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CHAPTER 1 
 

 

INTRODUCTION 

 

 

Natural gas hydrates are crystalline solids comprised of gas molecules bounded by cages of water 

molecules. They form naturally in presence of gas and water in pressure-temperature ranges 

nominally expected in the top few hundred meters  of the seafloor on the continental shelf 

environments (Kvenvolden, 1994). Hydrates exhibit varied growth styles. In coarse-grained 

sediments they are found suspended in pore fluids (e.g., Nankai Prism; (Kida et al., 2009),  

embedded in the rock matrix as a load-bearing component (e.g., Mackenzie Delta; Winters et al., 

2004), and at contacts as cement (Oseberg Field; Dvorkin and Nur, 1996). In fine-grained 

sediments, hydrates are found in veins (Krishna-Godavari Basin; Collett et al., 2006) or massive 

outcrops (Gulf of Mexico;  MacDonald et al., 1994).  

Although the potential significance of hydrates to energy and environment-related issues are well 

highlighted (Boswell and Collett, 2011), due to inadequate knowledge about their global 

volumetric changes through time, their role in changing the past climate or fulfilling the future 

fuel needs remain unclear. Model-based quantification methods range from empirical (Klauda, 

2005) to stochastic (Davie and Buffett, 2001); these are global in nature but have a high 

associated uncertainty. On the other hand, data-based quantification methods mainly driven by 

seismic techniques range from simplistic (Wood et al., 1994) to more accurate, seismic attribute 
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based approaches (Ecker et al., 1998).  These methods have lower uncertainty, but are at a basin 

instead off global scale. The importance of being able to quantify hydrates accurately is reflected 

in Dickens (2001) research who views hydrate as part of the mass balance problem in global 

carbon cycling. 

Hydrate quantification with seismic data has been attempted in multiple ways. Generally velocity 

or reflectivity attributes are estimated from the seismic data, which are then related to hydrate 

saturation assuming simple rock models. Vargas-Cordero et al. (2010) used velocity estimated 

from pre-stack depth migration analysis to estimate hydrate growth in the pores using Biot-

Gerstmann-Smith theory.  Zillmer et al.(2005a) and Zillmer et al. (2005b) explained P- and S- 

wave velocity models from analysis of wide-aperture ocean-bottom-seismic (OBS) records with a 

pore-filling model implemented using the Gassmann’s theory. Tinivella and Accaino (2000) used 

a combination of traveltime inversion and amplitude-versus-offset (AVO) analysis to 

simultaneously create velocity and Poission’s ratio models and then relate them to hydrates in 

pores and grain surfaces using Gassmann’s relations and percolation theory.  

Although the presence of hydrates quintessentially increases the P- and S- wave velocities (VP 

and VS respectively), the rate of increase is growth-style dependent (Waite et al., 2000). Dai et 

al.(2008a), Dai et al.(2008b) and Petersen et al.(2007) show that the hydrate quantification can be 

more accurate if these dependencies are estimated using first-principle based rock-physics 

methods. At a fundament level, the physical properties of a medium, such as density and elastic 

moduli, which determine the seismic velocities, can be computed using physical properties and 

relative fractions of its constituents through effective medium theory (EMT; Chand et al., 2004); 

this includes computing the elastic moduli of dry rock matrix and pore fluid separately followed 

by their union through Gassman’s method. Helgerud et al.(1999) initially developed the effective 

medium concept to incorporate growth of hydrates in pore spaces and within matrix. 
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There is a general lack of case studies where fracture-saturating hydrates are quantified using 

seismic and/or well data despite an abundant evidence of this growth style in nature (Daigle and 

Dugan, 2010b). The Krishna-Godavari (KG) basin hosts the type example of hydrate occurrence 

in fractures (Cook et al., 2008). Imaging of 2D seismic data from the KG Basin by Jaiswal et al. 

(2012a), clearly shows a) abundance of multi-scale faults; b) patchy distribution of hydrates that 

are both fault and stratigraphy controlled; and c) possible presence of hydrates both in the faults 

as well as in the background matrix. 

In this research the effective medium approach adopted by  (Helgerud et al., 1999) is extended to 

model hydrates in random dimensionless fractures. This method is then applied to the well log 

suite from well NGHP 01-10 to estimate gas hydrate saturation and growth styles in the matrix as 

well as in the fractures. 

. 
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CHAPTER 2 
 

 

METHODS 

 

 

The ability of seismic data to constrain petrophysical properties of a rock depends on the 

predictability of its seismic response as it undergoes deformation. Thus, the relation between a 

changing porosity (a proxy for deformation) and the corresponding moduli (both bulk and shear; 

proxies for seismic response) is the basis of seismic rock physics (Wang, 2001). Two end-

member relations describing porosity-moduli variation for a material can be conceived with a) 

incompressible pores and compressible bounding mineral grains; and b) compressible pores and 

incompressible bounding mineral grains (Mavko et al., 2009). Mathematically, the two end-

member cases can be modeled using the modified lower and upper Hashin-Shtrikman bounds 

respectively (Nolen-Hoeksema, 2000). Helgerud et al. (1999) showed that the relation between 

the elastic moduli and porosity in unconsolidated, shallow marine sediments can be appropriately 

described by assuming that the pores are incompressible, i.e., in a physical sense that the 

sediments can be conceived as inclusions within the background fluid. 
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Figure 1: Porosity vs. moduli variation. In this paper, the hydrate-free rock matrix is assumed to be a 2-

phase system (quartz and clay). Elastic moduli can vary with porosity in two extreme manners (upper 

and lower bounds), but converge at zero and critical porosity (see text for details). 

 

 

Figure 2: Cartoon of hydrate growth styles used in this paper: (a) load-bearing; (b) pore-filling; (c) 

interconnected; and (d) disconnected fracture-filling.  In (a) - (d) mineral grains are black, fluid is grey, 

and hydrate is white. 
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2.1 Hydrate Growth in Matrix or Pore-Spaces of Marine Sediments 

 

The bulk (KHM) and shear (GHM) moduli of dry, randomly packed, spherical grains at critical 

porosity
1
 are expressed as (Helgerud et al., 2000): 
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In equation 1, n is the average number of contacts per grain, c is the critical porosity, P is the 

effective pressure (difference between the pore pressure and the overburden pressure), and v and 

G are the Poisson’s ratio and shear modulus of the solid phase. The model described by Equation 

1 is applicable to a single grain mineral packed at the critical porosity, thus providing the elastic 

moduli at this high-porosity endpoint (Figure 1).  The other endpoint, at zero porosity (Figure 1) 

can be calculated for two or more mineral phases using Hill’s average (Hill, 1952) and mass 

balance as: 
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In Equation 2, 



Ks , 



Gs , and 



s are the bulk and shear moduli and density of the rock matrix 

respectively; m  is the number of the mineral components in the matrix; f i  is the volumetric 

fraction of the i -th component in the matrix; andKi , Gi , and i  are the bulk moduli, shear 

moduli and density of the i -th mineral component respectively.  Bulk and Shear elastic moduli of 

the dry frame for  < c , are calculated using the modified lower Hashin-Shtrikman bound as: 
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In equation 3, eff  is the porosity associated with hydrate growth: when hydrate growth occurs in 

the pores, eff remains constant regardless of the hydrate saturation (Sh). On the other hand, 

hydrate growth in the matrix as a load-bearing component can actually be seen as growth of an 

additional mineral phase that reduces porosity as:  

)1( hteff S                            (4) 

In equation (4), t is the initial porosity with no associated hydrates.  

The moduli for saturated rock can be then expressed as:  
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In equation (5), 



K f  is the bulk modulus of the pore-fluid. The composition of the pore fluid is 

assumed to be that of  saline water (40000 ppm). Although hydrate growth is associated with 

salinity change (Liu and Flemings, 2007), for simplicity in modeling a constant fluid salinity is 

assumed.  

When hydrates grow in the matrix (Figure 2a), the bulk modulus of the pore-fluid remains same 

as that of the brine ( wf KK  in Equation 5, where wK is the bulk modulus of brine). However, 

when hydrates grow in pore spaces (Figure 2b), the pore-fluid bulk modulus changes with hydrate 

saturation as: 
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The elastic-wave velocities, VP and VS, can then be computed as: 
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In equation 7, b  is the bulk density of the saturated rock expressed as: 

feffseffb   )1(                                                 (8)     

In equation 8, s  and f are densities of solid and fluid phases respectively. In the load-bearing 

case, presence of hydrates are accounted for while calculating s  (Equation 2) and f is the 

same as w , where w  is the bulk density of brine. In the pore-filling case, s  calculation only 

includes quartz and clay and f  is computed as: 

whhhf SS  )1(                  (9) 

In Equation 9, h is the density of hydrates. The values of Kw and w are calculated using the 

empirical relations analytically established by (Batzle and Wang, 1992) assuming pore pressure 

of 12 MPa and temperature of 5 
°
C. 

2.2 Hydrate Growth in Fractures. 

 

We model the host-sediments as an unconsolidated system wherein, assuming perfectly elastic 

pores and spherical grains, the porosity-modulus relation follows the modified lower Hashin-

Shtrikman (HS) bounds [Hashin and Shtrikman, 1963]. Hydrate-saturated fractures can be 

modeled in two styles: – connected (Figure 2c) and disconnected (Figure 2e). “Disconnected” is 

intend to imply an inclusion style, and “interconnected” is intended to imply that the fractures can 

act like a background medium in which saturated sediments can be considered as inclusions.  The 

porosity – moduli relation of disconnected and interconnected systems can be addressed 

respectively by lower and upper HS bounds (annotated “HS-” and “HS+”, respectively hereafter 

[Berryman, 1995]). The upper HS bound (HS+), assumes that seismically induced pressure does 
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not change the pore shapes, but rather flushes the fluid in-and-out of the pore spaces while the 

lower HS bound (HS-) assumes that pores are perfectly elastic void spaces. 

In general, the moduli (M
HS

) of the sediment-hydrate composite can be expressed as:  

M
HS-/+

 = K
HS-/+

 + (4/3)G
HS-/+

             (10) 

In equation (10), K
HS-/+

 and G
HS-/+

 are the bulk and shear moduli of the disconnected and 

interconnected system, respectively estimated as: 
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In Equation 11, m  is the number of the mineral components. if is volume fraction of the 

thi component in the mineral frame and Ki and Gi are the bulk and the shear moduli of 

thi component respectively.  Subscripts min and max refer to the minimum and maximum bulk 

and shear moduli of the constituents. For example, in a mixture of quartz ,clay, hydrates and 

brine, using Equation 11, Kmin and Gmin will be 2.37 GPa and 0 GPa corresponding to brine and 

Kmax and Gmax will be 36 Gpa and 45Gpa corresponding to quartz (Table 1). 

VP and VS for the disconnected and interconnected systems are given by: 
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Where the bulk density ( b ) is now expressed as:  
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crmrb  .).1(                                                                                                          (13) 

In equation (13), r  is the fracture porosity, m is the bulk density of background computed 

using Equation 8, and c is the density of fracture-filling material. In this work, fractures are 

viewed as void spaces and therefore r is the same as the overall volume fraction of fractures.  

 

2.2.1 Fractures Fully Filled with Hydrates 

 

For comparison purposes (Figure 3), we model hydrate-saturated fractures by assuming that a) 

sediments do not contain hydrates (in pores or matrix); b) fractures do not contain water; and c) 

the system is fully saturated. First, we compute the elastic moduli of water-saturated sediments 

using the soft rock approach of Helgerud et al.(2000), which assumes that dry sediments are 

inclusions in a fluid background by applying Sh=0 through Equations 1-9 . 

When fractures are interconnected we model the system as having a softer inclusion (lower elastic 

moduli) in a stiffer background (higher elastic moduli) and vice versa when fractures are 

disconnected (Equations 10-13).  Note that the computation of system elastic moduli in Equation 

11 for this particular case requires three components (m = 3; Equation 11): a) a background  

composite of matrix and brine; b) hydrate in fractures. 

In equation (13), c is the density of fracture-filling material (brine). The volume fractions of 

individual components in Equation 11 can be expressed in terms of r as:  

rf 11           hrr Sf .2                                                                                            (14) 

In equation (14),  f1 and f2 are volume fractions of background mixture and hydrate in fractures 

respectively and Shr is the hydrate saturation in fractures, which is 100% . 



11 
 

For elastic velocity computation, m  and c required in Equation 13 can be respectively 

computed as:  

weffseffm   )1(  and    hc                                   (15) 

In equation (15), symbols remain the same as in Equation 8. h and w are hydrate and brine 

density respectively (Table 1).  

2.2.2 Fractures Partially Filled with Hydrates 

 

The fractures are modeled assuming a partially saturated hydrate-water system. We follow the 

same procedure as mentioned in above section. However this time Sh 0 in Equations 1-9. 

Interconnected fractures are implemented using the upper Hashin-Shtrikman bound (Mavko et 

al., 2009). The computation of system elastic moduli for partially saturated fractures requires 

three components (m = 3; Equation 11): a) a background composite of matrix and pore-fluid 

(hydrate can be either in matrix or in pores); b) hydrate in fractures forming an incompressible 

framework which includes the compressible background mixture; and c) brine in fractures.  

In equation (13), c is the density of fracture-filling material (a mixture of brine and hydrate 

computed using equation. The volume fractions of individual components in Equation 11 can be 

expressed in terms of r as:  

rf 11 ;  hrr Sf  2 ;  )1(3 hrr Sf                (16) 

In equation (16),  f1,  f2 and f3 are volume fractions of background mixture, hydrate in fractures 

and brine in fractures, respectively, and Shr is the hydrate saturation in fractures. 
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For elastic velocity computation, m  and c required in Equation 13 can be computed , 

respectively, as:  

feffseffm   )1(                           (17) 

whc ff  ).1(. 22                                                                                                 (18)        

In equation (17), symbols remain same as in Equation 8. In equation (18), f2 is computed using 

Equation (16). 

Although disconnected fractures are implemented using the lower Hashin-Shtrikman bound 

(Mavko et al., 2009), for stability reasons we assume that brine in the disconnected fractures is 

part of the background matrix. The practical implementation involves decreasing the fracture 

porosity corresponding to the volume fraction of brine in the disconnected fractures and 

proportionately increasing the background porosity. As a result, the volume fractions of 

components in Equation 11 are recalculated as:  

31132 ; fffff r 


                           (19) 

In Equation 19, 


1f is the fraction corresponding to the background mixture of matrix and pore-

fluid (hydrates can be part of the matrix or the pore-fluid and the brine in the pore-fluid is both 

“in-situ” and that shifted from fractures to the background for modeling purposes); and 


2f is the 

hydrate fraction saturating the fractures conceived as incompressible inclusions. Thus, 

computation of elastic moduli in the disconnected fracture case requires only the two components 

given in Equation 19(m = 2; Equation 11).  
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CHAPTER 3 
 

 

APPLICATIONS AND RESULTS 

 

 

 

Figure 3: Sgh versus (a) VP and (b) VS for the hydrate-sediment composite. Velocity enhancement is a 

maximum when hydrates are in-fractures, within which the connected fractures have higher velocities. 

 

In Figure 3 we compare the elastic velocity increase for the hydrate-sediment composite with 

increasing hydrate saturation (Sgh) for hydrate states shown in Figure 2. The model shown in 

Figure 3 assumes that the sediment matrix is an unconsolidated clay-quartz mixture(80% and 

20% respectively) with 65% initial bulk porosity and an effective pressure of about 1.2 MPa 

(corresponding to ~1000m of water depth). This system is representative of fine-grained, 

unconsolidated, sediments within the top few hundred meters of the seafloor. Other modeling 

parameters are listed in Table 1. Hydrates in the load-bearing case (Figure 1a) are modeled as part 

of the matrix, hence, the matrix porosity gradually decreases with increasing Sgh as: 
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)1( hteff S . Thus, elastic velocity increase in the load-bearing case is partly due to a 

gradual decrease in porosity and partly due to stiffening of dry-rock matrix (blue trend; Figure 3). 

In the pore –filling case (Figure 2b), hydrates are modeled as part of the background fluid 

increasing the VP while maintaining relatively constant VS (green trend; Figure 3). Introduction of 

fractures  in natural systems increase the total porosity [Cook et al., 2008]. In our modeling, the 

fractures can be introduced in two ways: first, leading to a total porosity increase; and second, 

maintaining a constant total bulk porosity by reducing the matrix porosity as fracture density is 

increased. We adopt the second method as is a more reasonable comparison to hydrates in load-

bearing and pore-filling states. Thus, in Figure 3, Sgh = 0.6 for connected and disconnected 

fractures implies that 60% of the system porosity is present as fracture porosity leaving only 40% 

as matrix porosity.  

Our strategy for hydrate quantification at the NGHP-01-10 site is first done by determining 

individual hydrate saturation profiles corresponding to the matrix and the fractures with the help 

of standard well-log suites. Collette et al.(2006) previously showed that at the NGHP-01-10 site: 

a) hydrates are present in fractures as well as in the background (matrix and/or pores); b) fractures 

may have random orientation; and c) sediments are unconsolidated and dominantly fine-grain. 

The key aspect of our application is to be able to determine the growth style of hydrates and the 

associated saturation at the NGHP-01-10 site such that the observed VP, VS, and Sh (from core-

depressurization) are simultaneously predicted. The saturation and the growth styles are estimated 

in a trial-and-error manner through repeated forward modeling such that the overall prediction 

error, estimated by root-mean-square error, is within 5% of the observed data. 

 

 

 



15 
 

3.1 Computation of Background and Fracture Saturation Profile 

 

A gross assessment of the deep and shallow resistivity log separation (Figure 4a), which is 

considered as a proxy for fluid invasion in sediments, suggests that the entire section comprises 

two rock architectures. The first architecture, such as 90 – 120m depth (Figure 4a), has no 

separation which is suggestive of limited fracturing. The second architecture, such as from 40 – 

90m and 120 – 150m depth (Figure 4a), has clear separation, which is suggestive of significant 

fracturing.  The porosity log (Figure 4b), computed from the density log, shows that fracture 

limited architecture has a consistent porosity of ~55% while the fractured architecture has 

variable and sometimes extremely high porosity estimates. For modeling purposes we consider 

the porosity of the fracture-free architecture, 55%, as the matrix porosity (m). Consequently, in 

fracture-prone architecture porosity higher than 55% is attributed to fractures (r). Further, we 

assume that the maximum and minimum gamma-ray log values respectively correspond to 100% 

and 60% clay content; the clay profile (Figure 4c) is generated accordingly.  Other modeling 

parameters include P = 1.2 MPa (pressure at ~1000m water depth) and a c = 65%. Application of 

the modeling methodology (Chapter 2, section 1) in the fracture-free zone suggests that the 

observed VP, VS and Sh data can be best explained with 23%±2% hydrates in the matrix in a load-

bearing state (Figure5). Next, in fracture-prone zones, we compute the fracture porosity (cyan 

curve; Figure 3b) as: 55.0 tr  , where t is the observed value from the density-porosity log 

(pink curve; Figure 4b). We then apply the modeling methodology in chapter 2 section 2 for 

partially saturated fractures to estimate the elastic moduli and density of the system. We use 

Equations 11 – 13 to predict VP and VS. The total hydrates saturation ( htS ) prediction, which is 

used to compare with the observed hydrate saturation, is done as:  

t

hrrhmm
ht

SS
S



 
                          (20)  
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In Equation 20, Shm is hydrate saturation in matrix. While choosing Shm and Shr in a trial-and-error 

manner for data prediction, Shr is modeled with both interconnected and connected fracture 

assumptions.  

Within 60-90 m and 42-60 m depth (Figure 6-7) we obtain data match within 5% RMS error by 

assuming interconnected fractures, Shr = 60%±5 and 70%±5 respectively, and Shm =15±3% and 

10±3% respectively. Similarly, within 25-42 depth (Figure 8) we obtain data match within 5% 

RMS error by disconnected fractures, Shr = 90%±5, and Shm = 7±3%. Within 125-150 m depth we 

can obtain data match within 5% RMS error with connected as well as disconnected fractures 

(Figures 6) possibly due to low volume fraction of fractures. Individual Shr and Shm profiles 

generated from Figures 5–8 (Figure 9) show that while hydrate saturation within the matrix 

increases from the seafloor towards the BSR, hydrate saturation within the fractures exhibit an 

inverse relationship. 
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Figure 4: Wire line logs at Site NGHP-01-10. From left to right - resistivity (black indicates deep 

induction and red indicates shallow induction), Density porosity (pink indicates total porosity based 

on grain density of 2.65 g/cc and  cyan indicates fractures porosity, and dashed black line indicates 

matrix porosity) and estimated clay content from gamma ray log 

 

 

Figure 5: Fracture-free zone modeling. Dashed green box indicates the interval. Predicted trends are 

indicated in blue. 5% RMS prediction error in VP and VS prediction honoring the observed 

saturations can be obtained with 23% hydrate in the matrix as a load-bearing phase. 
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Figure 6: Fracture-prone zone modeling. Dashed green box indicates the intervals. Predicted trends 

are indicated in blue. 5% RMS prediction error in VP and VS prediction honoring the observed 

saturations can be obtained in both the interval with 15% hydrate in the matrix as a load-bearing 

phase and 60% hydrate in disconnected fractures. 

 

 

Figure 7: Fracture-prone zone modeling. Dashed green box indicates the interval. Predicted trends 

are indicated in blue. 5% RMS prediction error in VP and VS can be obtained with 10% hydrate in 

the matrix as a load-bearing phase and 70% hydrate in interconnected fractures. 
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Figure 8: Fracture-prone zone modeling. Dashed green box indicates the interval. Predicted trends 

are indicated in blue. 5% RMS prediction error in VP and VS can be obtained with 7% hydrate in 

the matrix as a load-bearing phase and 90% hydrate in interconnected fractures. 

 

 

Figure 9: Hydrate Saturation profiles. Left: saturation in the matrix, and right: saturation in the 

fractures. Hydrates mode are indicated beside the profiles. 
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CHAPTER 4 
 

 

DISCUSSION 

 

 

The results (illustrated in Figure3) can be closely compared to [Sava and Hardage, 2010] who 

modeled the effect of hydrates in horizontal thin layers interlayered with unconsolidated marine 

sediments. Similar to this work, they show that when the same volume of hydrates is concentrated 

in thin layers as opposed to being disseminated in matrix, elastic velocities increase more rapidly. 

However, they also show that the system becomes more anisotropic as hydrate become 

concentrated in thin layers. [Jakobsen et al., 2001] also show that although connected hydrates 

increase elastic velocities, they can increase anisotropy if grain alignment is considered. Unlike 

the previous studies, the fractures in this study do not necessarily have a preferred orientation and 

therefore are not intended to induce anisotropy. The system is treated as isotropic which could 

still be applicable in fine grained medium where fracture orientations are generally random.  

The character of the hydrate saturation profile in the matrix (the left profile in Figure 9) can be 

explained using the diffusive transport model of (Bhatnagar et al., 2007) which involves 

methanogenesis from deposition and burial of the organic matter. However, the character of the 

hydrate saturation profile in the fractures (the left profile in Figure 9) is non-intuitive. 
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Nominally, it is expected that due to the high permeability nature of the fractures diffusive flow 

will enable hydrate migration from the matrix into the fractures (Frederick and Buffett, 2011). 

Thus, if the hydrate saturation in the matrix is higher, saturation in fractures should also be 

higher. However this is unlike the saturation profiles in this study. We posit that hydrates in 

fractures in the study area are not formed due to diffusive process but rather due to advective 

fluid-flow channeled from below the BHSZ through preexisting faults and fractures. 

Jaiswal et al. (2012a) suggests tectonic uplift in the vicinity of the NGHP-01-10 site. It further 

suggests that due to tectonic uplift hydrate will be pushed out of the stability zone followed by 

their dissociation into free gas and re-enters into the stability zone through fractures formed 

during the tectonic uplift. The re-entry, which possibly happens through focused fluid-flow, 

promotes hydrate precipitation in the fractures. As hydrate move out of the stability zone during 

the tectonic uplift and dissociate, the advecting fluids carry dissolved methane through the 

stability zone. As the methane solubility decreases towards the seafloor, the maximum hydrate 

precipitation occurs closer to the seafloor.  

The fractures in our model could have originated through both shear fracturing from tectonic 

movement and hydraulic fracturing through hydrate occlusion (Daigle and Dugan, 2010a). 

Hydraulic fracturing in the study area has also been advocated by Rees et al. (2011). We expect 

that hydrate occlusion will initially create and saturate disconnected fractures which could also 

partly explain high hydrate saturation near the seafloor. In time, the disconnected fractures can 

grow to become interconnected by getting mutually coupled or getting coupled with pre-exiting 

shear fractures. We expect that the shear-fracture sets will be through-going and therefore 

actively advecting fluids. This may be the physical reasoning behind the high hydrate saturation 

observed in the connected fractures in our modeling (Figure 9).  
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The log data from site NGHP-10-10 has also been investigated by Lee and Collett (2009) and 

Gosh et al. (2010); both authors attempt to predict the observed VP and VS data using anisotropic 

modeling. While Lee and Collett (2009) introduce anisotropic propagation through fractures, 

Gosh et al. (2010) make the system anisotropic by including hydrates as vertical ellipsoids. To 

obtain a reasonable match (<5% prediction error) simultaneously in VP and Sh data, Lee and 

Collett (2009) had to assume hydrate growth in vertical fractures. However, to obtain the same 

match in the observed VS and Sh data, they had to tilt the fracture orientation closer to horizontal. 

Gosh et al. (2010) could obtain a reasonable match in both Vs and VP data; however, the required 

hydrate saturation was ~50% more than the observed saturation. The fact that we could 

simultaneously match the observed VP and VS within 5% RMS prediction error honoring the 

observed saturation, suggests that our assumption of system being isotropic is reasonable. While 

we do not intend to imply that fractures cannot introduce anisotropy, their potentially random 

arrangement (Rees et al., 2011) could have made the overall system appear isotropic to the 

propagating seismic waves. 

Volumetric measurements of hydrates have been statistically driven based on average extent and 

thickness of the GHSZ, porosity, gas yield, total organic carbon, or more simply, the BSR 

amplitudes (Milkov, 2004). In fractured sediments, such as in the KG basin, significant volumes 

of hydrates exist in the fractures besides the pore-spaces. Thus, in hydrate quantification which is 

based on seismic velocity discounting fractures may lead to significant over-prediction of 

hydrates. (Boswell and Collett, 2010) suggest that ~
410 TCF of methane could be trapped as gas 

hydrates in marine environments, mainly in fine-grained sediments. In general, fine-grained 

sediments are fracture prone.  Thus, basin-wide prediction of hydrates accounting for hydrates in 

fractures could therefore have wider implications on their global estimates. 
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Table 1: Constants parameters used in the models 

System Components Density(g/cc) 

Bulk Modulus 

(Gpa) 

Shear Modulus(Gpa) 

Clay 2.58 21 7 

Quartz 2.65 36 45 

Hydrates 0.91 7.7 3.2 

Water 1.033 2.37 0 
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CHAPTER 5 
 

 

CONCLUSIONS 

 

 

This research suggests that seismic velocities (VP, VS) and hydrate saturation observed in the KG 

Basin at NGHP-01-10 site can explained by simultaneously assuming two growth styles of 

hydrates– in matrix as a load-bearing phase as well as in fractures in a non-load-bearing phase. 

We show that presence of hydrates in fractures increase VP and VP faster than hydrates in pore-

spaces or in the matrix as a load-bearing component. The rate of increase, however, is dependent 

on the mode of fractures connection - interconnected fractures increase the seismic velocities 

faster than disconnected fractures. In the KG Basin, fractures have high (>50%) hydrate 

saturation. The hydrate saturation profile in the matrix shows an increase towards the bottom 

simulating reflector (BSR). The hydrate saturation profile in the fractures shows an increase 

towards the seafloor. We speculate that the hydrate saturation profile in fractures is solubility 

driven. We also speculate that fractures in the NGHP-01-10 site could have both shear-failure and 

hydraulic-fracturing origins.  
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