Processes such as storm deposits 

and wind may still send potassium and thorium detritus to the deep basin (Adams and 

Weaver, 1958).  As a general trend these deep-water shales are hottest in uranium and 

lower in potassium and thorium (Weaver and Adams, 1958).   

 Because redox geochemistry exerts control on uranium’s solubility, its patterns of 

enrichment/depletion are easily interpreted (Cochran and Barnes, 1990).  Like uranium, 

iron III is a common electron acceptor at sediment interfaces in microbially mediated 

reducing environments (Cochran and Barnes, 1990).  The theoretical redox potentials 

(pe) of iron and uranium reduction are very comparable (Cochran and Barnes, 1990), 

partially accounting for high concentrations of uranium, organic carbon, and precipitation 

of authigenic pyrite in black marine shale (Fisher and Wignall, 2001).  The ecology of 

anaerobic organisms is highly dependent on the presence and redox behavior of iron and 

hydrogen sulfide in coupled-cycling, a major pathway for the reductive dissolution of 

iron oxides whereby iron oxides (Fe III) are reduced to iron sulfides (Fe II) in sediment 

(Li, et al., 2006).  This partially explains why black or pelagic shales are often enriched in 

authigenic uranium only fixed in reducing conditions, enriched in organic carbon 

preserved in reducing conditions, and have high degrees of pyritization, interpreted as 

evidence of at least reducing conditions and possibly euxinic conditions (Rimmer, 2004a, 

2004b; Tribovillard et al., 2006).  

Marine shales can be differentiated from terrestrial shales on the basis of spectral 

gamma-ray logs (Coveney et al., 1991) or bulk gamma-ray magnitude, (Adams and 
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Weaver, 1958).  The North American Shale Composite (Gromet et al., 1984) has a 

gamma-ray magnitude of ≈ 122 API units and a gamma-ray specific elemental 

assemblage of 3.2% K, 2.7 ppm U, 12.3 ppm Th (Doveton and Merriam, 2004).  A 

marine shale standard, the Marine Sciences Group Black Shale Composite (Vine and 

Tourtelot, 1970) has a gamma-ray magnitude of ≈ 216 API units and a gamma-ray 

specific elemental assemblage of 3% K, 15.2 ppm U, 11.6 ppm Th (Quimby-Hunt et al., 

1989; Doveton and Merriam, 2004).  High concentrations of uranium represent the 

largest compositional difference between idealized terrestrial and marine shale end-

members (Doveton, and Merriam, 2004). 

 

Woodford Shale: 

Woodford deposition persists in a deep water marine environment (Kirkland et 

al., 1992; Lambert, 1991, 1992, 1993) or in an epieric sea (Scheiber, 1994; Ettensohn, 

1995) from middle Devonian (Hass and Huddle 1965) until early Mississippian 

(Kinderhookian); (Schwartzapfel and Holdsworth, 1996; Over and Barrick, 1990; Over, 

1992a, 1992b, 2002).  Woodford deposition continues without major hiatus or 

unconformity in the Appalachian Foredeep (Klemme and Ulmishek, 1991; Ettensohn, 

1995) caused by tectonic loading during the Acadian Orogeny (Ettensohn, 1995; 

Ormiston and Oglesby, 1995).  The persistence of deep water conditions in the Devonian, 

without hiatus, constrains environmental conditions for a long and economically 

important period of earth’s geologic history when as many as 14 of the 15 highest quality 

source rocks in North America were deposited (Comer., 1991; Ormiston and Oglesby, 

1995). 
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Reports that the Woodford (Chattanooga Shale equivalent) was deposited in deep 

or anoxic water include evidence such as: conodont assemblages (Over, 2002), the lack 

of bioturbation as evidenced by reports of: continuous laminations or varves (Hallam, 

1967, Pearson et al., 2004), undisrupted primary sedimentary structures (Cluff, 1980), 

low sedimentation rates (Cruse et al., 2006) estimated at 1 cm per thousand years and 

abundant pyrite (Kirkland et al., 1992), and high concentrations of organic carbon evenly 

divided among its three informal divisions in excess of .6% (Schmoker and Hester, 

1983).  The Woodford Shale is an important petroleum source rock, above the (.5%) 

cutoff value for TOC established by (Tissot and Welte, 1984). 

The Woodford Shale was described by J.A. Taff as the Woodford Chert in 1902 

and was included in the Index to the Stratigraphy of Oklahoma (Gould, 1925).  It was 

originally described as a limy chert and shales of upper Devonian age correlated with the 

Chattanooga Shale of Oklahoma, Arkansas, and Tennessee with occurrence in several 

counties and average thickness of 625 feet (Gould, 1925).  The description includes the 

following geomorphologic reference to a weathering pattern, “The outcrop usually forms 

rough lowlands covered with jack oak timber” (Gould, 1925).  Since none of the 

individual outcrops described in the literature report Woodford Shale thicknesses 

approaching 625 feet, this number may possibly originate from drilling reports.   

Later descriptions of the Woodford Shale are more detailed. The Woodford Shale 

in the Anadarko Basin is a carbonaceous and siliceous dark-gray to black radioactive 

shale that yields gamma-ray magnitudes of more than 160 API units (Sullivan, 1985).  

The upper Woodford Shale is characterized by phosphatic nodules up to 2 inches in 

diameter, blocky chert, dolomitic shale (Siy, 1988).  In the Arbuckle Mountains the 
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Woodford contains thin dark chert beds, cherty shale, and black fissile, bituminous shale 

(Sullivan, 1985).  The McAlester Cemetery Quarry near Ardmore Oklahoma contains 

large (5 foot diameter) calcite concretions which based on information from quarrymen; 

occur near the base of the zone of phosphate nodules (Kirkland et al, 1992).  Neither the 

original type locality of the Woodford Shale (Gould, 1925) located on the south limb of 

the Arbuckle Anticline near the town of Woodford, Oklahoma nor the new type locality 

(Fay, 1989) on the north limb of the Arbuckle Anticline on I-35 are included in more 

recent biostratigraphic studies. 

In a biostratigraphic study, Hass and Huddle (1965) made detailed descriptions of 

measured sections at several Woodford Shale outcrops including Hass A and Hass B.  

The descriptions of Hass A and Hass B may be the most accurate and detailed contained 

in the literature.  Over (2002) described both study outcrops and several other Woodford 

outcrops at exposures in southern and eastern Oklahoma (1992a, 1992b).  Over (2002) 

extended and refined previous biostratigraphic constraint of Woodford Shale to include 

several additional locations in Oklahoma and across the U.S. in the Chattanooga 

Formation and several equivalents.  The placement of the F/F boundary in the Over 

(2002) study within the Woodford Shale was included in a recent global study of MS 

(Crick et al., 2002). The most recent Chattanooga Shale correlations by Over (2002) 

included volcanic ash layers associated with late Devonian volcanism in the Eastern U.S. 

to define the several Woodford equivalents including: the Java Formation in the Northern 

Appalachian Basin of New York, the Hanover Member of the Appalachian Basin 

Chattanooga Shale, the upper Olentangy Shale of Ohio, the Boyle Formation in the 

Illinois Basin and the New Albany Shale (Over and Rhodes, 2000; Over, 2002).  No ash 
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beds have been reported in the Woodford Shale of Oklahoma.  The location of such ash 

beds would likely help sub-divide Woodford into intervals of known age.  

The upper Woodford Shale is mid-upper-Devonian to lower Mississippian (Hass 

and Huddle, 1965; Over and Barrick, 1990; Over, 1992a, 1992b,, 2002; Schwartzapfel 

and Holdsworth, 1996).  The Woodford Shale is equivalent to several North American 

black marine shales including: portions of the Chattanooga, the Antrim Shale of the 

Michigan Basin, the New Albany Shale of the Illinois Basin, the lower and upper 

members of the Bakken Formation of the Williston Basin, the Exshaw Formation of the 

Alberta Basin and the Devonian shales of the Appalachian Basin (Schmoker and Hester, 

1983).  The Frasnian/Famennian boundary typically occurs in lower Woodford Shale 

intervals (Hass and Huddle, 1965, Amsden and Klapper, 1972; Over, 2002).  The F/F 

boundary is well-known because of the mass extinctions (Sepkoski, 1986; Sorauf and 

Pedder, 1986) when two (Raup and Sepkoski, 1982) or three (House, 2002) distinct 

extinction events have been reported to result in the loss of up to 70% of global biological 

diversity (McGee, 1996).  Anoxic and euxinic water conditions and multiple marine 

transgressions are often cited as highly probable causes of Devonian extinctions (House, 

1983).   

 The Woodford Shale is an important petroleum source rock in the Anadarko 

Basin (Cardott and Lambert, 1985), New Mexico, Texas (Comer, 1991), and Kansas 

(Lambert, 1991, 1994).  In the Southwest, the Woodford Shale is equivalent to the Houy 

Formation of the Llano uplift in central Texas, the middle division of the Arkansas 

Novaculite in the Ouachita Mountains in southeastern Oklahoma and west-central 

Arkansas, the upper part of the Caballos Novaculite in the Marathon region of west 
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Texas, the Percha Formation in the Hueco and Franklin Mountains of west Texas, and the 

Sly Gap Formation in the Sacramento Mountains of southeastern New Mexico (Comer, 

1991).  

One member of the Woodford Shale, the Misener Sandstone is an important 

reservoir when it discontinuously occurs at the base of the Woodford Formation in 

Oklahoma and Kansas (Amsden and Klapper, 1972).  The Misener has been correlated 

with the Sylamore Sandstone of eastern Oklahoma and a siltstone which outcrops at the 

base of the Woodford Shale in Turkey Creek at the top of the Turkey Creek Limestone 

(Amsden, 1960), which is regarded as an atypical facies of the Woodford Shale (Amsden 

et al., 1968).  The report that the Misener Sandstone is absent in the Arbuckle Mountains 

(Amsden and Klapper, 1972), agrees with other reports that the pre-Woodford channel 

sandstones do not cross the axis of a paleotopographic high (Hester et al., 1992) 

associated with the Acadian Orogeny (Hester, 1992; Ettensohn, 1995). 

 Uplift during the Acadian Orogeny (Ettensohn, 1995) and erosion resulted in the 

post-Hunton/pre-Woodford unconformity (Tarr, 1955; Ham, 1955, 1986; Rottman, 

2000).  The most compelling evidence for the post-Hunton/pre-Woodford unconformity 

is the observation that Woodford Shale immediately overlies rocks as old as late-

Cambrian to early Ordovician in southern Oklahoma (Tarr, 1955; Maxwell, 1959; 

Amsden, 1960).  At Hass B the lower mid-Devonian Henryhouse Formation outcrops at 

the stratigraphic base of the Lake Classen Spillway Woodford outcrop (Barrick and 

Klapper, 1990; Hass and Huddle; 1965, Over, 2002).  The Bois D’Arc Formation of the 

Hunton Limestone is upper-Devonian-age in the Arbuckle Mountains and underlies the 

Woodford at Henry House Creek (Hass A); (Hass and Huddle, 1965; Over, 2002); 
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(Figure 15).  The basal post-Hunton pre-Woodford unconformity (Maxwell, 1959) is not 

obvious at the outcrop level because discordance in dips of strata does not occur 

(Amsden, 1960, Kirkland et al., 1992).   

The basal Woodford contains conglomerate at some locations in the Arbuckles 

which is further evidence of an unconformity (Amsden, 1960; Hass and Huddle, 1965; 

Comer, 1991).  One possible cause of past confusion associated with this unconformity is 

the discontinuous nature of the thin mantle of sediments (e.g. Misener Sandstone) that is 

deposited on rocks of variable age (Tarr, 1955).  The thickness of the basal Woodford 

deposits does not appear to fully account for the volume of missing rock.  Another 

perplexing observation is the widely disparate ages reported in basal deposits over short 

distances. Basal beds at Hass A and Hass B are reported to be lithological equivalents 

(Kirkland et al., 1992) despite large differences in conodont ages and assemblages (Hass 

and Huddle, 1965) and no observed hiatus in Woodford Deposition.     

The unconformity surface in the Arbuckle Mountains contains chert pebbles, 

carbonate pebbles, and silicified wood (Callixylon sp); (Hoskins and Cross, 1952, Chitaly 

and Chongyang, 2001).  Some basal Woodford Shale exposures contain tasmanites, 

fructifications, spores, and bones (Kirkland et al., 1992).  The preservation of wood 

fossils in the Arbuckle Mountains in conjunction with pyrite nodules (Kirkland, 1992; 

Aufill et al., 2006, 2007) indicates persistent anoxic bottom waters in the Anadarko Basin 

(Schmoker, 1980), and the Chattanooga Shale (Schmoker, 1990). Other geochemical 

evidence of anoxia in basal Woodford includes abundant organic carbon (Cardott and 

Lambert, 1987), high concentrations of uranium (Olson, 1982; Hester et al., 1990, 1992), 
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and elevated gamma-ray magnitude caused by high concentrations of uranium (Olson, 

1982; Dennis, 1997).      

 A model of Woodford deposition in an epieric sea proposes concurrent deposition 

of Woodford Shale on both sides of a paleotopographic high trending roughly southeast 

to northwest (Hester et al.1988, 1990, 1992).  The portion north and east of this 

paleotopographic high received mostly terrestrial sediments (Hester et al., 1990) such as 

the quartzose Misener Sandstone with thicknesses of up to 20ft (Amsden and Klapper, 

1972, Dennis, 1997). Hester (1990) used the paleotopographic high to divide the 

Woodford Formation into southwest and northeast depo-centers.  The southwest depo-

center accumulated the greatest thickness of Woodford Shale, perhaps as the result of 

greater accommodation or long-term continued subsidence.  The basin south and west of 

the paleotopographic high received mostly marine sediment on a karsted surface (Hester 

et al., 1992) with discontinuous Misener Sandstone deposition, commonly less than a foot 

thick (Amsden and Klapper, 1972).   

Woodford Shale in the Anadarko Basin, south and west of the above mentioned 

paleotopographic high, was deprived of terrestrial sediment by a migrating tectonic 

forebulge (Hester et al; 1990, 1992). The foredeep created by the forebulge caused 

sediment starvation and siliceous detrital particles greater than silt-size were limited to 

2% or less in corresponding lithology (Kirkland et al. 1992).  North of the forebulge 

Misener Sandstone was deposited discontinuously (Amsden and Klapper, 1972) and 

occurrence is mostly limited to channel-fill deposits in channels eroded in post-Hunton 

time (Tarr, 1955: Maxwell, 1959). 
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 Hester et al., (1988, 1990) describe the Woodford Shale in Oklahoma as 2 similar 

shale units separated by a more radioactive and resistive middle member.  The 3 main 

Woodford Shale intervals have mean log-derived TOC in the lower, middle, and upper 

members of 3.2, 5.5, and 2.7 weight percent respectively (Hester et al, 1988).  Total 

organic carbon does not appear to vary with member thickness but is observed to vary 

with thermal maturity.  Most hydrocarbons have been generated in the lower and middle 

members (Hester et al., 1990).  Mean vitrinite reflectance value (R0) generally increases 

from northeast to southwest with mean values ranging from .5-2.0% (Cardott and 

Lambert, 1985).  Comer and Hinch (1987) estimate 27-33% of Woodford’s hydrocarbon 

potential has already been expelled. 

The Woodford Shale is an unconventional reservoir for natural gas (Hester et al., 

1992), when fracturing, man-made or natural, provides effective porosity for significant 

ongoing production (Fertl and Chingilarian, 1989).   Fracture systems appear to be the 

most significant fluid pathways providing functional porosity and permeability (Fertl and 

Chingilarian, 1989).  Siliceous intervals of the Woodford are reported to be better targets 

for manmade fracturing and directional drilling (Fertl and Chingilarian, 1989).  Fertl and 

Chingilarian (1989) reported successful well recompletions in uranium rich intervals with 

low concentrations of thorium and potassium and silty fissile shale near dolomite beds. 

The overall thickness of the Woodford Shale is reported to be dependent 

paleotopography of the Acadian Unconformity surface (Rottman, 2000).  Complete 

removal of the Woodford Shale in the Arbuckle Mountains was caused by two uplifts in 

Pennsylvanian time followed by erosion (Tarr, 1959).  The first Pennsylvanian uplift, the 

Wichita Uplift, came in the Morrowan and the second, the Arbuckle Uplift, occurred 
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during the Virgillian (Braun, 1959; Ham, 1955, 1986).  Various conglomerates record the 

timing of the uplifts (Pybas, et al., 1995).  One notable result of tectonism in the 

Pennsylvanian is significant crustal shortening on the north limb of the Arbuckle 

Anticline along the Washita Valley Fault Zone (Pybas et al., 1995).  During the series of 

uplifts, Paleozoic rocks near Lake Classen Spillway (Ham, 1955, 1986; Fay, 1989) were 

tilted or overturned and later covered by the Collings Ranch Conglomerate (Pybas et al., 

1995).  Rocks as old as Cambrian are exposed in the center of the largest fold in the 

anticline (Ham, 1986).  This series of Paleozoic rocks is an eroded anticline that acts as a 

tectonic window (inlier), allowing one easy access to over eleven thousand feet of strata 

which are of scientific interest and economic significance (Ham, 1986). 

Woodford Shale deposition ended in the early Mississippian (Hass and Huddle, 

1965). The end Devonian-Mississippian boundary is reported to occur near the top of the 

Woodford Shale near the zone of round phosphatic nodules (Kirkland et al., 1992) on the 

basis of conodonts (Hass and Huddle, 1965; Over and Barrick, 1990; Over, 1992a) and 

radiolarians (Schwartzapfel and Holdsworth, 1996).  Woodford Shale in some locations 

is succeeded stratigraphically by the pre-Welden Shale (Culp, 1959), or an easily eroded 

transitional unit (Hass and Huddle, 1965) separating the Woodford Shale from the 

Sycamore Limestone (Prestridge, 1957).  Pre-Welden Shale is latest Kinderhookian in 

age (Over and Barrick, 1990).  Welden or pre-Welden deposition is variable, absent, and 

discontinuous (Braun, 1959).  The use of the terms Welden-Sycamore and Sycamore-

Mayes describes units older than Sycamore and younger than Woodford (Culp, 1959; 

Braun, 1959).  Welden units have been dated as Osagean in age on the basis of conodonts 

(Barrick et al, 1990; Over and Barrick, 1990).  Reported confusion in early literature 
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arises from incomplete stratigraphic understanding and the use of oilfield and 

nonstandard nomenclature (Gould, 1925).  The Welden or transitional interval (Hass and 

Huddle, 1965) grades into the Sycamore indicating uninterrupted marine deposition.  

Literature reports of an unconformity between the Woodford Shale and the overlying 

Sycamore Limestone are based on broken and eroded phosphate nodules found in the 

Sycamore Limestone at some locations (Siy, 1988; Cole, 1989). No obvious erosional 

surface is described at Hass A or Hass B (Hass and Huddle, 1965).    

The Sycamore Limestone, named by J.A. Taff in 1903 (Cooper, 1926), is often 

described as a fine-grained detrital limestone and concentrations of undifferentiated silica 

sponge spicules (Coffey, 2001) leading to its description as a spiculite (Schwartzapfel 

and Holdsworth, 1996).  The type location for the Worthey (upper) Member of the 

Sycamore Limestone is located on the Worthey Farm in section 33, T.2S, R.1E. I.M., 

approximately 3 miles from the Hass A outcrop, Section 30 T. 2S. R. 1E. I.M (Prestridge, 

1957).  The type locality of the lower member nearby is also located on and named for 

the Cornell Ranch in Section 25, T. 2S., R. 1E. I.M., approximately one mile from Hass 

A and two miles from the first Woodford Shale type section near Woodford, Oklahoma, 

Section 34, T.2S., R.1E. I.M. (Prestridge, 1957). 

The Sycamore Formation contains two erosionally incompetent shale intervals 

which have been confused with the Caney Shale in certain oilfield terminology (Braun, 

1959).  The Sycamore was described as 3 dense drab limestones separated by covered 

intervals (Cooper, 1926). Later, the Sycamore Limestone was described as two distinct 

units (Prestridge, 1958).  Coffey (2001) offered a recent detailed description of the 

formation with four intervals including basal shale, siltstone, middle shale, upper 
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pelloidal packstone.  Conodont evidence indicates the Sycamore Limestone base is 

middle Meramecian in age with radiolarian evidence inconclusive due to paucity of 

specimens (Schwartzapfel and Holdsworth, 1996).  

  Stratigraphically above the Sycamore Limestone is the Caney Shale (Cole, 

1989).   The change from Sycamore Limestone to Caney Shale is thought to result from a 

major transgression resulting in the deposition of organic rich shales (Culp, 1961; Cole, 

1989).  The basal contact of the Caney Shale is gradational (Culp, 1961; Cole, 1989).  

Radiolarian and conodont data indicate that the basal Caney Shale is Chesterian in age 

(Schwartzapfel and Holdsworth, 1996).  Although radioactive, standard gamma-ray logs 

of the Caney Shale do not exhibit the high gamma-ray magnitude typical of Woodford 

Shale (Cole, 1989, Fertl and Chingilarian, 1989). Therefore extreme uranium enrichment 

in magnitudes seen on Woodford Shale logs is probably not common in the Caney Shale 

(Hester et al. 1990, 1992).    

The Caney Shale, described by Taff in 1901(Elias and Branson, 1959) consists of 

three intervals (Prestridge, 1958) of very thinly bedded cyclic silica rich shale.  Some 

Caney beds contain thin elliptical carbonate nodules called bouillon, which are very 

characteristic of the formation (Elias and Branson, 1959).  The three units of the Caney 

Shale in ascending order are the Ahloso, the Sand Branch, and the Delaware Creek, 

respectively (Branson and Elias, 1959).  Peace (1994) indicated that the Caney Formation 

was the only pre-Pennsylvanian lithology of post Woodford Shale age that had not 

produced oil or gas.  Recently the Caney Shale has been the object of a “gas play” and 

has produced natural gas (Forgotson, 2006).   Above the Caney Formation are the Chester 
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and Springer Formations, which may be the last important formations prior to the 

orogenies of the Pennsylvanian (Braun, 1959; Peace, 1994). 

Woodford Shale was deposited on the eroded surface of Hunton Limestone 

(Maxwell, 1959; Tarr, 1955; Amsden et al., 1968,; Amsden and Klapper, 1972; Hester et 

al., 1990, 1992; Ettensohn, 1995; Rottman, 2001; Over, 2002).  The Hunton Group is 

divided, oldest to youngest, into three formations including: the Chimneyhill Formation, 

the Henryhouse Formation (Harragan-Henryhouse Marl), and the Bois d’Arc formation, 

which consists of Frisco and Bois d’Arc Limestones (Maxwell, 1959; Ham, 1986).  In the 

northern Arbuckles, the Woodford Shale rests unconformably on the Henry House 

Formation and on the Southern Limb the Woodford rests on Bois d’Arc Limestone (Hass, 

and Huddle; Ham, 1986; Over, 2002).
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CHAPTER III 
 
 

Research Methods 

 

Outcrop Lithology and Description:  

Vertical thickness, strike, and dip measurements were made and recorded at both 

study outcrops.  Individual outcrop beds were sequentially numbered with an alpha-

numeric system.  Bed numbers were recorded on the outcrop face and in data books.  

Each individual shale bed thickness was measured and bed lithology was recorded.  

Occurrence of special features in individual beds, such as pyrite nodules, silicified wood, 

carbonate beds, and phosphate nodules was recorded.  Measured sections and detailed 

outcrop descriptions were made for both study outcrops including the outcrop data 

specified above.  

Additionally, lithologic information was recorded corresponding to the exact 

location of each paired MS/gamma-ray measurement point.  For the purpose of 

correlation at Hass A, lithology at individual MS/gamma-ray point was described as 

either “fissile”, “siliceous”, or “transitional”.  The position of each measurement point 

was recorded with an indelible mark, where possible, indicating the exact position on the 

outcrop face.  In the field books, a unique sequential number was assigned to each 

measurement point. Bed numbers and special features, from the outcrop descriptions, 

were also recorded in conjunction with the paired measurement points.  Outcrop 

lithological information in the study was based on the gross appearance of the rock. 
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Paired Magnetic Susceptibility and Spectral Gamma-Ray Measurements:   

In order to measure variation of MS as a function of gamma-ray magnitude and 

gamma-ray specific elemental assemblage, sequentially ordered, paired measurements of 

volume specific magnetic susceptibility and spectral gamma-ray response were made at 

two outcrops of the Woodford Shale.  Volume specific magnetic susceptibility 

measurements and spectral gamma-ray measurements were made at six inch (15 cm) 

intervals at both the Henry House Creek (Hass A) and Lake Classen spillway (Hass B) 

outcrops.  Measurement pairs were numbered and recorded in bound field/transit 

notebooks at the outcrops.   

Volume specific magnetic susceptibility (dimensionless) was measured in SI units 

with the MS2k instrument manufactured by Bartington Labs (Figure 12a).  Gamma 

radiation in this study was measured with an Exploranium 320 spectral gamma-ray 

detector manufactured by SAIC (Figure 12b).  At each individual gamma-ray 

measurement point, the total gamma-ray count was recorded along with the individual 

concentrations of potassium (K) in per-cent (%), uranium (U) in parts-per-million (ppm) 

and thorium (Th) in parts-per-million (ppm).  Gamma-ray magnitude in American 

Petroleum Institute units (API) was calculated for each MS measuring point using the 

standard equation (Eq 4.). 

The instrument used in this study to make the volume specific magnetic 

susceptibility measurements is manufactured by Bartington Labs (Figure 12a).  The 

machine is a magnetic bridge instrument as described by Graham (1954) and Nagata 

(1961). The sensor induces a weak magnetic field in the specimen.  The 
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(a.)(a.)

 
 
 

 
Figure 12. Study instruments.  These portable instruments, used in the study were (a.) the 
MS2K manufactured by Bartington Industries, used to measure magnetic susceptibility 
(MS) and (b.) the Exploranium 320, used to measure gamma-ray magnitude and 
individual concentrations of gamma-ray specific elements.  Both instruments allow rapid 
and non-destructive measurements of outcrop lithology in situ.   
 

 

(b.) 
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 instrument calculates the MS of in situ lithology and quickly displays the measurement 

on a LED (Dearing, 1991).  

  In practical terms this means no other procedures are required to rapidly measure 

and record volume specific rock magnetic susceptibility (κ) at the outcrop.  The 

measurement of κ, (dimensionless) is displayed on the LED.  This reading can be 

multiplied by 10-5 and 10-6 for SI units or CGS units respectively (Dearing, 1991).  In 

order to determine mass specific magnetic susceptibility, it is necessary to calculate the 

density of a specimen.  This requires the physical removal of the specimen from the 

outcrop to determine the density in a laboratory.  Volume specific magnetic susceptibility 

magnitude is only dependent on the given volume of magnetic material present and its 

respective magnetic properties (Nagata, 1961).  Therefore volume specific MS is easily 

measured in outcrops and soil profiles that are fairly smooth and on any rock surface 

provided that sample volume is held constant.  

While making preliminary measurements, it was noted that lateral variability in 

MS magnitude was common.  Scraping the surface of outcrops, in order to remove the 

effect of any accumulation or alterations present, often resulted in consistently lower 

measured MS value.  Higher MS magnitudes were associated with rust-colored stains, 

weathering rinds, and soil formation.  As a result, it was assumed that in the event of 

lateral variation of MS, the lower MS value represents a better measure of rock MS 

response.  Occasionally, structures such as pyrite nodules up to 8 cm in diameter or pyrite 

in layers, account for higher MS values.  In these situations, the MS measurements were 

considered to be a true property of the formation and thus the higher values were 

recorded.  
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Woodford Shale Samples:  

MS and gamma-ray measurements were plotted in an Excel spreadsheet on a 

personal computer at the outcrop in order to generate curves illustrating the change in 

gamma-ray and MS magnitudes as a function of the distance above the outcrop base.  

Based on these curves, generated with paired MS and gamma-ray measurements, 

researchers collected fresh rock samples at gamma-ray magnitude maximum/minimum 

points.  At each sample point, researchers collected a minimum of six (6) plastic bags 

containing a minimum of 40 grams of fresh rock.  The exact location of the 

maximum/minimum points was recorded in the field books and on the outcrop face in 

terms of individual bed number and the sequential number associated with the individual 

MS/gamma-ray data pair.  Additional samples above and below gamma-ray magnitude 

maximum/minimum points were collected in fissile and siliceous beds. The stratigraphic 

position of the additional samples (e.g. individual bed #) was recorded in the field notes. 

 

Inductively Coupled Plasma-Mass Spectrometry:  

Trace metal composition of one suite of Woodford Shale samples was determined 

by means of inductively coupled plasma-mass spectrometry at Arkansas State University 

following digestion with nitric acid. Concentration of aluminum and iron and a calculated 

iron aluminum ratios (Fe/Al) were used to evaluate enrichment of authigenic iron in the 

Woodford Shale (Lyons and Severman, 2006).  ICP-MS Detection limits were 10 parts 

per billion (ppb) for major elements and 1ppb for minor and trace elements.  ICP-MS 

results have a 95% reproducibility (RSD > 5%) for all elements.
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CHAPTER IV 
 
 

RESULTS 

 
Outcrop Observations: 
 
Outcrop 1-Henry House Creek (Hass A) 
 

The most complete Woodford section is the outcrop exposed on the west side of 

Henry House Creek (Figure 3), adjacent to the main ranch road bordering the ranch’s 

shale quarry in Carter County, Oklahoma, Section 30 T 2S R1E IM.  A detailed lithologic 

description of the Hass A outcrop is provided in Table 2.  The base of Hass A has been 

exposed by excavation in the ranch quarry and along an unnamed intermittent stream 

which feeds into Henry House Creek from the west.  The basal contact of the Woodford 

outcrop is exposed a few feet above the stream-bed which we named “Rattlesnake 

Creek”.  This basal contact with the underlying Hunton Formation (Bois d’Arc 

Limestone) frequently, though intermittently, outcrops along the trace of the contact 

surface for some distance both east and west of the study outcrop.  The Hass A outcrop is 

a gentle anticline with some beds offset in the quarry.  

The basal beds at Hass A contain silicified logs of the fossil fern-tree, Callixylon 

sp (Kirkland et al., 1992).  One of the largest Callixylon specimens was located in situ but 

not in growth position near the base at Hass A in thinly bedded pink and blue fissile 

shale.  This shale weathers to bright green at the confluence of Henry House creek and 

“Rattlesnake Creek” where weathered and eroded basal Woodford is partially covered by 

alluvium.   
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The shale above the Hunton Limestone-Woodford Shale contact contains clasts of 

silicified wood and chert clasts apparently weathered from the underlying Hunton group.    

Some of the smaller clasts of silicified wood are fine-grained and possibly suitable for 

lapidary purposes.  The larger logs of Callixylon from Hass A are coarse grained while 

smaller fragments of silicified wood are more fine-grained (Figure 13).  The logs are 

slightly oblate and rounded on their lower contact surface.  Only 1 of the logs was found 

in situ.   Although this log does not appear to be in a growth position as described by 

Retallack (2001), it occurs in a semi-upright position, is partially buried in undisturbed 

sedimentary layers, and a protrusion at the base could possibly be interpreted as a root or 

anchoring structure.   

A very thin interval of thin pink (Munsell 10R 8/4) and light blue gray (Munsell 

5G 8/1) claystone beds occur in basal beds at Hass A.  This interval contains weathered 

pebbles, silicified wood and basal units at Hass A contain relatively high (U/Th) uranium 

thorium ratios, relatively low concentrations of potassium, uranium and Thorium, and 

relatively low gamma-ray magnitudes (Table 4).  All three radioactive elements, gamma-

ray magnitude, and U/Th ratio show marked increases in the lithologic transition from 

Hunton Limestone to Woodford Shale. 

The Hass A quarry surface is unweathered and mostly clear of alluvium.  In this 

regard the quarry closely resembles cored Woodford lithology.  We identified three major 

types of shales: fissile, transitional, and siliceous (Figure 14).  Fissile shale was 

commonly dark green, brown or black and poorly indurated.  Fissile beds (≤ 1.3 m) were 

typically much thicker than siliceous beds (≤ 12.4 cm).  Siliceous shale exhibited  
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(a.)

(b.)

 
Figure  13. Silicified logs (Callixylon sp) from Woodford Shale at Hass A.   Small 
fragments of the wood are common at the base of the quarry at Hass A.  Larger pieces 
such as (a.) are found in the small drainage which heads west of “Rattlesnake Creek” 
Divisions within scale bar are 0 .1 m. and (b.) a log occurring in situ near the base of the 
Woodford Shale in the Henry House Creek quarry (marker for scale). 
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A

B

A

B

 
Figure 14. Common lithologies at Hass A.  Photograph includes blocky beds of well 
indurated siliceous shale such as (A) and poorly indurated fissile shale such as (B).
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subconchoidal fracture and was black or gray in color.  Siliceous beds were typically finely 

laminated, blocky, and well indurated.  The term “transitional shale” was used to describe those 

measurement points where the MS instrument was under the direct influence of both fissile and 

siliceous lithologies.     

Pyrite nodules were first observed in situ near small fragments of Callixylon sp. near the 

base of the Woodford Shale in the quarry.  Pyrite nodules (Figure 15), pyrite layers and 

Callixylon sp, all occur at the Hass B creek section, but with decreased size and frequency. The 

top of the upper-middle fissile interval contains a pyrite layer approximately 1 cm thick near the 

outcrop MS/gamma-ray magnitude maximum.  

The creek section is almost entirely exposed but more weathered relative to the quarry 

section.  Some of the lithological differences at Hass A are observable through differential 

weathering.  Siliceous Shale (Figure 16) and fissile shale (Figure 17) weather at different rates.  

Erosion, pedogenic processes and soil formation have made the middle fissile unit of the 

Woodford Shale a preferred plant growth medium relative to the balance of the formation.    The 

middle interval does contain some siliceous beds that are laterally continuous.  Siliceous beds, 

when present, extend into Henry House creek where they form riffles and cascades.  Rills and 

small gullies bring runoff to the creek along the top of erosionally exposed resistant siliceous 

beds.  These resistant beds form the basis of a pattern of angled or diagonal stair-like features, 

repeated through the outcrop and creek bed. 

Gamma-ray magnitude and MS as a general trend appeared to rise and fall in a cyclic 

fashion.  Gamma-ray magnitude was generally observed to be highest (peak) in the middle to top 

of incompetent fissile beds. MS was also observed to be typically highest in  
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A

B

A

B

A

B

 
Figure 15. Woodford Shale pyrite/marcasite nodules and crystals. (A) Pyrite nodule with 
intergrown euhedral crystals located near the base of the Woodford Shale at Hass A.  Specimen 
(A) has a mass of 133.3 g and diameter 8 cm.  (B) Radial marcasite nodules (scale = 1.27 cm) 
were located in two intervals at Hass A and Hass B corresponding to MS/gamma-ray magnitude 
maxima. 
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Figure 16, Contact surface between the upper siliceous/middle fissile intervals of the Woodford 
Shale at Hass A.  Perspective view “looking up” along the resistant siliceous bedding and contact 
surface.  Arrow shows general trend of bedding surfaces, with geologist for scale.   Resistant 
siliceous beds extend into stream and form falls or riffles.  Above the high water mark, the 
siliceous beds form sheer walls. 
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Figure 17. Middle fissile interval of the Woodford Shale at Hass A.   Upper arrow in photograph 
denotes position of upper siliceous/ middle fissile contact where Henry House Creek is deflected 
by highly indurated siliceous beds forming cliffs in the upper Woodford interval.  Lower Arrow 
and geologist indicate the highly vegetated and poorly indurated middle Woodford Shale 
interval.  Geologist (staff) indicates the position of a local maximum gamma-ray magnitude 
interval contained in the weathered fissile shale.  
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fissile beds.  Fissile beds contained both local and outcrop maxima for gamma-ray magnitude 

and MS.  The middle interval at Hass A is predominantly composed of fissile beds and has the 

highest gamma-ray magnitudes (Figure 18).  It was observed that outcrop maxima of: uranium 

concentration (112.6 ppm), MS (18 SI units), and gamma-ray magnitude (980 API) were all 

contained at the same measurement point (data pair #293).  That measurement point was located 

in a fissile bed near the top of the middle fissile interval (Figure 19).   

Hass A Woodford Shale unconformably overlies Bois D’Arc Limestone of the Hunton 

Formation (Figure 20).  Located stratigraphically above the Woodford at Hass A is the Sycamore 

Limestone which is exposed for nearly forty miles along the southern limb of the Arbuckle 

Anticline (Cooper, 1926).   

 
Outcrop 2-Lake Classen Spillway (Hass B) 
 

The second main study outcrop of Woodford Shale is located in the Lake Classen 

Spillway at the Goddard YMCA Camp in Murray County, Oklahoma, Section 24 T.1S., R.1E 

I.M. (Figure 4).  We identified three main types of lithology at Hass B including basal claystone, 

fissile shale, and siliceous shale.  The Woodford Shale at Hass B rests unconformably on 

Devonian carbonates from the Harragan-Henry House Formation (Hass and Huddle, 1965; Over, 

2002) (Figure 25).  At Hass B, the early Mississippian conodont forms, documented at Hass A 

(Over and Barrick, 1990; Over 1992a, 1992b; Schwartzapfel and Holdsworth, 1996) are not 

documented and the upper Woodford Shale intervals, corresponding to the lower Mississippian 

Boundary, is covered, eroded, or faulted out in the spillway section (Over, 2002).  The highest 

stratigraphic intervals at Hass B are completely eroded, covered or faulted out in the spillway, 

(Figure 6). 
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Figure 18.  Uranium concentration vs. gamma-ray magnitude in the 3 main lithologic intervals 
observed at Hass A.  Plots include:  the upper siliceous interval (a.), middle fissile interval (b.), 
and basal mixed interval (c.). 
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Figure 19. Comparison of profiles for several study variables in three main intervals at Hass A including: gamma-ray magnitude (a.), 
U (ppm) (b.), K (wt. %) (c.), Th (ppm) (d.), U/Th ratio (e.), MS (f.), net shale % (g.), and # of beds/m (h.).  
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Figure 20. Stratigraphy below the Woodford Shale (Acadian Unconformity surface).  Note the 
missing section below the Woodford Shale and lithology of different ages upon which Woodford 
Shale deposition occurs (Ham, 1986).
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especially the zone of phosphatic nodules associated with proximity to the Devonian-

Mississippian boundary (Over and Barrick, 1990; Over, 1992a, 1992b; Schwartzapfel and 

Holdsworth, 1996; Hass and Huddle, 1965).  Phosphatic nodules are observed in this 

study north of the spillway outcrop at Hass B.  This observation implies that the 

Devonian-Mississippian contact may be present in the general study area around Hass B.  

North of the Spillway, nearly vertical repeated sections, including a repeated section of 

Woodford Shale were observed (Figure 21).  West of the spillway, stratigraphically 

below Hass B, nearly horizontal beds of Collings Ranch Conglomerate unconformably 

occur above steeply dipping pre-Pennsylvanian strata and repeated sections (Ham, 1955, 

1986; Fay, 1989, Pybas, 1995) (Figure 22). 

Basal Woodford Shale at Hass B contains sparse wood fossils and weathered rock 

clasts.   Some rock clasts from the base of Hass B contain slicken lines indicating a 

probable tectonic origin.  Although not reported in previous studies of Hass B, the first 

4.8 m (15.7 ft.) above the base of the Woodford Shale outcrop is chaotically folded and 

faulted in the spillway (Hass and Huddle, 1965; Over and Barrick, 1990; 1992a, 1992b, 

2002; Crick et al., 2002).  The basal 2.5 m (97 in.) at Hass B is tectonicly homogenized, 

with rock fabric and bedding planes almost obliterated.  Reproducible MS measurements 

were impossible in the first 5.6 m (16.5 ft.)  The basal contact is offset at least several 

meters in a fault observed in the spillway.   Lateral investigation, north of the Lake 

Classen Spillway in this study, revealed an unfolded and unfaulted basal Woodford 

contact.  The entire spillway exposure is severely fractured and faulted (Figure 23).  
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Figure 21. Simplified lithologic column from Hass B (Lake Classen Spillway) and observed repeated sections north of the spillway 
section.  Woodford Shale is succeeded by a covered zone not to scale (CZ).  A detailed measured section of the Hass B spillway 
outcrop is found in Figure 6. 
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Figure 22. Portions of a regional geologic map of the Arbuckle Mountains modified from Fay (1989) including the Lake Classen 
Spillway, Hass B outcrop of the Woodford Shale.  The repeated lithologies in the Washita Valley Fault Zone (Pybas et al., 1995) 
become progressively younger from S to N and W to E (Ham, 1955, 1986; Fay, 1989).   
 

 

 



 85

 
 

 
Figure 23.  Faulted and fractured lithology at Hass B.   The entire Hass B outcrop is badly 
faulted and fractured. Long arrow indicates stratigraphically up direction (east) and short arrow 
indicates vertically up direction.  Typical faults in the fractured beds are indicated with dotted 
lines.  Staff for scale, rests on pulverized rock typical of the Hass B outcrop (each mark is 0.1 
m).
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A resistant hogback of the Sycamore Limestone located stratigraphically above the 

Woodford at Hass B traces the trend of the Arbuckle Anticline in the study area.  The trend of 

this hogback changes from roughly 280o to 340o in approximately 2.4 km (1.5 miles).  The 

attitude of the Woodford at Hass B was observed to strike 315o with a dip of approximately 85o 

NE.  The Woodford Shale at Hass B is tilted nearly upright, but not overturned.  

Several lithologies are observed at Hass B in the spillway (Table 3) including claystone, 

limestone, paper-fissile black shale, brown chert, siliceous coarsely and thinly laminated shale, 

silty fissile shale, laminated dolomitic shale, black chert, and black fissile shale with pyrite 

nodules coalescing into thin and discontinuous pyrite layers.  The basal Woodford Shale at Hass 

B on the north side of the Lake Classen dam contains alternating pink and blue beds of claystone.  

 

Structural Observations at Hass B: 

Repeated Sections (Hass B) 

A partial repeated section of Woodford Shale with cataclastic brecciated siliceous shale 

was observed north of the spillway at Hass B (Figure 24).  Adjacent to and north of the spillway 

exposure, a (lower) brecciated zone of Woodford Shale beds occurs which contains shattered, 

welded blocky siliceous shale, round phosphatic nodules, with casts of round phosphatic nodules 

(Phl) (Figure 25).  These beds trend approximately 340o.  The welded brecciated shale beds are 

vertically overlain by several feet of an intervening (lower repeat) carbonate section (Ll) 

resembling Sycamore Limestone (Figure 26).   The Woodford Shale (Ph1) and intervening 

carbonate (L1) contact is succeeded by another partial exposure (PhR) of brecciated Woodford 

Shale.  The second, subsequent partial outcrop of Woodford Shale trends approximately 315o.
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Figure 24. Pulverized, warped and welded siliceous welded breccia from (PhR) partial repeated section north of spillway at Hass B. 
This pulverized welded siliceous shale (a.) is highly indurated and deformed.  Original bedding planes of siliceous beds in (b.) are bent 
nearly 90o 
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Figure 25. Fractured blocky siliceous shale welded breccia from Ph1 with casts of phosphatic nodules from Hass B north of spillway 
section.  Sample occurs at the top of Ph1 and below L1, a repeated carbonate bed of Sycamore Limestone observed in this study see 
Figure 21.  
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Ll LR
Ll LR

 
Figure 26. Photographs of limestone clasts L1 and LR.   Clast L1 was removed from parallel beds of blocky carbonate located 
stratigraphically above Ph1 and stratigraphically below PhR.  Clast LR was removed from the blocky parallel beds of Sycamore 
Limestone that comprise a resistant hogback in the study area (Ham, 1973; Fay, 1989). 
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Woodford Formation at all other Woodford Shale outcrops.  

We interpret the intervening carbonate (Ll) to be Sycamore Limestone based on 

the gross appearance of the lithology along with structural observations by Ham (1986), 

Fay (1989), and Pybas et al. (1995) of multiple repeated sections in the Paleozoic rocks in 

the area of Hass B in the Washita Valley Fault Zone.  Those repeated sections become 

increasingly younger from north to south (Fay, 1989).  While, it is possible that the 

intervening carbonate (Ll) between the lower Woodford Shale section (Ph1) and the upper 

repeated Woodford Shale section (PhR) is Henryhouse Harragan Limestone, that 

identification would not effect the interpretation of repeated Woodford Shale sections.  

The clasts of the (Ll) carbonate were observed to contain calcite fracture fill, further 

evidence of tectonic alteration of the study area.  

  Exact identification of the intervening carbonate (L1), between the two sections 

of Woodford Shale (Ph1 and PhR) at Hass B is beyond the scope of this study.  However 

the unidentified carbonate contains mostly calcite and not dolomite based on field tests 

using 10% HCL.  Because the intervening blocky carbonate is limestone and not 

dolomite, it is improbable that (L1) is an anomalous facies within the Woodford 

Formation.  Unlike the limestone bed (L1) powdered samples of the internal carbonate 

beds the at all other Woodford Shale outcrops are all weakly reactive with HCl. The 

upper carbonate (LR) was reported to be Sycamore Limestone by Fay (1989) (Figure 22).  

The lithology from (LR) appears to be limestone based on our field tests with HCl, where 

clasts (not powdered) were observed to have a very vigorous reaction.  The presence of 

phosphatic nodules in beds of Welden-Type Woodford Shale in situ at the base of LR is 

strong evidence that the strata are basal beds of Sycamore Limestone.  
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 Repeated sections of Henryhouse-Harragan Limestone are observed immediately 

south of the Lake Classen spillway outcrop on the road leading to the Camp Caretakers 

residence as reported by Fay (1989).  Also south of the spillway, Collings Ranch 

Conglomerate occurs unconformably, both stratigraphically and vertically, above the 

Woodford Shale outcrop and repeated sections of Harragan-Henryhouse Limestone.  This 

conglomerate was described by Pybas et al. (1995) as part of the Washita Valley fault 

zone in the Lake Classen area.   

 

Outcrop Attitude and Orientation (Hass B) 

The occurrence and stratigraphic positions of the upper brecciated zone of 

phosphatic nodules (PhR) above the spillway outcrop at Hass B shows that the outcrop is 

tilted but not overturned.  This finding disagrees with a report that the Hass B outcrop is 

gently overturned (Crick et al., 2002).  The attitude of the partial section of Woodford 

Shale exposed in the spillway generally agrees with the trend of the underlying (older) 

Henryhouse-Harragan Limestone and the attitude of the overlying (younger) Sycamore 

Limestone.  At all of the Woodford Shale outcrops or Sycamore Limestone outcrops 

studied by Hass and Huddle (1965), Over (1992a, 1992b, 2002), or Schwartzapfel, and 

Holdsworth (1996), the zone thick zone of spherical phosphatic nodules occurs at or near 

the top of the Woodford Shale, near the contact with the Sycamore Limestone (Siy, 

1988).   

Several observations (see Outcrop Observations) imply that the Hass B outcrop is 

not overturned.  In all the study outcrops, the zone of phosphate occurs near the top of the 

(older) Woodford Shale stratigraphically below the contact with the (younger) overlying 
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Sycamore Limestone (Coffey, 2001).  Stratigraphically below the (younger) Woodford 

Shale is the (older) Henryhouse-Harragan Limestone (Ham, 1986).   Stratigraphically 

below the Henryhouse-Harragan Limestone are several (older yet), Ordovician and 

Silurian carbonates and Sylvan Shale (Ham, 1986; Fay, 1989, Pybas et al., 1995).  The 

Harragan-Henryhouse Limestone, Woodford Shale, and Sycamore Limestone are all 

observed to dip at approximately 85o NE in the area of Hass B, agreeing with reports by 

by Ham (1986) and Fay (1989). 

 

Missing Lithology (Hass B) 

The strata in the area of the Hass B, including the Lake Classen spillway is 

extremely faulted, eroded, fractured, brecciated, or completely covered.  Furthermore, the 

repeated strata have been tilted to form a half graben structure, now only partially 

exposed after removal of large thicknesses of Collings Ranch Conglomerate (Pybas et al., 

1995).  The choice to include the Hass B outcrop in this study, despite the condition of 

the study area was based on two factors.  First, Hass B is very close to the well-exposed 

and nearly complete Hass A outcrop where recent outcrop-based spectral gamma-ray 

studies of Woodford Shale have been conducted (e.g. Krystyniak 2003).  Second, Hass B 

was included in a study of global MS correlation and offered as a possible global 

magnetic type section for the Frasnian/Famennian in the United States (Crick et al., 

2002).  Unfortunately, a complete description of the outcrop lithology, MS profile, and 

gamma-ray magnitude profile of Hass B are not possible.   

None of the Woodford exposures proximate to Hass B are complete.  Therefore, 

each provides limited information about the area’s tectonic history and lithology.  The 
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vertical thickness of the partially exposed (overturned) Woodford Shale section at I-35 

north 2.25 km (1.4 miles) from Hass B is 82.3 m (274 ft.), while the thickness of the 

spillway outcrop is 55.8 m (183 ft.); (Fay, 1989).  Assuming that the true Hass B vertical 

thickness is the same as the I-35 north outcrop, it is possible that at least 27.5 m (91 ft) 

are missing or unexposed in the Hass B spillway, without accounting for repeated 

sections of Woodford Shale observed north of the spillway.  North of the spillway 

outcrop, the vertical thickness of the Woodford Shale was measured between the contact 

surface of the Henryhouse-Harragan Formation and the base of the Sycamore Limestone 

hogback.  The result was a total measured vertical thickness of 109 m (358 ft.). 

The thickness difference between Woodford Shale exposed north of the spillway 

exposure and the spillway exposure of Woodford Shale at Hass B 55.8 m (183 ft) is best 

explained in terms of literature reports of thrust faulting and repeated Paleozoic sections 

stratigraphically below the spillway outcrop at Hass B (Ham, 1986; Fay, 1989; Pybas et 

al., 1995).  Woodford Shale has been measured at several outcrops on both limbs of the 

Arbuckle Anticline within a few miles of Hass B including:  I-35 north, at 83.5 m (274 

feet), I-35 south, at 88.4 m (290 feet) (Fay, 1989) and Hass A, 69.6 m (230 ft.); (Table 2).  

 

Spectral Gamma-Ray Observations:  

Gamma-Ray Specific Elemental Assemblage Variations 

The largest observed gamma-ray specific elemental variations occur at the lithologic 

transition between Woodford Shale and the formations bounding the Woodford Shale 

(Table 4).  The rapid  increase in concentration of radioactive elements of the lowest 

Woodford Shale intervals is used as evidence of the lithologic change from carbonate to 
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shale, a dependable stratigraphic marker across the Anadarko Basin (Hester et al., 1988).  

These rapid increases result from fundamental differences between gamma-ray specific 

elemental assemblages of carbonates relative to those of shales.  Measurements at Hass 

A and Hass B show that the Woodford Shale contains much higher concentrations of all 

three radioactive elements measured by the spectral gamma-ray analysis relative to the 

formations bounding the Woodford.   

 Woodford Shale specific differences in the gamma-ray specific elemental 

assemblage can be divided into five main categories including: variation at each 

individual study outcrop where gamma-ray specific elemental assemblages vary between 

the three main Woodford intervals (e.g. Figure 18), variation at each individual study 

outcrop, gamma-ray specific elemental assemblages vary within individual main 

intervals (Tables 5, 6), variation of spectral gamma-ray specific elemental assemblages 

between individual main intervals at one outcrop and corresponding main intervals at 

other outcrops (e.g Table 4 ), variation between spectral gamma-ray specific elemental 

assemblages, especially potassium and thorium, that vary at the larger or outcrop scale 

(Figures 19, 27), and variation caused by missing measurements  and the observation 

that Hass B is not a complete outcrop.  Moreover, portions of the Hass B outcrop 

suitable for reproducible spectral gamma-ray measurements are simultaneously 

unsuitable for MS measurements.  If this missing lithology (e.g. low gamma-ray 

magnitude phosphatic interval) were included, gamma-ray magnitude statistics (e.g. 

mean, range, etc.) would likely decrease.  

Although the observed maximum uranium concentration (ppm) at Hass A is almost 

double that of Hass B, the mean uranium concentrations of the two outcrops differ by a  
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Table 5. Gamma-ray magnitudes and gamma-ray specific elemental assemblages in 
lithologic intervals (from Figure 5, Table 2) of Woodford Shale at Hass A  

Unit height 
 (m above 
base) 

K (%) 
range 

U (ppm) 
range 

Th (ppm) 
range 

Fissile 
interval (cm) 

thickness 

Siliceous 
interval (cm) 

thickness 
 

N* 
above 

Woodford 
 

1.3 
 

3.0 
 

6.9 
Sycamore Limestone  
*1 measurement 

 
M 
 

 
62.9 - 69.6 

 
0.1 - 1.4 

 
7.4 - 41.4 

 
0.6 – 6.3 

 
1.9 – 14.0 

 
.1 - 10.0 

 
L 
 

 
56.4 - 62.9 

 
0.3 - 1.7 

 
8.8 – 50.1 

 
1.5 -  8.7 

 
0.1 – 25.0 

 
0.1 – 10.0 

 
K 
 

 
45.7 - 56.4 

 
0.6 – 1.8 

 
24.1 – 54.5 

 
3.9 – 9.3 

 
0.9 - 14.7 

 
0.1 – 3.3 

 
J 
 

 
43 - 45.7 

 
1.0 –  4.1 

 
39.4 -112.6 

 
4.7 – 14.9 

 
1.9 - 12.8 

 
0.5 –  4.4 

 
I 

 
36 - 43 

 
1.7 –  4.1 

 
32.3  – 98.7 

 
5.1 – 14.9 

 
2.0 – 27.0 

 

 
0.3 – 0.9 

 
H 

 
32.2 - 36 

 
1.8 – 3.4 

 
33.2 – 52.5 

 
6.2 – 10.9 

 

 
1.8 – 15.0 

 
0.1 – 0.5 

 
G 

 
27.6 - 32.2 

 
1.6  –  3.1 

 
28.8 –  45.6 

 
4.9  – 11.1 

 
63.5 –127.6 

 

 
0.9  – 1.8 

 
F 
 

 
25.6-27.6 

 
1.7  –  3.0 

 
29.3  – 41.3 

 
5.8  – 10.1 

 
2.9  - 15 

 
0.3  - 0.5 

 
E 
 

 
19.5 - 25.6 

 
1.2  –  2.5 

 
27.8  – 45.4 

 
4.5  – 11.9 

 
2.8  –  28.3 

 
0.9  –  1.5 

 
D 

 
16.7 - 19.5 

 
1.0  –  2.1 

 
33.0  – 51.0 

 
4.8  –  9.0 

 
51.0 –114.0 

 

 
0.5 – 1.0 

 
C 

 
6.2-16.7 

 
0.9 – 1.7 

 
25.3 – 53.6 

 
3.8 – 10.7 

 
30.0 – 
120.0 

 
4.0 – 10.0 

 
B 
 

 
0-6.2 

 
0.9 – 3.0 

 
17.7 – 66.5 

 
4.9 – 13.8 

 
5.0 – 10.0 

 
2.0 – 5.0 

A** Below 
Woodford 

 
0.7 – 1. 0 

 
0.1 – 2.9 

 
2.8 – 4.6 

Bois d’Arc Limestone 
** 12 measurements 
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Table 6. Gamma-ray magnitudes and gamma-ray specific elemental assemblages in 
lithological intervals (from Figure 6, Table 6) of Woodford Shale at Hass B  

Unit d (m above 
base) 

K (%) 
range 

U (ppm) 
range 

Th (ppm) 
range 

Fissile 
interval (cm) 

thickness 

Siliceous 
interval (cm) 

thickness 
 K (CZ) Covered zone and repeated sections not described in spillway 

 
J 
 

 
47.2 – 55.8 

 
1.4 – 2.7 

 
14.0 – 39.4 

 
5.9 – 11.7 

 
0.2 - 195.6  

 
1.0 - 7.3  

 
I 

 
40.2 – 47.2 

 

 
1.5 – 2.9 

 
28.4 – 53.2 

 
5.4 – 11.6 

 
2.2 - 228.6 

 
1.1 – 8.1 

 
H 
 

 
32.7 – 40.2 

 
1.3 – 2.8 

 
40.4 – 60.3 

 
6.4 – 12.5 

 
1.1 - 64.8 

 
0.6 - 10.2 

 
G* 

 

 
25.0 – 32.7  

 
1.5 – 2.8 

 
25.5 – 57.0 

 
6.2 – 11.8 

 
0.2 - 36.8 

 
1.3 - 40.6  

 
F* 

 
17.4 – 25.0  

 

 
1.1 – 2.3 

 
31.5 – 48.9 

 
3.9 – 12.4 

 
1.3 - 52.1 

 
1.0 - 78.0  

 
E 

  
13.7 – 17.4 
 

 
1.0 – 2.7 

 

 
21.0 – 41.8 

 
3.8 – 10.3 

 
1.3 - 68.6 

 
1.3 - 12.2 

 
D 
 

 
7.3 – 13.7 

 
1.8 – 4.0 

 
23.8 – 48.9 

 
6.8 – 13.6 

 
0.5 - 134.6 

 
1.6 - 17.8 

 
 

C 
 

3.2 – 7.3 
 

1.2 – 3.2 
 

30.4 – 57.7 
 

6.2 – 12.9 
 

 
1.1 - 43.2 

 
1.3 - 6.2 

 
B 
 

 
0 - 3.2 

 
2.6 – 6.1 

 
6.5 – 37.6 

 
9.9 – 21.4 

 

 
0.3 - 246.4*  

 
1.9 - 4.8* 

 
A** 

 
Below 

 

 
2.8 – 2.9 

 
6.5 – 7.3 

 
9.9 – 11.3 

Henryhouse- Harragan 
Limestone 

* Denotes faulted zones with obscured bedding planes. Beds (B) basal claystone, (F,G) tan 
chert, are pervasively fractured, sheared, and kinked. ** (n = 2) measurements 
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Figure 27. Comparison of profiles for several study variables at Hass B including: gamma-ray magnitude (a.), U (ppm) (b.), K (wt. %) 
(c.), Th (ppm) (d.), U/Th ratio (e.), MS (f.), net shale % (g.), and # of beds/m (h.).
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few parts-per-million.  Basal beds at Hass B have a generally lower concentration of 

uranium relative to Hass A.  Hass B is richer overall in thorium relative to Hass A (Table 

4).  Hass B basal beds have a minimum U/Th ratio of .5 while the corresponding 

minimum at Hass A is 3.4 times greater (U/Th = 1.7) (Table 4).  This difference reflects 

both the lower Th concentration and higher U concentration at Hass A (Table 7) relative 

to Hass B (Table 8).  Because the base of both outcrops represents the Acadian 

Unconformity Surface (Hass and Huddle, 1965), the difference between the U/Th ratios 

of the Woodford Shale and Hunton Carbonate is reflective of differences in lithology. 

The relative difference between maximum (4.1) and minimum (0.1) concentration 

values of potassium at Hass A (41 fold) is the greatest single elemental difference noted 

among radioactive elements measured by spectral gamma-ray analysis (Table 7).  The 

minimum potassium concentration (weight %) occurs near the respective tops of both 

formations (Figures 19, 27).  The minimum K concentration is an order of magnitude 

larger at Hass B (1.0) relative to Hass A (0.1), but the difference may be partialy 

explained by the complete removal of the upper beds in the spillway at Hass B (Tables 7, 

8).  Potassium concentration (weight %) in basal beds at Hass A is relatively low while 

the basal beds of Hass B are extremely enriched in K (Table 4).  This difference in basal 

K concentration is possibly evidence of differences between the depositional 

environments at the two locations at the onset of Woodford Shale deposition.  Gamma-

ray magnitude comparison between the upper intervals at study outcrops is impractical, 

due to the complete removal of the upper Woodford Shale interval in the spillway at Hass 

B.  Likewise, the presence of faulting at the basal Woodford Shale contact surface in the 

spillway at Hass B calls into question whether the basal section is complete. 



 99

Table 7. Summary statistics for spectral gamma-ray data at Hass A. 

Hass A Gamma-ray 

Magnitude 

(API units) 

Potassium 

(wt. %) 

Uranium 

(ppm) 

Thorium 

(ppm) 

U/Th 

ratio 

Mean 363.5 1.7 38.6 7.2 5.4 

Standard 

Error 
6.3 0.0 0.7 0.1 0.1 

Median 362.4 1.7 38.2 7.2 5.1 

Mode 380.4 2.0 37.7 7.9 6.6 

Standard 
Deviation 

134.0 0.7 15.1 2.4 2.0 

Sample 
Variance 

17955.1 0.5 227.5 6.0 4.2 

Kurtosis 4.3 -.01 4.9 0.1 1.5 

Skewness 1.2 0.1 1.4 0.1 0.9 

Range 902 4 105.2 14.3 13.6 

Minimum 77.6 0.1 7.4 0.6 1.7 

Maximum 979.6 4.1 112.6 14.9 15.3 

count 458 458 458 458 458 

 

 

 

 

 

 

 

 



 100 

Table 8. Summary statistics for spectral gamma-ray data at Hass B. 

Hass B Gamma-ray 

Magnitude 

(API units) 

Potassium 

(wt. %) 

Uranium 

(ppm) 

Thorium 

(ppm) 

U/Th 

ratio 

Mean 372.3 2.2 36.5 8.9 4.5 

Standard 

Error 
4.4 0 0.6 0.1 0.1 

Median 357.6 2.1 36.0 8.7 4.4 

Mode 304.0 1.9 30.4 8.7 5.0 

Standard 
Deviation 

80.5 0.7 10.6 2.4 1.5 

Sample 
Variance 

6749.0 0.5 111.8 6.0 2.3 

Kurtosis -.02 7.2 0 5.3 0.4 

Skewness 0.2 2.2 -.02 1.7 -.02 

Range 424.8 5.1 53.8 17.6 8.4 

Minimum 142.8 1.0 6.5 3.8 0.5 

Maximum 567.6 6.1 60.3 21.4 8.8 

Count 328 328 328 328 328 
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In summary, Hass B is richer in both thorium and potassium relative to Hass A at 

both the major interval (Table 4), minor interval (Tables 5, 6), and outcrop scale (Tables 

7, 8).  The differences in concentrations of the aforementioned elements, is most 

significant in comparisons between respective basal intervals (Figure 4).  These basal 

differences between the outcrops are important independent of the removal of the upper 

phosphatic intervals of Hass B.  The middle fissile unit at Hass A has the maximum 

concentration of uranium (112.6 ppm.); (Table 7) more twice the maximum value in Hass 

B (60.3 ppm); (Table 8).  Mean uranium concentrations at Hass A (38.6 ppm) and Hass B 

(36.5 ppm) are similar in their mean uranium concentration (Tables 7, 8), yet the base of 

Hass A is enriched in uranium relative to Hass B (Table 4).  It is probable that the 

uranium statistics at Hass B are strongly affected (e.g. higher than actual) by missing data 

corresponding to the phosphatic interval (e.g upper Woodford Shale) that typically has 

low gamma-ray magnitude and extremely low concentrations of uranium (e.g. Figure 19). 

 

Gamma-Ray Magnitude: Elemental Control 

Uranium exerts the strongest control on gamma-ray magnitude, and this trend is 

slightly stronger at Hass A relative to Hass B (Figure 28).  The R2 value for the variation 

of gamma-ray magnitude vs. uranium concentration is .99 and .94 respectively for Hass 

A (Table 9) and Hass B (Table 10).  Plots of gamma-ray magnitude vs. height above 

outcrop base are virtually indistinguishable from plots of uranium concentration (ppm) 

vs. height above outcrop base, at Hass A and Hass B (Figures 29, 30).   Thorium (Figure 

31) and potassium (Figure 32) are also important in determining API magnitude,  
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Figure 28. Gamma-ray magnitude vs. uranium concentration in the Woodford Shale at 
Hass A (a.) and Hass B (b.).   
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Table 9. R2 (R-squared) values for relationships between gamma-ray specific elements, 
MS, and gamma-ray magnitude in Woodford Shale at Hass A. 

R2
→ 

↓ 

U 

(ppm) 

Th 

(ppm) 

K 

(wt. %) 

MS 

(SI units) 

Gamma-Ray  

Magnitude 

(API units) 

Fissile A      

U (ppm) 1 0.32 0.27 0.09 0.99 

Th (ppm) 0.32 1 0.50 0.10 0.41 

K (wt. %) 0.27 0.5  1 0.12 0.35 

MS (SI units) 0.10 0.10 0.12 1 0.10 

Gamma-Ray  

Magnitude 

(API units) 
0.99 0.41 0.35 0.10 1 

Siliceous A      

U (ppm) 1 0.40 0.46 0.17 0.99 

Th (ppm) 0.40 1 0.66 0.36 0.49 

K (wt. %) 0.46 0.66 1 0.35 0.56 

MS (SI units) 0.17 0.36 0.35 1 0.21 

Gamma-Ray  

Magnitude 

(API units) 
0.99 0.49 0.56 0.21 1 

Transitional A      

U (ppm) 1 0.30 0.20 0.00 0.98 

Th (ppm) 0.30 1 0.56 0.01 0.43 

K (wt. %) 0.29 0.56 1 0.03 0.42 

MS (SI units) 0.00 0.01 0.03 1 0.00 

Gamma-Ray  

Magnitude 

(API units) 

0.98 0.43 0.42 0.00 1 
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Table 10. R2 (R-squared) values for relationships between gamma-ray specific elements, 
MS, and gamma-ray magnitude in Woodford Shale at Hass B. 

R2
→ 

↓ 

U 

(ppm) 

Th 

(ppm) 

K 

(wt. %) 

MS 

(SI units) 

Gamma-Ray  

Magnitude 

(API units) 

Fissile B      

U (ppm) 1 0.04 0.00 0.07 0.98 

Th (ppm) 0.04 1 0.27 0.02 0.11 

K (wt. %) 0.00 0.27 1 0.04 0.01 

MS (SI units) 0.07 0.03 0.04 1 0.09 

Gamma-Ray  

Magnitude 

(API units) 
0.98 0.11 0.01 0.09 1 

Siliceous B      

U (ppm) 1 0.07 0.00 0.01 0.98 

Th (ppm) 0.07 1 0.19 0.03 0.14 

K (wt. %) 0.00 0.19 1 0.03 0.02 

MS (SI units) 0.01 0.03 0.03 1 0.01 

Gamma-Ray  

Magnitude 

(API units) 
0.98 0.14 0.02 0.01 1 

Claystone B      

U (ppm) 1 0.42 0.51 N/A 0.94 

Th (ppm) 0.42 1 0.81 N/A 0.21 

K (wt. %) 0.51 0.81 1 N/A 0.20 

MS (SI units) N/A N/A N/A 1 N/A 

Gamma-Ray  

Magnitude 

(API units) 

0.94 0.21 0.20 N/A 1 
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Figure 29.  Comparison of gamma-ray magnitude (a.) and uranium concentration (b.) profiles at Hass A. 
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Figure 30. Comparison of gamma-ray magnitude (a.) and uranium concentration (b.) profiles at Hass B.   
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Figure 31.  Plots of gamma-ray magnitude vs. thorium concentration in Woodford Shale 
at Hass A (a.) and Hass B (b).   
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Figure 32.  Plots of gamma-ray magnitude vs. potassium concentration in Woodford 
Shale at Hass A (a.) and Hass B (b).   
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but R2 values of thorium vs. gamma-ray magnitude and potassium vs. gamma-ray magnitude are 

significantly lower relative to those corresponding to uranium vs. gamma-ray magnitude, at both 

outcrops (Tables 9, 10).  The relationship (R2) or correspondence between potassium vs. thorium 

seems slightly higher at Hass A (R2 value =.60) relative to Hass B (R2 value =.59) (Figure 33).  

Correlation between uranium vs. thorium and uranium vs. potassium seems to be weak at both 

outcrops, especially at Hass B (Tables 9, 10). 

Spectral gamma-ray derived thorium concentration data imply that uranium is extremely 

enriched relative to thorium at Hass A.  Estimates of detrital and authigenic uranium fractions are 

calculated by a method developed by Wignall and Myers where thorium and uranium are 

expressed in parts per million (ppm) (1988): 

Udetrital = 1/3(Thtotal) (Eq. 5). 

Thorium concentrations derived from spectral gamma-ray data at Hass A range from 0.6 ppm to 

14.9 ppm (Table 7).  The estimated detrital component of uranium in Woodford Shale samples at 

Hass A is 1/3 of that range (0.2 ppm to 5 ppm).  The mean thorium concentration from Hass A 

spectral gamma-ray data is 7.2 ppm (Table 7), resulting in an estimated mean detrital uranium 

fraction of 2.4 ppm.  Uranium concentrations from spectral gamma-ray data range from 7.4 ppm 

to 112.6 ppm.  Thus, Hass A Woodford Shale is extremely enriched in authigenic uranium.  

Total uranium concentrations from spectral gamma-ray data at Hass B range from 7.5 ppm to 

60.3 ppm while thorium concentration ranges from 3.8 ppm to 21.4 ppm (Table 8).  Detrital 

uranium at Hass B is estimated at 1/3 of that range (1.3 ppm - 7.1 ppm).  Thus, Hass B Woodford 

Shale is also enriched in authigenic uranium.  
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Figure 33.  Plots of potassium concentration vs. thorium concentration in Woodford Shale at 
Hass A (a.) and Hass B (b.).   
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Gamma-Ray Magnitude vs. Lithology 

The largest scale variations in gamma-ray magnitude occur at the lithologic transitions 

between Woodford Shale and the formations bounding the Woodford Shale, hence the different 

formations (Table 4).  As expected, the gamma-ray magnitude of the Woodford Shale is 

fundamentally different relative to that of the bounding formations.  This result is consistent 

with the widespread use of gamma-ray magnitude (and gamma-ray specific elemental 

assemblage) to delineate lithology (Ellis, 1987).   

Several parameters, including gamma-ray magnitude and uranium concentration appear 

to be lithologically controlled (Figures 19, 27).  These parameters include: outcrop and interval 

stratigraphic thickness (m), outcrop and interval net shale % (thickness shale/ total lithologic 

thickness) plotted as a function of distance (d) above the outcrop base, outcrop and interval net 

silica % (blocky siliceous thickness/total lithologic thickness) plotted as a function of distance 

(d) above the outcrop base, and an inferred index of cycle thickness, total number of fissile and 

siliceous beds per meter (# beds/m), plotted as a function of distance (d) above the outcrop base.  

Uranium concentration is highest, resulting in highest gamma-ray magnitude (Figure 28) 

in fissile shale units at Hass A (Figures 34) and Hass B (Figure 35).  This result agrees with 

results in a previous study at Hass A (Krystyniak, 2003).  Similarly, Hass A (Figure 19) has 

more net fissile shale relative to Hass B (Figures 19, 25) and Hass A has higher calculated 

gamma-ray magnitude (i.e. higher uranium concentration) relative to Hass B (Tables, 8, 9).  

Transitional shale was observed to have generally higher gamma-ray magnitude (i.e. higher 

uranium concentration) when compared to siliceous shale at Hass A (Figure 34). Transitional 

units (Hass A only) correspond to measurement points where the MS or gamma-ray sensor was  
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Figure 34. Distribution plots of uranium concentration from spectral gamma-ray data in select 
lithologies at Hass A including: fissile shale (a.), siliceous shale (b.), and transitional shale (c).  
Bottom plot (d.) combines all lithologies in a normalized distribution.  
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Figure 35. Distribution plots of uranium concentration from spectral gamma-ray data in select 
lithologies at Hass B including: fissile shale (a.), siliceous shale (b), and claystone (c.) found 
only found in basal beds at Hass B.  Bottom plot (d.) combines all lithologies in a normalized 
distribution. 
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directly influenced by both siliceous and fissile shale.  The upper siliceous shale at Hass 

A generally contains the lowest concentrations of uranium and lowest gamma-ray 

magnitude at the scale of the main interval (Figures 19, 27).  The upper interval at Hass A 

is cliff-forming (Figure 16), overwhelmingly siliceous (Figure 19f.), and has the lowest 

concentrations of uranium (Figure 19c), thorium (Figure 19d), and potassium (Figure 

19e) relative to other Hass A main intervals.  In summary, lithology is strongly correlated 

with calculated gamma-ray magnitude. 

At Hass B fissile shale has slightly higher gamma-ray magnitude (i.e higher 

uranium concentrations) relative to siliceous shale and much higher gamma-ray 

magnitude relative to the basal claystone (Figure 35).  Siliceous shale also has higher 

gamma-ray magnitude when compared to the basal claystone at Hass B (Figure 35).  

Calculated gamma-ray magnitude in siliceous shale at Hass A was slightly higher when 

compared to siliceous shale at Hass B (Figure 35). 

Distinct basal gamma-ray magnitude peaks were observed at Hass A and Hass B 

above the Acadian Unconformity surface (Figure 36).  Within a few feet of both outcrop 

bases, gamma-ray magnitude almost doubles (Table 4).  Hass A especially shows the 

characteristic variation in gamma-ray magnitude (e.g. gamma-ray profile) which is 

associated with well log response in the three main lithologic intervals typical of the 

Woodford Shale interval scale lithological variation (Figure 19).  
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Figure 36. Comparison of gamma-ray magnitude profiles of Woodford Shale study outcrops.  Hass A (a.) and Hass B (b.) are 
observed to have somewhat similar gamma-ray profiles especially near the outcrop base.
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The base of the Woodford shale is characterized by a dramatic increase in gamma-ray 

magnitude with an immediate basal increase in uranium less significant than the 

corresponding relative increase in thorium (Figures, 19, 27).    Therefore basal Woodford 

has a U/Th ratio much lower than any other interval in the formation.  Potassium, along 

with U and Th (Figures, 19, 27) all increase in an absolute fashion resulting in significant 

increases in calculated gamma-ray magnitude increase immediately above the Devonian 

age Hunton Group Carbonates (Table 4).  

Significant changes in several lithologically controlled parameters including 

potassium concentration, thorium concentration, MS magnitude, net shale (thickness 

shale/total thickness), total number of beds per meter (# beds/m) all occur in association 

with the largest lithologic, spectral gamma-ray, MS change at Hass A (Figure 19), the 

change from the middle fissile interval (mostly shale) to the upper siliceous interval.  

This change in lithology and rock properties occurs at approximately 44-46 m of section 

at Hass A.  The large scale shift of the aforementioned parameters occurs in association 

with beds containing pyrite nodules a discrete pyrite bed as well as the uranium/gamma-

ray magnitude and MS maximum point (112ppm); (Figure 37).  Stratigraphically below 

the pyrite layers and nodules, the outcrop is pervasively stained with a rust colored 

residue.  This residue exhibits highest magnitude MS response at Hass A.  The residue is 

interpreted to be a weathering product of the abundant pyrite or marcasite. 

Pattern correlation is observed in the separate plots of uranium, thorium and 

potassium at Hass A (Figure 19) and in separate plots of thorium and potassium at Hass B 

(Figure 27).  Little correlation is observed between the plots of uranium concentration at  
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Figure 37. Comparison of MS (a.) and gamma-ray magnitude (b.) profiles at Hass A.  
Star indicates occurrence of pyrite nodules and/or discrete layers.  
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Hass B and corresponding plots of thorium and potassium (Figure 27).  Despite the poor 

statistical correlations (R2) between gamma-ray magnitude vs. thorium concentration 

(Figure 31) and gamma-ray magnitude vs. K (weight %); (Figure, 32), potassium and 

thorium concentration plots resemble uranium concentration (e.g. gamma-ray magnitude 

plot) when viewed at the outcrop scale at Hass A (Figure 19). At Hass B, the strong 

resemblance between gamma-ray specific element profile plots is limited to the basal 

interval (Figure 27). 

  At Hass A (Figure 38) and Hass B (Figure 39), distribution plots of K (weight %) 

show a strong relationship between potassium and lithology.  Thorium concentration also 

varies with lithology at Hass A (Figure 40) and at Hass B (Figure 41).  The distribution of 

K, Th, and U with lithotype for Hass A (Figure 42) and Hass B (Figure 43) show that 

thorium is more homogeneous with respect to lithology relative to potassium, and 

potassium is more homogeneous with respect to lithology relative to uranium.  Uranium 

concentrations in transitional shale are never extremely high or low, and always 

intermediate in concentration between fissile and siliceous shale.  Transitional shale is 

represented in several bins in the central portion of the Hass A uranium distribution plot 

(Figure 42). 

At Hass B, the trend is obscured in terms of somewhat homogeneous uranium 

distribution in the selected lithologies (Figure 43).  Fissile shale is enriched in uranium 

relative to other lithologies.  Missing lithology includes the low gamma-ray magnitude 

phosphatic zone typical of upper Woodford Shale interval and possibly a small number of 

high magnitude gamma-ray measurements corresponding to fissile shale with the highest 

uranium concentrations.  If the missing Hass B lithology and associated data  
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Figure 38.  Distribution plots of potassium concentration from spectral gamma-ray data 
in select lithologies at Hass A.  Note the unequal distribution of potassium (% gamma) in 
fissile shale (a.), siliceous shale (b.), and transitional shale (c.).  Bottom plot (d.) 
combines all lithologies in a normalized distribution.  
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Figure 39.  Distribution plots of potassium concentration from spectral gamma-ray data 
in select lithologies at Hass B including: fissile shale (a.), siliceous shale (b.) and basal 
claystone (c.).  Bottom plot (d.) combines all lithologies in a normalized distribution.   
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Figure 40. Distribution plots of thorium concentration from spectral gamma-ray data in 
select lithologies at Hass A including: fissile shale (a.), siliceous shale (b.), or transitional 
shale (c.).  Bottom plot (d.) combines all lithologies in a normalized distribution.   
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Figure 41. Distribution plots of thorium concentration from spectral gamma-ray data in 
select lithologies at Hass B including: fissile shale (a), siliceous shale (b), and claystone 
(c.).  Bottom plot (d.) combines all lithologies in a normalized distribution. 
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Figure 42.  Distribution plots of gamma-ray specific elemental concentrations in select 
lithologies at HassA including: uranium (a.), potassium (b.), and thorium (c.).   
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Figure 43.  Distribution plots of gamma-ray specific elemental concentrations in select 
lithologies at Hass B including: uranium (a.), potassium (b.), and thorium (c.).   
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were included the summary statistics for gamma-ray magnitude and gamma-specific 

elemental assemblages would probably be different.  Still, spectral gamma-ray data at the 

minor interval level (Tables 5, 6) and outcrop level (Table 7, 8) show Hass A has very 

different gamma-ray magnitude and gamma-ray specific elemental assemblage relative to 

Hass B, irrespective of the missing lithology at Hass B. 

Fissile beds, ≤ 1.3 m at Hass A and ≤ 2.3 m at B, are generally much thicker than 

siliceous beds, ≤ 12.4 cm at Hass A and ≤ 46 cm at Hass B.  Woodford intervals with the 

largest number of beds per meter (≥ 10) are consistently siliceous.  Fissile beds larger 

than a meter thick are common at all Woodford Shale outcrops visited in the study.  The 

intervals with highest concentration of all three radioactive gamma-ray specific elements 

are fissile intervals (≤ 10 beds/m) with the lowest number of beds/ meter and the highest 

gamma-ray magnitudes (Figures 19, 27).  The correlation between thick fissile shale beds 

and uranium concentration was strongest at Hass A.  The Hass A fissile middle main 

interval had the highest concentration of all gamma-ray specific elements, highest 

gamma-ray magnitude, highest MS, highest net shale (≈ 100%), and lowest cycle 

thickness (< 12 beds/meter) (Figure 19).   At Hass A, the siliceous upper main interval 

had the lowest concentration of all three gamma-ray specific elements, lowest gamma-ray 

magnitude, lowest thorium/uranium ratio (ppm/ppm), lowest MS, lowest net shale, 

largest cycle thickness (> 35 beds/meter), and the highest net siliceous shale (net blocky 

chert/ total lithologic thickness) (Figure 19).  
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Gamma-Ray Magnitude: Variation between Outcrops 

 

The Hass A maximum uranium composition is almost twice the maximum 

uranium concentration at Hass B (Tables 7, 8) and the R2 value of gamma-ray magnitude 

vs. uranium concentration approaches one at both outcrops (Tables 9, 10).  The maximum 

gamma-ray magnitude (γmax) at Hass A is roughly twice that of Hass B (Figure 7, 8).  

However, the mean gamma-ray magnitude values of the two outcrops, and the mean 

uranium concentration values are almost equal.  Plots of gamma-ray magnitude vs. height 

(ft.) above the outcrop base at study outcrops show limited pattern correlation near the 

base of the outcrops (Figure 36).  The observations, that Hass A has higher uranium 

concentration and higher gamma-ray magnitude, are consistent with the observation that 

the Hass A outcrop is overall more fissile in terms of net shale (shale thickness/total 

lithologic thickness) relative to Hass B (Figures 19, 27).  Finally all lithologic and 

gamma-ray specific elemental comparison between Hass A and Hass B must be 

considered in light of the missing Hass B lithology as the result of faulting, pervasive 

tectonic fracturing, and weathering.  

 

Magnetic Susceptibility Observations: 

MS vs. Gamma-Ray Magnitude 

Magnetic susceptibility (MS) is observed to vary in a fashion that shows no 

significant statistical correlation to gamma-ray magnitude and uranium concentration 

(Tables 9, 10).  Linear regression of MS vs. gamma-ray magnitude at Hass A (Figure 44) 

and Hass B (Figure 45) yielded low R2 values.   Despite low or no statistical correlation  
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Figure 44.  Plots of MS vs. gamma-ray magnitude in select lithologies at Hass A 
including: fissile shale (a.), siliceous shale (b.), and transitional shale (c). 
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Figure 45.  Plots of MS vs. gamma-ray magnitude in select lithologies at Hass B 
including: fissile shale (a.) and siliceous shale (b.). 
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between MS and gamma-ray magnitude, outcrop profiles show evidence of pattern correlation 

between the variables at Hass A (Figure 37).  Pattern correlation between MS and gamma-ray 

magnitude at Hass B is problematic (Figure 46), partly due to the large number of missing MS 

measurements at Hass B.  MS (Figure 47) and gamma-ray magnitude (Table 4) both strongly 

increase in the first few meters above the Hunton Limestone/Woodford Shale contact.  Just as 

gamma-ray magnitude and gamma-ray specific elemental assemblage (Figures 42, 43) are 

controlled by lithology the change in MS magnitude across the Acadian Unconformity surface 

appears to be lithologically controlled (Figure 47).     

  

MS vs. Lithology 

Plots of uranium concentration vs. MS in select lithologies at Hass A (Figure 48) and 

Hass B (Figure 49) indicate that uranium concentration and MS variation are both strongly 

influenced by lithology.  The plot of uranium concentration vs. MS select lithologies at Hass A 

shows that fissile and siliceous shales differ in terms of both uranium concentrations and MS 

(Figure 48).  At Hass A, the mean value of MS in fissile shale is 5.3 SI units while the mean for 

siliceous shale is 1.5 SI units.  MS differences between fissile and siliceous shale at Hass B 

(Figure 49) are less striking than those differences at Hass A (Figure 48), perhaps reflecting the 

large number of MS missing measurements.  The distribution plot of MS magnitude in select 

lithologies at Hass A (Figure 50) also suggests strong lithologic control over MS.  At Hass B, 

evidence from the distribution plot of MS magnitude in select lithologies is less conclusive 

(Figure 51).   However, negative (-) MS at both outcrops is only observed in siliceous shale and 

mean MS in fissile shale (5.1 SI units) is much higher than mean MS in siliceous shale (2.9 SI 

units); (Figure 45).  
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Figure 46. Comparison of MS and gamma-ray magnitude profiles at Hass B. 
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Figure 47. Lithologically controlled MS (κ) variation across the Acadian Unconformity.  
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Figure 48.  Plots of uranium concentration from spectral gamma-ray data vs. MS in select 
lithologies at Hass A including: fissile shale (a.), siliceous shale (b.) and transitional shale (c.). 
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Figure 49. Plots of uranium concentration from spectral gamma-ray data vs. MS in select 
lithologies at Hass B including: fissile shale (a.), siliceous shale (b.), and basal claystone (c.).  
Includes  uranium data using spectral gamma-ray data in intervals where no MS data was 
available*. 
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Figure 50. Distribution plots of MS in select lithologies at Hass A including: fissile (a.), siliceous 
(b.), and transitional shale (c.).  Bottom plot (d.) combines all lithologies in a normalized 
distribution.  
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Figure 51. Distribution plots of MS in select lithologies at Hass A including: fissile (a.), siliceous 
(b.), and a normalized distribution plot of both lithologies (c.).    
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At least 5 types of variation in MS magnitude are observed within the Woodford 

Shale outcrops in the study.  Descriptive statistics corresponding to MS variation at both 

study outcrops imply that MS varies with lithology (Table 11).  At least some of the MS 

variation is related to the poor condition of the Hass B outcrop including: MS variation as 

a function of faulted, weathered, or covered section at Hass B where repeatable MS 

measurements were impossible.  MS varies within individual main and minor intervals 

(Tables 12, 13) at individual study outcrops. MS varies between the three separate main 

intervals at individual study outcrops (Figure 52). MS varies between a given main 

interval at one study outcrop and the corresponding interval at the other study outcrop 

(Figure 52). Statistical MS variation at the outcrop scale is mostly restricted to small 

outcrop differences between MS in specific lithotypes (Table 11) and the MS profiles of 

Hass A and Hass B show little pattern correlation at the outcrop scale (figure 52). 

A sixth type of MS variation was observed in the study.  MS varies strongly 

between the Woodford Shale and the formations bounding the Woodford Shale (Figure 

47).  This observation shows that the MS response and lithology of the Woodford Shale 

is fundamentally different from the MS and lithology of the Hunton Limestone.  The MS 

response of the Hunton Limestone, though not equal, was similar to MS response in the 

Sycamore Limestone.  Likewise, Sycamore Limestone at Hass A and Hass B and Hunton 

Limestone, either Bois d’Arc Limestone at Hass A or Henryhouse-Harragan Limestone at 

Hass B, all have low magnitude MS relative to the MS of the Woodford Shale.  
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Table 11. Summary statistics for magnetic susceptibility in Woodford Shale. 

M S 

Descriptive 

Statistics 

Hass A 

all 

Hass B 

all 

Hass A 

Fissile 

Hass A 

Siliceous 

Hass A 

Transitional 

Hass B 

Fissile 

Hass B 

Siliceous 

Hass B 

Claystone 

Mean 3.9 4.0 5.3 1.4 2.5 5.1 2.9 N/A 

Standard Error 0.1 0.2 0.2 0.1 0.2 0.2 0.2 N/A 

Median 3.5 3.5 5.0 1.0 2.5 5.0 3.0 N/A 

Mode 3.0 3.0 6.0 0 3.0 5.0 3.0 N/A 

Standard 
Deviation 

3.0 2.5 2.9 1.6 1.6 2.3 2.2 N/A 

Sample Variance 9.3 6.3 8.2 2.7 2.5 5.5 4.9 N/A 

Kurtosis 1.2 2.5 1.5 0 2.0 0.2 12.6 N/A 

Skewness 0.9 1.1 0.9 0.9 1.0 0.4 2.5 N/A 

Range 19.0 19.0 17.5 7.0 8.0 12.0 19.0 N/A 

Minimum -1.0 -2 0.5 -1.0 0 1.0 -2.0 N/A 

Maximum 18 17 18.0 6.0 8.0 13.0 17.0 N/A 

Count 455 251 279 127 49 125 126 N/A` 
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Figure 52. Comparison of MS profiles at Hass A (a.) and Hass B (b.).  
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Table 12. MS in lithological intervals (*from Table 2 ) of Woodford Shale at Hass A 
Interval Height 

Above Base 
(m) 

Mean 
Uppm 

Mean 
Gamma 

API 

Gamma 
Range 

API 

Mean 
MS  
κ 

MS 
Range 

κ 

N 
(n = 1) 

above 
Woodford 

3 72.4 * 0 * * 

 
M 
 

 
62.9 - 69.6 

 
17.4 

 

 
164 

 
115 – 254 

 
0.3 

 
-1  

 
+6 

 
L 
 

 
56.4 - 62.9 

 
32.8 

 
298 

 
81 – 456 

 
1.7 

 
0 

 
+7 

 
K 

 
45.7 - 56.4 

 
39.5 

 
360 

 

 
238 – 496 

 
2.2 

 

 
0   

 
+8.5 

 
J 
 

 
43 -  45.7 

 
77.6 

 

 
693 

 
359 – 980 

 
6.9 

 
+1 

 

 
+18 

 
I 
 

 
36 - 43 

 
50.3 

 
477 

 
321 – 915 

 
5.3 

 
+1  

 
+ 15.5 

 
H 

 
32.2 - 36 

 
43.3 

 
419 

 
330 – 505 

 
6.0 

 

 
+2.5  

 
 +12 

 
G 

 
27.6 - 32.2 

 
38.6 

 
381 

 
290 – 447 

 
3.4 

 

 
+0.5 

 
 6.5 

 
F 
 

 
25.6- 27.6 

 
34.2 

 
340 

 
297 – 407 

 
6.5 

 
+ 2.5  

 
+12 

 
E 

 
19.5 - 25.6 

 
37.5 

 
361 

 
280 - 434 

 
5.6 

 

 
+1 

 
+ 10.5 

 
D 
 

 
16.7 - 19.5 

 
40.0 

 
373 

 
305 - 465 

 
4.6 

 
+1   

 
 + 10.5 

 
C 
 

 
6.2- 16.7 

 
35.1 

 
340 

 
242 – 498 

 
4.4 

 
+1 

 
+ 10 

 
B 

 
0- 6.2 

 
39.1 

 
380 

 
191 - 635 

 
5.4 

 
+1   

 
+ 14.0 

A 
(n = 12) 

- 3.7 -  0 1. 34 29 - 52 1.5 0 +3 
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Table 13. MS in lithological intervals (from Table 4) of Woodford Shale at Hass B 
Interval Height 

Above Base 
(m) 

U (ppm) 
range 

Mean 
Gamma 

API 
units 

Gamma 
Range 

API 
units 

Mean 
MS  
κ 

MS 
Range 

κ 

 
K 

Covered zoned not exposed in spillway.  No MS measurements after 48.2 m of 
section.  No spectral gamma-ray measurements after 55.8 m of section. 

 
J** 

 

 
47.2 – 55.8 

 
14.0 – 
39.4 

 
286 

 
181 - 362 

 
N/A N/A N/A 

 
I 

 
40.2 – 47.2 

 

 
28.4 – 
53.2 

 
468 

 
290 - 498 

 
5.8 0.5 10 

 
H 
 

 
32.7 – 40.2 

 
40.4 – 
60.3 

 
480 

 
380 - 561 

 
5.5 1 10 

 
G* 

 

 
25.0 – 32.7  

 
25.5 – 
57.0 

 
409 

 
274 - 536 

 
3.6 1 8 

 
F* 

 
17.4 – 25.0  

 

 
31.5 – 
48.9 

 
352 

 
301 - 456 

 
2.3 -2 6 

 
E 

  
13.7 – 17.4 
 

 
21.0 – 
41.8 

 
308 

 
220 - 406 

 
4.5 1 17 

 
D 
 

 
7.3 – 13.7 

 
23.8 – 
48.9 

 
342 

 
286 - 458 

 
4.3 1 9 

 
C 

 
3.2 – 7.3 

 
30.4 – 
57.7 

 

 
400 

 
256 - 520 

 
3.2 

-1 6 

 
B* 

 

 
0 - 3.2 

 
6.5 – 37.6 

 
278 

 
142 – 401 

 
N/A N/A N/A 

 
A 

(n =2) 

 
below 
contact 

 
2.8 – 2.9 

 
143 

 

 
143 

 
0.5 

 
0 1 

No MS measurements from outcrop base to 5.8 m of section. Zones * B, F, G, and J are 
badly fractured and faulted. ** only 12 measuerments in the interval  
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Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): 

Iron (Fe) vs. Aluminum (Al) 

 

The concentration of several chemical elements was determined for 46 samples of 

Woodford Shale collected at Hass A.  The elemental correlations from 4 of those 

elements are presented in Table 14.  These elements include iron, aluminum, potassium, 

and uranium.  This particular set of samples corresponds with paired MS/spectral 

gamma-ray measurement points.  Iron/aluminum ratios (ppm/ppm) were calculated from 

the ICP-MS data corresponding to these samples.  The iron aluminum ratios were 

compared against the North American Shale Composite (NASC) shale standard (Gromet 

et al., 1984), the Marine Sciences Group Black Shale Composite (BSC); (Vine and 

Tourtelot, 1970), and the Post Archaean Australian Shale Standard (PAASS); (Taylor and 

MCClennan, 1985).  Aluminum is considered to be conservative in shale and therefore 

enhancement in iron or authigenic iron can be estimated by comparison to standards in 

the following way:   

Feauth.  = Alspl (Festd/Alstd) (Eq. 5) 

where Feauth is the authigenic iron contained in the sample, Alspl is the aluminum 

concentration (ppm) of the sample and Festd and Alstd are the concentrations of iron (ppm) 

and aluminum (ppm) from an appropriate shale standard (e.g. NASC); (Gromet, et al., 

1984).  The Woodford shale samples are found to be enriched when compared to the 

NASC, the standard with the highest Fe/Al ratio (0.45); (Figures 53, 54).  The mean 

value of the Woodford Shale Fe/Al ratio was more than twice the 



 142 

Table 14.  Correlation of select elements from compositional analysis by inductively 
coupled plasma mass spectrometry in 42 Woodford Shale samples from Hass A 

 K 

(ppm) 

Al 

(ppm) 

Fe 

(ppm) 

U 

(ppm) 

K 

(ppm) 
1 0.95 0.42 0.63 

Al 

(ppm) 
0.95 1 0.39 0.44 

Fe 

(ppm) 
0.42 0.39 1 0.37 

U 

(ppm) 
0.63 0.44 0.37 1 
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Figure 53.   Woodford Shale iron/aluminum ratios calculated from inductively coupled 
plasma mass spectrometry data at Hass A.  Note the value of the NASC shale standard 
(star); (Gromet et al., 1984). 
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Figure 54. Distribution plot and summary statistics of iron/aluminum ratios in Woodford Shale at Hass A.  Note shale standards 
including (Gromet et al, 1984; Vine and Tourtelot, 1970).
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value of the Fe/Al ratio (0.45) of the North American Shale Composite (Figure 54).  The 

maximum observed Fe/Al ratio in the Woodford Shale (3.1) was approximately 6.8 times 

the NASC standard (0.45).  Only two of forty five calculated ratios (Figure 54) were 

lower than the NASC standard (0.45) or the PAAS standard (0.34) and only one 

calculated ratio was lower than the BSC standard (0.29).  

Confidence in the ICP-MS based findings is somewhat increased through 

comparison of the Woodford Shale Al/Fe ratio mean (1.0) and median (.9) to the NASC 

(.45) (Figure 54) because both statistical parameters show significant enrichment relative 

to the NASC standard.  Further, the mean (1.0) is similar to the median (0.9) Fe/Al ratio 

and both values are approximately twice the standard value despite skewness (1.71) in the 

distribution caused by a few extremely high Fe/Al values (e.g. Fe/Almax = 3.1); (Figure 

54).  The sample with the highest Fe/Al ratio (3.1) has an estimated authigenic fraction 

authigenic fraction of 0.85 when the NASC is used for the estimate. 

Summary statistics of Fe/Al ratios show that samples are enriched in authigenic 

iron relative to other shale standards including: the Post Archaean Australian Shale 

Standard (Festd/Alstd = 0.34); (Taylor & McClennan, 1985) and the Marine Sciences 

Group Black Shale Composite (BSC); (Festd/Alstd = 0.29); (Vine and Tourtelot, 1970).  

The mean estimated authigenic iron fraction of the samples (Feauth) is: 0.44 when 

compared to the NASC, 0.58 when compared to the PAASS, and 0.64 when compared to 

the BSC.  When compared to the BSC, the sample with the highest calculated Fe/Al ratio 

(Fe/Almax = 3.1) has an estimated authigenic fraction (Feauth = .91).   
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ICP-MS Based Elemental Correlations 

 ICP-MS based elemental correlations among iron and aluminum along with 

uranium and potassium were analyzed (Table 14).  Uranium, potassium, and thorium 

were also measured by the spectral gamma-ray method (Table 4).  We were unable to 

produce usable results of thorium concentration using the ICP-MS method.  Potassium 

concentration vs. aluminum concentration shows strong correspondence, with an R2 = 

0.95 (Figure 55).  Aluminum is considered a conservative tracer in comparing elemental 

enrichments in shales (Taylor and McClennan, 1985).  This plot implies that the 

Woodford Shale is not significantly enriched in potassium relative to aluminum.  Other 

elemental correlations such as iron concentration vs. aluminum concentration, R2 = 0.39 

(Figure 56) and uranium concentration vs. aluminum concentration, R2 = 0.44 (Figure 

57), with low R2 values, imply that the Woodford Shale is enriched in authigenic iron and 

uranium.  

 Since the plot of uranium concentration (ppm) vs. aluminum concentration from 

ICP-MS data shows weak correspondence, with an R2 = .44 (Figure 65) and potassium 

strongly correlates with aluminum (Figure 63), these findings imply that the Woodford 

Shale is also enriched in uranium relative to potassium.  A similar finding, R2 = .44 

(Figure 36c) for a plot of potassium vs. uranium derived from spectral gamma-ray data, 

also implies that uranium is enriched relative to potassium in Woodford Shale. 
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Figure 55.  Plot of potassium concentration vs. aluminum concentration from inductively coupled plasma mass spectrometry data in 
the Woodford Shale at Hass A 
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Figure 56.  Plot of iron concentration vs. aluminum concentration from inductively coupled plasma mass spectrometry data in the 
Woodford Shale at Hass A. 

 

 

 

 



 149 

U
ra

n
iu

m
 (

p
p

m
)

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000

Aluminum (ppm)

Hass A

R2 = .4405

Y = 0.002x + 7.3927

U
ra

n
iu

m
 (

p
p

m
)

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000

Aluminum (ppm)

Hass A

R2 = .4405

Y = 0.002x + 7.3927

 
Figure 57.  Plot of uranium concentration vs. aluminum concentration from inductively coupled plasma mass spectrometry data in the 
Woodford Shale at Hass A.  
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CHAPTER V 

 
CONCLUSIONS 

 

Study Variables: Lithologic Control 

Based on 455 paired measurements of gamma-ray magnitude and MS at Hass A, 

lithology exerts a primary control over MS, gamma-ray magnitude, and variations in 

gamma-ray specific elemental assemblage.  Trends at Hass B based on 251 paired 

spectral gamma-ray and MS measurements and 77 spectral gamma-ray measurements 

without corresponding MS measurements, reinforce the conclusion that lithology exerts 

control on over MS, gamma-ray magnitude, and gamma-ray elemental assemblage.  

Fissile shale beds and fissile shale intervals at both outcrops generally exhibit higher 

gamma-ray magnitude, MS and concentrations of uranium measured by the spectral 

gamma-ray method relative to siliceous shale, transitional shale, claystone and phosphatic 

intervals.   

Highly indurated siliceous shale beds and siliceous intervals at both outcrops have 

the thinnest fissile beds, the lowest cycle thickness (highest number of beds per meter), 

and the lowest net fissile shale values (fissile thickness/total thickness).  Siliceous 

intervals contain multiple repeated beds of siliceous shale, some with no discernable 

intervening fissile beds present.  Siliceous beds and intervals generally have the lowest 
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gamma-ray magnitude, the lowest concentrations of all gamma-ray specific elements, and 

the lowest MS.   

The cyclic Woodford Shale, alternating between fissile beds and siliceous beds, 

has a gamma-ray magnitude plot which contained oscillations that mirrored observed 

lithologic cyclicity at the outcrop face.  The repeated observation that lithology can be 

inferred from gamma-ray magnitude and individual gamma-ray specific elemental 

concentrations confirmed the validity of the long-standing petroleum industry practice of 

using gamma-ray magnitude and spectral gamma-ray analysis to infer lithology. 

 The gamma-ray magnitude logs of the Woodford Shale have been interpreted as 

being comprised of three main intervals, each representing the characteristic gamma-ray 

magnitude and spectral gamma-ray specific elemental assemblage of one of the three 

large lithologic intervals observed in outcrops.  The predictable nature of the association 

between Woodford Shale lithology and gamma-ray magnitude accounts for the 

formations use as a distinct and dependable stratigraphic marker within the Anadarko 

Basin.  Gamma-ray magnitude in this study was observed to vary with lithology at the 

scale of the individual bed, in and between main intervals, and between study outcrops.  

All three of the individual radioactive elements sampled by spectral gamma-ray analysis 

(U, K, and Th) were observed to vary with lithology.   

 

 

Gamma-Ray Magnitude, Elemental Control, and Geochemical Facies 

 The concentration of uranium had the largest control on gamma-ray magnitude in 

the Woodford Shale.  R2 values between uranium concentration and gamma-ray 



 152 

magnitude approach a value of 1.  Higher concentrations of uranium in fissile shale imply 

that it may be deposited in a more anoxic depositional environment relative to siliceous 

shale.  The occurrence of pyrite nodules and discrete pyrite layers proximate to uranium 

concentration and gamma-ray magnitude maxima indicates that the Woodford Shale 

depositional environment was strongly reducing or anoxic and perhaps was even euxinic.  

The entire Woodford Shale is found to be enriched with authigenic iron, generally well 

above any published shale standard.  It is important to note that the large pyrite nodules 

were excluded from the ICP-MS sampling.  Although no speciation of iron was 

conducted in this study, the quantity of pyrite present and other evidence such as uranium 

and carbon concentrations makes it reasonable to assume that the degree of pyritization is 

nearly 100%.   

The accumulation of apparently diagenetic pyrite layers, diagenetic pyrite nodules 

with euhedral pyrite crystals and marcasite nodules with radial crystals in intervals of 

highest MS, indicates that the Woodford Shale MS profile has been altered since 

deposition.  The effect of diagenesis should be considered in global correlations of MS 

correlation employing the Woodford Shale.  The exact source(s) of the pyrite and 

marcasite is beyond the scope of this study.  However, if the pyrite and marcasite is 

sourced from intervals of the Woodford Shale itself, then diagenetic alteration of the 

Woodford Shale MS profile could also include diminution of MS in portions of the 

Woodford Shale. 

Thorium and potassium also contribute to total gamma-ray magnitude and 

potassium and thorium concentrations are generally highest in fissile intervals generally 

concomitant with peak uranium concentration intervals at both outcrops.  The ratio of 
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uranium to thorium (Uppm /Thppm) is strongly related to lithology, with distinct differences 

observed between the three main intervals at both outcrops and between the outcrops.  

Since the sequestration of uranium and carbon is often geochemically related to high 

degrees of pyritization (DOP), the occurrence of discrete pyrite layers and nodules in the 

most uranium-rich intervals, helps to explain the coincidence of gamma-ray magnitude 

and MS peaks in fissile intervals containing generally high concentrations of all 3 

radioactive elements measured in spectral gamma-ray analysis.  Gamma-ray magnitude 

and gamma-ray specific elemental assemblage data collected in this study tend to agree 

with previous studies such that the concentrations and relative proportions of radioactive 

elements measured in spectral gamma-ray analysis can be used to define geochemical 

facies and lithofacies. 

 

Gamma-Ray Magnitude Correlation with Magnetic Susceptibility 

Through linear regression, it was found that gamma-ray magnitude, uranium 

concentration, potassium concentration, and thorium concentration all had poor statistical 

correspondence to MS at both outcrops.  Consistent with previous studies, it was 

observed that both gamma-ray magnitude and MS response of the underlying Hunton 

Group carbonates was fundamentally different relative to the Woodford Shale.  In the 

absence of spectral gamma-ray evidence related to uranium, one might wrongly conclude 

that bulk gamma-ray magnitude differences were only related to the increased detrital 

content of the Woodford Shale and increased inputs of clays containing potassium and 

resistate minerals containing thorium and minor uranium.   
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Uranium evidence gathered through spectral gamma-ray analysis and ICP-MS in 

this study shows that gamma-ray magnitude increases do not result from an increase in 

detrital content alone, but rather from fundamentally different geochemical context.   

Uranium dominates the API gamma response.  While it is true that the Woodford Shale 

has a higher detrital content (e.g. Th and K) relative to Hunton Carbonate, authigenic 

uranium in the Woodford Shale exerts dominant control over gamma-ray magnitude.  It is 

authigenic uranium rather than detrital thorium or potassium that controls the gamma-ray 

magnitude of the Woodford Shale.  The Wignall and Myers method of estimating detrital 

contribution of uranium relative to total uranium concentration suggests that detrital 

uranium in the Woodford Shale is limited to a tiny percentage of the total uranium. 

 

 

Controls on Magnetic Susceptibility in Woodford Shale 

 A strong relationship between MS and lithology was observed at both outcrops.  

Still, MS maxima are related to the large aggregates and discrete layers of diagenetic iron 

sulfide.  Authigenic iron, here assumed to be pyrite, appears to control MS in the 

Woodford Shale.  The lowest MS magnitudes in the Woodford Shale at Hass A, observed 

above 46 m of section, also appear to be controlled by lithology.  Above 46 m of section, 

the lithology and MS of the Woodford Shale is fundamentally different relative to the 

basal or middle Woodford intervals.  The siliceous, phosphatic, and dolomitic beds 

characteristic of the upper Woodford exhibit consistently low MS.  Silica, phosphate, and 

carbonate are diamagnetic. The consistently low values of MS recorded in the siliceous 

and phosphatic beds of the upper interval of the Woodford Shale reflect that diamagnetic 



 155 

nature.  In this regard, the consistently low MS or MS minima in Woodford Shale are 

explained by magnetic physics and chemical composition (e.g. lithology) rather than 

domination by a detrital fraction of iron minerals contained of the formation.  In 

summary, neither MS peaks nor MS background signal appear to be dominated by 

detrital iron.  Likewise, there is no evidence that clay minerals dominate MS magnitude.  

Previous studies have reported increases in the MS of carbonates as the result of 

increases in the detrital content.  Other studies have also concluded that detrital 

magnetite, clays other detrital paramagnetic minerals containing iron control the MS 

response of rocks.  Global correlations of MS based on these conclusions report that rock 

MS is controlled by soil-formed iron minerals and eustaticly controlled gradients of those 

minerals in ocean basins.  These conclusions, while valid, fail to consider all of the 

geochemical changes to soil-formed sediment as it is chemically altered (weathered) and 

removed from proximal oxidizing continental environments and ultimately deposited in 

reducing marine depositional contexts.  More importantly, the model of detrital control 

on MS fails to consider the action of biological agents in terrestrial and marine 

environments and the biogeochemical implications of carbon residuum that is 

characteristic of petroleum source rocks such as the Woodford Shale. Most importantly, 

the model of detrital control on MS fails to account for studies suggesting that the 

valence of magnetic species exerts greater potential control over MS than the 

concentration of magnetic species.  

While increasing or decreasing the abundance of iron of given valence in a fixed 

volume of rock will cause a corresponding linear change in MS magnitude, the alteration 

of the valence of that iron alone, without accumulations or depletions in the total mass of 
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iron, is capable of inducing magnetic changes of several orders of magnitude.  The claim 

that MS in black shale such as the pyrite rich Woodford Shale is controlled by detrital 

material, is at the very least, incomplete.  The report that detrital iron such as clays or 

magnetite controls rock MS in black shale is contraindicated by the observed overall 

enrichment of the Woodford Shale in authigenic iron, even without accounting for 

diagenetic pyrite and marcasite nodules and layers observed at all study outcrops or 

previous studies that suggest dispersed pyrite is a major component in Woodford shale 

fabric.  MS peaks are controlled by diagenetic iron sulfides.  Magnetite and all iron (III) 

oxides are highly soluble and unstable in the biogeochemical depositional context of 

black shale or other depositional contexts containing organic carbon and low 

concentrations of oxygen.   

 

 

Woodford Shale Iron:  Pyrite Provenance 

The results of compositional analysis of samples of the Woodford Shale by the 

method of inductively coupled plasma-mass spectrometry (ICP-MS) show that the 

Woodford Shale is enriched in authigenic iron relative to all shale standards.  Based on 

that ICP-MS data alone, it would be difficult to conclude that detrital iron exerts the 

greatest control on MS in the Woodford Shale.  Instead MS peaks are associated with 

authigenic or diagenetic pyrite.  

Assuming a FeS2 stochiometry for the nodules, with an iron weight fraction in 

excess 42 wt. %, detrital sources of that iron are not likely.  More likely, the pyrite 

nodules are secondary structures and diagenetic in origin.  Moreover, as diagenetic 
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features, the nodules are probably not directly related to the original depositional and 

environmental and their provenance is not detrital. 

Although not firmly established by the data, the iron in the Woodford Shale pyrite 

nodules is most likely sourced from the Woodford Shale itself.  As such the nodules 

probably represent secondary accumulations of iron, representing the probable 

diminution of iron in other portions of the Woodford formation.  It might be reasonable to 

conclude that prior to formation of the nodules; the black shale of Woodford Formation 

was more enriched in authigenic iron, implying even less detrital control than is 

suggested by the current ICP-MS data.  In any case, Woodford Shale pyrite sourced 

internally or externally during diagenesis or precipitated directly from seawater, will not 

support a conclusion of detrital control of MS by either clay or magnetite.  

Whether sourced internally or externally, diagenetic nodular pyrite associated 

with MS maxima is not detrital.  In either case above, the nodular pyrite is not related to 

primary depositional environment.  Finally, if the pyrite nodules are indeed primary 

sedimentary structures (i.e authigenic pyrite), directly related to the original depositional 

context, our decision to exclude the nodules from ICP-MS analysis has strongly biased 

the results of that analysis.  In this alternative but improbable scenario, the Woodford 

Shale iron enrichment would be greater than the ICP-MS data have implied, and a final 

conclusion of detrital MS control in Woodford Shale would be correspondingly 

marginalized.  The inclusion of data from the pyrite nodules themselves would have 

several effects on the ICP-MS data set including; increasing the mean, median and mode 

iron concentrations, increasing the mean, median, and mode values of the Fe/Al ratio, and 

increasing the positive skewness of the distribution of calculated Fe/Al ratios.  Even so, a 
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final conclusion of detrital control on MS is unsupported by the occurrence of pyrite 

nodules in excess of 133 g and discreet pyrite layers between shale beds where local and 

outcrop MS maxima are observed. 

 

Hass B as a Possible Magnetic Type Section in the Unites States 

 The Hass B outcrop has been offered as a possible magnetic type section for the 

Frasnian/Famennian boundary (Crick et al, 2002). Several observations made in this 

study suggest that the Hass B outcrop is potentially a poor magnetic type section.  One 

reason is related to the observation that MS correlation between Hass A and Hass B 

outcrops is problematic.  Many of the problems with that A-B correlation are the direct 

result of the poor condition and incomplete stratigraphy, multiple faults, and repeated 

sections found at the Hass B outcrop.  Observations made in this study indicate that Hass 

B is tectonically altered in a way that makes it inappropriate for some geological studies. 

Additionally, welded breccia was observed north of the spillway.  This cataclastic 

breccia implies that Hass B Woodford Shale near the many faults observed in this study, 

may have been subjected to temperatures high enough to induce magnetic changes to the 

rock.  Another condition problem observed in the spillway was the presence of thick 

packages of pervasively shattered siliceous shale.  The presence of multiple faults at and 

near the Hass B in the spillway calls into question whether a complete basal section 

occurs in the spillway where previous biostratigraphic studies have relied on first 

appearance of index conodonts in placement of the F/F boundary.  
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Study Hypothesis and Related Research Questions: 

The study hypothesis, that “gamma-ray magnitude will vary inversely with 

magnetic susceptibility”, is not supported by data and observations from this study.  

Instead the opposite conclusion is more reasonable.  Despite the fairly poor statistical 

correlation (R2) of gamma-ray magnitude vs. MS, MS and gamma-ray magnitude profiles 

have strong qualitative or pattern similarity.  Some of the poor statistical correlation and 

unexplained variation between MS and gamma-ray magnitude could be explained by the 

fact that the gamma-ray instrument and MS instrument sample different volumes of rock, 

0.5 m3, and 8.0 cm3 respectively (Dearing, 1991).  Other explanations for the poor 

statistical correlation between MS and gamma-ray magnitude include the mutually 

variable thicknesses of adjacent fissile and siliceous beds, or the many instances (paired 

data points) where the MS instrument or gamma-ray instrument was influenced by both 

fissile and siliceous lithology, e.g. near a contact between a fissile bed and siliceous bed.   

The conclusion that MS, gamma-ray magnitude, and GSEA are all controlled by 

lithology implies that MS may be suitable for lithocorrelation inside the Anadarko Basin.  

Data in this study and others imply that MS in carbonate rocks is generally much lower 

than MS in Black Shale.  MS in the underlying Hunton limestone and the overlying 

Sycamore Limestone also appear to be fundamentally different than MS in Woodford 

shale.  That finding implies that if MS could be logged along with other logging 

parameters, the fundamental change in MS between the Hunton Limestone and the 

Woodford Shale would be recognizable, as would be the fundamental change in MS 

between the Woodford Shale and the Sycamore Limestone.   



 160 

The MS outcrop maximum at Hass A and the outcrop gamma-ray magnitude 

maximum are located in the same paired data point near maximum concentration of all 

three elements measured by spectral gamma-ray analysis, all associated with the highest 

weight fraction of iron, inferred from the occurrence of iron pyrite nodules.  Finally the 

Hass A profile of gamma-ray magnitude has noteworthy qualitative similarity with the 

MS profile at the base of the outcrop where both parameters rapidly increase along with 

all elements employed in spectral gamma-ray analysis and another interval of pyrite 

nodules.  Therefore, the MS profile of Hass A resembles the gamma-ray log of Hass A, 

the same type of evidence commonly used in lithocorrelation in the Anadarko Basin.   

The finding that MS varies with lithology implies that MS lines may represent 

magnetic lithofacies or magnetofacies lines.  In order for MS to be useful as a 

lithocorrelation tool in a specific basin, MS variation in that basin must be predictable in 

terms of magnetic variation as a function of lithologic change.  Since lithology exerts 

control over MS, the use of MS in global correlation may be problematic.  If MS were to 

arise as the result of high order globally controlled cycles, independent of lithology, then 

basin specific lithocorrelation might be problematic. 
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Appendix 1.  Magnetic susceptibility and spectral gamma-ray data from Hass A. 

Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

458 N 0.7 27.7 5.3 254 FN 228.5 69.6 
457 N 0.6 23.8 4.7 218.8 FN 228 69.5 
456 N 0.7 23.8 5.6 224 FN 227.5 69.3 
455 -1 0.5 17.6 2.3 158 S 227 69.2 
454 -1 0.7 12.3 3.8 124.8 S 226.5 69 
453 0 0.5 8.9 3.2 92 S 226 68.9 
452 -0.5 0.5 12 3.6 118.4 S 225.5 68.7 
451 1.5 0.3 15.2 3.4 140 T 225 68.6 
450 0 0.6 16.6 4.7 161.2 S 224.5 68.4 
449 -0.5 0.4 25 4.4 224 S 224 68.3 
448 -0.5 0.7 17.2 3.4 162.4 S 223.5 68.1 
447 0 0.3 15.8 4.4 148.8 S 223 68 
446 0.5 0.9 15.3 3.7 151.6 S 222.5 67.8 
445 3.5 1.4 24.2 6.1 240.4 F 222 67.7 
444 -0.5 1 17.1 4.4 170.4 S 221.5 67.5 
443 6 1.1 28 5.2 262.4 F 221 67.4 
442 -1 0.7 25.2 4.1 229.2 S 220.5 67.2 
441 -0.5 0.6 41.4 6.3 366 S 220 67.1 
440 -0.5 0.9 22.2 5.2 212.8 S 219.5 66.9 
439 -0.5 1 21.3 4.5 204.4 S 219 66.8 
438 1 0.9 29.3 3.7 263.6 F 218.5 66.6 
437 0.5 1 38.2 3.8 336.8 S 218 66.4 
436 0.5 1.3 32 3.9 292.4 T 217.5 66.3 
435 0.5 1 18.8 3.8 181.6 F 217 66.1 
434 3 0.8 11.8 2.9 118.8 F 216.5 66 
433 0 0.5 13.8 1 122.4 S 216 65.8 
432 2 0.7 11.6 1.3 109.2 F 215.5 65.7 
431 1 0.6 14.2 5.1 143.6 F 215 65.5 
430 0.5 0.4 15 4.2 143.2 S 214.5 65.4 
429 3 0.4 14.8 2.4 134.4 S 214 65.2 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

428 0.5 0.4 12.7 1.3 113.2 F 213.5 65.1 
427 -0.5 0.4 13.6 2.3 124.4 S 213 64.9 
426 0.5 0.6 14 2.9 133.2 S 212.5 64.8 
425 -0.5 0.4 16.6 2 147.2 S 212 64.6 
424 0 0.3 10.7 4.1 106.8 S 211.5 64.5 
423 0 0.2 10 1.6 89.6 S 211 64.3 
422 0 0.4 8.6 1.2 80 S 210.5 64.2 
421 0.5 0.1 9.2 0.6 77.6 S 210 64 
420 0 0.5 7.4 3.5 81.2 S 209.5 63.9 
419 0 0.5 12.7 3.4 123.2 S 209 63.7 
418 0 0.7 11.5 1.9 110.8 S 208.5 63.6 
417 0 0.8 11.8 4.3 124.4 S 208 63.4 
416 1 0.7 13.3 3.5 131.6 T 207.5 63.2 
415 0 0.7 10.8 2.5 107.6 S 207 63.1 
414 0 0.6 11.2 4 115.2 T 206.5 62.9 
413 1 0.3 8.8 1.5 81.2 F 206 62.8 
412 0 0.7 11.8 2.8 116.8 S 205.5 62.6 
411 1 0.6 13.7 2.5 129.2 S 205 62.5 
410 1.5 0.8 12.5 2.6 123.2 S 204.5 62.3 
409 3.5 0.6 17 2.5 155.6 F 204 62.2 
408 1 0.6 16.5 4.2 158.4 S 203.5 62 
407 3 0.7 18 4.7 174 F 203 61.9 
406 2 0.7 21.4 5.9 206 S 202.5 61.7 
405 0 0.6 23.6 3 210.4 S 202 61.6 
404 1 0.9 22.7 3.2 208.8 S 201.5 61.4 
403 0.5 0.5 26 4.4 233.6 S 201 61.3 
402 2.5 1 24.5 4.5 230 F 200.5 61.1 
401 0 0.7 30.9 4.9 278 S 200 61 
400 1 0.8 30.3 3 267.2 F 199.5 60.8 
399 0.5 0.7 28.8 2.5 251.6 F 199 60.7 
398 3 0.6 29.3 4.6 262.4 F 198.5 60.5 
397 2 1 28 5.6 262.4 S 198 60.4 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

396 7 1 26.9 5.5 253.2 F 197.5 60.2 
395 3.5 1 27.9 5.3 260.4 F 197 60 
394 1 1.2 32.5 4 295.2 S 196.5 59.9 
393 1 0.7 37.7 3.4 326.4 S 196 59.7 
392 4 1.1 38.3 7.5 354 F 195.5 59.6 
391 1 1.4 38.9 4.4 351.2 S 195 59.4 
390 0.5 0.9 35.7 5 320 S 194.5 59.3 
389 6 0.6 39.1 4.3 339.6 F 194 59.1 
388 1.5 1.2 34 3.2 304 S 193.5 59 
387 0 1.4 39.4 7.3 366.8 S 193 58.8 
386 4 1 44.9 5.1 395.6 F 192.5 58.7 
385 1 1.2 44 4 387.2 S 192 58.5 
384 3.5 1.3 45.2 5.4 404 F 191.5 58.4 
383 3.5 1 47.1 5.5 414.8 F 191 58.2 
382 2 1.4 48.3 5 428.8 F 190.5 58.1 
381 1 1.6 50.1 5.6 448.8 S 190 57.9 
380 1 1.6 49.7 8.2 456 T 189.5 57.8 
379 6 1.5 45.4 6.7 414 F 189 57.6 
378 1 1.1 46.9 6 416.8 S 188.5 57.5 
377 0.5 1.4 42.5 6.1 386.8 S 188 57.3 
376 1 1.7 42.9 5.6 392.8 S 187.5 57.2 
375 0.5 0.9 42.5 8.7 389.2 S 187 57 
374 0 1.6 40.9 6.9 380.4 S 186.5 56.8 
373 1 1.4 42 6.7 385.2 S 186 56.7 
372 0 0.9 45.1 5.2 396 S 185.5 56.5 
371 1 1.6 40.6 6.2 375.2 F 185 56.4 
370 0 1 30.6 4.1 277.2 S 184.5 56.2 
369 0 1.2 30.4 5.4 284 S 184 56.1 
368 0 1.6 32.6 4.9 306 S 183.5 55.9 
367 2.5 1.1 37.5 5 337.6 F 183 55.8 
366 0.5 1.8 34.3 8.5 337.2 S 182.5 55.6 
365 0.5 1.3 37.7 7.4 352 S 182 55.5 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

364 4.5 1.1 35.8 6.8 331.2 F 181.5 55.3 
363 2 0.8 36.4 7.6 334.4 F 181 55.2 
362 2 1.1 39.8 4.5 354 S 180.5 55 
361 1 1.2 36.7 4.8 332 S 180 54.9 
360 1 1.1 40.2 5.4 360.8 F 179.5 54.7 
358 0.5 0.9 40.2 6.5 362 F 179 54.6 
357 0 1.5 38.1 4.6 347.2 S 178.5 54.4 
356 0 1.1 36 4.6 324 S 178 54.3 
355 1.5 0.6 35.2 5.4 312.8 F 177.5 54.1 
354 0 1 34 5.7 310.8 S 177 53.9 
353 1 1.3 31.2 6.9 298 F 176.5 53.8 
352 1.5 0.9 31.1 6.3 288.4 F 176 53.6 
351 0.5 0.6 32.4 5.6 291.2 T 175.5 53.5 
350 1.5 1.1 28.7 4.4 264.8 F 175 53.3 
349 6 0.9 29.4 4.9 269.2 F 174.5 53.2 
348 6 1.5 24.1 5.2 237.6 F 174 53 
347 1 1.2 25.3 4.9 241.2 S 173.5 52.9 
346 3 1.3 26.5 5 252.8 S 173 52.7 
345 1.5 1.3 27.2 6.6 264.8 S 172.5 52.6 
344 3 1 28 7 268 F 172 52.4 
343 0.5 1.5 32.7 3.9 301.2 S 171.5 52.3 
342 3 1.4 40.4 5.5 367.6 F 171 52.1 
341 1 1.6 41.8 5.7 382.8 F 170.5 52 
340 0 1.3 41.3 7.5 381.2 S 170 51.8 
339 8.5 1.3 41.4 6.3 377.2 F 169.5 51.7 
338 1.5 1.6 37.8 4.5 346 S 169 51.5 
337 0 1.3 40.4 6.1 368.4 S 168.5 51.4 
336 2.5 1.3 40.8 6.7 374 F 168 51.2 
335 1 1.4 45.6 5.9 410.8 T 167.5 51.1 
334 1 1.3 47.8 8.5 437.2 S 167 50.9 
333 6 1.4 54.5 9.3 495.6 F 166.5 50.7 
332 6 1.4 41.6 7.1 383.6 F 166 50.6 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

331 2 1.2 41.5 7.3 380.4 S 165.5 50.4 
330 3.5 1.1 39.3 3.9 347.6 F 165 50.3 
329 1 1.3 36.9 4.1 332.4 S 164.5 50.1 
328 1 1.2 39.2 5.7 355.6 S 164 50 
327 7 1.7 39 6.5 365.2 F 163.5 49.8 
326 0 1.3 44.8 4.8 398.4 S 163 49.7 
325 2.5 0.9 41.6 5.2 368 F 162.5 49.5 
324 5 1.1 46.4 5.4 410.4 F 162 49.4 
323 2 1.4 43.8 5.9 396.4 S 161.5 49.2 
322 3 1.1 46.7 6.9 418.8 F 161 49.1 
321 0 1.4 48.3 7.9 440.4 S 160.5 48.9 
320 0 1.2 50.1 5.8 443.2 S 160 48.8 
319 5 1.7 49.8 7.7 456.4 F 159.5 48.6 
318 1 0.9 51.7 4.8 447.2 S 159 48.5 
317 0.5 1 46 5.9 407.6 S 158.5 48.3 
316 6.5 1.3 43 6.1 389.2 F 158 48.2 
315 5 1.4 43 5.8 389.6 F 157.5 48 
314 1 0.8 36.4 5.4 325.6 T 157 47.9 
313 2 1 37.4 4.5 333.2 T 156.5 47.7 
312 3 1.4 35.3 6.8 332 F 156 47.5 
311 6 1.7 47 5.8 426.4 F 155.5 47.4 
310 2 1.7 48.4 6.7 441.2 F 155 47.2 
309 2 1.8 48.5 7.1 445.2 S 154.5 47.1 
308 2 1.7 50 8.2 460 S 154 46.9 
307 2 1.4 50.9 5.8 452.8 T 153.5 46.8 
306 3 1.4 46.6 6.6 421.6 F 153 46.6 
305 0 1.6 41.7 5.8 382.4 S 152.5 46.5 
304 0.5 1.7 46.7 5.8 424 S 152 46.3 
303 4 1.4 43.6 5.4 392.8 F 151.5 46.2 
302 2.5 1.3 39.1 5.2 354.4 S 151 46 
301 3.5 1.2 38 5.3 344.4 F 150.5 45.9 
300 2 1.5 39.4 4.9 358.8 F 150 45.7 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

299 3 1 43.6 5.7 387.6 F 149.5 45.6 
298 1 1.3 47.8 4.7 422 S 149 45.4 
297 3.5 1.4 51.2 5.5 454 F 148.5 45.3 
296 13.5 1.9 68.1 10 615.2 F 148 45.1 
295 11.5 2 74.3 10.5 668.4 F 147.5 45 
294 13 2 97.9 13.3 868.4 F 147 44.8 
293 18 2.5 112.6 9.7 979.6 F 146.5 44.7 
292 13 2.9 100.6 9.5 889.2 F 146 44.5 
291 11 2.1 86.3 10.4 765.6 F 145.5 44.3 
290 4 2.2 73.2 10.4 662.4 S 145 44.2 
289 6 2.5 69.2 8.2 626.4 F 144.5 44 
288 3 2.2 71.7 6.5 634.8 F 144 43.9 
287 3.5 2 71.4 6.8 630.4 F 143.5 43.7 
286 3.5 1.8 76.7 8.7 677.2 F 143 43.6 
285 3 2.3 88.7 8.6 780.8 S 142.5 43.4 
284 3 2.6 96.2 13.5 865.2 F 142 43.3 
283 8 3 107.1 14.6 963.2 F 141.5 43.1 
282 8 4.1 98.7 14.9 914.8 F 141 43 
281 7 3.4 94 13.1 858.8 F 140.5 42.8 
280 5 3.7 91.2 11.6 835.2 F 140 42.7 
279 7 3.3 93.1 12.8 848.8 F 139.5 42.5 
278 6 3.4 86.2 11.8 791.2 F 139 42.4 
277 4.5 2.5 77.5 8.5 694 F 138.5 42.2 
276 4.5 2.7 71.2 12.1 661.2 F 138 42.1 
275 6 2.7 67.6 10.6 626.4 F 137.5 41.9 
274 2 2.3 67.2 6.3 599.6 S 137 41.8 
273 5 2.4 66.4 9.4 607.2 F 136.5 41.6 
272 12 2.9 60 9 562.4 F 136 41.5 
271 4.5 2.2 60.8 8.7 556.4 T 135.5 41.3 
270 8.5 2.1 54 9.4 503.2 F 135 41.1 
269 2 2 42.9 6.2 400 S 134.5 41 
268 3 2 44.8 7.5 420.4 S 134 40.8 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

267 2 2.3 48.2 7.9 454 T 133.5 40.7 
266 2.5 2.4 47.4 9.4 455.2 T 133 40.5 
265 5 1.7 45.5 7.4 420.8 F 132.5 40.4 
264 3 2.2 38.2 7.4 370.4 S 132 40.2 
263 3 2.6 40.2 11.2 408 T 131.5 40.1 
262 5.5 3.3 40.3 12.9 426.8 S 131 39.9 
261 8.5 2.5 38.4 9 383.2 F 130.5 39.8 
260 15.5 2.2 43 8 411.2 F 130 39.6 
259 6 2.1 39.8 9.4 389.6 F 129.5 39.5 
258 7 2.9 40.1 8.8 402.4 F 129 39.3 
257 12 2.7 37.7 9.6 383.2 F 128.5 39.2 
256 8 2.8 36.5 11.3 382 F 128 39 
255 10 2.8 39.7 8.2 395.2 F 127.5 38.9 
254 8 2.4 38.6 9.8 386.4 F 127 38.7 
253 3 2.1 32.3 7.2 320.8 F 126.5 38.6 
252 6 2.5 35.5 7.9 355.6 S 126 38.4 
251 4 2.1 32.8 7.8 327.2 F 125.5 38.3 
250 9 2.4 34.2 8.1 344.4 F 125 38.1 
249 3 1.9 34.6 5.6 329.6 T 124.5 37.9 
248 2.5 2 35.4 7.3 344.4 T 124 37.8 
247 1.5 2.1 48.1 7.1 446.8 T 123.5 37.6 
246 1 2.1 57.5 10.2 534.4 T 123 37.5 
245 2 1.9 52.5 8.9 486 T 122.5 37.3 
244 2 2 38.2 7.1 366 T 122 37.2 
243 2 1.8 38.4 5.1 356.4 T 121.5 37 
242 4 2.1 44.7 8.4 424.8 S 121 36.9 
241 4 2.1 41.7 8.3 400.4 F 120.5 36.7 
240 4 1.9 38.2 6.7 362.8 F 120 36.6 
239 4 1.9 39.3 7.4 374.4 S 119.5 36.4 
238 7 2 41 7.6 390.4 F 119 36.3 
237 4 1.8 36.8 9.2 360 F 118.5 36.1 
236 3 2 33.2 8.1 330 T 118 36 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

235 2.5 2.1 40.6 7.3 387.6 S 117.5 35.8 
234 4 2.1 37.9 10.9 380.4 F 117 35.7 
233 8 2.7 36.1 7.9 363.6 F 116.5 35.5 
232 3 2 41.1 7.5 390.8 F 116 35.4 
231 6 2.4 41.6 6.9 398.8 F 115.5 35.2 
230 6 2.1 42.7 8 407.2 F 115 35.1 
229 4.5 2.2 45.4 7.4 428 S 114.5 34.9 
228 9 2.1 41.7 9.5 405.2 F 114 34.7 
227 5 2.1 37 7.1 358 F 113.5 34.6 
226 3 1.9 39.5 7.5 376.4 T 113 34.4 
225 7 2.3 39.4 8.2 384.8 F 112.5 34.3 
224 4.5 2.5 44.5 8.3 429.2 F 112 34.1 
223 8 2 44.7 8.8 424.8 F 111.5 34 
222 4 2.8 47.4 6.2 448.8 F 111 33.8 
221 6.5 2.7 50.8 8.6 484 F 110.5 33.7 
220 8 2.6 49.3 7.9 467.6 F 110 33.5 
219 12 2.2 47.3 10.6 456 F 109.5 33.4 
218 8 2.9 44.7 10 444 F 109 33.2 
217 6 2.9 44.3 7.5 430.8 F 108.5 33.1 
216 6 3.4 48.7 10.2 484.8 F 108 32.9 
215 7 2.9 52.5 9.7 505.2 F 107.5 32.8 
214 5 2.8 49.8 9.9 482.8 F 107 32.6 
213 5 2.5 44.8 10.7 441.2 F 106.5 32.5 
212 9 2.2 43.6 7.9 415.6 F 106 32.3 
211 6 1.8 36.3 9.3 356.4 F 105.5 32.2 
210 5 1.6 28.8 8.6 290.4 F 105 32 
209 3 2.4 37.8 8.7 375.6 F 104.5 31.9 
208 2 2.4 36.4 7.9 361.2 F 104 31.7 
207 2.5 2.2 43.6 7.9 415.6 F 103.5 31.5 
206 6.5 3 43.7 10.5 439.6 F 103 31.4 
205 4 3.1 40.8 8.1 408.4 F 102.5 31.2 
204 2.5 2.8 41.2 8.4 408 S 102 31.1 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

203 6 2.5 36.8 9.7 373.2 F 101.5 30.9 
202 3.5 2.2 36.3 10.4 367.2 F 101 30.8 
201 3 2.5 37.9 11.1 387.6 F 100.5 30.6 
200 4 3 35.2 9.5 367.6 F 100 30.5 
199 5 2.9 36.6 10 379.2 F 99.5 30.3 
198 3.5 2.7 43.1 8.3 421.2 F 99 30.2 
197 4 2.7 40.7 10 408.8 F 98.5 30 
196 3.5 2.4 42.6 9.6 417.6 F 98 29.9 
195 3.5 2.5 45.6 10.5 446.8 F 97.5 29.7 
194 3.5 2.3 43.3 11 427.2 T 97 29.6 
193 1 1.8 38.1 7 361.6 T 96.5 29.4 
192 0.5 2.3 42.9 8.9 415.6 T 96 29.3 
191 0.5 2.2 45.1 10.1 436.4 T 95.5 29.1 
190 6 2.1 33.1 7.5 328.4 T 95 29 
189 4 1.9 33.4 7.1 326 T 94.5 28.8 
188 4 2 37.3 4.9 350 T 94 28.7 
187 4 2.3 32.3 7.5 325.2 T 93.5 28.5 
186 1 2 34.3 5.7 329.2 T 93 28.3 
185 3 2.3 35.9 9.1 360.4 T 92.5 28.2 
184 1.5 2.8 41.8 9 415.2 T 92 28 
183 3.5 2.1 39.2 8.9 382.8 T 91.5 27.9 
182 0.5 1.9 33.9 9.4 339.2 S 91 27.7 
181 6 1.9 41.3 5.8 384 F 90.5 27.6 
180 2.5 2.4 39.7 8 388 F 90 27.4 
179 12 1.7 30.6 6.8 299.2 F 89.5 27.3 
178 5 2 36.3 7.7 353.2 T 89 27.1 
177 2.5 2.5 36.9 10 375.2 T 88.5 27 
176 4 3 40.4 9 407.2 F 88 26.8 
175 10.5 1.8 31.8 9 319.2 F 87.5 26.7 
174 7.5 2 32 6.3 313.2 F 87 26.5 
173 8 2.2 31.2 8.3 318 F 86.5 26.4 
172 7 2.2 33.1 9.7 338.8 F 86 26.2 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

171 6 2.1 29.3 7.3 297.2 F 85.5 26.1 
170 8 2 31 10.1 320.4 F 85 25.9 
169 4 2 30.5 8.8 311.2 T 84.5 25.8 
168 8 1.9 34.1 7.8 334.4 T 84 25.6 
167 4 2 32.6 6.4 318.4 T 83.5 25.5 
166 6 2 36.6 8 356.8 F 83 25.3 
165 7 2.1 32.2 4.5 309.2 F 82.5 25.1 
164 6 1.2 30.6 7.8 295.2 F 82 25 
163 4 2.2 28.4 5.9 286 F 81.5 24.8 
162 6 1.4 27.8 8.8 280 F 81 24.7 
161 5 1.9 30.8 6.8 304 F 80.5 24.5 
160 5 1.7 29.5 5.5 285.2 F 80 24.4 
159 10 1.8 35.3 5.4 332.8 F 79.5 24.2 
158 7 1.5 32 8.3 313.2 F 79 24.1 
157 6 1.5 31.5 7.8 307.2 F 78.5 23.9 
156 2.5 1.9 37.9 8.2 366.4 S 78 23.8 
155 4.5 1.8 38.9 6 364 F 77.5 23.6 
154 4 2.1 39 8.9 381.2 F 77 23.5 
153 6 2.5 38.4 5.9 370.8 F 76.5 23.3 
152 5 1.8 41.3 6.8 386.4 F 76 23.2 
151 9 1.8 41.7 7.6 392.8 F 75.5 23 
150 9 2.2 37.7 7.4 366.4 F 75 22.9 
149 3.5 1.8 35.8 7.4 344.8 S 74.5 22.7 
148 9 2.2 42.4 8.4 408 F 74 22.6 
147 2.5 1.9 41.2 7.9 391.6 S 73.5 22.4 
146 10.5 1.5 36.6 6.9 344.4 F 73 22.3 
145 4 1.3 38.6 6.6 356 T 72.5 22.1 
144 9 1.8 38 6.5 358.8 F 72 21.9 
143 3 1.9 39.4 11.9 393.2 S 71.5 21.8 
142 8 2 43.9 7.1 411.6 F 71 21.6 
141 5 1.9 41.6 9.4 400.8 S 70.5 21.5 
140 7 2.1 45.4 9.3 434 F 70 21.3 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

139 4 1.9 43.3 10.1 417.2 F 69.5 21.2 
138 1 1.8 39.2 8.1 374.8 T 69 21 
137 3 2 39.6 10.1 389.2 T 68.5 20.9 
136 6.5 2 39.7 8.5 383.6 F 68 20.7 
135 7 2.4 35.4 9 357.6 F 67.5 20.6 
134 3 2 32.8 10.5 336.4 T 67 20.4 
133 7 1.9 42 7.8 397.6 F 66.5 20.3 
132 6 2.2 44.2 10.1 429.2 F 66 20.1 
131 6 1.4 39.7 7.2 368.8 F 65.5 20 
130 5 1.9 37.4 5.7 352.4 S 65 19.8 
129 3.75 1.5 41.8 7.9 390 F 64.5 19.7 
128 3 1.7 42.3 8.1 398 F 64 19.5 
127 4 2 43.5 8.8 415.2 S 63.5 19.4 
126 7.5 1.6 42.3 7.8 395.2 F 63 19.2 
125 6 2 51 6.3 465.2 F 62.5 19.1 
124 1.5 1.4 41.9 6 381.6 F 62 18.9 
123 1.5 1 44.4 6.4 396.8 F 61.5 18.7 
122 3 1.5 42.7 6.7 392.4 F 61 18.6 
121 3 1.5 42 6.4 385.6 F 60.5 18.4 
120 5 1.6 39.2 7.8 370.4 F 60 18.3 
119 4 1.8 36.7 6.9 350 F 59.5 18.1 
118 4.5 1.5 41.4 6.3 380.4 F 59 18 
117 10.5 1.7 35.9 6.2 339.2 F 58.5 17.8 
116 9.5 1.2 35.7 4.8 324 F 58 17.7 
115 8 1.6 33.8 8 328 F 57.5 17.5 
114 4 1.1 34 5.5 311.6 F 57 17.4 
113 5 1.3 33 5.1 305.2 F 56.5 17.2 
111 3 1.6 34.3 7.1 328.4 T 55.5 16.9 
110 1 1.4 42.8 9 400.8 F 55 16.8 
109 4 2.1 43.2 7.7 410 F 54.5 16.6 
108 7 1.9 40.3 10.4 394.4 F 54 16.5 
107 4 1.9 39.9 8.1 382 S 53.5 16.3 
106 5 2.2 53.6 8.4 497.6 F 53 16.2 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

105 3 2.4 51.4 10.7 492.4 F 52.5 16 
104 5.5 2 51 10.6 482.4 F 52 15.8 
103 3 2.1 53.1 8.8 493.6 S 51.5 15.7 
102 2 2.5 43 10.3 425.2 S 51 15.5 
101 2 1.9 31.7 7.2 312.8 F 50.5 15.4 
100 2 2 30 7.2 300.8 F 50 15.2 
99 1 1.5 28.6 6.2 277.6 F 49.5 15.1 
98 6.5 1.5 31.4 6.1 299.6 F 49 14.9 
97 4.5 2 34.3 9.2 343.2 F 48.5 14.8 
96 7 2.1 35.1 6.7 341.2 F 48 14.6 
95 6 1.7 32.7 8.8 324 F 47.5 14.5 
94 4 1.6 33.9 9.3 334 F 47 14.3 
93 3.5 1.6 26.8 5.2 260.8 F 46.5 14.2 
92 2 1.1 31.3 7.8 299.2 F 46 14 
91 1 1.7 30.1 7.9 299.6 F 45.5 13.9 
90 1 1.5 30.1 5.5 286.8 F 45 13.7 
89 2.5 1.5 29.2 7.7 288.4 S 44.5 13.6 
88 4.5 1.5 27.4 9.7 282 F 44 13.4 
87 2 1.4 29.1 10.5 297.2 F 43.5 13.3 
86 2.5 1.4 28 6.3 271.6 F 43 13.1 
85 2.5 1.3 29.3 5.1 275.6 F 42.5 13 
84 3.5 1.5 25.3 3.8 241.6 F 42 12.8 
83 2.5 1.8 26.9 7.5 274 T 41.5 12.6 
82 5 1.5 29.1 9.8 296 F 41 12.5 
81 3 1.7 36.8 7.7 352.4 F 40.5 12.3 
80 7 1.9 34.8 7.2 337.6 F 40 12.2 
79 4 1.8 31.2 8.7 313.2 F 39.5 12 
78 5.5 2 30.1 7.6 303.2 F 39 11.9 
77 6 2.4 31.4 4.1 306 F 38.5 11.7 
76 7 1.7 30.4 7.2 299.2 F 38 11.6 
75 5 1.6 31.7 8 311.2 F 37.5 11.4 
74 4 2.2 28.1 9.7 298.8 F 37 11.3 
73 6 2.3 29.6 8.1 306 F 36.5 11.1 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

72 5 2 27.2 8.5 283.6 F 36 11 
71 3 1.9 27.5 8.5 284.4 S 35.5 10.8 
70 4 2.2 30.7 7.9 312.4 F 35 10.7 
69 4 1.7 30.5 7.9 302.8 F 34.5 10.5 
68 3.5 2.3 33 6.2 325.6 F 34 10.4 
67 1 2.1 33.5 8.2 334.4 F 33.5 10.2 
66 6 2.1 32.4 7.8 324 F 33 10.1 
65 2 2.3 43.8 7.7 418 T 32.5 9.9 
64 6 1.9 40 8.3 383.6 F 32 9.8 
63 4 2.5 42.1 9.2 413.6 F 31.5 9.6 
62 4 2 42.8 8.5 408.4 F 31 9.4 
61 5 1.8 42.3 9.6 405.6 F 30.5 9.3 
60 2 1.9 36.9 6.8 352.8 S 30 9.1 
59 8 1.7 36.9 8.9 358 F 29.5 9 
58 3 1.6 33.4 6.5 318.8 F 29 8.8 
57 4.5 1.3 33 9.4 322.4 S 28.5 8.7 
56 8.5 1.4 30.6 6.3 292.4 F 28 8.5 
55 3.5 0.9 34.1 6.2 312 S 27.5 8.4 
54 6.5 0.9 37.7 7.5 346 F 27 8.2 
53 3 1.4 40.2 9.1 380.4 F 26.5 8.1 
52 9 1.6 38.7 8.5 369.2 F 26 7.9 
51 3 1.5 43.3 7 398.4 S 25.5 7.8 
50 10 1.5 42.2 8 393.6 F 25 7.6 
49 6.5 1.4 36.2 7.6 342.4 F 24.5 7.5 
48 3 1.5 34.5 5.1 320.4 F 24 7.3 
47 3 1.3 31.5 6 296.8 F 23.5 7.2 
46 9 1.5 35.4 7.5 337.2 F 23 7 
45 7 1.6 31.9 7.2 309.6 F 22.5 6.9 
44 1 2.2 39.9 8.7 389.2 S 22 6.7 
43 8 1.8 49.3 8.1 455.6 F 21.5 6.6 
42 4 1.7 44.2 5.3 402 F 21 6.4 
41 9.5 1.7 25.9 5.2 255.2 F 20.5 6.2 
40 9 1.9 29.2 6 288 F 20 6.1 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

39 7 1.8 37.7 8.9 366 F 19.5 5.9 
38 7.5 2 44.4 10.6 429.6 F 19 5.8 
37 6 2.1 42.5 7.9 405.2 F 18.5 5.6 
36 5.5 2.3 45.6 8.3 434.8 F 18 5.5 
35 4 1.8 51.2 7.2 467.2 F 17.5 5.3 
34 4.5 1.9 45.3 7.8 424 S 17 5.2 
33 6 2 42.3 8.7 405.2 F 16.5 5 
32 14 1.9 42.6 6.2 396 F 16 4.9 
31 5 1.4 40.8 7.5 378.8 F 15.5 4.7 
30 5 1.2 39.3 6.9 361.2 S 15 4.6 
29 6.5 1.7 44.5 6.8 410.4 F 14.5 4.4 
28 8.5 2 56.9 6.7 514 F 14 4.3 
27 10 1.2 46.7 7.5 422.8 F 13.5 4.1 
26 2 2 57.1 8.1 521.2 S 13 4 
25 5 2.2 61.1 12.4 573.6 F 12.5 3.8 
24 4 1.9 51.5 11.6 488.8 F 12 3.7 
23 6.5 2.3 51.8 11.2 496 F 11.5 3.5 
22 3 2.1 47.4 12.6 463.2 T 11 3.4 
21 1.5 2.4 65 11.3 603.6 F 10.5 3.2 
20 5 3 66.5 13.8 635.2 F 10 3 
19 4 1.9 47.2 10.5 450 F 9.5 2.9 
18 5 2.4 44.5 12.5 444.4 F 9 2.7 
17 3 2.7 52.8 11 509.6 F 8.5 2.6 
16 2 2.6 47.7 12 471.2 F 8 2.4 
15 1 1.8 41.6 13.1 414 F 7.5 2.3 
14 3 2.5 32.4 10.4 340.8 F 7 2.1 
13 3.5 1.6 20.1 7.8 217.6 S 6.5 2 
12 8 2.5 20.2 8.6 236 F 6 1.8 
11 5 2.6 20.3 10.5 246 F 5.5 1.7 
10 7.5 1.9 19.8 5.1 209.2 F 5 1.5 
9 6 2 22.3 9.9 250 F 4.5 1.4 
8 6 1.9 23.6 8.4 252.8 S 4 1.2 
7 6 2.3 27.8 4.9 278.8 F 3.5 1.1 
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Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above base  

(ft.) 

height 
above base  

(m) 

6 7 2.5 23.6 10.4 270.4 F 3 0.9 
5 1.5 1.4 17.7 6.7 190.8 S 2.5 0.8 
4 8 0.9 26.4 7.4 255.2 F 2 0.6 
3 4 1 30.3 6.1 282.8 S 1.5 0.5 
2 2 1.4 28.6 6.2 276 F 1 0.3 
1 3 1.7 22.7 9.3 246 S 0.5 0.2 

* Denotes points where no MS measurement was possible 
**F = Fissile Shale, S = siliceous shale, NF = Fissile w/no MS measurement 
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Appendix 2.  Magnetic susceptibility and spectral gamma-ray data from Hass B. 

Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above 
base  
(ft.) 

height 
above 
base  
(m) 

328 N 1.7 28.2 7.5 282.8 NS 164.0 55.8 
327 N 2.1 24.9 8.6 267.2 NS 163.5 55.7 
326 N 1.9 25.6 7.8 266.4 NS 163.0 55.6 
325 N 1.9 26.3 9 276.8 NS 162.5 55.4 
324 N 2 22.5 9.4 249.6 NF 162.0 55.2 
323 N 2.1 23.3 8.3 253.2 NF 161.5 55.0 
322 N 2.3 28.9 9 304 NF 161.0 54.9 
321 N 1.9 30.7 8.7 310.8 NF 160.5 54.7 
320 N 2.3 28.7 10.3 307.6 NF 160.0 54.5 
319 N 1.7 27.8 7.4 279.2 NS 159.5 54.4 
318 N 1.4 28.3 6.7 275.6 NF 159.0 54.2 
317 N 2.2 31.4 9.3 323.6 NF 158.5 54.0 
316 N 2.4 32 11.7 341.2 NF 158.0 53.8 
315 N 2 34.4 9.4 344.8 NF 157.5 53.7 
314 N 2.1 30.4 8.3 310 NF 157.0 53.5 
313 N 2.7 39.4 8.2 391.2 NF 156.5 53.3 
312 N 1.9 31.2 8 312 NS 156.0 53.2 
311 N 2.5 32.8 7.8 333.6 NS 155.5 53.0 
310 N 2.1 31.3 8.2 316.8 NS 155.0 52.8 
309 N 1.8 32.9 7.1 320.4 NF 154.5 52.7 
308 N 2.1 29.2 10.2 308 NF 154.0 52.5 
307 N 1.8 28.4 9.6 294.4 NS 153.5 52.3 
306 N 2.3 30.4 10.5 322 NF 153.0 52.1 
305 N 2.1 32.5 7.1 322 NS 152.5 52.0 
304 N 2.4 32.5 9.7 337.2 NF 152.0 51.8 
303 N 2.4 34.1 11.6 357.6 NF 151.5 51.6 
302 N 2.2 34.2 8.7 343.6 NS 151.0 51.5 
301 N 1.7 36.3 7.6 348 NF 150.5 51.3 
300 N 2 32.2 8.6 324 NF 150.0 51.1 
299 N 2.8 29.4 11.1 324.4 NF 149.5 50.9 
298 N 2.5 33.7 10.1 350 NF 149.0 50.8 
297 N 2.7 34.9 8.3 355.6 NF 148.5 50.6 
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296 N 2.3 35.2 7 346.4 NF 148.0 50.4 
295 N 2.1 35.1 9.4 352 NF 147.5 50.3 
294 N 2.7 45.2 7.3 434 NF 147.0 50.1 
293 N 2.9 48.5 8.2 467.2 NF 146.5 49.9 
292 N 2.4 35.3 6.5 346.8 NF 146.0 49.8 
291 N 1.9 35.5 8.9 350 NF 145.5 49.6 
290 N 1.7 35.9 8.7 349.2 NF 145.0 49.4 
289 N 2 30.6 7.9 308.4 NF 144.5 49.2 
288 N 1.9 34.5 6.7 333.2 NF 144.0 49.1 
287 N 1.9 40 7.5 380.4 NF 143.5 48.9 
286 N 2.3 40.6 8.9 397.2 NF 143.0 48.7 
285 N 2.4 40 9.7 397.2 NS 142.5 48.6 
284 0.5 1.7 32.8 5.4 311.2 S 142.0 48.4 
283 7 2.3 41.9 11.1 416.4 F 141.5 48.2 
282 8 2.1 34.6 9.7 349.2 F 141.0 48.1 
281 4 1.9 36.3 8.8 356 S 140.5 47.9 
280 4.5 2.5 30.4 8.4 316.8 F 140.0 47.7 
279 3 2.4 29.7 8 308 S 139.5 47.5 
278 5.5 2.3 30.7 7.9 314 F 139.0 47.4 
277 5 1.8 33.9 7.5 330 F 138.5 47.2 
276 5 1.9 29 6.9 290 F 138.0 47.0 
275 4.5 2.2 32.1 7.6 322.4 F 137.5 46.9 
274 2 1.5 38 5.9 351.6 F 137.0 46.7 
273 0.5 1.8 39.2 6.8 369.6 S 136.5 46.5 
272 4.5 1.6 42.4 8.6 399.2 F 136.0 46.3 
271 3.5 2.2 42.9 8.6 412.8 S 135.5 46.2 
270 1 1.8 41.1 8.4 391.2 S 135.0 46.0 
269 3 1.6 45.8 7.9 423.6 S 134.5 45.8 
268 3 1.9 50.7 9.1 472.4 F 134.0 45.7 
267 3 2 48.5 8.6 454.4 S 133.5 45.5 
266 3 1.7 49.7 11.2 469.6 S 133.0 45.3 
265 2.5 2 47.4 6.1 435.6 S 132.5 45.2 
264 8 1.6 49.6 7.6 452.8 S 132.0 45.0 
263 9.5 2.1 47.5 9.4 451.2 F 131.5 44.8 
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262 9 2.3 53.2 8.9 498 F 131.0 44.6 
261 9 2.3 57.1 12.5 543.6 F 130.5 44.5 
260 10 3 58.1 12.3 562 F 130.0 44.3 
259 7.5 2.3 59.7 11.6 560.8 F 129.5 44.1 
258 5 2.3 55.5 9.6 519.2 F 129.0 44.0 
257 5 2.5 52.9 9.8 502.4 F 128.5 43.8 
256 4 2 50.5 10.2 476.8 F 128.0 43.6 
255 1 1.9 51.9 8.6 480 F 127.5 43.5 
254 4 2.5 48.8 8 462.4 F 127.0 43.3 
253 6 1.9 44.8 11.1 433.2 F 126.5 43.1 
252 10 2.3 49.8 8.8 470.4 F 126.0 42.9 
251 4 1.8 53.2 9.6 492.8 S 125.5 42.8 
250 4 2.1 53.3 9.8 499.2 S 125.0 42.6 
249 7.5 2.7 56 9.6 529.6 S 124.5 42.4 
248 9 2.4 52.6 9.1 495.6 S 124.0 42.3 
247 7 2.5 49.5 11.8 483.2 F 123.5 42.1 
246 8 2.4 51.8 8.8 488 F 123.0 41.9 
245 9 2.7 50.5 11.3 492.4 F 122.5 41.7 
244 10 2.4 49.3 10.2 473.6 F 122.0 41.6 
243 8 2.8 47.7 11.6 472.8 F 121.5 41.4 
242 6 2.7 55.7 9 524.8 F 121.0 41.2 
241 6 2.3 52 11.6 499.2 F 120.5 41.1 
240 9 2 50.5 8.2 468.8 F 120.0 40.9 
239 8 2.7 60.2 8 556.8 F 119.5 40.7 
238 8 2.3 60.3 12.1 567.6 F 119.0 40.6 
237 6.5 2.6 57.9 12.5 554.8 F 118.5 40.4 
236 6 2.5 54.8 10.9 522 F 118.0 40.2 
235 6 2.4 56.9 8.7 528.4 F 117.5 40.0 
234 8 2 58.5 9.2 536.8 F 117.0 39.9 
233 2 2.3 50.4 8.2 472.8 S 116.5 39.7 
232 3.5 1.8 47.4 8.6 442.4 S 116.0 39.5 
231 1 1.3 47.6 9.1 438 S 115.5 39.4 
230 3 1.7 41.7 8.5 394.8 S 115.0 39.2 
229 3 1.8 40.4 7 380 S 114.5 39.0 
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228 3 1.6 46.7 6.4 424.8 S 114.0 38.9 
227 4 1.9 54.1 10 503.2 F 113.5 38.7 
226 6.5 2.6 55.5 8.3 518.8 F 113.0 38.5 
225 4 2.1 49.6 7 458.4 F 112.5 38.3 
224 6.5 2.1 44.6 9.4 428 F 112.0 38.2 
223 3 2.2 49.8 9.8 472.8 S 111.5 38.0 
222 5 2.2 48.6 7.7 454.8 F 111.0 37.8 
221 5 1.9 48.9 9.7 460.4 F 110.5 37.7 
220 4 2.1 45.5 9.3 434.8 F 110.0 37.5 
219 2 2 44.2 9.3 422.8 S 109.5 37.3 
218 2 2 41.2 8.2 394.4 S 109.0 37.1 
217 4 1.8 41.5 8.2 393.6 F 108.5 37.0 
216 2 1.9 43.4 7.3 406.8 S 108.0 36.8 
215 3 1.7 48.9 9.9 458 S 107.5 36.6 
214 5 2.1 48.9 9.7 463.6 F 107.0 36.5 
213 3 2 52.2 8.5 483.6 S 106.5 36.3 
212 6 1.9 48.2 7.5 446 F 106.0 36.1 
211 5 1.8 46.4 11 444 S 105.5 36.0 
210 6 2.4 46.9 8 445.6 F 105.0 35.8 
209 4 2 47 9.2 444.8 S 104.5 35.6 
208 6 2.1 45.6 8.9 434 S 104.0 35.4 
207 4.5 1.9 48.2 9.3 453.2 F 103.5 35.3 
206 5.5 1.8 46.2 9.3 435.6 S 103.0 35.1 
205 3 1.8 42.2 9.8 405.6 S 102.5 34.9 
204 2.5 1.6 45.4 8.1 421.2 F 102.0 34.8 
203 5 1.8 48.3 7.5 445.2 F 101.5 34.6 
202 2 1.9 46.1 7.2 428 S 101.0 34.4 
201 2.5 2.1 51.2 9 479.2 F 100.5 34.3 
200 3 2.3 55.8 7.1 511.6 S 100.0 34.1 
199 0 2.3 52.6 7.7 488.4 S 99.5 33.9 
198 1 2.1 57 11.5 535.6 S 99.0 33.7 
197 1.5 1.6 53.9 7.6 487.2 S 98.5 33.6 
196 1 1.6 50.8 6.2 456.8 S 98.0 33.4 
195 1 1.9 50.7 9.2 472.8 F 97.5 33.2 
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194 3 2.1 49 11.3 470.8 S 97.0 33.1 
193 4 2 50.7 11.4 483.2 S 96.5 32.9 
192 3 2.2 47.5 10.5 457.2 S 96.0 32.7 
191 2 1.8 41.4 7 388 S 95.5 32.5 
190 6 2.3 40.2 8 390.4 F 95.0 32.4 
189 7 2.2 43.6 11.8 431.2 S 94.5 32.2 
188 4 1.5 52.3 7.4 472 S 94.0 32.0 
187 3 2 50.6 8.7 471.6 S 93.5 31.9 
186 3 1.9 49.4 7.6 456 S 93.0 31.7 
185 3 1.9 52.3 9.6 487.2 S 92.5 31.5 
184 2.5 1.7 50.8 10.3 474.8 S 92.0 31.4 
183 1 2.2 48.6 8.8 459.2 F 91.5 31.2 
182 5 2.2 48.6 9.5 462 F 91.0 31.0 
181 4 2 41.5 11.5 410 F 90.5 30.8 
180 8 2.3 44.6 9.8 432.8 S 90.0 30.7 
179 8 2.6 40.5 9.1 402 S 89.5 30.5 
178 7 2.3 38.2 8.9 378 S 89.0 30.3 
177 2 2.2 33 7.1 327.6 S 88.5 30.2 
176 4 2.3 31.7 8.3 323.6 S 88.0 30.0 
175 1.5 2.8 29.6 8.6 316 S 87.5 29.8 
174 2 2.5 28.8 10.1 310.8 S 87.0 29.6 
173 5 2.1 25.5 9.2 274.4 F 86.5 29.5 
172 3 2.6 27.6 9.5 300.4 S 86.0 29.3 
171 2 2.6 27 11 301.6 S 85.5 29.1 
170 1 2.8 27.6 8.9 301.2 S 85.0 29.0 
169 5 2.1 31.3 9 320 S 84.5 28.8 
168 3 2.3 32.2 9.4 332 S 84.0 28.6 
167 6 2.2 32.9 9.6 336.8 F 83.5 28.5 
166 6 1.8 30.4 9.4 309.6 S 83.0 28.3 
165 4.5 1.6 31 7.6 304 S 82.5 28.1 
164 2.5 1.6 32.7 8.1 319.6 S 82.0 27.9 
163 1 1.9 31.2 7.5 310 S 81.5 27.8 
162 3 1.7 35.5 8 343.2 S 81.0 27.6 
161 3 1.5 34.8 8.7 337.2 S 80.5 27.4 
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160 3 1.9 36.6 7.9 354.8 F 80.0 27.3 
159 5 2.3 35.4 9.4 357.6 S 79.5 27.1 
158 3 1.9 39.2 7.2 372.8 S 79.0 26.9 
157 5 2.1 38 7.5 367.6 S 78.5 26.8 
156 3 2 36.1 8.2 353.6 S 78.0 26.6 
155 1 1.4 36.9 8.5 351.6 F 77.5 26.4 
154 1.5 1.9 32.4 6.2 314.4 F 77.0 26.2 
153 -2 1.8 35.2 9.2 347.2 S 76.5 26.1 
152 1 1.9 37.1 6.9 354.8 F 76.0 25.9 
151 1 1.5 33.8 8.1 326.8 S 75.5 25.7 
150 3.5 1.5 36 6.7 338.8 F 75.0 25.6 
149 3 1.5 32.2 5.6 304 F 74.5 25.4 
148 3 1.6 33.6 5.9 318 F 74.0 25.2 
147 1 1.7 32.8 7.6 320 S 73.5 25.0 
146 2 1.9 33.6 6.8 326.4 S 73.0 24.9 
145 2 2.1 33.3 6.8 327.2 S 72.5 24.7 
144 1.5 1.5 34.7 6.2 326.4 S 72.0 24.5 
143 1 1.1 37.9 6.2 345.6 S 71.5 24.4 
142 1 1.4 34.6 5.5 321.2 S 71.0 24.2 
141 2 1.5 34.1 6.1 321.2 S 70.5 24.0 
140 3 1.1 35.7 6.8 330.4 S 70.0 23.9 
139 1 1.8 33.5 6.6 323.2 S 69.5 23.7 
138 1 1.7 36.6 8.2 352.8 S 69.0 23.5 
137 4 1.6 39 7.2 366.4 S 68.5 23.3 
136 1.5 1.5 37.2 8.7 356.4 S 68.0 23.2 
135 4 1.4 35.9 12.4 359.2 F 67.5 23.0 
134 1 1.6 38.9 8 368.8 F 67.0 22.8 
133 1 1.6 39 9.1 374 S 66.5 22.7 
132 1.5 1.7 37.6 7.7 358.8 F 66.0 22.5 
131 4 1.3 34.3 7.1 323.6 F 65.5 22.3 
130 1 1.3 34 6.3 318 S 65.0 22.2 
129 2.5 1.9 40.4 4.8 372.8 S 64.5 22.0 
128 2.5 2 34.3 6 330.4 S 64.0 21.8 
127 -0.5 1.5 38.1 5.4 350.4 S 63.5 21.6 
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126 3 1.4 32.8 6.7 311.6 S 63.0 21.5 
125 3 1.4 36.4 6.8 340.8 S 62.5 21.3 
124 1 1.5 35.9 6.3 336.4 S 62.0 21.1 
123 3 1.6 42.9 6.8 396 F 61.5 21.0 
122 3 2.3 45.8 6.3 428.4 S 61.0 20.8 
121 2 1.8 48.9 9.1 456.4 S 60.5 20.6 
120 2.5 1.5 46.9 7.9 430.8 S 60.0 20.4 
119 3 1.7 44.7 6.9 412.4 S 59.5 20.3 
118 3 1.4 47 6.5 424.4 F 59.0 20.1 
117 3 1.4 46.8 7.1 425.2 S 58.5 19.9 
116 3 1.6 43.1 7.5 400.4 S 58.0 19.8 
115 0.5 1.3 36 7.6 339.2 S 57.5 19.6 
114 3.5 1.6 37.4 5.1 345.2 F 57.0 19.4 
113 6 1.3 34.4 3.9 311.6 F 56.5 19.3 
112 2 1.5 31.5 6.3 301.2 S 56.0 19.1 
111 1.5 1.3 30.3 5.3 284.4 S 55.5 18.9 
110 2.5 1.1 34.6 4.9 314 S 55.0 18.7 
109 5 1 32.9 3.8 294.4 F 54.5 18.6 
108 2 1.1 33.1 4.5 300.4 S 54.0 18.4 
107 3 1.6 27.6 6.9 274 S 53.5 18.2 
106 3 1.4 28.2 5.9 271.6 S 53.0 18.1 
105 8 1.5 26.2 6.9 261.2 F 52.5 17.9 
104 2 1.4 24.8 7.2 249.6 S 52.0 17.7 
103 14.6 1.5 23.3 6.4 236 S 51.5 17.6 
102 8 1.7 22.8 6.4 235.2 F 51.0 17.4 
101 1 1.7 21 6.1 219.6 S 50.5 17.2 
100 3 1.8 21.6 6.1 226 F 50.0 17.0 
99 4 2.1 27.3 8.2 284.8 F 49.5 16.9 
98 4 1.9 27.6 6.4 276.8 S 49.0 16.7 
97 6 2.4 29 6.6 296.8 S 48.5 16.5 
96 8 1.9 38.5 6.7 365.2 F 48.0 16.4 
95 13 2.7 41.5 6.5 401.2 F 47.5 16.2 
94 2 2 41.6 10.3 406 F 47.0 16.0 
93 2 1.8 32.4 8.6 322.4 S 46.5 15.8 



 

207 
 

Data 
pair 

# 

MS  
SI 

Units 
* 

K 
wt. 
% 

U 
(ppm) 

Th 
(ppm) 

Gamma- 
Ray 
(API 

Units) 

Lithology 
** 

height 
above 
base  
(ft.) 

height 
above 
base  
(m) 

92 3 1.4 35.6 8.7 342 S 46.0 15.7 
91 3 2.1 37 7.3 358.8 S 45.5 15.5 
90 2 2.7 41.8 7.2 406.4 S 45.0 15.3 
89 2 2 41.4 9.4 400.8 S 44.5 15.2 
88 6 2.7 37.4 7.8 373.6 F 44.0 15.0 
87 6 2.1 40 7 381.6 F 43.5 14.8 
86 2 2.2 40.4 7.4 388 S 43.0 14.7 
85 4 2 45.6 7.8 428 F 42.5 14.5 
84 4 1.9 44.4 6.8 412.8 F 42.0 14.3 
83 1.5 2.2 43.1 8.7 414.8 S 41.5 14.1 
82 5 2 48.9 8.8 458.4 F 41.0 14.0 
81 9 2.9 44.9 7.1 434 F 40.5 13.8 
80 4.5 2.8 43.2 10.1 430.8 F 40.0 13.6 
79 3 3.3 36.5 11.7 391.6 F 39.5 13.5 
78 7 3.3 36.8 10.8 390.4 F 39.0 13.3 
77 1 3.1 33.8 13.6 374.4 F 38.5 13.1 
76 3 3.8 34.5 9.3 374 F 38.0 13.0 
75 5 3.2 39.9 9.9 410 F 37.5 12.8 
74 5 3.5 36 8.7 378.8 F 37.0 12.6 
73 1.5 3.1 33.9 12.9 372.4 F 36.5 12.4 
72 2 2.6 29.1 8.3 307.6 F 36.0 12.3 
71 3 2.8 27.5 8.9 300.4 S 35.5 12.1 
70 4 3.7 27 11.4 320.8 F 35.0 11.9 
69 6 4 23.8 12.4 304 F 34.5 11.8 
68 5 3 26.8 8.4 296 F 34.0 11.6 
67 4.5 3.3 29 9.2 321.6 F 33.5 11.4 
66 2.5 2.5 33.2 9.8 344.8 F 33.0 11.2 
65 4 2.5 28.3 10.1 306.8 F 32.5 11.1 
64 6 2.4 30.2 7.7 310.8 F 32.0 10.9 
63 6 2.7 25.5 9.8 286.4 F 31.5 10.7 
62 7.5 2.4 28.5 9.3 303.6 F 31.0 10.6 
61 3.5 3.1 29.2 6.9 310.8 F 30.5 10.4 
60 7 2.8 29.9 10.9 327.6 F 30.0 10.2 
59 4.5 2.6 29.9 8.3 314 F 29.5 10.1 
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58 6 2.2 31.1 8.5 318 F 29.0 9.9 
57 3.5 1.8 30.2 7.4 300 F 28.5 9.7 
56 7 2.3 28.5 9.7 303.6 F 28.0 9.5 
55 2 2.1 30.8 8.2 312.8 F 27.5 9.4 
54 5 2.6 32.4 7.7 331.6 F 27.0 9.2 
53 5 2.7 29 9.6 313.6 F 26.5 9.0 
52 3 2.8 29.6 8.7 316.4 F 26.0 8.9 
51 4 3 28.1 10.8 316 F 25.5 8.7 
50 5 3.1 27.3 11.3 313.2 F 25.0 8.5 
49 5 2.8 30.7 7.4 320 S 24.5 8.3 
48 2.5 2.2 28.8 9.4 303.2 F 24.0 8.2 
47 8.5 2.4 27.2 9.7 294.8 F 23.5 8.0 
46 1.5 2.5 29.3 8.6 308.8 F 23.0 7.8 
45 5.5 2.1 27 8.1 282 S 22.5 7.7 
44 2.5 2.2 23.9 7.3 255.6 S 22.0 7.5 
43 6 2.7 35.7 10.2 369.6 F 21.5 7.3 
42 7 3.2 35.4 11.6 380.8 F 21.0 7.2 
41 1 2.3 31.6 9.9 329.2 S 20.5 7.0 
40 2 2.1 34.7 8.8 346.4 S 20.0 6.8 
39 2 2.1 30.4 9.9 316.4 S 19.5 6.6 
38 4 2 31.2 9.3 318.8 F 19.0 6.5 
37 6 2.6 36.7 9.3 372.4 F 18.5 6.3 
36 -1 2.4 30.7 9.3 321.2 S 18.0 6.1 
35 5 2.9 31.5 9.3 335.6 F 17.5 6.0 
34 3 2.7 35.7 8.2 361.6 S 17.0 5.8 
33 N 2.6 45.6 8.4 440 NF 16.5 5.6 
32 N 2 56.3 9.5 520.4 NF 16.0 5.5 
31 N 2.3 56.7 12.9 542 NF 15.5 5.3 
30 N 2.1 57.7 8.7 530 NF 15.0 5.1 
29 N 2.3 46.5 11.2 453.6 NF 14.5 4.9 
28 N 1.9 44.8 7 416.8 NF 14.0 4.8 
27 N 1.7 45.5 6.6 417.6 NF 13.5 4.6 
26 N 1.2 39.9 6.2 363.2 NF 13.0 4.4 
25 N 1.9 37.3 7.6 359.2 NF 12.5 4.3 
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24 N 2.3 35.6 9 357.6 NF 12.0 4.1 
23 N 2.3 39.2 11.6 396.8 NF 11.5 3.9 
22 N 3.2 35.4 10.2 375.2 NF 11.0 3.7 
21 N 2.6 36.9 10.7 379.6 NC 10.5 3.6 
20 N 3 37.6 13.2 401.6 NC 10.0 3.4 
19 N 2.9 35.9 12.3 382.8 NC 9.5 3.2 
18 N 3.3 36.5 11 388.8 NC 9.0 3.1 
17 N 3.7 34.4 14.2 391.2 NC 8.5 2.9 
16 N 4.4 28.4 16.9 365.2 NC 8.0 2.7 
15 N 4.8 23.9 16 332 NC 7.5 2.6 
14 N 4.9 21.7 16.3 317.2 NC 7.0 2.4 
13 N 5.4 16 16.2 279.2 NC 6.5 2.2 
12 N 5.3 12.7 17.2 255.2 NC 6.0 2.0 
11 N 5.6 9.8 21.4 253.6 NC 5.5 1.9 
10 N 6.1 10.4 18.5 254.8 NC 5.0 1.7 
9 N 5 10.7 20.8 248.8 NC 4.5 1.5 
8 N 5.4 10 15.7 229.2 NC 4.0 1.4 
7 N 4.2 10.4 19.2 227.2 NC 3.5 1.2 
6 N 3.4 7.9 13.9 173.2 NC 3.0 1.0 
5 N 3.4 10.6 11.4 184.8 NC 2.5 0.9 
4 N 3.8 10.9 16 212 NC 2.0 0.7 
3 N 3.7 9 13.4 184.8 NC 1.5 0.5 
2 N 2.9 6.5 11.3 143.6 NC 1.0 0.3 
1 N 2.8 7.3 9.9 142.8 NC 0.5 0.2 

* Denotes points where no MS measurement was possible 
**F = Fissile Shale, S = siliceous shale, NF = Fissile w/no MS measurement, NS = Siliceous w/no MS measurement, 
NC = Claystone w/no MS measurement 
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Appendix 3. Elemental concentrations of select elements from inductively coupled 
plasma-mass spectromrtry data at Hass A. 

Sample # 
Al 

(ppm) 
U 

(ppm) 
Fe 

(ppm) 
K 

(ppm 
Fe/Al ratio 
(ppm/ppm) 

1 20563.34 520.51 24098.65 17356.93 1.17 
2 13161.52 648.57 21966.78 11482.89 1.67 
3 1764.55 10.51 1682.11 1811.56 0.95 
4 20915.86 29.66 5989.19 18451.19 0.29 
5 22517.99 52.28 10364.39 19135.22 0.46 
6 6583.93 24.43 5599.76 6948.24 0.85 
7 6738.23 12.48 5332.30 8477.79 0.79 
8 13650.67 45.40 14369.10 10391.53 1.05 
9 5446.44 13.73 5169.90 5984.75 0.95 

10 11683.39 45.78 13093.81 12567.22 1.12 
11 50482.71 110.26 32218.55 18682.33 0.64 
14 7088.63 13.79 6368.11 8399.77 0.90 
15 4134.49 6.28 2331.31 3777.91 0.56 
16 15533.24 24.63 9585.37 16111.73 0.62 
17 14202.50 32.22 13522.80 12585.16 0.95 
18 12091.66 34.21 15069.51 14040.78 1.25 
19 20697.40 40.43 18299.53 19294.89 0.88 
20 15378.37 41.43 25400.19 16343.39 1.65 
21 11308.49 40.11 21621.12 11096.60 1.91 
22 10399.07 16.20 8264.85 10466.54 0.79 
23 20586.72 34.55 17943.68 20584.40 0.87 
24 15740.50 29.71 14031.24 15670.19 0.89 
25 14114.92 20.95 8649.68 11258.11 0.61 
26 18915.51 30.17 10811.76 19773.88 0.57 
27 7976.89 14.66 9901.31 5903.75 1.24 
28 5572.66 8.36 6568.67 5134.97 1.18 
29 1882.60 2.77 1056.26 1922.32 0.56 
30 35312.13 45.10 17685.35 29052.29 0.50 
31 13030.73 19.29 6837.59 11692.31 0.52 
32 3472.42 14.82 4678.75 4003.11 1.35 
33 18247.45 16.99 8907.11 15825.58 0.49 
34 6743.27 14.40 4293.39 6766.65 0.64 
35 4914.22 10.72 4163.29 6953.91 0.85 
36 27022.78 48.13 7117.61 25942.47 0.26 
37 12003.82 32.38 5452.82 13489.43 0.45 
38 18616.01 64.03 8811.76 19042.55 0.47 
39 18176.85 35.63 12893.53 20497.49 0.71 
40 533.38 5.71 1322.85 679.26 2.48 
41 551.06 4.10 1695.00 722.50 3.08 
42 722.57 3.77 1341.37 898.32 1.86 
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