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CHAPTER I 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Algal biomass shows significant promise as feedstock for biofuel and bio-based 

product manufacturing. Of all unit operations used in microalgae production, harvesting 

biomass from culture suspension is of crucial importance. A variety of methods have been 

studied and applied for algal biomass recovery. These methods include centrifugation, 

filtration, flocculation, flotation and sedimentation. However, most of these techniques 

have disadvantages such as high cost, low recovery efficiency, difficulties involved in 

process scale-up and flocculant toxicity. Further investigation and optimization of 

existing methods and development of new technologies are needed for efficient harvest of 

algal biomass from culture medium. Due to significant variations in chemical and 

physical properties among microalgae strains, biomass production and harvesting process 

parameters need to be optimized for each strain. Our preliminary research has indicated 

that biomass from two microalgae strains, Picochlorum oklahomensis (PO) and 

Nannochloropsis oculata (NO) can be viable feedstock for bioproduct development. To 

the best of our knowledge, limited information is available regarding biomass chemical
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composition and growth pattern of microalgae strain PO. This information is necessary 

for evaluation of PO as potential feedstock for value-added bioproduct development. 

Furthermore, information on effective harvesting methods for PO and NO is lacking.   

1.2 HYPOTHESIS 

Utilization of pH adjustment, non-toxic biopolymer addition and electro-flocculation 

conducted under optimized conditions are effective methods for microalgal biomass 

recovery. 

1.3 OBJECTIVES 

The main objective of this study is to develop effective flocculation processes for 

harvesting microalgal biomass produced by NO and PO strains. The specific objectives 

are as follows:  

i. To characterize chemical compositions and growth patterns of two strains of 

microalgae, PO and NO. 

ii. To study the effects of processing parameters on flocculation efficiency.  

iii. To optimize the flocculation efficiency with pH adjustment, non-toxic biopolymer 

addition and electro-flocculation for maximum algal biomass harvesting. 

 

 



3 

 

CHAPTER II 

LIETRATURE REVIEW 

2.1 MICROALGAE 

 Microalgae, which are unicellular microorganisms, produce biomass that can be used 

for biofuel and value-added product development. There are a great variety of microalgae 

strains that vary in their chemical and physical properties. Most microalgae cells contain 

protein, lipids, polysaccharides, pigments such as chlorophyll and carotenoids, and 

different inorganic elements such as Cu, Fe, Se, Mn and Zn. Cells of some microalgae 

strains contain functional bioactive compounds such as lutein and zeaxanthin, the 

essential components of the macular pigment in the retina of the eye (Weiss et al. 2007a; 

Weiss et al. 2007b), and polyphenols that possess antioxidant properties and may reduce 

chronic diseases caused by oxidative damage to cells and cellular molecules (Takeshi et 

al. 2005).  

One of the advantages of microalgae in bioproduct development is their high 

biomass productivity. Microalgae utilize light and carbon dioxide and have higher 

photosynthetic efficiency than land plants for biomass production (Benemann 1997; Miao 

and Wu 2006). Unlike conventional crops, microalgae production does not rely on arable
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land and fresh water (Vandamme et al. 2009). Biomass from microalgae can be used as 

food for people and is a good nutrition source for fish and prawn (Knuckey et al. 2006; 

Muller 2000; Spolaore et al. 2006a). Some microalgae strains can accumulate functional 

bioactive compounds, such as fatty acids [eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA)] (Grima et al. 2003; Yang et al. 2009), pigments 

(zeaxanthin, lutein, β-carotene) (Weiss et al. 2007a; Weiss et al. 2007b) and vitamins 

(Baker et al. 1981; Bremus et al. 2006; Durmaz 2007). Oil extracted from algal biomass 

can be used to produce biodiesel (Chisti 2007; Miao and Wu 2006). Microalgae also have 

environmental applications, for example, wastewater treatment (Aragon et al. 1992; 

Azarian et al. 2007; Buelna et al. 1990; Ge et al. 2004). 

Nannochloropsis oculata (NO) is a green, unicellular marine alga, belonging to 

the class of Eustigmatophyceae. NO strain has attracted a lot of attention due to its high 

oil content and high polyunsaturated fatty acids (PUFA) percentage of the total fatty acids 

(Chiu et al. 2009; Madhu et al. 2004). The oil content of NO may vary between 8 % and 

50 % (Brown 1991; Chiu et al. 2009; Converti et al. 2009) depending on the growth 

phase, temperature, CO2 and nitrogen concentration in the culture medium. It has been 

reported that oil content of NO cells increased from 30.8 % at the exponential phase to 

50.4% at the stationary phase (Chiu et al. 2009). Oil productivity of the NO cultures 

grown in a semi-continuous system aerated with 2-15 % CO2 reached its maximum, 

0.142 g L
-1

 d
-1

, at 2 % CO2 aeration (Chiu et al. 2009). An increase in temperature from 
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20 °C to 25 °C almost doubled the NO oil content (from 7.9 % to 14.9 %), and a 75 % 

decrease in nitrogen concentration in the medium increased the oil content of NO from 

7.9 % to 15.3 % (Converti et al. 2009). Because of its high oil content and biomass 

productivity, NO is preferred as feedstock for biodiesel production (Umdu et al. 2009) 

and as feed in aquaculture (Cheng et al. 2004; Madhu et al. 2004). 

Currently, there is a great interest in commercial production of PUFA, specifically 

EPA and DHA, because of their diverse health benefits. Besides fish oil, microalgae is a 

good source for EPA and DHA (Guschina and Harwood 2006). Zhukova and Aizdaicher 

(1995) analyzed the fatty acid composition of several microalgae species and concluded 

that fatty acids of NO were dominated by three components: C16:0, C16:1n-7 and 

C20:5n-3 (EPA), which together accounted for 74.8 % of the total fatty acids. Among 

them, EPA made up nearly one-third of the total fatty acids (Zhukova and Aizdaicher 

1995). The fatty acid profile of NO was similar to other Nannochloropsis species 

(Hodgson et al. 1991; Volkman et al. 1993; Zhukova and Aizdaicher 1995). 

Nannochloropsis species have been identified as the most promising photoautotrophic 

producers of EPA for human consumption (Cheng-Wu et al. 2001; Rebolloso-Fuentes et 

al. 2001; Spolaore et al. 2006b). The fatty acid composition of the same microalgae strain 

may vary because of the influence of different growth conditions. For example, NO 

contained higher percentage of total n3 and n6 fatty acids at high CO2 concentration than 

at low CO2 concentration (Roncarati et al. 2004). The percentage of EPA was higher 
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during the exponential phase than in the stationary phase (Roncarati et al. 2004; Tonon et 

al. 2002). Hence, the culture conditions of microalgae can be controlled to improve the 

modified algal biomass composition.  

Picochlorum oklahomensis (PO) is a small coccoid, unicellular, green algae strain 

and was isolated from the Salt Plains National Wildlife Refuge in Oklahoma, USA in 

1998 (Henley et al. 2002; Hironaka 2000). At first it was tentatively identified as 

Nannochloris sp., but later after phylogenetic analysis it was designated as Picochlorum 

oklahomensis (Henley et al. 2004). Hironaka (2000) did a lot of characterization work on 

PO. Scanning electron micrographs showed that PO is a slightly oval shaped green alga 

with a cell size of 2 μm diameter. Pigments present were chlorophylls a and b, and major 

carotenoids were lutein, β-carotene, violaxanthin, neoxanthin and vaucheriaxanthin ester.  

PO showed a remarkable ability to tolerate a wide range of salinity (0-140 g/L 

sodium chloride) and temperatures (0-40 °C) (Hironaka 2000), so PO is a broadly 

halotolerant algae strain. However, its growth rate decreased with increasing salinity at 

room temperature (Henley et al. 2002). Low salinity (2 %) combined with high 

temperature (45 °C) were the most stressful conditions for PO growth (Henley et al. 

2002). In addition, results from Kvíderová and Henley’s study (2005) showed that two 

antibiotics (25 mg/L streptomycin plus 50 mg/L ampicillin) had only a minor effect on 

the growth and photosynthesis of PO, so the combination of these two antibiotics is 
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suitable for maintenance of stock cultures and turbidostat cultures of PO to prevent 

bacteria growth. 

To the best of our knowledge, no information is available regarding the growth 

pattern, oil content and fatty acid composition of microalgae strain PO. This information 

is necessary for evaluation of PO as potential feedstock for value-added bioproduct 

development. Furthermore, information on effective harvesting methods for PO and NO 

is lacking.   

2.2 HARVESTING MICROALGAL BIOMASS  

Microalgae production involves cultivation, biomass harvesting and recovery of 

compounds of interest from biomass. Of all unit operations used in microalgae 

production, harvesting biomass from culture suspension is of crucial importance, both 

from economic and technological standpoints (Bilanovic and Shelef 1988; Sunkenik et al. 

1988). It is estimated that biomass recovery accounts for at least 20-30 % of the total 

biomass production cost (Gudin and Thepenier 1986). Algal biomass is challenging to 

harvest due to the small cell size, low specific gravity and low biomass concentration in 

culture medium (Grima et al. 2003).  

Various techniques such as filtration, centrifugation, sedimentation, floatation and 

flocculation have been used to harvest biomass (Golueke and Oswald 1965; Uduman et al. 

2010); however, most of these methods have their own drawbacks. For example, 

centrifugation is an energy intensive process and consequently the operating cost is high 
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(Grima et al. 2003). Some flocculants used to harvest biomass are toxic compounds, for 

example, polyacrylamide and alum, and they are retained in the harvested biomass (Beim 

and Beim 1994; Buelna et al. 1990; McCollister et al. 1965). Filtration is suitable for 

recovering algal species with large cell size, but inadequate to recover algal species with 

sizes approaching bacterial dimensions (in the range of micrometers) (Grima et al. 2003). 

Small filter pore size required for microalgae filtration increases the cost of operation. 

Furthermore, it is not feasible to scale up some of these biomass harvesting methods.  

Among those methods mentioned above, flocculation is a relatively simple and 

promising option for algal biomass recovery. Strictly speaking, flocculation involves two 

processes (Harrison et al. 2003; Knuckey et al. 2006). The first process is coagulation, 

through which colloidal particles and very fine solid suspensions are destabilized so that 

they can begin to agglomerate if the conditions are suitable. The second process is 

flocculation, by which the destabilized particles actually conglomerate into larger 

aggregates so that they can be separated from the liquid. But the word “flocculation” 

usually refers to both processes. 

2.3 FLOCCULATION BY pH ADJUSTMENT 

The term auto-flocculation refers to spontaneous aggregation of algal cells to 

form flocs and settle down. Auto-flocculation is usually associated with an increase in pH 

(Uduman et al. 2010). The reason why pH affects microalgae cells is that there are certain 

functional groups (such as carboxyl and amino groups) on the surface of the cells. These 
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groups are in a state of ionization in solution. Thus, microalgae cells carry negative 

charges and stay stable in solution. However, the ionization of these functional groups is 

very sensitive to pH. Hence, auto-flocculation can be induced by pH adjustment.  

The initial pH of microalgae culture medium is usually around 7. However, pH of 

culture medium changes during algae growth if the medium is not buffered. It was 

observed by Nigam et al. (1980) and Horiuchi et al. (2003) that flocculation of 

microalgae could be induced by increasing the pH of culture medium. In other words, 

flocculation is very sensitive to pH, so pH is an important factor in the optimization of 

microalgae biomass harvesting. 

In general, flocculation by pH adjustment does not introduce hazardous chemical 

flocculants into the culture medium and the harvested biomass. It is simple, effective and 

can be a non-toxic and low cost method. Therefore, flocculation by pH adjustment could 

be a practical method to harvest microalgae biomass.  

2.4 FLOCCULATION BY FLOCCULANT ADDITION 

Flocculants are chemicals that promote flocculation by causing colloids and other 

suspended particles in liquids to aggregate and form flocs. The mechanism of flocculation 

by flocculant addition is mainly based on charge neutralization and bridging of particles 

(Grima et al. 2003). Flocculant type and concentration are important processing 

parameters affecting the flocculation by flocculant addition.  

Flocculants can be classified into inorganic and organic flocculants. Inorganic 
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flocculants are often metal salts that have multivalent cations, such as aluminum sulfate 

and ferric chloride. Organic flocculants are generally long-chain polymers (also referred 

to as polyelectrolytes) such as chitosan and cationic starch. Based on their charge, 

polymers are grouped into cationic, nonionic and anionic polymers. Since bio-particles 

suspended in aqueous solutions are usually negatively charged, cationic polymers are the 

most common type of flocculants used in biological systems. The ability of flocculants to 

promote flocculaion mainly depends on the electric charge and the size of the flocculant 

molecule. Usually the flocculants with larger electric charge and molecular size are more 

effective in flocculation (Harrison et al. 2003). 

Both inorganic and biopolymer flocculants may have potential toxicity. Beim and 

Beim (1994) did the ecological-toxicological assessment of six flocculants: Magnafloc 

E1O, Zetag 64 (Germany); Sanfloc N520P, Sanfloc CH009P (Japan); Catfloc (USA); and 

Polyacrylamide-PAA (Russia). All the six flocculants adversely affected all water 

ecosystem components and, especially, proto-coccal algae, invertebrates and adult fish 

(Beim and Beim 1994). Therefore, flocculant properties become very important while 

choosing a flocculant for a given application, specifically when the harvested biomass to 

be consumed by people or animals. For example, Knuckey et al. (2006) combined pH 

adjustment and biopolymer addition to concentrate microalgae to be used as aquaculture 

feed. Results showed that the flocculation by biopolymer Magnafloc LT-25 addition 

compared well with flocculation by ferric chloride, with flocculation efficiencies of over 
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80%. Juvenile Pacific oysters fed on algae concentrates prepared by biopolymer 

flocculation grew faster than those fed on biomass prepared by ferric chloride 

flocculation (Knuckey et al. 2006).  

Unlike inorganic flocculants, flocculation by polymers requires much smaller 

concentration (Buelna et al. 1990; Morales et al. 1985; Vandamme et al. 2009). Besides, 

there are non-toxic biopolymers, such as chitosan, sodium alginate and cationic starch, 

which can produce non-toxic biomass, so these non-toxic biopolymers are preferred as 

flocculant. 

Chitosan is a linear polysaccharide, comprised of randomly distributed 

D-glucosamine and N-acetyl-D-glucosamine molecules linked by β-(1-4) bonds. It is 

produced commercially by the deacetylation of chitin, which is the structural element in 

the exoskeleton of crustaceans (crabs, shrimp, etc.) and cell walls of fungi. 

Alginate, also referred to as the salts of alginic acid or alginic acid itself, is an 

anionic polysaccharide extracted from the cell walls of brown algae. It is composed of 

two hexouronic acids: α-l-guluronic acid and β-d-mannuronic acid, linked by 1-4 bonds. 

Cationic starch is a starch derivative obtained by introducing cationic groups to the 

glucose hydroxyl groups on a starch molecule. The typical degree of substitution (DS) of 

cationic starch is one to two charged groups per hundred glucose units, i.e. 0.02 to 0.03, 

and a high DS can contribute to better flocculation performance.  

The flocculant concentration is another factor that significantly affects both 

http://en.wiktionary.org/wiki/element
http://en.wikipedia.org/wiki/Crustaceans
http://en.wikipedia.org/wiki/Fungi
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flocculation efficiency and rate. In addition to flocculant concentration (mass per volume), 

flocculant: algal biomass ratio (w/w) is also used to describe the amount of flocculant 

used for recovery of a unit amount of microalgal biomass. Studies by Buelna et al. (1990) 

and Morales et al. (1985) reported that the required concentration of biopolymers for a 

given microalgae suspension was much less than inorganic flocculants to achieve the 

same flocculation efficiency. Compared to freshwater algae, the marine algae strains 

usually require higher amounts of flocculant due to the high salinity of the culture 

medium (Bilanovic and Shelef 1988; Uduman et al. 2010). The optimal dosage of the 

flocculants alum or ferric chloride required to flocculate marine microalgae was five to 

ten times higher than that for freshwater strains (Sunkenik et al. 1988). It was indicated 

that an increase in flocculant concentration may improve the flocculation efficiency, but 

excessive flocculant addition may result in low flocculation efficiency (Bilanovic and 

Shelef 1988; Lubian 1989; Vandamme et al. 2009). The reason for this result is not clear. 

In general, higher flocculant concentration is required for algae solution with higher 

biomass concentration. Several studies reported that the flocculant and the particle 

concentrations are linearly correlated (Black and Vilaret 1969; Vandamme et al. 2009) at 

a given flocculation efficiency, while others found no consistent trend (Divakaran and 

Pillai 2002).  

Flocculation by flocculant addition can be an effective method to recover 

microalgal biomass. However, the processing parameters, such as flocculant type, 
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flocculant concentration and the pH of algae culture, will affect the flocculation greatly 

and thus need to be carefully optimized.  

2.5 ELECTRO-FLOCCULATION 

Electro-flocculation is another method to recover algal biomass. According to 

Azarian et al. (2007), the mechanisms of algal biomass recovery by electricity involve: (a) 

electro-oxidation; (b) electro-flocculation; (c) electro-flotation; or any combination of 

these three mechanisms. A potential difference is applied between two electrodes placed 

in a solution containing algae cells. The current generated by the potential difference 

facilitates oxidation reactions and the metal anode, for example, aluminum anode, 

generates aluminum ions that react with hydroxyl ions in water and form different types 

of aluminum hydroxides to flocculate algae. The function of aluminum hydroxide 

produced during electro-flocculation is similar to that of inorganic flocculants, which is to 

destabilize microalgae cells and facilitate flocculation. Meanwhile, the cathode generates 

hydrogen bubbles which entrap some algae and float them up to the surface (Azarian et al. 

2007). Power supply, current, voltage, electrode material, effective area of electrodes and 

the spacing between electrodes affect flocculation efficiency.  

The power for electro-flocculation can be supplied via direct current (DC) or 

alternating current (AC) power supplies. There are a number of studies on utilization of 

DC power to remove algae from water. Algal biomass was effectively harvested by using 

DC power (Alfafara et al. 2002; Aragon et al. 1992; Azarian et al. 2007; Gao et al. 2010; 
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Kumar et al. 1981; Sandbank et al. 1974; Tumsri and Chavalparit 2011; Vandamme et al. 

2011). AC power has been used to remove cadmium from water successfully by 

electro-flocculation (Vasudevan and Lakshmi 2011), but information on 

electro-flocculation by AC power for algae harvesting is lacking.  

Current and voltage are key factors that determine electro-flocculation efficiency. 

Current mainly depends on voltage as well as on other factors like resistance and spacing 

between electrodes. Higher current and voltage resulted in not only an increase in the 

microalgae flocculation efficiency, but also a decrease in the operation time and settling 

time (Alfafara et al. 2002; Azarian et al. 2007). One reason for it was that the higher 

power input increased the amount of flocculating agent produced during the process. 

Decreasing the voltage led to slower flocculation rate, but it had the advantage of 

consuming less energy (Poelman et al. 1997). Therefore, a balance between the efficiency 

and energy cost needs to be achieved through optimization. 

Electrodes play an important role in electro-flocculation. The materials of electrodes 

include active material such as aluminum and iron, as well as inactive material such as 

stainless steel and graphite. Since aluminum and iron anodes produce flocculants during 

electrolysis, they usually result in high flocculation efficiency and are widely used 

(Alfafara et al. 2002). Both Gao et al. (2010) and Vandamme et al. (2011) compared the 

performance of aluminum and iron electrodes and concluded that aluminum electrodes 

gave a higher efficiency than iron anodes. However, both aluminum and iron are 
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susceptible to corrosion and have a relatively short life span. Other materials like graphite 

did not have these disadvantages, but they gave low flocculation efficiency (Alfafara et al. 

2002). Hence, development of effective, low-cost and durable electrodes is still a 

challenging problem.  

The effective area of electrodes means the surface area of electrodes submerged in 

the microalgae suspension through which the current passes. The number, shape and 

effective area of electrodes and the spacing between electrodes are factors affecting 

electro-flocculation efficiency. In the experiments carried by Poleman et al. (1997), the 

processing parameters in electro-flocculation were optimized: nine electrodes placed in a 

100 L suspension with 26.5 cm spacing between each other, 26.5 V, 1.0 A current and 75 

min operation time. More than 95% of microalgae were easily separated from the dilute 

suspensions and little energy (0.33 kWh/m
3
) was consumed under the optimal conditions 

(Poelman et al. 1997).  

The fact that high flocculation efficiency can be achieved with low energy 

consumption is one of the main advantages of the electro-flocculation process. Another 

advantage is that there is no need to add flocculant into the algae culture; thus, it 

simplifies the process. Also, the electro-flocculation system is easy to set up and control 

and performs well in a large pH range (Ge et al. 2004). Electro-flocculation is an 

attractive method, from both technical and economical perspectives, to harvest microalgal 

biomass. 
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2.6 EFFECTS OF PROCESSING PARAMETERS ON FLOCCULATION 

EFFICIENCY 

 There are several processing parameters that affect flocculation efficiency. Strain 

type affects harvest efficiency due to the properties like cell size (1-20 µm), cell density, 

cell wall composition, the charge of cells and various medium compositions. Different 

strains may have different responses to the same processing parameter. So far, the 

majority of work done on microalgae flocculation has been on freshwater species 

(Uduman et al. 2010). Because of the high ionic strength in seawater, however, 

flocculation of marine microalgae is quite different from freshwater strains.  

Biomass concentration of microalgae solutions vary from 0.5 to 5 g dry mass per liter 

(Vandamme et al. 2009). Biomass concentration in the medium determines the flocculant 

concentration required to achieve acceptable flocculation efficiencies. A study by 

Vandamme et al. (2009) showed that the cationic starch concentration required to 

flocculate 80% algae was linearly correlated with the biomass concentration. Biomass 

concentration may also affect the conductivity and viscosity of the algae solution, and 

thus affect the electro-flocculation efficiency. 

Mixing facilitates contact among cells as well as among cells and flocculants. 

However, when mixing speed is too high, flocs that have formed can be destroyed due to 

high shear forces (Alfafara et al. 2002; Grima et al. 2003). Therefore, stirring speed is 

also a processing parameter that needs to be optimized. 
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Operation time (OT) refers to how long the algae suspension is kept stirring when it 

is treated with flocculant, electricity or pH adjustment. Settling time (ST) is the time that 

algae cells are allowed to settle out of the suspension. Flocculation efficiency may 

increase with increasing OT and ST (Alfafara et al. 2002; Horiuchi et al. 2003). However, 

longer time results in more energy consumption and cost. In addition, long treatment may 

weaken the floc strength (Alfafara et al. 2002) due to the long stirring time during the 

treatment. Therefore, OT and ST need to be optimized to achieve high flocculation 

efficiency. 

Temperature of the solution may affect flocculation through changes in the physical 

and chemical properties like density, viscosity and dielectric constant of the culture 

medium and the flocculant (Jin 2005). Jin (2005) used a high resolution photographic 

technique to study the flocculation in water treatment, and he found that low water 

temperature had a detrimental impact on aggregation. A water temperature of 0 °C 

resulted in slow floc growth and small floc size (Jin 2005). Pan et al. (2009) studied the 

effects of temperature on flocculation efficiency by using bioflocculant PG.a21 Ca to 

process kaolin suspension; he found that the flocculation was enhanced with an increase 

of temperature in the range of 5-60 ºC, but flocculation efficiency decreased at 

temperatures above 60 ºC. Thus, too high or too low temperature beyond a certain range 

may result in low flocculation efficiency. The effects of temperature on microalgae 

flocculation need to be studied in order to find the temperature range and optimal 
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temperature for each strain and different flocculation system.
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CHAPTER III 

MATERIALS AND METHODS 

3.1 CULTIVATION OF MICROALGAE 

Two microalgae strains investigated in this study were obtained from the Culture 

Collection of Algae at the University of Texas at Austin (UTEX). Picochlorum 

oklahomensis (UTEX B 2795), which is a strain native to Oklahoma, was grown in 

Modified Artificial Seawater Medium (UTEX). The other strain, Nannochloropsis 

oculata (UTEX LB 2164), was grown in Erdschreiber's Medium (UTEX). The algae 

cultures in 2 L glass bottles (Kimble Chase Life Science and Research Products LLC, 

Vineland, NJ) were kept in a closed growth chamber with inner dimensions of 118.8 cm × 

58.4 cm × 76.9 cm (Length × Height × Width). The growth chamber was maintained at 

23 ± 4 °C. Four cool white fluorescent bulbs (General Electric Company, Fairfield, 

Connecticut) installed in the chamber were the light source, and the photosynthetic 

photon flux (PPF) was 56±4 μmol·m
-2

·s
-1

, measured by a quantum meter (model 

QMSW-SS, Apogee Instruments Inc., Logan, UT). Cultures were subjected to a 12 h: 12 

h cycle in which 12 h was light with aeration while the other 12 h was dark without 

aeration. The aeration rate was 50 mL/min and the concentration of CO2 (Industrial  
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Carbon Dioxide, Airgas, Stillwater, OK) in the air (Grade D Breathing Air, Airgas, 

Stillwater, OK) was 2 %. The initial cell concentration of the culture medium was 

7.6×10
4
 cells/mL of medium.  

3.2 CHARACTERIZATION OF MICROALGAE 

For PO and NO, growth curves were determined as a function of absorbance 

(ABS) vs. time. The ABS of the sample was measured at 680 nm by a spectrophotometer 

(model DU 520, Beckman Coulter, Brea, CA). The pH of culture suspensions was 

measured daily by a pH meter (model AR20, Fisher Scientific, Waltham, MA). Cell 

density and dry biomass concentration were determined regularly. Two linear associations, 

cell density vs. ABS and dry biomass concentration vs. ABS, were calculated. Oil content 

in the biomass of both strains was determined and the fatty acid composition of algae oil 

samples was analyzed by a gas chromatography (GC) system (model 7890 A, Agilent 

Technologies, Santa Clara, CA) equipped with a mass spectrometer (MS) (model 5975 C, 

Agilent Technologies, Santa Clara, CA). Oil content in culture medium was also 

determined to see whether there was any oil excreted by algae cells. Flocculation tests 

were carried out when algal biomass concentration reached its maximum in the culture 

medium (stationary phase).  

3.3 FLOCCULATION TECHNIQUES 

The following techniques were examined for biomass flocculation: 1) flocculation by 

pH adjustment; 2) flocculation by non-toxic biopolymers; 3) electro-flocculation.  
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3.4 FLOCCULATION BY pH ADJUSTMENT 

The processing variables for the PO jar tests were set as follows: pH 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13 and settling time 1 and 2 h. For NO tests pH and settling time settings were 

the same as those for PO except pH 13 was omitted because of the very high flocculation 

efficiency achieved at pH 12. The microalgae suspension (120 mL) pH was adjusted to 

the desired level by using 1 M sodium hydroxide (NaOH) or 1 M hydrochloric acid (HCl) 

solutions during 5 min stirring at 250 rpm. Then 100 mL of microalgae suspension was 

placed in a 100 mL graduated cylinder to allow cells to settle, and the initial ABS was 

measured at the same time. Two layers and an interface appeared in the solution during 

settling. After 1 h and 12 h of settling time, a 5 mL sample was withdrawn from the 

supernatant (top portion of the solution) for absorbance measurement (final ABS). A 5 

mL sample was withdrawn at the 60 % cylinder height when there was no phase 

separation. The experimental control was the algae solution without pH adjustment. 

Flocculation efficiency was determined as follows: 

Flocculation efficiency (%) = 

Initial ABS – Final ABS 

 × 100%    (1) 

Initial ABS 

3.5 FLOCCULATION BY BIOPOLYMER ADDITION 

3.5.1 Biopolymer Screening Test 

The biopolymer screening test was carried out using three non-toxic biopolymers: 

chitosan, sodium alginate, and cationic starch. These biopolymers were selected due to 
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their long carbon chain length and cationic electric charges on the molecules.  

Chitosan (medium molecular weight) used in this study was obtained from 

Sigma-Aldrich/ Acros Organics (St. Louis, MO). Chitosan solution with a concentration 

of 5 g/L was prepared by dissolving 5 g chitosan in 1 L of 1 % acetic acid solution. The 

pH of the chitosan solution was around 3.5.  

Sodium alginate (GRINDSTED Alginate FD 155) was obtained from DANISCO 

(Copenhagen, Denmark). Sodium alginate solution with a concentration of 10 g/L was 

prepared and its pH ranged 5.5 to 7.5. 

CHARGEMASTER
®
 L360 liquid cationic starch paste was used in this study and 

obtained from Grain Processing Corporation (Muscatine, IA). The starch paste contained 

about 41 % solids and a very high level of cationic charge (DS of 0.53-0.65). Slurry with 

10 % (w/w) cationic starch was prepared by diluting the starch paste with deionized 

water.  

A jar test similar to the one described in section 3.4 of this thesis was carried out and 

the flocculation efficiency was calculated by using Eq. (1). The difference between the jar 

tests described in section 3.4 and this section was, the flocculant addition which was done 

while stirring the solution at 250 rpm for 5 min before or no pH adjustment. Final ABS 

was measured at settling time of 1 h. The experiments were carried out at room 

temperature. One strain, PO, was used for the biopolymer screening test. Control was the 

treatment without flocculant addition. Flocculant amounts 5, 10, 20, 40 and 60 mg 
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corresponded to flocculant: biomass ratio of 0.06, 0.13, 0.25, 0.51 and 0.76, respectively.  

3.5.2 Optimization of chitosan flocculation 

Based on the preliminary results of the biopolymer screening test, the most efficient 

flocculant was chitosan. Hence, chitosan was used for the optimization experiments. The 

optimization experiments were jar tests as described in Section 3.5.1 of this thesis. 

Chitosan solution with a concentration of 10 g/L was used. 

Levels of the experimental variables for the PO tests were as follows: pH 4, 5, 6, 7, 8, 

9, 10, 11 and 12 and flocculant (chitosan) amounts of 20, 40, 60, 80 and 100 mg which 

corresponded to chitosan: biomass ratio (mg/mg) (CAR) of 0.09, 0.18, 0.27, 0.36 and 

0.45, respectively. Of the possible forty-five pH × chitosan combinations for PO 

treatment, twenty-eight treatment combinations were selected as the design points based 

on the statistical method used in this study (Figure 1). The treatment at pH 8 and chitosan 

amount of 60 mg was the “center point” at which four replications were run. Four design 

points closest to the center had three replications, and all the others had two replications. 

Final ABS was measured at settling time of 1 h and 12 h. The control was the treatment 

without chitosan addition.  

Figure 2 shows the experimental design points selected for NO. The effects of 

chitosan amount [10, 20, 30, 40, 50 and 60 mg which corresponded to chitosan: biomass 

ratio (mg/mg) (CAR) of 0.08, 0.17, 0.25, 0.33, 0.42 and 0.50, respectively] and pH (6, 7, 

8, 9, 10 and 11) on flocculation efficiency were examined. The treatment at pH 8 and 
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chitosan amount of 30 mg was the “center point”, at which four replications were run. Six 

design points close to the center also had four replications, and all the others had two 

replications. Final ABS was measured at settling time of 1 h and 12 h. The control was 

the treatment without chitosan addition. In all the chitosan flocculation experiments, the 

biomass content of the solution used for each treatment was kept constant.  

3.6 ELECTRO-FLOCCULATION 

A schematic diagram and a picture of the electro-flocculation system that was 

used for the experiments are shown in Figure 3 and Picture 1. Electro-flocculation tests 

were conducted at room temperature and 100 rpm stirring rate using 250 mL microalgae 

suspension. Two aluminum plates each having a 40 cm
2
 effective surface area were used 

as electrodes and the spacing between them was 4 cm. Initial ABS of microalgae 

suspension was measured before treatment. Current, provided by a DC power supply 

(model 1710, BK PRECISION, Yorba Linda, CA), was applied to the microalgae 

suspension for varying operation time. Cells were allowed to settle after treatment. Two 

layers and an interface appeared in the solution during settling. After 0.5 h, 1 h and 12 h 

of settling time, a 5 mL sample was withdrawn from the supernatant (top portion of the 

solution) for absorbance measurement (final ABS). Flocculation efficiency was 

determined by Eq. (1). 

The processing parameters in optimization experiments for PO were set as 

follows; operation time of 5, 10, 15 and 20 min, current of 0.2, 0.5 and 0.8 A and settling 
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time of 0.5, 1 and 12 h,. Since flocculation efficiencies were close to 100 % at 0.5 and 0.8 

A and 15 min OT, these conditions were not included in the experimental design. Thus, 

an incomplete 3 × 4 factorial design was used to optimize electro-flocculation of PO. For 

NO, operation time of 2, 3, and 4 min and current value of 0.1, 0.3, and 0.5 A were 

chosen for the study. A 3 × 3 factorial experimental design was utilized to optimize 

electro-flocculation of NO. Final ABS was measured at settling time of 0.5 h, 1 h, and 12 

h.  

3.7 ANALYTICAL METHODS 

3.7.1 Dry Biomass Concentration 

Aluminum dishes with glass microfiber filters (GF/C 90 mm diameter, Whatman, 

ME14 2LE, UK) were pre-dried in a forced-air oven (model 1370 FM, VWR Science, 

Bristol, CT) at 105
 o

C for 2 h and then cooled to room temperature in desiccators and 

weighed. Sample (50 mL) was filtered by vacuum filtration by using the pre-weighed 

filter paper. Aluminum dish and filter paper with retained biomass were dried in the oven 

at 105 
o
C for 12 h, then cooled in desiccators to room temperature and weighed. The 

biomass concentration of the sample was reported as weight difference / volume of 

sample. 

3.7.2 Oil Content in Biomass 

The procedure to determine the oil content of algal biomass was largely appropriated 

from Lee et al. (1998). The biomass was harvested from the culture medium by 
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centrifugation at 8000 rpm for 10 min. About 120 mg biomass (dry weight) was used for 

lipid extraction. The cells were suspended in 5 mL of phosphate buffer (pH 7.4) and 

treated in a bead-beater (model HBB908, Hamilton Beach, Richmond, VA) for 1 min 

using 1 mm glass beads. The raptured cells were transferred to a separation funnel and 

chloroform/methanol (2:1, v/v) of 30 mL was added for lipid extraction. The mixture 

containing algal cells was shaken vigorously for 20 min and left to stand for 30 min. 

After phase separation, the organic layer was decanted. The residual cells were treated 

with 20 mL solvent once again and the organic layer was recovered. The combined 

chloroform/ethanol extract was washed with 20 mL 5 % (w/v) sodium chloride solution. 

The solvent was evaporated from the extract in RapidVap (LABCONCO Corporation, 

Kansas City, KS). The total lipids were measured gravimetrically. The oil content of the 

sample was reported as extract weight / dry biomass of sample. 

3.7.3 Oil Content in Culture Medium 

After the separation of microalgae biomass and culture medium by centrifugation, oil 

content in culture medium was determined. Petroleum ether, 25 mL, was added to 250 

mL culture medium placed in a 500 mL separation funnel. After phase separation, the 

organic layer was decanted. The same procedure was repeated twice with 25 mL of 

petroleum ether. The following washing and evaporation steps were same as the steps 

described in section 3.7.2. The total lipids were measured gravimetrically. The oil content 

in the culture medium was reported as weight difference / weight of the culture medium. 
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3.7.4 Fatty Acid Composition  

The oil sample was first converted to its fatty acid methyl esters (FAME) 

according to the following method. About 20 mg oil sample was weighed into a 10 mL 

tube, and about 1.9 mL GC grade heptane, 100 μL of 10 mg/mL undecanoic acid methyl 

ester (internal standard) (99% GC grade, Sigma-Aldrich, St. Louis, MO) in GC grade 

heptane and 200 μL of 2 M potassium hydroxide in methanol solution were added. After 

mixing and centrifugation at 3000 rpm for 3 min, the lower layer was discarded using a 

Pasteur pipette. Saturated ammonium acetate solution (500 μL) was added into the 

methylated oil sample, mixed and centrifuged at 3000 rpm for 3 min. Then the lower 

layer was discarded. After adding deionized water (500 μL), mixing and centrifugation, 

the lower layer was discarded again. The organic layer was dried with some anhydrous 

sodium sulfate. After centrifugation and filtration, the organic liquid was transferred in a 

GC vial. Separation of fatty acids was carried out using a CP-Sil 88 column with 100 m x 

0.25 mm inner diameter and 0.20 μm film thickness (CP7489, Agilent Technologies, 

Santa Clara, CA). Chromatographic peaks were detected by a mass spectrometer detector 

(MSD) on electron impact (EI) mode (model 5975 C, Agilent Technologies, Santa Clara, 

CA). The carrier gas, helium, flow rate was 1.0 cm/s. The initial oven temperature, 80 
o
C, 

was increased to 220 
o
C at a rate of 4 

o
C/min and maintained at 220 

o
C for 5 min. Then 

the temperature was increased from 220 
o
C to 240 

o
C at a rate of 4 

o
C/min and held at 

240 
o
C for 10 min. The total run time was 55 min. Solvent delay was set at 11.0 min. The 
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conditions of the MS detector were as follows: temperature of the EI ion source was 230 

o
C, electron energy was 70 eV and mass data were collected in full scan mode (m/z 

35-550). Oil samples (1 μL) were injected manually. The injector temperature was 

maintained at 250 
o
C. The split ratio was 10: 1. Data were analyzed using the Agilent 

GC/MSD Productivity Chemstation software (Revision. G1701 B.02.00 sp2, Agilent 

Technologies, Santa Clara, CA) with the Automated Mass Spectral Deconvolution and 

Identification System (AMDIS) software and library search [National Institute for 

Standards and Technology (NIST), Gaithersburg, MD]. Chromatographic peaks were 

identified by comparison of the retention times of a 37 component FAME standard mix 

(Supelco, Bellefonte, PA) and a GLC 403 standard (Nu-Chek Prep Inc., Elysian, MN) to 

the peak retention times on sample chromatograms. Undecanoic acid methyl ester (C11:0) 

was used as the internal standard. 

3.8 STATISTICAL ANALYSIS 

Except the biopolymer screening test, all analytical tests and flocculation 

experiments were carried out at least in duplicate and in randomized order with the mean 

values being reported. Data from flocculation by pH adjustment, chitosan addition and 

electro-flocculation were analyzed using a generalized linear mixed model for responses 

fit by a beta distribution. Comparisons to the maximum response mean were done using 

Dunnett’s multiple comparisons with a “best” mean. These analyses were performed 

using SAS 9.3 and SAS 9.2 (SAS Institute Inc., Cary, NC). The two linear associations, 
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dry biomass concentration vs. ABS, and cell density vs. ABS, were calculated using 

Microsoft Office Excel 2007 (Microsoft Corporation, Redmond, WA). The coefficient of 

determination, R
2
, indicated the percent of the data that was closest to the best fit line and 

how well the regression line represented the data.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 CHARACTERIZATION OF MICROALGAE 

4.1.1 Characterization of PO strain 

The shape and size of microalgae cells were observed under microscope (Picture 

2). PO strain had either round or oval green cells. The observed cell size of PO, 1-2.5 μm, 

was in agreement with the literature, 2 μm (Hironaka 2000). Unlike some algae strains 

that form cell clusters, PO cells were dispersed in the culture medium, which makes the 

biomass recovery harder. Thus, it is necessary to develop effective processes to harvest 

PO cells. 

The maximum absorbance was observed at 680 nm for PO cultures (Figure 4). 

This is due to the presence of chlorophyll a in the cells of PO which is a green alga. The 

maximum absorption peak of chlorophyll a at 680 nm can be used to estimate chlorophyll 

and indirectly algal biomass concentrations in a solution (Erokhina et al. 2002; Erokhina 

et al. 2004). As microalgae grew and the biomass concentration in microalgae culture 

suspension improved, the content of chlorophyll a in algae culture increased, and as a 

result, the intensity of the peak increased, indicating a good association between 
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absorbance at 680 nm and algal biomass concentration in solution (Figure 5).  

The linear association of dry biomass concentration vs. ABS for PO is shown in 

Figure 5. The following regression equation was obtained:  

y = 0.6528 x + 0.0274 (R² = 0.85) 

where y = dry biomass concentration (g/L), x = ABS at 680 nm.  

The linear association of cell density vs. ABS for PO was calculated (Figure 6). 

The regression equation is as follows: 

y = 721.88 x – 15.586 (R² = 0.94)  

where y = cell density (×10
5
 cells/mL) and x = ABS at 680 nm.  

Algae growth curve was determined as a function of ABS vs. time (Figure 7). 

Four typical growth stages were observed for PO: lag phase, exponential phase, 

stationary phase and death phase. It took about 18 days for the PO cultures to reach 

maximum biomass concentration in the medium. The highest biomass concentration was 

approximately 2.1 g/L. PO biomass concentration in the medium started decreasing 

shortly after it reached the maximum, indicating that biomass needs to be harvested as 

soon as maximum biomass concentration is reached in the medium. Delay in harvest 

would cause biomass degradation. 

The pH of the culture suspensions was monitored during the growth of PO (Figure 8). 

The initial pH of the PO culture suspension was adjusted to 8.0. Then pH slightly 

fluctuated at around 7.5 during the entire growth period. 
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Oil contents in algae strains may vary significantly depending on the growth 

conditions and stage. The oil content in PO biomass harvested during stationary phase 

was about 20.5 % (w/w, dry basis). Oil content in culture medium was analyzed after 

separation of intact PO cells. The PO culture medium did not contain significant amount 

of oil (0.01 %, w/w, as is basis), indicating that PO did not excrete oil to the medium and 

all the oil was accumulated within the cells. Hence, efficient biomass harvesting is critical 

for the feasibility of algal oil production. 

Linoleic (C18:2n6c) (26.2 %), palmitic (C16:0) (23.8 %) and linolenic (C18:3n3) 

(13.5 %) acids accounted for 63.5 % of the total fatty acids in PO oil (Table 1). Significant 

amounts of palmitoleic (C16:1) (8.2 %), oleic (C18:1n9c) (8.0 %) and cis-11-octadecenoic 

(C18:1n11c) (5.8 %) acids were also detected in the samples. Although we did not have the 

standard to verify the peak retention time, a NIST AMDIS library search indicated the 

possibility of the presence of 7,10-hexadecadienoic acid (C16:2n6) (6.9 %) in the oil. PO 

oil contained a high level of PUFA (47 % of the total fatty acids) which comprised of 

13.5 % n-3 and 33.2 % n-6 fatty acids. Two fatty acids essential for human nutrition, 

linoleic (C18:2n6c) and linolenic (C18:3n3) acids, made up more than one third of the 

total fatty acids (40 %). Thus, PO oil could be a good source of essential fatty acids. High 

PUFA content may lower the oxidative stability of biodiesel derived from PO oil. 

However, PO oil can still be utilized for production of renewable diesel by using 

hydrodeoxygenation process. Fatty acid composition of the feedstock does not affect the 
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oxidative stability of the renewable diesel produced by this process. 

4.1.2 Characterization of NO strain 

Similar to PO, NO cells were either round or oval, green and dispersed in the 

culture medium (Picture 3). However, the cell size of NO, 5-9 μm, was significantly 

larger than that of PO, 1-2.5 μm. The large cell size of NO may promote easy floc 

formation. The diameter of NO cells reported in the literature was 1-6 μm (Andersen et al. 

1998; Madhu et al. 2004; NCMA; Yufera and Pascual 1985). The variation in NO cell 

size reported in this study and the literature was probably due to the different growth 

conditions, for example, composition of culture medium. 

As expected, there was an absorption peak at 680 nm for NO cultures (Figure 9) 

because of the presence of chlorophyll a in the NO cells. Likewise, good associations 

could be calculated between algal biomass concentration in solution and absorbance at 

680 nm (Figure 10), and between algal cell density in solution and absorbance at 680 nm 

(Figure 11). 

The linear association of dry biomass concentration vs. ABS for NO is shown in 

Figure 10. The following regression equation was obtained:  

y = 1.0097 x - 0.0541 (R² = 0.97)  

where y = dry biomass concentration (g/L), x = ABS at 680 nm.  

The linear association of cell density vs. ABS for NO was calculated (Figure 11). 

The regression equation is as follows: 
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y = 30.96 x + 0.4588 (R² = 0.95) 

where y = cell density (×10
5
 cells/mL) and x = ABS at 680 nm.  

Growth curve of NO was determined as a function of ABS vs. time (Figure 12). 

The four typical growth stages were observed: lag phase, exponential phase, stationary 

phase and death phase. Biomass concentration in NO culture medium reached the 

maximum at around the 11
th

 day, about a week earlier than PO. However, the highest 

biomass concentration for NO, 1.2 g/L, was significantly lower than that for PO. The 

stationary phase for NO was about 12 days. The biomass concentration of algae in the 

medium varies depending on the strain type, medium composition and growth conditions. 

Similar to the findings reported in this thesis, Nannochloropsis sp. biomass 

concentrations of 0.8-3.8 g/L in various media and growth conditions were reported by 

other research groups (Rodolfi et al. 2003; Xu et al. 2004).  

When both strains had the same ABS and the same volume of culture suspensions, 

the number of PO cells was more than 20 times higher than that for NO. However, the 

difference in dry biomass was less than double. That was because PO cells were 

significantly smaller than NO cells. Compared to NO, the smaller cell size and higher cell 

density makes PO cells harder to harvest. 

For NO culture suspension, the initial pH was 6.5. As NO began to grow, the pH 

increased slightly (Figure 13). When the cell concentration of NO reached its maximum, 

pH of the culture medium was around 7.2. Then the medium pH slowly decreased to 6 as 
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NO stayed in the stationary phase. During the death phase, the pH decreased steadily. 

The oil content in NO biomass harvested during stationary phase was about 36.4 % 

(w/w, dry basis). This value was within the range of NO oil content (8-50 %) reported in 

literature (Brown 1991; Chiu et al. 2009; Converti et al. 2009). Oil content in NO 

biomass was two times higher than that for PO (20.5 %). But at the same time, the 

maximum biomass concentration of PO (2.1 g/L) was nearly twice as much as that of NO 

(1.2 g/L). Therefore, considering both biomass concentration and oil content in biomass, 

PO and NO contained the same amount of oil per volume of culture solution (0.431-0.436 

g oil/L of culture solution). The oil contents of PO and NO biomass are comparable to the 

oil content in common oilseeds, 18-70 % (Inchbald 2000; McKevith 2005; Salunkhe et al. 

1992), indicating that PO and NO can be potential feedstocks for oil production.  

Linolenic (C18:3n3) (25.8 %) and palmitic (C16:0) (19.5 %) acids were the most 

abundant fatty acids in NO (Table 1). The other major components of NO oil were 

linoleic (C18:2n6c) (9.0 %), oleic (C18:1n9c) (8.8 %), γ-linolenic (C18:3n6) (5.3 %), 

cis-11-octadecenoic (C18:1n11c) (4.0 %), and palmitoleic (C16:1) (2.0 %) acids. Similar 

to PO, 7,10-hexadecadienoic acid (C16:2n6) (2.2 %) was identified from the NIST AMDIS 

library search. In NO oil, there was one unknown component which consisted of 12.5 % of 

the total GC-MS peak area. Based on the NIST AMDIS library search, this compound 

could be either cis-5,8,11,14,17-eicosapentaenoic acid (C20:5n3) (EPA) or 

cis-4,7,10,13,16,19-docosahexaenoic acid (C22:6n3) (DHA). However, the retention time 
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of this compound was 8 min earlier than the retention times of EPA and DHA as determined 

by the available standard FAME mixture. Consequently, identification of this peak requires 

further analytical tests to be carried on the oil samples. 

The most abundant saturated fatty acid in NO was palmitic acid (C16:0) (19.5 %), 

while all the other saturated fatty acids accounted for only 2 % altogether. The saturated 

fatty acids content of NO oil was similar to that of PO. NO contained 9.0 % linoleic acid 

(C18:2n6c) and 25.8 % linolenic acid (C18:3n3). The PUFA (45 %) and total n-3 and n-6 

fatty acid (44 %) contents of NO oil examined in this study were within the range 

reported in the literature, 20.2-50.1 % and 20.1-49.8 %, respectively (Dunstan et al. 1993; 

Hodgson et al. 1991; Mourente et al. 1990; Renaud and Parry 1994; Renaud et al. 1991; 

Roncarati et al. 2004; Zhukova and Aizdaicher 1995). Essential fatty acid content of NO 

oil reported in this study, 35 %, is significantly higher than that reported in literature, 

0-6 %.  

The fatty acid composition in soybean oil is quite different from that of algae oil 

(Table 1). Typically soybean oil (Hammond et al. 2005) contains higher amounts of 

linoleic (C18:2n6c) (54.5 %) and oleic (C18:1n9c) (23.0 %) acids, but lower amounts of 

palmitic (C16:0) (10.6 %) and linolenic (C18:3n3) (7.23 %) acids than PO and NO oils 

examined in this study. 

4.2 FLOCCULATION BY pH ADJUSTMENT 

The pH flocculation efficiency of PO was below 10% between pH 4 and pH 10 
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(Figure 14). A sharp increase in flocculation efficiency was observed over pH 10. 

Between pH 11 and 13, the flocculation efficiency was as high as 90.5 - 97.0 %. The 

highest flocculation efficiency, 97.0 %, was obtained at pH 13 and ST of 12 h. The same 

trend of flocculation efficiency vs. pH was observed in the flocculation of Chlorella 

strain by pH adjustment without flocculant addition (Vandamme et al. 2010; Yahi et al. 

1994). The reason for the sharp increase in flocculation efficiency is not clear. Lubian 

(1989) and Morales et al. (1985) have indicated that cell size, cell density, cell wall 

composition and the charges on cell surface are all contributing variables of flocculation 

efficiency.  

In pH flocculation of NO (Figure 15), there was not such a sharp increase as the 

one observed in pH flocculation of PO. The flocculation efficiency of NO increased with 

increasing pH and reached over 99 % at pH 11 (Figure 15). NO flocculation efficiency by 

pH adjustment was always higher than that for PO at the same pH level and settling time. 

Hence, NO biomass is easier to harvest than PO. This might be due to the larger cell size 

of NO and the lower biomass concentration in culture medium than PO. 

The effect of pH on flocculation efficiency was significant for both strains (Table 2). 

The electrical charge originating from the ionization of functional groups on the cell 

surface stabilizes the suspended cells. The mechanism of flocculation by pH adjustment 

is explained by the reduction of electric charge on the surface of algae cells (zeta 

potential) with increasing pH which destabilizes the cells in the solution (Horiuchi et al. 
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2003; Montgomery 1985). Another reason is that the salts in culture medium may 

precipitate out of the solution with increasing pH. Algae cells may be trapped within the 

salt precipitate (Blanchemain and Grizeau 1999). 

For both PO and NO, the interactions between pH and ST were significant (Table 

2). There were significant differences in the flocculation efficiencies achieved between 

ST of 1 h and 12 h at the same pH level, except at pH 10 and 11 for PO and at pH 11 for 

NO. These results indicate that in general high pH over 10 not only induces extensive 

flocculation, but also accelerates flocculation. In a study where 80 % of algal biomass of 

Skeletoma costatum was flocculated by adjusting suspension pH to 10.2, algae cells lost 

their viability (Blanchemain and Grizeau 1999) and cell lysis was observed at extreme 

pH. Hence, the effects of high pH on biomass properties need to be examined carefully. 

4.3 FLOCCULATION BY BIOPOLYMER ADDITION 

4.3.1 Biopolymer Screening Test 

Three nontoxic biopolymers, chitosan, sodium alginate and cationic starch, were 

tested for flocculation of PO. The first step was to test the flocculation performance of 

different biopolymers at medium pH (about 7-8) (Figure 16). No flocculation was 

observed when up to 60 mg of sodium alginate or cationic starch was added into 120 mL 

of culture medium. Flocculation efficiency of PO reached to around 70 % when the 

chitosan amount in the medium was increased to 40 mg, but the efficiency did not change 

significantly when chitosan amount was further increased from 40 mg to 60 mg.  
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Since the pH flocculation test showed that increasing pH may help flocculation, 

the flocculant amount was fixed and pH was increased in the second step of biopolymer 

screening test. Chitosan amount was maintained at 40 mg because no increase in 

flocculation efficiency was observed beyond this point. After chitosan addition, pH of the 

algae suspension decreased from about 7.5 to 4.4. An increase in flocculation efficiency 

was observed for cultures containing chitosan at pH 11. The effect of pH on flocculation 

performance of sodium alginate and cationic starch (60 mg in 120 mL culture) were also 

investigated (Figure 17). Sodium alginate or cationic starch addition did not affect the pH 

of the solution and pH of the medium was about 7.5. No flocculation was detected after 

the pH of the sodium alginate or cationic starch containing culture medium was adjusted 

to 8-10. When pH of the sodium alginate containing culture medium was raised to 11, PO 

flocculation efficiency was still very low (less than 5 %). PO flocculation efficiencies in 

the presence and absence of cationic starch were similar at pH 11. The preliminary results 

from biopolymer screening test indicated that chitosan was more effective in flocculation 

of microalgae cells than the other biopolymers (sodium alginate and cationic starch) 

tested in this study. Hence, optimization tests were carried out using chitosan for PO and 

NO flocculation.  

4.3.2 Optimization of Chitosan Flocculation for PO 

The flocculation efficiency of PO varied between 0.2 % and 98.4 % (Figures 18 

and 19). The highest flocculation efficiency, 98.4 %, was obtained at chitosan amount of 
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80 mg (CAR of 0.36), pH 9 and ST of 12 h. The three-way interaction of processing 

parameters, pH, chitosan amount and settling time, on flocculation efficiency was 

significant (p < 0.0001) (Table 3).  

The effect of pH on flocculation efficiency was very complex and there was no 

consistent trend (Figure 20). A similar finding was reported for chitosan flocculation of 

freshwater algae (Divakaran and Pillai 2002). The importance of pH on flocculation of 

microalgae by chitosan addition was also demonstrated by several other authors 

(Divakaran and Pillai 2002; Lubian 1989; Morales et al. 1985; Sunkenik et al. 1988). It 

was argued that the lack of a consistent trend was due to the complex response of 

chitosan to pH changes. Interpretation of the flocculation mechanisms involved in 

polymer flocculation is further obscured by the complex physicochemical reactions 

between chitosan and the algal cells (Morales et al. 1985). The ionic strength of the 

culture medium changes with addition of NaOH or HCl used for pH adjustment. The 

ionic strength of the medium may affect the configuration and dimensions of the chitosan 

polymer, which in turn affects the chitosan flocculation efficiency (Sunkenik et al. 1988). 

At low ionic strength, the polymer is highly hydrated and linearly extended; hence it is 

effective in bridging the particles in the medium. High ionic strength can result in 

formation of randomly coiled molecular configurations with less molecular hydration, 

thus reducing the effectiveness of the polymer for flocculation (Pelton and Allen 1983). 

Furthermore, increasing pH may lead to auto-flocculation of algae cells at the same time.  
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The effect of chitosan amount on flocculation efficiency varied with pH (Figure 21). 

Except pH 6 × ST of 1 h, an increase in chitosan amount resulted in an improvement in 

the flocculation efficiency at both settling times of 1 h and 12 h between pH 4 and 9. The 

response to chitosan amount at pH 10, 11 and 12 was not consistent. It has been reported 

that chitosan was quite effective in freshwater algae flocculation (Divakaran and Pillai 

2002; Knuckey et al. 2006; Sunkenik et al. 1988), but not for marine microalgae 

(Sunkenik et al. 1988; Vandamme et al. 2009). A similar trend was observed in 

flocculation of microalgae using cationic starch (Vandamme et al. 2009). This is because 

of the high ionic strength of seawater resulting from salinity. As mentioned earlier, at high 

ionic strength some biopolymers partially collapse, reducing the possibility of their 

interaction with algal cells (Lubian 1989). Thus, the salinity of seawater requires higher 

flocculant dosages and renders flocculation less effective than in freshwater algae media 

(Sunkenik et al. 1988). The adverse effect of salinity diminished at reduced salinity levels, 

less than 5 g/L (Knuckey et al. 2006; Sunkenik et al. 1988). It is also important to point 

out that there are studies reporting 100% flocculation efficiency for chitosan flocculation 

of marine microalgae (Morales et al. 1985). In this study, PO and NO were grown in 

seawater medium. The lack of a consistent trend with pH and chitosan amount can be 

attributed to the very complex interactions among the chemical components in culture 

medium and microalgae cells. The presence of the significant three-way interaction 

among the variables, chitosan amount × pH × ST, also supports the latter argument. 
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Comparisons of the treatment efficiency means to the highest PO flocculation 

efficiency were made using Dunnett’s multiple comparisons test (Figures 22 and 23). The 

treatment condition of the highest PO flocculation efficiency is shown as a blue triangle 

on the figures. There were eleven other treatment combinations of chitosan × pH × ST 

(the red dots on the figures) that can be recommended for maximizing flocculation 

efficiency, because the flocculation efficiencies they gave were not significantly different 

from the highest efficiency. The eleven combinations were: no chitosan × pH 12 × 12 h, 

no chitosan × pH 13 × 1 h, no chitosan × pH 13 × 12 h, 20 mg × pH 12 × 12 h, 60 mg × 

pH 8 × 12 h, 60 mg × pH 10 × 12 h, 80 mg × pH 11 × 12 h, 100 mg × pH 8 × 1 h, 100 mg 

× pH 8 × 12 h, 100 mg × pH 10 × 12 h, and 100 mg × pH 12 × 12 h.  

Desirable flocculation efficiency is defined as the observed highest flocculation 

efficiency plus the other observed flocculation efficiencies that were not significantly 

different from the highest efficiency. In chitosan flocculation of PO, there were twelve 

treatment combinations of the processing parameters that gave the desirable flocculation 

efficiency. The range of the flocculation efficiency for this group was 93.5 - 98.4 %. All 

12 treatment combinations were at alkaline conditions (pH 8-13). Selection of the optimal 

treatment conditions for PO flocculation has to be based on an economic feasibility study 

that would take into account the cost of chitosan, NaOH used for pH adjustment and the 

settling time. However, it appears that depending on the cost of chitosan, the treatment 

condition with 100 mg chitosan, pH 8 and 1 h settling time could be favorable. Relatively 
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low pH would minimize the adverse effects of high alkalinity on equipment and biomass, 

and short settling time could improve the production capacity of a commercial operation.    

4.3.3 Optimization of Chitosan Flocculation for NO 

The flocculation efficiency of NO varied between 15.8 % and 99.8 % (Figures 24 

and 25). The highest flocculation efficiency for NO, 99.8 %, was obtained at pH 11 and 

ST of 1 h with no chitosan addition into the culture medium. Similar to the PO 

flocculation results, there was no consistent trend with either pH or chitosan amount 

added (Figures 26 and 27). There was also the significant three-way interaction of the 

processing variables (pH, settling time and chitosan amount) on flocculation efficiency 

(Table 2). The reasons for the lack of a trend in flocculation efficiency with varying 

processing parameters discussed earlier for PO would be applicable to NO flocculation. 

The difference is that over 95 % NO flocculation could be achieved at lower pH and 

chitosan: algal biomass ratio than those for PO. 

Flocculation efficiencies of NO at different treatment conditions were compared 

to the highest NO flocculation efficiency using Dunnett’s multiple comparisons test 

(Figures 28 and 29). The treatment condition of the highest NO flocculation efficiency 

was referred to as “Highest” and shown as a yellow star on the figures. There were seven 

other treatment combinations that can be recommended for maximizing flocculation 

efficiency. They gave flocculation efficiencies that were not significantly different from 

the “Highest”. These seven combinations (referred to as “Not Sig_1” and shown as red 
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triangles on the figures) were as follows in the order of chitosan amount × pH × ST: 0 mg 

× 11 × 12 h, 20 mg × 11 × 1 h, 20 mg × 11 × 12 h, 40 mg × 11 × 1 h, 40 mg × 11 × 12 h, 

60 mg × 11 × 1 h, and 60 mg × 11 × 12 h. From the first comparison, eight treatment 

combinations of the processing parameters were selected. They gave desirable 

flocculation efficiency that ranged 99.3 - 99.8 %, and they were all at pH 11.  

Because the range of the desirable NO flocculation efficiency given by the above 

comparison test was narrow (within 0.5 %), and their treatment conditions were very 

limited (all at pH 11), a second comparison test was performed to find out more treatment 

combinations resulting in the desirable flocculation efficiency. Data used in the second 

comparison were the NO chitosan flocculation data excluding the eight flocculation 

efficiencies and their treatment combinations obtained from the first comparison. The 

maximum flocculation efficiency among the data used in the second comparison was 

97.7 % (referred to as “Max_2”), achieved at chitosan amount of 50 mg, pH 10 and ST of 

1 h (shown as a green diamond on the figures). NO flocculation efficiencies were 

compared to “Max_2”, 97.7 %, using Dunnett’s multiple comparisons test (Figures 28 

and 29). There were five other treatment conditions where the flocculation efficiencies 

were not significantly different from the “Max_2”. The five combinations (referred to as 

“Not Sig_2” and shown as blue triangles on the figures) were as follows in the order of 

chitosan amount × pH × ST: 10 mg × 8 × 12 h, 30 mg × 10 × 1 h, 40 mg × 9 × 1 h, 50 mg 

× 8 × 12 h, and 60 mg × 9 × 1 h. From the second comparison, six treatment 
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combinations of the processing parameters were selected to give the desirable 

flocculation efficiency, whose range was 94.7 - 97.7 %. These treatments were at pH 

8-10.  

Combining the results from two comparison tests, there were a total of 14 treatment 

combinations of the processing parameters that gave the desirable flocculation efficiency 

in chitosan flocculation of NO. The range of the desirable flocculation efficiency for NO 

was 94.7 - 99.8 %. All 14 combinations were at alkaline conditions (pH 8-11). It appears 

that depending on the cost of chitosan, the treatment condition with 40 mg chitosan, pH 9 

and 1 h settling time could be favorable due to the relatively low pH and short settling 

time. Nevertheless, the selection of the optimal treatment conditions would be based on 

an economic feasibility study. The selection criteria discussed earlier for PO flocculation 

would be applicable to NO flocculation. 

4.4 ELECTRO-FLOCCULATION 

4.4.1 Optimization of Electro-Flocculation for PO 

The electro-flocculation efficiency of PO varied between 65.9 % and 99.7 % 

(Figures 30-32). The highest flocculation efficiency for PO, 99.7 %, was obtained at 

current of 0.8 A, OT of 15 min and ST of 12 h. The three-way interaction of the 

processing variables, current, OT and ST, was significant in electro-flocculation of PO 

(Table 3). 

Flocculation efficiency improved with increasing current, OT and ST (Figures 
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33-35). However, current and OT had little effect on flocculation efficiency when they 

exceed certain values (0.5 A and 10 min for PO) (Figure 35). At higher current value, less 

OT was required to attain the desirable flocculation efficiency (Figure 35). These findings 

are in agreement with the previously reported results for electro-flocculation of algae 

(Bayar et al. 2011; Gao et al. 2010; Tumsri and Chavalparit 2011; Vandamme et al. 2011). 

Faraday’s law is the generally accepted theoretical basis for explaining these observations. 

Increasing either current or OT resulted in increased generation of aluminum ions from 

the aluminum anode, and thus more aluminum hydroxide was available for algae 

flocculation. 

Dunnett’s multiple comparisons with a “best mean” were employed and 7 other 

treatment combinations were found to be not significantly different from the “best mean”. 

The 7 treatment combinations that are shown as red dots on Figures 36-38 in the order of 

current × OT × ST were 0.5 A × 10 min × 12 h, 0.5 A × 15 min × 0.5 h, 0.5 A × 15 min × 

1 h, 0.5 A × 15 min × 12 h, 0.8 A × 10 min × 12 h, 0.8 A × 15 min × 0.5 h, and 0.8 A × 15 

min × 12 h.  

In total, there were eight combinations of the processing parameters that can give 

the desirable electro-flocculation efficiency. The range of the desirable 

electro-flocculation efficiency was 97.8 - 99.7 %. The eight combinations were either at 

current value not less than 0.5 A, or at OT not shorter than 10 min. 

Although the processing condition at 0.5 A, 15 min OT and 0.5 h ST appears to be 
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a good option with short ST, the selection of the optimum conditions should be based on 

an economic feasibility study. 

4.4.2 Optimization of Electro-Flocculation for NO 

The electro-flocculation efficiency for NO varied between 85.1 % and 99.4 % 

(Figures 39 – 41). The highest flocculation efficiency for NO, 99.4 %, was obtained at 

current of 0.5 A, OT of 4 min and ST of 12 h. The effects of all processing parameters 

and their interactions on flocculation efficiency were significant except current*ST, 

OT*ST and current*OT*ST (Table 3). Flocculation efficiency improved with increasing 

current, OT and ST (Figures 42-44). The highest increase in flocculation efficiency with 

increasing current was observed at the lowest OT, 2 min (Figure 42). At a given ST, 

highest improvements were observed at low OT, 2 min and low current, less than 0.3 A 

(Figure 43). 

The results of Dunnett’s multiple comparisons with a “best mean” are shown in 

Figures 45-47. The condition of the highest NO flocculation efficiency is shown as a blue 

triangle. Seventeen flocculation efficiencies that were not significantly different from the 

highest one were shown as the red dots. Following were the 17 combinations of current × 

OT × ST: 0.1 A × 4 min × 12 h, 0.3 A × 2 min × 1 or 12 h, 0.3 A × 3 min × 0.5, 1 or 12 h, 

0.3 A × 4 min × 0.5, 1 or 12 h, 0.5 A × 2 min × 0.5, 1 or 12 h, 0.5 A × 3 min × 0.5, 1 or 12 

h, 0.5 A × 4 min × 0.5 or 1 h. The flocculation efficiencies for this group ranged from 

97.1 % to 99.4 %. The 18 combinations were all at current value of 0.3 A or greater. It 



48 

 

appears that the treatment at 0.3 A, 3 min OT and 0.5 h ST could be a favorable option 

because of the short ST. However, selection of the optimum treatment conditions needs to 

be based on a feasibility study. 
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CHAPTER V 

CONCLUSION 

In this study, two microalgae strains, Picochlorum oklahomensis (PO) and 

Nannochloropsis oculata (NO), were examined for their biomass properties and 

harvesting characteristics. Both strains had either round or oval and green cells, but the 

cell size of PO (1-2.5 μm) was significantly smaller than that of NO (5-9 μm). The 

maximum biomass concentration of PO (2.1 g/L) was nearly twice as much as that of NO 

(1.2 g/L), but PO reached the maximum biomass level a week later than NO. Both PO 

and NO cells had significant oil contents comparable to common oilseeds, but the oil 

content in NO biomass (36.4 %) was almost double the oil content in PO biomass 

(20.5 %). Volumetric oil productivity (amount of oil/volume of culture at stationary phase) 

was similar for PO and NO. In summary, this study demonstrated that PO and NO can be 

potential feedstock for biofuel production. 

Three flocculation methods, pH adjustment, biopolymer addition and 

electro-flocculation, were examined for algal biomass recovery from the culture medium. 

To the best of our knowledge, this is the first study on biomass harvesting of PO strain. 

The smaller cell size and higher maximum biomass concentration makes PO harder to 
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harvest than NO. This was demonstrated by the results that the flocculation efficiency by 

pH adjustment for NO was always higher than that for PO at the same pH level and 

settling time. Over 95 % NO flocculation could be achieved at a lower pH and chitosan: 

algal biomass ratio than those for PO. 

There were significant interactions among the processing parameters in all three 

flocculation techniques for both PO and NO. Comparing all the three techniques above, 

the simplest way to effectively harvest PO and NO biomass by flocculation is to adjust 

the pH of culture medium to 11 or 12. However, it is important to further evaluate the 

potential adverse effects of high pH on harvested biomass and waste water generated 

during the process which needs to be neutralized prior to reuse or discard. High 

flocculation efficiency (over 93.5 %) could be achieved at lower pH (pH 8-10) by adding 

chitosan to the culture medium. In such a case the harvested biomass will contain 

chitosan. The effects of the presence of chitosan in the medium on downstream 

processing need to be considered while evaluating process options.  

In conclusion, this study demonstrated that pH adjustment, chitosan addition and 

electro-flocculation were all effective methods to flocculate PO and NO cells. However, 

selection of the most suitable technique and the optimum treatment conditions needs to 

be based not only on the application of algal biomass, but also on an economic feasibility 

study. 
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FUTURE WORK 

It is apparent that microalgae growth systems are very complex involving numerous 

interactions among algae cells, components of the culture medium and environment, i.e. 

light, CO2-air supply. Further research is needed to understand these complex interactions. 

A better understanding of the entire system would certainly lead to design of more 

efficient systems. Although this study demonstrated the technical viability of the three 

different flocculation techniques for algal biomass recovery, physical separation of the 

flocs from the supernatant was not examined. Future work on floc properties, such as 

compactness and strength, should be conducted. Suitability of the harvested algal 

biomass for specific applications needs to be evaluated. The effects of presence of 

biopolymers in the system and high pH on downstream processes involved in microalgae 

production need to be further investigated. Additionally, further research is needed to 

determine the economic feasibility and scalability of the flocculation techniques 

examined in this study. 
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Table 1: Fatty acid composition of microalgae oil from PO and NO as compared to 

soybean oil. 

Fatty Acid 
Weight Percentage (%) 

PO oil NO oil Soybean oil 

C10:0 0.05 ± 0.00 0.04 ± 0.00 - 

C12:0 0.03 ± 0.00 0.04 ± 0.01 - 

C14:0 0.64 ± 0.01 0.34 ± 0.03 0.04 

C15:0 0.33 ± 0.01 0.02 ± 0.00 - 

C16:0 23.81 ± 0.08 19.46 ± 0.59 10.57 

C16:1 8.20 ± 0.06 2.02 ± 0.14 0.02 

C17:0 0.15 ± 0.00 0.07 ± 0.01 - 

C16:2n6* 6.93 ± 0.04 2.15 ± 0.12 - 

C17:1 - 0.07 ± 0.00 - 

C18:0 1.49 ± 0.02 0.81 ± 0.13 4.09 

C16:3n6* - 1.67 ± 0.12 - 

C18:1n11t - 0.05 ± 0.00 - 

C18:1n9t 0.06 ± 0.02 - - 

C18:1n9c 8.02 ± 0.04 8.76 ± 0.31 22.98 

C18:1n11c 5.77 ± 0.03 3.98 ± 0.18 - 

C19:0 - 0.19 ± 0.03 - 

Not identified* - 12.50 ± 0.33 - 

C18:2n9* - 1.06 ± 0.10 - 

C18:2n6c 26.19 ± 0.19 9.03 ± 0.22 54.51 

C20:0 0.10 ± 0.00 0.23 ± 0.04 0.33 

C18:3n6 0.09 ± 0.01 5.26 ± 0.27 - 

C20:1 0.15 ± 0.01 0.10 ± 0.01 0.18 

C18:3n3 13.52 ± 0.07 25.78 ± 1.52 7.23 

C20:2 0.05 ± 0.01 1.29 ± 0.10 - 

C22:0 0.06 ± 0.01 0.13 ± 0.04 0.25 

C22:1n9 - 0.15 ± 0.11 - 

C20:3n3 - 0.09 ± 0.01 - 

C22:2 - 0.01 ± 0.01 - 

C24:0 0.01 ± 0.01 0.12 ± 0.01 0.10 

C22:6n3 - 0.18 ± 0.16 - 

C26:0* 0.55 ± 0.02 - - 
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Table 1: Fatty acid composition of microalgae oil from PO and NO (continued from 

previous page). 

 

Fatty Acid 
Weight Percentage (%) 

PO oil NO oil Soybean oil 

Total n-3 13.52 ± 0.07 26.05 ± 1.70 7.23 

Total n-6 33.21 ± 0.23 18.11 ± 0.74 54.51 

Total n-3 and n-6 46.73 ± 0.30 44.16 ± 2.43 61.74 

Essential FA 39.71 ± 0.25 34.81 ± 1.75 61.74 

Saturated FA 27.22 ± 0.17 21.45 ± 0.89 15.38 

Monounsaturated FA 22.20 ± 0.17 15.13 ± 0.75 23.18 

PUFA 46.73 ± 0.30 45.22 ± 2.54 61.74 

 

The data of soybean oil came from Hammond et al. (2005). 

 

The “-” means that this component was not detected in this study and the “*” means the 

possible components from library search.  

 

FA and PUFA represent fatty acids and polyunsaturated fatty acids, respectively. 

 

C10:0 = Capric Acid; C12:0 = Lauric Acid; C14:0 = Myristic Acid; C15:0 = Pentadecanoic 

Acid; C16:0 = Palmitic Aicd; C16:1 = Palmitoleic Acid; C17:0 = Heptadecanoic Acid; 

C16:2n6 = 7,10-Hexadecadienoic Acid; C17:1 = cis-10-Heptadecenoic Acid; C18:0 = 

Stearic Acid; C16:3n6 = 4,7,10-Hexadecatrienoic Acid; C18:1n11t = 

trans-11-Octadecenoic Acid; C18:1n9t = Elaidic Acid; C18:1n9c = Oleic Acid; C18:1n11c 

= cis-11-Octadecenoic Acid; C19:0 = Nonadecanoic Acid; C18:2n9 = 6,9-Octadecadienoic 

Acid; C18:2n6c = Linoleic Acid; C20:0 = Arachidic Acid; C18:3n6 = γ-Linolenic Acid; 

C20:1 = cis-11-Eicosenoic Acid; C18:3n3 = Linolenic Acid; C20:2 = 

cis-11,14-Eicosadienoic Acid; C22:0 = Behenic Acid; C22:1n9 = Erucic Acid; C20:3n3 = 

cis-11,14,17-Eicosatrienoic Acid; C22:2 = cis-13,16-Docosadienoic Acid; C24:0 = 

Lignoceric Acid; C22:6n3 = cis-4,7,10,13,16,19-Docosahexaenoic Acid; C26:0 = 

Pentacosanoic Acid. 
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Table 2: Statistical analysis of the fixed effects in pH flocculation for PO and NO. 

 

PO 

 

NO 

Effect 

Numerator 

DF 

Denominator 

DF 

F Value Pr > F Effect 

Numerator 

DF 

Denominator 

DF 

F Value Pr > F 

pH 11 12 177.88 <0.0001 

 

pH 8 11 274.40 <0.0001 

ST 1 12 73.43 <0.0001 

 

ST 1 11 110.25 <0.0001 

pH*ST 11 12 4.32 0.0091 

 

pH*ST 8 11 90.42 <0.0001 

 

DF and ST represent degree of freedom and settling time, respectively. 

P < 0.05 indicates statistical significance. 

The denominator degrees of freedom were determined in the mixed model analysis of these repeatedly measured experiments. 
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Table 3: Statistical analysis of the fixed effects in chitosan flocculation for PO and NO. 

PO 

 

NO 

Effect 

Numerator 

DF 

Denominator 

DF 
F Value Pr > F Effect 

Numerator 

DF 

Denominator 

DF 
F Value Pr > F 

chitosan 5 41 89.83 <0.0001 
 

chitosan 6 42 150.31 <0.0001 

pH 9 41 128.26 <0.0001 
 

pH 5 42 631.11 <0.0001 

ST 1 41 1886.26 <0.0001 
 

ST 1 42 24.62 <0.0001 

chitosan*pH 18 41 58.09 <0.0001 
 

chitosan*ST 12 42 46.81 <0.0001 

chitosan*ST 5 41 41.58 <0.0001 
 

chitosan*ST 6 42 10.90 <0.0001 

pH*ST 19 41 59.12 <0.0001 
 

pH*ST 5 42 154.91 <0.0001 

chitosan*pH

*ST 
18 41 32.43 <0.0001 

 

chitosan*pH

* ST 
12 42 21.03 <0.0001 

 

DF, chitosan and ST represent degree of freedom, chitosan amount and settling time, respectively. 

P < 0.05 indicates statistical significance. 

The denominator degrees of freedom were determined in the mixed model analysis of these repeatedly measured experiments. 
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Table 4: Statistical analysis of the fixed effects in electro-flocculation for PO and NO. 

PO 

 

NO 

Effect 

Numerator 

DF 

Denominator 

DF 
F Value Pr > F Effect 

Numerator 

DF 

Denominator 

DF 
F Value Pr > F 

Current 2 10 172.91 <0.0001 
 

Current 2 9 65.55 <0.0001 

OT 3 10 96.44 <0.0001 
 

OT 2 9 13.84 0.0018 

Current *OT 4 10 15.38 0.0003 
 

Current *OT 4 9 11.26 0.0015 

ST 2 10 50.94 <0.0001 
 

ST 2 9 56.79 <0.0001 

Current *ST 4 10 4.13 0.0313 
 

Current *ST 4 9 0.80 0.5561 

OT*ST 6 10 2.50 0.0961 
 

OT*ST 4 9 1.88 0.1983 

Current 

*OT*ST 
8 10 4.18 0.0191 

 

Current 

*OT*ST 
8 9 1.23 0.3786 

 

DF, OT and ST represent degree of freedom, operation time and settling time, respectively. 

P < 0.05 indicates statistical significance. 

The denominator degrees of freedom were determined in the mixed model analysis of these repeatedly measured experiments. 
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Figure 1: Experimental design points selected for chitosan flocculation of PO. 

 

Chitosan

20

30

40

50

60

70

80

90

100

pH

4 5 6 7 8 9 10 11 12

Algae:  PO Design Points

rep 2 3 4

 (mg) 

replication 



70 

 

Figure 2: Experimental design points selected for chitosan flocculation of NO. 
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Figure 3: Schematic of an electro-flocculation device for harvesting microalgae. 

(1 – treatment tank, 2 – magnetic stirrer, 3 – electrodes, 4 – wire, 5 – power transformer) 
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 Figure 4: Absorption spectra for PO. 
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Figure 5: Linear association of dry biomass concentration vs.ABS for PO. 
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Figure 6: Linear association of cell density vs.ABS for PO. 
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Figure 7: Growth curves for PO. 

 

 

The data of dry biomass concentration was not actually measured. It was calculated using 

the linear association between dry biomass concentration and ABS. 
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Figure 8: pH of the culture suspension during the growth of PO. 
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Figure 9: Absorption spectra for NO. 
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Figure 10: Linear association of dry biomass concentration vs.ABS for NO. 
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Figure 11: Linear association of cell density vs.ABS for NO. 
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Figure 12: Growth curves for NO. 

 

 

The data of dry biomass concentration was not actually measured. It was calculated using 

the linear association between dry biomass concentration and ABS. 
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Figure 13: pH of the culture suspension during the growth of NO. 
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Figure 14: Flocculation efficiency for PO obtained from flocculation by pH adjustment. 
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Figure 15: Flocculation efficiency for NO obtained from flocculation by pH adjustment. 
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Figure 16: Flocculation of PO by different biopolymers addition at medium pH. 
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Figure 17: Flocculation of PO by biopolymers addition at different pH. 
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Figure 18: Flocculation efficiency for PO obtained from chitosan flocculation at settling 

time of 1 h. 
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Figure 19: Flocculation efficiency for PO obtained from chitosan flocculation at settling 

time of 12 h. 

 

 

  

Settling time = 12 h 



88 

 

Figure 20: Flocculation efficiency of PO as a function of pH at different chitosan 

amount.  
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Figure 21: Flocculation efficiency of PO as a function of chitosan amount at different 

pH. 
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Figure 22: Combinations of variables at settling time of 1 h for PO chitosan flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 

 (mg) 

Settling time = 1 h 
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Figure 23: Combinations of variables at settling time of 12 h for PO chitosan 

flocculation after Dunnett’s multiple comparisons with a “best” mean. 

 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 
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Settling time = 12 h 
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Figure 24: Flocculation efficiency for NO obtained from chitosan flocculation at settling 

time of 1 h. 

 

 

 (mg) 

Settling time = 1 h 



93 

 

Figure 25: Flocculation efficiency for NO obtained from chitosan flocculation at settling 

time of 12 h. 

 

 

  

 (mg) 

Settling time = 12 h 
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Figure 26: Flocculation efficiency of NO as a function of pH at different chitosan 

amount. 
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Figure 27: Flocculation efficiency of NO as a function of chitosan amount at different 

pH.  
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Figure 28: Combinations of variables at settling time of 1 h for NO chitosan flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

 

Not Sig_1  Not Sig_2   Significant 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 

 (mg) 

Settling time = 1 h 

Highest Max_2 
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Figure 29: Combinations of variables at settling time of 12 h for NO chitosan 

flocculation after Dunnett’s multiple comparisons with a “best” mean. 

 

 

Not Sig_1   Not Sig_2   Significant 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 

 

  

 (mg) 

Settling time = 12 h 
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Figure 30: Flocculation efficiency for PO obtained from electro-flocculation at settling 

time of 0.5 h. 
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Figure 31: Flocculation efficiency for PO obtained from electro-flocculation at settling 

time of 1 h. 
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Figure 32: Flocculation efficiency for PO obtained from electro-flocculation at settling 

time of 12 h. 
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Figure 33: Electro-flocculation efficiency of PO as a function of current value at 

different settling time. 
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Figure 34: Electro-flocculation efficiency of PO as a function of operation time at 

different settling time. 
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Figure 35: Electro-flocculation efficiency of PO as a function of operation time at 

different current value. 
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Figure 36: Combinations of variables at settling time of 0.5 h for PO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 
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Figure 37: Combinations of variables at settling time of 1 h for PO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 
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Figure 38: Combinations of variables at settling time of 12 h for PO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 

Highest  
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Figure 39: Flocculation efficiency for NO obtained from electro-flocculation at settling 

time of 0.5 h. 
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Figure 40: Flocculation efficiency for NO obtained from electro-flocculation at settling 

time of 1 h. 
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Figure 41: Flocculation efficiency for NO obtained from electro-flocculation at settling 

time of 12 h. 
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Figure 42: Electro-flocculation efficiency of NO as a function of current value at 

different operation time. 
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Figure 43: Electro-flocculation efficiency of NO as a function of current value at 

different settling time. 
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Figure 44: Electro-flocculation efficiency of NO as a function of operation time at 

different settling time. 
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Figure 45: Combinations of variables at settling time of 0.5 h for NO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 
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Figure 46: Combinations of variables at settling time of 1 h for NO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 
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Figure 47: Combinations of variables at settling time of 12 h for NO electro-flocculation 

after Dunnett’s multiple comparisons with a “best” mean. 

 

The “best” mean refers to the highest flocculation efficiency and the “Not Sig” represents 

“not significant”. 

 

Highest  
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Picture 1: Picture of an electro-flocculation device for harvesting microalgae. 
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Picture 2: Micrograph of PO. 
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Picture 3: Micrograph of NO. 
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